
J
H
E
P
1
0
(
2
0
2
2
)
1
8
8

Published for SISSA by Springer

Received: May 19, 2022
Revised: July 21, 2022

Accepted: October 20, 2022
Published: October 28, 2022

Holography and the KKLT scenario

Severin Lüst,a Cumrun Vafa,a Max Wiesnerb and Kai Xuc
aJefferson Physical Laboratory, Harvard University,
17 Oxford Street, Cambridge, MA 02138, U.S.A.
bCenter of Mathematical Sciences and Applications, Harvard University,
20 Garden Street, Cambridge, MA 02138, U.S.A.
cDepartment of Mathematics, Harvard University,
1 Oxford Street, Cambridge, MA 02138, U.S.A.
E-mail: sluest@g.harvard.edu, vafa@g.harvard.edu,
mwiesner@cmsa.fas.harvard.edu, kaixu@math.harvard.edu

Abstract: The KKLT scenario, one of the few ideas to realize dS vacua in string theory,
consists of two steps: the first involves the construction of a supersymmetric AdS vacuum
with a small negative cosmological constant, and the second involves breaking supersym-
metry and uplifting the energy to achieve dS. In this paper we use conventional holography
to argue why it is not possible to complete the first step. We obtain this by putting a
bound on the central charge of the dual theory which involves branes wrapping special
Lagrangian cycles in CY 4-folds. We find that l2AdS . χ(CY4). Since l2species & χ(CY4)
this leads to lAdS/lspecies . 1 leading at best to a highly curved AdS which is beyond the
validity of the EFT.

Keywords: Flux Compactifications, Superstring Vacua, AdS-CFT Correspondence, D-
Branes

ArXiv ePrint: 2204.07171

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2022)188

mailto:sluest@g.harvard.edu
mailto:vafa@g.harvard.edu
mailto:mwiesner@cmsa.fas.harvard.edu
mailto:kaixu@math.harvard.edu
https://arxiv.org/abs/2204.07171
https://doi.org/10.1007/JHEP10(2022)188


J
H
E
P
1
0
(
2
0
2
2
)
1
8
8

Contents

1 Introduction 1

2 Review of the KKLT scenario 3

3 Holographic dual 6

4 Special Lagrangian cycles and their deformations 10
4.1 Some generalities about SLags 11
4.2 Case I: SLag2 and hol(C2) in K3 12
4.3 Case II: SLag3 in CY3 13
4.4 Cases IV, V1: M5 on hol(C4) in CY3, CY4 14
4.5 Cases III,V2: SLag4 in CY4 16

4.5.1 K3×K3 18
4.5.2 Orientifold limit 19

5 Holographic obstruction for the KKLT scenario 22

6 Conclusions 28

1 Introduction

Our universe seems to realize a positive cosmological constant which, at least to a good
approximation, appears not to change in time. Therefore the late time universe should be
described by a quasi-de Sitter geometry. It is thus important to try to construct quasi-de
Sitter solutions in string theory. This turns out to be rather difficult as has been discussed
in the context of the Swampland program [1, 2]. The main issue is that in the weak cou-
pling limit where we have perturbative control, one typically finds a runaway exponential
potential which is expected based on the combination of the distance conjecture [3], which
predicts a tower of exponentially light states together with the fact that potentials are
related to some power of the mass scale of the tower. This is also a manifestation of the
Dine-Seiberg problem [4]. Moreover in this limit the slope of the potential |V ′/V | is too
big [2, 5, 6] to be consistent with a quasi-dS solution. Thus we do not expect to have
a dS solution at arbitrarily weak coupling. If there exists a quasi-dS solution, it should
be realized in the interior of the field space, perhaps corresponding to strongly coupled
points, for which we currently have rather limited analytic tools. Nevertheless, there has
been claims in the literature (see e.g. [7, 8]) that quasi-dS solutions are realizable in the
weak (but not arbitrarily weak) coupling points. This is not ruled out by the asymptotic
values of the potential and it would be an interesting possibility if one can indeed realize
such vacua in string theory. In this paper we focus our attention on what is viewed as one
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of the most promising such attempts, namely the KKLT scenario and argue why it is not
possible to realize this scenario.

The KKLT scenario involves studying flux vacua of Type IIB on orientifolds of Calabi-
Yau 3-folds (or, more generally, F-theory on elliptic 4-folds). The existence of fluxes and
3-branes is generally forced on us by the tadpole condition on the 3-brane charge which
receives a contribution from the CY 4-fold given by −χ/24, where χ is the Euler charac-
teristic of the CY 4-fold [9, 10]. The KKLT scenario attempts to use the large number
of possible fluxes to find a vacuum which is supersymmetric and realizes a small negative
value for the cosmological constant. It then uses spacetime filling anti-D3 branes at highly
warped points of the geometry to lift the solution to dS. To achieve the second step we
need to start with a sufficiently small negative cosmological constant of AdS in the first
step, as the uplift is of the same order as the absolute value of the cosmological constant
of AdS. A lot of the focus on the KKLT scenario has been on checking the validity of the
second step even though some issues regarding the first step have also been raised recently,
questioning e.g. the possibility to find flux vacua within the tadpole bound for large number
of moduli [11] or raising the issue that strong warping yields to large singular regions of
the CY orientifold [12]. Other issues have also been raised (see e.g. [13]). The consistency
of the second step is more difficult to establish in particular due to the breaking of the
supersymmetry. Here we focus on the first step, where a supersymmetric solution with
small negative cosmological constant is desired. We show that this is not possible and
estimate that the AdS length scale in Planck units is bounded as l2AdS < χ where χ is the
Euler characteristic of the CY 4-fold. Moreover since χ is a measure of the number of light
degrees of freedom coming from the CY compactification, we learn that l2species & χ [14–16].
In other words even for large χ, we find lAdS . lspecies. This shows that the EFT breaks
down and therefore we cannot trust the solution.

The argument we employ to show this is holography. Since in the first step one would
like to achieve a small cosmological constant, we should use the condition of having large
values for the fluxes to give us a large statistical possibility [17–19]. Therefore this should
lead to a holographic realization in the usual way. In particular, since we are in the large
flux regime, we would dualize this to the corresponding branes which are 2+1 branes
consisting of bound states of D5/NS5-branes wrapped around 3-cycles of the CY, as has
been previously suggested in [20].1 In the M-theory context these map to M5 branes
wrapping special Lagrangian (SLag) submanifolds. We argue why the degrees of freedom
on these branes do not grow any faster than χ of the CY, thus leading to our bound.

The organization of this paper is as follows: in section 2 we review the KKLT scenario.
In section 3 we describe the holographic dual theory. In section 4 we study SLags and
their deformations to put a bound on the central charge of the dual theory. In section 5
we show how these results add up to an obstruction for the KKLT scenario. Moreover in
that section we explain in detail why some of the recent attempts to realize the first step of
KKLT [22–26] will not lead to supersymmetric AdS vacua as was hoped for. In section 6
we present our conclusions.

1Properties of the CFT dual to the KKLT AdS vacuum have also been discussed in [21].
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2 Review of the KKLT scenario

In this section we want to briefly review the key aspects of the KKLT scenario [7] pertinent
to the analysis of this paper. This scenario proposes that a dS vacuum can be obtained from
type IIB/F-theory flux compactifications by applying a series of steps. Therefore consider
F-theory compactified on an elliptically fibered Calabi-Yau fourfold X4 and further take
the orientifold limit where X4 is given by X4 = (X3 × T 2)/Z2. Here, X3 is a Calabi-Yau
threefold and the Z2 acts as (−1)FLΩpσ where FL is the fermion number in the left-moving
sector, Ωp worldsheet parity and σ a holomorphic involution on X3. The latter acts on
the holomorphic three-form as σ∗Ω3 = −Ω3. The resulting fourfold X4 is singular since
in general σ has fixed loci which can be interpreted as O3 and O7 planes. The presence
of the orientifold planes induces a D3-brane tadpole that needs to be cancelled either by
space-time filling three-branes or by a combination of the type IIB RR and NS threeform
fluxes F3 and H3.

Describing the F-theory compactification on X4 = (X3 × T 2)/Z2 times a circle via
the dual M-theory on X4, the type IIB three-form fluxes F3 and H3 map to different
components of the M-theory four-form flux G4

G4 = F3 ∧ a+H3 ∧ b , (2.1)

where a, b are the 1-forms on the T 2 dual to the A- and B-cycle of T 2 for which we have

1 =
∫
A

Ω1 , τ =
∫
B

Ω1 . (2.2)

Here Ω1 is the holomorphic (1, 0) form on T 2 and τ its complex structure parameter. The
G4 flux needs to satisfy the quantization condition [27]

G4 + c2(X4)
2 ∈ H4(X4,Z) . (2.3)

In the three dimensional effective theory obtained by compactifying M-theory on X4 the
M2-brane tadpole cancellation condition reads

χ(X4)
24 = NM2 + 1

2

∫
X4
G4 ∧G4 , (2.4)

with χ(X4) the Euler characteristic of the fourfold X4 and NM2 the number of space-time
filling M2-branes. Lifting the 3d M-theory to four-dimensional type IIB/F-theory, the M2-
branes get mapped to ND3 = NM2 space-time filling D3-branes and using (2.1), the tadpole
cancellation now reads

χ(X4)
24 = ND3 + 1

2

∫
X3
F3 ∧H3 , (2.5)

The G4-flux induces the superpotential [28]

WGVW =
∫
X4
G4 ∧ Ω4 , (2.6)
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where Ω4 is the holomorphic (4, 0) form on X4. In the case X4 = (X3 × T 2)/Z2 we have
Ω4 = Ω3 ∧ Ω1 , such that in 4d the superpotential reads

WGVW =
∫
X3
G3 ∧ Ω3 , G3 = F3 − τH3 . (2.7)

