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1 Introduction

With Hawking’s seminal work on the semiclassical approach to the black hole radia-
tion [1, 2], the black hole dynamics [3] has since been promoted to thermodynamics. It was
demonstrated that black hole thermodynamics are consistent with the Euclidean action
approach based on the Quantum Statistic Relation [4]. This is different from the usual
Euclideanization in Quantum Field Theory, in that the period of the Euclidean time is
set by the black hole geometry. This in fact becomes the standard and more convenient
way of deriving the Hawking temperature. Iyer and Wald later established that the mirac-
ulous first law of black hole thermodynamics had a classical origin as the infinitesimal
Hamiltonian [5, 6], and the Bekenstein-Hawking entropy could be interpreted as a Noether

– 1 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
4

charge [5]. That black holes are thermodynamic systems has now been widely accepted by
the theoretical community in General Relativity.

There are however interesting black objects whose thermodynamics are difficult to es-
tablish. The most notable one is the Taub-NUT spacetime [7, 8]. The difficulty arises from
the fact that in the Euclidean action approach, the easily-obtained free energy from the on-
shell Euclidean action does not parse itself into different thermodynamical variables, except
for the temperature and the presumed entropy. Similar issues exist in the Wald formalism,
and furthermore the infinitesimal energy is not uniquely defined. In fact, historically, the
satisfaction of the first law was established first by obtaining various thermodynamic quan-
tities independently. These include the ADM masses [9–11] in asymptotically Minkowski
spacetimes. (We shall not consider the cosmological constant in this paper.) In fact, for
black holes where the mass can be independently calculated, it can also be easily recognised
in the Wald formalism as the closed infinitesimal Hamilitonian, and vice versa.

However, this success meets a great challenge to analyse the Taub-NUT solution, which
contains two parameters (m,n). When the NUT parameter n is zero, the solution reduces
to the Schwarzschild black hole of mass m. However, when n 6= 0, the spacetime is not
asymptotic to Minkowski spacetime, but only locally flat. Taub-NUT geometry with real-
line time have singularities in the form of Misner strings [12], even though the spacetime
is geodesically complete [13]. This means that we do not have an independent way of
deriving the mass M . Some treated the parameter m as the mass in literature, but this
is not universally accepted. Furthermore, there is no independent derivation for the NUT
charge QN and its conjugate potential ΦN. We therefore have a thermodynamic system
with five variables, but only the temperature and entropy (T, S) can be well determined,
and the rest three variables (M,QN,ΦN) are unknown. After taking care of the subtleties
associated with Misner strings, the free energy from the Euclidean action can be derived,
and the consistent mathematical first-order equation relating the integration constants and
the horizon data can be established, but these results themselves do not lead to a clear
recognition of the three thermodynamic variables.

There have been recently a small surge in the studying of the first law for the Taub-
NUT black hole [14–30]. It is after all a simple metric with only two parameters, and once
one of the three unknown (M,QN,ΦN) is determined, the remaining two follow by the
satisfaction of the first law. The challenge is to give a well-defined procedure to determine
(M,QN,ΦN) not only for the Taub-NUT metric, but also the more general Kerr-Taub-NUT
and even the full Plebanski solution [31], which involves not only the Misner but also the
Dirac strings [32].

Our results for (M,QN,ΦN) are different from those in literature. We study the ori-
gin of the Misner strings as the degenerate cycles at both north and south poles. The
degenerated Killing vectors are given by

`± = ∂φ ∓ 2n∂t . (1.1)

The fact that `± both generate 2π period indicates singularities in the form of Misner
strings, since we take time to be a real line. The form of the Killing vectors (1.1) resembles
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remarkably the null Killing vector in a rotating black hole

ξ = ∂t + Ω+∂φ , (1.2)

where Ω+ is the angular velocity on the horizon for the asymptotically non-rotating Min-
kowski spacetime. The parallel of these two sets of Killing vectors are striking, with the
correspondence

t↔ φ , Ω+ ↔ n , (1.3)

completed with r ↔ u = cos θ, where (r, θ) are the standard radial and latitudinal coordi-
nates.

It is well known that there exists a symmetry between the radial and latitudinal co-
ordinates and also between time and longitudinal coordinates in the general Plebanski
solution [31]. This symmetry has led people to believe a correspondence between (m,n):
the parameter n was regarded as the NUT charge, and it has a physical interpretation
as the “magnetic” version of the mass. Our correspondence (1.3) differs from this view.
Instead, the parameter n should be viewed as NUT potential ΦN. The angular velocity
Ω+ is the thermodynamic conjugate to angular momentum J , which can be obtained from
the Komar integration associated with the Killing vector ∂φ, with radially independent
integrand. The correspondence then suggests that the NUT charge should be related to
the Komar integration associated with the Killing vector ∂t, but now with the latitudinal
independent integrand. This provides a well-defined procedure to obtain (ΦN, QN) not only
for the Taub-NUT, but also Kerr-Taub-NUT and the general Plebanski solution, although
the results are progressively more complicated. We find that our definition is consistent
with the Smarr relation, the Euclidean action and also the Wald formalism, i.e. the first
law. It should be emphasized that in our approach, the NUT potential and its charge
(ΦN, QN) are independently determined, as in the case of (Ω+, J), and the satisfaction of
the first law arises as a consequence, rather than being used as an input.

The Plebanski solution contains not only the Misner strings but also the Dirac strings,
and there are technic subtleties involving these singularities. In this paper, we begin in
section 2 with analysing the magnetically charged black holes in a class of Einstein-Maxwell-
Dilaton (EMD) theories and show that the Dirac strings in the evaluation of the Euclidean
action, Wald formalism and Komar integration can be dealt in the same way. We then apply
the Wald formalism to the Ricci-flat boosted black string and Kaluza-Kaluza-monopole in
section 3, where the four-dimensional Dirac strings are lifted to become Misner strings in
five dimensions. After these preliminaries, we finally study our main objects, the Taub-NUT
and Kerr-Taub-NUT solutions in section 4. We obtain all the thermodynamic variables
first and then verify the first law, the Smarr relation and the free energy from the Euclidean
action. We also obtain the thermodynamics for the more general case with asymmetric
Misner strings at north and south poles. In section 5, we continue to successfully analyse
the Plebanski solution and obtain the first law that respects the electromagnetic duality.
We conclude the paper in section 6. In appendix A, we describe the Wald formalism and
generalized Komar integration for the EMD theories.
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2 Charged black holes in EMD

In this section, we study the electrically or magnetically charged black holes in a general
class of EMD theories in four dimensions, with the Lagrangian

L =
√
−g
(
R− 1

2(∂ϕ)2 − 1
4e

aϕFµνFµν

)
, (2.1)

where F(2) = 1
2Fµνdx

µ ∧ dxν = dA(1) is the field strength of the Maxwell field A(1). We use
subscript (k) to denote k-form fields. The dilaton scalar ϕ has an exponential coupling
with the Maxwell kinetic term, with dilaton coupling constant a. Such a theory is inspired
by string theory and it arises naturally in supergravities with some specific a values. We
use this simple model to illustrate how to properly handle Dirac strings associated with
the magnetic charges in various thermodynamic calculations.

2.1 Charged black holes and thermodynamics

We focus on four dimensions, and the theory can admit either electric or magnetic black
holes. The metric takes the same form for both black holes, e.g. [33–35], given by

ds2 = −H−
1
2Nfdt2 +H

1
2N
(
f−1dr2 + r2(dθ2 + sin2 θdφ2)

)
,

H = 1 + q

r
, f = 1− µ

r
. (2.2)

In this paper, we reserve (t, r, θ, φ) to be the time, radial, latitudinal and longitudinal
angular coordinates. (We use ϕ to denote the scalar field.) The Maxwell and scalar fields
are different, depending on the type of charges, given by

electric : A(1) = ψe(r)dt , ψe =
√
Nq(µ+ q)
rH

, ϕ = 1
2Na logH ,

magnetic : A(1) =
√
Nq(µ+ q) cos θdφ , ϕ = −1

2Na logH . (2.3)

Here the parameter N is a short notation for N = 4
a2+1 . When a = 0, corresponding

to N = 4, we have the Reissner-Nordström (RN) electric or magnetic black holes. For
a =
√

3, a = 1 or a = 0, exact solutions of dyonic black holes can also be constructed, but
we shall not consider these black holes in this section.

The solution is asymptotic to Minkowski spacetime, and there is an event horizon at
r+ = µ. The thermodynamic quantities can be easily obtained, and the mass, temperature
and entropy are given by

M = 1
2µ+ 1

4Nq , T = 1
4πµ

(
1 + q

µ

)− 1
2N

, S = πµ2
(

1 + q

µ

) 1
2N

. (2.4)

The electric and magnetic charges and their corresponding thermodynamical potentials are

electric : Qe = 1
4

√
Nq(µ+ q) , Φe =

√
Nq

µ+ q
,

magnetic : Qm = 1
4

√
Nq(µ+ q) , Φm =

√
Nq

µ+ q
. (2.5)
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It is then straightforward and simple to verify that the first law of black hole thermody-
namics holds for both the electric and magnetic black holes, namely

electric : δM = TδS + ΦeδQe ; magnetic : δM = TδS + ΦmδQm . (2.6)

In the above discussion, even though we had to appeal to the electromagnetic duality
to derive the magnetic potential, all the thermodynamical quantities can be independently
obtained. The resulting first law therefore appears to be miraculous. In the next, we shall
review both the Euclidean path integral approach and the Wald formalism that underly
the first law. We shall focus on the technical subtleties involving the magnetic monopoles.

2.2 Euclidean action

Based on the Quantum Statistic Relation, one can use a path integral approach to the
black hole thermodynamics by calculating the on-shell Euclidean action [4]

I = 1
16π

∫
M
d4xL+ 1

8π

∫
∂M

d3x
√
−hK = βF , (2.7)

which gives rise to the free energy F . (There should be no confusion between this free energy
symbol and Maxwell field strength F(2).) The corresponding thermodynamic ensembles for
the electric and magnetic cases are very different, with the former corresponding to the
Gibbs free energy whilst the latter to the Helmholtz free energy:

electric : FG = M − TS − ΦeQe , magnetic : FH = M − TS . (2.8)

In the above discussion, we assume that the variation principle for the Maxwell field obeys
the standard Dirichlet boundary condition. We can alter it to the Neumann boundary
condition by introducing a surface term [4, 36–38]

1
16π

∫
∂M

dΣµ (eaϕFµνAν) . (2.9)

This is equivalent to introducing a total derivative bulk term

1
16π

∫
M
d4x
√
−g∇µ (eaϕFµνAν) . (2.10)

From the first-order formalism [39], adding this term effectively performs the electromag-
netic duality and therefore we have

electric : FH = M − TS , magnetic : FG = M − TS − ΦmQm . (2.11)

However, in the case of the magnetic black hole, there is a subtlety if we evaluate the on-
shell action using the boundary term (2.9) instead of the bulk total derivative term (2.10).
The bulk total derivative term (2.10) gives

1
16π

∫
M
d4x
√
−g∇µ (eaϕFµνAν) = Nq

4

∫
dt = ΦmQm

∫
dt . (2.12)
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This bulk integration is unambiguous since it is gauge invariant. The derivative in the
integrand can only act on the Maxwell field for the on-shell fields.

