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1 Introduction

One of the most elegant production mechanism of Dark Matter (DM), at work even for free
fields, is generation from inflationary dynamics [1, 2]. In ref. [3] Graham-Mardon-Rajendran
(GMR) studied the dynamics during inflation of a massive vector field, known as dark
photon, obtained through the so called Stueckelberg mechanism, i.e. adding a constant
mass term to the action of massless U(1) gauge theory. Remarkably this leads to favourable
conditions for DM as the vector field can be populated from inflationary fluctuations
while avoiding dangerous isocurvature fluctuations that strongly constrain these types of
scenarios [4]. This mechanism can reproduce the DM cosmological abundance for masses as
low as 10−6 eV of great experimental interest [5, 6], if the scale of inflation is large.

The Stueckelberg vector model relies on the peculiarity of the spontaneous symmetry
breaking of U(1) global symmetries, where the associated Nambu-Goldstone boson is not
interacting at leading order in the derivative expansion. Due to this technical fact adding
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a mass M for a U(1) gauge boson does not spoil renormalizability of the theory. This
should be compared with the non-abelian case where adding the mass leads to a high
energy inconsistency or equivalently to a cutoff determined by the coupling g of order
Λ ∼M/g — the theory requires a completion not far above the mass of the particle. The
same conclusion would also apply to the U(1) case if higher derivate terms are included but
these are uniquely determined so the strong coupling scale can in principle be pushed to
large values.

In ref. [7] doubts on the consistency of the model with quantum gravity were put
forward. In string theory realizations no light dark photon has been found compatible
with a large cut-off of the effective theory [8]. The Stueckelberg action describes three
degrees freedom and any addition of interactions would spoil the nice features of the theory,
see [9–12]. While none of these arguments is conclusive it seems natural to explore the
possibility that the mass of a weakly coupled spin-1 field is generated through the standard
Higgs mechanism.

In this work we study the consequences of this hypothesis for the production of DM.
We find in general that the predictions differ vastly from the ones of GMR and are very
model dependent. Only in narrow regions of parameters we can identify the dynamics
of Stueckelberg massive vector, as the presence of the Higgs field modifies the dynamics
and generates new contributions to the abundance. Other works, including [13–15] have
considered dark photon DM obtained through the Higgs mechanism with different production
mechanisms. In this work we consider the inflationary production of dark photons originating
from the Higgs mechanism neglecting in particular parametric resonance effects that either
require very small couplings [16] or extra degrees of freedom [17–21].

From a phenomenological point of view a very interesting feature of the GMR scenario
is the suppression of isocurvature perturbations on cosmological scales. This arises non-
trivially through the interplay of longitudinal and transverse polarizations of the massive
vector field. The addition of the Higgs scalar changes this conclusion leading to strong
constraints from CMB in large regions of parameters. This problem can be structurally
solved if the scalars have conformal couplings to the curvature.

The paper is organized as follows. In section 2 we describe the abelian Higgs model
that realizes the dark photon through the Higgs mechanism. In 3 we study the dark photon
inflationary scenario where the U(1) symmetry is broken during inflation and never restored
in the thermal history of the universe. In section 4 we consider the post-inflationary scenario
where the U(1) symmetry gets broken after inflation. This crucially depends on the coupling
to curvature ξ and leads to dark photon dark matter through decays of cosmic strings, as
discussed in [22], or thermal freeze-out. After the conclusions technical appendixes follow
on the inflationary production of scalar and vectors and on the computation of isocurvature
perturbations in these scenarios.

Note added. While this paper was in the final stages of preparation ref. [23] appeared on
the archive with a different realization of vector dark matter through the Higgs mechanism
where the U(1) symmetry is broken during inflation but the dark photon mass is not constant.
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2 Vector Dark Matter with the Higgs mechanism

We will consider the simplest realization of spin-1 dark matter obtained through the Higgs
mechanism: a dark abelian Higgs model. This dark sector contains a U(1) gauge field, Aµ,
and a complex scalar Φ with unit charge described by the renormalizable lagrangian

LD = −1
4F

2
µν + |DµΦ|2 − λ

(
|Φ|2 − f2

2

)2

+ ξ|Φ|2R , (2.1)

where importantly we have included a coupling to the Ricci scalar. Such coupling is crucial
during inflation but does not affect the low energy dynamics of DM. Two values of the
coupling appear particularly motivated: for ξ = 0, minimal coupling, the free action of the
scalar is invariant under shift of Φ, while for ξ = 1/6 the action becomes Weyl invariant,
i.e. invariant under rescaling of the metric gµν(x)→ Ω(x)gµν(x). While our discussion will
be framed in the context of the abelian Higgs model we expect the conformal coupling
to capture the dynamics of other scenarios. For example in a dynamical realization of
symmetry breaking through strong dynamics the theory is Weyl invariant so that we expect
features similar to the scalar with conformal coupling, ξ = 1/6.

At tree level in flat space the minimum of the potential is at Φ = f/
√

2, and the
spectrum consists of a massive vector boson A and a radial mode φ with masses1

MA = gf , Mφ =
√

2λf . (2.2)

These two massive states are both potential DM candidates, if the sector is completely
secluded from the SM. The massive U(1) gauge boson A is stable thanks to charge
conjugation. On the contrary, the radial mode is only stable if the decay φ → AA is
kinematically forbidden, otherwise it decays to the vectors with a rate Γ ≈ (Mφ/f)2 ×
Mφ/(8π). It follows then that for λ < 2g2 the radial mode is stable and it becomes the
lightest state for λ < g2/2. In all cases, we only work at weak coupling, that is Mφ,A � f .

Let us now discuss non-gravitational interactions with the SM. At the renormalizable
level one can include the Higgs portal coupling and the kinetic mixing,

|Φ|2|H|2 , FµνB
µν (2.3)

The mixing with hypercharge allows the dark photon to decay so it should be extremely
small for the dark photon to be a DM candidate. This could be naturally suppressed if the
SM gauge couplings unify into a simple group such as SU(5).

The coupling with the SM Higgs cannot be forbidden through any symmetry of the
theory. This does not modify the discussion of the stability of dark photon but allows the

1When the quadratic term in eq. (2.1) is negligible the U(1) is broken by the Coleman-Weinberg
mechanism [24]. In such a case the potential has an approximate classical scale invariance and the quartic
acquires a logarithmic modulation from running, λ→ βλ log(φ/(e1/4f)). The effective quartic coupling is
βλ = 3g4/(8π2) equal to the contribution to the quartic beta function from the gauge field. The mechanism
works when the tree-level parameters are such λ� g4, so that loop effects overcome tree-level ones. When
symmetry is broken radiatively λ ∝ g4, and the radial mode is the lightest state in the dark sector. This
latter scenario is more predictive because both the vector and scalar masses are set by the gauge coupling,
M2
φ = 3g2/(8π2)M2

A, reducing effectively the model to a 2-parameter space.
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φ to decay to SM and could lead to thermalization or freeze-in production of the dark
sector. Demanding that no thermalization takes place throughout the history of the universe
through the Higgs portal, λφH |H|2|Φ|2, requires λφH < 10−10. We will assume in what
follows that the dark sector does not thermalize with the SM so that its abundance is
dominated by inflationary dynamics. We will also focus on the abundance of dark photons
since φ that is typically heavy remains cosmologically unstable.