A general superpotential W in a N = 1 theory of supergravity induces a scalar potential
given by

V = eK
(
gab̄DaWD̄b̄W̄ − 3|W |2

)
, (2.8)

where K is the Kähler potential, gab̄ = ∂a∂b̄K the metric on the moduli space and Da =
∂a+∂aK the Kähler covariant derivative. Here, a, b run over all scalar fields of the effective
field theory including both, the complex structure deformations zi, i = 1, . . . h2,1

− and the
(complexified) Kähler deformations Tα, α = 1, . . . h1,1

+ , as well as the axio-dilaton τ . At
tree-level (weak string coupling) the 4d Kähler potential in the large volume limit is given by

K = − log (−i(τ − τ̄))− log
(
−i
∫
X3

Ω3 ∧ Ω̄3

)
− 2 log(V) , (2.9)

where V is the classical volume of X3. The GVW superpotential (2.7) does not depend on
the Kähler deformations such that, using the no-scale property KαKβ̄g

αβ̄ = 3 , the scalar
potential simplifies to

V = eKgIJ̄DIWD̄J̄W̄ , (2.10)

where here I, J run over complex structure deformations and the axio-dilaton. The minima
of this potential correspond to the solutions of the F-term equations DIW = 0, ∀I and
thus necessarily have V = 0. Given the decomposition of the H4(X4,C) as

H4 = H4,0 ⊕H3,1 ⊕H2,2 ⊕H1,3 ⊕H0,4 , (2.11)

the F-term condition DIW = 0 for the superpotential in (2.6) implies that G4 has to be
self-dual. Therefore G4 has to satisfy

G4 ∈ H4,0 ⊕H2,2
+ ⊕H0,4 , (2.12)

where H2,2
+ is the self-dual part of H2,2. For a given quantized flux G4 this condition

constrains the possible choice of complex structure and therefore renders some complex
structure deformations massive. For a supersymmetric vacuum, we further need to require
W = 0 which implies G4 ∈ H2,2 and primitivity, i.e. G4 ∧J = 0 with J the Kähler form on
X4. In terms of the type IIB flux G3 the above conditions of G4 translates into G3 being
imaginary self-dual and of (2, 1) type whereas for non-supersymmetric solutions G3 also
can have a (0, 3) component.

The starting point of the KKLT scenario is a flux configuration such that at the point
in complex structure moduli space at which DIW = 0 the G3 flux has a non-vanishing
(0, 3) component (or the G4 flux has a (0, 4) component) such that W0 ≡ W |DIW=0 6= 0.
As a consequence the F-term equation for the Kähler moduli DTαW ∝ W being zero is
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not satisfied. It is further assumed that the locus in complex structure moduli space where
G3 is imaginary self-dual (G4 is self-dual) consists of isolated points such that all complex
structure deformations and the dilaton are massive. However, the Kähler directions remain
as flat directions and need to be stabilised by taking into account non-perturbative correc-
tions to the superpotential from D3-brane instantons wrapped on divisors of X3. These
non-perturbative corrections have the form

Wn.p. =
∑

k
Ak(zi, G) e−2πkαTα . (2.13)

Here k scans through effective divisors of X3 and the Pfaffian determinant A depends in
general on the complex structure deformations zi (including τ) and the choice of flux G.
After integrating out the massive complex structure deformations, following the KKLT
scenario, A can effectively be treated as a constant (assuming the complex structure de-
pendence of Wn.p. is mild enough) such that the full superpotential reads

W = W0 +
∑

k
Aeff

k e−2πkαTα . (2.14)

Since the superpotential now depends on the Kähler moduli, it is possible to also solve
the F-term equations for the Kähler directions. Following the original discussion [7], let
us take the simplifying assumption that there is a single Kähler modulus T and consider a
single non-perturbative contribution to the superpotential Wn.p. = A e−2πaT . We further
set ImT = 0 and ReT = σ. In this case the F-term equation DTW = 0 implies

W0 = −A e−aσ0

(
1 + 2

3aσ0

)
, (2.15)

where σ0 is the value of σ at the critical point. Thus, in order for the instanton expansion
and α′-corrections to be under control, i.e. σ0 � 1, one requires W0 to be exponentially
small. Given the enormity of possible directions it can be hoped that this can be indeed
achieved [29]. By (2.8) the value of the potential (in Planck units) at the critical point is
given by

V0 = −3
(
eK |W |2

)∣∣∣
DaW=0

= −a
2A2e−2aσ0

6σ0
< 0 . (2.16)

Assuming all this works as planned, one expects a supersymmetric AdS vacuum with
exponentially small cosmological constant

Λ = V0M
2
pl � 1 , (2.17)

since σ0 � 1 by assumption. Starting from this supersymmetric AdS vacuum with a very
small cosmological constant, in a next step the KKLT scenario then proposes an uplift to
dS by means of D3 branes. For the analysis of this paper, we are only interested in the
first step of the KKLT scenario in which a supersymmetric AdS vacuum with exponentially
small cosmological constant is obtained.2 Therefore, we are not discussing the uplift step

2The literature sometimes refers to the complex structure moduli stabilisation as the first step of the
KKLT scenario and to the Kähler moduli stabilisation by means of non-perturbative corrections as the
second step. Throughout this work we refer to the combination of both as the first step of the KKLT
scenario. For us the second step would be the uplift of the SUSY AdS vacuum to a dS vacuum.
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of the KKLT scenario here. Note that regardless of the argument, in order to proceed with
the second step of the KKLT scenario we need |Λ| � 1 (as the uplift energy is small as it
comes from anti-D3 branes in the warped throat) to lead to dS vacua.

Notice that the assumption of this scenario that the criticality of the superpotential
with respect to complex and Kähler moduli deformations are decoupled is hard to justify.
Therefore whether or not the scenario can be carried out as hoped is unclear. Indeed as
we will argue in this paper, even if an AdS supersymmetric vacuum is constructed along
these lines, one cannot achieve |Λ| � 1.

3 Holographic dual

In this section, we want to discuss the holographic dual of the supersymmetric AdS vacua
obtained from flux-compactifications. Indeed since one is looking for |Λ| � 1 in AdS4
the theory would be expected to have a microscopic 2+1 dimensional dual. Instead of
directly discussing the dual of the AdS4 vacua, let us first consider the 3d version of KKLT,
which starts with the case of M-theory compactified on a Calabi-Yau fourfold X4 down to
three dimensions, in the presence of a quantized G4 flux. In this case, one aims to find
supersymmetric AdS3 vacua with |Λ| � 1 dual to a microscopic 1+1 dimensional theory.
For now we assume that indeed the G4 flux allows for a three-dimensional supersymmetric
AdS vacuum with radius, as measured in 3d Planck units,

1
l2AdS3

= −4eK |W |2
∣∣∣
DaW=0

, (3.1)

where K is the full Kähler potential including the complex structure and the Kähler sec-
tor and W is the superpotential including all non-perturbative corrections (arising from
Euclidean M5-branes)3

W =
∫
X4

Ω4 ∧G4 +
∑

k
Ak(zi, G4) e−2πkαTα . (3.2)

Associated to the flux we can consider a domain wall in three dimensions obtained by
wrapping an M5-brane on the Poincaré dual four-cycle L ∈ H4(X4) of G4, which we
assume saturates the tadpole condition (to obtain the smallest possible |Λ|). Let us locate
the domain wall at z = 0 with z being the coordinate transverse to it. Then the domain
wall dual to the flux G4 interpolates between a vacuum with vanishing flux quanta at
z = −∞, and the supersymmetric AdS flux vacuum for z = ∞. Notice that in the half-
space z < 0 this configuration requires χ(X4)/24 space-time filling M2-branes to satisfy
the tadpole cancellation condition (2.4). We illustrated the domain wall setup in figure 1.
Alternatively, we can consider the situation where the domain wall caps off the space to
the right corresponding to a bubble of nothing on the left. In this case, we do not need
any M2-branes on the left. This is essentially the holographic picture where the brane is
at the boundary of AdS.

3In principle the 3d effective theory also allows for a second kind of superpotential [28] W̃ =
∫
X4
J4 ∧

J4 ∧ G4. Since we are interested in supersymmetric vacua that have an F-theory lift to four-dimensions,
here we are only interested in G4 fluxes that are primitive, i.e. J4∧G4 = 0 for which W̃ vanishes identically.
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Figure 1. The domain wall setup corresponding to an M5-brane wrapped on a Special Lagrangian
4-cycle dual to G4 located at z = 0 and interpolating between a vacuum with G4 = 0 and χ

24
space-time filling M2-branes at z → −∞ and the supersymmetric AdS flux vacuum (DW = 0)
for G4 6= 0 at z → ∞. For the case of supersymmetric AdS4 vacua in type IIB orientifold flux
compactifications the picture is similar with M2-branes replaced by D3-branes and the domain wall
being made of D5/NS5 branes.