The integration on the surface, which should yield the same result, is much subtler.
For magnetic charges, both A(1) and F(2) have no components in the radial direction. One
would thus naïvely conclude that the surface term vanishes. (We shall comment on this at
the end of this subsection; a plot twist shows that it is not so naïve after all.) To resolve
this paradox, one notes that bare gauge potential A(1) appears in the expression (2.9),
indicating that it is not manifestly gauge invariant. For the monopole (2.3), two symmetric
Dirac strings [32] are located at north and south poles θ = (0, π) respectively, where the
integrand (2.9) is singular

−1
2e

aϕFµνAν = Nq(µ+ q)
2r4 eaϕH−N

cos θ
sin θ δ

µ
θ . (2.13)

Thus in addition to the integration over the surface normal to the radial direction that
vanishes in this example, we also need to integrate over the infinitesimally-thin tubes TN
and TS at θ = 0, π that cutout the Dirac strings. (See the illustration of the fourth graph
of figure 1 in appendix A.) For the surface normal to constant θ, we have

dΣµ = dtdrdϕ
√
−hθnθµ ,

√
−hθ = rH

N
4 sin θ , nθ = −rH

N
4 dθ . (2.14)

We can compute (2.9) by the integration over the two tubes,

1
16π

∫
dt

∫ 2π

0
dφ

[ ∫ +∞

rh

dr
√
−hθnθµ (eaϕFµνAν(θ = 0))

+
∫ rh

+∞
dr
√
−hθnθµ (eaϕFµνAν(θ = π))

]
= Nq

4

∫
dt . (2.15)

This yields the exact same result of the bulk integration (2.12). The first and second terms
in the integrand are associated with TN and TS respectively. They contribute equally under
our gauge choice where the Dirac strings are symmetric. We can make gauge choices such
that the Dirac strings only appear at the north pole or at the south pole, as indicated in the
second and third graphs in figure 1. In these cases we only need to integrate over TN or TS
only, but with twice the value, so that the final answer remains the same. This approach
gives the same answer as the method of double covering space adopted in [40, 41].

This subtlety turns out to be also relevant to understand the Wald approach to these
magnetic black holes, since in essence, the Wald formalism also turns the bulk integration to
surface integration. The above discussion also suggests a method for the surface integration
that sometimes are much simpler and unambiguous: turning the surface integration into a
bulk integration that is gauge invariant.

Before continuing, it is important to clarify that in the approach above and through
out this paper, we treat the string singularities as being real and physical, and we cage
them inside the infinitesimal tubes TN and TS in our evaluation of the boundary term. In
this approach, the boundary term gives rise the same result as the corresponding bulk term,
by the virtual of the Stokes theorem. The boundary term has the same effect of performing
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the electromagnetic duality transformation. The price to pay is that the free energy from
the Euclidean action is not invariant under the electromagnetic duality. Indeed, the elec-
tromagnetic symmetry is broken, since the magnetic charge produces the string singularity,
while the electric charge does not, and the electromagnetic duality transformation cannot
restore this symmetry. An alternative approach is to observe that in Einstein-Maxwell
gravity and EMD, all the fields are neutral. The Dirac string that appears in the surface
term is really an artificial introduction. One can define the manifold with double patches
so that the Dirac strings are completely absent in the manifold [42]. In this case, the van-
ishing result of the boundary term for magnetic monopoles, which can be obtained from
the naïve application mentioned earlier, is not only actually correct, but also desirable. In
this approach, the free energy for both electric and magnetic black holes takes the same
form FH = M − TS, which is manifestly invariant under the electromagnetic duality [42].
However it is not clear to us how this approach is consistent with the Stokes theorem. Nev-
ertheless, since the two approaches differ by a thermodynamic Legendre transformation, it
does not affect what we shall address in this paper.

2.3 Wald formalism

In 1993, Iyer and Wald developed the covariant phase space method [5, 6] to point out that
the first law of black hole thermodynamics can be encoded in the infinitesimal Hamiltonian.
The Wald procedure for the EMD theory (2.1) is described in appendix A. The Wald
approach to the first law for the electrically charged black holes is also given in the appendix.
The magnetic case is subtler and we study it here. As we discuss in the appendix, the
crucial step of the Wald formalism is to calculate the 2-form fields Q[ξ] and iξΘ with
ξ = ∂t. (Note that the boldface letters in this paper are also form fields.) For the magnetic
solution, we have

Q[ξ] = r2
(
f ′ − NfH ′

2H

)
Ω(2) , δQ[ξ]− iξΘ = V Ω(2) + Udr ∧ cos θdφ , (2.16)

where Ω(2) = sin θdθ ∧ dφ volume 2-form of the round unit S2, and

U = −16QmδQm
r2H2 , V = r

2H
(
Nrf ′δH − 2NrfδH ′ −

(
NrH ′ + 4H

)
δf
)
. (2.17)

As in the electric case discussed in the appendix, Q[ξ] is not close, i.e. dQ 6= 0, but δQ−iξΘ
is, namely

d(δQ[ξ]− iξΘ) = (V ′ + U)dr ∧ Ω(2) = 0 . (2.18)

Although we can write the δH formally as

0 = δH = 1
16π

∫
vol
d(δQ[ξ]− iξΘ) = 1

16π

∫
Σ

(
V Ω(2) + Udr ∧ cos θdφ

)
, (2.19)

the surface symbol “Σ” no longer denotes only the 2-spheres of the asymptotic infinity
and the horizon Cauchy surface. The second term associated with U function is singular
at both north θ = 0 and south θ = π poles in the form of strings, extending from the
horizon to asymptotic infinity, as in the case of the Dirac strings. The integration of this
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term is mathematically the same as the Maxwell surface term for the magnetic charge in
the Euclidean action discussed earlier. The full integration should be split into four parts:
the integrations over Ω(2) both on the horizon and at asymptotic infinity; together with
integrations over the tubes at the north and south poles (δHTN

, δHTS
) that remove the

Dirac strings. For the first two parts, we have

δH+
S2

= −1
4V (r+) = −TδS , δH∞S2 = δM . (2.20)

For the latter two parts, we have

δHθ=πTS
= δHθ=0

TN
= 1

16π

∫ ∞
r+

U(r)dr
∫ 2π

0
dϕ = −1

2ΦmδQm . (2.21)

Combining these four parts, we obtain the relation for the infinitesimal Hamiltonian

δHΣ = δH∞S2 + δH+
S1

+ δHθ=0
TN

+ δHθ=πTS
= 0 . (2.22)

This leads to the first law given in (2.6).
As in the case of its Euclidean action calculation, we can also have a simpler approach

starting from (2.18), which implies that we can have a different (δQ[ξ]− iξΘ), given by

δQ[ξ]− iξΘ = (V + U)Ω(2) , U =
∫ r

U(r′)dr′ = 16QmδQm
rH

. (2.23)

This expression differs from the one in (2.16) by a total derivative, i.e. a closed 2-form, but
now the Dirac string singularity is absent. The first law (2.6) is then a simple consequence of

V (r+) + U(r+) = V (∞) + U(∞) . (2.24)

In fact, there is a covariant approach to add the needed total derivative to (δQ − iξΘ)
in (2.16) to become (2.23). As in the case of Euclidean action, this is effectively equivalent
to performing the electromagnetic duality. As in [43, 44], from the equation of motion of
the Maxwell field

d
(
eaϕ∗F (2)

)
= 0 , (2.25)

we can define a scalar field Ψ

dΨ = eaϕiξ∗F (2) , ⇒ Ψ = 4Qm
rH

. (2.26)

We can then insert the improved total derivative term −d(ΨδA(1)), that is closed but not
exact, into the integrand of δH:

δHΣ = 1
16π

∫
Σ

(δQ[ξ]− iξΘ− d(ΨδA(1))) =
∫

Ω(2)

16π (V + U)
∣∣∣∣∞
r+

. (2.27)

This simple example helps us greatly on how to extract the charges from the closed form
fields in general type-D metrics that are cohomogeneity two and depend on both the radial
and latitudinal angular coordinates.
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2.4 Generalized Komar integration and the Smarr relation

When matter fields are involved, the 2-form Q[ξ] in the Wald formalism is not closed. In
order to obtain the Smarr relation that relates the asymptotic charges to the horizon data,
we need to consider the generalized Komar integration over the closed form field Q̃[ξ]. For
the EMD theory, it is given by (A.17) in the appendix. As we see in the appendix, the
Q̃[ξ]-form is radially independent for the electric black hole. For the magnetic black hole
we study in this section, it is trickier, given by

Q̃[ξ] = V Ω(2) + Udr ∧ cos θdθ , (2.28)

with
V = rf ′ − Nr2fH ′

2H , U = −Nq(µ+ q)
2r2H

1
2N

eaϕ . (2.29)

The closure of dQ̃[ξ] = 0 is satisfied by the on-shell identity V ′+U = 0. Thus we can deal
with the generalized Komar integration the same way we did with the closed Wald form
(δQ[ξ]− iξΘ) earlier, namely

0 = 1
8π

∫
Σ

Q[ξ] = M − 2TS − ΦmQm , (2.30)

which is precisely the Smarr relation. It should be commented here that the reason why
we do not redefine the mass to (M − ΦmQm) is due to the fact that the term ΦmQm is
contributed by the Dirac string, which is not universal and not experienced by neutral
particles.

As we have seen in the appendix, Q̃[ξ] is radially independent for the electric black
holes. To obtain the radially independent charge for the magnetic case is more involved.
This subtlety can be avoided entirely by performing the electromagnetic duality, in which
case, the generalized Komar form becomes

Q̃[ξ] = −∗dξ − 1
2e
−aϕ∗F̃ (2) (iξB(1)) + 1

2e
−aϕ

(
iξ∗F̃ (2)

)
∧B(1) , (2.31)

where F̃(2) and B(1) are defined by

eaϕ∗F (2) = F̃(2) = dB(1) . (2.32)

For the magnetic solution, we now have

Q̃[ξ] =
(
V (r) +

∫ r

∞
U(r′)dr′

)
Ω(2) = 2MΩ(2) , (2.33)

which is indeed radially invariant.
Note that Q̃[ξ]’s in (2.31) and (A.17) are both closed; they differ by a total deriva-

tive dΛ(1), with Λ(1) = (iξB(1))A(1). However, neither expression is invariant under the
electromagnetic duality

A(1) → B(1) , B(1) → −A(1) , ϕ→ −ϕ . (2.34)

– 9 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
4

The invariant expression can be obtained by taking Λ(1) = 1
2(iξB(1))A(1), which yields

Q̃[ξ] = −∗dξ − 1
2e

aϕ∗F (2) (iξA(1))−
1
2e
−aϕ∗F̃ (2) (iξB(1)) . (2.35)

To summarize, the basic mathematics for evaluating the first law from the Wald for-
malism and the Smarr relation from the generalized Komar integration is the same Stokes
theorem and hence the technique of dealing the string singularities is also the same:

First law : d(δQ[ξ]− iξΘ) = 0 , → 1
16π

∫
Σ

(δQ[ξ]− iξΘ) = 0 ,

Smarr relation : dQ̃[ξ] = 0 , → 1
8π

∫
Σ
δQ̃[ξ] = 0 . (2.36)

Note that when a = 0, the theory effectively reduces to Einstein-Maxwell gravity, since the
dilaton decouples from the solution. The corresponding results will be used again for the
studying of the general Plebanski solution in section 5.