Admittedly the smallness of the Higgs portal coupling is not attractive feature of the
dark abelian Higgs model. This could be remedied if the U(1) gauge symmetry is broken
dynamically. This can be realized with a dark QCD-like sector with fermions that have
chiral charges under the dark photon. In this case the scalar field Φ is replaced by the
fermion condensate 〈Ψ̄Ψ〉. Fermions enjoy Weyl invariance in the massless limit so that
results similar to ξ = 1/6 are expected in this case. A more detailed study of Weyl invariant
sector populated during inflation will be studied elsewhere.

2.1 Phases of the theory

The abelian Higgs model of eq. (2.1), despite its simplicity, displays a variety of behaviours
that differ from the Stueckelberg dark photon of ref. [3]. Although the mass scales are
MA and Mφ, the dynamics is mostly controlled by f and the Hubble scale of inflation HI

that determines whether the symmetry is broken/unbroken during inflation. This is quite
different from the Stueckelberg massive vector case, where the only available scale is the
mass of the particle. The cosmology has some similarities with the QCD axion. Roughly
there are two regimes,

1. HI > f : the U(1) symmetry is restored during inflation so that the dark photon is
massless. During SM reheating or during radiation domination the symmetry breaks
spontaneously and the dark photon acquires a mass.

2. HI < f : The field Φ is in the minimum during inflation and the dark photon is always
massive.

It is interesting to draw a comparison with the famous case of the QCD axion, where, if
the reheating temperature TR is larger than HI the Peccei-Quinn symmetry is also restored.
As we will see for the dark photon scenario under consideration, if the system thermalizes,
the temperature is much lower than the visible one so that restoration of the symmetry
after inflation is very unlikely. We will not consider this possibility further in this work.

The coupling to curvature, that has no effect today, is important in the early universe.
During inflation R = −12H2

I so that from eq. (2.1) the mass parameter becomes M2
eff =

−λf2 + 12ξH2
I . Two values of ξ have special interest, 0 and 1/6. ξ = 0 corresponds to

a minimally coupled scalar and is associated to a shift symmetry of the complex scalar
in the massless limit. ξ = 1/6 is the conformal coupling to curvature where the action
becomes invariant under Weyl transformations that rescale the metric. Weyl invariance is
explicitly broken by the mass term λf2 and radiative corrections. Note that for positive ξ
the curvature coupling generates a stabilizing potential around the origin.
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HI > f f > HI

ξ 6= 1/6 complex scalar production scalar and vector production (if M � HI)
ξ = 1/6 Weyl invariance only vector production (if M � HI)

Table 1. Phases of Dark Photon Dark Matter from the Higgs mechanism.

The inflationary production strictly depends on ξ. For ξ = 1/6 approximate Weyl
invariance implies that the scale factor can be eliminated from the equations of motions so
that no significant inflationary production exists. For ξ = 0 the scalar perturbations are
copiously produced giving rise to a classical expectation value for the field on superhorizon
scales. This is true both in the broken and unbroken phases. Note that if the symmetry
is broken during inflation the corresponding Nambu-Goldstone boson is always minimally
coupled thanks to the shift symmetry and thus it is strongly produced. In the abelian Higgs
model this becomes the longitudinal mode of massive vector boson that drives its production.

The main possibilities are summarized in table 1.
We will make several simplifying assumption throughout. The scale of inflation is taken

to be constant during the visible e-foldings of inflation. Most of the results do not depend
on reheating but where they do, at cost of precision, we simply treat the reheating as a
phase of matter dominance, starting at the end of inflation when the scale factor is ae,
with a sudden connection to standard radiation dominance at aR. We also assume that
the expansion of the Universe is dominated by the visible sector. Depending on the size
of k/a compared to Hubble H and to the mass of the particle M , we can have different
kinematic regimes.

2.2 Thermal population

The interactions in the dark sector are sometime sufficiently strong for the system to
thermalize in the relativistic regime. In such a case, the thermal history of the dark sector is
then simply determined by the temperature ratio with the SM, r ≡ TD/T , defined when the
dark sector is relativistic. The actual value of this ratio depends on how much relativistic
energy is stored in the dark sector at the onset of thermalization, that is it depends on the
production mechanism that populate the dark sector.

The dark sector is unavoidably populated through the SM plasma via gravitational
freeze-in, thanks to graviton scattering. Assuming that the energy density thermalizes in
the relativistic regime one finds [25]

rGR ≡
TD
T
∼
(
TR
MPl

)3/4
, (2.4)

where TR is the SM reheating temperature. As we will see, reheating from inflationary
fluctuations can also reheat the dark sector. Gravitational production however can be the
dominant source for large reheating temperatures.

After thermalization is established, the evolution of the dark sector is controlled by the
evolution of TD. When TD drops below the scale f the U(1) gauge symmetry breaks through
a first or second order phase transition and the physical degrees of freedom become the
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massive dark photon and the dark Higgs field.2 Expanding the lagrangian in the fluctuations
χ around the minimum,

L = −1
4F

2
µν + 1

2(∂χ)2 + (f + χ)2

2 (∂µθ − gAµ)2 − λ

4χ
2(2f + χ)2 (2.5)

After the phase transition the energy is mostly transferred to the lightest state. Assuming
that this is the dark photon this leads to an abundance,

YA = 90ζ(3)
2π4g∗

r3 (2.6)

Here we neglected number changing interaction that could potentially lead to a phase of
cannibalism in the non-relativistic regime. This would anyway change the abundance only
logarithmically.

In the opposite regime the radial mode acts as thermal bath for the dark photons that
annihilate until freeze-out. Their abundance is determined by the Boltzmann equation,

dY

dTD
= 〈σv〉s(T )
H(T )TD

[
Y 2 − (Y eq(TD))2] , (2.7)

where the s-wave annihilation cross-section reads

〈σv〉AA→φφ = 8πα2

3M2
A

√√√√1−
M2
φ

M2
A

, α = g2

4π (2.8)

The approximate solution of this equation is easily found by noting that this is the standard
Boltzmann equation for freeze-out but with the rescaled cross-section 〈σv〉/r. Therefore
one finds

ΩAh
2

0.12 ≈ r
1
πα2

(
MA

20TeV

)2
. (2.9)

Similar arguments can be repeated for the abundance of the Higgs field when the dark
photon is the lightest state. In this case however the particle decays to dark photon if
kinematically allowed or possibly to the SM allowing for Higgs couplings.

We wish to emphasize that the thermal contribution is not necessarily the dominant
contribution to the energy density in the dark sector. For inflationary production non-
relativistic modes that re-enter the horizon well after the phase transition might dominate
the energy budget with interesting effects on large scale structures. In particular this leads
as we will see to strong isocurvature constraints on these models.

3 HI < f : Higgs phase

We start our discussion considering the case where the U(1) gauge symmetry is spontaneously
broken during inflation and never restored in the thermal history of the universe.

According to the standard lore the condition Max[HI , TMax] < f imply the symmetry
is never restored during or after inflation. However, with couplings to curvature an extra

2For a related discussion in the context of a non abelian dark sector aka dark QCD see [26].
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condition exists. Indeed during inflation the effective potential for the radial mode in
eq. (2.1) gets a quadratic contribution from the Ricci scalar Rinflation = −12H2

I . As such
the condition HI < f can be invalid for non-zero coupling to the curvature. Therefore the
symmetry is broken provided that

24ξH2
I < λf2 =

M2
φ

2 & HI < f (3.1)

Under this hypothesis the field explores the region around the minimum of the potential
of eq. (2.1). The physical degrees of freedom are thus a massive vector and a real scalar.
Working at weak coupling we always have MA,φ . f , and the following possibilities exist.

