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1 Introduction

Light-cone distribution amplitudes (LCDA) of the B-meson are needed as hadronic input
functions for the theoretical descriptions of exclusive (energetic) B-meson decays. These
descriptions include factorization theorems in Quantum Chromodynamics (QCD), which
have first been introduced to tackle charmless non-leptonic B-decays [1, 2]. They have
later also been applied to other decay modes, including semi-leptonic and radiative decays
(see e.g. the corresponding chapter in [3] for a recent overview and an exhaustive list
of references). The descriptions further include light-cone sum rules (LCSR), which are
a complementary approach. These sum rules can be used to determine “soft” hadronic
matrix elements for which the factorization of the initial and final states does not work
completely. A formulation of light-cone sum rules with B-meson LCDA has been proposed
in refs. [4–7]. It has the advantage that the very same hadronic input functions appear as
in QCD factorization. This fact has recently been exploited to show that precise theoretical
predictions for the benchmark decay mode B → γ`ν can be obtained [8–10], which in turn
allows inferring the relevant information on the B-meson LCDA from future experimental
data, notably from the Belle-2 experiment; see the corresponding paragraph in ref. [3].

The leading B-meson LCDA enters the aforementioned theoretical approaches in
different ways:

1. The leading-power terms in QCD factorization involve logarithmic moments of the
B-meson LCDA. The definition of these logarithmic moments follows later.

2. In LCSR the B-meson LCDA enters in the form of integrals where the contributions
from large light-cone momenta are parametrically suppressed. We later define ap-
propriate quantities to describe the low-momentum behavior of the B-meson LCDA
relevant for these sum-rule applications.

Adhoc models of the LCDA introduce non-trivial and potentially unphysical correlations
within and between these two sets of quantities. The modelling itself and together with
these correlations give rise to unquantifiable systematic uncertainties in the determination
of the leading-twist LCDA, e.g., from the photoleptonic decay B̄ → γ`−ν̄. One of the
main results of this work is a parametrization of the LCDA that is general enough to
avoid unjustified correlations between its observable features and that includes as much
model-independent theoretical information as possible.

Parametrizing the soft contribution of the B-meson LCDA introduces by definition
a low reference momentum scale (in the following denoted as ω0), which characterizes
hadronic dynamics. In previously discussed benchmark models, this scale has often been
identified with the HQET parameter Λ̄ by using theoretical expressions for the positive
moments of the LCDA, either at tree level [11] or including the radiative tail [12]. Our
parametrization for the LCDA starts from an infinite series of terms, such that the moment
constraints can be fulfilled at each order of the HQET expansion for any value of ω0.
The only constraint on this otherwise free parameter is coming from the requirement that
the expansion coefficients are sufficiently converging, which again forces ω0 to be of the
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same order as Λ̄. In practice, we can truncate the expansion after a few terms, and the
intrinsic uncertainty of the truncation can be estimated by varying the parameter ω0 in a
reasonable range.

The theoretical properties of B-meson LCDAs have been studied extensively in the
past. For the scope of this work, two related aspects turn out to be most important:

• the behavior of LCDAs under change of the renormalization scale; and

• the behavior of LCDAs at large light-cone momentum of the light quark (i.e. at short
separations of the fields in the defining light-cone operator).

In both cases, one has to carefully study the renormalization of light-cone operators in the
heavy-quark limit, i.e. the treatment of the b-quark as a static source of color in heavy-
quark effective theory (HQET). The resulting renormalization group (RG) equation for the
B-meson LCDA has been first calculated at the one-loop level by Lange and Neubert [13].
The eigenfunctions of the one-loop RG kernel have first been identified in ref. [14], which
shortly thereafter have been reproduced from conformal symmetry considerations [15]. The
latter method has very recently been used to derive the RG kernel for the B-meson LCDA
at two loops [16], and the solution of the RG equation and its implementation into QCD
factorization theorems have been discussed in refs. [17, 18]. Here we will restrict ourselves to
one-loop accuracy. However, our formalism is general enough to allow the implementation
of two-loop effects.

This article is structured as follows. We summarize the properties of the leading
B-meson LCDA φ+ and define our notations in section 2. This includes a brief discussion
of the relevant analytic properties, the renormalization at one-loop level, the generating
function for the logarithmic moments, and the definition of suitable quantities to describe
the low-momentum behavior. In section 3 we introduce our novel parametrization for the
B-meson LCDA φ̃+(τ) in position space. Starting from a conformal transformation τ 7→ y,
which maps the real τ axis onto the unit circle in the complex y-plane, we construct a
Taylor expansion in the variable y, where the Taylor coefficients are constrained by an
integral bound. We translate our parametrization to the so-called “dual” space and to
momentum space. In both cases, this results in an expansion in terms of associated Laguerre
polynomials. We also provide expressions for the logarithmic moments and discuss different
options to implement the effect of the RG evolution. Moreover, we briefly discuss how to
generalize our formalism to higher-twist LCDAs, restricting ourselves to the Wandzura-
Wilczek limit. Our parametrization is generic enough to capture the features of a variety
of benchmark models discussed in the literature. This is illustrated in section 4 where we
study the convergence properties of our expansion for four examples of such models. To set
the stage for future phenomenological applications, in section 5, we perform numerical fits
on the basis of two pseudo-observables that are expected to be well constrained by future
data on the photo-leptonic B → γ`ν decay. In addition, we show how including theoretical
information from the local operator product expansion (OPE) yields further constraints of
the expansion coefficients in phenomenological fits. We conclude in section 6 and provide
some additional formulas in two appendices.
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2 Prerequisites

The leading-twist1 LCDA of the B-meson is defined as the matrix element of a light-cone
operator in HQET normalized to the matrix element of the corresponding local operator [11]:

φ̃+(τ ;µ) = 〈0|q̄(τn) [τn, 0] /nγ5 hv(0)|B(v)〉
〈0|q̄(0) /nγ5 hv(0)|B(v)〉 . (2.1)

Here nµ is a light-like vector with n2 = 0, and the gauge link [τn, 0] appears as a straight
Wilson line that renders the definition of φ̃+(τ) gauge invariant in QCD. The B-meson
moves with velocity vµ. For simplicity we are considering a frame with v · n = 1. The
limit mb →∞ has already been taken in HQET. Hence, φ̃+ does not depend on the heavy-
quark mass mb. The mb-dependence of physical amplitudes is contained in short-distance
coefficient functions that multiply the LCDA, e.g., in QCD factorization calculations.

2.1 Mathematical properties

In position space, the LCDA fulfills the following three properties. They have previously
been discussed, e.g., in ref. [20]:

P1: φ̃+(τ) is analytic in the lower complex half plane Im τ < 0.

P2: φ̃+(τ) is analytic on the real τ axis, except for a single point τ = 0 where it has
a logarithmic singularity of measure zero, with a branch cut extending along the
positive imaginary axis. Hence φ̃+(τ) is Lebesgue-integrable with

lim
ε→0+

∞−iε∫
−∞−iε

dτ φ̃+(τ, µ) = 0 (2.2)

P3: φ̃+(τ) can be analytically continued from the lower complex half plane onto the real
τ axis almost everywhere (i.e. in all points except for a null set).

In the following we assume that the Fourier transform exists,

φ+(ω;µ) =
+∞−iε∫
−∞−iε

dτ

2π eiωτ φ̃+(τ ;µ) . (2.3)

It follows from the properties P1 to P3 and the Paley-Wiener theorem [21, theorem 7.2.4]
that φ̃+(τ) is the holomorphic Fourier transform of a function φ+(ω),

φ̃+(τ ;µ) =
∫ ∞

0
dω e−iωτ φ+(ω;µ) , (2.4)

and that φ+(ω) ∈ L2 on the support [0,∞). Plancherel’s theorem then provides that both
φ̃+(τ) and φ+(ω) are square-integrable on the entire real τ axis and the positive ω axis,
respectively, and their two-norms coincide:∫ +∞

−∞

dτ
2π
∣∣φ̃+(τ)

∣∣2 =
∫ ∞

0
dω
∣∣φ+(ω)

∣∣2 <∞ . (2.5)

As consequence, the inner product exists in both the ω space and the τ space.
1The notion of twist has to be modified for the discussion of light-cone operators in HQET; see ref. [19].
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We further assume that φ+(ω;µ) ∝ ω for ω → 0 at large renormalization scales
µ � Λhad. This is supported by the asymptotic behavior due to approximate conformal
symmetry within the twist expansion [22]. From this assumed behavior at ω = 0 one further
property follows:

P4: The position space LCDA must asymptotically fall off at least as fast as 1/τ2:

0 ≤ lim
τ→∞

∣∣∣τ2 φ̃(τ)
∣∣∣ <∞ . (2.6)

In QCD factorization theorems, the momentum-space argument ω = n · l represents the
light-cone projection of the light spectator-quark momentum lµ in the B-meson. We remark
that the support of the matrix element in eq. (2.1) is different from the corresponding
expressions for a light pseudoscalar meson, due to the different analytic properties of the
heavy-quark propagator in HQET compared to a light-quark propagator in full QCD. As a
consequence, ω ∈ [0,∞).

2.2 Renormalization and eigenfunctions

The B-meson LCDA φ+(ω) can be expanded in terms of a continuous set of eigenfunctions
of the one-loop renormalization-group (RG) equation, which can be expressed through
Bessel functions of the first kind [14, 15]. Following the convention of ref. [15] one has2

φ+(ω, µ) =
∫ ∞

0
ds
√
ωs J1(2

√
ωs) η+(s, µ)

⇔ s η+(s;µ) =
∫ ∞

0

dω
ω

√
ωs J1(2

√
ωs)φ+(ω;µ) .

(2.7)

The notation for the function η+(s) is related to the function ρ+(ω′) as defined in ref. [14]
via the relation

s η+(s;µ) = ρ+(ω′ = 1/s;µ) . (2.8)

In this work we use the notation of ref. [15]. For convenience we also quote the relation
between the dual-space LCDA and the position-space LCDA, see also ref. [14],

s η+(s;µ) =
+∞−iε∫
−∞−iε

dτ
2π
(
1− e−is/τ

)
φ̃+(τ ;µ)

⇔ φ̃+(τ ;µ) = − 1
τ2

∫ ∞
0

ds e
is
τ s η+(s;µ) .