Before finishing this section, we would like to comment further on the Komar and
generalized Komar integrations. When matter is involved, we must consider the generalized
Komar integration in order to obtain the Smarr relation. However, it is not uncommon that
one can get the correct mass by evaluating the Komar integration at the infinity. This can
indeed be done when the topology of the black hole is simple such that the hypersurface
Σ includes only S1 on the horizon and S2 at the infinity, as illustrated in the first graph in
figure 1 in the appendix. In this case, since the matter contribution to Q tends to fall off
faster, one can obtain the mass by simply integrating the Komar form over S2 at infinity,
without having to know the full generalized Komar form. However, when there are Misner
strings on the bulk, these configurations can also contribute to the mass. One can thus no
longer obtain the correct mass by only evaluating the Komar integration at infinity.

3 Boosted black string vs. Kaluza-Klein monopole

For the EMD theory discussed in the previous section, when the dilaton coupling constant
a =
√

3, the theory can be obtained from the S1 reduction of five-dimensional pure gravity.
In this case, the Maxwell field is the Kaluza-Klein vector and the dilaton is the breathing
mode of the internal circle. Consequently, all the four-dimensional solutions can be lifted to
become the Ricci-flat solutions in five dimensions. In particular, the electrically and mag-
netically charged black holes become the boosted black string and Kaluza-Klein monopole
respectively. In this section, we would like to study their first laws in five dimensions and
recover the ones obtained in D = 4.

3.1 Boosted black string

The Ricci-flat metric in five dimensions is

ds2
5 = −H(r)−1f(r)dt2 +H(r)(dx− w(r)dt)2 + dr2

f(r) + r2(dθ2 + sin2 θ dφ2) ,

H = 1 + q

r
, f = 1− µ

r
, w =

√
q(µ+ q)
rH

. (3.1)
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The solution can be also obtained from the static black string (q = 0) by a Lorentz boost
along the string direction x with sinh δ = q/µ. We have chosen the coordinate gauge such
that string is non-moving asymptotically, i.e. w(∞) = 0. The horizon is located at r+ = µ,
with the null Killing vector

ξ = ∂t + Φv∂x , Φv =
√

q

µ+ q
. (3.2)

In other words, the horizon, described by x and (θ, φ) coordinates, is R × S2, and it is
moving along the R direction, with velocity Φv. The surface gravity κ and corresponding
temperature and entropy can be obtained from the standard method, given by

κ2 = −g
µν∂µξ

2∂νξ
2

4ξ2 , T = κ

2π = 1
4π
√
µ(µ+ q)

, S = πµ3/2√µ+ q . (3.3)

The linear momentum Qv can be obtained from the Komar integration associated with the
Killing vector ∂x, given by

Qv = 1
4

√
q(µ+ q) . (3.4)

We can then obtain the first law

δM = TδS + ΦvδQv , M = 1
2µ+ 1

4q . (3.5)

Note that we obtain the mass above by the requirement of the first law; it is not obtained
from the Komar integration associated with the Killing vector ∂t, which turns out to be
proportional to (µ+ q).

We now would like to derive the first law (3.5) from the Wald formalism which we
describe in the appendix. We are now dealing with D = 5 and hence Q[ξ] and iξΘ are
3-forms. It is convenient to define a close 3-form

Ω(3) = sin θdθ ∧ dφ ∧ (dx− Φvdt) . (3.6)

We then have

Q[∂t] = r2
(
f ′ − aH2a′ − f H

′

H

)
Ω(3) = (µ+ q)Ω(3) ,

Q[∂φ] = H2r2a′Ω(3) = −4QvΩ(3) . (3.7)

This leads to
Q[ξ] = (µ+ q − 4ΦvQv)Ω(3) = µΩ(3) . (3.8)

Note that in pure gravity, the Q in the Wald formalism is the same as the Komar form
and it is closed. We now proceed and find

iξΘ = − r

2H2

(
2H4ra′δa+ r

(
Hf ′ − 2fH ′

)
δH − 2H2rδf ′ +H

(
rH ′ − 4H

)
δf
)
Ω(3)

= −δµΩ(3) . (3.9)

Thus the combination yields

δQ[ξ]− iξΘ = 4δ(M − ΦvQv) Ω(3) . (3.10)
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This shows that this combination is indeed a close 3-form; therefore, it is radially con-
served, i.e.

δH = 1
16π

∫
Σ

(δQ[ξ]− iξΘ) = δH∞ − δH+ = 0 . (3.11)

In particular, we have

δH∞ = δH+ = δ(M − ΦvQv) = constant . (3.12)

It appears that the dynamical law is a trivial identity. This is because we have simply
substituted the solution into the form fields, and the radially conserved quantity is nec-
essarily expressed as some integration constants of the solution. In order to read off the
horizon data, we should evaluate the 3-form (δQ[ξ]−iξΘ) in terms of the abstract functions
(H, f,w). On the horizon, we can impose f(r+) = 0 and w(r+) = Φv. Furthermore, for
any function χ(r) that is regular on the horizon, its variation on the horizon is

δχ
∣∣∣
r=r+

= δ(χ(r+))− χ′(r+)δr+ . (3.13)

With these, it follows from (3.7) and (3.9) that we obtain

δH+ = TδS −QvδΦv . (3.14)

The first law (3.5) is then the consequence of (3.12) and (3.14). Thus we learn that
substituting an exact solution into the form field (δQ[ξ]− iξΘ) will simply yield a radially
conserved quantity of integration constants that are typically recognisable as asymptotic
data. The horizon data should be extracted from the near-horizon geometry.

We verify that the free energy associated with the Euclidean action is given by

FG = M − TS − ΦvQv . (3.15)

We therefore recover the thermodynamics of the corresponding EMD black hole, without
the Maxwell boundary term (2.9). This purely geometric example will help us to study
more complicated rotating metrics discussed later.

3.2 Kaluza-Klein monopole

The Ricci-flat Kaluza-Klein monopole is obtained by lifting the a =
√

3 magnetically-
charged black hole to five dimensions. The five-dimensional metric is

dŝ2
5 = −fdt2 +H

(
dr2

f
+ r2(dθ2 + sin2 θdφ2)

)
+H−1 (dψ + P cos θdϕ)2 ,

H = 1 + p

r
, f = 1− µ

r
, P =

√
p(p+ µ) . (3.16)

The metric is asymptotic to a constant U(1) bundle over the four-dimensional Minkowski
spacetime. For the solution to be absent from a string singularity, we must require that
the fibre coordinate ψ have a period of

∆ψ = 4πP . (3.17)
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However, we would like first to interpret the solution as the lift from the magnetic black hole
from D = 4, in which case, the ∆ψ is fixed, independent of the integration constants that
will be interpreted as thermodynamic variables. In fact, the period ∆ψ will be absorbed
into the four-dimensional Newton’s constant upon dimensional reduction and hence does
not involve in the black hole thermodynamic first law in D = 4. For now, we shall consider
the case with fixed ∆ψ and without loss of generality, we set ∆ψ = 1. This implies that
the metric is singular, and the singularity can be best described as Misner strings attached
to the north and south poles, associated with the singularity of the connection P cos θdφ
in the U(1) fibre ψ.

The metric has a horizon located at r+ = µ and the temperature and entropy is
given by

T = 1
4π
√
µ(µ+ p)

, S = πµ
3
2
√
µ+ p . (3.18)

However, it is not easy to complete the first law based on this information, without knowing
that the solution is related to the four-dimensional magnetic black hole. Making use of the
fact that P describes the charge, one can derived the mass and first law. We now examine
the dynamics using the Wald formalism. We find that

Q[ξ] = r2f ′Ω(3) = µΩ(3) , Ω(3) = sin θdθ ∧ dφ ∧ dψ , ξ = ∂t . (3.19)

This Komar 3-form is proportional to µ, which however is not expected to be the mass.
The closed 3-form associated infinitesimal variation of the Hamiltonian is

δQ[ξ]− iξΘ = V (r)Ω(3) + U(r)dr ∧ cos θdφ ∧ dψ ,

V =− r

2H
(
4δfH − r

(
δHf ′ − 2fδH ′ − δfH ′

) )
, U = − PδP

H2r2 (3.20)

It is clear that d(δQ[ξ] − iξΘ) = 0, since we have the on-shell identity V ′ + U = 0. This
implies that we must have

δH = 1
16π

∫
Σ

(
δQ[ξ]− iξΘ

)
= 0 . (3.21)

While it is straightforward to integrate the V term, the integration of the U term is subtle.
It is analogous to the situation with the magnetic charge described in section 2. Similarly,
we can adopt two approaches: one is to integrate over tubes TN and TS connecting to the
north (θ = 0) and south (θ = π) poles. Alternatively we can introduce a close but not
exact form such that the U term becomes well defined, namely

(δQ[ξ]− iξΘ)→ (δQ[ξ]− iξΘ)− d(U cos θdφ ∧ dψ) = (V + U)Ω(3) ,

U =
∫ r

∞
drU = PδP

rH
, (3.22)

It is then easy to verify that

V
∣∣∣
∞

= 4δ
(1

2µ+ 1
4p
)
≡ 4δM , V

∣∣∣
+

= 4TδS , U
∣∣∣
∞

= 0 , U
∣∣∣
+

= 4ΦpδQp , (3.23)
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where Qp = P/4 and Φp = P/µ. This leads to first law of the Ricci-flat Kaluza-Klein
monopole

δM = TδS + ΦpδQp . (3.24)

It takes the identical form as the one of the magnetic black hole in four dimensions. This
Kaluza-Klein monopole is a particularly interesting example in that the subtlety of the
Dirac strings is lifted to become that of Misner strings. Indeed, in the Wald formalism, the
Dirac strings and Misner strings have the same mathematic form, and hence can be dealt
with in the same way. The free energy from the Euclidean action can also be calculated
straightforwardly, given by

FH = M − TS . (3.25)

It is worth comparing to the free energy of the boosted string (3.15); now there is no
Legendre transformation associated with (Qp,Φp).

The closure of Komar 3-form Q[ξ] in (3.19) implies that

µ = 4TS . (3.26)

This is equivalent to the Smarr relation M = 2TS + ΦpQp, since we have ΦpQp = q/4.
This illustrate the danger of reading off the mass from the Komar integration when the
metric is not asymptotic to the Minkowski spacetime.

Finally we would like to comment the case when we do take the period of ψ to be (3.17).
We can redefine the coordinate ψ = Pψ̃ and the metric becomes

dŝ2
5 = −fdt2 +H

(
dr2

f
+ r2(dθ2 + sin2 θdφ2)

)
+H−1P 2

(
dψ̃ + cos θdφ

)2
.

