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1 Introduction and summary

In the worldsheet formulation, general heterotic string theories are formulated in terms
of 2-dimensional N = (0, 1) supersymmetric quantum field theory (SQFT). For actual
heterotic string theories, SQFTs are required to be conformal and have specific left and right
central charges (cL, cR) so that it can be coupled to the worldsheet supergravity. However,
in this paper we consider general SQFTs whose worldsheet pure gravitational anomaly
is specified by any integer ν ∈ Z. For the conformal case, ν is given by ν = 2(cR − cL).
However, we do not use nor assume conformal invariance at all throughout the paper. One
reason is that SQFTs themselves are interesting even without considering applications to
heterotic strings. Another reason is that such general SQFTs will be useful for the study of
target space anomalies of actual heterotic strings.

This paper is devoted to a study of the following subjects.

1. The general structure of the target space topology/geometry of heterotic string
theories.

2. Possible invariants of SQFTs other than the Witten index (elliptic genus) which
forbids spontaneous supersymmetry breaking in the infinite volume worldsheet.

3. Global anomalies of target space theories of general heterotic string theories.

We discuss them in section 2, 3 and 4, respectively. The second and third subjects are closely
related. The first subject gives the basic setup for the study of the third one, although
technical details are not necessary.
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The first subject about the topology/geometry of the target space of heterotic string
theories is conceptually well understood [1], and our purpose is to clarify the general
structure based on the recent understanding of anomalies. We will consider arbitrary
internal SQFT possibly with global symmetry G, and the target space is also general in
the sense that it may not be orientable nor spin. The principle for determining the target
space structure is that we need to choose the structure so that there are no anomalies on
the worldsheet except for the pure gravitational anomaly ν ∈ Z ' (IΩspin)4(pt), where the
notation (IΩspin)4(pt) will be explained later in the paper. For example, the target space is
often taken to be a spin manifold with the B-field satisfying dH = λ(R)− c(F ), where H
is the gauge invariant 3-form field strength of the B-field, c(F ) ∼ trF 2 is a characteristic
class of the G-bundle with the curvature 2-form F , λ(R) = − 1

4(2π)2 trR2 is one-half of the
first Pontryagin class represented by the Riemann curvature 2-form R. These conditions
are imposed to avoid sigma model anomalies [2, 3]. Nonperturbative anomalies on the
worldsheet have been studied in [1, 4], and in particular the description of the B-field in [1]
in terms of the Dai-Freed theorem [5]1 have led to the modern description of anomalies
of fermions in terms of a bulk theory in higher dimensions [7–9]. This understanding is
believed to be valid for more general theories (see e.g. [10, 11]). Along the lines of these
developments, we give a systematic description of the B-field. For example, the target space
orientation and spin structure (or their generalization to non-orientable/non-spin cases) are
naturally understood as part of the B-field. We will also demonstrate this understanding in
the simpler case of supersymmetric quantum mechanics (SQM).

Next let us discuss the second subject of the above list. The question about possible
invariants of SQFTs other than the Witten index [12] has been raised. It was conjectured [13,
14] that the “space of N = (0, 1) SQFTs” with the worldsheet pure gravitational anomaly
ν ∈ Z is homotopy equivalent to the (−ν)-th space TMF−ν of a generalized cohomology
theory known as topological modular forms, TMF. See [15–22] for the physics literature
discussing this conjecture. If the conjecture is correct, it implies that there is new obstruction
to spontaneous supersymmetry breaking beyond the Witten index or the elliptic genus [23],
no matter what continuous deformation we perform. This question has been investigated
in [17], focusing on the case of sigma models with the target space S3 and any Wess-
Zumino-Witten term. Then, a new invariant of SQFTs has been proposed by Gaiotto
and Johnson-Freyd [18] that can explain the obstruction to supersymmetry breaking of
the S3 sigma models (and others) in the infinite volume.2 The invariant which we will
discuss in the present paper is basically the same as the one in [18], but our definition and
computational methods are different. The motivation of the present paper comes from the
question of global anomalies of heterotic string theories, and our definition is suited for that
purpose and gives additional insight. The invariant is a version of the Witten index as will

