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1 Introduction

In the era of precision measurements, modern cosmology has achieved numerous excel-
lent agreements between observations and theoretical understandings. For instance, the
effective relativistic neutrino species, Neff , has been precisely measured to be Neff =
2.99±0.17 [1], exhibiting good agreement with the prediction of the standard model (SM),
NSM

eff ≈ 3.045 [2–6]. Looking ahead, future precision measurements of Neff at CMB-S4 [7, 8],
SPT-3G [9], Simons Observatory [10, 11], PICO [12], CORE [13] and CMB-HD [14] are
anticipated to reach the percent level, providing an excellent opportunity to thoroughly
probe the SM prediction, including the small deviation from three.

Precision measurements of Neff offer a promising avenue to shed light on new physics
beyond the SM, given that many new physics scenarios predict significant deviations of
Neff from the SM value [2, 3, 15–33]. For instance, Dirac neutrinos with thermalized right-
handed components would lead to ∆Neff ≡ Neff − NSM

eff ≥ 0.14 [20, 22, 23, 34]. Axions
or axion-like particles, if thermalized before the electroweak phase transition, would cause
∆Neff = 0.027 [35]. Unstable particles may also leave observable imprints in Neff if a
considerable fraction of these particles decay after neutrino decoupling. This has been
used to set stringent constraints on light mediators of new interactions [19, 36–38].

Generally speaking, a new species can modify Neff if it has been produced before
neutrino decoupling and carries a certain amount of energy after neutrino decoupling. If
the energy carried by the new species at the moment of neutrino decoupling is low (e.g., due
to the Boltzmann suppression or insufficient production), ∆Neff is expected to be small.
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However, we would like to emphasize here that even if this part of energy is vanishingly
small, new species produced after neutrino decoupling might still cause observably large
∆Neff due to the mass effect of the introduced new species. Consider for example a new
light scalar ϕ that is dominantly coupled to neutrinos (ν), with the mass mϕ = 1 keV and
the coupling gϕ = 10−9. Such a species remains unthermalized until the temperature drops
down to about 30 keV,1 and then starts to thermalize (i.e. being substantially produced
from ν). Eventually, all produced ϕ particles will decay and release the energy back to ν

at temperatures well below mϕ. So during the entire process, ϕ first absorbs energy from
ν and then returns it to ν. If the energy densities of ϕ and ν both scale as a−4 where
a is the scale factor of the expanding universe, the total energy in a comoving volume,
ρϕ+νa4, should remain constant, implying that neutrinos would not gain any energy from
this process. However, since a significant amount of the energy is stored in the form of
mϕ, which is resistant to the dilution caused by the Hubble expansion, ρϕ+νa4 actually
increases during the process. We refer to this effect as the dilution-resistant effect.

The dilution-resistant effect has previously been studied in ref. [3]. There, it has been
shown that a light scalar thermalized after neutrino decoupling can maximally produce
∆Neff = 0.118 due to the dilution-resistant effect. This is below the current experimental
limit but falls in the sensitivity reach of next-generation CMB experiments. Therefore,
once the experimental sensitivity reaches this value, it will have a great implication: an
enormously large part of the parameter space of light mediators which could be well hidden
in the neutrino sector will be unveiled.

In this work, we aim at a comprehensive investigation into how future Neff constraints
on light mediators in the neutrino sector might be changed due to the dilution-resistant
effect. Our analysis includes both scalar and vector mediators, and covers a wide mass
range from a few eV to 100 MeV. We concentrate on neutrinophilic light mediators, but
to some extent our results can also be applied to models like B − L. We show that with
future experiments such as CMB-S4 and CMB-HD, Neff constraints on such mediators in
the sub-MeV region will be improved by orders of magnitude (see figure 4). In particular,
regarding the recent rising interest in neutrino self-interactions [39–48], our result implies
that strong neutrino self-interactions involving light mediators can be easily probed or
excluded by the next-generation CMB experiments.

Our work is structured as follows. Section 2 introduces the interactions of the light
mediators and the Boltzmann equations used in this work. The idea of the dilution-
resistant effect is also formulated in this section. In section 3, we analytically estimate
the cosmological evolution of the light mediators and provide various formulae that can
approximate the numerical results very well in their respective valid ranges. Our numerical
calculations and results are presented in section 4, where we also discuss the implications
for specific models and neutrino self-interactions. Finally, we conclude in section 5 and
relegate some details to the appendix.

1This can be seen either from our figure 1 or from a simple estimate using the thermalization condition
⟨Γ2ν→ϕ⟩ ≳ H where ⟨Γ2ν→ϕ⟩ ≈

g2
ϕ

m2
ϕ

16πTν
is the thermal average of the inverse decay rate and H ≈ 6T 2

ν /mpl

is the Hubble expansion rate at the keV scale. It is straightforward to see that ⟨Γ2ν→ϕ⟩ ≳ H requires
Tν ≲ 34 keV.
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2 Models and Boltzmann equations

We consider a light mediator, either a vector denoted by Z ′
µ or a scalar denoted by ϕ, that

is coupled to the SM neutrinos as follows:

L ⊃

gZ′ν†σµνZ ′
µ for vector ,

gϕννϕ + h.c. for scalar .
(2.1)

Throughout this paper, we adopt the notation of two-component Weyl spinors for neutri-
nos [49]. The masses of Z ′

µ and ϕ are denoted by mZ′ and mϕ, respectively. For simplicity,
we assume that Z ′

µ and ϕ are coupled to neutrinos only, and their couplings to charged
leptons or quarks are absent or suppressed. Complete models for such mediators can be
constructed, for example, via the right-handed neutrinos with new gauge interactions and
active-sterile mixing [41, 50–52] or new scalar singlets coupled to right-handed neutri-
nos [53]. In fact, even for models like B − L in which Z ′ is equally coupled to neutrinos
and electrons, our analysis below still applies to a certain extent, as we will discuss later
in section 4.

The evolution of a generic species in the expanding universe is governed by the following
Boltzmann equations:

dn

dt
+ 3Hn = C

(n)
prod. − C

(n)
depl. , (2.2)

dρ

dt
+ 3H (ρ + P ) = C

(ρ)
prod. − C

(ρ)
depl. , (2.3)

where n, ρ, P denote the number, energy, and pressure densities of the species to be
computed;2 H = a−1da/dt is the Hubble parameter; and the right-hand sides are collision
terms — see also appendix A for detailed calculations. The subscripts “prod.” and “depl.”
indicate that the collision terms account for the production and depletion of the species.

Since dn/dt + 3Hn = a−3d
(
na3) /dt and H = a−1da/dt, we rewrite eq. (2.2) as

d
(
na3)
da

= a2

H

[
C

(n)
prod. − C

(n)
depl.

]
. (2.4)

For the energy density ρ, we obtain a similar equation:

d
(
ρa4)
da

= a3

H

[
C

(ρ)
prod. − C

(ρ)
depl.