Now the solution is smooth without the Misner singularity, with the level surfaces being
the smooth squashed 3-spheres. The variable P describes the radius of the U(1) fibre of
the three sphere. The temperature remains the same, but entropy and mass are modified

T = 1
4π
√
µ(µ+ p)

, S = 4π2µ
3
2 (µ+ p)√p , M = π(2µ+ p)

√
p(µ+ p) . (3.27)

We now have a new pair of thermodynamic variables, the circumference of the U(1) fibre
and the conjugate tension force FT

L = 4π
√
p(µ+ p) , FT = 1

4(µ+ 2p) . (3.28)

The first law of the smooth Kaluza-Klein monopole without Misner strings now becomes

δM = TδS + FTδL . (3.29)

Note that the extensive quantities (M,S) are multiplied by an L factor, compared to those
in the Kaluza-Klein monopole with Misner strings. The free energy from the Euclidean
action is again the form of (3.25).

Thus we see that there are two globally distinct Ricci-flat metrics, even though they
are the same locally. One is smooth without Misner string and it should not be called as the
monopole. The proper Kaluza-Klein monopole has Misner strings and its monopole charge
is really the doppelganger of the magnetic charge of the corresponding four-dimensional
black hole.
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4 Taub-NUT and Kerr-Taub-NUT

We are now in the position to study the thermodynamic first law of the four-dimensional
Taub-NUT metric [7, 8], and its Plebanski generalization [31]. In this section, we focus
on the Ricci-flat metrics. We shall apply the Wald formalism to the Taub-NUT and
Kerr-Taub-NUT. As was discussed earlier, the Wald-formalism establishes a first-order
differential relation among the integration constants, but it does not always give a clear
physical interpretation of these constants. We shall therefore use a variety of tools and
techniques outlined in the previous sections. Our reading of the first law differs from those
in literature. We find that the more general Plebanski solutions appear to confirm our
interpretation.

4.1 Taub-NUT

The Ricc-flat Taub-NUT solution is given by

ds2
4 = −f (dt+ 2n cos θdϕ)2 + dr2

f
+
(
r2 + n2

) (
dθ2 + sin2 θdφ2

)
, f = r2 − 2mr − n2

r2 + n2 .

(4.1)
The solution contains two integration constants (m,n). The parameter m can be easily
recognized as the condensation of the massless graviton. The parameter n, typically referred
to as the NUT charge, has an obscure physical meaning and to find the right form of the
first law may shed light on its meaning. Our finding indicates that n is not the NUT
charge, but the thermodynamic potential conjugate to the NUT charge. For this reason,
we shall refer n to the NUT parameter.

The solution contains only two parameters. If one can determine the mass, the first
law is then not difficult to decode. However, the Taub-NUT metric is not asymptotic
to Minkowski spacetime at large r, but some locally asymptotic flat spacetime. This
makes the definition of the mass difficult. The parameter m, associated with the graviton
condensation, may be referred to as the gravitational mass in [45], and was indeed treated
as the mass of the Taub-NUT solution in some works in literature, e.g. [14–16, 22, 24, 25].
(In particular, this mass was also independently calculated via the conformal completion
method [16].) However, we disagree with this interpretation. It is important to note that
the solution has a bizarre property that it describes a black object with event horizon
for all real values of m. In other words, for nonvanishing n, there is a horizon for all
m ∈ (−∞,∞). To have no lower bound of mass is not a satisfactory concept for black hole
objects, even though this does not necessarily violate the positive energy theorem, which
typically requires asymptotically Minkowski spacetime.

In our approach, the temperature and entropy are calculated in a traditional sense.
(New approach was recently proposed in [29], where the entropy is complex.) The Taub-
NUT has a null Killing vector ξ = ∂t on the horizon r+ where f(r+) = 0. The temperature
and entropy are

T = 1
4πr+

, S = π(r2
+ + n2) . (4.2)

However, these are not enough to determine the first law, before the mass is determined.
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We now apply the Wald formalism, with formulae given in appendix A, to the Taub-
NUT. We first present the “raw data:”

Q[ξ] = V (r)Ω(2) + U(r)dr ∧ (dt+ 2n cos θ dφ) , Ω(2) = sin θdθ ∧ dφ ,
δQ[ξ]− iξΘ = δU(r) dr ∧ dt+X(r) Ω(2) + Y (r) dr ∧ cos θdφ , (4.3)

where

V = (r2 + n2)f ′ , U = 2nf
r2 + n2 ,

X = 2
r2 + n2

(
2nrfδn+ (r2 + n2)(nf ′δn− rδf)

)
,

Y = 4n
(r2 + n2)2

(
(3r2 + n2)fδn+ n(r2 + n2)δf

)
. (4.4)

We see that the structures resemble those discussed earlier, involving either Dirac or Misner
strings. For pure gravity, we have dQ[ξ] = 0, indicated by V ′ + 2nU = 0. Following the
same technique employed in the previous sections, we obtain the Smarr relation

0 = 1
8π

∫
Σ

Q[ξ] = 1
4

(
V +

∫ r

r+
2nU(r′)dr′

)∣∣∣∣∞
r+

=
(
m+ n2

r+

)
− 2TS . (4.5)

This suggests that we may define mass as

M = m+ n2

r+
, (4.6)

and the first law then reads

δM = TδS + ΦNδQN , with ΦN = n

2 , QN = n

r+
. (4.7)

In this interpretation, the NUT charge QN is a dimensionless parameter and therefore it
does not enter the Smarr relation

M = 2TS . (4.8)

Note that after solving m from f(r+) = 0, our mass (4.6) of the Taub-NUT becomes

M = 1
2

(
r+ + n2

r+

)
≥ |n| . (4.9)

In other words, our mass is not only positive, but has a minimum Mmin = n, occurring
when m = 0. It is intriguing to observe that the Riemann-tensor squared vanishes on the
horizon when the mass M is minimum:

RµνρσRµνρσ
∣∣∣
r=r+

= 0 , when m = 0. (4.10)

However, the Riemann tensor is generally not zero on the horizon so it is not locally flat.
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We now examine the Wald equality, originated from the integration of d(δQ[ξ]−iξΘ) =
0, guaranteed by X ′ + Y = 0 in this particular example. Integrating this out gives us

1
16π

∫
Σ

(δQ[ξ]− iξΘ) = 1
4

(
X(r) +

∫ r

r+
Y (r′)dr′

)∣∣∣∣∞
r+

=
(
δm+ 3n

2r+
δn+ n2

2 δ
( 1
r+

))
− TδS = 0 . (4.11)

This first-order differential equation is certainly consistent with our statement of the first
law (4.7); however, (4.11) does not give a unique or even an obvious choice of mass. We
may also define the mass as

M̃ = m+ n2

2r+
= r+

2 , (4.12)

which is also nonnegative. Indeed this was recently adopted in [30]. For this definition of
energy we have

δM̃ = TδS −QNδΦN . (4.13)

Thus we see that M̃ = M − ΦNQN is the thermodynamic Legendre transformation from
M . It is worth pointing out that both M and M̃ are positive definite for non-vanishing n,
indicating that both are sensible candidates for the mass.

The free energy associated with the Euclidean action is of the Gibbs type if M is the
mass, and the Helmholts type if M̃ is the mass:

F = M − TS − ΦNQN = M̃ − TS = 1
2m. (4.14)

(Recall that the parameter m can take all real values.) Thus we see that both definitions of
the mass are consistent with the Euclidean action. Regardless the interpretation of mass,
the full differential of the free energy is uniquely determined:

δF = −SδT − n

2r+
δn . (4.15)

While this strongly suggests that n is the thermodynamic potential, this is not the unique
interpretation, since it is mathematically consistent to treat m as the mass, and then
one has (ΦN, QN) = (−1/(2n), n3/r+) [14]. The ambiguity in determining the first law
originated from the fact that we do not have an independent check for any of the three
quantities: mass, NUT charge and its thermodynamic potential. Thus it becomes a wild
guess and this is not satisfactory to us, even if we make our preferred choice (4.6) without
further rationale.

It is worth noting that Q[ξ] in (4.3) also contains a time component. In other words,
for a constant φ slice, we have

Q[ξ] = U(r)dr ∧ dt . (4.16)

It is easy to see that ∫
iξQ[ξ] =

∫ ∞
r+

U(r′)dr′ = n

r+
. (4.17)
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This provides an explicit and concrete calculation for our NUT charge. The rationale is
the following. In a vacuum solution where no source is provided, a charge such as the mass
or the electric charge, is typically located at the singularity. Its quantity can be obtained
from the Gaussian integration over a hypersurface that encloses the singularity. In other
words, we need to integrate the full u = cos θ ∈ [−1, 1] coordinate region, and the outcome
is then independent of the detail positions of the hypersurface, or the radial coordinate r.
We may take a similar view of our NUT charge that it is also located at the singularity in
the form of Misner strings, which stretch from the horizon to asymptotic infinity. It can be
viewed that the Misner strings are precisely caused by the NUT charges distributed there.
We thus integrate radially over, from r+ to infinity, and the outcome is then independent
of the latitudinal u. This parallel principle between r and u will guide us to obtain the
NUT charges in later more complicated examples.

The result of the NUT charge however may appear counterintuitive since it is legitimate
to question why the charge will depend on the existence of a horizon. As we pointed it
out earlier, Taub-NUT has an usual property that for nonvanishing n, there is always the
horizon. Thus the NUT charge not only creates the Misner strings, but also the event
horizon! It is very important that unlike the Dirac strings discussed earlier, the Misner
string is real and physical. The global change of the spacetime structure also implies that
it can have consequence to the total mass. This is another difference from the Dirac strings
that is not universal and neutral particles do not experience. For this reason, even though
the math structures of the Dirac and Misner strings are the analogous in the Komar form
Q[ξ], their contributions to the mass are treated differently. The above however does not
explain why n should be viewed as the thermodynamic potential, other than it is required
by the satisfaction of the first law. Our definition of NUT charge becomes more apparent
in the context of a larger solution with angular momentum, which we discuss next.

Before we progress to the next subsection, we would like to point out that our mass
definition (4.6) can be also elegantly expressed as

M =
√
m2 + n2 , (4.18)

which indicates that m and n contributes equally to the total energy. This formula is
analogous to the electric and magnetic charge contributions to the mass of the extremal
RN black hole. It is suggestive that (m,n) might be also viewed as “gravitational electric
and magnetic” contributions to the mass. (This is distinct from viewing n as the magnetic
version of the mass.)