(2.9)

2The transformations in eq. (2.7) imply that the momentum-space LCDA φ+(ω, µ) grows linearly in ω
for small momenta, and its dual η+(s, µ) goes to a constant at s→ 0.
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The purpose of these integral transformations is to showcase that the function η+(s)
obeys a simple multiplicative RG equation at one-loop,3

dη+(s;µ)
d lnµ = −

[
Γc(αs(µ)) ln

(
µ s e2γE

)
+ γ+(αs(µ))

]
η+(s;µ) . (2.10)

Its explicit solution reads

η+(s;µ) = eV (µ;µ0) η+(s;µ0) (µ̂0 s)−g(µ;µ0) . (2.11)

Here and in the following, we use the short-hand notation

µ̂ ≡ µ e2γE , (2.12)

and similar for other quantities. Our definitions of the functions V (µ;µ0) and g(µ;µ0)
coincide with the conventions used, e.g., in ref. [14]. They are given in eq. (A.1) and
eq. (A.2) in the appendix, respectively. For convenience, we quote their RG equations:

dV (µ, µ0)
d lnµ = −

[
Γc(αs(µ)) ln

(
µ

µ0

)
+ γ+(αs(µ))

]
,

dg(µ, µ0)
d lnµ = Γc(αs(µ)) .

(2.13)

2.3 Logarithmic moments and generating function

In QCD factorization theorems for exclusive B-meson decays [1, 2] the B-meson LCDA
enters in terms of logarithmic moments. It is convenient to define these moments directly
from the spectral representation [14, 23]. In the following, we will use the convention

Ln(µ, µm) = (−1)n
∫ ∞

0
ds lnn (µ̂ms) η+ (s;µ) , (2.14)

where L0 is commonly called 1/λB . We emphasize that in the definition of the logarithmic
moments Ln with n ≥ 1, we have considered a fixed reference momentum scale µm.
Alternative definitions in the literature have used the renormalization scale µ itself or the
zeroth logarithmic moment λB. The Mellin transform of η+(s)

F[η+](t;µ, µm) ≡
∫ ∞

0
ds (µ̂ms)−t η+(s;µ) (2.15)

conveniently generates the moments Ln as the coefficients of its Taylor expansion around
t = 0:

Ln(µ, µm) =
( d

dt

)n
F[η+](t;µ, µm)

∣∣
t=0 . (2.16)

3Recently, the two-loop RG equation has been derived in ref. [16],(
d

d lnµ + Γc ln(µ̂ s) + γ+

)
η+(s;µ) = 4CF

(
αs
4π

)2
∫ 1

0
du ū

u
h(u) η+(ūs;µ) ,

where ū ≡ 1− u and the function h(u) is given by

h(u) = ln ū
[
β0 + 2CF

(
ln ū− 1 + ū

ū
lnu− 3

2

)]
, with h(0) = 0 .
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We similarly define the generating function4 of the logarithmic moments of φ+(ω)

G[φ+](t;µ, µm) =
∫ ∞

0

dω
ω

(
µm
ω

)−t
φ+(ω, µ) , (2.17)

which is related to the previous generating function by

G[φ+](t;µ,µm) = Γ(1+t)
Γ(1−t) e2γE tF[η+](t;µ,µm) =F[η+](t;µ,µm)

(
1+O

(
t3
))

(t< 1) .

(2.18)
Evidently, the logarithmic moments of η+ and φ+ coincide for n = 0, 1, 2. We regularly omit
the argument µm in the logarithmic moments and the generating functionals for brevity.

The logarithmic moments Ln obey simple coupled RG equations at one-loop (see
also ref. [14]),

dLn(µ, µm)
d lnµ = Γc(µ)Ln+1(µ, µm)− Γc(µ) ln µ

µm
Ln(µ, µm)− γ+(µ)Ln(µ, µm) .

(2.19)

For the particular choice µm = µ0 one obtains the simple solution

Ln(µ, µ0) = eV (µ,µ0)
∞∑
k=0

[g(µ, µ0)]k

k! Ln+k(µ0, µ0) . (2.20)

The result for an arbitrary choice of µm follows from

Ln(µ, µm) =
n∑
i=0

(
n

i

)
Li(µ, µ0)

(
ln µ0
µm

)n−i

= eV (µ,µ0)
(
µ0
µm

)−g(µ,µ0) ∞∑
k=0

[g(µ, µ0)]k

k! Ln+k(µ0, µm) .
(2.21)

The generating function F [η+](t;µ, µm) is particularly useful, because it has a simple
scale dependence that follows from eq. (2.11),

F[η+](t;µ, µm) = eV (µ;µ0)
(
µ0
µm

)−g(µ;µ0)
F[η+](t+ g(µ;µ0);µ0, µm) (2.22)

This is the solution of the RG equation,

∂F[η+](t;µ)
∂ lnµ = −

(
γ+(µ) + Γc(µ) ln µ

µm

)
F[η+](t;µ) + Γc(µ)

∂F[η+](t;µ)
∂t

(2.23)

The two-loop RG equation for G[φ+] and its solution can be found in ref. [18], which can
easily be translated to F[η+] via eq. (2.18).

Finally, we note that the generating function F[η+] can directly be obtained from the
position-space LCDA via

F[η+](t;µ, µm) = Γ(1− t)
t

∫ ∞
−∞

dτ
2π

(
i

µ̂mτ

)t
φ̃+(τ ;µ) . (2.24)

4The function G[φ+] has also been used in the first analysis of the RG equation for φ+(ω;µ) in ref. [13].
As has been shown in ref. [18], this function also is useful to solve the 2-loop RG equations (referred there
to as “Laplace space”).
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2.4 Behavior at small momentum

While the theoretical expressions in the QCD factorization approach probe the logarith-
mic moments Ln(µ), typical applications of light-cone sum rules (LCSR) with B-meson
LCDAs [4–7] require knowledge of the B-meson LCDAs for small momenta ω ≤ s0/2E. Here
s0 is the effective threshold parameter in the hadronic model for the spectral density under
consideration, and E is the large recoil energy of the physical process. In such applications
we may expand the LCDA around ω = 0, in terms of its nth derivatives, assuming that the
latter exist. We then obtain

φ
(n)
+ (0;µ) = (−1)n+1

Γ(n)

∫ ∞
0

ds sn η+(s;µ) = −(−µ̂m)−n
Γ(n) F[η+](−n;µ) (2.25)

with the same generating function F[η+](t). It is to be stressed here that φ(n)
+ (0) discussed

above probe the function F[η+] at finite (discrete) values t = −n (n > 0), while the previously
discussed logarithmic moments Ln probe the Taylor coefficients of the function F[η+] around
t = 0. Thus, LCSR and QCD factorization calculations are sensitive to different features of
the underlying LCDA φ+(ω). In particular, for phenomenological applications beyond the
leading factorizable terms, it is not sufficient to consider only the behavior at t = 0 without
also considering the behavior at t = −n. On this point we disagree with the conclusions
drawn in ref. [18] where it has been argued that only the expansion of the function F[φ+](t)
around t = 0 is phenomenologically relevant.

We finally note that in the context of LCSR it has been observed that the strict
expansion of the sum rule in s0/2E � 1 is numerically not well converging. In this view,
we propose another quantity to benchmark parametrizations of the LCDA, the normalized
Laplace transform5

L[φ+](ζ, µ)
L[ω](ζ) ≡

∞∫
0
dω e−ζω φ+(ω, µ)
∞∫
0
dω e−ζω ω

= ζ2 φ̃+(−iζ, µ) . (2.26)

For ζ →∞ this reduces to φ′+(0), while for large but finite values of ζ one is sensitive to
the low ω-behavior of the LCDA, regardless of whether the derivatives φ(n)

+ (0) exist.

3 Parametrization of the B-meson LCDA

We propose a novel parametrization of the leading-twist B-meson LCDA that fulfills the
properties discussed in section 2. We start from the position-space LCDA and study the
function χ[r] defined by the integral

χ[r](µ) ≡
∞∫
−∞

dτ

2π
∣∣∣φ̃+(τ ;µ)

∣∣∣2 |r(τ ;µ)|2 (3.1)

5This is not to be confused with what is referred to as the Laplace transform in ref. [18], which we call
the generating function; see eq. (2.17).
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Re τ

Im τ

0

(a) Color-marked domain of τ

Re y(τ)

Im y(τ)

1−1

(b) Image in the y(τ)-plane.

Figure 1. Illustration of the variable transform τ 7→ y(τ), with τ in units of 1/ω0. Hollow small
circles are understood to represent points at Re τ → ±∞. The small circles and colored lines
correspond to each other in the left and right sketches.

with some suitably chosen complex function r(τ ;µ). It is instructive to rewrite this integral
by means of the variable transform

τ 7→ y(τ) ≡ iω0τ − 1
iω0τ + 1 ⇔ iω0τ(y) = 1 + y

1− y . (3.2)

This introduces an auxiliary parameter ω0, which serves as a reference momentum scale.
The variable transform features the following properties, which are visualized in figure 1.

• The point τ = 0 is mapped onto y(τ = 0) = −1.

• The points at |τ | → ∞ are mapped onto lim|τ |→∞ y(τ) = +1.

• The real τ axis is mapped onto the standard unit circle |y| = 1 in the complex y-plane.

• The half plane Im τ < 0 is mapped onto the open unit disk |y| < 1.

Using the new variable y, the integral in eq. (3.1) is mapped onto the integral along
the boundary ∂D of the unit disc in the complex y plane

χ[r] =
∮
∂D

dy
2π
∣∣∣φ̃+(τ(y))

∣∣∣2 |r(τ(y))|2 J(τ(y))

=
π∫
−π

dθ

2π
∣∣∣φ̃+(τ(y))

∣∣∣2 |r(τ(y))|2 (−iy) J(τ(y))
∣∣∣∣∣
y=eiθ

.
(3.3)

In the above θ = arg(y) and we drop the scale dependence in the arguments for legibility.
The Jacobian −iyJ of the chain of variable transforms reads

−iy J(τ(y)) = −iy dτ
dy = − 2y

ω0 (1− y)2 = 1 + ω2
0τ

2

2ω0
. (3.4)

This result inspires us to factorize the LCDA as

φ̃+(τ) ≡ f+(y(τ))
r(τ) (1 + iω0τ) , φ̃∗+(τ) = f∗+(y∗(τ))

r∗(τ) (1− iω0τ) . (3.5)
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This factorization simplifies the expression in eq. (3.1)

χ = 1
2ω0

π∫
−π

dθ
2π |f+(y)|2

∣∣∣∣
y=eiθ

, (3.6)

which is similar in construction to unitarity bounds for hadronic form factors and is therefore
conducive to a systematic parametrization of φ+ (or equivalently f+) in terms of orthogonal
polynomials on the y unit circle; see ref. [24] and references therein. These polynomials
coincide with the monomials yn. Negative powers of y cannot appear in the parametrization
of φ(τ), since they would induce singularities on the open unit disk, thereby violating P1.
The same holds for positive powers of y∗. Therefore, the Taylor expansion of the function
f+(y) corresponds to the Fourier series

f+(y) ≡
∞∑
k=0

ak y
k , f+(y)

∣∣
y=eiθ =

∞∑
k=0

ak eiθk (3.7)

which yields

χ[r] = 1
2ω0

∞∑
k=0
|ak|2 . (3.8)

Therefore the sequence {ak} is an element of the `2 space of sequences and must fall off
faster than

√
1/k as k →∞. In this way we have constructed a converging expansion for

the LCDA in position space. The expansion can be truncated at some value k = K, and
the truncation error is controlled by the value of the integral 2ω0χ. From a different point
of view, as the partial series is monotonously growing with K, a higher saturation due to
the truncated parameters implies a better approximation by the truncated parametrisation.
In contrast to the unitarity bounds for hadronic form factors, however, the value of the
bound χ[r] for the leading-twist LCDA is presently not known. We find that χ[r] is finite
as long as6

• | limτ→∞ r(τ ;µ)/τ | <∞, by P4; and

• r(τ ;µ) is regular as τ → 0, by P2.