Since we want the AdS vacuum to be supersymmetric, we need the corresponding
domain wall to be 1

2 -BPS. In our present case, this means that the 4-cycle L wrapped by
the M5-brane has to be special Lagrangian or a holomorphic 4-cycle. For the uplift to
4d the case of interest would be the special Lagrangian case as we will now argue (the
holomorphic 4-cycle case will also be discussed later in this paper for the AdS3 case). A
real four-dimensional submanifold L of X4 is called special Lagrangian if it satisfies the
conditions

J4
∣∣
L

= 0 ,

Im
(
eiαΩ4

) ∣∣
L

= 0 ,
(3.3)

for some constant phase α, with J4 the Kähler form on X4 and |L denotes the pull back
on L. Accordingly, the world-volume theory on the domain wall preserves N = (1, 1)
supersymmetry in two dimensions. Let us consider the backreaction of this 1

2 -BPS domain
wall, following [30–34]. For the metric in the three extended space-time directions one
makes the Ansatz

ds2 = e2D(z)(−dt2 + dx2) + dz2 . (3.4)

The BPS equations can now be rephrased in terms of the flow equations

dD

dz
= −ζ|Z| ,

dφa

dz
= 2ζgab̄∂b̄|Z| ,

(3.5)
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where ζ = ±1 determines which of half of the supersymmetries is preserved by the flow.
Furthermore φa stands for the scalar fields in the theory and we have defined

|Z| = eK/2|W | , (3.6)

which can be identified as the tension of the domain wall in 3d Planck units. We can
interpret the flow equations as up or down gradient flows for |Z|. In order for the flow to
lead to an AdS vacuum for z →∞, Z needs to be asymptotically constant, ∂a|Z| = 0, and
non-zero which implies

DaW = 0 , (3.7)

i.e. the F-term condition. Notice that here W is the full superpotential appearing in (3.2)
including the non-perturbative instanton corrections. Accordingly, the index a also scans
over all scalar fields including the Kähler moduli. From the domain wall perspective the
non-perturbative contributions to W should be interpreted as corrections to the tension
of the BPS domain wall which is therefore also sensitive to the Kähler moduli. However,
under the assumption that the KKLT scenario works, the non-perturbative terms in (3.2)
are small at the attractor point. Therefore the attractor flow in the complex structure
sector should effectively be independent of the non-perturbative corrections. Hence in
particular the calibration condition for the BPS domain wall should indeed correspond to
the special Lagrangian condition introduced above.

We can thus describe the flux vacua as an attractor flow [32, 35] for the domain wall
obtained by wrapping an M5-brane on the special Lagrangian cycle L dual to the G4-flux,
where the flow is driven by the gradient flow of its tension.4 The fact that the dual G4 is
primitive follows from the condition that L is a Lagrangian submanifold. Note that minima
and maxima of |Z| are stable attractor points while the saddle points, even though formally
preserving supersymmetry, are not stable attractor values.5 Notice that the central charge
of the domain wall tension is extremized far away from its location. This is to be contrasted
with the attractor mechanism for black holes in d > 3 [37] where the attractor value for the
central charge is reached in the near-horizon regime. This difference arises since domain
walls are co-dimension one objects and therefore can be associated to relevant operators
whereas black holes in d > 3 are associated to irrelevant operators, cf. [34] for a more
detailed discussion. Note also that in the situation we are concerned with here, where
the G4-flux jumps when crossing the domain wall, the flow (3.5) interpolates between the
vacua of two different flux-potentials, as explained in detail in [33].

From the above discussion we infer that the supersymmetric AdS3 vacuum obtained
from M-theory on X4 in the presence of G4-flux is holographically dual to a CFT realized
on the world-volume of the domain wall obtained by wrapping an M5-brane on the special
Lagrangian four-cyle L dual to the G4-flux. More precisely, interpreting the coordinate z

4The relation between supersymmetric AdS4 vacua and the attractor flow for BPS domain walls obtained
from branes on calibrated cycles has previously been noticed in [36].

5It is tempting to speculate that saddle points of |Z| cannot occur in a consistent N = 1 supergravity,
and that only the minima of |Z| can arise, as a Swampland constraint.
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transverse to the domain wall as holographic RG-scale, the CFT dual to the supersymmetric
AdS3 vacuum is realized as the IR limit of the world-volume theory of the M5-brane on
L. Through the AdS3/CFT2 dictionary we can now relate the AdS3 radius, lAdS, to the
central charge of the IR theory, cIR, as

cIR = 3
2 lAdS . (3.8)

We can thus identify the attractor value of the domain wall tension with the IR value of
the central charge of the CFT on its world-volume

|ZAdS3 |2 = 9
16c2

IR
. (3.9)

In order to find the cosmological constant of the AdS3 vacuum we thus need to count the IR
degrees of freedom of the world-volume theory of the M5-brane on L since Λ3 ∼ −1/c2

IR.
However, instead of counting the IR degrees of freedom, in the following we will rather
count the UV degrees of freedom on the M5-brane wrapped on L which can be inferred
from the geometry of L. The c-theorem tells us that under RG-flow the degrees of freedom
of the 2d field theory on the world-volume cannot increase such that

cUV ≥ cIR , (3.10)

which we can use to give a lower bound on the cosmological constant via (3.8). The UV
degrees of freedom of the worldvolume theory of the M5-brane on L will be discussed in
the next section. As we will see there this counting is purely topological. Therefore it does
not depend on the precise point in moduli space. However, when going to the IR some
degrees of freedom will be lifted as a consequence of the non-perturbative corrections to
W and therefore cIR indeed is sensitive to the point in moduli space. In particular only
at the attractor point corresponding to ∂a|Z| = 0 does the IR worldvolume theory on L

correspond to a CFT. Similarly in the 4d case we would be studying the degrees of freedom
on D5/NS5 brane domain walls and the 4d AdS scale would be expected to scale as the
number of degrees of freedom c on the domain wall, leading to Λ4 ∼ −1/cIR.

Let us note that already in [20] the holographic dual of AdS4 vacua in type IIB flux
compactifications was described by trading the flux for D5-/NS5-branes wrapping the dual
cycles. Again, the worldvolume theory on the branes is identified with the CFT dual of
the AdS4 vacuum. However, [20] employs a description where the 5-branes are separated
in the radial AdS direction with D3-branes stretched between them to account for the D3-
brane charge. This setup describes the Coulomb branch of the CFT where some degrees of
freedom become massive. In [20] these degrees of freedom are counted by string junctions
ending on the different sets of 5- and 3-branes. In this paper, however, we take a different
approach by treating the different stacks of 5-branes as a single object in M-theory, i.e. the
M5-brane wrapped on a special Lagrangian four-cycle. We can therefore work directly at
the origin of the Coulomb branch where all CFT degrees of freedom are massless.
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4 Special Lagrangian cycles and their deformations

As we have seen in the previous section the holographic dual to a supersymmetric AdSd ×
CY4 background is expected to be given by suitable branes wrapped around special La-
grangian (SLag) cycles. The central charges c of the resulting CFTs are determined by the
deformation of these cycles. The central charges for dimensions d > 2 scale as c ∝ ld−2

AdS,
where lAdS is the AdS radius in Planck units.6 Thus any bound on the deformations of
the dual special Lagrangians restricts the value of the corresponding cosmological constant
which scales as Λ = −1/l2AdS ∼ −c

−2
d−2 . We will be interested in the case of large cycle

classes (leading to small cosmological constant) and we would like to estimate how c grows
with the cycle class. In particular, since the number of deformations of the SLag in a
Calabi-Yau manifold is given by its first Betti number b1 [38] we would like to estimate
how b1 grows upon rescaling the homology class the branes wrap on.

In addition to special Lagrangian cycles it will also be useful to review some of the
examples of branes wrapping holomorphic cycles of CY n-folds that have arisen in the
context of holography. In particular we will briefly review holography of branes wrapping
cycles in CY2 = K3, CY3- and CY4-folds. The examples we consider are obtained from
Type IIB/F-theory as well as M-theory. For type IIB/F-theory we consider

Case Geometry Brane dual field theory
I AdS3 × S3 ×K3 D3-brane on SLag2 or hol(C2) d = 2, N = (4, 4)
II AdS2 × S2 × CY3 D3-brane on SLag3 d = 1, N = 4

III
AdS4 × (X3 × T 2)/Z2 D5/NS5-branes on SLag3

d = 3, N = 1
AdS4 × Ell(CY4) [p, q] 5-branes in base

where cases I and II arise in type IIB and for the case III we consider type IIB on CY3
orientifolds or, more generally, F-theory on elliptic CY4 folds. In the case of M-theory we
consider:

Case Geometry Brane dual field theory
IV AdS3 × S2 × CY3 M5-brane on hol(C4) d = 2, N = (0, 4)
V1 AdS3 × CY4

M5-brane on hol(C4) d = 2, N = (0, 2)
V2 M5-brane on SLag4 d = 2, N = (1, 1)

Here, case IV corresponds to M5 branes wrapping holomorphic 4-cycles of CY3 leading
to MSW strings [39]. For the case V we differentiate two possibilities, V1,2: case V1
corresponds to M5-branes wrapping holomorphic 4-cycles leading to (0, 2) supersymmetric
2d CFT’s whereas in case V2 M5-branes are wrapped on SLag 4-cycles leading to (1, 1)
supersymmetric 2d CFT’s. Before discussing all cases separately, let us briefly summarize
some general properties about SLag cycles.

6For the d = 2 case the central charge can be viewed as the entropy of the black hole, i.e. the volume of
the horizon c ∝ vol(Sn) ∼ (lAdS)n.
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4.1 Some generalities about SLags

A special Lagrangian submanifold (SLag) Ln is a mid-dimensional cycle in a CYn manifold
Xn which is a Lagrangian subspace with respect to the Kähler form and for which the
restriction of the holomorphic n-form Ωn|Ln is proportional to the volume form up to an
overall phase [40]. It hence satisfies conditions analogous to (3.3). Using this one can show
that it minimizes the volume in the corresponding cohomology class and that it leads to 1

2 -
BPS states when supersymmetric branes wrap it. Typically, when we wrap a large number
of branes in such a class, or when the class is large even if it is primitive, we expect the
attractor mechanism to set in and to change the modulus so that at the attractor value of
the complex structure it minimizes the mass/tension of the brane. As far as the complex
structure is concerned this is achieved by extremizing

|Z(Ln)|2 =

∣∣∣∫Ln Ωn

∣∣∣2∫
Xn
|Ωn|2

=
∣∣∣∣∫
Ln

Ω̂n

∣∣∣∣2 , (4.1)

where we have introduced the normalized holomorphic (n, 0)-form

Ω̂n =
(∫

Xn
Ωn ∧ Ω̄n

)− 1
2

Ωn . (4.2)

For the attractor value of the Kähler moduli we expect that, if the mass/tension
depends on it, it should settle to the minimum value (in Einstein frame). This is the case
for example for type IIB on K3 or CY3. Moreover in these cases it is easy to check that
the tension/mass of D3 branes wrapping SLags does not depend on the overall volume of
the CY and thus the attractor mechanism does not fix that.

