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1 Introduction

Phenomenology suggests that diquark correlations might play a material role in the forma-

tion of exotic tetraquarks and pentaquarks [1–5]. Diquark substructure affects the static

properties of baryons, tetraquarks and pentaquarks [5–12]. In the diquark picture, diquarks

are constituents of baryons [12–14], tetraquarks [3, 4, 15, 16] and pentaquarks [3–5, 17].

The spectra of the heavy-light diquarks composed of one heavy quark and one light

quark have been studied using various approaches. In ref. [18], the heavy-light diquark

masses are calculated by using the Schödinger-type quasipotential equations. In refs. [19–

22], the masses of different kinds of diquarks are calculated by applying the Bethe-Salpeter

equation. In refs. [23, 24], the mass spectra of the diquarks are obtained in the potential

model. In ref. [25], the masses of different types of diquarks are calculated within a non-

relativistic potential model. In refs. [26–28], the heavy-light diquark masses are obtained

from QCD sum rules.

The Regge trajectory is one of the effective approaches for studying hadron spectra [29–

69]. Although diquarks are colored states and not physical [5], we have attempted to apply

the Regge trajectory approach1 to discuss the doubly heavy diquarks in ref. [70]. The

obtained results agree with the theoretical predictions calculated by other methods. The

diquark Regge trajectory offers a new and simple approach for estimating the spectra of

diquarks. Furthermore, it is expected that the diquark Regge trajectory can provide an easy

method for investigating the ρ−mode excitations of baryons, tetraquarks and pentaquarks

1The Regge trajectories are commenly plotted in the (M2, x) plane or in the (x, M2) plane, where x =

l, nr. For simplicity, the figures plotted in the (M, x) plane, the (M −mR, x) plane and the ((M −mR)2, x)

plane are also called the Regge trajectories.
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containing diquarks [71]. In this study, we attempt to apply the Regge trajectory approach

to investigate the heavy-light diquarks. We find that the direct use of the Regge trajectory

formula for the heavy-light mesons and baryons fails, and the Regge trajectory formula

needs to be modified to fit the Regge trajectories for the heavy-light diquarks.

The paper is organized as follows: in section 2, the Regge trajectory relations are

obtained from the spinless Salpeter equation (SSE). In section 3, we investigate the Regge

trajectories for the heavy-light diquarks. The conclusions are presented in section 4.

2 Regge trajectory relations for the heavy-light diquarks

In this section, we attempt to seek unified Regge trajectory formulas for the heavy-light

mesons qq̄′ (q = c, b, q′ = u, d, s) and the heavy-light diquarks (qq′) [where q̄′ is the

antiquark of q′].

2.1 SSE

The spinless Salpeter equation (SSE) [23, 72–76] reads as

MΨd,m(r) = (ω1 + ω2) Ψd,m(r) + Vd,mΨd,m(r), (2.1)

where M is the bound state mass (diquark or meson). Ψd,m(r) are the diquark wave

function and the meson wave function, respectively. Vd,m are the diquark potential and the

meson potential, respectively, see eq. (2.3). ω1 is the relativistic kinetic energy of quark q,

and ω2 is of quark q′ or antiquark q̄′,

ωi =
√

m2
i + p2 =

√

m2
i − ∆ (i = 1, 2). (2.2)

m1 and m2 are the effective masses of heavy quark q and light quark q′ (or antiquark q̄′),

respectively.

According to the SUc(3) color symmetry, a meson is a color singlet composed of one

quark in 3c and one antiquark in 3̄c. The diquark composed of two quarks in 3c is a color

antitriplet 3̄c or a color sextet 6c. Only the 3̄c representation of SUc(3) is considered in the

present work and the 6c representation [77, 78] is not considered. In SUc(3), there is attrac-

tion between quark pairs (qq′) in the color antitriplet channel and this is just twice weaker

than in the color singlet qq̄′ in the one-gluon exchange approximation [4]. It is introducing

a factor 1/2. One would expect 1/2 to be a global factor since it comes from the color

structure of the wave function and it is common to extend this factor to the whole potential

describing the quark-quark interaction [79]. Following ref. [23], we employ the potential