3.1 Stueckelberg-like phase: Mφ > HI � MA

In this region of parameter space the abelian Higgs model effectively reproduces the
Stueckelberg dark photon of ref. [3] (see also [9, 10]). Since the radial mode mass is
larger than HI , its inflationary production is negligible being suppressed exponentially as
ρφ ≈ exp(−2πM/HI). Note that the coupling to curvature ξ|φ|2R is subdominant in this
region of parameter space, the field is at the minimum of the potential and never displaced.

Since the only light degree of freedom during inflation is the massive vector the
inflationary dynamics is identical to the GMR model. As we summarized in the appendix
the energy density at late time as function of momentum has the following form3

1
s

dρGMR
A

d log k ≈ 3× 10−3 H2
I

M
3/2
Pl

√
MA

( 100
g∗(Mφ)

)1/4


k∗
k

k � k∗ ,

k2

k2
∗

k � k∗ ,
, (3.2)

where k∗ ≈ aeq
√
HeqMA. Given the shape of the spectrum, the energy density is dominated

by the unit logarithmic interval around k∗. This is shown in figure 1 where a snapshot of
the power spectrum after inflation is shown for massive scalar and vector. Integrating over
k the dark photon abundance is found

ΩGMR
A h2

0.12 ≈

√
MA

6× 10−6 eV

(
HI

1014 GeV

)2
. (3.3)

A very attractive feature of the Stueckelberg dark photon is the fact that the power spectrum
is peaked at the intermediate scale k∗ and strongly suppressed on cosmological scales thus
avoiding isocurvature constraints from the CMB while predicting deviation from cold dark
matter at shorter scales [27, 28].

Comment on the constraints from weak-gravity conjecture. The condition f >
HI �MA ≡ gf requires a tiny gauge coupling when the dark photon is realized through
the Higgs mechanism. Using eq. (3.3) one finds

g < 6 · 10−29
(

1014 GeV
HI

)5

= 3 · 10−11
(
MA

GeV

)5/4
(3.4)

3We quote the quantity ρ/s at late times unless stated otherwise. The abundance of DM is given by
Ωh2 = 0.12ρ/(0.44 eV s).
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For example dark photons of mass MA = 10−5 eV would demand g < 10−28 to reproduce
the DM abundance through inflationary fluctuations of the massive vector field.

The necessity of such small couplings raises the question of the consistency of this
construction. Indeed in the limit g → 0 the U(1) gauge symmetry would become global
while no exact global symmetries are believed to exist in theories of quantum gravity.

The weak gravity conjecture [29] (see [30] for a recent review) constrains the gauge
coupling of U(1) gauge theories. In particular the UV cutoff of the theory must go to
zero as g → 0 as there are no global symmetries in quantum gravity. More precisely the
simplest version of the conjecture requires the existence of new states charged under the
U(1) symmetry with mass smaller than Λ = gMPl.

In the abelian Higgs scenario, since the U(1) symmetry is broken by the vacuum it is
not obvious how the constraint above and related arguments can be applied. Indeed the
black-holes arguments of [29] rely on the conserved charges of the theory that however do
not exist if the symmetry is spontaneously broken. One point of view is that the conjecture
constrains the sign of the mass term around the origin such that the vacuum breaks the
symmetry. However given that the symmetry is any case restored at high temperatures it
is tempting to apply the bounds that would arise if the cut-off Λ < gf .

Within this assumption, given that Λ > H for consistency of the inflationary theory,4
imposing that inflation produces the whole abundance of DM (3.3) we find,

HI < 1010 GeV , MA > 50 GeV (3.5)

Contrary to Stueckelberg theories this would imply that no light DM can be generated
from inflationary fluctuations. This is not surprising since Higgs and Stueckelberg theories
are not continuously connected. In [7] it was argued that in supersymmetric extensions of
the Stueckelberg dark photon Λ < MPl ×min[e1/3 ,

√
MA/(eMPl)] also excluding a light

dark photon and a large cut-off.
Let us note that dark photons with Stueckelberg masses can be constructed in string

theory from abelian forms of the 10d supergravity action. These realizations are clearly
consistent but also do not lead to very light dark photons. For example in [8] it is found
that the dark photon mass is at least

M2
A ≥

2π
gs

M4
s

M2
Pl

(3.6)

where Ms is the string scale to be interpreted as maximum cut-off. It would be interesting
to study more generally the bounds on dark photon with Stueckelberg masses and from the
Higgs mechanism in string theory.

4Note that the constraint is on the Hubble scale rather than the energy density. This can understood as
follows: the gravity EFT has the expansion S = Λ4

g2 [1 + R
Λ2 + R2

Λ2 + . . . ]. For example in string theory Λ
should be identified with the string scale and g the close string coupling. This means that the EFT is under
control as long as H < Λ even though the energy density can be larger than Λ. This agrees with intuition
from thermal field theory since HI/(2π) ∼ T .
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k/kmax

po
w
er
sp
ec
tr
um

(a
rb
it
ra
ry
u
ni
ts
)

P(k,η) at H(η)/M=0.01

≈k2

≈1/k

scalar

vector k≈k* modes still relativistic

Figure 1. Power spectrum of scalar and vector fields produced during inflation obtained following [10,
31]. The power spectrum is evaluated numerically at a time corresponding to H = 0.01M and
kmax = aeHI , where ae is the scale factor at the end of inflation. Here M stands for both the masses
of vector and scalar. The typical shape of the non-relativistic modes of scalar and vector field is
reproduced, while k-mode on the flat part on the right are still relativistic at that time, later on
their power will drop as 1/k. See appendix A for details.

3.2 Light radial mode: HI > Mφ,A

Another scenario, that substantially deviates from [3], is the one where the radial mode is
light during inflation. This is realized if λ < f2/H2

I . In order not to restore the symmetry
and remain in the Higgs phase, this scenario requires ξ ≈ 0. This is due to the symmetry
breaking condition of eq. (3.1). To emphasize the effect of the coupling to curvature we
mention, for example, that the conformal coupling ξ = 1/6 always restores the symmetry
in the regime HI > Mφ. We thus always consider the ξ = 0 case in the remainder of
this section.

The physical degrees of freedom during inflation are a light minimally coupled scalar
and a dark photon. The scalar is produced copiously from inflationary fluctuations (details
are given in the appendix). Neglecting decays the power spectrum of the minimally coupled
scalar is given by

1
s

dρφ
d log k

∣∣∣
ξ=0
≈ 3× 10−3 H2

I

M
3/2
Pl

√
Mφ

( 100
g∗(Mφ)

)1/4

k∗
k

k � k∗ ,

1 k � k∗ ,
, (3.7)

while the one of the vector is still given by eq. (3.2). They are displayed together in figure 1.
If the scalar is heavier than the vector it rapidly decays so that for each scalar two

dark photons are produced. The abundance of dark photons is obtained multiplying the
equation above by 2MA/Mφ and integrating over k. One finds,

ρA
s

∣∣∣
decays

≈ 5× 10−3 H2
I

M
3/2
Pl

MA√
Mφ

( 100
g∗(Mφ)

)1/4
log k∗

H0
(3.8)
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that is smaller than the abundance from inflationary production of the dark photon of
eq. (3.2).

For Mφ < 2MA the scalar cannot decay to dark photons. In this case it could either be
exactly stable and contribute to the DM abundance or decay to SM, for example through
the Higgs coupling.