The attractor value of (4.1) may or may not be zero even if the wrapped cycle is not
movable. For example for the case of K3 if we wrap a genus 0 surface the attractor value
of the tension is zero, corresponding to the point in moduli space where the sphere shrinks
to a point (the A1 singularity). Similarly if in a CY3 we wrap a conifold class the tension
is also minimized at the point in moduli space where this class shrinks to zero size. In such
cases we do not obtain a holographic dual theory. Therefore having a SLag is not enough
to guarantee a holographically dual AdS but we also need the attractor value of (4.1) to
be non-zero, |Z(L)| 6= 0. In particular, a critical point of |Z(L)| with |Z(L)| = 0 does not
yield an AdS solution.

Notice that for the cases III and V2, i.e. the case of F-theory on elliptic CY4 or M-
theory on CY4, the tension of a brane wrapped on a SLag4-cycle does depend on the
overall volume and is minimized in the limit V → ∞. So in these cases, if there are no
further corrections to the BPS tension, we expect the attractor value to correspond to a
decompactification of the CY4. This is related to the first step of the KKLT scenario,
i.e., obtaining a supersymmetric AdS vacuum. In this case if there were no corrections to
the superpotential depending on Kähler moduli, we would not be getting an AdS vacuum
at finite volume for the CY.7 It is often said that in such a case without the Kähler

7In the non-geometric setup of [41] where there are no Kähler moduli this issue does not arise and one
can obtain reliable supersymmetric AdS vacua. However the value of the cosmological constant is close to
the Planck value. This is also the case for KKLT scenario as we will argue in this paper.
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corrections, there would be no supersymmetric vacuum because in this case DW 6= 0 in
the overall volume direction. However, this is not entirely correct: indeed DW becomes
proportional to W which vanishes if and only if we go to V → ∞ leading to a non-compact
supersymmetric model. We believe that this is what will happen generically. However, as
reviewed in section 2, in general there are corrections to the superpotential depending on
the Kähler moduli and this may affect this statement such that, in principle, one could find
a supersymmetric AdS vacuum due to such corrections. If we assumed that the attractor
value of the tension is unique, as is the case for all the known supersymmetric attractor
cases (for an example see [42]), this would imply that the minimum is again at infinite
volume (where Kähler corrections vanish) with W = 0, and thus even then there can never
be a supersymmetric AdS vacuum which minimizes the domain wall tension. However
for the sake of completeness we will assume that there can be multiple attractor values
corresponding possibly to saddle points of the tension and aim to find a bound on how
small the resulting cosmological constant can be.

4.2 Case I: SLag2 and hol(C2) in K3

Let us start with case I and consider type IIB on K3, and wrap a D3-brane on a Riemann
surface. This leads to a string in 6d. This is a well known example [43] of holography. In this
case, since K3 is hyperKähler, SLag2 and holomorphic two-cycles hol(C2) are equivalent,
depending on the choice of the complex structure of K3. Let (PL, PR) denote the integral
even self-dual lattice of the 2-cycles of K3. For a given two-cycle the R(L) components
are obtained by projecting to self-dual (anti-self-dual) parts, which depends on the metric.
For a Riemann surface C2 in the class (PL, PR), which realizes a SLag2 or holomorphic
two-cycle, the genus is given by

P 2
R − P 2

L = 2g − 2 = (C2)2

where (C2)2 is the self-intersection of C2 in K3. The tension of a D3-brane wrapped on C2

in the Einstein frame is given by PR =
√

2g − 2 + P 2
L. For g = 0, 1 the attractor value for

the tension can be zero for suitable choices of PL. For g ≥ 2 the attractor value is non-zero
and corresponds to the minimal value of P 2

R which is achieved for PL = 0. In this case the
tension T of the D3-brane at the attractor value is given by

T 2 = 2g − 2 = C2
2 .

On the other hand, the number of deformations of the genus g cycle C2 is given by

b1(C2) = 2g = C2
2 + 2 . (4.3)

Therefore, the number of deformations which is 2b1(C2) is proportional to both, the self-
intersection (C2)2 and the tension of the D3-brane at the attractor value. As a consequence,
the number of deformations, b1, of the SLag grows to leading order quadratically in N for
large classes or when we rescale C2 → NC2:

b1(SLag2) ∼ N2C2
2 .
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4.3 Case II: SLag3 in CY3

Consider now type IIB string theory compactified on a Calabi-Yau three-fold X3. This
yields an effective theory in four dimensions with N = 2 supersymmetry. Let L3 ∈ H3(X3)
be a special Lagrangian submanifold of X3 and consider the BPS state obtained by wrap-
ping a D3-brane on L3. Since this state is BPS, its mass is given by the central charge

M2

M2
P,4

= 8π|Z(L3)|2 = 8π
∣∣∣∣∫
L3

Ω̂3

∣∣∣∣2 , (4.4)

where MP,4 is the four-dimensional Planck mass. Further consider the black hole solution
associated to this BPS state which can be described via the attractor mechanism [37]. The
attractor mechanism ensures that at the horizon of the 4d extremal black hole its central
charge is minimized and for it to be a non-singular solution we need that the minimum
value of |Z(L3)| 6= 0. Suppose this is indeed the case. We may then ask how b1(L3) scales
under rescaling of the class L3 → NL3. Naively we may have thought that since the SLag
is mid dimensional, just as in the case of K3 it should scale like the self-intersection of the
cycle leading to an N2 growth as before. However, since the cycle is three-dimensional its
self-intersection trivially vanishes. Nevertheless we now show that the expectation of an
N2 growth is still correct and that, again, there is an upper bound on the growth of b1
proportional to N2. We do this by relating b1(L3) to the spin of the BPS black hole.

For a 4d black hole of mass M , the spin is bounded by 8πJ ≤M2/M2
P,4 (see e.g. [44]).

For a macroscopic BPS black hole in 4d, there is no spin. However, this does not mean
that the microscopic state does not carry a spin, but that the bulk of the microscopic states
have no spin. Still, there can be spinning microstates with a lower growth than the bulk
entropy. We will now use this to put a bound on b1 by relating it to the spin of these
microstates.

The D3 brane wrapped on SLag3 will in general carry a spin J under the 4d SO(3) ∼=
SU(2) rotation group. The possible spins J are determined by the cohomology group of
the moduli space M̂ of the D3-brane wrapped on L3. The space M̂ is Kähler and of
dimension 2b1(L3) (as we can turn on Wilson lines) and therefore its cohomology allows
for a Lefschetz decomposition where the SL(2) acts on it for which the raising operator is
given by the mutiplication with the Kähler class JM̂ on M̂. The four-dimensional SU(2)
spin group can be identifed with the Lefschetz SL(2). The spin J then corresponds to the
eigenvalue of the Cartan generator acting on Hp,q(M̂) which is given by

(p+ q − dimCM̂)/2 . (4.5)

As mentioned before, for the D3-brane on L3 the moduli space M̂ is given by the supersym-
metry-preserving deformations of b1(L3) making it a complex d-dimensional space (after
including the Wilson line). For a given L3 the highest spin is thus

Jmax = b1(L3)
2 . (4.6)
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For four-dimensional spinning black holes with fixed mass M , the spin further needs to
satisfy the extremality bound

8πJ ≤ M2

M2
P,4

. (4.7)

Using that the mass of the D3-brane black hole is given by the value of the central charge
at the attractor point 8π|Z(L3)|

∣∣
min, we can apply the extremality bound to Jmax in (4.6)

to find

b1(L3) ≤ 2|Z(L3)|2min . (4.8)

We thus see that the bound on b1 can at most grow by a factor of N2 as we rescale the
class by a factor of N , as we had anticipated.

4.4 Cases IV, V1: M5 on hol(C4) in CY3, CY4

Let us now turn to the M-theory cases and consider M5-branes wrapped on holomorphic
4-cycles of CY3 and CY4-folds. In that way we obtain a 2D supersymmetric theory with
N = (0, 4) and N = (0, 2) supersymmetry, respectively. In the IR these flow to SCFTs.
Using the anomaly inflow we can now compute the cL, cR of the resulting SCFT (using
some genericity assumptions) which gives us an estimate of the degrees of freedom of the
theory. We compute this by noting that the level of the U(1) R-symmetry (which in the
first case is a Cartan of an SU(2) R-symmetry) leads to cR. Moreover the gravitational
anomaly leads to cL − cR. We use the anomaly inflow on the M5 brane to compute these
quantities. In doing so we will assume that in the IR there are no accidentally enlarged
R-symmetries. This we expect to be the generic case when the 4-cycles are ample and
movable inside the CYs (as would lead to cases with no enhanced symmetries) which is
what we need in order to obtain AdS3 solutions in the first place.

To compute the anomaly inflow we need to integrate the anomaly polynomial I8 for M5-
branes over the internal 4-cycle C4. Let the M5-brane’s world-volume M be a 6-manifold
which is locally a product of a very ample holomorphic 4-cycle, C4, in CY4 and a two-
manifold. The two-dimensional SCFT lives on the latter. Let T and N denote the tangent
bundle and the normal bundle to the M5 brane on M . There are two possibilities: for CY3
N = P ⊕ S where P is the normal bundle in CY3 and S is the orthogonal complement
C⊕R, the supersymmetry is enhanced to N = (0, 4) and the SO(3) R-symmetry is coupled
to S. For the CY4 case N has a trivial one-dimensional part from S which is not coupled
to the R-symmetry (which we will neglect) and the rest (which is the normal bundle in
CY4) usually does not split and is coupled to the 2D R-symmetry line bundle F given by
the commutator (and center) U(1) of U(2) in SO(5). Note this R-symmetry is broken for
a compact Calabi-Yau due to KK modes, but we still can use it to compute the inflow, as
in the IR limit the KK modes are expected to decouple.