Vd,m = −3

4

[

−4

3

αs

r
+ σr + C

]

(

Fi · Fj

)

d,m , (2.3)

where αs is the strong coupling constant of the color Coulomb potential. σ is the string

tension. C is a fundamental parameter [80, 81]. The part in the bracket is the Cornell

potential [82]. Fi · Fj is the color-Casimir,

〈(Fi · Fj)d〉 = −2

3
, 〈(Fi · Fj)m〉 = −4

3
. (2.4)
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The value of (Fi · Fj)d is half of (Fi · Fj)m, which agrees with the relation [18, 72, 79]

Vd =
Vm

2
. (2.5)

According to eqs. (2.1), (2.3), and (2.5), we see that the diquark and meson are described

in an unified approach. Therefore, it is expected that the heavy-light diquarks and the

heavy-light mesons can be described universally by the Regge trajectory approach.

2.2 Regge trajectory relations

In case of the heavy-light mesons, there is m1 → ∞. Using the limit m1 → ∞ and eq. (2.1),

we have

M = m1 + 〈ω2〉 + 〈Vd,m〉. (2.6)

The expectation values are understood to be taken with respect to the normalized eigen-

states of eq. (2.1). For large r, we neglect the color Coulomb potential. Using the relativistic

virial theorem [83], we have from eq. (2.6)

M = m1 − 3

4
C〈(Fi · Fj)d,m〉 +

〈

√

m2
2 + p2 +

p2

√

m2
2 + p2

〉

. (2.7)

Using

〈

√

m2
2 + p2

〉

≤
√

m2
2 + 〈p2〉, we have the approximate relation,

M≈m1 − 3

4
C〈(Fi · Fj)d,m〉 +

√

m2
2 + 〈p2〉 +

〈p2〉
√

m2
2 + 〈p2〉

. (2.8)

Using eq. (2.8) and the parameters in eq. (3.2), we can estimate the order of momenta of

light quark in the heavy-light mesons. For the 11S0 state D±, 〈|p|〉∼0.28 GeV. For the

21S0 state D0(2500)0, 〈|p|〉∼0.65 GeV. For the 11S0 state B±, 〈|p|〉∼0.33 GeV. For the

13P2 state B∗
2(5747), 〈|p|〉∼0.57 GeV. The momenta of light quark increases with l or nr,

where l (l = 0, 1, 2, · · · ) is the orbital angular momentum and nr (nr = 0, 1, 2, · · · ) is the

radial quantum number. Comparing with the momenta of light quarks, it is reasonable

that the mass of the light quark is regarded as being small for the orbitally and radially

excited states of the heavy-light mesons.

The mass of the light antiquark is assumed to approach zero, m2 → 0 in refs. [36, 50] or

is taken as being very small and is considered by correction term in refs. [10, 48, 49, 52, 65].

In the limit m1 → ∞ and m2 → 0, eq. (2.1) is reduced to be

MΨm(r) = [m1 + |p| + Vm] Ψm(r). (2.9)

By employing the Bohr-Sommerfeld quantization approach [41, 84], we have from eq. (2.9)

M∼2
√
σ

√
l, M∼

√
2πσ

√
nr. (2.10)

Using eq. (2.10), the parameterized formula can be written as [36, 48–51, 64, 65]

M = mR + βx

√
x+ c0x, (x = l, nr). (2.11)
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The parameter in eq. (2.11) reads as [64, 69]

βx = cfxcxcd,m. (2.12)

The constants cx and cm are

cm =
√
σ, cl = 2, cnr =

√
2π. (2.13)

cd is in eq. (2.15). Both cfl and cfnr
are theoretically equal to one and are fitted in practice.

For the heavy-light mesons, the common choice of mR is [10, 36, 48, 50, 51, 64, 65]

mR = m1. (2.14)

In eqs. (2.12) and (2.13), mR, cx, cfx and σ are universal for the heavy-light mesons. c0x,

which varies with different Regge trajectories, is determined by fitting the given Regge

trajectory.