]
+ a3 (ρ− 3P ) . (2.5)

Compared to eq. (2.4), here we have an extra term proportional to ρ− 3P , which vanishes
for relativistic species due to the well-known relation P = ρ/3.

For non-relativistic species, however, this term is always positive, making a positive
contribution to the comoving energy density ρa4 during the Hubble expansion. We refer

2In our convention, we extract all internal degrees of freedom out of the definition of n such that n only
represents the number density of a single degree of freedom. For instance, nν = 3ζ(3)T 3

ν /(4π2) does not
include antineutrinos (ν) nor neutrinos of different flavors. The same convention also applies to ρ, P , and
the entropy density s.
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to it as the dilution-resistant term, since fundamentally it is exactly this term that causes
the dilution-resistant effect.

To gain a better understanding of the dilution-resistant term, let us consider the process
νν ↔ Z ′. Each Z ′ particle being produced via this process consumes one ν and one ν.
The collision term C

(nZ′ )
prod. for Z ′ production should be exactly equal to the collision terms

for ν and ν depletion, i.e. C
(nZ′ )
prod. = C

(nν)
depl. = C

(nν)
depl.. So when summing eq. (2.4) for Z ′ and

ν together, we have
d
(
nνa3)
da

+ d
(
nZ′a3)
da

= 0 . (2.6)

Following a similar argument, we also obtain
d
(
ρνa4)
da

+ d
(
ρνa4)
da

+ d
(
ρZ′a4)
da

= a3 (ρZ′ − 3PZ′) . (2.7)

Eq. (2.7) implies that the comoving energy density (ρν +ρν +ρZ′)a4 would remain constant
if the dilution-resistant term on the right-hand side were absent. Due to the presence of
this term, we expect that the total energy of Z ′ and ν in a comoving volume should increase
during the Hubble expansion, leading to a positive contribution to Neff . As we will show,
for a decoupled Z ′-ν (or ϕ-ν) sector, the dilution-resistant effect can cause ∆Neff = 0.252
(or 0.118) maximally.

3 Analytical estimates

A quantitative and accurate calculation of the dilution-resistant effect requires numerically
solving the Boltzmann equation. Under certain assumptions, however, most of the numer-
ical results can be approximately obtained in the analytic approach, as we shall elaborate
below.

3.1 Case A: production after neutrino decoupling

Let us first consider that the coupling of the mediator is sufficiently small and its mass is
well below the neutrino decoupling temperature. In this case, the light mediator is in the
freeze-in regime and the production is only significant when the temperature is at the same
order of magnitude of the mass.

As the light mediator is produced from neutrinos while neutrinos have decoupled from
the thermal bath, there are a few useful conservation laws which are valid under some
circumstances.

• Conservation of particle numbers. If Z ′ is only produced via νν → Z ′, then creating
one Z ′ particle implies that one ν and ν must have been destroyed. In a comoving
volume, the total number of Z ′ and ν particles should be conserved. For νν ↔ ϕ,
after taking νν ↔ ϕ into account, we obtain a similar conclusion. Therefore, we have
the following conservation law:

(Nνnν + NZ′nZ′)a3 = constant , (3.1)
(Nνnν + Nϕnϕ)a3 = constant , (3.2)

validity: only for νν ↔ Z ′ and νν ↔ ϕ ,
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where
Nν = 3 , NZ′ = 3 , Nϕ = 1 .

Note that eqs. (3.1) and (3.2) would be invalid if νν ↔ 2Z ′ or νν ↔ 2ϕ becomes
significant.

• Conservation of energy. If both Z ′/ϕ and ν are highly relativistic, the total energy
in a comoving volume is conserved:

(2Nνρν + NZ′ρZ′)a4 = constant , (3.3)
(2Nνρν + Nϕρϕ)a4 = constant , (3.4)

validity: only in the relativistic regime.

Note that eqs. (3.3) and (3.4) would be invalid if Z ′ or ϕ becomes non-relativistic.

• Conservation of entropy. If Z ′/ϕ reaches thermal and chemical equilibrium with ν,
then the total entropy in a comoving volume is conserved as long as the equilibrium
is maintained:

(2Nνsν + NZ′sZ′)a3 = constant , (3.5)
(2Nνsν + Nϕsϕ)a3 = constant , (3.6)

validity: only when ν and ϕ (Z ′) are in equilibrium.

The entropy conservation is only valid when the universe expands slowly in compar-
ison to particle reaction rates. Equivalently, according to the second law of ther-
modynamics, the process has to be reversible (i.e. if the universe shrinks back, the
same thermodynamic status can be recovered) to guarantee that the comoving en-
tropy does not increase. Therefore, for freeze-in processes where the universe expands
faster than particle reaction rates, the entropy conservation is not applicable.

3.1.1 The evolution

For simplicity, our analysis below will be concentrated on the vector case. The generaliza-
tion to the scalar case is straightforward and the corresponding analytic results will also
be presented.

Let us first consider that the coupling gZ′ is sufficiently small and mZ′ is well below
the neutrino decoupling temperature. In this case, Z ′ is in the freeze-in regime and the
production is significant only when the temperature is at the same order of magnitude
of mZ′ .

Since gZ′ is small, the dominant process for Z ′ production is νν → Z ′. Other processes
like νν → 2Z ′ are suppressed by higher orders of gZ′ . In the Boltzmann approximation,
the collision term for Z ′ production is given by

C
(nZ′ )
prod. =

∑
α

C
(nZ′ )
νανα→Z′ = Nν

|M|2

32π3 mZ′TνK1

(
mZ′

Tν

)
, (3.7)
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where α denotes neutrino flavors, Tν is the neutrino temperature, and |M|2 represents the
squared matrix element of νν ↔ Z ′:

|M|2 = 2
3g2

Z′m2
Z′ . (3.8)

At Tν ≫ mZ′ , the back-reaction νν ← Z ′ is negligible due to nν ≫ nZ′ . In this regime,
the number density can be estimated by directly integrating over C

(nZ′ )
prod. :

nZ′ ≈ T 3
ν

mpl
gHν

∫ ∞

Tν

C
(nZ′ )
prod. T̃−6

ν dT̃ν (3.9)

≈ Nν
|M|2mpl
96π3gHν

, (3.10)

where gHν ≡ mplH/T 2
ν and mpl = 1.22 × 1019 GeV is the Planck mass. After neutrino

decoupling, gHν is approximately a constant, gHν ≈ 6. Eq. (3.9) takes a freeze-in formula
from [54]. From eq. (3.9) to eq. (3.10), we have used K1 (mZ′/Tν) ≈ Tν/mZ′ +O(mZ′/Tν)
in the Tν ≫ mZ′ regime.