3.2.1 Thermalization with a light radial mode

If the radial mode is light during inflation, non-gravitational interactions between the dark
photon and the scalar can lead to thermalization in the dark sector. Since the dark photon
mass is proportional to the gauge coupling interactions become important for large masses
so that this is relevant for MA �GeV, see (3.4). We then wish to understand how much of
the energy produced during inflation can be transformed into thermal energy, see [25] for a
related discussion in the context of dark gauge theories.5

As shown in figure 1 scalar and vector modes with k > k∗ behaves identically re-entering
the horizon while relativistic with momentum k/a ∼ H . For significant interactions this may
lead to thermalization in the dark sector. Modes with k � k∗, at horizon re-entry have a
density dnk/d log k ∼ H2

I k/ak, for both scalar and vectors given that for such wave-number
they behaves in the same way (see appendix). On distances ∼ a/k, thermalization is
determined by scattering rates of order

dΓ
d log k ≈

H2
I

(2π)2
k

ak

a3
k

a3 × σeff . (3.9)

Here σeff is an effective cross-section for processed 2→ any in the dark sector. Complete
dark sector thermalization is achieved for example thanks to 2χ → 3χ and AA ↔ χχ

processes. The former process is controlled by λ while the latter also by the gauge
coupling g. When both are faster than Hubble the discussion of section 2.2 applies. In
the regime where the energy of the modes is larger than the mass of the particles (but
much smaller than f), the two cross-sections can be estimated as σeff,2χ→3χ ≈ λ2f2/(k/a)4

and σeff,2χ→2A ≈ max[g4/(k/a)2, λ2/(k/a)2] as long as the particles are relativistic. Since
Hubble redshifts as 1/a2 in radiation domination, thermalization will be achieved as long
as no mass thresholds are encountered. Moreover, since the energy of the modes are ≈ H
at re-entry, the above expression at re-entry is dΓ/d log k|re−entry ∼ λ2H2

I f
2/H3 that can

be larger than H if λ ∼ H2
I /f

2 leading to instantaneous thermalization.
For modes that re-enter the horizon non-relativistically, k/a < M , the situation is

different for scalar and vector. As shown in figure 1 the latter is strongly suppressed in
the IR. For the scalar the numerical density does not change by the cross-section goes
to constant. For these reasons thermalization becomes inefficient and modes with small
momenta do not thermalize. For simplicity we will thus assume that the energy density of
the thermal bath is determined by the modes that re-enter relativistically.

5Thermalization of Stuckelberg dark photon with dark electrons was studied in detail in [32]. Differently
from this ref. we consider no light charged states, such that we do not expect the presence of a rich physics
in the form of a dark-QED plasma on sub-horizon scales.
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The computation goes as follows. An energy density of order H2
IH

2/(2π)2 per Hubble
time gets converted into dark thermal energy. The energy density of the dark sector is
determined by the Boltzmann equation [33]

dρ

dt
+ 4Hρ = γ1 , γ1 ≈

(
HI

2π

)2
H3 , (3.10)

where the source terms corresponds to the energy that re-enters the horizon per unit time.
We can easily integrate this equation in radiation domination to find

ρ(T ) ≈ T 4
(
HI

MPl

)2 g∗
360 log

√
MPlHI

T
(3.11)

From this we extract the dark sector temperature induced by inflationary production,

rinf ≡
TD
T
∼ 0.3

(
g∗
gD

)1/4 ( HI

MPl

)1/2
(3.12)

leading automatically to a dark sector much colder than the SM.
Notice that even in the extreme case of instantaneous reheating, where the SM temper-

ature reads TR ∼
√
HIMp/g

1/4
∗ , the dark sector is never reheated above the Hubble scale

during inflation, Tmax
D < HI . Therefore, starting in the Higgs phase during inflation, the

U(1) symmetry is not restored afterwards.
Interestingly, however, the dark sector temperature can be larger than the physical

masses of the scalar and dark photon, which can behave for a while as a thermal plasma.
In such a case the discussion flows along the lines of section 2.2. As in that section we have
two options

If the dark photon is the lightest state this leads to the abundance in eq. (2.6). This is
suppressed by a factor

√
MA/HI compared to the abundance from inflationary fluctuations

in eq. (3.2). In the opposite regime MA > Mφ the thermal abundance of dark photons
is determined by thermal freeze-out as in eq. (2.9). Comparing with eq. (3.3) we find
that ΩGMR

A /Ωf.o.
A ≈ 10−14g2H2

I /f
2√gGeV/f so that the freeze-out contribution can easily

dominate in the region of interest f � HI .
In figure 2 we show a cartoon of the DM abundance for f > HI . DM abundance is

reproduced along the black solid lines. For small gauge couplings the abundance is given by
inflationary production of the massive vector as in [3]. For larger gauge couplings, assuming
λ� g2 and thermalization of the dark sector, thermal freeze-out dominates.

3.2.2 Isocurvature constraints

The fluctuations of dark photon and radial mode are orthogonal to the ones of the inflaton
during inflation. This produces non-adiabatic perturbations in the matter power spectrum
that are strongly constrained by CMB and large scale surveys. In the Higgs realization of
the dark photon strong constraints from isocurvature are back to life. For ξ ≈ 0 (which is
necessary to break the symmetry with f > HI) the spectrum of fluctuations of the radial
mode is IR dominated producing a DM population with isocurvature perturbations, and
the decay of φ transfers the unhealthy isocurvature population to dark photons.
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Figure 2. Higgs phase of Dark Photon DM. Black isolines correspond to region where the DM
abundance is reproduced. For sizeable gauge coupling the dark sector thermalizes and dark photon
can undergo thermal freeze-out, while for tiny coupling only the GMR mechanism is at work.

An assessment of the bounds from isocurvatures is therefore necessary in dark photon
models with a radial mode. We here consider the usual parametrization of isocurvature
perturbations defined to the entropy density of photons as

δρ

ρ
= 3

4δγ + δiso . (3.13)

δiso is the initial data of stochastic origin, and in our case, given that it is produced by
the same mechanism that produces DM it is expected to be O(1). In particular the power
spectrum associated to δiso, Piso = (2π2)/k3×∆iso(k), is the same power spectrum of DM in
our case. The CMB bound can be cast in terms of the power spectrum of the isocurvature
population compared to the total abundance as done in [34]. We introduce the parameter
βiso(k) defined as

βiso(k) = ∆iso(k)
∆ζ(k) + ∆iso(k) (3.14)

PLANCK sets limits on βiso(kc) at different kc = 0.002, 0.05, 0.1 Mpc−1 (∆ζ(k∗) = 2.1·10−9).
We make use of the results for the uncorrelated CDI (axion-I, section 9.4.1 of ref. [34]),
where the bounds are computed at kc = 0.05 Mpc−1, βiso(0.05 Mpc−1) < 0.038 at 95%CL.

The minimally coupled scalar has an IR dominated power spectrum that in isolation
would imply βiso(kc) ∼ 1 grossly excluded experimentally. However, thanks to decay, the
contribution to the abundance of dark photon of eq. (3.8) is suppressed by

√
MA/Mφ

weakening the bounds. Avoiding constraints would however demand MA < 10−10Mφ.
A different possibility to suppress isocurvature perturbations is realized if the mass of

the particle is close to the Hubble scale during inflation [4, 35]. We discuss this possibility
in detail in the appendix B. The power spectrum of a massive scalar field in de-Sitter reads,

P (k) ∼ H2
I

2k3

(
k

aHI

) 2M2
3H2
I . (3.15)

– 12 –



J
H
E
P
1
0
(
2
0
2
2
)
1
6
7

This implies that for M ∼ HI modes that correspond to cosmological scales probed by
the CMB and large scale structure are suppressed. As we show in the appendix B (see
also [35, 36]), assuming for simplicity that HI is constant during inflation, one finds,

∆iso(k) ≈ 8M2

3H2
I

e
− 4N(k)M2

3H2
I , (3.16)

where N(k) is the number of e-foldings to the end of inflation when k/a = HI . Assuming
N(k∗) ∼ 50 this is compatible with isocurvature bounds if Mφ > 0.5HI .