As our default choice for the weight function r we take the simplest form that is
consistent with the analyticity requirements of φ̃+(τ) and that leads to at least a 1/τ2

suppression of φ̃+(τ) for |τ | → ∞, see P4,

r(τ ;µ0) ≡ 1 + iω0τ , (3.9)

at a fixed reference scale µ0 for which we require that µ0/ω0 ∼ O(1). Other choices for
r(τ, µ0) can be reduced to eq. (3.9) by readjusting the parameters an in the truncated
expansion in y. Note that the choice of the weight function is neither unique nor meaningful
for the expansion of the LCDA to infinite order in our basis — it is critical, however,

6Indeed it is sufficient that r(τ ;µ) diverges slower than 1/
√
τ for τ → 0, i.e. limτ→0

√
τ r(τ) = 0.
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for the rate of convergence. We preemptively point out that our choice reproduces the
popular exponential model at trivial order, i.e., a0 = 1 and ak>0 = 0 for some value of ω0.
Thus one can view our parametrisation as a systematic extension of the exponential model.
Via eq. (2.9) our choice for r(τ, µ0) leads to simple expressions for the dual LCDA, see
below. With this — as one of the central results of our paper — we obtain the following
parametrization of the B-meson LCDA in position space,

φ̃+(τ ;µ0) = (1− y(τ))2

4

K∑
k=0

ak(µ0) (y(τ))k

= 1
(1 + iω0τ)2

K∑
k=0

ak(µ0)
(
iω0τ − 1
iω0τ + 1

)k
,

(3.10)

which reflects an expansion in the point τ = −i/ω0. It is to be emphasized that our
parametrization does not aim to cover the singular behavior of the LCDA in the local
limit τ → 0. Actually, as can be seen from eq. (3.10), the values of φ̃(τ) and all of its
derivatives are finite at τ = 0 for any finite value of the truncation K, which in turn implies
the existence of all non-negative moments 〈ωn〉 in momentum space. Nevertheless — as
we will show in section 4 — the parametrization can be used at small but finite values
|τ0| ∼ 1/µ0 � 1/ω0 to implement the constraints from the local OPE on φ̃+(τ, µ0) [25]. In
this way, we can also mimic the “radiative tail” for intermediate values ω ∼ µ0 � ω0 of the
B-meson LCDA in momentum space [12]. Moreover, as we show below, we can consistently
include the RG evolution within the framework of our parametrization by suitably adjusting
the coefficients ak(µ) and the function r(τ, µ).

3.1 LCDA in dual space and logarithmic moments

In dual space our parametrization proposed in eq. (3.10) translates via eq. (2.9) to

η+(s;µ0) = e−sω0
K∑
k=0

(−1)k ak(µ0)
1 + k

L
(1)
k (2ω0s) , (3.11)

where L(1)
k are the associated Laguerre polynomials. The expansion coefficients can be

obtained from the orthogonality of the Laguerre polynomials resulting in the projection

ak(µ0) = 4 (−1)k ω0

∞∫
0

ds (ω0s) e−sω0 L
(1)
k (2ω0s) η+(s;µ0) . (3.12)

The expression for the integral χ reads

2ω0 χ[r](µ0) =
K∑
k=0
|ak|2 = 2ω0

∫ ∞
0

ds

(
ω2

0 |sη+(s;µ0)|2 +
∣∣∣∣ dds (sη+(s;µ0))

∣∣∣∣2
)

≡ 2ω0

∫ ∞
0

ds

∫ ∞
0

ds′
(
s′η∗+(s′;µ0)

)
R[η](s′, s) (sη+(s;µ0)) , (3.13)

with the corresponding integral transform of our default choice of |r(τ ;µ0)|2,

R[η](s′, s) = ω2
0 δ(s− s′)− δ′′(s− s′) . (3.14)
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The generating function for the logarithmic moments can be expressed as

F[η+](t;µ0, µm) = Γ(1− t)
ω0

(
µ̂m
ω0

)−t K∑
k=0

ak 2F1(−k, 1 + t; 2; 2) . (3.15)

This result can be obtained using Cauchy’s residue theorem, where poles of higher order
result in derivatives of the integrand, which can be expressed in terms of binomial coefficients.
The hypergeometric function with negative first argument simplifies to polynomials in t of
nth order,

2F1(0,1+t;2;2) = 1 , 2F1(−1,1+t;2;2) =−t , 2F1(−2,1+t;2;2) = 1
3
(
1+2t2

)
, etc. ,

(3.16)

which are even functions of t for even n, and odd functions of t for odd n. From this we
obtain the expressions for the first few logarithmic moments within our parametrization:

L0(µ0) = 1
ω0

K∑
k=0

1− (−1)k+1

2
ak(µ0)
k + 1 = a0 + a2/3 + . . .

ω0
, (3.17)

L1(µ0) = −
(

ln µ̂m
ω0
− γE

)
L0(µ0) + 1

ω0

K∑
k=0

ak

[ d
dt 2F1(−k, 1 + t; 2; 2)

]
t=0

, (3.18)

= −
(

ln µ̂m
ω0
− γE

)
L0(µ0) + −a1 − 2/3 a3 + . . .

ω0
,

L2(µ0) =
[
π2

6 −
(

ln µ̂m
ω0
− γE

)2
]
L0(µ0)− 2

(
ln µ̂m
ω0
− γE

)
L1(µ0) (3.19)

+ 1
ω0

K∑
k=0

ak

[
d2

dt2 2F1(−k, 1 + t; 2; 2)
]
t=0

,

=
[
π2

6 −
(

ln µ̂m
ω0
− γE

)2
]
L0(µ0)− 2

(
ln µ̂m
ω0
− γE

)
L1(µ0)

+ 4/3 a2 + 4/3 a4 + 56/45 a6 + . . .

ω0
.

We emphasize that the properties of the confluent hypergeometric functions appearing in
eq. (3.18) and eq. (3.19) induce for µm = ω0 e−γE that the logarithmic moments L0 and
L2 only depend on coefficients ak with even index k. Likewise, the logarithmic moment
L1 only depends on coefficients ak with odd index k. The sequence generated by the
hypergeometric functions and their derivatives is a null sequence. This brings along two
important properties:

1. convergence of the series representation of the logarithmic moments is possible, even
if the series ∑k ak were not convergent; and

2. at the reference scale µm = ω0 e−γE , the logarithmic moments L0 and L1 can be
chosen independently of each other, i.e., there is no model correlation between the
two even for a truncated expansion.
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3.2 Momentum-space LCDA and behavior at ω = 0

The Fourier transform of our parametrisation in eq. (3.10) yields the corresponding expansion
of the momentum-space LCDA in terms of generalized Laguerre polynomials:

φ+(ω;µ0) = ω e−ω/ω0

ω2
0

K∑
k=0

ak(µ0)
1 + k

L
(1)
k (2ω/ω0) . (3.20)

The expansion coefficients can be obtained from the orthogonality of the Laguerre polyno-
mials resulting in the projection

ak(µ0) = 4
∞∫
0

dω e−ω/ω0 L
(1)
k (2ω/ω0)φ+(ω;µ0) . (3.21)

Alternatively, they can be obtained as the series coefficients of a single integral expression,

ak(µ0) = 1
k!
∂k

∂tk

∞∫
0

dω 4
(1− t)2 exp

{(t+ 1)
(t− 1)

ω

ω0

}
φ+(ω;µ0)

∣∣∣∣∣∣
t=0

. (3.22)

We highlight that truncating the parametrization at K = 0 and fixing a0 = 1 yields the
popular exponential model [11]. We emphasize again that the auxiliary parameter ω0 in our
parametrization has no physical meaning and only serves as a reference scale, which does,
however, influence the convergence of the expansion. The integral χ[r] can be expressed in
terms of the momentum-space LCDA as

2ω0 χ[r](µ0) =
K∑
k=0
|ak|2 = 2ω0

∫ ∞
0

dω

(
|φ+(ω;µ0)|2 + ω2

0

∣∣∣∣dφ+(ω;µ0)
dω

∣∣∣∣2
)

≡ 2ω0

∫ ∞
0

dω

∫ ∞
0

dω′ φ∗+(ω′;µ0)R[φ](ω′, ω)φ+(ω;µ0) (3.23)

with the Fourier transform of our default choice of |r(τ ;µ0)|2,

R[φ](ω′, ω) = δ(ω − ω′)− ω2
0 δ
′′(ω − ω′) . (3.24)

We note the similarity with the corresponding expressions in eq. (3.14), which strengthens
the notion of η+(s) being a “dual space representation” of φ+(ω).

The Taylor expansion of φ+(ω;µ0) around ω = 0 is related to our expansion coefficients
as follows:

φ′+(0;µ0) = 1
ω2

0

∞∑
k=0

ak ,

φ′′+(0;µ0) = − 1
ω3

0

∞∑
k=0

(2k + 2) ak , etc.
(3.25)

where the coefficients ak in the expressions for the nth derivative are weighted by numbers
growing power-like with kn−1. Since φ′+(0) exists, the coefficients ak must either have
alternating signs, or they must fall off faster than 1/k. However, we cannot constrain the
convergence of the series representation for the higher derivatives in eq. (3.25).
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As already mentioned above, one should keep in mind that actual applications of
B-meson LCDA in QCD sum rules consider integrals of φ+(ω) over a finite interval of small
ω values. Typically, the integrals are computed after Borel transformation, such that the
appearing expressions are Laplace transformations of the momentum space representation
φ+(ω). For this reason we consider the normalized Laplace transformation of φ+(ω) in
eq. (2.26) at large values ζ ≡ n t0 as an example,

`n(µ, t0) ≡ n2t20 φ̃+(−int0;µ) (3.26)

`n(µ, 1/λB) = 1
λ2
B

n2

(1 + nω0/λB)2

∞∑
k=0

ak(µ)
(
nω0/λB − 1
nω0/λB + 1

)k
(3.27)

The expansion of the quantities `n in terms of the coefficients ak in our parametrization
converges for 0 < n <∞.