Despite that the result in eq. (3.9) appears as a temperature-independent constant,
the comoving number density nZ′a3 actually keeps increasing as the universe expands. The
comoving number density stops increasing when the neutrino temperature is insufficient to
produce Z ′. The maximum of nZ′a3 in the small gZ′ limit can be obtained by replacing∫∞

Tν
→
∫∞

0 in eq. (3.9). This corresponds to the assumption that the decay of Z ′ starts
only after the freeze-in production completes. The result is

nmax
Z′ ≈

3Nν |M|2T 3
ν mpl

64π2gHνm3
Z′

. (3.11)

By equating eq. (3.11) to eq. (3.9), we obtain the following temperature

T prod.
ν ≈

( 2
9π

)1/3
mZ′ ≈ 0.4mZ′ , (3.12)

which can be roughly taken as the temperature when the production completes — see the
blue point marked by “T prod.

ν ” in figure 1.
After the production completes, nZ′a3 will remain constant for a while until the de-

pletion term in eq. (2.4) becomes significant. For the depletion term to be significant, at
least the age of the universe τuniverse ∼ 1/H needs to be longer than the lifetime of Z ′ at
rest, τZ′ = 1/ΓZ′ where

ΓZ′ = Nν
|M|2

16πmZ′
. (3.13)

Therefore, τuniverse ≳ τZ′ implies that Tν needs to be below

T depl.
ν ≈

(
Nν |M|2mpl
16πgHνmZ′

)1/2

, (3.14)

which is obtained by solving H ≈ ΓZ′ . Eq. (3.14) can be taken as the temperature when
the depletion begins — see the blue point marked by “T depl.

ν ” in figure 1. After that, the

– 6 –
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10−3 10−2 10−1 100 101 102 103

mZ ′/Tν

10−8

10−6

10−4

10−2

100

n
Z
′ /

(n
Z
′
+
n
ν
)

Analytic approx.

gZ′=2.7× 10−14

gZ′=1.2× 10−13

gZ′=3.8× 10−13

gZ′=10−10

gZ′=10−9

T prod.
ν T depl.

ν
1993
1126

Figure 1. The evolution of nZ′/(nZ′ + nν) obtained via numerical calculations, compared with
analytic approximations (dashed lines) obtained from eq. (3.18). The two blues points marked by
T prod.

ν and T depl.
ν represent the end of Z ′ production and the beginning of Z ′ depletion, computed

using eqs. (3.12) and (3.14). The mass of Z ′ in the shown examples is mZ′ = 1 keV.

comoving number density decays exponentially. Its evolution can be computed by solving
eq. (2.4) with the production term neglected, i.e., d

(
nZ′a3) /da = −a2C

(nZ′ )
depl. /H, where

C
(nZ′ )
depl. takes the non-relativistic approximation (see appendix A):

C
(nZ′ )
depl. ≈ ΓZ′nZ′ . (3.15)

By defining X ≡ nZ′a3, we can rewrite eq. (2.4) as

dX

da
= −ξaX, ξ ≡ ΓZ′mpl

T 2
a gHν

, (3.16)

where X ≡ nZ′a3 and Ta ≡ Tνa. Note that Ta is a constant because Tν scales as a−1. The
above differential equation has the following simple solution:

X ∝ e−
ξ
2 a2

. (3.17)

The initial value is determined by eq. (3.11).
Assembling the above pieces, we obtain the following analytic result for the evolution

of nZ′ :

nZ′ = nmax
Z′ ×


2

9πT 3
ν

m3
Z′ for Tν > T prod.

ν

exp
[
−T−2

ν −(T prod.
ν )−2

2gHν
ΓZ′mpl

]
for Tν ≤ T prod.

ν

. (3.18)

Figure 1 shows how well the analytic result in eq. (3.18) approximates the actual
evolution of nZ′ obtained from numerical calculations.
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For the scalar case, following similar steps, we obtain

nϕ = nmax
ϕ ×


2

9πT 3
ν

m3
ϕ for Tν > T prod.

ν

exp
[
−T−2

ν −(T prod.
ν )−2

2gHν
Γϕmpl

]
for Tν ≤ T prod.

ν

, (3.19)

where nmax
ϕ , Γϕ, and T prod.

ν are almost the same as eqs. (3.11), (3.13) and (3.12) except that
mZ′ should be replaced by mϕ. The main difference is in the squared amplitude, which for
the scalar should be

|M|2 = g2
ϕm2

ϕ . (3.20)
The difference between Nϕ = 1 and NZ′ = 3 is not of concern here because in our convention
nϕ and nZ′ are only for single degree of freedom.

3.1.2 The dilution-resistant effect and ∆Neff

Having obtained the cosmological evolution of Z ′, we then employ eq. (2.7) to estimate the
dilution-resistant effect:

d
(
ρinva4)
da

= NZ′a3 (ρZ′ − 3PZ′) , (3.21)

where ρinv denotes the total energy density of the invisible sector (Z ′ + ν), including
neutrinos with three flavors and Z ′ with three polarizations. Note that Neff as a CMB
observable is defined as

Neff ≡
ρinv
2ρst

ν

, (3.22)

where ρst
ν denotes the neutrino energy density in the SM of a single flavor, and the factor of

2 in front of it comes from combining neutrinos and antineutrinos. According to eqs. (3.21)
and (3.22), the contribution of the dilution-resistant effect to Neff can be computed as
follows:

∆Neff = ∆
2ρst

ν a4 , ∆ ≡ NZ′

∫ a1

a0
a3 (ρZ′ − 3PZ′) da . (3.23)

Here a0 and a1 denote the values of a at two generic moments, and eq. (3.23) only accounts
for the contribution of the period when the universe expands from a = a0 to a = a1.
In practice, to compute the contribution of the entire relevant period, we can set a0 at
a moment when Z ′ has not been significantly produced, and a1 at the moment of the
recombination.

Here we only consider the period when Tν ≤ T prod.
ν so only the exponential decay part of

eq. (3.18) will be used. According to eq. (3.12), we take the non-relativistic approximation
(ρZ′ ≈ nZ′mZ′ , PZ′ ≈ 0) and obtain

∆ ≈
∫ ∞

a0
3a3nZ′mZ′da ≈ 9T 4

a

4
√
2πmZ′

e
ξ0
2 erfc

√ξ0
2

T prod.
ν ξ

1/2
0 , (3.24)

where ξ0 ≡ ξa2
0 should be a small number (ξ0 ≪ 1) if gZ′ is sufficiently small. So we expand

eq. (3.24) in terms of ξ0 and take the leading order:

∆ ≈ 9T 4
a

4
√
2πmZ′

T prod.
ν ξ

1/2
0 ≈ 9T 4

a

4mZ′

√
ΓZ′mpl
2πgHν

. (3.25)
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10−14 10−12 10−10 10−8 10−6

gZ ′

10−2

10−1

100

∆
N

eff
Pre-νDEC eqm.

Post-νDEC eqm.

numerical

Post-νDEC freeze-in approx.

Pre-νDEC freeze-in approx.

10−14 10−12 10−10 10−8 10−6

gZ ′

10−2

10−1

100

∆
N

eff

Post-νDEC eqm.

numerical

Post-νDEC freeze-in approx.