4.2 Kerr-Taub-NUT

The Ricci-flat metric is given by

ds2 = (r2 + v2)
(
dr2

∆r
+ du2

1− u2

)
+ 1
r2 + v2

(
(1− u2)e2

1 + ∆re
2
2

)
,

e1 = adt− (r2 + a2 + n2)dφ , e2 = dt+ (2nu− a(1− u2))dφ ,
∆r = r2 − 2mr + a2 − n2 , v = n+ au , u = cos θ ∈ [−1, 1] , (4.19)

– 18 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
4

The solution now contains three integration constants (m,n, a). For n = 0, the solution
is the standard Kerr metric. We make a coordinate choice such that the metric is non-
rotating at the asymptotic infinity, and it has an angular velocity Ω+ on the horizon where
∆r(r+) = 0. The corresponding null Killing vector is

ξ = ∂t + Ω+∂φ , Ω+ = a

r2 + a2 + n2 . (4.20)

The temperature and entropy can be calculated straightforwardly, given by

T =
r2

+ + n2 − a2

4πr+(r2
+ + n2 + a2)

, S = π(r2
+ + a2 + n2) . (4.21)

To obtain the mass and angular momentum, we derive the 2-forms associated with the
Komar integration (with fixed t):

Q[∂t] = V (r, u)Ω(2) + U(r, u)dr ∧ dφ , Q[∂φ] = X(r, u)Ω(2) + Y (r, u)dr ∧ dφ , (4.22)

where Ω(2) = −du ∧ dφ and

V = 2(r2 + a2 + n2)(2nrv +m(r2 − v2))
(r2 + v2)2 , U = 2(a2 + n2 − v2)(2mrv − n(r2 − v2))

a(r2 + v2)2 ,

X = 2
a (r2 + v2)2

(
m
(
a2 + n2 − v2

) (
a2
(
v2 − r2

)
+ n2

(
v2 − r2

)
− r2

(
3r2 + v2

))
−2nr

(
2n2v

(
a2 + r2

)
+ v

(
a2 + r2

)2
+ n4v − n

(
r2 + v2

)2
))

,

Y = 2
a2 (r2 + v2)2

(
n(n− v)2

(
n2
(
r2 − v2

)
+ 2nv

(
r2 − v2

)
+ r4 + 3r2v2

)
+n

(
a4
(
r2 − v2

)
+ a2

(
2n2

(
r2 − v2

)
+ r4 + 3v4

))
− 2mrv

(
a2 + n2 − v2

)2 )
. (4.23)

The closure of the Komar 2-forms are implied by the integrability conditions

∂rV + ∂uU = 0 , ∂rX + ∂uY = 0 . (4.24)

The closure guarantees that integrating out the u cycle gives a radial r conserved quantity,
and integrating out the r cycle gives a latitudinal θ conserved quantity. Specially the
radially conserved quantities can be constructed by

M(r) ≡
∫
dφ

8π

(∫ +1

−1
V (r, u)du+

∫ r

r+
U(r′, u)

∣∣∣u=+1

u=−1
dr′
)

= M = m+ n2

r+
,

J (r) ≡ −
∫
dφ

16π

(∫ +1

−1
X(r, u)du+

∫ r

r+
Y (r′, u)

∣∣∣u=+1

u=−1
dr′
)

= J = Ma , (4.25)

Note that M is the same as in (4.6). Note that for generic functions (U, V ) and (X,Y ),
the quantities M(r) and J (r) would depend on r. They are in fact constants because
of the integrability conditions (4.24). In this definition of mass and angular momentum,
the relation J = Ma between the mass and angular momentum for the usual Kerr black
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hole is exactly retained, even when the NUT parameter is involved. The mass can also be
expressed as

M = n2√m2 + n2 − a2 − a2m

n2 − a2 . (4.26)

The elegant symmetry between (m,n) in (4.18) is now broken by the rotation parameter a.
The first law is simply given by

δM = TδS + Ω+δJ + ΦNδQN , (4.27)

where the (ΦN, QN) is the same as in (4.7) without rotation. The free energy from the
Euclidean action is of the Gibbs type

FG = M − TS − Ω+J − ΦNQN = 1
2m. (4.28)

We shall not present the details of the Wald formalism, since it will simply be consistent
with the first law (4.27). In the extremal limit, the mass, angular momentum and the NUT
charge are related by

M2
ext = |J |

√
1 +Q2

N . (4.29)

In other words, the metric is black for M ≥Mext.
We now would like to have a deeper understanding of the NUT charge QN = n/r+,

and explain why this is its suitable definition. For both Taub-NUT and Kerr-Taub-NUT,
in addition to the event horizon at r = r+, there are two Killing horizons at north and
south poles (θ = 0, π), corresponding to u = 1 and u = −1. The two degenerate Killing
vectors are

u = ±1 : `± = ∂φ ∓ 2n∂t . (4.30)

These two Killing vectors have unit “Euclidean surface gravity” [46]

κ2
E = gµν∂µξ

2∂νξ
2

4ξ2 = 1 . (4.31)

Note that its definition does not have the minus sign that appears in the definition of the
usual surface gravity (3.3). In particular we have

u = ±1 : κE = ±1 . (4.32)

The oppositive signs are analogous to the negative and positive temperatures associated
with inner and outer horizons of a black hole. An event horizon is a hypersurface where
the geodesic is not complete and matter can travel inside the horizon. The Killing horizon
with Euclidean surface gravity on the other hand is geodesically complete and there is no
connected spacetime behind a Killing horizon. Nevertheless the parallel of the two types
of horizons, (4.30) and (4.20) is striking, suggesting the correspondence (1.3) mentioned
in Introduction. Note that we view `± as given in (4.30), instead of ∂t ± 1/(2n)∂φ simply
because (4.30) has a smooth n→ 0 limit, and furthermore, when n = 0, φ is the standard
longitudinal coordinate, just as t is the standard time in (4.20).

– 20 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
4

Now the picture becomes clear. The angular momentum J , which is conjugate to Ω+,
is obtained from the constant t slice of the 2-form Q[∂φ]. By the duality correspondence,
we expect that the QN is associated with the constant φ slice of the 2-form Q[∂t]. For a
constant φ slice, we have

Q[∂t] =
(
ζ(r, u)dr − η(r, u)du

)
∧ dt , (4.33)

ζ = 2
(
n
(
r2 − v2)− 2mrv

)
(r2 + v2)2 , η = −2a

(
m
(
r2 − v2)+ 2nrv

)
(r2 + v2)2 .

The closure of the 2-form Q[∂t] is ensured by the integrability condition

∂uζ + ∂rη = 0 . (4.34)

By integrating out the r coordinate, this allows us to obtain the u-invariant quantity,
associated with Misner singularity at north and south poles u = ±1:

Q±N = 1
2

(∫ ∞
r+

ζ(r′, u)dr′ +
∫ u

±1
η(r, u′)

∣∣∣∞
r+
du′
)

= n∓ a
2r+

. (4.35)

Note that for generic functions ζ(r, u) and η(r, u), the above Q±N quantities will depend on
the variable u. However, owing to (4.34), they are constants. The NUT charge is then
given by

QN = Q+
N +Q−N = n

r+
. (4.36)

The reason for the sum above will be clear presently. The dt factor in the 2-form (4.33)
implies that QN is the growth rate of u-invariant time-like cycle of the 2-form Q[∂t]. Note
that we have chosen the above normalization without a specific justification and conse-
quently ΦN = n/2. Turns off the angular momentum by setting a = 0, the QN calculation
becomes simply (4.17).

It is worth remarking that while the surface gravity on the event horizon specifies
the period of the Euclideanized time, the Euclidean surface gravity of the Killing horizon
specifies the period of the longitudinal φ. We have two Killing horizons with unit Euclidean
surface gravity, and therefore both `± should generate 2π period. This implies that we must
have ∆t = 4πn in order for the solution to be free from singularity. If we do so, it is effective
making a coordinate change t→ nt, and n becomes the periodicity of time. In our Taub-
NUT approach, we must not impose this periodic time condition. We shall treat the time
as a real line and consequently the solution has singularity at both north and south poles
in the form of Misner strings. As we saw in the example of Kaluza-Klein monopole, making
t periodic changes the global structure completely and we shall not entertain the idea in
this paper.

4.3 Asymmetric Misner strings

Up until now, we have been choosing the coordinates such that the Misner strings are
attached to the north and south poles in the symmetric fashion. We can make a linear
coordinate transformation among the Killing directions:

t→ t− 2nαφ , φ→ φ , (4.37)
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where α is a real numerical constant. Such a coordinate transformation is not allowed
when n = 0, since it will change the standard asymptotic Minkowski spacetime. For this
reason, we multiply a factor n in front of α. Under this transformation, the degenerate
Killing vectors at u = ±1 change to:

u = ±1 : `± = ∂φ ∓ 4Φ±N ∂t , Φ±N = 1
2n(1± α) . (4.38)

Note that our sign choice in `± is related to the fact that in the vicinity of the degenerate
cycles u = 1 and u = −1, the coordinate u can only either decrease or increase respectively.
When the dimensionless parameter α = 0, it reduces to the special symmetric case discussed
earlier. When α = 1, the Misner string disappears at the north pole, and it is likewise
at the south pole when α = −1. This implies that there is really only one independent
Misner string. We shall see presently that this has a consequence on α in its role in the
thermodynamic first law.

As we have mentioned earlier, when n is nonvanishing, the spacetime is not asymptotic
to the Minkowskian, and therefore there is no apparent fiducial α such that the Misner
strings can be both removed. Consequently, the mass, angular momentum etc., have
nontrivial dependence on the parameter α. Thus the general α case provides a strong test
for our procedure, since by this stage, all our thermodynamic quantities follow a strict
and hands off the steering wheel procedure to calculate. We shall not present the detail
calculation, since it will be repetitive. We present only the results:

M = m+ 2Φ+
NQ

+
N + 2Φ−NQ

−
N , J = M

(
a+ (Φ−N − Φ+

N)
)
,

T =
r2

+ + n2 − a2

4πr+(r2
+ + n2 + a2 + 2αna)

, S = π(r2
+ + n2 + a2 + 2αna) ,

Ω+ = a

r2
+ + n2 + a2 + 2αna

, Φ±N = 1
2n(1± α) , Q±N = n∓ a

2r+
. (4.39)

Note that all except Q±N depend on the parameter α nontrivially. It is now straightforward
to verify that the first law holds, namely

δM = TδS + Ω+δJ + Φ+
NδQ

+
N + Φ−NδQ

−
N . (4.40)

What is perhaps surprising is that the above first law is valid even if we treat the di-
mensionless parameter α as a thermodynamical variable. This implies that the conjugate
“potential” to the charge α vanishes identically. This is consistent with our earlier ob-
servation that there is only one independent Misner string, and α can be used to remove
the other one completely. When α = 0, we recover the previous result with the intensive
potential ΦN = Φ±N and extensive charges QN = Q+

N + Q−N. This explains the sum rule
of (4.36).