3.3 RG evolution

At one-loop accuracy, the RG evolution is multiplicative in dual space. Starting from our
default parametrization at a fixed scale µ0 we obtain

η+(s;µ) = eV (µ,µ0) (µ̂0s)−g(µ,µ0) e−sω0
K∑
k=0

(−1)k ak(µ0)
1 + k

L
(1)
k (2ω0s) . (3.28)

We discuss three different ways of implementing the above scale evolution for our
parametrisation:

1. Use the above equation as is, that is to say, the respective forms in momentum and
position space. The expansion of φ+(ω, µ) remains in terms of the coefficients ak(µ0)
while the basis of functions of the parametrisation changes.

2. Project eq. (3.28) onto our parametrisation with our default choice of r(τ). We obtain
a matrix

ak′(µ) ∼
K∑
k=0
Rk′k ak(µ0) , k′ = 0, 1, . . . ,∞ .

Put differently, the basis of functions remains the same at all scales while the coefficients
evolve. In this approach, starting with a truncated set of coefficients ak(µ0), k ≤ K,
the evolution generates an infinite set of coefficients ak′(µ). For practical applications,
we thus need to truncate a second time (k′ ≤ K ′). The requirements for the secondary
truncation parameter K ′ can be studied numerically.

3. Project eq. (3.28) onto a modified parametrisation with a scale-dependent choice of
r(τ, µ) = r̃. The function r̃ is chosen such that we achieve a coefficient RGE similar
to the previous approach, with the additional feature that K ′ = K by construction,
i.e., no secondary truncation is necessary:

ãk′(µ) ∼
K∑
k=0
R̃k′k ak(µ0) , k′ = 0, 1, . . . ,K ,

with ãk(µ0) = ak(µ0). This approach guarantees that the coefficients remain bounded,
|ãk(µ)| <

√
2ω0χ̃(µ) at any scale µ, where χ̃ ≡ χ[r̃].

From now on we abbreviate g ≡ g(µ, µ0) and V ≡ V (µ, µ0).
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First, transforming eq. (3.28) into momentum space, we obtain:

φ+(ω;µ) = eV
(
µ̂0
ω0

)−g ω

ω2
0

K∑
k=0

(−1)k ak(µ0)
1 + k

[
1
k!

dk
dtk

(1− t
1 + t

)−g Γ(2− g)
(1 + t)2 1F1

(
2− g; 2; t− 1

t+ 1
ω

ω0

)]
t=0

.

(3.29)
The derivatives produce an expansion in 1F1(n−g;n;−x), where 1F1(n−g;n;−x)→ e−x for
g → 0. Here, the coefficients ak(µ0) fulfill a bound obtained at the initial scale. Numerical
calculations using the LCDA require evaluations of the hypergeometric functions with
non-integer parameters. Obviously, this procedure is not very convenient for numerical
evaluation, especially when taking the necessary variation of ω0 into account.

For the second case we obtain:

ak′(µ) = eV
(
µ̂0
2ω0

)−g K∑
k=0
Rk′k(µ, µ0) ak(µ0) , (3.30)

where the matrix R(µ, µ0) reads

Rk′k(µ, µ0) = (−1)k′+k
1 + k

∞∫
0

dz z1−g e−z L(1)
k′ (z)L(1)

k (z) (3.31)

= Γ(2− g) (−1)k′+k
(1 + k)!k′!

dk
duk

dk′

dvk′
1

(1− uv)2

( 1− uv
(u− 1)(v − 1)

)g ∣∣∣∣∣
u,v=0

, (3.32)

with Rk′k(µ0, µ0) = δk′k. This approach is promising for calculation-intensive numerical
applications: for fixed µ 6= µ0, the matrix needs to be calculated only once for any given
secondary truncation K ′; the ω0-dependence is simply multiplicative; and observables can
fully benefit from the simple and efficient representation. A closer inspection of eq. (3.31)
shows that the off-diagonal elements of R are suppressed by O(g, 1/|k′ − k|), and therefore
the secondary truncation K ′ < ∞ is justified. We quantitatively confirm at hand of a
model in section 4.2 that stable convergence can be achieved in a realistic scenario, even
when K ′ ≈ K.

In the third case, we consider the transformation of eq. (3.28) to position space, which
yields a new parametrization:

φ̃+(τ ;µ) = eV Γ(1− g)
(
ω0
µ̂0

)g (1− y
2

)2 (1 + y

2

)−g K′=K∑
k′=0

ãk′(µ) yk′ . (3.33)

We emphasize the truncation at K ′ = K. The new coefficients read

ãk′(µ) =
K∑
k=k′
R̃k′k(µ, µ0) ak(µ0) . (3.34)

The transformation is given by an upper triangular matrix

R̃k′k(µ, µ0) =


(−1)1+k Γ(k + g − k′)

(1 + k) Γ(g − 1− k′) Γ(1 + k − k′) Γ(1 + k′) k′ ≥ k

0 otherwise
. (3.35)
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From the prefactor in eq. (3.33) we can read off the desired function r̃:

r̃ ≡ e−V (iµ̂0τ)g (1 + iω0τ)1−g

Γ(1− g) . (3.36)

Using this function

χ̃ =
∞∫
−∞

dτ

2π
∣∣∣φ̃+(τ ;µ)

∣∣∣2 |r̃(τ)|2 = 1
2ω0

K′=K∑
k′=0

|ãk′(µ)|2 . (3.37)

This modification comes at the expense that the functional basis, especially in momentum
space, becomes more complicated as g enters the parametrisation non-trivially. We remark
in closing that this third approach works for the one-loop RG evolution. However, we do
not expect it to work in the two-loop case, where the RG equation in dual space becomes
inhomogeneous [16]. Moreover, evolving from µ0 to a smaller scale µ < µ0, one obtains
g < 0, and the integral bound thus only exists as long as g(µ, µ0) stays larger than −1/2,
see footnote 6. On the other hand, g remains positive for µ > µ0, and the parametrization
with the weight function eq. (3.36) can be used as long as g < 1.

3.4 Application to higher twist

At higher twist, further LCDAs contribute to the calculation of exclusive processes. Given
sufficient knowledge about their analytic properties, our approach can and should be
applied to these as well. Here we discuss briefly the application to the second two-particle
LCDA of the B-meson, which is denoted as φ̃−(τ). It is commonly split into two terms,
φ̃−(τ) = φ̃

(WW)
− + φ̃

(tw3)
− . The first term refers to the so-called Wandzura-Wilczek limit

and is related to the leading-twist LCDA φ̃+(τ). The second term φ̃
(tw3)
− is genuinely of

twist-three origin and is related to the three-particle LCDA at twist three [22, 26]. Below, we
only discuss the Wandzura-Wilczek term, and therefore drop the superscripts for simplicity.
Its RG equations can be found in ref. [27], see also ref. [28].

In position space, the equation of motion connecting the Wandzura-Wilczek term with
the leading-twist LCDA reads (see e.g. [29])

φ̃+(τ) = τ
d
dτ φ̃−(τ) + φ̃−(τ) . (3.38)

We can rewrite this equation in terms of the variable y, which yields:

φ̃+(τ(y))
(1− y)2 = 1

2
d
dy

[1 + y

1− y φ̃−(τ(y))
]
. (3.39)

The solution to this differential equation can be expressed in terms of f+(y):

φ̃−(τ(y)) = 2 1− y
1 + y

∫ y

−1
dx φ̃+(τ(x))

(1− x)2 = 1
2

1− y
1 + y

∫ y

−1
dx f+(x)

≡ 1
2

1− y
1 + y

[f−(y)− f−(−1)] .
(3.40)
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The integration constant and the lower boundary are fixed by requiring that the local limit
y → −1 coincides with the local limit of φ̃+(τ).

Our parametrisation for φ̃+ translates to the following expansion of f−:

f−(y) =
K∑
k=0

ak
1 + k

y1+k =
∫ y

0
dx f+(x) . (3.41)

The asymptotic behaviour of φ̃−(τ) for |τ | → ∞ is 1/τ , as expected. The coefficients
ak enter with 1/(1 + k) suppression, yielding a more convergent expansion than for the
leading-twist LCDA. Hence, the truncation error for φ̃− is under the same level of control
as for φ̃+.

We obtain for the momentum space representation of the Wandzura-Wilczek term in
our parametrization:

φ−(ω;µ0) =
∫ ∞
ω

dη
η
φ+(η;µ0) ,

= 1
ω0

K∑
k=0

ak(µ0)
1 + k

k∑
i=0

(−2)i
i!

(
k + 1
k − i

)
Γ(1 + i, ω/ω0)

= e−ω/ω0

ω0

{
a0 + a2

3 −
(
a1 + 2a2

3

)
ω

ω0
+ 2a2

3
ω2

ω2
0

+ . . .

}
,

(3.42)

where we obtain our result through integration of the explicit representation of the Laguerre
polynomials. Closed solutions can be obtained by Fourier transformation of the basis
functions that appear in eq. (3.40), e.g.,

1− y
1 + y

7→ 1
2ω0

,
1− y
1 + y

y 7→ 1
2ω0

[
−1 + 4e−ω/ω0

]
, etc. (3.43)

4 Application to existing models

For phenomenological applications, simple models of the B-meson LCDAs at a low reference
scale µ0 are commonly used. These models typically feature a small number of parameters.
Here, we study four of these models in regard to how they can be captured by our
parametrization. Our selection of models is chosen to showcase a wide variety of behavior.
For ease of comparison, we discuss each model in terms of the dimensionless ratio

ξ ≡ ω0
λmodel
B (µ0)

> 0 , (4.1)

where ω0 is the auxiliary scale in our general parametrization, and λmodel
B (µ0) the prediction

for the inverse moment in the specific model. In each case, the coefficients ak are matched
onto the respective model by means of eq. (3.21).