Pre-νDEC freeze-in approx.

Figure 2. ∆Neff as a function of gZ′ . Left panel: mZ′ = 10 keV. Right panel: mZ′ = 20MeV. The
dashed curves labeled “Post-νDEC freeze-in approx.” represent the analytic approximate result in
eq. (3.26). The “Pre-νDEC freeze-in approx.” curves take the approximate expressions in eq. (3.41)
for the left panel and eq. (3.42) for the right.

Substituting it into eq. (3.23), we obtain

∆Neff ≈
9T 4

ν

8mZ′ρst
ν

√
ΓZ′mpl
2πgHν

≈ 0.04 ·
(

gZ′

10−13

)
·
(

mZ′

keV

)−1/2
. (3.26)

Figure 2 compares eq. (3.26) with the actual result obtained from numerical calcula-
tions. As is expected, the approximate formula agrees well the numerical result in the small
gZ′ limit. In this limit, ∆Neff increases linearly with gZ′ . When gZ′ increases to a certain
value, Z ′ will reach equilibrium with ν, and the above calculation is no longer applicable.
The calculation dealing with equilibrium will be presented in section 3.1.3.

For the scalar case, ∆ is reduced by a factor of three due to NZ′ → Nϕ, and |M|2
should take the expression in eq. (3.20). The final result for the scalar case is

∆Neff ≈
3T 4

ν

8mϕρst
ν

√
Γϕmpl
2πgHν

≈ 0.017 ·
(

gϕ

10−13

)
·
(

mϕ

keV

)−1/2
. (3.27)

3.1.3 The equilibrium values of ∆Neff

As already shown in figure 2, when eq. (3.26) becomes invalid at large gZ′ , ∆Neff stays at
a constant which is about 0.242. This is actually the maximal value the dilution-resistant
effect could cause if one requires that Z ′ is only produced from decoupled neutrinos. If gZ′

further increases, Z ′ can thermalize before neutrino decoupling so that ∆Neff will exceed
this value and increase to another constant level at 2.53. We refer to these numbers as the
equilibrium values of ∆Neff .

The equilibrium values of ∆Neff in their respective valid ranges are almost independent
of the coupling and the mass, and can be computed simply from equilibrium conditions
and the conservation laws introduced at the beginning of section 3.1. Below we present the
calculation.
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For Z ′ reaching equilibrium with ν after neutrino decoupling, which we refer to as Post-
νDEC equilibrium, the conservation laws in eqs. (3.1), (3.3), and (3.5) can be written as

(Nνnν1 + 0)a3
1 = (Nνnν2 + NZ′nZ′2)a3

2 = (Nνnν3 + 0)a3
3 , (3.28)

(2Nνρν1 + 0)a4
1 = (2Nνρν2 + NZ′ρZ′2)a4

2 , (3.29)
(2Nνsν2 + NZ′sZ′2)a3

2 = (2Nνsν3 + 0)a3
3 , (3.30)

where the subscripts “1, 2, 3” denote three phases when (1) Z ′ has not been significantly
produced; (2) Z ′ reaches equilibrium and keeps relativistic; (3) Z ′ has completely decayed.

From eqs. (3.28) and (3.29), we have

nFD(T1, 0)a3
1 = [nFD(T2, µ2) + nBE(T2, 2µ2)] a3

2 , (3.31)
2ρFD(T1, 0)a4

1 = [2ρFD(T2, µ2) + ρBE(T2, 2µ2)] a4
2 , (3.32)

where nFD/BE and ρFD/BE denote the number and energy densities of massless particles in
Fermi-Dirac/Bose-Einstein distributions, given as follows

nFD/BE(T, µ) ≡
∫ 1

e(p−µ)/T ± 1
d3p

(2π)3 = ∓T 3

π2 Li3(∓eµ/T ), (3.33)

ρFD/BE(T, µ) ≡
∫

p

e(p−µ)/T ± 1
d3p

(2π)3 = ∓3T 4

π2 Li4(∓eµ/T ). (3.34)

Here Li3,4 are polylogarithm functions.
Substituting eqs. (3.33) and (3.34) into eqs. (3.31) and (3.32), and solving the equa-

tions, we obtain
(T2, µ2) = (1.208,−1.166)T1

a1
a2

. (3.35)

Similarly, we can solve the equations that connect the second phase to the third phase.
The entropy density is computed by3

s = ρ + P − µn

T
= 4ρ/3− µn

T
. (3.36)

The result is
(T3, µ3) = (1.092,−0.3133)T1

a1
a3

. (3.37)

Using eq. (3.37) to compute the final energy density of neutrinos, ρν3, we obtain

∆Neff = 3
[

ρν3a4
3

ρν1a4
1
− 1

]
= 0.242 . (3.38)

For the scalar case, the calculation is similar except that we need to replace NZ′ =
3 → Nϕ = 1. This leads to ∆Neff = 0.118, which reproduces the previous result obtained
in ref. [3].

3Eq. (3.36) only applies to equilibrium distributions. For non-equilibrium distributions, we refer to
ref. [55] for a more general definition, which reduces to eq. (3.36) in the equilibrium case.
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scalar vector
Post-νDEC equilibrium ∆Neff = 0.118 ∆Neff = 0.242
Pre-νDEC equilibrium ∆Neff = 0.794 ∆Neff = 2.53

Pre-νDEC equilibrium (strong couplings) ∆Neff = 0.785 ∆Neff = 2.48

Table 1. Equilibrium values of ∆Neff assuming Z ′ or ϕ reaches equilibrium with neutrinos before
(Pre-νDEC) or after (Post-νDEC) neutrino decoupling. The last row applies to strong couplings
which can maintain equilibrium via νν ↔ 2Z ′ or νν ↔ 2ϕ. Compared to the second row where
only νν ↔ Z ′ or νν ↔ ϕ are in equilibrium so that eqs. (3.1) and (3.2) are satisfied, the last row
only requires entropy conservation. The values presented in this table are only applicable to the
mass range 1 eV≪ mZ′/ϕ ≪ 1 MeV.

For Z ′ reaching equilibrium before neutrino decoupling, which we refer to as Pre-νDEC
equilibrium, the analysis is simpler — we only need to solve two equations (one for n and
the other for s) connecting the second and the third phases. During the second phase, the
chemical potential µ2 remains zero because all particles are in equilibrium with photons
and the reaction rate of γ + e± → Nγ + e± is high. By solving the equations for n and s,
we obtain

(T3, µ3) = (1.326,−0.715)T2
a2
a3

, (3.39)

which gives ∆Neff = 2.53.
If the coupling gZ′ is sufficiently strong so that both νν ↔ Z ′ and νν ↔ 2Z ′ are in

equilibrium, then the conservation of particle numbers is violated. In this case, we only
need to solve the equation for s, with zero chemical potentials because the two reactions
in equilibrium imply µν +µν = µZ′ and µν +µν = 2µZ′ . The result for this case is slightly
different, ∆Neff = 2.48.