The anomaly 8-form for M5 branes is given by [45, 46]

I8 = 1
48

[
p2(N)− p2(T ) + 1

4(p1(N)− p1(T ))2
]
. (4.9)

– 14 –



J
H
E
P
1
0
(
2
0
2
2
)
1
8
8

We perform the integral of this 8-form over C4 separately for the two cases. First when we
turn off the 2D R-symmetry gauge field we may compute directly (using standard relations
between Pontryagin classes) that

I8 = − 1
96p1(CY4)p1(T2) = 1

48c2(CY4)p1(T2) , (4.10)

which implies that the two-dimensional SCFT satisfies cL − cR = 1
2
∫
C4
c2(CY4) (corre-

sponding to 24 times the coefficient of p1(T2)). This holds for both CY3×C and strict CY4
with SU(4) holonomy.

To compute cR we need to turn on the R-current, which means that for strict CY4 we
replace N by N ⊗ F and for the CY3 case we replace N by P ⊕ S. By general properties
of 2D (0, 2) SCFTs, in the first case the coefficient of the c1(F )2 term in the anomaly
polynomial then gives 1

6cR (a factor of 2 comes from reading the level of U(1) R-charge
and a factor of 3 from the relation between the level of the U(1) R-charge and the cR).
Similarly for (0, 4) theories we may fix the normalization by c1(F )2 term of the Cartan
subgroup U(1) ⊂ SO(3).

For CY3, we find the p1(S) coefficient in 48I8 to be given by8 2C2
4 + c2(CY3), which

(upon integration over C4) gives cR = (C4)3 + 1
2c2(CY3) · C4. This leads to

cR = (C4)3 + 1
2c2(CY3) · C4 , cL = (C4)3 + c2(CY3) · C4 , (4.11)

in agreement with [39]. Note that the fact that the leading behavior of cR, cL upon rescaling
C → NC goes as N3C3 can be naturally understood by deforming the M5 brane and
interpreting the triple intersection of M5 branes as contributions to the degrees of freedom
on the resulting string.

For holomorphic very ample C4 in CY4 the coefficient of c1(F )2 in 48I8 is given by9

2c2(N) + 4c2(T )− 2c2(CY ), which gives cR = 1
8(2C4 ·C4 + 4χ− 2

∫
C4
c2(CY4)), leading to

cR = 1
4

(
C4 · C4 + 2χ−

∫
C4
c2(CY4)

)
, cL = 1

4

(
C4 · C4 + 2χ+

∫
C4
c2(CY4)

)
. (4.12)

These formulas suggest that for large C4 or upon rescaling C4 → NC4, the growth of
cL, cR scales as N2C2

4/4. To see that the χ term does not spoil this note that if we deform
8Keeping only the p1(S) term:

48(I8 − I8,p1(S)=0) = p1(S)p1(P ) + 1
4(p1(CY3)− 2p1(P )− p1(S))2

= p1(S)(2C2
4 + c2(CY3)) .

9Keeping only the c1(F )2 term:

48I8 = (c2(N) + c1(N)c1(F ) + c1(F )2)2 + 1
4(−2c2(CY ) + 2c2(N)− (c1(N) + 2c1(F ))2

+ 2(c2(N) + c1(F )c1(N) + c1(F )2)− (c1(N) + 2c1(F ))2)2

= c1(F )2(2c2(N) + 4c2(T )− 2c2(CY )) .
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N copies of C4 the only reason the central charges would not add is if they intersect. There
are N2C2

4 intersection points and each should contribute some universal number to cL, cR
consistent with this interpretation.

Thus, again, the growth of the number of degrees of freedom for mid-dimensional cycles
scales in the leading order by a factor of N2 upon rescaling the class by a factor of N .

4.5 Cases III,V2: SLag4 in CY4

Let us now turn to the cases most relevant for the discussion in this paper, i.e. the cases III
and V2 which are deeply related. Case III involves studying D5/NS5 branes on orientifold
of CY3, which, in turn, is more generally formulated as general (p, q) 5-branes in the base
of F-theory on an elliptic CY4. Upon circle compactification, this then relates to M5 branes
wrapping a SLag4, L4, in CY4. Since the geometry is most easily described in the M-theory
setup, we will use this geometric language and discuss what we expect in that case.

To find the UV degrees of freedom of the worldvolume theory of the M5-brane on L4,
let us consider the reduction of the 6D M5-brane worldvolume theory on L4 focusing on the
bosonic sector only. The reduction of the chiral two-form in the 6D (2, 0) tensor multiplet
yields b−2 left-moving and b+2 right-moving scalars. In addition, the tensor multiplet also
contains five scalars, four of which describe the supersymmetry-preserving deformations
of L4 inside X4 and the last one describing the motion of the resulting domain wall in
the three extended directions. The tangent space of the deformations space M of L4 is
given by

TL4(M) = H0(L4,N ) = H0(L4, T
∗L4) , (4.13)

where we used that L4 being special Lagrangian implies the relation N ∼= T ∗L4 for its
normal bundle N . Using H0(L4, T

∗L4) ' H1,0(L4), we find

dimRM = b1(L4) . (4.14)

The total number of left- and right-moving scalars is thus given by

NL = 1 + b−2 + b1 , NR = 1 + b+2 + b1 , (4.15)

which pair with the fermions to form NL and NR (1, 1) multiplets leading to (cUV
L , cUV

R ) =
3
2(NL, NR). Notice that, unlike in the case of holomorphic 4-cycles, we cannot determine
cL, cR individually by an anomaly inflow argument because there is no R-symmetry in the
(1, 1) supersymmetric 2d theory. However, the difference cL − cR can still be computed as
before yielding 1

2c2(CY ) · L4. For a Lagrangian L4 it can be shown that this is given by
3
2σ(L4), where σ(L4) is the signature of L4, in agreement with what we have found.10

To gain more insight to the number of degrees of freedom NL we delve a bit more
deeply into the geometry of L4. As already noted, the local geometry of the Lagrangian
L4 inside the CY4 geometry is given by T ∗L4. This implies that

L4 · L4 = χ(L4) , (4.16)
10TCY = TL ⊗ C, hence c2(CY4) = p1(L4) whose integral on L4 gives 3σ.
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where the Euler characteristic of L4 is given by

χ(L4) = 2 + b+2 + b−2 − 2b1 . (4.17)

The total UV central charge of the theory on the M5-brane wrapping the special Lagrangian
four-cycle, defined as cUV

L + cUV
R , is thus given by

cUV = 3
2
(
2 + b+2 + b−2 + 2b1

)
= 3

2(L4 · L4 + 4b1) , (4.18)

We now want to find the scaling behaviour of cUV for large classes or as we re-scale11

L4 → NL4. In this case just as we have seen in the previous examples we expect that as
we deform NL4 to N separate copies, they intersect at N2L4 ·L4 points, each of which will
lead to a universal contribution to cUV. Thus we learn that cUV should scale by a factor
proportional to N2 at leading order for large N . In particular b1 cannot be larger than
a universal multiple of the self intersection, or, in other words, b1 ≤ aL4 · L4. Using the
monotonicity of c under RG flow, we thus find the important relation that asymptotically
in large class L4 limit

cIR ≤ cUV ≤ βL4 · L4

for some universal constant β ∼ O(1). Note that using the tadpole condition (2.4) this is
bounded by

L4 · L4 ≤
χ(X4)

12 ,

and therefore
cIR ≤

β

12χ(X4) .

Notice that this scaling argument similarly applies to a stack of N individual branes on
L4 since also in this case the leading contribution to the number of degrees of freedom is
counted by the self-intersection of L4.

Even though we derived this in the context of M-theory on CY4, we expect the same
to be true for the corresponding F-theory domain walls, as they lead to M-theory strings
upon wrapping the circle. In other words, if we denote the number of degrees of freedom
of the F-theory domain wall by cF we expect

cF ≤ γχ(X4) ,

where γ is some universal constant. In principle one may have worried whether compacti-
fying on the circle may lead to losing degrees of freedom (similar to M5 branes on a circle
giving D4 branes). That this is not the case follows from the fact that N coincident (p, q)
5-branes has degrees of freedom also scaling as N2, consistent with this bound. More-
over note that the argument of KKLT can be made directly in 3d (regardless of the 4d
compactification) leading to the same issues.

To see this bound in explicit examples, we first consider the special case of X4 =
K3×K3 and then turn to the more general case of an arbitrary type IIB orientifold limit
for which X4 = (X3 × T 2)/Z2 corresponding to the case III.

11Note that even though we write this as a non-primitive class, the expectation is that the leading
behaviour of the brane is a smooth function of the class itself and it should not matter whether it is
primitive or not.
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4.5.1 K3×K3

Take X4 to be the product K3×K3 of two K3 surfaces. The special Lagrangian four-cycles
of X4 are now simply products of Riemann surfaces in each of the K3s. The SLag4-cycles
are thus of the form

L4 = Σg1 × Σg2 ,

where Σg1 is a genus-g1 Riemann surface in K31 and Σg2 a genus-g2 Riemann surface in
K32. The resulting two-dimensional theory has N = (2, 2) supersymmetry. Since the Euler
characteristic of a product manifold is the product of the Euler characteristics, we have

χ (Σg1 × Σg2) = (2g1 − 2)(2g2 − 2) . (4.19)

On the other hand from section 4.2 we recall that b1(Σg1) = 2g1 such that

b1 (Σg1 × Σg2) = 2g1 + 2g2 . (4.20)

Notice that the signature of Σg1 × Σg2 vanishes

cL − cR = 1
2

∫
Σg1×Σg2

c2(K3×K3) = 0 . (4.21)

We therefore have b+2 = b−2 = 1
2b2 with

b2 = 4g1g2 + 2 , (4.22)

such that

cUV = 3
2 (4 + 4g1g2 + 4g1 + 4g2) = 6(g1 + 1)(g2 + 1) , (4.23)

which for large (g1, g2) scales like

cUV ∼ 6g1g2 . (4.24)

On the other hand, in this limit the self-intersection of Σg1 × Σg2 scales like

χ(Σg1 × Σg2) ∼ 4g1g2 . (4.25)

Hence, cUV scales parameterically like the self-intersection in accordance with our general
expectation for Calabi-Yau four-folds.