1See [6] for a physics explanation of the Dai-Freed theorem.
2On the other hand, for a finite volume R × S1 where R is time and S1 is space, supersymmetry can

be broken. Indeed, it happens in the S3 sigma models studied in [17]. The point is that supersymmetry
is broken by the energy scale of order the inverse radius of the space S1, and the breaking scale cannot
be made parametrically larger than the inverse radius. Thus the supersymmetry is restored in the infinite
volume limit S1 → R.
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become clear later. But it is torsion, meaning that if we multiply it by some large enough
integer then it vanishes. Thus we call it the torsion index.

Finally, we discuss the third subject of the list. Perturbative anomalies of the target
space theories are well-understood. The Green-Schwarz mechanism [24] is extended to
arbitrary heterotic string theories with any internal theory that is not necessarily geomet-
ric [25–27]. However, global anomalies are less understood. For example, it was investigated
in the 10-dimensional E8 × E8 heterotic string in [28]. A question about general internal
SCFTs has been recently raised in [29], and studied by using mathematical methods of
algebraic topology in [20, 21]. In particular, under the aforementioned conjecture on TMF
(as well as some additional assumptions), it has been argued that the absence of global
anomalies is translated to the fact that TMF21(pt) = 0 [21]. In the present paper, we will
give a different, more field-theoretical argument relating the target space global anomalies
to TMF21(pt). For this purpose, we express the target space global anomalies by the torsion
index of SQFTs whose worldsheet pure gravitational anomaly is ν = −21. Assuming the
conjecture on TMF, the fact TMF21(pt) = 0 implies that there is no such invariant and
hence the torsion index must be zero. We can also consider “wrong” heterotic string theories
with different values of ν such that the target space global anomalies do not vanish. As an
example, we will understand the torsion index of the S3 sigma models as a global anomaly
of a wrong 2-dimensional heterotic string theory. The relevant global anomaly is the Z24
anomaly found in [20], and it is translated to elements of TMF−3(pt) = Z24.

2 Structure of the B-field

In this section, we discuss general structure of the B-field in heterotic string theories. The
basic principle is the anomaly cancellation on the worldsheet, and this requirement naturally
gives the B-field.

2.1 Review of anomalies

Here we review the nonperturbative description of anomalies in terms of anomaly inflow
from a higher dimensional bulk theory. The following abstract discussion is more concretely
understood in the case of fermions [1, 7–9] (see also [30, 31] for early work), and it is
believed to be valid for more general theories due to developments in condensed matter
physics [32–34].

Suppose that we are interested in a d-dimensional theory with a symmetry group Hd.
Here Hd includes Lorentz as well as internal symmetries. For example, in our later applica-
tions to the d = 2 worldsheet, we take Hd = Spin(d)×G, where Spin(d) is (the Euclidean
version of) the d-dimensional Lorentz symmetry group, and G is an internal symmetry
group. More details on the sequence of groups Hd (d = 1, 2, · · · ) are explained in [35].

We turn on background fields for the symmetry Hd. More explicitly, the background
fields are a metric tensor and a connection of a Hd-bundle which is compatible with the
metric. We also assume that the theory can be coupled to a background sigma model field
with target space X. We only consider the case that Hd acts trivially on X. Whenever we
consider a manifold Md, we implicitly assume that it is equipped with these background
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fields (i.e. an Hd bundle P →Md, a metric, a connection compatible with the metric, and a
sigma model field f : Md → X). If we are not interested in sigma model background fields,
we just take X to be a point, X = pt.