It is interesting to observe that except for J and Φ±N, there is no thermodynamic
asymmetry of the two Misner strings under the coordinate transformation (4.37) when the
angular velocity vanishes (a = 0.) The asymmetry is actually promoted by the angular
velocity and interestingly the angular momentum can be non-zero even when we turn off
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the angular velocity. Specifically, when a = 0, although we have Ω+ = 0, we have an
intriguing relation

J = M(Φ−N − Φ+
N) . (4.41)

Finally, as we should expect, the Smarr relation M = 2TS + 2Ω+J remains true
for general α. The final important test is that Euclidean action should not depend on
the coordinate transformation, and the free energy should be independent on α. Indeed
we have

FG = M − TS − Ω+J − Φ+
NQ

+
N − Φ−NQ

−
N = 1

2m. (4.42)

This provides a strong evidence of the validity of our approach.
Having obtained all the “charges:” the mass M , angular momentum J and the NUT

charges Q±N, we would like to continue the comments at the end of the last subsection. We
followed the principle outlined there to get these charges: the mass and angular momentum
are the radially independent quantities after integrating out the u-cycles of Q[∂t] and Q[∂φ].
The NUT charges on the other hand spread along the Misner strings in the radial direction
and they are the u-independent quantities after integrating over the r cycle of Q[∂t]. Here
we would like to summarize the technicality of how to evaluate these quantities. For
simplicity, we focus on the relevant 1-form

Ξ = X(r, u) du− Y (r, u) dr . (4.43)

We assume that it is close, dΞ = 0, which implies that there exists a scalar quantity Υ(r, u)
such that Ξ = dΥ. Therefore, we have X = ∂uΥ and Y = −∂rΥ. (The minus was added
to be consistent with our earlier convention.) There exist two u-independent quantities

−
( ∫ ∞

r+
dr′ Y (r′, u) +

∫ u

±1
du′X(r, u′)

∣∣∣∞
r+

)
= Υ(u = ±1)

∣∣∣r+

∞
, (4.44)

and one r-independent quantity∫ +1

−1
duX(r, u) +

∫ r

r+
dr′ Y (r′, u)

∣∣∣u=+1

u=−1
= Υ(r+)

∣∣∣u=1

u=−1
. (4.45)

5 The Plebanski solution

The nontrivial test of our interpretation of the NUT charge is to apply the procedure to
the general Plebanski metrics to obtain first all the thermodynamic quantities and then
verify the first law. The general Plebanski solution is very complicated, containing both
the Dirac and Misner strings. It is a solution in Einstein-Maxwell gravity

L =
√
−g(R− F 2) , F(2) = dA(1) . (5.1)

(We shall not consider the cosmological constant in this paper.) Note that out of respect,
we adopt the same convention for the kinetic term of the Maxwell field as in [31], without
the 1/4 factor that we used for the EMD theories.
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5.1 The solution and global analysis

The Plebanski solution is of cohomogeneity two, depending on both the radial and latitude
angular coordinates, as in the case of the Kerr black hole. The original solution was written
in an elegant form with symmetric radial and latitudinal coordinates (q, p). The general
type-D solution to (5.1) is

ds2 = (p2 + q2)
(
dp2

P (p) + dq2

Q(q)

)
+ 1
p2 + q2

(
P (p)σ2

q −Q(q)σ2
p

)
,

A(1) = 1
p2 + q2 (eqσp + gpσq) , B(1) = 1

p2 + q2 (gqσp − epσq) . (5.2)

where
P (p) = b− g2 + 2np− εp2 , Q(q) = b+ e2 − 2mq + εq2 , (5.3)

and σp and σq are the 1-forms

σp = dτ − p2dσ , σq = dτ + q2dσ . (5.4)

Note that we presented above not only the Maxwell field A(1), but also the gauge potential
of the Hodge dual field strength F̃(2) = dB(1) = ∗F (2), with the convention

∗Fµν = 1
2εµνρσF

ρσ. (5.5)

The electromagnetic duality is given by

F(2) → ∗F (2) , ∗F (2) → −F(2) , (5.6)

implemented in the Plebanski solution by e → g and g → −e. The minus sign is consis-
tent with the fact that there can be no self-duality for the Maxwell field strength in four
dimensions with the Lorentzian signature, i.e. F(2) 6= ±∗F (2).

The Plebanski solution appears to have six integration constants (m,n, e, g, b, ε) and
the metric is flat when four of them (m,n, e, g) = 0. The solution is invariant under the
constant scaling

(p, q)→ λ(p, q) , τ → τ

λ
, σ → σ

λ3 ,

(e, g, ε)→ λ2(e, g, ε) , (m,n)→ λ3(m,n) , b→ λ4b . (5.7)

We therefore can set without loss of generality ε = ±1, 0. (In the most general type-D
Plebanski-Demianski solution [47], an overall conformal factor breaks the scaling symmetry
and the parameter ε becomes nontrivial there describing the acceleration of the black holes.)
In this paper, we consider ε = 1. With this choice, it is clear that q is noncompact and
we rename it as the more familiar radial coordinate r, i.e. q = r. On the other hand,
coordinate p is compact, and we introduce the familiar latitudinal coordinate θ by

p = n+ au ≡ v , u = cos θ , a =
√
b− g2 + n2 . (5.8)
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Note that these are the same (u, v) introduced in subsection 4.2. The radial profile function
Q(q) now becomes

Q(q)→ ∆r = r2 − 2mr + a2 + e2 + g2 − n2 . (5.9)

We further make a linear coordinate transformation in the two Killing directions, namely
the time and longitudinal angle:

τ = t− a2 + n2

a
φ , σ = −1

a
φ . (5.10)

We now arrive at the metric that takes the identical form as that of Kerr-Taub-NUT (4.19),
but with ∆r given by (5.9). The Maxwell field A(1) and the gauge potential B(1) of the
dual field strength are

A(1) = g(v − n)
a (r2 + v2)e1 + (er + gn)

r2 + v2 e2 , B(1) = e(n− v)
a (r2 + v2)e1 + (gr − en)

r2 + v2 e2 , (5.11)

where the 1-forms (e1, e2) are given by (5.9). We therefore arrive at the full solution in
terms of the familiar four-dimensional (t, r, θ, φ) coordinates.

The solution is asymptotic to Minkowski spacetime in a non-rotating frame at large
r if the NUT parameter n vanishes; otherwise, the solution is asymptotic to the Kerr-
Taub-NUT. There are three degenerated cycles, associated with the horizon r = r+ where
∆r(r+) = 0, and also north and south poles u = ±1. The null Killing vector on the
horizon is

ξ = ∂t + Ω+∂φ , Ω+ = a

r2
+ + a2 + n2 , (5.12)

from which we obtain the angular velocity Ω+. The temperature and entropy can be
calculated in the standard way described earlier, and they are

T =
r2

+ + n2 − a2 − e2 − g2

4πr+(r2
+ + a2 + n2)

, S = π(r2
+ + a2 + n2) . (5.13)

The degenerate Killing vectors on the two Killing horizons are again (4.30). Both of them
give the unit Euclidean surface gravity. This implies that if we treat time as a real line,
then there are singularities in the form of two Misner strings, one at the north pole and
the other at the south pole. Since the `± takes the same form as the ones in Taub-NUT
or Kerr-Taub-NUT metrics, we have

ΦN = 1
2n . (5.14)

In order to obtain the first law for the Plebanski solution, it is necessary to obtain all
the thermodynamical quantities. The electric and magnetic potentials are relatively easy,
given by

Φe = ξµAµ(r+) = er+ + ng

r2
+ + a2 + n2 , Φm = ξµBµ(r+) = gr+ − ne

r2
+ + a2 + n2 . (5.15)
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However, there is actually a subtlety here also. The above calculation is in fact rather
sloppy, since the quantity ξµAµ is not gauge invariant. This usually can be solved by
considering the potential difference, namely ξµ(Aµ(r+)−Aµ(∞)), which however turns out
to be dependent on the coordinate u = cos θ for the general Plebanski solution

ξµ(Aµ(r+)−Aµ(∞)) = er+ + ng

r2
+ + a2 + n2 + agu

r2
+ + a2 + n2 . (5.16)

It should be emphasized the extra term does not arise because of the NUT parameter,
but because of rotation and magnetic charge. This term actually exists even in the more
straightforward dyonic Kerr-Newman black hole. In order to obtain the correct potentials
that are independent of the gauge choice, we need to apply the formula

Φe = 1
2ξ

µ
(
Aµ(u = 1) +Aµ(u = −1)

)∣∣∣r+

∞
,

Φg = 1
2ξ

µ
(
Bµ(u = 1) +Bµ(u = −1)

)∣∣∣r+

∞
. (5.17)

These formulae turn out to be rather universal in order to obtain the relevant electric and
magnetic potentials associated with other null Killing vectors in the manifold, e.g. `±. The
plus sign in the formulae are counterintuitive since one expects the difference. The plus
sign is originated from the fact that the Euclidean surface gravities at u = ±1 Killing
horizons have oppositive signs.

5.2 Thermodynamics

It is a tedious but straightforward process to verify the Wald 2-form is indeed close, i.e.,

d(δQ[ξ]− iξΘ) = 0 . (5.18)

However, with the solution involving five parameters (m,n, a, e, g), it is not simple to ex-
tract the relevant thermodynamic quantities to give a precise statement of the first law.
Following the Kerr-Taub-NUT example, we can first read off the mass, angular momen-
tum and NUT charges from the closed 2-form Q. However when matter is involved, the
Q defined by Wald is not closed. When Misner strings are involved, we can no longer
simply read off these charges by integrating Q’s over the sphere at asymptotic infinity. We
therefore must have the closed 2-form Q. The closed generalized Komar 2-form is given by

Q̃[ξ] = 1
4εαβµνQ̃

αβdxµ ∧ dxν , (5.19)

where for Einstein-Maxwell gravity (5.1), we have

Q̃µν = −2∇[µξν] − 4FµνAλξλ + 4F [µ|ρ|ξν]Aρ . (5.20)

This quantity does not have the electromagnetic duality. We can add an additional closed
2-form 1

2d((iξB(1))A(1)) to Q̃ so that the resulting one has the duality. We find that

Q̃µν = −2∇[µξν] − 2FµνAλξλ − 2F̃µνBλξλ (5.21)

is both closed and invariant under the electromagnetic duality.
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We are now in the position to derive the mass, angular momentum and the NUT charge.
It turns out that the Q̃ takes the same form as the one given in the Kerr-Taub-NUT cases.
For example, we have

Q̃[∂t] = Q[∂t]Kerr−Taub−NUT

= V (r, u)Ω(2) + U(r, u) dr ∧ dφ+
(
ζ(r, u)dr − η(r, u)du

)
∧ dt , (5.22)

where the functions of all components are exactly the same as those given in (4.23). The
same story also goes with Q̃[∂φ]. These results are understandable, since metrics of the
Kerr-Taub-NUT and Plebanski take the same form except that the function ∆r is different.
In the Plebanski solution, the Wald 2-form Q is therefore no longer close. The extra terms
in Q̃ has precisely the effect to removing the extra (e, g) contributions that enter ∆r in the
Plebanski solution such that the Q̃ now has the same expression as QKerr−Taub−NUT which
is closed. Following the same technique, we have

M = m+ nQN , J = Ma , QN = n

r+

(
1−

(e2 + g2)(r2
+ + n2 − a2)

(r2
+ + n2 + a2)2 − 4n2a2

)
. (5.23)

These results are numerically differently from those of Kerr-Taub-NUT because the location
of the horizon is modified by the electric and magnetic charge parameters (e, g).