Note that we can also view this example as holomorphic cycles, by suitable choice of
complex structure on K3. In that case the computations of the anomaly inflow (4.12) leads
to cIR = 6(g1−1)(g2−1), which as expected is smaller than cUV by subleading terms in gi.
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4.5.2 Orientifold limit

Consider now the case III, i.e. take X4 to be an orientifold X4 = (X3 × T 2)/Z2, where X3
is a CY 3-fold. In this case we can provide further evidence for the behaviour of b1 using
the black hole argument presented in section 4.3.

Let us consider a special Lagrangian sub-manifold L4 of X4 = (X3× T 2)/Z2 dual to a
G4 flux on X4. In order for this flux to lift to a type IIB three-form flux (2.1) tells us that
[L4] needs to be of the form

[L4] = (CR, A) + (CNS , B) , (4.26)

with (A,B) the one-cycles on T 2 and CR, CNS ∈ H3(X3) are the three-cycles dual to the
IIB three-form fluxes F3 and H3 and satisfy CR.CNS > 0 .

In the following, we want to show two important properties of the classes [L4], CR and
CNS . Firstly, we want to show that L4 being a special Lagrangian implies that CR and CNS
(or in fact multiples thereof) can also be represented by special Lagrangian three-cycles
in X3. Physically, this implies that, in the type IIB limit of M-theory, both the D5-brane
and NS5-brane need to be wrapped in homology classes that have a special Lagrangian
representative. Secondly, we want to show that b1(L4) is bounded by the dimension of the
deformation space of CR and CNS as

b1(L4) ≤ min
{
b1(CR), b1(CNS)

}
+ 1 . (4.27)

This allows us to provide a bound on b1(L4) through a bound on either b1(CNS) or b1(CR).
Let us start by showing that CR and CNS need to have special Lagrangian represen-

tatives if [L4] is special Lagrangian: take the S1 family, Nt, of special Lagrangian cycles
in T 2, such that [Nt] = B and consider the intersection LR(t) = L4 ∩ (X3 × Nt). This
intersection has expected dimension three and satisfies the class condition [LR(t)] = CR.
The three-cycles LR(t) are special Lagrangian themselves. To see this, let p(t) denote a
point on T 2 where LR(t) and T 2 intersect. Let v(t) denote the tangent vector of LR at p
in the T 2 direction. We first note that

Ω4
∣∣
L4

= Ω3
∣∣
LR(t) × Ω1

∣∣
v(t) . (4.28)

Since by assumption L4 is special Lagrangian and Ω1
∣∣
v(t) does not depend on the points on

LR(t) it follows that also Ω3|LR(t) is constant. Similarly for the Kähler form JX4 of X4 we
have JX4 = JX3 +JT 2 with JX3 the Kähler form of X3 and JT 2 the Kähler form of T 2. We
further know that both, JX4 and JT 2 , restrict to zero along LR(t) such that also JX3 has
to be zero along LR(t). Hence, we have an S1 family of special Lagrangian three-cycles in
X3 with [LR(t)] = CR. A second S1 family of special Lagrangian three-cycles LNS(t) with
[LNS(t)] = CNS can then be constructed along the same lines.12

12In fact the above construction applies to X3 × T 2. Taking into account the Z2 involution, we should
consider the pre-image [L̃] = (C̃R, A) + (C̃NS , B) of L in X3 × T 2. Here C̃i = Ci − σ(Ci), with σ the
involution on X3. Restricting to three-cycles Ci, that are anti-symmetric under the involution, we can
apply the above construction to [L̃] = (2CR, A) + (2CNS , B) to find special Lagrangian representatives of
the classes 2CR and 2CNS .
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We thus showed that if L4 is a special Lagrangian submanifold of X4 the classes
CR, CNS ∈ H3(X3) also need to be represented by special Lagrangian submanifolds. Fur-
thermore, the above construction shows that L4 can be viewed as a fibration over S1 in
two different ways, once with fiber LR(t) and once with fiber LNS(t). The Serre spectral
sequence [47] thus tells us that b1(L4) ≤ b1(LR) + b1(S1) and b1(L4) ≤ b1(LNS) + b1(S1).
Defining b1(Ci) = max {b1(Li)|[Li] = Ci} the relation (4.27) follows.

To find a bound on b1(L4) we hence need to find an upper bound on either b1(CR)
or b1(CNS). We now argue for such an upper bound based on the black hole argument of
section 4.3. We showed above that CR and CNS (or more presicely 2CR and 2CNS) need to
have representatives, LR and LNS , that are special Lagrangian submanifolds of X3. As in
section 4.3 we can thus consider the black hole solutions associated to D3-branes wrapped
on these submanifolds. Let us assume that the black hole exists for both, LR and LNS ,13

and let us denote their respective attractor points in the complex structure moduli space
of X3 by zR, zNS . We will refer to the holomorphic three-form at these points in moduli
space as ΩR

3 and ΩNS
3 , respectively. Notice that in general zR 6= zNS . From the arguments

presented in section 4.3 it follows that

b1(LR) ≤ 2
∣∣Z(LR)

∣∣2
zR
, b1(LNS) ≤ 2

∣∣Z(LNS)
∣∣2
zNS

. (4.29)

Thus, the existence of a BPS black hole solution for D3-branes on (LR, LNS) provides us
with a bound on b1(LR,NS).

However, this is not yet what we are looking for since we aim to bound b1(L4) in terms
of its self-intersection χ(L4). Let us denote the point in moduli space at which |Z(L4)| is
extremised by (τ∗, z∗) corresponding to the value of the type IIB axio-dilaton and a point
in the complex structure moduli space of X3 at which the holomorphich (3, 0) form is given
by Ω∗3. Notice that in general z∗ differs from both zR and zNS . However, since |Z(LR)| is
minimized by ΩR

3 and |Z(LNS)| by ΩNS
3 , we have∣∣∣∣∫

LR

Ω̂R
3

∣∣∣∣2 ≤ ∣∣∣∣∫
LR

Ω̂∗3
∣∣∣∣2 , ∣∣∣∣∫

LNS

Ω̂NS
3

∣∣∣∣2 ≤
∣∣∣∣∫
LNS

Ω̂∗3
∣∣∣∣2 (4.30)

In terms of the dual fluxes F3 andH3 the F-term conditions, i.e. the extremisation condition
for |Z(L4)|, imply

0 =
∫
X3
G3 ∧ Ω̄∗3 =

∫
X3
F3 ∧ Ω̄∗3 − τ∗

∫
X3
H3 ∧ Ω̄∗3 , (4.31)

where we used that at the attractor point of L4, the flux G3 can only have (2, 1) and (0, 3)
components. Together with (4.30) this relation yields

b1(LR) ≤ 2
∣∣∣∣∫
X3
F3 ∧ Ω̂∗3

∣∣∣∣2 = 2
∣∣∣∣ τ∗2τ∗2

∣∣∣∣2 ∣∣∣∣∫
X3
G3 ∧ Ω̂∗3

∣∣∣∣2 ,
b1(LNS) ≤ 2

∣∣∣∣∫
X3
H3 ∧ Ω̂∗3

∣∣∣∣2 = 2
( 1

2τ∗2

)2 ∣∣∣∣∫
X3
G3 ∧ Ω̂∗3

∣∣∣∣2 ,
(4.32)

13Note that the existence of a black hole for LR and LNS is in fact not a necessary condition for |Z(L4)|
to have a non-trivial extremum, as for example the conifold example we discussed shows. However, the
genericity assumption in the directions of NS and R fluxes which we are using throughout, as the statistical
arguments of KKLT require it, show that this can be assumed.
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where we split τ into its real and imaginary part, τ = τ1 + iτ2. Now, we can use∫
X3
G3 ∧ Ω3 =

∫
X4
G4 ∧ Ω4 , 2iτ2

∫
X3

Ω3 ∧ Ω̄3 =
∫
X4

Ω4 ∧ Ω̄4 , (4.33)

to rewrite (4.32) as

b1(LR) ≤ |τ
∗|2

τ∗2

∣∣∣∣∫
X4
G4 ∧ Ω̂∗4

∣∣∣∣2 = |τ
∗|2

τ∗2

∣∣Z(L4)
∣∣2
min , (4.34)

b1(LNS) ≤ 1
τ∗2

∣∣∣∣∫
X4
G4 ∧ Ω̂∗4

∣∣∣∣2 = 1
τ∗2

∣∣Z(L4)
∣∣2
min . (4.35)

Using (4.27) we can finally translate these bounds into a bound on b1(L4). Therefore, we
need to identify the min {(b1(LR), b1(LNS)}. To that end notice that τ∗ takes values in the
fundamental domain of SL(2,Z) such that

τ∗2 ≥
√

3
2 . (4.36)

On the other hand, (4.36) allows us to bound b1(LNS) as

b1(LNS) ≤ 2√
3
|Z(L4)|2min . (4.37)