When the theory has an anomaly under the symmetry Hd and/or the sigma model
X, the partition function (or un-normalized correlation functions) of the theory on Md

is not defined as a complex number. To remedy this, we introduce a (d + 1)-manifold
N ′d+1 such that Md is realized as the boundary of N ′d+1, that is, ∂N ′d+1 = Md. Again, we
always assume that the background fields on Md are extended to N ′d+1. (The bundle on
N ′d+1 is now an Hd+1-bundle since the dimension is increased. We often suppress d and
just write H in the following.) The case that we cannot take such an extension N ′d+1 will
be discussed later. We put some bulk action in N ′d+1 so that the total partition function
of the bulk-boundary system is well-defined. For example, for fermion anomalies at the
perturbative level, we may introduce Chern-Simons terms such as tr(A ∧ dA + 2

3A
3) in

the case of d = 2 where A is a connection field. At the nonperturbative level, we use the
Atiyah-Patodi-Singer (APS) η-invariant.

The total partition function may depend on the choice of an extension N ′d+1. If we take
another extension N ′′d , the difference of the partition functions between the two choices is
given as follows. We consider the closed manifold Nd+1 = N ′d+1 ∪N ′′d+1 that is obtained by
gluing N ′d+1 and the orientation reversal3 N ′′d+1 of N ′′d+1 along the common boundary Md.
Then the ratio between the two partition functions is given by the bulk partition function
Z(Nd+1) on Nd+1. We denote it as

Z(Nd+1) = exp(2πih(Nd+1)). (2.1)

The bulk partition function is a functional of the background fields, and for the purpose of
anomaly inflow we only need the case that Z(Nd+1) ∈ U(1) or in other words

h(Nd+1) ∈ R/Z. (2.2)

For example, in the case of d = 2 fermions at the perturbative level, we may take h(N3) ∼∫
N3

tr(A ∧ dA + 2
3A

3) up to coefficients which should be quantized so that the values of
h(Nd+1) ∈ R/Z are gauge invariant. Nonperturbatively, h(Nd+1) is given by the APS
η-invariant of an appropriate Dirac operator in Nd+1, h(Nd+1) = −η(Nd+1). For Majorana
fermions, we instead have h(Nd+1) = −η(Nd+1)/2.

In all known cases of unitary invertible anomalies, the function h has the following
property. Associated to h, there exists a (d+ 2)-form ω of the form

ω =
∑
a

ωaca(F ) (2.3)

where {ωa} are some closed differential forms dωa = 0 on X, F is a formal 2-form variable
that takes values in the Lie algebra of the symmetry group H, and {ca(F )} are invariant

3More generally, even on nonorientable manifolds with some structure such as pin± manifolds, there is a
generalization of the notion of orientation reversal. See [35, 36] for details.

– 4 –



J
H
E
P
1
0
(
2
0
2
2
)
1
1
4

polynomials of F .4 We will take F to be the curvature 2-form F = dA + A2 of the
background connection of the H-bundle. We will also pullback ωa by the sigma model map
f : (spacetime)→ X to get differential forms on spacetime manifolds. Now, if Nd+1 is the
boundary of a (d+ 2)-manifold Ld+2, then h satisfies

h(∂Ld+2) =
∫
Ld+2

ω mod Z, (2.4)

where in the right hand side it is understood that F is taken to be the curvature 2-form
and we also pullback differential forms ωa from X to Ld+2 by the sigma model map. For
example, if we are interested in the trivial sigma model X = pt, we take ωa = 1. In the
example where h(N3) ∼

∫
N3

tr(A ∧ dA+ 2
3A

3), we have ω ∼ trF 2.
Nonperturbatively, the APS index theorem states that the index of an appropriate

Dirac operator Dd+2 in (d+ 2)-dimensions is given by

IndexDd+2(Ld+2) =
∫
Ld+2
I + η(∂Ld+2), (2.5)

where I is the characteristic polynomial of the gauge and Riemann curvature 2-forms that
appears in the Atiyah-Singer index theorem in (d+ 2)-dimensions. Therefore, if h is given
by the APS η-invariant as h(Nd+1) = −η(Nd+1), then we have ω = I since the integer
IndexDd+2(Ld+2) ∈ Z drops out from the equation (2.4). For Majorana fermions we have
h(Nd+1) = −η(Nd+1)/2, but IndexDd+2(Ld+2) ∈ 2Z and hence ω = I/2 (see [9] for details).
In general, we call ω the anomaly polynomial.