Similar to the preceding discussions, the Regge trajectory formula for the heavy-light

diquarks can be obtained, which has the same form as that for the heavy-light mesons, i.e.,

eq. (2.11) with (2.12) and (2.13) and the σ in (2.13) should be divided by a factor of 2,

cd =

√

σ

2
for diquark. (2.15)

By fitting both the heavy-light meson and the heavy-light diquark Regge trajectories,

we find that the usual Regge trajectory eq. (2.11) with (2.14), which is obtained in the

limit m1 → ∞ and m2 → 0, cannot give agreeable results of diquarks. In reality, even the

light quarks are massive. C should be considered according to (2.3) and (2.9). Moreover,

we find that considering only one of the light quark mass correction and the parameter C

cannot give acceptable results. Therefore, both the light quark mass correction and the

parameter C are needed to be considered. There are different ways to include the light

quark mass correction [10, 48, 49, 52, 56]. According to our knowledge, the light quark

mass correction is not obtained from eq. (2.1) due to its complexity. In ref. [49], the authors

propose M = m1 + m2 +
√

a(nr + αl + b) based on the string model, which differs from

eq. (2.11) mainly in the term m2. According to the discussions in refs. [49, 60], by including

the parameter C, we have eq. (2.11) with

mR = m1 +m2 + Cd,m, Cd =
C

2
, Cm = C. (2.16)

In ref. [10], M = m1 +
√

σ′l/2 + 21/4κl−1/4m
3/2

2 , which differs from (2.11) mainly in the

corrections of m2, is obtained by the computer simulations for the heavy-light systems

based on the loaded flux tube model. According to the results in [10, 52], by simple

algebra calculations and including the parameter C, we have

M = mR +

√

β2
x(x+ c0x) + κxm

3/2

2 (x+ c0x)1/4 (2.17)

if m2≪M . Eq. (2.17) agrees with the results in refs. [10, 52]. In eq. (2.17),

mR = m1 + Cd,m, κx =
4

3

√

πβx, (2.18)
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where βx is in (2.12), Cd,m are in (2.16). As m2 = 0, these two modified formulas, for-

mulas (2.11) with (2.16) and (2.17) with (2.18), become identical. As m2 = 0 and C is

neglected, these two modified formulas reduce to the usual Regge trajectory formula for

the heavy-light mesons, i.e., (2.11) with (2.14).

The Regge trajectory relation for the doubly heavy diquarks has the same form as

the Regge trajectory relation for the doubly heavy mesons [70]. Different from the doubly

heavy diquark case, the usual Regge trajectory formula (2.11) with (2.14) for the heavy-

light mesons cannot be applied directly to the heavy-light diquarks. [Because m2 + C is

small for m1 and then mR = m1 is a good approximation of mR = m1 +m2 +C, the usual

Regge trajectory formula (2.11) with (2.14) can work well for the heavy-light mesons.] The

unified description of the heavy-light mesons and the heavy-light diquarks demands more

rigorous Regge trajectory relations. By fitting masses of the heavy-light mesons and the

heavy-light diquarks, we find that the formula (2.11) with (2.16) and the formula (2.17)

with (2.18) are acceptable. They are justified not only by that they are obtained from

the string model or from the loaded flux tube model but also by that they can produce

the heavy-light mesons masses and the heavy-light diquark masses which are in agreement

with other theoretical predictions, see details in section 3. Different from other formulas,

formulas (2.11) with (2.16) and (2.17) with (2.18) include not only the quark masses m1

and m2 but also the fundamental parameter C in the Cornell potential. Moreover, the half

relation (2.5) is explicitly included in these two formulas through σ/2 and C/2. These two

Regge trajectory formulas present unified descriptions of the heavy-light mesons and the

heavy-light diquarks.

3 Regge trajectories for the heavy-light diquarks

In this section, the Regge trajectories for the heavy-light diquarks (cu), (cs), (bu) and (bs)

are investigated.

3.1 Preliminary

The state of diquark (qq′) is denoted as [qq′]cn2s+1lj
or {qq′}c

n2s+1lj
, see table 1. c = 3̄c, 6c.

{qq′} and [qq′] indicate the permutation symmetric and antisymmetric flavor wave func-

tions, respectively. n = nr + 1, nr = 0, 1, · · · , where nr is the radial quantum number. s

is the total spin of two quarks, l is the orbital quantum number, and j is the spin of the

diquark (qq′).