In table 1, we summarize all equilibrium values of ∆Neff for the aforementioned cases,
including both scalar and vector cases.

3.2 Case B: production before neutrino decoupling

For large gZ′ , or large mZ′ , the production of Z ′ before neutrino decoupling, i.e. Pre-νDEC
production, is important. The calculations, and hence the results, are very different for
mZ′ ≲ T dec

ν and mZ′ ≳ T dec
ν where T dec

ν is the neutrino decoupling temperature.
Let us first consider mZ′ ≪ T dec

ν . Although the production at temperatures above
T dec

ν is suppressed by C
(nZ′ )
prod. /T 4

ν ∝ m2
Z′/T 2

ν , one still gets a small amount of Z ′ particles
produced before neutrino decoupling. The energy density of Z ′ being produced before
neutrino decoupling can be computed by integrating C

(ρZ′ )
prod. as follows [similar to eq. (3.9)

for nZ′ ]:

ρZ′ = T 4
ν

mpl
gHν

∫ ∞

Tν

C
(ρZ′ )
prod. T̃

−7
ν dT̃ν = NνTν

|M|2mpl
48π3gHν

∣∣∣∣∣
Tν→T dec

ν

. (3.40)

Here gHν is slightly different from that in the Post-νDEC epoch, gHν = 5.44. The energy
in eq. (3.40), which does not cost any Post-νDEC neutrinos, will eventually be injected
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into the decoupled neutrino sector. So the contribution to Neff is

∆Neff = ∆NDR
eff + NZ′ρZ′

2ρst.
ν

∣∣∣∣
Tν→T dec

ν

≈ 0.242 + 1.86×
(

g

10−7
mZ′

10 keV

)2
, (3.41)

where ∆NDR
eff ≈ 0.242 is caused by the dilution-resistant effect derived in section 3.1.3.

Eq. (3.41) is plotted in the left panel of figure 2, shown as the green dashed curve, which
approximates well the second rise of the numerical curve.

Next, we turn to the case of mZ′ ≫ T dec
ν . If the coupling is strong, then Z ′ would

be in thermal equilibrium and its abundance would be Boltzmann suppressed at neutrino
decoupling, i.e. nZ′ ∝ exp(−mZ′/T dec

ν ). If the coupling is very weak, then the abundance of
Z ′ at neutrino decoupling is also suppressed due to insufficient production. Therefore, the
dependence of ∆Neff on gZ′ is not monotonic, as one can see in the right panel of figure 2.
Nevertheless, we would like to point out here that the Post-νDEC freeze-in formula in
eq. (3.26), i.e. the orange dashed curve, can still fit the low-gZ′ part of the blue curve very
well. This is because in this regime, Z ′ is long-lived and most of the produced Z ′ only
decay after neutrino decoupling. So in the small gZ′ limit, the dominant contribution is
still from the dilution-resistant effect.

When gZ′ is large, we need to take into account both the dilution-resistant effect, which
only starts after neutrino decoupling, and the amount of energy that the invisible sector has
gained from the SM thermal bath before neutrino decoupling. The former can be obtained
by repeating the calculation in section 3.1 with some minor changes: (i) the integration
should start from Tν = T dec

ν ≈ 2MeV instead of Tν = T prod
ν ; (ii) gHν is changed to 5.44;

(iii) in eq. (3.18) we take T−2
ν − (T prod.

ν )−2 ≈ T−2
ν . The latter can be computed using

eq. (3.18) and the non-relativistic approximation ρZ′ ≈ nZ′mZ′ at Tν = T dec
ν . Combining

the two contributions, we obtain

∆Neff ≈ 0.4 · gm [1− erf(gm)]
(10MeV

mZ′

)
+ 0.5 · g2

me−g2
m

(10MeV
mZ′

)
, (3.42)

where
gm ≡

(
gZ′

10−10

)(
mZ′

10MeV

)1/2
. (3.43)

For gm ≪ 1, we have 1 − erf(gm) ≈ 1 − 2gm/
√

π so ∆Neff in eq. (3.42) is dominated by
its first term, which corresponds to the dilution-resistant effect. As is shown in the right
panel of figure 2, in the small gZ′ limit, ∆Neff increases linearly with gZ′ . For gm ≫ 1, we
have 1− erf(gm) ≈ e−g2

m/(
√

πgm) so ∆Neff in eq. (3.42) is suppressed by e−g2
m . The linear

increase combined with the exponential decrease explains the non-monotonic behavior of
the ∆Neff-gZ′ curve.

4 Numerical calculations and results

The Boltzmann equations of neutrinos and Z ′ (ϕ) can be solved numerically, though some
technical issues such as the stiffness of differential equations and the overflow of floating-
point numbers encountered in overlarge Boltzmann suppression might affect the stability
of the numerical solutions. These technical issues are discussed in appendix B.
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Figure 3. ∆Neff computed by solving the Boltzmann equations numerically for several examples.
The left and right panels present ∆Neff as functions of gZ′ and |M|2 = 2g2

Z′m2
Z′/3, respectively.

Another important issue is neutrino decoupling which splits the SM plasma into two
decoupled sectors. To include neutrino decoupling in our numerical calculation without
solving additional Boltzmann equations, we assume instant neutrino decoupling. Before
neutrino decoupling, we use Tν = Tγ ∝ a−1 to determine the neutrino temperature and
the Hubble expansion rate. So essentially we only need to solve the Boltzmann equation
for ϕ/Z ′. After neutrino decoupling, we solve the Boltzmann equations for both neutrinos
and ϕ/Z ′, while the photon-electron sector is calculated using entropy conservation.

With appropriate treatments of the aforementioned issues, it is straightforward to solve
the Boltzmann equations numerically.4

For each given sample of (gZ′ , mZ′) or (gϕ, mϕ), we set the beginning of the numerical
solution at a sufficiently high temperature which should be not only well above the mediator
mass, but also above T dec

ν . Then we evolve the ν-Z ′ or ν-ϕ coupled system according to
eqs. (2.4) and (2.5) down to a sufficiently low temperature. Before neutrino decoupling,
the abundance of neutrinos is not affected by ν-Z ′ or ν-ϕ reactions. This is implemented
in our code by switching off the ν-Z ′ (ϕ ) reactions on the right-hand sides of eqs. (2.4)
and (2.5) for neutrinos if Tν > T dec

ν . In doing so, neutrinos are not affected by the presence
of Z ′ or ϕ before decoupling, while the latter is affected by the former.