Let us summarize the properties of the bulk action. Let Cd+1 be the set of closed
(d+ 1)-manifolds Nd+1 equipped with background fields. This set is actually regarded as
a monoid by the disjoint union of manifolds, and can also be made into an abelian group
by introducing some equivalence relation. We denote this group by the same symbol Cd+1.
Then h is a homomorphism

h : Cd+1 3 Nd+1 7→ h(Nd+1) ∈ R/Z. (2.6)

Moreover, there exists ω associated to h such that h satisfies (2.4) for any (d+ 2)-manifold
Ld+2 possibly with boundary. The (d+ 1)-dimensional bulk theory is described by such a
pair (h, ω).

The set of pairs (h, ω) satisfying the condition (2.4) forms an abelian group in the
obvious way. We denote this abelian group as

(̂IΩH)d+2(X) = {(h, ω)} (2.7)

This is the group whose element determine a (d+ 1)-dimensional bulk theory.
If (h, ω) = 0, the bulk theory is trivial and there is no anomaly in the boundary theory.

However, even if it is nonzero, we can still cancel anomalies if the following condition is
4More precisely, ω is a closed form on X whose coefficients are invariant polynomials of the dual of the

Lie algebra of H. Then we can perform the Chern-Weil construction. More generally, ca(F ) may change
sign under elements of H which reverse orientation. See [37] for more details.
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satisfied. Suppose that there is a gauge invariant (d+ 1)-form α which is of the form (2.3),

α =
∑
a

αaca(F ). (2.8)

However, we do not require it to be a closed form, so we may have dαa 6= 0. Chern-Simons
differential forms like tr(A ∧ dA + 2

3A
3) are not gauge invariant and we do not consider

them as α. Only manifestly gauge invariant α is allowed. We can consider hα given by

hα(Nd+1) =
∫
Nd+1

α. (2.9)

A pair (hα, dα) is an element of (̂IΩH)d+2(X). This type of bulk action does not contribute
to the anomaly inflow because α itself is gauge invariant and hence

∫
N ′

d+1
α is gauge invariant

even if N ′d+1 has a boundary. Therefore, we introduce an equivalence relation ∼ in the
group (̂IΩH)d+2(X) as

(h, ω) ∼ (h, ω) + (hα, dα). (2.10)

These two pairs are related by a manifestly gauge invariant counterterm α and hence
produce the same anomaly. We denote the group of equivalence classes as (IΩH)d+2(X),

(IΩH)d+2(X) = (̂IΩH)d+2(X)/ ∼ . (2.11)

This group (IΩH)d+2(X) classifies anomalies of d-dimensional theories with the symmetry
group H and the background sigma model with the target space X. We denote the
equivalence class of (h, ω) ∈ (̂IΩH)d+2(X) as [(h, ω)] ∈ (IΩH)d+2(X).

Now, it is proved in [37] that (IΩH)• coincides with a generalized cohomology theory
known as the Anderson dual of the bordism theory ΩH

• .5 The group (IΩH)d+2(X) is the
(d + 2)-th cohomology group of the space X. Here the bordism group ΩH

d (X) is defined
by introducing an equivalence relation in the set Cd of d-manifolds Md equipped with an
H-bundle and a sigma model map f : Md → X. Two manifolds Md and M ′d are defined to
be equivalent if there exists a (d+ 1)-manifold Nd+1 such that ∂Nd+1 = Md tM ′d, where
t means the disjoint union, and the overline on M ′d means orientation reversal (or its
generalization). We may denote the equivalence class as [Md] and define ΩH

d (X) = {[Md]}
to be the abelian group of equivalence classes. The abelian group structure in ΩH

d (X) is
defined by the disjoint union as [Md] + [M ′d] = [Md tM ′d], the group unit is [∅], and the
inverse of [Md] is [Md].