For Mφ < 2MA a similar constraint applies unless φ decays to SM. In that case
isocurvature perturbations can be washed out by thermalization with the SM thermal bath.

4 HI > f : Coulomb phase

In this regime the U(1) symmetry is restored in the early universe and the dark photon is
massless during inflation. This implies that during inflation the relevant degrees of freedom
are the real and imaginary parts of Φ with same coupling ξ to curvature. For perturbative
couplings we have Mφ < HI , so that the complex field Φ can fluctuate during inflation.
By constrast the two helicity states of the dark photon are not produced by inflationary
fluctuation thanks to their classical Weyl invariance.

There are however several contributions to the abundance of dark photons in this phase:

• After inflation the system undergoes a phase transition where the field relaxes to
the symmetry breaking vacuum. Through the Kibble mechanism cosmic strings are
generated that emit dark photons in the scaling regime of the string network producing
an abundance of dark photons [22].

• For ξ = 0 the minimally coupled complex scalar Φ is produced by inflationary
fluctuations with an energy density of order ≈ H4

I /(2π)2. The modes that re-enter
relativistically reheat the dark sector at the temperature (3.12) leading to a thermal
abundance of dark photons. Modes that re-enter at late time can carry significant
amount of energy giving rise to isocurvature perturbations.

• At the phase transition an energy density of order λf4 is released that also populates
the dark sector.

Let us now discuss in detail the various contributions.

4.1 Conformal coupling ξ = 1/6

During inflation the conformal coupling to curvature acts as a positive mass term. The
equation of motion for the zero mode of the radial field reads,

φ̈+ 3HI φ̇+ 2H2
I φ+ λφ(φ2 − f2) = 0 (4.1)

Since HI > f we can neglect the instability associated to the potential. For an initial
displacement λφ2

0 < H2
I the approximate solution is

φ ∼ φ+e
−2HI t + φ−e

−HI t (4.2)
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This means that, after few e-foldings of inflation, the field relaxes to the origin effectively
restoring the symmetry. The same conclusion also applies if λφ2

0 > H2
I .

Let us note that this mechanism is quite different from symmetry restoration due to
inflationary fluctuations of size δφ ∼ H/(2π). For ξ = 1/6 the system is approximately
Weyl invariant and no inflationary production takes place. This can be seen explicitly by
writing the equation of motion for the rescaled field, v = aφ. Around φ = 0 the equation of
motion reads

v′′ + k2v − λ f2

H2
I η

2 v = 0 (4.3)

where η is the conformal time so that during inflation a = 1/(HIη). For a minimally coupled
scalar instead the instability is −2/η2 that leads to strong production of modes as they exit
the horizon. In this case the instability is marginal and Φ is not significantly produced
during inflation (see for example [31]),

dρΦ
d log k

∣∣∣∣
inflation

≈ 0 . (4.4)

The dark sector is thus populated only through the phase transition. This has two
effects: the release of the energy of the false vacuum and the formation of cosmic strings.

4.1.1 Dark photons from phase transition

Assuming that the inflaton only reheats the SM, the dark sector at the end of inflation is
empty and in the false vacuum at Φ = 0. During reheating or radiation domination, a phase
transition takes place with a release of energy ∆V = λ/4f4. Since in radiation domination
Rrad ≈ 0 in this phase the coupling to curvature does not stabilize the potential and the
system becomes immediately unstable.

The energy density is transferred to the coherent oscillations of the radial mode that
behave as non-relativistic particles. The time scale of the oscillation is of order Mφ. Since
H ∼ 1/t in radiation and reheating we use a criterium that the (second order) phase
transitions completes for H ∼Mφ/(2π). The abundance is thus given by

ρφ
s

∣∣∣∣
P.T.

= ∆V
s(T∗)

≈ 0.15
λ

M
5/2
φ

M
3/2
Pl

(100
g∗

)1/4
. (4.5)

The above estimate needs to be reconsidered if the phase transition happens during
reheating. If HR < Hc the energy density at reheating is ∆V H2

R/H
2
c . The abundance is

thus
ρφ
s

∣∣∣∣
P.T.

= ∆V
s(TR) ≈

0.4
λ
TR

M2
φ

M2
Pl
. (4.6)

4.1.2 Dark photons from the string network

The abelian Higgs model has a vacuum manifold S1 ' U(1) that support topological string
solutions. When the U(1) symmetry breaks spontaneously through the Kibble mechanism
the field rolls in a random way to the minimum of the potential producing a network of
strings. In the evolution of the system the network quickly approaches a scaling regime
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where roughly one string per Hubble volume exists. To maintain the scaling regime energy
must be released that in this case is dominated by the emission of massive dark photons.
Dark photon emission from the string network was discussed in ref. [22] and we briefly
review the main results here.

In dark abelian Higgs model, the spontaneous breaking of the gauge symmetry gives
rise to cosmologically stable strings. Since the phase transitions happens when H(t) ≈ f ,
the correlation length will be of the order of 1/H, corresponding to approximately one
string per Hubble volume at the phase transition. Once the string network attains the
scaling solution, the energy density at all time is given by

ρstring(t) = κ
µstring
t2

≈ πf2H(t)2 , (4.7)

where κ represents the number of string per Hubble volume [37], while µstring ≈ πf2 is
the effective string tension. The scaling is reached when the energy density of long strings
is efficiently transferred to closed string loops that oscillates and eventually decay into
radiation. Taking into account the expansion of the Universe, the continuity equation gives

ρ̇string + 2Hρstring ≈ −ξ
µstring
t3

, (4.8)

which is the amount of power radiated by the network to sustain the scaling (we have
neglected scale violations in ξ and µstring, we refer the reader to [37, 38] for a detailed
discussion). The situation is similar to the QCD axion case, with the difference that our
U(1) is gauged, therefore the light quanta are the radial mode and the massive vector.
Emission of these particles will allow the network to track the above scaling, and when
production of vectors will become inefficient, emission into gravitational waves will be
enough to mantain the scaling regime.

We estimate that production of massive vectors will stop around H(t) ≈ MA, and
gravitational wave emission will be maximal afterwards. Integrating the power of (4.8),
and taking into account that the vectors are produced with physical momenta p ≈ H(t) as
long as H ≈MA, we can compute the energy density of vectors produced by strings [22].
The spectrum at production is flat, but the energy density in vectors today is dominated
by the mode produced with p ≈ H ≈M . In order to make comparison with the results of
the previous section, we write the energy over entropy ratio, which is conserved. For dark
photon produced via strings is

ρA
s

∣∣∣∣
string

≈ κ
√
MA

f2

M
3/2
Pl

(100
g∗

)1/4
. (4.9)

From this expression, we see that the contribution to dark photon abundance from the string
network is always parametrically larger than the one from the phase transition of (4.5).