Two Regge trajectory formulas are used to fit the radial and orbital Regge trajectories

for the heavy-light diquarks: (1) eq. (2.11) with (2.12), (2.13), (2.15), and (2.16) (Fit1);

(2) (2.17) with (2.18) (Fit2). The quality of a fit is measured by the quantity χ2 defined

by [85]

χ2 =
1

N − 1

N
∑

i=1

(

Mfi −Mei

Mei

)2

, (3.1)

where N is the number of points on the trajectory, Mfi is fitted value and Mei is the

experimental value or the theoretical value of the i-th particle mass. The parameters are
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Spin of diquark Parity Wave state Configuration

( j ) (jP ) (n2s+1lj)

j=0 0+ n1s0 [qq′]3̄c

n1s0
, {qq′}6c

n1s0

0− n3p0 [qq′]3̄c

n3p0
, {qq′}6c

n3p0

j=1 1+ n3s1, n3d1 {qq′}3̄c

n3s1
, {qq′}3̄c

n3d1
, [qq′]6c

n3s1
, [qq′]6c

n3d1

1− n1p1, n3p1 {qq′}3̄c

n1p1
, [qq′]3̄c

n3p1
, [qq′]6c

n1p1
, {qq′}6c

n3p1

j=2 2+ n1d2, n3d2 [qq′]3̄c

n1d2
, {qq′}3̄c

n3d2
, {qq′}6c

n1d2
, [qq′]6c

n3d2

2− n3p2, n3f2 [qq′]3̄c

n3p2
, [qq′]3̄c

n3f2
, {qq′}6c

n3p2
, {qq′}6c

n3f2

· · · · · · · · · · · ·

Table 1. The completely antisymmetric states for the diquarks in 3̄c and in 6c [70]. j is the

spin of the diquark (qq′), s denotes the total spin of two quarks, l represents the orbital angular

momentum. n = nr + 1, nr is the radial quantum number, nr = 0, 1, 2, · · · .

determined by minimizing χ2. Firstly, using two Regge trajectory formulas and the masses

from PDG [86] and the masses predicted theoretically [87], we fit the radial and orbital

Regge trajectories for the charmed, charmed-strange, bottom and bottom-strange mesons,

respectively. Secondly, we choose the following parameter values [18, 88] which are used to

fit the Regge trajectories for the heavy-light diquarks,

mb = 4.88 GeV, mc = 1.55 GeV,

mu,d = 0.33 GeV, ms = 0.50 GeV,

σ = 0.18 GeV2, C = −0.30 GeV. (3.2)

These parameters are universal for all doubly heavy diquark Regge trajectories [70] and for

all heavy-light diquark Regge trajectories. Thirdly, the only free parameter c0x in (2.11),

which varies with different diquark Regge trajectories, is determined by fitting the corre-

sponding meson Regge trajectories. For example, the c0nr in the [bu]3̄c

13p0
Regge trajectory

is calculated by fitting the radial Regge trajectory for the 13P0 bottom meson. As all

parameters are determined, the diquark masses can be calculated finally. There is not

compelling reason why c0x obtained by fitting the meson Regge trajectories can be used

directly to calculate the diquark Regge trajectories. We use this method as a provisional

method to determine c0x before finding a better one. It validates this method that the fit-

ted results for the heavy-light diquarks (cu), (cs), (bu) and (bs) agree with the theoretical

values obtained by using other approaches, see the discussions in the following subsections.

3.2 Regge trajectories for the (cu) and (bu) diquarks

Using eq. (2.11) with (2.12), (2.13) and (2.16) (Fit1) and eq. (2.17) with (2.18) (Fit2)

to fit the radial Regge trajectories for the 11s0 (13s1) charmed mesons and for the 11s0

(13s1) bottom mesons, respectively, we obtain the parameters cfnr
and c0nr , see table 2.