For each of the considered models, we study the saturation of four of the relevant
quantities as a function of the order of truncation K. The saturation of a quantity X is
defined as

Sat [X]K ≡
∑K
k=0X

∣∣
k∑∞

k=0X
∣∣
k

, (4.2)
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where X
∣∣
k
is the contribution by the coefficient ak in our parametrization. In the following

we use these quantities:

• the result for the integral χ, which provides the bound for the expansion parameters
ak in our parametrization,

χ
∣∣
k
≡ 1

2ω0
|ak|2 (4.3)

• the derivative of the momentum-space LCDA at the origin,

φ′+(0)
∣∣
k
≡ 1
ω2

0
ak (4.4)

• the normalized Laplace transform at ζ = n/λB,

`n
∣∣
k
≡ 1
λ2
B

n2

(1 + nξ)2

(
nξ − 1
nξ + 1

)k
ak ; (4.5)

• the inverse logarithmic moment,

L0
∣∣
k

= λ−1
B

∣∣
k
≡ 1

2ω0

1 + (−1)k
1 + k

ak , (4.6)

• and the normalized first logarithmic moment,

σB
∣∣
k
≡−λBL1(µm = e−γE λB)

∣∣
k

=


− lnξ k= 0

−ak
ξ

[ d
dt 2F1(−k,1+t;2;2)

]
t=0

k≥ 1 and odd

0 k≥ 1 and even

.

(4.7)

All of the above quantities, including the expansion coefficients ak, are implicitly understood
to be evaluated at a renormalisation scale µ = µ0.

We further consider the “relative growth” of some of the quantities. It is defined as

Gr[X]K ≡
X
∣∣
K∑K

k=0X
∣∣
k

. (4.8)

For each model, we consider the relative growth of the contribution to the bound χ. We
also apply the relative growth to any of the benchmark quantities defined above if said
quantity is ill-defined for a specific model. The relative growth is also instrumental for
model-independent phenomenological studies as a proxy for the corresponding saturation.
Its reliability, however, can only be tested in model studies, as the convergence rate of the
parametrisation is not known a priori.
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4.1 Exponential model

A popular model that is commonly taken as a starting point for a phenomenological
analysis is [11]

φ+(ω, µ0) = ω

λ2
B

e−ω/λB [exp. model] . (4.9)

Projecting onto our ansatz via eq. (3.21) yields the following result for the expan-
sion coefficients:

ak = (k + 1)
( 2ξ

1 + ξ

)2 (ξ − 1
ξ + 1

)k
[exp. model] . (4.10)

They fall off exponentially for ξ 6= 1. For ξ = 1, the exponential model trivially matches
onto our parametrization with a0 = 1 and ak>0 = 0. The result for the first few coefficients
as a function of ξ is plotted in figure 2a. We observe a rapid fall off of the magnitude of the
coefficients ak for k > 2 in the entire “benchmark interval”

1/2 . ξ . 2 [benchmark interval] (4.11)

This allows us to use the above interval to define an estimator for the inherent uncertainty of
our parametrization, also for other models to be discussed in the following. The uncertainty
estimate is illustrated in figure 2b, where we plot the resulting variation of the shape of the
momentum-space LCDA for different levels of truncation. Again, already with K = 2 we
find a very narrow envelope for the parametrized function.

The integral bound for the exponential model can be calculated explicitly, yielding a
monotonous function of ξ,

2ω0χ = 1
2
(
ξ + ξ3

)
[exp. model] . (4.12)

We plot its saturation and its relative growth as a function of ξ in figure 2c and figure 2d,
respectively, for different values of the truncation K. We observe that both the satura-
tion and the relative growth give comparable information about the convergence of the
parametrization. As expected, the convergence is very rapid as long as ξ ' 1: taking K = 2
and varying in the benchmark interval eq. (4.11), the saturation exceeds 98% and the
relative growth is smaller than 7%.

We continue to investigate the saturation for the inverse moment L0 = λ−1
B , which is

plotted in figure 2e. This quantity also rapidly convergences within our parametrization:
for K = 2 the saturation within the benchmark interval is better than 98%. It is also
instructive to study the normalized first logarithmic moment, which in the model is given
by zero at the given scale µm,

σB = 0 [exp. model] . (4.13)

We show the result as a function of ξ for different truncations K in figure 2f. The model
result is rapidly reproduced by the truncated parametrization, and the absolute difference
falls below 0.11 for K = 2 in the benchmark interval.
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Figure 2. Plots illustrating the truncation effects of our parametrization for the exponential model
eq. (4.9). We often use the ratio ξ = ω0/λB , plotted on a logarithmic scale.
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Finally, we study the saturation of the derivative of the LCDA at the origin ω = 0 and
of the normalized Laplace transform at n = ζλB. These test how well our parametrization
captures the behavior of the LCDA at small light-cone momentum. In the exponential
model, they read:

φ′+(0, µ0) = lim
n→∞

`n = 1
λ2
B

, `n(µ0, 1/λB) = 1
λ2
B

n2

(1 + n)2 [exp. model] . (4.14)

In figure 2g and figure 2h we show the saturation of φ′+(0) and `5, respectively, for
a number of different truncations K. We find for K = 2 in the benchmark interval
0.88 < Sat

[
φ′+(0)

]
K
< 1.19 and 0.93 < Sat [`5]K < 1.02. Because of the exponential

decrease of the individual coefficients ak in eq. (4.10), even φ′+(0) shows a reasonable
convergence. As discussed in section 3.2, the convergence of `5 is expected to be more rapid
than for φ+(0), which is confirmed by the plot.

We conclude that our parametrisation captures the exponential model with high
precision even for small K. We remark that the parametrisation to any order envelopes the
model by construction; however, the dependence on the auxiliary parameter ω0 becomes
weaker for growingK. We find thatK = 2 offers sufficient precision for practical applications
using the model.

Of course, an exemplary behavior of the relatively simple exponential model is expected,
since it can be expressed to trivial order in K for the specific choice of ω0 = λB . Nevertheless,
our analysis provides important input for the comparison with other models in the literature.
For that comparison, the exponential model provides a benchmark.

4.2 Lee-Neubert model with radiative tail

Lee and Neubert [12] have refined the exponential model by attaching a “radiative tail”,
which can be deduced from the behavior of the partonic LCDA at large light-cone momenta
ω ∼ µ� ΛQCD. In this model, the LCDA is described by an exponential at low values of
ω, while a radiative tail is added at some intermediate value ωt,

φ+(ω,µ) =N ω e−ω/ω̄
ω̄2 +αsCF

π

θ(ω−ωt)
ω

{
1
2−ln ω

µ
+4 Λ̄DA

3ω

(
2−ln ω

µ

)}
[Lee/Neubert] .

(4.15)

Here Λ̄DA is the HQET mass parameter in a convenient renormalon-free scheme, see ref. [12]
for details. The parameter ωt is fixed by requiring the model LCDA to be continuous at
ω = ωt, while the values for N and ω̄ are fixed by matching to the partonic calculation.
We stress that this model is not supposed to give the correct description at asymptotically
large values ω � µ, which would require to further resum the large logarithms lnω/µ
in the above formula (see e.g. the discussion in ref. [23]). With this in mind, we match
our parametrization to this model, and we aim at a reasonable description for small and
intermediate values of ω. For the following numerical discussion, we adapt the parameter
values found in ref. [12] for µ0 = 1GeV,

Λ̄DA = 519 MeV , ω̄ = 438 MeV , N = 0.963 , ωt = 2.33 GeV ,
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Figure 3. Plots illustrating the truncation effects of our parametrization for the Lee-Neubert model
eq. (4.15). We use the ratio ξ = ω0/λB , plotted on a logarithmic scale.
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with αs(µ0) = 0.5. For this choice one finds

L0 = λ−1
B = 1/479 MeV−1 , σB = 0.315 [Lee/Neubert] , (4.16)

and the expansion coefficients ak can easily be calculated numerically. For instance, for
ξ = 1 we find

a0 ' 1.050 , a1 ' 0.096 , a2 ' −0.007 , a3 ' 0.035 , a4 ' −0.051 , a5 ' 0.047 .

For large values of k the coefficients ak remain almost constant in magnitude, however,
with alternating signs. The result for a0, . . . , a5 and the corresponding approximation to
the Lee/Neubert model are shown in figure 3a and figure 3b, respectively. At first glance,
the results look qualitatively very similar to the exponential model. However, the features
induced by the radiative tail, namely the cusp at ω = ωt and the zero at ω ' 2.82GeV,
require special attention. We therefore zoom into the region 4 < ω/λB < 12 in figure 3c,
where we also consider larger values for the truncation parameter K. We find that a
reasonably precise description of the radiative tail at intermediate values of ω requires
somewhat higher truncation levels than the exponential model. Note that — by construction
— our parametrization is not designed to capture the radiative tail at values ω � µ. We will
revisit this point later in section 5.

We continue with the discussion of the integral bound, which in the Lee-Neubert model
takes the numerical value

2ω0χ = 0.547 ξ + 0.608 ξ3 [Lee/Neubert] , (4.17)

which is close to the exponential model. We emphasize that the bound is finite due to
the continuity of the model, despite the derivative in eq. (3.23) acting on the Heaviside
distribution. The saturation and the relative growth of the integral bound are plotted in
figure 3d and figure 3e, respectively. First, we observe that the saturation is always smaller
than one; this is clear, as the bound is monotonously increasing with K. Second, we observe
that the curves are tilted in comparison to the exponential model: small values of ξ result
in slow convergence, while best convergence for the integral bound is obtained for values
& 1. The peaking structure reflects the fact that we need to include terms of higher order
in k to get a reasonable description, such that the curve flattens. The relative growth of the
bound plotted in figure 3e decreases reasonably within our benchmark interval 1/2 < ξ < 2.

In figure 3f and figure 3g, we show the saturation for the inverse moment L0 = λ−1
B and

the value of σB as a function of ξ for different levels of truncation, respectively. Compared
to the exponential model, we still find reasonable convergence for both quantities, however
with a significantly lower rate and a clear preference for larger values of ξ.

We skip a discussion for φ′+(0) and `5, which show qualitatively the same behavior as
in the exponential model. This is obvious, since they are naturally only sensitive to the
region of small ω, where the radiative tail has no effect.

Next, we use the opportunity to demonstrate the RG evolution of the parameters as
defined in eq. (3.30). Ref. [12] provides the model parameters for two different choices of
the renormalisation scale and plots of the momentum-space LCDA, as well as the general
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RG solution in momentum space. In figure 3h, we show the model at µ = 1 GeV and its
RG evolution to µ = 2.5 GeV. They coincide well with our truncated parametrization with
K = 3 at the initial scale and its evolution to µ = 2.5GeV with K ′ = K + 3, using the
usual benchmark interval for ξ = ω/λB for illustration. We also plot the model as provided
at µ = 2.5 GeV purely for reference. Our plot is visually indistinguishable from the plots
shown in ref. [12]. We further observe that the variation band is consistent for both scales,
which verifies the expectation that higher orders in the expansion remain negligible.