Present bounds on cosmic strings are mostly due to the non-observation of gravitational
waves from pulsar-timing arrays. Experimental limits are given on the combination Gµ .
10−11 [22], where G is the Newton constant.
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4.2 Minimal coupling ξ = 0

For ξ = 0 the complex field Φ experiences inflationary fluctuations. Since the size of the
fluctuation is of order ≈ HI/(2π), the field explores the region of the potential dominated by
the quartic term. As we will see this complicates the analysis of inflationary perturbations
compared to the free theory but leads to similar qualitative results. In particular isocurvature
perturbations are generated that strongly constrain the scenario.

4.2.1 Misalignment and inflationary production

Evolution of the classical field (misalignment) and inflationary field fluctuations can both
contribute to the energy density of the scalar.

Let us start discussing the misalignment mechanism in this context [39]. For the sake
of simplicity, let us consider the radial direction of Φ described by a real scalar field with
quartic potential

L = 1
2(∂φ)2 − λ

4 (φ2 − f2)2 . (4.10)

If the field value is such that φ > f , then the quartic term dominates the potential. The
effective mass is

M2
eff = λ(3φ2 − f2) . (4.11)

Assuming HI > Meff the field remains constant during inflation at the initial value φ0 and
starts to oscillate when H(ac) ≈Meff . Unlike a massive scalar for a quartic potential the
coherent oscillations of the field redshift as radiation in light of the conformal invariance
of the action so that φ = φ0ac/a. This behaviour continues until the scale factor reaches
a∗, where the quadratic term in the potential dominates. This happens at φ ∼ f so that
ac/a∗ = f/φ0. Assuming that the oscillations take place during radiation domination we
can compute the corresponding Hubble scale as

H∗ = Hc
a2
c

a2
∗
≈
√

3λf
2

φ0
(4.12)

With the aid of eq. (A.7) we can thus compute the ratio energy to entropy,

ρ

s

∣∣∣
mis
≈ λ

4
f4

s∗

∣∣∣
quartic

≈ 0.05λ1/4f

( 100
g∗(Mφ)

)1/4 ( φ0
MPl

)3/2
(4.13)

Inflationary fluctuations in the field φ are computed in a similar fashion. The linearized
equation of motion reads

χ̈+ 3Hχ̇+ k2

a2χ+ λ(3〈φ2〉 − f2)χ = 0 (4.14)

For Meff � HI the potential during inflation is negligible so that each mode at the end of
inflation has an amplitude HI/(2π). The mode starts to oscillate when H ∼Meff that in
turn depends on 〈φ〉. Given that the result (4.13) is linear in the mass at late time we get

1
s

dρφ
d log k

∣∣∣
inf
≈ 0.005λ1/4|f | H

3/2
I

(MPl)3/2

( 100
g∗(Mφ)

)1/4

k∗
k

k � k∗ ,

1 k � k∗ ,
, (4.15)
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4.2.2 Dark photons abundance

If the symmetry is unbroken during inflation dark photons are not directly produced by
inflationary fluctuation due to Weyl symmetry. They can be produced by other mechanisms:
from the decays of the field φ, through thermalization and by the network of cosmic strings
after the symmetry gets broken.

The contribution from decays inherits the numerical abundance of φ. Assuming that
the dark photons are non-relativistic today the contributions of the perturbations (4.15) to
the dark photon abundance is

ρA
s

∣∣∣
inf,decays

≈ 0.005MA

λ1/4
H

3/2
I

(MPl)3/2

( 100
g∗(Mφ)

)1/4
log k∗

H0
. (4.16)

In addition to this population, and similarly to section 3.2, φ-modes that re-enter the
horizon relativistically could thermalize via inelastic processes if the couplings are sizable.
This gives rise to a thermal bath of scalars and vectors in the dark sector with temperature
TD/T ∼

√
HI/MPl, as computed in eq. (3.12). If the thermalization process is efficient the

temperature of the dark sector can be as high as HI > f so that the symmetry remains
unbroken until TD ∼ f . Assuming that at the phase transition the energy goes into the
radial mode one finds

ρφ
s

∣∣∣∣
inf,thermal−PT

∼ f
(
HI

MPl

)3/2
−→ ρA

s
∼ MA√

λ

(
HI

MPl

)3/2
(4.17)

assuming again that the dark photon is lighter than the radial mode and non-relativistic
today.

In addition, the spontaneous U(1) also generates a string network. If the dark photon
is lighter than Hubble at the phase transition the abundance of dark photons is again
given by eq. (4.9), which is independent on the details of the phase transition and does not
depends explicitly on the dark sector temperature. The thermal contribution above can
dominate over the string network if MA > λf4/H3

I . Notice also that if the thermalization is
instantaneous, the control parameter for the phase transition is the dark sector temperature
rather than Hubble. This opens up the possibility that Hubble at the phase transition is
smaller than the mass of the dark photon. Indeed HPT ≡ H(TD ≈ f) ≈ f2/HI , which
by construction in this case is smaller than f . The emission of dark photons becomes
inefficient for HPT < MA that corresponds to g > f/HI . In this case the abundance is
thus dominated by eq. (4.16) and (4.17). A summary of the different contributions to the
abundance is shown as a solid black line in figure 3. The two different slopes of the black
line as a function of the scale f , for fixed HI and λ, is due to the competing contributions
from inflationary production and from the string network discussed above. The bound from
isocurvatures is discussed in the next section.

4.2.3 Isocurvature constraints

The abundance of dark photons (4.16) produced by inflationary fluctuations is IR dominated.
Since this is a significant or even dominant contribution to the total abundance it implies
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Figure 3. Coulomb phase of Dark Photon DM. DM abundance is reproduced along the solid
black line for λ = 1. Isocurvature constraints arise for small quartic couplings as discussed in
section 4.2.3. We also show the individual contribution to DM from the string network, and the
light blue region where the dark photon mass is larger than Hubble at the phase transition. Above
the line MA & HPT contributions from the string network are suppressed.

strong constraints from isocurvature perturbations.6 As in section 3.2.2 there are essentially
two solutions to this problem. The first amounts to require that the isocurvature population
is very subdominant compared to the healthy one produced from cosmic strings or by
the misalignment mechanism. The second solution is realized if the effective mass during
inflation is comparable to Hubble so that isocurvature perturbations on cosmological scales
are suppressed. In this case the effective mass is controlled by the quartic so this implies a
lower bound of the quartic coupling [42].

More in detail:

• λ� 1:
As discussed in the appendix B inflationary expansion makes the field Φ homogenous
over a spatial distance,

d ∼ 1
HI

exp

√8π2

9λ

 (4.18)

For λ < 0.01 this is larger than the size of the visible universe so that Φ has a constant
value in our Hubble patch and the U(1) symmetry is broken. In particular if inflation
lasts a number of e-foldings larger than

√
8π2/(9λ) the variance of the field approaches

the constant value
〈φ2〉 ≈ H2

I

(2π)
√

2λ
(4.19)

6A related discussion arises for the QCD axion, see [40, 41]. For the QCD axion the isocurvature
perturbations associated to the radial mode give a negligible contribution to the energy density of axion
DM. This is not so in our case even if the symmetry is restored after inflation by thermal effects because
the contribution (4.15) grows with f .
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Mφ � HI �MA HI �Mφ �MA HI �MA �Mφ

f > HI GMR GMR + φ-decay + (iso) ξ = 0 GMR + thermal-FO + (iso) ξ = 0
f < HI , ξ = 1

6 — string network string network
f < HI , ξ = 0 — string net.+ φ-decay +(iso) string net. + thermal-PT +(iso)

Table 2. Summary of different phases of Dark Photon Dark Matter. The pure Dark Photon
scenario is only reproduced for f > HI and small gauge coupling. In other regions string network or
thermal contribution to the abundance are often dominant. For minimal coupling strong isocurvature
constraints generically arise.