Figure 3 shows the results of ∆Neff obtained from our numerical calculation for several
selected values of mZ′ . As is expected from previous discussions in section 3.1.3, some
curves become flat (i.e. gZ′-independent) in certain ranges of gZ′ and the corresponding
values ∆Neff (i.e. the gray dashed lines) are approximately given by the equilibrium values
in table 1. For those examples that can reach the two equilibrium values of ∆Neff indicated
by the two gray dashed lines in figure 3, the transition parts between the two lines are almost

4Our code is publicly available at https://github.com/xunjiexu/Neff-light-Z.
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∆Neff (1σ) ∆Neff (2σ)
Planck 2018 [1] ∆Neff < 0.115 ∆Neff < 0.285

SO [10, 11] ∆Neff < 0.05 ∆Neff < 0.1
CMB-S4 [7, 8] ∆Neff < 0.03 ∆Neff < 0.06
CMB-HD [14] ∆Neff < 0.014 ∆Neff < 0.028

Table 2. Current experimental bounds on ∆Neff and future sensitivity reach.

the same if we plot ∆Neff as a function of |M|2, as shown in the right panel. This can be
understood from eq. (3.41) where the varying part is ∝ (gZ′mZ′)2, or more fundamentally,
from eq. (3.40) which implies that the freeze-in production in the relativistic regime depends
only on |M|2. From the right panel, one can also infer that larger (smaller) mZ′ always
leads to smaller (larger) ∆Neff if |M|2 is fixed.

Having computed the ∆Neff-gZ′ curves, we can compare them with ∆Neff measure-
ments and obtain constraints on gZ′ . The latest CMB measurement of Neff comes from
Planck 2018 [1], which gives Neff = 2.99± 0.17 at 1σ C.L. After subtracting the SM value,
we take ∆Neff < 2.99 + 0.17 × 2 − 3.045 = 0.285 as the 2σ upper bound. For future
CMB experiments, we select three experiments, namely Simons Observatory (SO) [10, 11],
CMB-S4 [7, 8], and CMB-HD [14]. The anticipated sensitivity reach of these experiments
are listed in table 2. The constraints on gZ′ derived from the experimental bounds are
presented in the upper panel of figure 4, together with the constraints on gϕ for the scalar
case in the lower panel.

As is manifest in figure 4, there would be substantial improvement of the future sensi-
tivity reach in the sub-MeV region by orders of magnitude. The crucial difference between
current and future experiments is that the former cannot reach the Post-νDEC equilib-
rium value of ∆Neff . The Planck 2018 measurement of Neff is only able to probe the
area between the Post- and Pre-νDEC equilibrium lines in figure 3, while future measure-
ments can readily reach the area below the Post-νDEC equilibrium and thus probe the
dilution-resistant effect.

The result presented here, therefore, implies the great significance of further improving
the measurement of Neff . Even if the current bound on ∆Neff is improved by a factor of
two, an enormously large part of the unexplored parameter space will be unveiled.

There are several noteworthy features of the bounds presented in figure 4, to be dis-
cussed below.

First, the current CMB bound (Planck 2018) on gZ′/ϕ goes up as mZ′/ϕ decreases,
but the product gZ′/ϕmZ′/ϕ is roughly a constant. This corresponds to the overlapping
part of the sub-MeV curves in the right panel of figure 3. As previously discussed, this
essentially stems from that the freeze-in production in the relativistic regime depends only
on |M|2 ∝ (gZ′/ϕmZ′/ϕ)2.

Second, for some large mZ′/ϕ, there are both upper and lower bounds on gZ′/ϕ. This
is due to the non-monotonic behavior shown in the right panel of figure 2 and it can
be understood from eq. (3.42). At masses around 10MeV, the bounds become vertical,
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Figure 4. Current and future experimental bounds on light vector (upper panel) and scalar (lower
panel) mediators.

implying that ∆Neff is independent of the couplings in this regime. It corresponds to
the scenario that Z ′/ϕ is in thermal equilibrium with the SM plasma before neutrino
decoupling. Although the number density of Z ′ or ϕ at T = T dec

ν is Boltzmann suppressed,
it still carries a non-negligible amount of energy at neutrino decoupling. This part of energy
will eventually be injected to the neutrino sector and increase Neff . So ∆Neff in this regime
depends only on the mass.
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Finally, the curves for future sensitivity below about 10 eV stops decreasing as mZ′/ϕ

decreases. This is because in our code, we cut the evolution at Tγ = 1 eV while it is possible
that very light Z ′/ϕ have not fully decayed at this point. Below Tγ = 1 eV, the evolution
would encounter the radiation-matter equality (at Tγ ≈ 0.8 eV) and the recombination (at
Tγ ≈ 0.25 eV). Furthermore, neutrino masses would be non-negligible at the sub-eV scale.
By cutting the evolution at Tγ = 1 eV and taking neutrino energy only for Neff evaluation,
we obtain relatively conservative bounds in the lower left corners of these plots. A more
dedicated study on eV-scale Z ′/ϕ is presented in ref. [32], which shows that in addition to
the effect caused by the energy stored in Z ′/ϕ, there is another important effect related to
neutrino free streaming. Including this effect can substantially improve the current CMB
bound on eV-scale Z ′/ϕ.

Recently, there has been a notable surge of interest in neutrino self-interactions, partly
sparked by the Hubble tension — see e.g. [40] and references therein. Neutrino self-
interactions have been proposed in ref. [39] as one of the possible solutions to the tension.
The suggested strength of neutrino self-interactions to resolve the Hubble tension, in terms
of four-fermion contact interactions, is

GνSI/GF ∈ [3.22× 109, 5.05× 109]⊕ [1.3× 106, 1.1× 108] , (4.1)

where GF is the SM fermion constant and GνSI denotes the strength of neutrino self-
interactions. This is many orders of magnitude stronger than the SM prediction (∼ GF ).
Yet it still cannot be fully excluded after considering various constraints [40, 42, 43, 56].
Here, we demonstrate that precision measurements of Neff can impose stringent constraints
on such strong neutrino self-interactions. Since G

−1/2
νSI is around 1 ∼ 100MeV, the four-

fermion interaction has to be opened up at energy scales above G
−1/2
νSI and thus implies new

mediators lighter than ∼ 100MeV, being it either a scalar (ϕ) or vector (Z ′). In figure 5,
the green bands show the required gZ′/ϕ and mZ′/ϕ to produce the interaction strength in
eq. (4.1). The current Neff bounds are plotted as the red solid and dashed lines for vector
and scalar mediators, respectively. For mZ′/ϕ below 10−5 MeV, the bounds are flat because
we have included νν ↔ 2Z ′ and νν ↔ 2ϕ, which could effectively thermalize Z ′/ϕ before
neutrino decoupling if the couplings are above ∼ 10−5.