The masses of mesons from PDG [86] and the theoretical predictions from [87] are used

– 6 –
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(cu) (bu) (cs) (bs)

Fit1 Fit2 Fit1 Fit2 Fit1 Fit2 Fit1 Fit2

cfnr
1.000 1.102 0.988 1.093 1.016 1.154 0.953 1.086

cfl 1.038 1.157 0.965 1.076 1.015 1.162 0.919 1.055

c0nr (11s0) 0.065 0.075 0.125 0.145 0.03 0.04 0.08 0.095

c0nr (13s1) 0.17 0.2 0.155 0.18 0.095 0.11 0.11 0.125

c0l (11s0) 0.095 0.11 0.18 0.205 0.055 0.07 0.115 0.135

c0l (13s1) 0.19 0.215 0.22 0.255 0.135 0.155 0.16 0.18

c0l (13p0) 0.9 0.93 1.18 1.21 0.83 0.855 1.09 1.11

Table 2. The fitted values of parameters cfnr
, cfl, c0nr

, and c0l. c0nr
(11s0) and c0nr

(13s1) are

obtained by fitting the radial Regge trajectory for the 11s0 state and the 13s1 state, respectively.

The c0l (11s0), c0l (13s1) and c0l (13p0) are calculated by fitting the orbital Regge trajectory for

the 11s0 state, the 13s1 state and the 13p0 state, respectively.

(cu) (bu)

State (n2s+1lj) Fit1 Fit2 Fit1 Fit2

11s0 1.92 1.91 5.32 5.32

21s0 2.51 2.47 5.85 5.82

31s0 2.81 2.78 6.14 6.12

41s0 3.05 3.03 6.37 6.36

51s0 3.25 3.24 6.57 6.57

13s1 2.04 2.04 5.35 5.35

23s1 2.54 2.52 5.86 5.83

33s1 2.84 2.82 6.15 6.13

43s1 3.07 3.06 6.38 6.37

53s1 3.26 3.26 6.57 6.58

Table 3. The fitted values (in GeV) for the diquarks (cu) and (bu) by using the radial Regge

trajectories. n = nr + 1, nr = 0, 1, · · · . nr is the radial quantum number. s is the total spin of two

quarks, l is the orbital quantum number and j is the spin of diquark.

to obtain cfnr
. The experimental values [86] are used to obtain c0nr . Substitute the

values in eq. (3.2) and the obtained cfnr
and c0x into (2.11), (2.12), (2.13), (2.16), (2.17)

and (2.18). Then the masses of diquark (cu) and (bu) can be calculated by eqs. (2.11)

and (2.17), respectively, see table 3. The diquark masses calculated by Fit1 and Fit2 are

approximately equal to each other.

Similar to the radial Regge trajectory case, the orbital Regge trajectories for the 11s0

(13s1) charmed mesons and for the 11s0 (13s1) bottom mesons are fitted by using eq. (2.11)

– 7 –
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(cu) (bu)

State (n2s+1lj) Fit1 Fit2 Fit1 Fit2

11s0 1.92 1.92 5.31 5.30

11p1 2.38 2.36 5.69 5.67

11d2 2.63 2.61 5.92 5.90

11f3 2.83 2.81 6.09 6.08

11g4 2.99 2.98 6.24 6.24

11h5 3.14 3.14 6.38 6.38

13s1 2.00 2.00 5.33 5.33

13p2 2.41 2.39 5.70 5.68

13d3 2.65 2.63 5.92 5.91

13f4 2.84 2.83 6.10 6.09

13g5 3.01 3.00 6.25 6.24

13h6 3.15 3.15 6.38 6.38

Table 4. Same as table 3 except by using the orbital Regge trajectories.

jP Diquark Fit1 Fit2 FGS [18] YCRS [19] GTB [20] G [24] GAR [25]