By (4.27) this is sufficient to give an upper bound on b1(L) as

b1(L4) ≤ 2√
3
|Z(L4)|2min + 1 , (4.38)

which can again be rewritten as a bound on b1(L4) in terms of self-intersection χ(L4) =
L4.L4 by noticing that |Z(L4)|2 ≤ χ(L4) at the attractor point where the flux dual to L4
is self-dual, i.e.

b1(L4) ≤ 2√
3
χ(L4) + 1 . (4.39)

To summarize, using (4.18), we have found a bound on the number of degrees of
freedoms of M5-branes on SLag four-cycles L4 in terms of the self-intersection of L4 . In
particular, our analysis shows that under the re-scaling L4 → NL4, the degrees of freedom
scale as

cUV(NL4) ∼ N2cUV(L4) . (4.40)

A further consistency check on our results can be seen as follows: consider M-theory
on a general CY four-fold X̃4 with an M5-brane wrapping a holomorphic four-cycle C4
as in section 4.4. If we reduce the effective three-dimensional theory on a further S1 we
arrive at type IIA on X̃4. If the M5-brane wraps the additional S1 it gets mapped to
a D4-brane in type IIA on C4. Mirror symmetry for type IIA in two dimensions maps
the D4-brane on C4 to a D4-brane on a special Lagrangian submanifold L4 of the mirror
four-fold X4. Lifting type IIA on X4 to M-theory on X4, the D4-brane on L4 gets lifted to
an M5-brane on L4. The degrees of freedom on the M5-brane on C4 can now be identified
with the degrees of freedom of the M5-brane on L4 such that from (4.12) we learn that,
upon rescaling L4 → NL4, the central charge grows as (4.40). Thus, again, we see that the
degrees of freedom on the four-cycles mirror to holomorphic four-cycles essentially grows
as the self-intersection of the special Lagrangian.
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5 Holographic obstruction for the KKLT scenario

We now return to the holographic description of supersymmetric AdS vacua in type IIB/M-
theory flux compactifications. In particular, we wish to relate the behavior of the degrees
of freedom on the M5-brane domain walls to the possibility of finding supersymmetric AdS
vacua with exponentially small cosmological constant as required for the KKLT scenario
reviewed in section 2.

Recall from section 3 that the degrees of freedom on the domain wall give an upper
bound on the degrees of freedom of the CFT dual to the supersymmetric AdS vacuum.
In d dimensions the number c of degrees of freedom of the CFT are related to the AdS
radius via

c ∼ ld−2
AdS . (5.1)

Thus, in order for the AdS radius to be very large (i.e. small absolute value for the cos-
mological constant) we need c to be very large. In order to realize the KKLT scenario we
thus have to search for a 5-brane configuration with very large cUV. For definiteness, let
us focus first on the three-dimensional case, i.e. CY4-fold compactifications of M-theory.
For this case we showed in section 4 that the UV degrees of freedom of an M5-brane dual
to a supersymmetric AdS flux vacuum are bounded by the self-intersection of the special
Lagrangian four-cycle L4 wrapped by the M5-brane, i.e.

cUV ≤ βχ(L4) . (5.2)

Within the tadpole bound, we can in principle maximize this by considering L4 such that

1
2χ(L4) = χ(X4)

24 . (5.3)

Physically this means that we consider a flux that exactly cancels the tadpole induced
by the curvature of the CY4-fold without having to introduce additional M2-branes. For
instance for theK3×K3 example discussed in section 4.5.1 one could choose L4 = Σg1×Σg2

with 48 = (2g1 − 2)(2g2 − 2), i.e. (g1, g2) ∈ {(13, 2), (7, 3), (5, 4), (4, 5), (3, 7), (2, 13)}. Then
from (4.23) we have

cUV ≤ 252 . (5.4)

Thus, we only expect supersymmetric AdS3 vacua from flux compactifications on K3×K3
with AdS radius

lAdS3(K3×K3) ≤ cUV = 252 . (5.5)

If we consider more general elliptic CY four-folds with large Euler characteristic we might
then hope to find vacua with even smaller cosmological constant. The CY four-fold with
largest Euler characteristic known currently has been constructed in [48] and was further
discussed in detail in [49]. For this particular manifold we have

χ(Xmax
4 ) = 1 820 448 , (5.6)
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which provides an upper bound for the Euler number of Fermat-type CY fourfolds [48].
According to a statistical argument in [49] this CY allows for a vast landscape of flux vacua.
Based on our discussion in section 4 the degrees of freedom of an M5-brane wrapped on a
special Lagrangian submanifolds of Xmax

4 can be as large as

cUV . β
χ(Xmax

4 )
24 ∼ O(105) , (5.7)

where β ∼ O(1). For this example we thus expect supersymmetric AdS3 vacua of the order

lAdS3(Xmax
4 ) . O(105) . (5.8)

We can repeat the above analysis for the four-dimensional AdS4 vacua obtained from
flux compactifications of type IIB string theory on Calabi-Yau orientifolds. In this case,
the tadpole cancellation condition reads

1
2

∫
F3 ∧H3 +ND3 = 1

4NO3 + 1
24
[
χ(D7) + 2χ(O7)

]
, (5.9)

where ND3/O3 denotes the number of D3/O3 planes and χ(D7) and χ(O7) are the Euler
characteristics of the divisors wrapped by D7 branes and O7 planes, respectively. The
cancellation of the D7 tadpole requires that χ(D7) = 4χ(O7) and (2.5) reduces to

1
2

∫
F3 ∧H3 +ND3 = 1

4
[
NO3 + χ(O7)

]
. (5.10)

The r.h.s. of the above equation corresponds to the Euler characteristic of the fixed point set
of the orientifold projection which is related to χ (X4) = χ

(
X3 × T 2)/Z2

)
in the following

way. For a general CY manifold M on which we act by an orbifold group G, the orbifold
formula gives [50]

χ(M/G) = 1
|G|

∑
g1g2=g2g1

χ(g1, g2) , g1, g2 ∈ G , (5.11)

where χ(g1, g2) corresponds to the Euler characteristic of the fixed point set under g1g2.
For M = X3 × T 2 and G = Z2 the orientifold action, the contribution from g1 = g2 = 1
vanishes whereas from the other sectors we obtain 1/2 times 3 times the Euler characteristic
of the fixed point set of Z2, i.e.

χ

(
X3 × T 2

Z2

)
= 3

2 χ
(
X3|f.p. × T 2|f.p.

)
= 6χ (X3|f.p.) , (5.12)

where we used that the Z2 action has 4 fixed points on T 2. This leads to

1
24χ

(
X3 × T 2

Z2

)
= 1

4χ (X3|f.p.) = 1
4
[
NO3 + χ(O7)

]
, (5.13)

as expected. We are thus left to calculate the Euler characteristic of the fixed-point set on
X3. By the Lefshetz fixed-point theorem this last contribution is given by (cf. also [11, 51])

χ (X3|f.p.) =
∑
i

(−1)i(b+i − b
−
i ) , (5.14)
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where b±i count the cohomology classes that are even or odd under the Z2 action. We
thus get

χ (X3|f.p.) = 2
(
2 + (h1,1

+ − h
1,1
− )− (h2,1

+ − h
2,1
− )
)
< 4 + 2

(
h1,1 + h2,1

)
, (5.15)

and therefore

1
24χ

(
X3 × T 2

Z2

)
< 1 + 1

2
(
h1,1 + h2,1

)
< 252 , (5.16)

where in the last step we estimated the maximal Hodge numbers based on the Kreuzer-
Skarke list [52]. We thus find a bound for the r.h.s. of (5.10).

From the analysis of section 4.5 we know that the degrees of freedom on the domain
wall obtained from D5-/NS5-branes is bounded by its self-intersection number. Therefore
the cosmological constant of the dual AdS4 is bounded by the available tadpole which,
given the previous discussion, is bounded by

∫
F3 ∧H3 . O(500). We thus get the bound

lAdS4MP,4 .
√
cUV . O(22) . (5.17)

We thus expect only AdS4 vacua with cosmological constant at most Λ/M2
P,4 ∼ O(10−2)

such that for type IIB orientifold we do not expect any supersymmetric AdS vacua with
exponentially suppressed cosmological constant as envisioned by the KKLT scenario. Even
if we consider the more general case of an elliptic fourfold, which would not lead to weak
coupling control, we find

lAdS4MP,4 .
√
cUV ∼

√
106 . O(103) . (5.18)

We now wish to give an argument why even the supersymmetric AdS3 and AdS4 vacua
with cosmological constants satisfying the bounds (5.8) and (5.17) obtained via duality
cannot be under perturbative control. To this end note that the number of light degrees of
freedom, Nlight, below the string and KK-scale are given by the light multiplets associated
to the moduli of the compactifications counted by h3,1 and h1,1 for the CY four-fold case
and h2,1 and h1,1 in the orientifold case.14 For a CY four-fold X4 we have

χ(X4) = 6(8 + h3,1 + h1,1 − h2,1) , (5.19)

whereas for the orientifold case the relation between χ and the Hodge numbers can be
estimated as in (5.15). These are the minimum number of light states. We therefore in
general have

Nlight & χ(X4) , (5.20)

up to O(1) coefficients. On the other hand, the species length scale lsp in d-dimensions (for
both d = 3, 4 cases of interest here) is given by

ld−2
sp = ld−2

P,d Nlight & χ(X4) ld−2
P,d , (5.21)

14Notice that this is still true if these fields pick up mass due to the non-trivial scalar potential, since for
consistency we expect the masses for complex structure and Kähler fields to be below the string scale (see
e.g. [53]).
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where LP,d is the Planck length in d dimensions. Using (5.8) and (5.17) we then find

ld−2
AdSd . χ(X4) ld−2

P,d . ld−2
sp ⇒ lAdSd

lsp
. 1 , (5.22)

which is valid for both d = 3, 4. Hence, even in setups where it seems possible to get
relatively small cosmological constants we do not get actual AdS3 or AdS4 vacua since
the AdS length scale is always parameterically at or below the species length scale and
thus the EFT breaks down. We thus do not expect to find any KKLT-like AdS3 or AdS4
vacua with exponentially small cosmological constant in a controlled regime of the EFT.
Recall that here all our analysis is under the assumption that |Z| does have a non-trivial
extremum. As already discussed in section 4 such an extremum can never be a global
minimum since |Z| → 0 for V → ∞.15 We thus have to assume that there are at least two
different attractor points with different values for |Z|. While one of the attractor points
signals a decompactification of the theory, via holography and the species scale, we showed
that any other attractor points (if they exist) are necessarily at strong coupling.