From this expression we can compute the isocurvature power as in eq. (B.5). Requiring
that the isocurvature component is small requires λ < 10−10, see also chapter 14
in [41].

• λ ∼ 1:
For large couplings Φ is dishomogeneous in the visible universe. This means that the
symmetry is effectively restored during inflation and in particular a network of strings
is formed when the symmetry breaks afterwards [40]. Differently from the QCD axion
this does not automatically solve the isocurvature problem because the contribution
from inflationary fluctuations of Φ is significant. The modes of cosmological size are
however suppressed if the effective mass 3λ〈φ〉2 is comparable with Hubble where
the variance is given by eq. (4.19). As discussed in the appendix B one finds that
isocurvature constraints can be solved for λ ∼ 1.

5 Conclusions

In this note we studied realizations of vector dark matter obtained through the Higgs
mechanism. Differently from the popular scenario where the mass is generated by the
Stueckelberg mechanism this requires extra degrees of freedom and interactions. We focused
in particular on the minimal construction with a dark abelian Higgs model where a single
scalar degree of freedom is added, the dark photon Higgs scalar. The scalar coupling to
curvature is expected to capture more general constructions such as dynamical symmetry
breaking through strong interactions.

Already in this minimal realization a landscape of possibilities emerges, see table 2. As
for the QCD-axion two different scenarios exist depending on the scale of inflation. Roughly,
if the Hubble parameter during inflation is larger than the U(1) symmetry breaking scale f ,
the symmetry is restored during inflation so that the vector is effectively massless and not
produced by inflationary fluctuations. Dark photons are in this case generated through the
decay of the scalars produced during inflation or from cosmic strings.

In the opposite regime the symmetry is broken throughout the history of the universe so
that the vector is massive and produced during inflation similarly to Stueckelberg theories.
However also the Higgs scalar is typically produced during inflation and its decay changes
the dark photon abundance. The scenario of ref. [3] is only reproduced for tiny gauge
couplings that might be problematic from the point of view of the weak gravity conjecture.
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An interesting aspect of the Stueckelberg dark photon is that it automatically avoids
constraints from isocurvature perturbations produced during inflation also predicting effects
for structures [27, 28]. In realizations through the Higgs mechanism we find that isocurvature
constraints are typically re-introduced except if the coupling to curvature is conformal. In
this case the approximate Weyl invariance of the action suppresses inflationary perturbations
on cosmological scales.

This motivates the study of inflationary production of dark sectors that are approx-
imately Weyl invariant to automatically avoid isocurvature constraints. In this case the
population of the dark sector might be dominated from the phase transition. Another
possibility is to change the dynamics during inflation so that minimally coupled scalars are
not present at the beginning of inflation but emerge for example through a phase transition.
We plan to return to these questions in future work.
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A Power spectra of free fields

In this appendix we review the computation of power spectrum generated by inflation of
minimally coupled scalar and massive vector fields, see [3, 9, 10, 31, 43].

To compute the energy density at late time we start from the power spectrum of fields
at horizon exit, k ≈ aHI : in the linear regime the energy density at later time will be the
product of the primordial power spectrum times the ‘transfer functions’ determined by the
subsequent (classical) evolution. The spatial Fourier transform of a canonically normalized
field X(t, ~x) has a power spectrum

〈X(t,~k)X∗(t, ~q)〉 = (2π)3δ(3)(~k − ~q) 2π2

k3 PX(t, k) . (A.1)

For the problem under consideration the power specrum is a combination of the power
spectrum at horizon crossing and the later evolution, PX(t, k) ≈ PX(k)|exit×|transfer(t,~k)|2,
captured by a transfer function T (t,~k), X(t,~k) ≈ X(~k)|exit × T (t,~k). These quantities are
determined by the equation of motion with Bunch-Davies boundary conditions deep inside
the horizon.

Scalar. A scalar field of mass M with a coupling to curvature ξ has an equation of motion

Ẍ + 3HẊ + k2

a2X + (M2 + ξR)X = 0 . (A.2)

The above equation is used to determine the amplitude of the field at horizon exit, as well
as the transfer function at later stages. The average energy density at any time can be
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expressed by exploiting the expression for the power spectrum of the Fourier transform
X(t,~k)

ρX(t) = 〈Ẋ
2

2 + |∇X|
2

2a2 +M2X
2

2 〉

≈
∫
d log k PX(k)|exit

2

[
|Ṫ (t,~k)|2 +

(
k2

a2 +M2
)
|T (t,~k)|2

]
. (A.3)

The above expression is then easily computed by knowing the primordial power spectrum
(using Bunch-Davies boundary conditions) and the transfer function T (t,~k). The power
spectrum at horizon exit (and hence on super-horizon scales) is given by

PX(k)|exit = H2
I

(2π)2 (A.4)

The transfer function T (t,~k) instead can be derived in simple scaling limits, such as

Tξ=0(t,~k) ≈


1 k/a� H and M � H ,

exp(iMt)/a3/2 k/a�M and H �M ,

exp(ik/a t)/a M,H � k/a .

(A.5)

From this expression we can compute the energy density today per wave-number that we
define dρX/d log k, which corresponds to the function under the integral sign in (A.3). Each
mode will behave according to (A.5) when it enters the relevant regimes. It is convenient
to define keq = aeqH(aeq), k∗ ≡ a(H = M)M ≡ a∗M , and also kmax = aendHI . Since
we can roughly estimate kmax ≈ T0

√
MPl/TR, for the model under consideration we have

M � kmax, such that today all the modes are non-relativistic. Moreover, we define ak the
scale factor when the mode k re-enters the horizon: akH(ak) = k.

dρX
d log k

∣∣∣∣
today

≈ PX(k)|exit


k2

a2
k

a4
k

a(k = aM)4
a(k = aM)3

a3
0

= Mka2
k ≈ H2

eq
M

k
a4

eq k � k∗ ,

M2a
3
∗
a3

0
≈ H2

eq

√
M/Heqa

3
eq k � k∗ ,

(A.6)
where k∗ ≈ aeq

√
HeqM . Since k∗ � keq we do not expect a different qualitative behaviour

for modes that re-enters during matter domination. Normalizing to the peak infra-red part
of the spectrum, and making use of the relation

H2
∗ = π2

90g∗
T 4
∗

M2
Pl
−→ s∗ = 2π2

45 g∗T
3
∗ = 2.3g1/4

∗ (H∗MPl)3/2, (A.7)

we get

1
s

dρX
d log k

∣∣
ξ=0 ≈

1
g∗(M)1/4

H2
I

(2π)2

√
M

M
3/2
Pl


k∗
k

k � k∗ ,

1 k � k∗ ,
. (A.8)
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Vector. The computation for the vector field is very similar. A Stueckelberg vector Aµ(t,~k)
with mass M has the following equation of motion for the longitudinal polarization [3]

ÄL +H

(
1 + 2k2

k2 + a2M2

)
ȦL + k2

a2AL +M2AL = 0 , (A.9)

which in the relativistic limit (k � aM) resembles the equation for a minimally coupled
scalar (A.2). The corresponding energy density is given by

ρA(t) = 1
a2

∫
d log kPX(k)|exit

2
k2

M2

[
a2M2

a2M2 + k2 |Ṫ |
2 +M2|T |2

]
(A.10)

where we have normalized the power spectrum to the case of a minimally coupled scalar
X described before (in this case it is the Goldstone eaten by the vector). In the above
expression T is again the transfer function for the field AL with trivial initial conditions. In
the relevant scaling limits, the expression for the transfer function is again given by (A.5)
with a slight modification7

TL(t,~k) ≈


1 k/a� H and M � H ,

exp(iMt)/
√
a k/a�M and H �M ,

exp(ik/a t)/a M,H � k/a .