0+ [cq]3̄c

11s0
1.92 1.92 1.973 2.15 2.08 2.118 1.88

[cs]3̄c

11s0
2.04 2.03 2.091 2.26 2.17 2.237 2.0

[bq]3̄c

11s0
5.31 5.30 5.359 5.51 5.37 5.513 5.31

[bs]3̄c

11s0
5.42 5.41 5.462 5.60 5.46 5.619 5.40

0− [cq]3̄c

13p0
2.32 2.30 2.35 2.37

[cs]3̄c

13p0
2.45 2.44 2.48 2.47

[bq]3̄c

13p0
5.69 5.67 5.61 5.53

[bs]3̄c

13p0
5.81 5.79 5.72 5.62

1+ {cq}3̄c

13s1
2.00 2.00 2.036 2.24 2.16 2.168 2.03

{cs}3̄c

13s1
2.12 2.12 2.158 2.34 2.25 2.276 2.14

{bq}3̄c

13s1
5.33 5.33 5.381 5.53 5.39 5.526 5.36

{bs}3̄c

13s1
5.45 5.44 5.482 5.62 5.47 5.630 5.45

1− {cq}3̄c

11p1
2.38 2.36 2.45 2.45

{cs}3̄c

11p1
2.53 2.51 2.56 2.54

{bq}3̄c

11p1
5.69 5.67 5.67 5.59

{bs}3̄c

11p1
5.81 5.80 5.77 5.67

Table 5. Comparison of theoretical predictions for the masses of the heavy-light diquarks (in GeV).
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Figure 1. The radial and orbital Regge trajectories for the (cu) and (bu) diquarks, respectively.

(a) Radial Regge trajectories for the [cu]3̄c

11s0

state and for the [bu]3̄c

11s0

state. (b) Radial Regge

trajectories for the {cu}3̄c

13s1

state and for the {bu}3̄c

13s1

state. (c) Orbital Regge trajectories for the

[cu]3̄c

11s0

state and for the [bu]3̄c

11s0

state. (d) Orbital Regge trajectories for the {cu}3̄c

13s1

state and for

the {bu}3̄c

13s1

state. The black lines are the (cu) Regge trajectories for Fit1, the green dashed lines are

the (bu) Regge trajectories for Fit1, the blue dot-dashed lines are the (cu) Regge trajectories for Fit2

and the red dotted lines are the (bu) Regge trajectories for Fit2. The data are listed in tables 3 and 4.

with (2.12), (2.13) and (2.16) (Fit1) and eq. (2.17) with (2.18) (Fit2), repectively. The

experimental data from PDG [86] and the theoretical data from [87] are used to obtain cfl.

The experimental values [86] are used to determine c0l. The fitted parameters are listed in

table 2. Using the fitted values, the diquark masses of the orbitally excited states can be

calculated by using eqs. (2.11) and (2.17), respectively, see table 4. Here, we do not consider

the mixtures of spin-triplet and spin-singlet states of the heavy-light diquarks. The 11ll
states are calculated by using the orbital Regge trajectories for the 11s0 state, see table 4.

The calculated masses by using the Regge trajectories are in accordance with other the-

oretical predictions, see table 5. In table 5, Fit1 and Fit2 are obtained by using the orbital

Regge trajectories, which are from tables 4 and 7. By fitting the orbital Regge trajectory

for D∗
0(2300), we obtain fitted c0l. Then the masses of [cu]3̄c

13p0
can be calculated. By fitting

the orbital Regge trajectory for the 13P0 state of the bottom meson, we have the value of
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(cs) (bs)

State (n2s+1lj) Fit1 Fit2 Fit1 Fit2

11s0 2.03 2.01 5.43 5.42

21s0 2.68 2.65 5.97 5.96

31s0 2.99 2.97 6.26 6.25

41s0 3.23 3.22 6.49 6.48

51s0 3.43 3.44 6.68 6.68

13s1 2.14 2.13 5.47 5.46

23s1 2.70 2.68 5.98 5.97

33s1 3.01 2.99 6.27 6.26

43s1 3.24 3.24 6.49 6.49

53s1 3.45 3.45 6.68 6.69

Table 6. Same as table 3 except for the (cs) and (bs) diquarks.

c0l. Then the masses of [bu]3̄c

13p0
can be calculated. The 13P0 state of the bottom meson

has not been determined experimentally, therefore, its theoretical value from [87] is used.