4.3 Naïve parton model

In the naïve parton model [26] the LCDA takes the form

φ+(ω) = ω

2λ2
B

θ(2λB − ω) [parton model] , (4.18)

where λB is identified with the HQET mass parameter Λ̄ ' MB −mb. In position space
this yields

φ̃+(τ) = (1 + 2iλBτ) e−2iλBτ − 1
2λ2

Bτ
2 [parton model] , (4.19)

which only falls off as 1/τ for |τ | → ∞, thereby violating P4. The parton-model LCDA is
therefore a pathological example of a model. Nevertheless, it can serve as a toy model to
study under which circumstances our parametrization can also capture extreme examples.

To this end, we show the numerical result for the expansion coefficients and the resulting
shapes of the momentum-space LCDA for different levels of truncation in figure 4a and
figure 4b, respectively. Indeed, we observe that the expansion coefficients remain sizable
even for large values of k, without any preferred value for the ratio ξ. This indicates a
bad convergence of the expansion. Similarly, our estimate for the truncation uncertainty in
figure 4b, reflected by the variation of ξ in the benchmark interval, is larger than in the
exponential model. As expected, the triangular shape cannot be reproduced well, even for
very high levels of truncation.

As φ̃(τ) only falls off as 1/τ , the integral bound χ in eq. (3.1) does not exist for our
choice of the function r(τ, µ0). In figure 4c we therefore only plot the diverging sum

2ω0χ
∣∣
K

=
K∑
k=0
|ak|2 ,

together with its relative growth in figure 4d. The observed oscillatory behavior of the
latter can be taken as an indicator for the non-convergence of the expansion.

We continue with the discussion of L0 = λ−1
B for which we plot the saturation in

figure 4e. Its saturation oscillates around unity with an amplitude that is only slowly
decreasing with increasing K. The normalized first logarithmic moment is given by

σB = 1− ln 2− γE ' −0.270 [parton model] . (4.20)

In figure 4f we show the result for different truncation K. Again we observe an oscillatory
behavior around the true model value.
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Figure 4. Plots illustrating the truncation effects of our parametrization for the parton model
eq. (4.18). We often use the ratio ξ = ω0/λB , plotted on a logarithmic scale.
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Finally, we study the convergence of our parametrization at low values of ω. We obtain

φ′+(0, µ0) = 1
2λ2

B

, `n(µ0, 1/λB) = 1
2λ2

B

(
1− (1 + 2n) e−2n

)
[parton model] .

(4.21)

The saturation of the derivative at the origin in figure 4g shows oscillatory behavior for the
whole range of ξ, while for the normalized Laplace transform we observe that the saturation
in figure 4h approaches unity for sufficiently large values of K and/or small values of ξ.

4.4 A model with φ′
+(0) → ∞

Beneke et al. [10] have suggested to consider more general parametrizations for the B-meson
LCDA, which also include cases where the derivative at the origin φ′+(0) does not exist.
We study their model

φ+(ω, µ0) = 1
Γ(1 + a)

((1 + a)ω
λB

)1+a e−(1+a)ω/λB

λB
[Beneke et al.] . (4.22)

For a→ 0, this function reduces to the simple exponential model. For a < 0, the behavior
at ω → 0 is somewhat pathological, since it violates P4. Nevertheless, it is interesting to
study the convergence of our parametrization for this behavior. For concreteness, in the
following we only consider the case a = −0.4.

We show the coefficients ak and the resulting shapes to the LCDA for different levels
of truncation in figure 5a and figure 5b, respectively. We see that except for the vicinity of
ω = 0, already K = 2 yields a reasonable approximation within the estimated uncertainty
from the ξ-variation.

The integral bound for the model follows as

2ω0χ = 1
21+2a

Γ(2 + 2a)
Γ(1 + a)2

(
ξ + (1 + a)2

1 + 2a ξ3
)
a→−0.4' 0.360 ξ + 0.649 ξ3 [Beneke et al.] .

(4.23)

In figure 5c we observe the opposite behavior as compared to the Lee-Neubert model, i.e.
the peak of the saturation is tilted to the other side, such that the best convergence is
obtained for small values of ξ. Again, the relative growth of the integral bound in figure 5d
remains small in the benchmark interval around ξ = 1.

The saturation of the inverse moment L0 = λ−1
B and the normalized first logarith-

mic moment,

σB = −Ψ(1 + a) + ln(1 + a)− γE
a→−0.4' +0.453 [Beneke et al.] , (4.24)

are shown in figure 5e and figure 5f, respectively. Compared to the exponential model
shown in figure 2e, the saturation for L0 converges more slowly, and the truncated result
for σB is rather sensitive to the value of ξ (for moderate truncation K).

The fact that σB can be adjusted by an independent parameter a may be viewed
as an advantage of the model eq. (4.22). However the required pathological behavior at
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Figure 5. Plots illustrating the truncation effects of our parametrization for the model eq. (4.22)
discussed by Beneke et al. [10]. We often use the ratio ξ = ω0/λB , plotted on a logarithmic scale.
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ω → 0 makes it less useful in phenomenological applications. We therefore advocate our
parametrization, which is able to systematically decorrelate the pseudo observables by
including sufficiently many terms. We illustrate this point in the following section.

Finally, we also show the results for the quantities that characterize the behavior of the
LCDA at small values of ξ. As the derivative at the origin does not exist in the model (4.22),
in figure 5g we only show the truncated sum for a finite value of K,

φ′+(0)K = 1
ω2

0

K∑
k=0

ak .

Indeed, no convergence is apparent. In figure 5h, we show the saturation of the normalized
Laplace transform,

`n(µ0, 1/λB) = n2

λ2
B

( 1 + a

n+ 1 + a

)2+a
[Beneke et al.] , (4.25)

at n = 5. Here, we observe similarly good saturation properties as for the exponential model.

5 Pseudo-phenomenology

In this section we illustrate the feasibility of using our parametrization to describe the LCDA
in its full kinematic range, based on a global analysis of all available phenomenological
information in the future. Here, we do not strive for a rigorous statistical analysis. Instead,
we illustrate the complementarity of the available constraints in a qualitative manner.
Quantitative statements herein should not be mistaken for theoretical predictions.

5.1 Using λB and `5 as phenomenological constraints

In this subsection we study the hypothetical situation that some phenomenological
information, be it experimental or theoretical in nature, constrains the quantities
(“pseudo observables”)

p1 ≡ L0(µ0, µm) and p2 ≡ λ2
B `5(µ0, 1/λB) (5.1)

at a low reference scale µ0. We select these two pseudo observables, because they emerge in
the theoretical description of the B̄− → γµ−ν̄ form factors. An experimental determination
of the these form factors, through measurements of the decays, is foreseen by the Belle
II experiment [3, 30, 31]. Moreover, these two pseudo observables probe complementary
aspects of the B-meson LCDA: in the following discussion we will neglect the uncertainties
on these parameters for simplicity. Of course, in a realistic fit to experimental data, these
uncertainties as well as their correlations have to be taken into account. With no further
theory input at hand, we can use our parametrization to estimate the effect on the B-meson
LCDA and other derived quantities.

Here, we truncate at K = 2, which yields four independent parameters. They are ω0
and a0 through a2. With the two phenomenological constraints above, we can determine
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Figure 6. Pseudo-fit to the B-meson LCDA in momentum space using the two pseudo-observables
p1,2 as predicted by two models as a function of x = ω/λB. We show the model (“truth”), the
curves that lead to extreme values of σB and the total variation of the parametrized LCDA. For the
latter, we take the benchmark interval for ξ = ω0/λB and a small a2 into account.

two of these parameters. We choose to determine a0 and a1:

a0 = ξ − a2
3 , a1 = (5ξ + 1)3

25 (5ξ − 1) p2 −
ξ (5ξ + 1)

5ξ − 1 − 2 (25ξ2 − 20ξ + 1)
3(5ξ + 1)(5ξ − 1) a2 ,

where ξ = p1 ω0 . (5.2)

This leaves two unconstrained parameters: the auxiliary scale ratio ξ and the coefficient
a2. In order to constrain the possible ranges for ξ and a2, we now impose the following
conditions, which are motivated by the findings in the previous subsection: the relative
growth of the integral bound χ is limited to 20% (for K = 1) and 10% (for K = 2),

|a1|2

|a0|2 + |a1|2
≤ 0.2 , |a2|2

|a0|2 + |a1|2 + |a2|2
≤ 0.1 . (5.3)

Combined with eq. (5.2) this provides a bounded region for the joint distribution of the
parameters ξ and a2. For any given pseudo observable we can therefore determine its
minimal and maximal values for parameter values in that region.

For example, the result for the normalized logarithmic moment at the reference scale
µm = 1/p1 e−γE is given by

σB
∣∣
2 ≡ −

1
p1
L1(µ0, 1/p1 e−γE )

∣∣∣
K=2

= − ln ξ + a1
ξ
. (5.4)

In the following, we will determine the resulting variations for the normalized logarithmic
moment σB at K = 2, as well as for the LCDA φ(ω) at different values of x = ω p1, and
the normalized Laplace transformation `n at different (real) values of n for each of the four
models discussed in section 4. Note that at this stage, the only difference between the four
models is given by their predictions for the pseudo-observable p2, while the pseudo-observable
p1 only enters via the auxiliary parameter ξ to set the reference scale in the analysis.
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Figure 7. Pseudo-fit to the normalized Laplace transform `n(µ0, 1/λB) using the two pseudo-
observables p1,2 as predicted by two models as a function of x = ω/λB. We show the model
(“truth”), the curves that lead to extreme values of σB and the total variation of the parametrized
LCDA. For the latter, we take the benchmark interval for ξ = ω0/λB and a small a2 into account.

5.1.1 Exponential model

In the exponential model eq. (4.9) the value for the pseudo-observable p2 is given by

p2 = 25
36 ' 0.694 , [exp. model] (5.5)

from which we can directly determine the coefficients a0 and a1 in the truncated parametriza-
tion. We may now determine the maximal range of values that σB can take, when the free
parameters ξ and a2 are varied as explained above. This results in

σB
∣∣min
2 = −0.073 for ξ → 1.332 and a2 → +0.410 , (5.6)

σB
∣∣max
2 = +0.172 for ξ → 1.489 and a2 → −0.625 , (5.7)

while σB = 0 in the exponential model. We further plot the momentum space LCDA
φ+(ω, µ0) and its corresponding Laplace transform `n(µ0, 1/λB) in figure 6a and figure 7a,
respectively, as well as the corresponding curves for the extreme values of σB . We find that
the parameter values are constrained to the intervals 0.607 < ξ < 1.499, −0.633 < a2 <

0.477, and 0.607 < ξ < 1.636, −0.632 < a2 < 0.539, respectively. We observe the following:

1. The knowledge of the pseudo-observables p1 and p2 indeed fixes the behavior of φ+(ω)
at low momentum, as well as the behavior of its Laplace transform at large values of
ζ = −iτ � λB.