The electric and magnetic charges of the solutions with the NUT parameter involved
can be also subtle to evaluate, compared to the dyonic Kerr-Newman solution. From the
Maxwell equation dF̃(2) = 0 and the Bianchi identity dF(2) = 0, we see that the electric
and magnetic charges are related to the integrations of the closed 2-forms

∫
F̃(2) and

∫
F(2)

respectively. The technique is then same as we extracted the charges from the closed Q or
Q̃ forms. Specifically, the electric charge is related to the r-independent cycle

Qe = −1
2

(∫ 1

−1
F̃uφ(r, u′)du′ +

∫ r

r+
F̃rφ(r′, u)

∣∣∣u=1

u=−1
dr′
)

= 1
2Bφ(r+)

∣∣∣u=1

u=−1
= e+ 2nQeN . (5.24)

Likewise, the magnetic charge is now given by

Qg = −1
2Aφ(r+)

∣∣∣u=1

u=−1
= g − 2nQgN , (5.25)

where

QeN =
gr+

(
r2

+ + n2 + a2)− en (r2
+ + n2 − a2)

(r+ + n2 + a2)2 − 4n2a2 ,

QgN =
er+

(
r2

+ + n2 + a2)+ gn
(
r2

+ + n2 − a2)
(r+ + n2 + a2)2 − 4n2a2 . (5.26)

In the above calculations, we have considered the constant time slice of the F(2) and F̃(2).
The integration of φ is straightforward, giving to 2π. The remaining one-dimensional
integration follows the technique described in (4.45).
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With these thermodynamic variables, we find that the expected Smarr relation is
satisfied, namely

M = 2TS + 2Ω+J + ΦeQe + ΦgQg . (5.27)

But this is not yet the end of story. Recall that in addition to the null Killing vector ξ, we
also have the two degenerate Killing vectors `± associated with the Misner strings at the
north and south poles. Each Misner string can induce electric and magnetic NUT charges
and their conjugate potentials. This leads to a total of four electromagnetic NUT charges.
Following the same technique we developed in (4.44), we find the four charges are

Q±eN = 1
2Bt(u = ±1)

∣∣∣r+

∞
= gr+ − en∓ ae

2(r2
+ + (n± a)2)

,

Q±gN = 1
2At(u = ±1)

∣∣∣r+

∞
= er+ + gn± ag

2(r2
+ + (n± a)2)

. (5.28)

Their conjugate potentials can be obtained following the analogous rules (5.17) for the
electric and magnetic potentials. We find

Φ±eN = ±1
8`

µ
±

(
Aµ(u = 1) +Aµ(u = −1)

)∣∣∣r+

∞
= −n(er+ + gn∓ ag)

r2
+ + (n∓ a)2 ,

Φ±gN = ∓1
8`

µ
±

(
Bµ(u = 1) +Bµ(u = −1)

)∣∣∣r+

∞
= n(gr+ − en± ae)

r2
+ + (n∓ a)2 . (5.29)

It is worth pointing out some intriguing relations

Qe = e+ 4ΦN(Q+
eN +Q−eN) , Qg = g − 4ΦN(Q+

gN +Q−gN) . (5.30)

In other words, we have QeN = Q+
eN +Q−eN and QgN = Q+

gN +Q−gN. We find that the first
law takes the form

δM = TδS + Ω+δJ + ΦeδQe + ΦgδQg

+ΦNδQN + Φ+
eNδQ

+
eN + Φ−eNδQ

−
eN + Φ+

gNδQ
+
gN + Φ−gNδQ

−
gN . (5.31)

The terms in the second line are all associated with the NUT-related charges. Since these
charges are all dimensionless, they do not affect the Smarr relation (5.27).

The final test is whether these are consistent with the free energy from the Euclidean
action. We find

F = M − TS − Ω+J − ΦeQe − ΦNQN − Φ+
eNQ

+
eN − Φ−eNQ

−
eN

= 1
2m−

r+((e2 − g2)
(
r2

+ + a2 − n2)+ 4egnr+)
2((r+ + n2 + a2)2 − 4n2a2) . (5.32)

This is indeed the one from the Euclidean action. Note that the Legendre transformation is
associated with all the electrically related charges, with the magnetic charges uninvolved,
analogous to the Kerr-Newmann black hole. Note also that although Q±eN and Q±gN are
nonvanishing when n = 0, their conjugate potentials do vanish, such that they disappear
from the first law or the Euclidean action in the absence of the NUT charge.
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Finally the first law has the electromagnetic duality, simply realized by

e→ g , g → −e . (5.33)

This expression of the duality is a consequence of the convention (5.6). Such manifest
electromagnetic duality was absent in the previous approach to the thermodynamics for
the general Plebanski solution.

5.3 Asymmetric Misner strings

We can now go the Full Monty and consider the Plebanski solution with asymmetric Misner
strings, arising from the coordinate transformation (4.37). We shall not repeat our well-
defined procedures, but simply present all the thermodynamic variables

M = m+ 2Φ+
NQ

+
N + 2Φ−NQ

−
N ,

J = M
(
a+ (Φ−N − Φ+

N)
)

+
αnr+(e2 + g2)(r2

+ + n2 − a2)
(r2

+ + n2 + a2)2 − 4n2a2 ,

T =
r2

+ + n2 − a2 − e2 − g2

4πr+(r2
+ + n2 + a2 + 2αan)

, S = π(r2
+ + n2 + a2 + 2αan) ,

Ω+ = a

r2
+ + n2 + a2 + 2αan

, Φ±N = 1
2n(1∓ α) ,

Q±N = n∓ a
2r+

−
(e2 + g2)

(
n(n2 + r2

+ − a2)± a(3r2
+ + a2 − n2)

)
2r+((r2

+ + n2 + a2)2 − 4n2a2)
,

Φe = er+ + gn

r2
+ + n2 + a2 + 2αan

, Φg = gr+ − en
r2

+ + n2 + a2 + 2αan
,

Qe = e+ 4Φ+
NQ

+
eN + 4Φ−NQ

−
eN , Qg = g − 4Φ+

NQ
+
gN − 4Φ−NQ

−
gN ,

Q±eN = gr+ − e(n± a)
2(r2

+ + (a± n)2)
, Q±gN = er+ + g(n± a)

2(r2
+ + (a± n)2)

,

Φ±eN = −n(er+ + g(n∓ a))
r2

+ + (n∓ a)2 , Φ±gN = n(gr+ − e(n∓ a))
r2

+ + (n∓ a)2 . (5.34)

Note that the NUT induced electromagnetic charges and their potentials, i.e. the variables
in the last two lines, are all independent of α. It is interesting to note that when αn 6= 0,
the angular momentum is nonvanishing even with zero angular velocity (a = 0). It is
straightforward to verify that the complicated first law holds, namely

δM = TδS + Ω+δJ + ΦeδQe + ΦgδQg

+Φ+
NδQ

+
N + Φ−NδQ

−
N + Φ+

eNδQ
+
eN + Φ−eNδQ

−
eN + Φ+

gNδQ
+
gN + Φ−gNδQ

−
gN . (5.35)

As in the Kerr-Taub-NUT case with asymmetric Misner strings, although many thermo-
dynamic variables have nontrivial dependence on α, both α and δα drop out miraculously
from the above first law even if we treat it as a variable rather than a constant, indicating
that there is only one Misner string and α is a spurious parameter. The Smarr relation is
still given by (5.27), unaffected by α. The free energy from the Euclidean action should
not depend on the trivial coordinate transformation (4.37), and indeed we have

F = M − TS − Ω+J − ΦeQe − Φ+
NQ

+
N − Φ−NQ

−
N − Φ+

eNQ
+
eN − Φ−eNQ

−
eN , (5.36)
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which is independent of α, given by the second equality of (5.32). Our results indicate that
knowing both the Smarr relation and the Euclidean action is still far from determining the
thermodynamic first law. When α = 0, the (ΦN, QN) of (5.14) and (5.23) are given by
ΦN = Φ±N and QN = Q+

N + Q−N, respectively. Our results however raise a puzzling aspect
that we have more thermodynamic variables than the total number of the parameters in
the solution. This seems to suggest that there may exist a more general class of solutions
where these NUT induced electromagnetic charges are independent parameters. Analogous
situation occurs in the Kuluza-Klein dyonic AdS black hole in gauged supergravity [43]
where the completion of the first law requires an extra XdY that is associated with the
scalar hair contribution even though there is no such an independent parameter in the
exact solution; the independent scalar hair parameter emerges in the more general class
of numerical solutions. It is worth remarking here that two candidates for the first law
with five independent thermodynamic variables were obtained, by introducing electric or
magnetic charges on the horizon [22]. The resulting first law was nicely compact, but
it suffers from two inadequacies: lacking of a smooth n → 0 limit and the absence of
electromagnetic duality despite the fact that the local solution has it.

Finally we would like to present the explicit transformations of all the thermodynamic
variables under the discrete electromagnetic duality transformation (5.33). All the neutral
variables (M,J,Ω+, T, S,Q

±
N,Φ

±
N) are invariant and the charged variables transform as

Φe → Φg , Φg → −Φe , Qe → Qg , Qg → −Qg ,
Q±eN → −Q

±
gN , Q±gN → Q±eN , Φ±eN → −Φ±gN , Φ±gN → Φ±eN . (5.37)

There can be no self-duality.

6 Conclusions

Our goal is to provide well defined procedures of calculating all the thermodynamic vari-
ables in the Taub-NUT spacetime and its Plenbanski generalization, and then verify the
first law of their black thermodynamics. We assume that the standard procedures to obtain
the Hawking temperature and Bekenstein-Hawking entropy are valid. However, the mass,
NUT charge and its thermodynamic conjugate potential are not easy to determine. This
is because the Taub-NUT metric is not asymptotic to the Minkowski spacetime and the
usual ADM mass does not apply. There is neither an obvious definition of the so called
“NUT-charge.” In order to decipher these quantities, we used a variety of tools includ-
ing the Euclidean action approach, Wald formalism and Komar and generalized Komar
integrations.

The application of these tools in the Taub-NUT geometries can be subtle. In partic-
ular, the Plebanski solution involves both Dirac and Misner singularities. We therefore
set to develop the formalism using both electric and magnetic black holes in a class of
EMD theories. We also studied the same issues on the five-dimensional boosted string
and Kaluza-Klein monopole. These exercises enabled us finally to decipher the spacetime
structures of Taub-NUT and Plebanski solutions and obtain all of their thermodynamic
variables and verify the first law.
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The key in our approach is to treat the time as a real line so that the Misner string
singularties are real and physical. We found that the NUT charge spreads along the
Misner strings, just as the mass of the Schwarzschild black hole is located at its spacetime
singularity. Our technic breakthrough was the observation of the parallel between the null
Killing vector ξ on the horizon (1.2) and the degenerate Killing vectors `± at the north
and south poles (1.1). This suggests the correspondence (1.3), which not only identifies
the NUT potential as being proportional to the parameter n, but also provides us a way of
calculating the NUT charge from the closed Komar or generalized Komar form Q̃. Just as
we can obtain the angular momentum as the radially-conserved quantity from the constant-
t slice of Q̃[∂φ] by integrating out the angular coordinates, we can obtain the NUT charge,
up to a purely numerical scaling factor, as the angular-invariant quantity by integrating
the constant-φ slice of Q̃[∂t], radially from the horizon to asymptotic infinity. This leads to
some salient features in our approach: the NUT charge and its potentials both have smooth
n→ 0 limit. The mass is nonnegative for all black holes and the resulting thermodynamic
charges are simpler compared to, e.g. [17], for the Kerr-Taub-NUT black hole.