Comparison to previous results. In this section, we want to relate our results obtained
via holography to previous attempts to find KKLT-like supersymmetric AdS vacua from
full string theory constructions. The main focus of research thus far has been on finding
a small value of the superpotential by ignoring the superpotential dependence on Kähler
moduli and focusing only on solving the complex structure equations, and hoping that the
Kähler moduli corrections will not significantly alter the result of the minimum achieved
by complex moduli stabilization. For a completion of the first step one does need suitable
Kähler moduli-dependent corrections to the superpotential as otherwise the overall volume
factor in the W will lead to supersymmetry being realized through decompactification.
However the difficult task to compute the complete superpotential and Kähler potential
including the Kähler moduli dependence has not been achieved.16

A recent attempt in trying to get a small value of W after complex structure variation
was initiated by the study of the so-called perturbatively flat (flux) vacua first proposed
in [22] and subsequently studied in [23–26]. These attempts follow the original KKLT
description to find supersymmetric AdS4 vacua in type IIB string theory and first try to
engineer flux compactifications which stabilize all complex structure moduli and the dilaton
with small W0 ≡ W |DiW=0. To achieve a small W0, [22] proposes to first only consider
the leading complex structure dependence of

∫
X3

Ω̂∧G3 and search for fluxes, G3, that are
imaginary self-dual along a complex one-dimensional subspace of the moduli space with∫
X3

Ω̂ ∧G3
∣∣
∗G3=iG3

= 0. At this level, there is thus a flat direction in moduli space, hence
the name perturbatively flat vacua. If the exponential corrections to

∫
X3

Ω̂ ∧ G3, dual to
non-perturbative worldsheet instanton corrections of the mirror, are taken into account,
this flat direction is lifted and G3 is imaginary self-dual only at isolated points in moduli

15For the case of M5 branes wrapping holomorphic 4-cycles, it is clear that CY4 will have to partially
decompactify in the holographic dual, as the U(1) R-symmetry of 2d SCFT with (0, 2) supersymmetry,
demands a circle symmetry which would be absent for compact CY.

16For partial progress in this direction see [25, 26].
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space. As shown in [22] it is then possible that these corrections lead to

0 6=
(∫

X3
Ω̂ ∧G3

)∣∣∣∣
∗G3=iG3

� 1 . (5.23)

Starting from these flux configurations with exponentially small W0, one then aims to
realize the KKLT scenario and find supersymmetric AdS vacua when taking into account
non-perturbative corrections to the superpotential from e.g. D3-brane instantons depending
on Kähler moduli (cf. [25, 26]). We now want to argue that the perturbatively flat vacua
of the type proposed in [22] cannot yield supersymmetric AdS vacua, consistent with our
expectation from holography. As we will show the main problem with the construction
of [22] is that fluxes considered there cannot be dualized into 5-branes wrapping special
Lagrangian three-cycles. Based on our discussion in section 4.5 the corresponding four-
cycle in X4 = (X3 × T 2)/Z2 can also not be a special Lagrangian four-cycle. Therefore
there is no 1

2 -BPS domain wall associated to this choice of fluxes and supersymmetry is
broken. In other words suitable corrections to the superpotential depending in particular
on Kähler moduli, which is hoped to lead to a supersymmetric vacuum, will not materialize.

To see that the cycles dual to the fluxes considered by [22] in general do no admit special
Lagrangian representatives, let us briefly review the setup of [22]. For a compactification
of type IIB string theory on a Calabi-Yau orientifold X3, [22] give a sufficient condition for
the existence of a perturbatively flat direction which requires the superpotential W to be
a polynomial of degree-2 in the h2,1 + 1 moduli describing the complex structure and the
axio-dilaton. The flat direction then corresponds to the overall rescaling modulus. Let us
denote the projective coordinates on the complex structure moduli space by ZI = (1, zi),
I = 0, . . . , h2,1 such that ∫

Ai

Ω3 = zi ,

∫
Bi

Ω3 = Fi ≡ ∂ziF , (5.24)

with (AI , BI) a symplectic basis of three-cycles on X3. Moreover, F is the prepotential.
For the moment consider only the contributions to F that are polynomial in the zi, i.e.

Fpert = − 1
3!κijkz

izjzk + 1
2aijz

izj + biz
i + ζ , (5.25)

where κijk are the triple intersection numbers of the mirror of X3, aij and bi are rational and
ζ = − ζ(3)χ

2(2πi)3 and χ the Euler characteristic. To get a superpotential that is homogeneous
in the moduli, the fluxes (F3, H3) need to be chosen such that

Wpert. = −τKiz
i − 1

2κijkz
izjMk , (5.26)

which is achieved for the flux choice(∫
AI

H3,

∫
BI
H3

)
=
(
0, ~KT , 0 , 0

)
,(∫

AI

F3,

∫
BI
F3

)
=
(
~M ·~b , ~MT · a , 0 , ~MT

)
.

(5.27)
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In this case, the D3-brane tadpole is simply given by

QD3 = −1
2
~M · ~K . (5.28)

According to [22] a perturbatively flat vacuum with Wpert = 0 is obtained if Nij ≡ κijkMk

is invertible and ~KT ·N−1 · ~K = 0 provided ~p ≡ N−1 ~K lies in the Kähler cone of the mirror
of X3. The flat direction is then given by ~z = τ~p with τ the axio-dilaton. In the scenario
of [22] this remaining flat direction can then be stabilized using exponential corrections to
the prepotential F dual to worldsheet instantons on the mirror of X3.

Even though by this choice of fluxes the F-term equations DiW = DτW = 0 can be
solved with W0 � 1, this scenario cannot yield a supersymmetric AdS vacuum since the
three-cycles dual to the (F3, H3) flux do not have special Lagrangian representatives at the
point in moduli space where the F-term equations are satisfied. To see this, notice that,
by construction, the cycle CNS dual to the H3 flux satisfies along the flat direction∫

CNS
Ω = ~K · ~z = τ ~K · ~p = τ ~K ·N−1 ~K = 0 . (5.29)

Notice, that this equation is independent of exponential corrections to the prepotential
because the ~z are the flat coordinates on the moduli space. Therefore, it holds not only
exactly at the large complex structure point zi →∞ but also has a one-parameter family
of solutions even if the corrections are relevant and taken into account. Consequently, if
CNS had a special Lagrangian representative, type IIB compactified on X3 would have a
BPS state, obtained by wrapping a D3-brane on CNS whose central charge would vanish
along the flat direction. A point in moduli space at which a BPS state becomes massless,
however, has to correspond to a singularity of the moduli space. Since by assumption ~z

lies in the Kähler cone of the mirror of X3, the flat direction corresponds to a smooth locus
in moduli space. Therefore, in the vicinity of this locus, the D3-brane on CNS cannot be
BPS and the curve cannot be a special Lagrangian. A similar conclusion holds for the
curve CRR.

In fact, we can be more explicit. The condition ~K · ~z = 0 implies that some of the
entries of ~K have to be negative since Im zi > 0 inside the Kähler cone of the mirror of X3.
By construction the cycle wrapped by the NS5-branes dual to the H-flux is a three-cycle
that via mirror symmetry gets mapped to a two-cycle C in the class determined by ~K.
However, there are no holomorphic two-cycles in a class that is a linear combination of
two-cycle classes with coefficients of non-definite sign. The relevant curves for the example
studied in [22] can be described in terms of the generators C1 and C2 of the Mori cone of
the Calabi-Yau threefold P1,1,1,6,9[18]. To be precise, the flux-choice of [22] corresponds to
the class

[C] = 3[C1]− 4[C2] . (5.30)

This class, however, does not have a holomorphic representative and therefore the dual
three-cycle in the mirror of X3 does not have a SLag representative. Therefore, the sys-
tem of NS5-/D5-branes corresponding to the fluxes considered in [22] does not preserve
supersymmetry and hence cannot be dual to a supersymmetric AdS vacuum.
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6 Conclusions

In this paper, using holography, we have argued, why the first step of KKLT scenario cannot
be realized. In a sense what we found is not that surprising and perhaps should have been
expected: we have a dual theory involving of order of √χ D5/NS5 branes and thus to get
a central charge bound of order χ is natural leading to an AdS length scale below or of
the order of the species length scale. In the usual AdS/CFT we do not have such a bound
and we can have an arbitrarily large number of branes and an arbitrarily small negative
cosmological constant, perhaps similar to a DGKT type scenario [54]. However in such a
flux compactatification which has no such bounds on the cosmological constant, we expect
to have a tower of light states [55] and in this case the light tower of states prevents an
uplift [56, 57].

Given the difficulties of realizing other scenarios for constructing dS solutions in the
context of flux vacua (see e.g. [58] for some issues in the LVS context) it is natural to
broaden the search for constructing quasi-dS vacua in string theory. Whether or not we
can construct meta-stable dS remains an open question in string theory. But regardless
of that, a quasi-dS (not necessarily meta stable) should presumably be realizable in the
string landscape given the observations in our universe. This is one of the most urgent
problems in string theory, and we hope the current work suggests looking with a fresh eye
in different directions to realize this goal.
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