2. The shape of φ+(ω) at intermediate values of ω is very sensitive to the variation of
ξ and a2, and therefore not very meaningful without additional phenomenological
constraints.

3. Similarly, the behavior of the Laplace transform at small values of ζ . 1 is sensitive
to the variation of ξ and a2, but in contrast to the LCDA in momentum space, the
shape of the Laplace transform remains stable, reflecting a monotonous function (at
least, as long as ζ is not too close to zero).
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From this we can already see, that a meaningful fit to the LCDA would benefit from
additional information on the Laplace transform at small values of ζ (i.e. the LCDA in
position space at imaginary light-cone time −iτ . λB). This will be further illustrated below.

5.1.2 Lee-Neubert model with radiative tail

In the Lee-Neubert model eq. (4.15) the value for the pseudo-observable p2 is given by

p2 ' 0.777 [Lee/Neubert] , (5.8)

which is slightly larger than for the exponential model. The corresponding ranges for the
logarithmic moment are obtained as

σB
∣∣min
2 = 0.045 for ξ → 0.541 and a2 → −0.225 , (5.9)

σB
∣∣max
2 = 0.321 for ξ → 1.283 and a2 → −0.543 . (5.10)

This includes the value σB ' 0.315 of the LN model. We observe that values of p2 that
are larger than in the exponential model yield larger values of σB. We will discuss how to
consistently implement information on the “radiative tail” in a modified fit procedure in
section 5.2. We plot the momentum-space LCDA and its Laplace transform in figure 6b
and figure 7b. We find that the parameter values are constrained to the intervals 0.498 <
ξ < 1.342, −0.546 < a2 < 0.439, and 0.540 < ξ < 1.381, −0.536 < a2 < 0.458, respectively.

5.1.3 Naïve parton model

We can repeat the analysis for the naïve parton model. Here the pseudo-observable p2 takes
the value

p2 = (1− 11 e−10)/2 ' 0.5 [parton model] , (5.11)

which now is smaller than in the exponential model. With this, the range of values that
σB can take amounts to

σB
∣∣min
2 = −0.565 for ξ → 1.810 and a2 → +0.543 , (5.12)

σB
∣∣max
2 = −0.231 for ξ → 2.228 and a2 → −0.943 , (5.13)

which includes the “true” value σB ' −0.270 in the naïve parton model. We find that the
parameter values are constrained to the intervals 0.824 < ξ < 2.229, −0.948 < a2 < 0.536,
and 0.824 < ξ < 2.242, −0.947 < a2 < 0.697, respectively. Qualitatively, as before, we
observe that now smaller values of p2 tend to yield smaller values of σB in the pseudo-fit.

5.1.4 Model with φ′
+(0) → ∞

Repeating the analysis for the model eq. (4.22), we observe that the value of the
pseudo-observable

p2 ' 0.701 [Beneke et al.] (5.14)

is very close to that of the exponential model. As a consequence — without further input
— the fit cannot distinguish the two cases. Note that the range for the first logarithmic
moment that results from our fit procedure will not include the actual value σB = 0.453 in
this model. This can be traced back to the pathological behavior of the model at ω → 0.
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5.2 Adding theoretical constraints from the short-distance OPE

As has previously been mentioned, the B-meson LCDA can be constrained using information
obtained from the short-distance OPE of the light-cone operator. The latter describes the
behavior of φ̃+(τ) at small values of |τ | ∼ 1/µ� 1/ΛQCD, and it can be obtained from a
fixed-order partonic calculation in HQET [25],

φ̃+(τ, µ) = 1− αsCF
4π

(
2L2 + 2L+ 5π2

12

)
− iτ 4Λ̄

3

[
1− αsCF

4π

(
2L2 + 4L− 9

4 + 5π2

12

)]
+O

(
τ2Λ2

QCD

)
. (5.15)

In the above, Λ̄ is the HQET mass parameter in the on-shell scheme and we abbreviate

L = ln(iτµeγE ) .

In the Lee-Neubert model eq. (4.15) the short-distance information has been added as a radia-
tive tail in momentum space, by considering cut-off moments Mn(ΛUV) =

∫ ΛUV
0 dω ωn φ+(ω).

A more direct and simpler approach is to evaluate the LCDA in position space, using our
parametrization, and compare with eq. (5.15). To this end, we have to first expand our
parametrization in ω0/µ0 � 1 for a fixed value of

x0 ≡ iτ0µ0 eγE ∼ O(1) (5.16)

The analogue of the first two moments M0 and M1 used in the Lee-Neubert model are then
taken as the value and first derivative of φ̃+(τ), which defines the two theory inputs

t1 ≡ φ̃(τ0, µ0) , t2 ≡ i
dφ̃(τ, µ0)

dτ

∣∣∣∣
τ=τ0

. (5.17)

Let us first consider a situation where only this theory input is known. A minimal approach
would then be to consider our parametrization at truncation level K = 1 and fix the
parameters a0 and a1 by matching t1 and t2 to eq. (5.15). This yields

a0 = 2− 2Λ̄
3ω0

+ αsCF
4π

(
− 1
x0

µ0eγE
ω0

(1 + 2 ln x0) + . . .

)
, (5.18)

a1 = 1− 2Λ̄
3ω0

+ αsCF
4π

(
− 1
x0

µ0eγE
ω0

(1 + 2 ln x0) + . . .

)
, (5.19)

where we only show the αs corrections that are enhanced by µ0/ω0. These terms can be
absorbed by a redefinition of the HQET mass parameter: for our purpose, a convenient
renormalization scheme is7

Λ̄ ≡ Λ̄a(µ, x0)
[
1 + αsCF

4π

(
10 ln x0 + 15

4

)]
− αsCF

4π
3µeγE
2x0

(1 + 2 ln x0) (5.20)

7A similar definition has been derived from the analysis of the cut-off moments M0 and M1 in ref. [12],
leading to the above-mentioned “DA-scheme” for the HQET mass parameter.
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which yields

a0 = Z(x0)
(

2− 2Λ̄a
3ω0
− 8αsCF

3π
Λ̄ax0
µ0eγE (1 + ln x0)

)
, (5.21)

a1 = Z(x0)
(

1− 2Λ̄a
3ω0
− 4αsCF

3π
Λ̄ax0
µ0eγE (1 + ln x0)

)
, (5.22)

with

Z(x0) = 1 + αsCF
4π

(
−2 ln2 x0 + 2 ln x0 + 2− 5π2

12

)
. (5.23)

Our definition of Λ̄a and Z(x0) have been chosen such that the result for the position-space
LCDA with finite truncation K always satisfies

φ̃+(0)
∣∣
K

=
K∑
k=1

(−1)k ak = Z(x0)− 4αsCF
3π

Λ̄ax0
µ0eγE (1 + ln x0) ,

φ̃′+(0)
∣∣
K

= −2iω0

K∑
k=1

(−1)k (1 + k) ak = −Z(x0) 4iΛ̄a
3 , (5.24)

which generalizes the Grozin-Neubert relations in ref. [11] to one-loop accuracy in our
formalism.8 It is instructive to compare with the approach by Lee and Neubert in ref. [12],
where corresponding expressions are obtained for the zeroth and first moment of the
momentum-space LCDA with a UV cut off. The perturbative relation between the parameter
Λ̄DA defined in that scheme and our scheme reads

Λ̄a(µ, x0) = Λ̄DA(µ, µ)
[
1 + αsCF

4π (−10 ln x0 − 2)
]

+ µ
αsCF

4π

(3eγE
2x0

(1 + 2 ln x0)− 9
2

)
.

(5.25)

For instance, using x0 = 1, µ0 = 1 GeV, Λ̄DA(µ0, µ0) = 519MeV, and αs(µ0) = 0.5 as in
ref. [12], we obtain

Λ̄a(µ0, x0) = 367MeV .

We are now in the position to include the phenomenological constraints p1 and p2 as
defined in the previous subsection. For the sake of legibility, we introduce the quantity

n0 ≡ iτ0ω0 = x0ω0
µ0eγE . (5.26)

For the power expansion defined by the OPE to converge, we would need x0 ∼ O(1)
and small values of n0. On the other hand, the (reasonably fast) convergence of our
parametrization requires a finite n0 > 0. In the following, we use

n0 = 1/3 , µ0 = 1 GeV ,

8The conditions eq. (5.24) take the same form in dual space, since η+(0) = φ̃+(0) and η′+(0) = − i
2 φ̃
′
+(0)

for finite truncation K.
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as our default choice, while the value of ω0 (and thus of x0) will be varied within the fit,
with suitable constraints on the resulting relative growth (see below). For instance, a value
x0 = 1 corresponds to ω0 ≈ 600MeV, which appears reasonable. Note that our choice for
n0 corresponds to the value y0 = −1/2 in eq. (3.2), which lies exactly halfway between the
origin and the local limit (y = −1).

With two new constraints we increase the truncation level from K = 2→ 4 compared
to the previous subsection, leaving a4(µ0) and ξ = ω0/λB as free parameters. For ξ = 1
and x0 = 1 we obtain

a0 = Z

(
−28

25 + 2Λ̄ap1
15

)
+ 112αsCF

75π Λ̄an0p1 + 3− 972 p2
625 − 4a4

15 , (5.27)

a1 = Z

(
−2 + Λ̄ap1

3

)
+ 8αsCF

3π Λ̄an0p1 + 3
2 −

4a4
5 , (5.28)

a2 = Z

(
84
25 −

2Λ̄ap1
5

)
− 112αsCF

25π Λ̄an0p1 − 6 + 2916 p2
625 + a4

5 , (5.29)

a3 = Z

(
81
25 −

3Λ̄ap1
5

)
− 108αsCF

25π Λ̄an0p1 −
9
2 + 1944 p2

625 + 26a4
15 , (5.30)

where Z ≡ Z(x0 = 1). The result for arbitrary values of ξ and x0 can be found in appendix B.
The parameter range for a4 and ξ will be further constrained by analogous conditions on
the relative growth as in the previous subsection,

Gr[χ]K ≤
20%
K

(5.31)

which generalizes eq. (5.3).
Among the four benchmark models discussed in section 4, only the Lee-Neubert model

in eq. (4.15) features a radiative tail that reflects the constraints from the local OPE. We
therefore consider this model as a benchmark. We expect that the pseudo-fit should correctly
reproduce the main qualitative and quantitative features of that model. We therefore set

p1 = 1/λB = 2.085GeV−1 , p2 = 0.777 [Lee/Neubert] , (5.32)

and take the same input for the theory parameters as outlined below eq. (4.15), while Λ̄a is
calculated from eq. (5.25) as a function of x0. As in section 5, we consider the normalized
first logarithmic moment, now truncated at K = 4,

σB
∣∣
4 = − ln ξ + a1 + 2/3 a3

ξ
. (5.33)

We find the following range of values, constrained by the growth criterion,

σB
∣∣min
4 = 0.114 for ξ → 0.961 and a2 → −0.232 , (5.34)

σB
∣∣max
4 = 0.217 for ξ → 0.905 and a2 → −0.030 . (5.35)

This interval is compatible with the estimate obtained by using only p1 and p2. However,
its size is reduced by more than 60 %. The value σB = 0.315 in the Lee/Neubert model is
not contained in this estimate.
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Figure 8. Results from the pseudo-fit employing theoretical constraints in addition to the phe-
nomenological inputs p1 and p2. The dashed regions in figure 8c correspond to the pseudo-fit without
theoretical OPE constraints.