The radial and orbital Regge trajectories for the diquarks (cu) and (bu) are shown in

figure 1. In each figure, the upper two lines, fitted by using eq. (2.17) with (2.18) (Fit2), are

positioned above the lower two lines fitted by using eq. (2.11) with (2.12), (2.13) and (2.16)

(Fit1). This is because mR = m1 +m2 + C/2 for Fit1 while mR = m1 + C/2 for Fit2. To

compare the Regge trajectories for the (cu) with those for the (bu), they are plotted in the

(M −mR, x) (x = nr, l) plane, see figure 1. For both Fit1 and Fit2, the radial and orbital

Regge trajectories for (cu) and those for (bu) almost overlap with each other irrespective of

heavy quark flavors. This indicates an universal description of these heavy-light diquarks

(cu) and (bu) which is similar to the universal description of the heavy-light mesons and

baryons [50, 51, 64, 65].

3.3 Regge trajectories for the (cs) and (bs) diquarks

By using eq. (2.11) with (2.12), (2.13) and (2.16) (Fit1) and eq. (2.17) with (2.18) (Fit2)

to fit the radial Regge trajectories for the 11s0 (13s1) charmed-strange mesons and for the

11s0 (13s1) bottom-strange mesons, respectively, the parameters cfnr
and c0nr can be deter-

mined, see table 2. The experimental data from PDG [86] and the theoretical data from [87]

are used to obtain cfnr
. The experimental values [86] are used to obtain c0nr . Substitute the

values in eq. (3.2) and the obtained cfnr
and c0x into (2.11), (2.12), (2.13), (2.16), (2.17)

and (2.18). Then the masses of diquark (cs) and (bs) can be calculated by eqs. (2.11)

and (2.17), respectively. The obtained masses are listed in tables 6. The diquark masses

calculated by Fit1 and Fit2 are approximately equal to each other.

Similar to the radial Regge trajectory case, the orbital Regge trajectories for the 11s0

(13s1) charmed-strange mesons and for the 11s0 (13s1) bottom-strange mesons are fitted
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(cs) (bs)

State (n2s+1lj) Fit1 Fit2 Fit1 Fit2

11s0 2.04 2.03 5.42 5.41

11p1 2.53 2.51 5.81 5.80

11d2 2.77 2.76 6.03 6.02

11f3 2.96 2.95 6.20 6.19

11g4 3.13 3.12 6.35 6.34

11h5 3.27 3.27 6.48 6.48

13s1 2.12 2.12 5.45 5.44

13p2 2.55 2.53 5.82 5.81

13d3 2.79 2.78 6.04 6.03

13f4 2.98 2.97 6.21 6.20

13g5 3.14 3.14 6.35 6.35

13h6 3.28 3.29 6.48 6.48

Table 7. Same as table 4 except for the (cs) and (bs) diquarks.
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Figure 2. Same as figure 1 except for the diquarks (cs) and (bs).
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by using eq. (2.11) with (2.12), (2.13) and (2.16) (Fit1) and eq. (2.17) with (2.18) (Fit2),

respectively, see table 2. The experimental data from PDG [86] and the theoretical data

from [87] are used to obtain cfl. The experimental values [86] are used to determine c0l.

Using the fitted parameters, the diquark masses of the orbitally excited states can be

calculated by using eqs. (2.11) and (2.17), respectively, see table 7.

The calculated masses of the (cs) and (bs) diquarks by using the Regge trajectories

are in accordance with other theoretical predictions, see table 5. In table 5, Fit1 and

Fit2 are obtained by using the orbital Regge trajectories, which are from tables 4 and 7.

By fitting the orbital Regge trajectory for D∗
s0(2317), we have the fitted c0l. Then the

masses of [cs]3̄c

13p0
can be calculated. By fitting the orbital Regge trajectory for the 13P0

state of the bottom-strange meson, we have the values of c0l. Then the masses of [bs]3̄c

13p0

can be calculated. The 13P0 state of the bottom-strange meson has not been determined

experimentally, therefore, its theoretical value from [87] is used.