The parallel continues when Maxwell fields are included. Just as the electric and
magnetic potentials are associated with ξµAµ and ξµBµ, we expected that there were
four NUT-induced electric and magnetic potentials associated with `µ±Aµ and `µ±Bµ. The
electric and magnetic charges are the radially-invariant quantities associated with the closed
2-forms ∗F (2) and F(2) after integrating out the angular coordinates. Analogously, the NUT-
induced electric and magnetic charges are then the angular-independent quantities after
integrating radially from the horizon to infinity. We provided detail procedures of obtaining
all the thermodynamic variables and we then verified that the first law was indeed satisfied.
The results are also consistent with the Euclidean action and the Smarr relation.

The Taub-NUT and the Plebanski solutions are typically presented in literature in the
coordinate system where the Misner strings are symmetrically located at the north and
south poles. One can choose a coordinate gauge such that the Misner string exists only
at the north or the south pole. We considered the more general coordinate gauge (4.37)
with a free dimensionless parameter α. Our well-defined procedures allowed us to obtain
straightforwardly all the thermodynamic variables in this more complicated case. Although
many thermodynamic variables such as the mass, temperature and entropy, etc. depend
nontrivially on α, both α and δα drop out completely from the first law, indicating that
α is trivial and there is only one independent Misner string. We also confirm that the free
energy for this more general case is also free from α. This provides a strong validation of
our approach since the Euclidean action should not change under (4.37).

The mass we obtained from the generalized Komar form is no longer simply the pa-
rameter m, but modified by the NUT parameter. This is not surprising physically since
the NUT charge creates the Misner strings that distort the spacetime metric that affects
universally all matter. This however cannot be said about the Dirac strings that only affect
matter that couples to the Maxwell field; therefore, the mass of spacetime does not depend
on the Dirac strings. This leads to our different treatments of the contribution to the mass
from the Dirac and Misner strings even though they have the analogous structure in the
(generalized) Komar form. It is worth mentioning also that the elegant symmetry in our
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mass formula (4.18) for the Taub-NUT metric suggests that the parameters (m,n) may be
viewed as “gravitational electric and magnetic” contributions to the mass. Our findings
reveal very rich and enormously interesting structures of Taub-NUT geometries, and may
pave the way to decipher more general and complicated nutty spaces.
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A Wald formalism and generalized Komar integration

A.1 Wald formalism

In this appendix, we describe the Wald approach to black hole dynamics for the general
EMD theory (2.1), which we employ extensively in this paper. We shall only describe the
key steps to obtain the infinitesimal Hamiltonian without any derivation. Those who are
interested in the proof can read the original papers [5, 6]. The EMD theory contains the
metric gµν , the Maxwell field Aµ and the dilaton scalar ϕ. The Wald formalism begins
with the full variation

δL√
−g

= Egµνδg
µν + EµAδAµ + Eϕδϕ+∇µΘµ , (A.1)

with

Egµν = Rµν −
1
2gµν

L√
−g
− 1

2(∇µϕ)(∇νϕ)− 1
2e

aϕF 2
µν ,

EνA = ∇µ (eaϕFµν) , Eϕ = �ϕ− a

4e
aϕF 2, Θµ = Θµ

g + Θµ
A + Θµ

ϕ ,

Θµ
g = gµα∇βδgαβ − gαβ∇µδgαβ , Θµ

A = −eaϕFµνδAν , Θµ
ϕ = −(∇µϕ)δϕ . (A.2)

The Noether current associated with a Killing vector ξ takes the form

Jµ = Θµ − ξµ L√
−g
− 2Eµνg ξν + EµAAλξ

λ , (A.3)

and the corresponding Noether charge, defined by Jµ = ∇νQµν , is

Qµν = −2∇[µξν] − eaϕFµνAλξλ . (A.4)

To proceed, one may define two (D − 2)-forms

Q[ξ] = 1
2!(D − 2)!εαβµ1µ2···µD−2Q

αβdxµ1 ∧ dxµ2 · · · ∧ dxµD−2 ,

iξΘ = 1
(D − 2)!εαβµ1µ2···µD−2Θαξβdxµ1 ∧ dxµ2 · · · ∧ dxµD−2 . (A.5)
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Figure 1. Codimension-2 hypersurfaces that surrounds the bulk, with or without various Misners
or Dirac strings.

It was shown that the combination (δQ[ξ]− iξΘ) is closed, namely

d(δQ[ξ]− iξΘ) = 0 . (A.6)

We can thus apply the Stokes theorem and obtain

0 = δH = 1
16π

∫
bulk

(d(δQ[ξ]− iξΘ) = 1
16π

∫
Σ

(δQ[ξ]− iξΘ) , (A.7)

where Σ is the codimension-two hypersurfaces that surround the bulk. In many black holes
such as the Schwarzschild black hole or the electric RN black hole, the spacetime on and
outside of the horizon is well defined. The hypersurfaces that surround the bulk is the
Cauchy surface S1 on the horizon and the foliating sphere S2 at the asymptotic infinity, as
shown in the first graph of figure 1. We therefore have

Σ = Σ+(S1)
⋃

Σ∞(S2) . (A.8)

It follows from (A.7) that the first law of thermodynamics of these black holes is then the
consequence of the identity

δH∞ = δH+ . (A.9)

The situation becomes more complicated when Dirac or Misner strings exist in the
bulk. Such strings can exist at the north pole, or the south pole or both. We need to
cutout these string singularities by using infinitesimal encompassing tubes at the north or
south poles TN and TS . The Wald identity based on the Stokes theorem now becomes

Σ = Σ+(S1)
⋃

Σ∞(S2)
⋃
TN : δHS2 + δHS1 + δHTN

= 0 ,

Σ = Σ+(S1)
⋃

Σ∞(S2)
⋃
TS : δHS2 + δHS1 + δHTS

= 0 ,

Σ = Σ+(S1)
⋃

Σ∞(S2)
⋃
TN

⋃
TS : δHS2 + δHS1 + δHTN

+ δHTS
= 0 . (A.10)

Such a classical identity underlies the corresponding black hole thermodynamic first law.
We now consider a concrete example, the four-dimensional electric black hole of the

EMD theory studied in section 2. There are no Dirac or Misner strings in the bulk, and
therefore the Wald identity (A.9) holds. It is clear that the null Killing vector on the
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horizon is ξ = ∂t. It is straightforward to obtain

Q[ξ] =
(
r2f ′ − Nr2fH ′

2H − r2eaϕH
N
2 ψ′eψe

)
Ω(2) , Ω(2) = sin θdθ ∧ dϕ , (A.11)

δQ[ξ]− iξΘ =
(
− 2rδf − ψeδ

(
r2eaϕH

N
2 ψ′e

)
+ Nr2

2H
(
f ′δH −H ′δf

)
− N

H
r2fδH

)
Ω(2) .

Here a prime denotes a derivative with respect to coordinate r. Substituting the explicit
(f,H, ψ) functions into the above, we find that Q[ξ] is not closed, but the 2-form (δQ[ξ]−
iξΘ) is indeed closed. Specifically, we have

δQ[ξ]− iξΘ = 4δM Ω(2) , → δH = 1
16π

∫
= δM , (A.12)

where M = 1
2(µ + 1

2Nq), as given in (2.4). (Note that
∫

Ω(2) = 4π.) Since this is radially
conserved, and hence it must also equal to the one given on the horizon:

δH+ = TδS + ΦeδQe . (A.13)

Note that we made use of (3.13) to evaluate δH+ on the horizon. We also made use of
the fact that r2eaϕH

N
2 ψ′e = −4Qe is the first integral of the Maxwell equation. Combin-

ing (A.12) and (A.13) leads to the first law. We discussed in section 2 the subtler magnetic
case where Dirac strings are involved.

A.2 Generalized Komar form

The Komar integration is a purely geometric quantity, integrating over a Komar (D − 2)-
form

QK[ξ] = 1
2!(D − 2)!εαβµ1µ2···µD−2Q

αβdxµ1 ∧dxµ2 · · · ∧dxµD−2 , QµνK = −2∇[µξν] . (A.14)

For simplicity, we shall focus on D = 4 dimensions. For the simple spacetimes illustrated
as the first graph in figure 1, evaluating the Komar integration over S2 at infinity give the
Komar mass M with an appropriate overall coefficient, for ξ = ∂t, i.e.

M = 1
8π

∫
S2

QK . (A.15)

Evaluating on the horizon gives 2TS. The strong energy condition of the matter sector
ensures that M ≥ 2TS, saturated by the Schwarzschild black hole. It was recently shown
that the inequality can also be independently satisfied by the combination of the null and
trace energy conditions [48]. In pure gravity, the Komar form field is closed, i.e. d(QK[ξ]) =
0, giving rise to the Smarr relationM = 2TS for the Schwarzschild black hole. In this case,
the spacetime does not have Misner string singularities, and integrating over the latitude
angle gives a radially-invariant quantity M . When string singularities are involved, then
we need cutout the infinitesimal tubes that encompass the strings, as shown in figure 1. In
either case,

∫
Σ QK = 0 gives the Smarr relation.
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In pure gravity, the Q[ξ] in the Wald formalism is identical to the Komar form. The
Wald formalism illustrates that the Komar mass contributes only half to the infinitesimal
Hamiltonian, since it enters the Wald formalism with the factor “ 1

16π” rather than “ 1
8π .”

The Wald Q[ξ] can be viewed as some generalization of the Komar form, when matter
is involved. However, it is not closed. Here we would like to present a generalization of
the Komar form that is also closed. For the EMD theory, it has an extra term compared
to (A.4) in the Wald formalism. We have

Q̃µν = −2∇[µξν] − eaϕ FµνAλξλ + eaϕAρF
[µ|ρ|ξν] . (A.16)

In the form language, we have

Q̃[ξ] = −∗dξ − 1
2e

aϕ∗F (2) (iξA(1)) + 1
2e

aϕ (iξ∗F (2)) ∧A(1) . (A.17)

For the electrically charged black hole, it is given by

Q̃[ξ] =
(
r2f ′ − Nr2fH ′

2H − 1
2r

2eaϕH
1
2Nψψ′

)
Ω(2) = 2MΩ(2) , (A.18)

whereM was given under (A.12). The second equality above shows manifestly that dQ̃[ξ] =
0. Evaluate the middle term on the horizon, we obtain the Smarr relation

M = 2TS + ΦeQe . (A.19)

The situation for the magnetic solution is rather different, and we discussed this in the
main text in section 2.
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