Our results can also be applied to some specific models of light mediators which are
coupled to other SM fermions as well. For demonstration, we select the B−L and Lµ−Lτ

models and plot the Neff constraints together with other relevant bounds in figure 6. It is
known that astrophysical bounds on light Z ′ are stringent. Here we take supernova bounds
(labeled SN1987A) and stellar cooling bounds from refs. [57, 58]. Within the shown window
in figure 6, most laboratory bounds are irrelevant except for the beam dump bound. For
B−L, we take the beam dump bound from ref. [59] and add it to the left panel of figure 6.
The beam dump bound is invalid for mZ′ ≲ 1MeV because such light Z ′ cannot decay to
electrons. For Lµ − Lτ , the beam dump bound is absent because the dominant channels
of Z ′ below ∼ 200MeV are invisible (Z ′ → νµνµ, ντ ντ ). Future experiments like SHiP
might have sensitivity to such a Z ′ [60]. In addition to the beam dump bounds, the
next potentially important bounds are from neutrino-electron scattering (e.g. Borexino,
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Figure 5. Neff constraints on neutrinophilic light mediators compared with the neutrino self-
interactions favored by the H0 tension.
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Figure 6. Neff constraints on light Z ′ in the B − L and Lµ − Lτ models compared with other
known bounds derived from Supernova 1987A (SN1987A) [57], stellar cooling of the Sun and red
giants [58], and beam dump experiments [59]. The vertical dashed lines indicate that above 1 MeV,
the Neff constraints actually depend on the branching ratio of Z ′ decay, which is not included in
the presented results.

CHARM II, TEXONO) [59, 61]. But they typically set upper limits on the couplings
above 10−6, so they are absent in figure 6.

It is important to note that, below 1 MeV, the Z ′ in B−L and Lµ−Lτ can only decay
to neutrinos. For gZ′ below 10−6, the new interactions between neutrinos and electrons
mediated by Z ′ cannot significantly modify neutrino decoupling. Therefore, for Z ′ below
1 MeV, our results are not significantly affected by Z ′-electron interactions. For Z ′ in the
1 ∼ 100MeV range, then the results depend on the branching ratio of Z ′ decay. More
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specifically, it depends of the ratio of Z ′ → e+e− to Z ′ → νν. In the B − L model, the
latter dominates over the former due to three neutrino flavors. In the Lµ − Lτ model,
Z ′ → e+e− is possible only at the one-loop level and hence suppressed. So even though we
have not included the branching ratio in the Neff constraints presented here, we anticipate
that the branching ratio would only lead to limited changes of our results.

5 Conclusions

The effective relativistic neutrino species, Neff , is sensitive to new light particles that carry
significant energy in the early universe after neutrinos decoupled. In this work, we investi-
gate Neff constraints on a light mediator, which can be either a scalar (ϕ) or a vector (Z ′),
that is primarily coupled to neutrinos. The main results are presented in figure 4 and well
understood from our analytical estimates elaborated in section 3.

For ϕ/Z ′ heavier than a few MeV, most of the ϕ/Z ′ particles are produced before
neutrino decoupling so their contributions to Neff mainly depend on the amount of the
energy carried by ϕ/Z ′ into the decoupled neutrino sector. In this regime, current bounds
and the sensitivity reach of future experiments are qualitatively similar.

For ϕ/Z ′ much lighter than the MeV scale, however, future CMB experiments such
as CMB-S4, SO, CMB-HD can substantially improve the current limits on the couplings
of ϕ/Z ′ by many order of magnitude. This is because very light ϕ/Z ′ with sufficiently
weak couplings can only be produced at very low temperatures. If they are predominantly
produced from decoupled neutrinos, their contributions to Neff are only generated by the
dilution-resistant effect — see e.g. eq. (2.7). The current measurements of Neff do not have
sufficient precision to probe the dilution-resistant effect, since its maximal contribution to
Neff is 0.118 and 0.242 (see table 1 and figure 3) for scalar and vector, respectively. These
values can be readily reached by the aforementioned future experiments.

Therefore, our results imply the great significance of further improving the measure-
ment of Neff . With modest improvements foreseeable in the next-generation experiments,
an enormously large part of the unexplored parameter space of new particles coupled to
neutrinos will be unveiled.

A Collision terms

When the coupling gZ′ is sufficiently small, the dominant processes for Z ′ production and
depletion is νν → Z ′ and Z ′ → νν. In our convention, n and ρ do not include the internal
degrees of freedom. To avoid potential confusions in dealing with the internal degrees of
freedom such as Nν = 3 for three neutrino flavors and NZ′ = 3 for three polarizations of
Z ′, we write down the dependence on NZ′ and Nν explicitly:

C
(nZ′ )
prod. = NνC

(nZ′ )
νν→Z′ , C

(nZ′ )
depl. = NνC

(nZ′ )
Z′→νν , (A.1)

C
(nν)
prod. = NZ′C

(nν)
Z′→νν , C

(nν)
depl. = NZ′C

(nν)
νν→Z′ , (A.2)

C
(ρZ′ )
prod. = NνC

(ρZ′ )
νν→Z′ , C

(ρZ′ )
depl. = NνC

(ρZ′ )
Z′→νν , (A.3)

C
(ρν)
prod. = NZ′C

(ρν)
Z′→νν , C

(ρν)
depl. = NZ′C

(ρν)
νν→Z′ . (A.4)

For the scalar case, we simply need to replace NZ′ → Nϕ = 1.
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For a generic process 12 → 3, let us denote the momentum, energy, and phase space
distribution of the i-th particle by pi, Ei, and fi, respectively. Then the collision terms
are formulated as follows:

C
(n3)
12→3 =

∫
dΠ1dΠ2dΠ3f1f2(1∓ f3)|M|2(2π)4δ4 , (A.5)

C
(n1)
12→3 =

∫
dΠ1dΠ2dΠ3f1f2(1∓ f3)|M|2(2π)4δ4 , (A.6)

C
(ρ3)
12→3 =

∫
dΠ1dΠ2dΠ3f1f2(1∓ f3)E3|M|2(2π)4δ4 , (A.7)

C
(ρ1)
12→3 =

∫
dΠ1dΠ2dΠ3f1f2(1∓ f3)E1|M|2(2π)4δ4 , (A.8)

where dΠi ≡ d3pi

2Ei(2π)3 , |M|2 denotes the squared amplitude of the process, and δ4 is short
for δ4(p1 +p2−p3). Note that C

(n3)
12→3 = C

(n1)
12→3 while C

(ρ3)
12→3 ̸= C

(ρ1)
12→3. In fact, using energy

conservation, E3 = E1 + E2, it is straightforward to obtain

C
(ρ1)
12→3 = 1

2C
(ρ3)
12→3 . (A.9)

In the Boltzmann approximation, with some substitutions such as e−E1/T e−E2/T =
e−E3/T and eq. (A.9), all the collision terms in eqs. (A.5)–(A.8) can be reduced to the
integrals computed in appendix A of ref. [23]. Then it is straightforward to obtain the
collision terms:

C
(nZ′ )
νν→Z′ = C

(nν)
νν→Z′ =

|M|2

32π3 mZ′TνK1

(
mZ′

Tν

)
e2µν/Tν , (A.10)

C
(nZ′ )
Z′→νν = C

(nν)
Z′→νν = |M|

2

32π3 mZ′TZ′K1

(
mZ′

TZ′

)
eµZ′/TZ′ . (A.11)

C
(ρZ′ )
νν→Z′ = 2C

(ρν)
νν→Z′ =

|M|2

32π3 m2
Z′TνK2

(
mZ′

Tν

)
e2µν/Tν , (A.12)

C
(ρZ′ )
Z′→νν = 2C

(ρν)
Z′→νν = |M|

2

32π3 m2
Z′TZ′K2

(
mZ′

TZ′

)
eµZ′/TZ′ . (A.13)

where µν and µZ′ denote the chemical potentials of ν and Z ′.
There is a subtlety regarding the scalar case: the process ϕ → νν has two identical

particles in the final state so in principle one should include a symmetry factor of 2 in the
phase space integrals. Meanwhile, every time when the reaction happens, it produces two
ν, i.e. the process is twice efficient as Z ′ → νν in producing ν. One can check that overall,
these factors of two cancel out so that eqs. (A.10)–(A.13) can also be applied to the scalar
case with trivial substitutions such as mZ′ → mϕ and TZ′ → Tϕ.