The radial and orbital Regge trajectories for the diquarks (cs) and (bs) are shown in

figure 2. In every graph in figure 2, two lines by Fit2 lie above two lines by Fit1 because

the light quark mass m2 is not included in mR for Fit2. For both Fit1 and Fit2, the

radial and orbital Regge trajectories for (cs) and those for (bs) are close to each other

irrespective of heavy quark flavors. This means the universal description of the charmed-

strange and bottom-strange diquarks. We can conclude that the heavy-light diquarks (cs)

and (bs) satisfy the universal descriptions same as other heavy-light systems, such as the

heavy-light mesons, the heavy-light baryons composed of one heavy quark (diquark) and

one light diquark (quark), and the heavy-light tetraquarks composed of one heavy diquark

(anidiquark) and one light antidiquark (diquark) [50, 51, 64, 65].

3.4 Discussions

For the heavy-light mesons with J = l, there are mixing of the spin-triplet states and

spin-singlet states [87],

|ψJ〉 = |1ll〉 cos θ + |3ll〉 sin θ,

|ψ′

J〉 = −|1ll〉 sin θ + |3ll〉 cos θ. (3.3)

The mixing occurs due to the nondiagonal spin-orbit and tensor terms. Similar to the

heavy-light mesons, there will exist the 1ll −3 ll mixing for the heavy-light diquarks. In this

work, we do not consider this kind of 1ll −3 ll mixing. The masses of the 11ll states of the

heavy-light diquarks are estimated by using the orbital Regge trajectories for the [qq′]3̄c

11s0

state, qq′ = cu, cs, bu, bs, see tables 4 and 7.

The results obtained from Fit1 and Fit2 show good agreement when x (x = nr, l) is

smaller than approximately 10. As x increases, the values from Fit2 become greater than

the values from Fit1. The differences between the values obtained from Fit1 and Fit2

increase with x. These situations vary with different Regge trajectories. To illustrate this,

figure 3, taken as an example, present the radial Regge trajectories for the [cu]3̄c

11s0
state

fitted by Fit1 and Fit2. It can be observed that eq. (2.11) with (2.12), (2.13) and (2.16)

(Fit1) and eq. (2.17) with (2.18) (Fit2) are suitable for describing the heavy-light diquarks
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Figure 3. The radial Regge trajectories for the [cu]3̄c

11s0

state fitted by Fit1 (the black line) and

Fit2 (the blue dot-dashed line). The values of parameters are in 3.1 and 3.2.

when nr < 10. In most of cases, there are limited experimental and theoretical data

available for the very highly excited states with nr, l > 10, for example, for the heavy-light

mesons or baryons. This implies that both Regge trajectory formulas can be applied to

discussed the Regge trajectories for the heavy-light diquarks.

4 Conclusions

We attempt to apply the Regge trajectory approach to investigate the heavy-light diquarks

composed of one heavy quark and one light quark. The spectra of the heavy-light diquarks

(cu), (cs), (bu) and (bs) are calculated by using the Regge trajectory approach, and these

results are in agreement with other theoretical results. This demonstrates the appropriate-

ness of the Regge trajectory method for studying the heavy-light diquarks. The diquark

Regge trajectory provides a new and simple approach for estimating the spectra of the

heavy-light diquarks. Additionally, we expected that the Regge trajectory approach can

also be applied to the light diquarks composed of two light quarks.

The Regge trajectory relation for the doubly heavy diquarks has the same form as

the relation for the doubly heavy mesons. However, unlike the case of the doubly heavy

diquark, the usual Regge trajectory formula for the heavy-light mesons cannot be directly

applied to the heavy-light diquarks. We find that considering the light quark mass and

the parameter C is necessary to obtain agreeable results. Two modified formulas present

unified descriptions of the heavy-light mesons and the heavy-light diquarks.

We present a method for determining the parameters in the diquark Regge trajectories.

By employing (2.11) with (2.12), (2.13) and (2.16) or eq. (2.17) with (2.18) to fit the heavy-

light mesons, we can obtain values for the universal parameters. By fitting a chosen meson

Regge trajectory, c0x is calculated. Once all parameters are computed, the Regge trajectory

for the heavy-light diquarks is determined, and their spectra can be estimated.

It is illustrated that the heavy-light diquarks exhibit an universal description, irrespec-

tive of heavy quark flavors, similar to other heavy-light systems such as the heavy-light

mesons, the heavy-light baryons and the heavy-light tetraquarks.
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