(A.11)

As compared to the case of the scalar we see that when the mass term dominates on
super-horizon scales, where TL ≈ 1, the energy density redshifts as 1/a2. This behaviour is
instrumental to suppress long modes contributions to the power spectrum today (see figure 1
for an explicit calculation). By direct inspection we arrive at the following decomposition
of the power spectrum

1
s

dρA
d log k

∣∣
L
≈ 1
g∗(M)1/4

H2
I

(2π)2

√
M

M
3/2
Pl


k∗/k k � k∗
1 k ≈ k∗
k2/k2

∗ k � k∗

. (A.12)

B Isocurvature perturbations

In this appendix we derive the contribution to isocurvature perturbations for a minimally
coupled scalar with non vanishing mass and quartic coupling.

When the mass or the quartic coupling are sizable, inflationary perturbations of a
minimally coupled scalar are suppressed for the modes that exit at the beginning of inflation
corresponding to cosmological scale in our universe today [35, 36, 42]. This can be seen as
follows. The power spectrum of a massive scalar field during inflation reads

P (k) = 2π2

k3 ∆(k) = H2
I

2k3

(
k

aHI

)3−2ν
, ν =

√
9
4 −

M2

H2
I

≈ 3
2 −

M2

3H2
I

. (B.1)

7Continuity of the first derivative across the matching condition, ensure that the growing solution for
T in the region k/a � H ,M � H, where the vector equation of motion differs from the scalar case, is
absent [3].
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The power spectrum allows us to compute the equal-time 2-point function as 〈φ(~x)φ(~y)〉 =∫
d3k/(2π)3P (k)e−i~k·(~x−~y). Therefore the variance of the field at a point in space is given

by the following quantity (at the end of inflation)

〈φ2(~x)〉 = H2
I

(2π)2

∫ HIae

HIaee
−NI

dk

k

(
k

aeHI

) 2M2
3H2
≈


3H4

I

8π2M2 . NI >
H2
I

M2 ,

NI
H2
I

(2π)2 NI <
H2
I

M2 ,
, (B.2)

where ae is the scale factor at the end of inflation and NI is the total number of e-foldings of
inflation. The fact that 〈φ2〉 approaches a constant value is due to the balance between the
stochastic inflationary fluctuations and the classical force relaxing the field to the minimum.
From the point of view of the power spectrum the convergence of the integral in the IR is
due to the suppression of long modes that thus cease to contribute to 〈φ2〉.

The observation above has an important consequence when H2
I /M

2 is smaller than
the number of e-foldings of visible inflation because modes of cosmological size today are
suppressed. This allows to avoid isocurvature constraints [35].

We can explicitly compute the power spectrum of the isocurvature DM perturba-
tions Piso(k) = (2π2/k3)∆iso(k) from the definition of the 2-point function of the density
contrastδρ/ρ̄,

〈δρ(x)δρ(0)〉
〈ρ〉2

=
∫

d3k

(2π)3Piso(k)e−i~k·~x . (B.3)

Given that the energy density is proportional to ρ(x) ∝ φ2(x), and under the assumption
of gaussianity, we have

〈δρ(x)δρ(0)〉
〈ρ〉2

= 〈φ
2(x)φ2(0)〉 − 〈φ2〉2

〈φ2〉2
= 2〈φ(x)φ(0)〉2

〈φ2〉2
(B.4)

The isocurvature spectrum is therefore related to the square of the power spectrum of φ.
By taking the inverse Fourier transform, we get

∆iso(k) = k3

2π2
2
〈φ2〉2

∫
d3xei

~k·~x〈φ(x)φ(0)〉2 = k3

2π2
2
〈φ2〉2

∫
d3q

(2π)3P (q)P (k − q) . (B.5)

The above integral can be computed directly∫
d3q

(2π)3P (q)P (k−q) =A2 Γ(2ν)
Γ(ν)2

∫ 1

0
dx

∫
d3Q

(2π)3
xν−1(1−x)ν−1

[Q2 +k2x(1−x)]2ν , (B.6)

= k3−4νA2 Γ(2ν)
Γ(ν)2

1
(4π)3/2

Γ(2ν−3/2)
Γ(2ν)

∫ 1

0
dx
xα−1(1−x)α−1

[x(1−x)]2ν−3/2 (B.7)

= k3−4νA2 Γ(2ν)
Γ(ν)2

1
(4π)3/2

Γ(2ν−3/2)
Γ(2ν) 22ν−2√π

Γ
(

3
2−ν

)
Γ(2−ν) (B.8)

with A2 = H4
I /4(1/aeHI)6−4ν .

For NI > H2
I /M

2 using eq. (B.2) one finds,

∆iso(k) ≈ 8M2

3H2
I

(
k

aeHI

) 4M2
3H2
I (B.9)
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From this expression we can see explicitly that cosmological modes, that exit at the beginning
of inflation, have a suppressed power. In particular, the mode k∗ that exits the horizon
during the last N∗ e-fold of inflation experiences a suppression

∆iso(k∗) ≈
8M2

3H2
I

e
− 4NIM

2

3H2
I . (B.10)

For NI ≈ 50, a value consistent with the fact that the field has already reached the stationary
state (B.2), we can estimate the strongest bound arising from isocurvature perturbations.
At cosmological scales tested by the CMB it amounts to have ∆iso/∆ζ |k∗ . 0.035. Satisfying
this bound implies

M & 0.5HI (isocurvature) (B.11)

Such value is still compatible with the assumption that the field is light during inflation
and can be efficiently produced via inflationary fluctuations.

A different situation arises when HI � f because the quartic coupling dominates the
potential. For this situation, the previous formulas cannot be directly applied to assess the
impact of isocurvatures and one should properly use the formalism of stochastic inflation [44].
An approximate result can be obtained by expanding the potential around the classical
value of φ. Doing so, the second derivative of the scalar potential appears in the equation
of motion for the fluctuations. Since V ′′ = λ(3φ2 − f2) for φ ∼ HI the effective mass is
M2 ≈ 3λ〈φ2〉. By plugging this value into (B.2) we get

〈φ2〉 ≈ H2
I

(2π)
√

2λ
(B.12)

a value that is reached after a number of e-foldings NI ∼
√

8π2/9λ. As before the variance
does not grow in time so that long wave-length modes are suppressed. Indeed, even for
vanishing masses, the evolution of the field variance on super-horizon scales reaches a steady
configuration set by the compensation between random walk and the quartic interaction [44].
Following the steps that brought us to (B.9) we get

∆iso|quartic(k∗) ≈
2
√

2λ
π

e−
N∗
√

2λ
π . (B.13)

Applying the same bound from the CMB, we get a lower limit on the size of the quartic
coupling in order to satisfy the constraints from isocurvatures

λ & 1 (isocurvature) , (B.14)

where we assumed 50 e-folding of visible infllation. A more precise estimate can be
obtained using the stochastic formalism of inflation [44]. In that case one finds ∆iso ≈
1.5
√
λe−0.58N∗

√
λ giving similar constraints on λ.
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