The Anderson dual for generalized cohomology theories is defined in a very abstract way
in mathematics and we do not explain it. However, the above definition of (IΩH)d+2(X)
gives a more intuitive understanding [37, 38]. In particular, we have a short exact sequence

0→ Ext(ΩH
d+1(X),Z)→ (IΩH)d+2(X)→ Hom(ΩH

d+2(X),Z)→ 0, (2.12)
5The classification of invertible phases in terms of the Anderson dual of the bordism theory is conjectured

in [35] and it motivated the work [37]. See also [38] where the above interpretation of (IΩH)d+2(X)
is anticipated.
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where Ext(A,Z) for an abelian group A is given by

Ext(A,Z) = Hom(A,R/Z)/Hom(A,R). (2.13)

In other words, it is the torsion part of Hom(A,Z/R) if A is finitely generated. (For example,
Hom(Zk,R/Z) ' Zk, Hom(Zk,R) ' 0 and hence Ext(Zk,Z) ' Zk.). The meaning of this
short exact sequence is as follows. Among the elements of (̂IΩH)d+2(X), there are elements
such that the (d + 2)-form ω is zero. The condition (2.4) for ω = 0 implies that (h, 0)
gives an element of Hom(ΩH

d+1(X),R/Z), and the equivalence class [(h, 0)] is an element
of Ext(ΩH

d+1(X),Z).6 This is the meaning of the term Ext(ΩH
d+1(X),Z) in (2.12). On the

other hand, given an arbitrary element [(h, ω)] ∈ (IΩH)d+2(X), we can define an element
of Hom(ΩH

d+2(X),Z) by [Ld+2] 7→
∫
Ld+2

ω. Notice that the condition (2.4) for ∂Ld+2 = ∅
implies that

∫
Ld+2

ω ∈ Z. This is the meaning of the term Hom(ΩH
d+2(X),Z) in (2.12). One

can check that the sequence (2.12) is exact.
We have mentioned that the partition function of a d-dimensional anomalous theory on

Md is well-defined if we take Nd+1 such that ∂Nd+1 = Md. If [Md] is a nontrivial element
of ΩH

d (X), it is not possible to find such Nd+1. In this case, we need to fix the phase of the
partition function “by hand”. This is allowed by the following reason. If two manifolds are
bordant, i.e. [Md] = [M ′d], we can choose Nd+1 such that ∂Nd+1 = MdtM ′d and the partition
function for this configuration is already defined. From this consideration, one can see that
the phase ambiguity is controlled by Hom(ΩH

d (X),R/Z). More precisely, any two choices
of the phases of the partition function is related by an element of Hom(ΩH

d (X),R/Z) as

exp(2πi Θ(Md)), Θ ∈ Hom(ΩH
d (X),R/Z). (2.14)

Such terms are generalized θ-angles of the background fields in d-dimensions, and they
are allowed by the principles of quantum field theory [33–36]. Thus, we can fix the phase
ambiguity in any way. The space of choices is a torsor over Hom(ΩH

d (X),R/Z).

2.2 The B-field and worldsheet anomalies

The understanding of anomalies as in the previous subsection has been already recognized
at least conceptually in the context of the B-field in heterotic string theories by Witten [1].7

Our purpose is to describe it systematically for more general theories.
Although our main interest is the d = 2 worldsheet, we can also get some insight into

the simpler case of SQM (d = 1), so we still take d to be arbitrary.
We consider a theory T with a global internal symmetry G. The theory possibly depends

on the spin structure, so the total symmetry group including the spacetime symmetry is
Spin(d) × G. This is the internal SQFT in the context of heterotic string theories. The
(d+ 1)-dimensional bulk theory describing its anomaly is given by an element

(hT , ωT ) ∈ ̂(IΩspin×G)d+2(P), (2.15)
6The fact that invertible quantum field theories with ω = 0 are classified by Hom(ΩH

d+1(X),R/Z) can be
proved by starting from some axioms of topological quantum field theory [35, 36]. Non-torsion part is not yet
proved from any axioms of quantum field theory, so [37] started from the empirical fact expressed in (2.4).