We show the resulting momentum-space LCDA and Laplace transform in figure 8a and
figure 8b, respectively, where we find that the parameters are restricted as 0.745 < ξ < 1.577,
−0.319 < a4 < 0.201, and 0.743 < ξ < 1.522, −0.312 < a4 < 0.120. In figure 8c, we compare
the allowed regions for the coefficients a0 through a2 obtained here with the ones as obtained
in section 5. We find that the regions largely overlap, while shrinking significantly for a0
and a2 and staying approximately constant for a1. We further show the regions for the
additional coefficients a3 and a4 in figure 8d.

Once more, we caution that the plots and numerical results here illustrate the appli-
cability of our method. However, they cannot be interpreted as predictions, which would
require a more careful treatment of uncertainties on the basis of experimental data.

6 Conclusion and outlook

We have proposed a novel systematic parametrization of the leading-twist B-meson light-
cone distribution amplitude (LCDA) in position space. At the center of our derivation
is the Taylor expansion of the LCDA in a conveniently chosen variable y, which arises
from the conformal transformation in eq. (3.2). The coefficients of that expansion obey an
integral bound eq. (3.8), which provides qualitative control of the truncation error of the
expansion, with the numerical value of the bound presently unknown. Our parametrization
yields simple expressions for a variety of quantities connected to the LCDA, including
its logarithmic moments and a set of “pseudo-observables” describing the low-momentum
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behavior. For convenience we summarize the resulting formulas for the most important
functions in table 1. We have also discussed three different approaches to implement
the renormalization-group (RG) evolution of the LCDA and its derived quantities within
our framework. We have identified one approach that allows a computationally efficient
implementation in future phenomenological analyses.

We have performed detailed numerical studies to show that our parametrization can
successfully reproduce different benchmark models, including non-trivial features like the
“radiative tail” at large light-cone momentum. Furthermore, we have illustrated the power
of our approach to combine different types of phenomenological and theoretical constraints.
This is achieved through matching our parametrization to hypothetical values of two
“pseudo-observables” in eq. (5.1) that are expected to be constrained by future experimental
data on the photo-leptonic B → γ`ν decay. Moreover, we have shown that theoretical
constraints on the expansion parameters from the local operator product expansion (OPE)
can be implemented at small but finite light-cone separation in a natural and straight-
forward manner. We have used this to define a new renormalization scheme eq. (5.20) for
the mass parameter in heavy-quark effective theory (HQET), which resembles the so-called
“DA-scheme” that has been introduced by Lee and Neubert from the consideration of
“cut-off” moments.

Our framework is general enough to allow theoretical refinements in the future. First,
it can be applied to higher-twist LCDA of the B-meson, as we have briefly discussed for
the Wandzura-Wilczek part of the twist-three LCDA φ−. Second, the available two-loop
RG evolution can be implemented on the level of our truncated expansion. Third, the OPE
constraints from dimension-five HQET operators can be included as well. Finally, on the
phenomenological side, a future determination of the very value of the integral bound, e.g.
from lattice QCD studies, would allow us to quantify the truncation errors.

Note Added. During the final phase of this work, ref. [32] appeared. Among others, it
discusses a complementary approach to parametrizing the leading B-meson LCDA, where
the generating function eq. (2.15) is expanded in t. The logarithmic moments appear as
the expansion coefficients. In contrast to our work, this expansion is not controlled by an
integral bound.
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position-space LCDA φ̃+(τ, µ0) = 1
(1 + iω0τ)2

K∑
k=0

ak(µ0)
(
iω0τ − 1
iω0τ + 1

)k

momentum-space
LCDA

φ+(ω, µ0) = ω e−ω/ω0

ω2
0

K∑
k=0

ak(µ0) 1
1 + k

L
(1)
k (2ω/ω0)

dual-space LCDA η+(s, µ0) = e−sω0
K∑
k=0

ak(µ0) (−1)k
1 + k

L
(1)
k (2ω0s)

generating function F[η+](t;µ0, µm) = Γ(1− t)
ω0

(
µ̂m
ω0

)−t K∑
k=0

ak(µ0) 2F1(−k, 1 + t, 2, 2)

inverse moment λ−1
B (µ0) = 1

ω0

K∑
k=0

ak(µ0) 1 + (−1)k
2 (1 + k) (only even k)

logarithmic moment σB(µ0) = − ln ξ − 1
ξ

K∑
k=0

ak(µ0)
[ d

dt 2F1(−k, 1 + t; 2; 2)
]
t=0

(only odd k)

derivative at ω = 0 φ′+(0, µ0) = 1
ω2

0

K∑
k=0

ak(µ0)

Table 1. Summary of representations and pseudo observables connected to the leading-twist B-
meson LCDA within our proposed parametrization at the low-energy reference scale µ0. Here L(1)

k

are associated Laguerre polynomials, and ξ = ω0/λB .

A Useful definitions and formulas

Our definition of the RG functions V (µ;µ0) and g(µ;µ0) reads (see e.g. ref. [33]),

V (µ, µ0) = −
∫ αs(µ)

αs(µ0)

dα
β(α)

[
γ+(α) + Γc(α)

∫ α

αs(µ0)

dα
β(α)

]
, (A.1)

g(µ;µ0) =
∫ αs(µ)

αs(µ0)

dα

β(α) Γc(α) . (A.2)

A useful relation for Bessel functions reads (see e.g. ref. [22])∫ ∞
0

dωe−iωz
(
ω

s

)j−1/2
J2j−1(2

√
sω) = e−iπj eis/z

z2j . (A.3)

Furthermore, Bessel functions can be expanded as an infinite series of associated
Laguerre polynomials,

Jα(x) =
(
x

2

)α e−t
Γ(1 + α)

∞∑
k=0

α!
(k + α)! L

(α)
k

(
x2

4t

)
tk , (A.4)

with an arbitrary parameter t. Especially, using t = ω/ω0, one gets

J1(2
√
ωs) =

√
ωs e−ω/ω0

∞∑
k=0

1
(1 + k)! L

(1)
k (sω0)

(
ω

ω0

)k
. (A.5)

We list useful relations involving the associated Laguerre polynomials for the readers
convenience. The polynomials can be written in closed form,

L(α)
n (x) =

n∑
i=0

(−1)i
(
n+ α

n− i

)
xi

i! . (A.6)
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We list the first four orders for α = 1:

L
(1)
0 = 1 , L

(1)
1 =−x+2 , L

(1)
2 = 1

2
(
x2−6x+6

)
, L

(1)
3 = 1

6
(
−x3+12x2−36x+24

)
.

(A.7)

They fulfill the following orthogonality relation:∫ ∞
0

dxxα e−xL(α)
n (x)L(α)

m (x) = Γ(n+ α+ 1)
n! δnm . (A.8)

They can be obtained as the Taylor coefficients of the series
∞∑
n=0

tnL(α)
n (x) = 1

(1− t)α+1 e−tx/(1−t) . (A.9)

B Solutions for expansion coefficients ak from pseudo-phenomenology
and OPE

The solutions for the expansion coefficients a0−3 with the constraints from the pseudo-
observables p1 and p2 and the two theory inputs t1 and t2 (see section 5) for arbitrary
values of ξ, x0, n0 and a4 are given by

a0 = Z

(
−(5ξ − 1)

(
1 + 30ξ + 25ξ2)

100ξ2 (5ξ − 3) + 5ξ − 1
15ξ2 (5ξ − 3) Λ̄a p1

)
(B.1)

+ 3ξ (5ξ − 1)
2 (5ξ − 3) −

(5ξ + 1)5

2500ξ2 (5ξ − 3) p2 −
(9− 5ξ) (5ξ − 1)

5 (5ξ − 3) (5ξ + 1) a4

+ (5ξ − 1)
(
1 + 30ξ + 25ξ2) αsCF

75πξ3 (5ξ − 3) Λ̄a n0 p1 (1 + ln x0) ,

a1 = Z

(
−2 + 1

3ξ Λ̄a p1

)
+ 3ξ

2 + 8αsCF
3π

Λ̄an0
ξ

(1 + ln x0) p1 −
4a4
5 , (B.2)

a2 = Z

(
3 (5ξ − 1)

(
1 + 30ξ + 25ξ2)

100ξ2 (5ξ − 3) − 5ξ − 1
5ξ2 (5ξ − 3) Λ̄a p1

)
(B.3)

− 3ξ (5ξ + 3)
2 (5ξ − 3) + 3 (5ξ + 1)5

2500ξ2 (5ξ − 3) p2 + 6
(
−3 + 30ξ − 25ξ2)

5 (5ξ − 3) (5ξ + 1) a4

− (5ξ − 1)
(
1 + 30ξ + 25ξ2)αsCF

25πξ3 (5ξ − 3) Λ̄a n0 p1 (1 + ln x0) ,

a3 = Z

(
(5ξ + 1)

(
−1− 20ξ + 75ξ2)

50ξ2 (5ξ − 3) − (5ξ − 2) (5ξ + 1)
15ξ2 (5ξ − 3) Λ̄a p1

)
(B.4)

− 3ξ (5ξ + 1)
2 (5ξ − 3) + (5ξ + 1)5

1250ξ2 (5ξ − 3) p2 + 4
(
−9 + 10ξ + 25ξ2)

5 (5ξ − 3) (5ξ + 1) a4

− 2 (5ξ + 1)
(
−1− 20ξ + 75ξ2) αsCF

75πξ3 (5ξ − 3) Λ̄a n0 p1 (1 + ln x0) .
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