Since the number density of Z ′ in the Maxwell-Boltzmann distribution is given by

nZ′ ≈ 1
2π2 m2

Z′TZ′eµZ′/TZ′K2 (mZ′/TZ′) , (A.14)
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the non-relativistic limit of eqs. (A.10)–(A.13) can be written as

lim
mZ′→∞

C
(nZ′ )
νν→Z′ = lim

mZ′→∞
C

(nν)
νν→Z′ ≈ ΓZ′n

(eq)
Z′ , (A.15)

lim
mZ′→∞

C
(nZ′ )
Z′→νν = lim

mZ′→∞
C

(nν)
Z′→νν ≈ ΓZ′nZ′ , (A.16)

lim
mZ′→∞

C
(ρZ′ )
νν→Z′ = lim

mZ′→∞
2C

(ρν)
νν→Z′ ≈ mZ′ΓZ′n

(eq)
Z′ , (A.17)

lim
mZ′→∞

C
(ρZ′ )
Z′→νν = lim

mZ′→∞
2C

(ρν)
Z′→νν ≈ mZ′ΓZ′nZ′ , (A.18)

where we have used limx→∞ K1 (x) ≈ K2 (x) and n
(eq)
Z′ is defined as the equilibrium value

of nZ′ . The decay width ΓZ′ does not include NZ′ :

ΓZ′ ≡ |M|2

16πmZ′
. (A.19)

For the scalar case, we have similar formulae. The potential difference due to degrees of
freedom has been fully absorbed by NZ′ and Nϕ.

B Technical details of numerical calculations

There are a few technical issues in solving the Boltzmann equation numerically. First, the
Boltzmann equation often exhibits stiffness, which is a well-known phenomenon of ordinary
differential equations (ODE), causing numerical instability when the collision rates are too
high. In general, implicit methods such as backward differentiation formula (BDF) are
more suitable to deal with stiffness than explicit methods. In practice, we do find that
the BDF method implemented in scipy (e.g. the solve_ivp ODE solver in scipy) is
more robust than other methods against the instability. However, in some cases when
the collision terms are many orders of magnitude higher than the Hubble expansion and
meanwhile the Boltzmann suppression starts to play a crucial role, using the BDF method
still cannot generate numerically stable solutions.

Our approach to deal with the numerical instability in this regime is as follows. When
the collision rates are too high compared to the Hubble expansion, e.g. C

(n)
prod./depl. > 103Hn,

then the system should be in equilibrium and the left- and right-hand sides of the reaction
processes are strongly coupled by the collision terms. For processes in the strongly-coupled
regime, the actual values of reaction rates are not important as long as they are able to
maintain the equilibrium. This implies that one can reduce the reaction rates manually to
avoid the ODE being too stiff, and meanwhile still keep the accuracy of the solution. In
practice, since the C terms in eqs. (2.4) and (2.5) are always divided by H, reducing those
C’s are equivalent to increasing H. Therefore, our actual measure to reduce the stiffness
of the equation is not to change the collision terms, but to increase H in the following
smooth way:5

H →
√

H2 + λ2Γ2 , Γ ≡ 1
n

√(
C

(n)
prod.

)2
+
(
C

(n)
depl.

)2
, (B.1)

5Abrupt changes in numerical functions that are fed to the ODE solver often increases the instability
due to unnecessary oscillations of the solutions caused by the abrupt changes. For example, we have tested
that if eq. (B.1) is changed to H = max(H, λΓ) and Γ ≡ max

(
C

(n)
prod., C

(n)
depl.

)
/n which is conceptually

simpler, the numerical solutions become more unstable.
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where λ = 10−3. Eq. (B.1) implies that when H ≫ 10−3Γ, H is almost unmodified;
when H ≫ 103Γ, H would be pulled up to λΓ which is still well below Γ. Physically, it
corresponds to speeding up the expansion of the universe while still keeping the reaction
in equilibrium. In practice, we find that using eq. (B.1) hardly causes visible deviations
from the true solution but substantially increases the stability. Only when λ is increased
to O(0.3), we observe slight deviations.

There is an alternative treatment regarding the issue of stiffness. When Γ ≫ H, one
can simply assume that the system is in equilibrium and use thermodynamic formulae in
equilibrium for the rest of the evolution without solving the Boltzmann equation. This
treatment is simpler (though not adopted in our code), but one should be careful about
potential out-of-equilibrium issues as the system further evolves. One of the well-known
examples is the freeze-out mechanism, which can drive a thermal species out of equilibrium
after the Boltzmann suppression becomes significant. For the collision terms considered
in this work, this is not of concern because when the number density n in eq. (2.2) is
approaching (or slightly deviating)6 its equilibrium value n(eq), eq. (2.2) can be roughly
written as dn/dt + 3Hn ∝ n − n(eq), in contrast to the two-to-two-scattering processes
in the freeze-out mechanism where we have dn/dt + 3Hn ∝ n2 −

(
n(eq))2. The crucial

difference between δn ≡ n− n(eq) and n2 −
(
n(eq))2 ≈ 2nδn is that the extra power of n in

the latter causes additional Boltzmann suppression in the non-relativistic regime and thus
leads to the freeze-out mechanism.

Another technical issue we have encountered concerns the use of Bessel functions K1(x)
and K2(x) in the large x limit (corresponding to the ultra non-relativistic regime). Since
limx→∞ K1(x) = limx→∞ K2(x) =

√
π
2xe−x, large x ≳ 700 can lead to overflow of 64-bit

floating-point numbers which are widely used in numerical calculations. In our code, when
x = m/T is above 550, the numerical evaluation of K1,2 together with other functions with
exponential behaviors is switched to analytical expressions obtained by expanding them
in terms of 1/x. Taking the leading order of the expansion is sufficient to limit the error
below 0.1%. However, as mentioned in footnote 5, if the transition is not smooth, it would
cause additional instability. So in our code, we expand these functions to the fourth power
of 1/x to reduce the instability to an acceptable level.
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