7See also [10, 39, 40] for a proposal for the B-field in the case of Type II string theories.
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where P is a possible background sigma model coupled to T . Intuitively, we regard it as
the space of parameters (coupling constants) of T which is promoted to a background
sigma model.

Let us also consider D scalar fields φI (I = 1, · · · , D) and their superpartner fermions
ψI on which the symmetry group O(D) acts. We have in mind either SQM d = 1,N = 1
or SQFT d = 2,N = (0, 1). For a moment they are regarded as taking values in RD. The
total symmetry group is Spin(d)×O(D), and its corresponding bulk theory is given by an
element

(hψ, ωψ) ∈ ̂(IΩspin×O(D))d+2(pt). (2.16)

Let Hd = Spin(d)×G×O(D). Then we get (hT , ωT ) + (hψ, ωψ) ∈ (̂IΩH)d+2(P). This
sum may contain a pure gravitational anomaly which survives even if we take background
fields other than the worldsheet metric to be trivial. Let (hpure, ωpure) ∈ ̂(IΩspin)d+2(pt)
be the negative of the pure gravitational anomaly contained in (hT , ωT ) + (hψ, ωψ). In
the context of actual heterotic string theories, this is a contribution from the worldsheet
gravitino of conformal supergravity. In any case, we allow SQFTs to have pure gravitational
anomalies, and just use (hpure, ωpure) to subtract pure gravitational anomalies. We denote
the sum of all contributions as

(h, ω) = (hT , ωT ) + (hψ, ωψ) + (hpure, ωpure) ∈ (̂IΩH)d+2(P). (2.17)

The pure gravitational anomaly of this sum is zero by definition.
We want to couple the two theories T and (φ, ψ) in the following way. Consider a

Riemannian D-manifold X equipped with a G-bundle P and its connection A, and also a
map g : X → P . Now we take the target space of the scalar fields φ to be X instead of RD,

φ : Md → X, (2.18)

where Md is the worldsheet (or worldline). The fermions ψ are taken to be sections of the
pullback of the tangent bundle, φ∗TX. We pullback the Levi-Civita connection Γ on X to
get an O(D) connection φ∗Γ that is used for the covariant derivative of ψ. Then (φ, ψ) is
the supersymmetric sigma model with the target space X. We also pullback the G-bundle
P and its connection A, and use the pullback φ∗A as a G-connection that is coupled to T .
We also take φ∗g = g ◦ φ : Md → P as a sigma model that can be coupled to T . In this
way, we get a sigma model with the target space X that is coupled to the theory T .

We can consider the bulk theories (h̃T , ω̃T ) and (h̃ψ, ω̃ψ) obtained in such a way that
the background fields are taken to be the pullback as described above. Before the path
integral over φ is performed, we can regard φ as a background field. Then these bulk
theories are elements of ̂(IΩspin)d+2(X),

(h̃T , ω̃T ), (h̃ψ, ω̃ψ) ∈ ̂(IΩspin)d+2(X). (2.19)

We also denote (hpure, ωpure) as (h̃pure, ω̃pure) when it is regarded as an element of
̂(IΩspin)d+2(X). Since φ is still a background field, two theories T and ψ are decoupled and
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hence we can just add these contributions to get an element

(h̃, ω̃) = (h̃T , ω̃T ) + (h̃ψ, ω̃ψ) + (h̃pure, ω̃pure) ∈ ̂(IΩspin)d+2(X). (2.20)

By definition of (hpure, ωpure), the pure gravitational anomaly is cancelled.
Now we can describe the precise structure of the target space X and the B-field on it.

For the path integral over φ to be consistent, anomalies must be absent except possibly
for a pure gravitational anomaly. However, we have added (h̃pure, ω̃pure) so that there is no
pure gravitational anomaly, and hence all anomalies must vanish.8

At the topological level, this means that the equivalence class

[(h̃, ω̃)] ∈ (IΩspin)d+2(X) (2.21)

must vanish. This topological condition may be rephrased in the following way. We have
defined (2.17) before going to the sigma model with the target space X. The topological
class of this element is [(h, ω)] ∈ (IΩH)d+2(P). Let BG and BOD be the classifying space
for G and O(D), respectively.9 Then we have

(IΩH)d+2(P) = (IΩspin)d+2(BG×BOD × P) (2.22)

since a manifold M equipped with a G-bundle P is topologically equivalent to the same
manifold M equipped with a map f : M → BG by the definition of the classifying space.
Thus we get

[(h, ω)] ∈ (IΩspin)d+2(BG×BOD × P). (2.23)

This is a kind of a characteristic class in BG×BOD×P , but the relevant cohomology theory
here is not the ordinary cohomology H• but a generalized cohomology (IΩspin)•. By the
tangent bundle TX, the G-bundle P , and the map g : X → P, we have a classifying map

f : X → BG×BOD × P . (2.24)

This map can be used to pullback [(h, ω)] to get a characteristic class in X as

f∗[(h, ω)] ∈ (IΩspin)d+2(X). (2.25)

This coincides with [(h̃, ω̃)],10 and the topological condition on X is that this characteristic
class must vanish. We discuss when this is satisfied later.

8Throughout the paper we implicitly assume that anomaly-free fields can be path-integrated.
9A classifying space BG of a group G is a topological space with the following properties. Let [M,BG]

be the set of homotopy classes of maps f : M → BG from a manifold M to BG. Then, there is one
to one correspondence between elements of [M,BG] and isomorphism classes of G-bundles on M . The
correspondence is given as follows. There is a G-bundle G → Puniv → BG, called the universal bundle.
Then the G-bundle P on M corresponding to f ∈ [M,BG] is given by the pullback P = f∗Puniv.

10(IΩspin)• is a functor and hence it behaves naturally with respect to maps of the target spaces like
X → X ′. Then we may consider a manifold approximation to BG×BOD and consider a sigma model with
that target space, and pull back it to X.
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Assume that the topological condition

[(h̃, ω̃)] = f∗[(h, ω)] = 0 ∈ (IΩspin)d+2(X) (2.26)

is satisfied. Next we need to add an appropriate counterterm so that the geometric quantity
(h̃, ω̃) ∈ ̂(IΩspin)d+2(X) is really cancelled. By the definition of (IΩspin)d+2(X) in terms of
̂(IΩspin)d+2(X) discussed in section 2.1, the fact that the topological class [(h̃, ω̃)] is zero

implies that there exists a (d+ 1)-form H such that

(h̃, ω̃) = −(hH , dH) (2.27)

where hH is given by

hH(Nd+1) =
∫
Nd+1

H. (2.28)

In dimensions d + 1 ≤ 3, we cannot use the worldsheet metric for H because the lowest
degree form constructed from the metric is a 4-form trR2. Thus, H is purely a differential
form on X. Now we add the action hH (multiplied by 2πi) to the bulk theory. Then the
anomaly is completely cancelled since h̃+ hH = 0. In general, there is no canonical choice
for H and hence we need to choose H as part of the data of the definition of the theory.

In the context of heterotic string theories, H is the 3-form field strength of the B-
field. Notice that if some H0 satisfies the condition (h̃, ω̃) = −(hH0 ,dH0), and if H1 is a
closed differential form representative of an integer cohomology class in Hd+1(X,Z), then
H = H0 +H1 also satisfies the anomaly cancellation condition. For example, for any 2-form
B′, we can add dB′ to the bulk N ′d+1. When N ′d+1 has a boundary ∂N ′d+1 = Md, we get∫

N ′
d+1

dB′ =
∫
Md

B′. (2.29)

This is the usual term of the B-field in the worldsheet action at the perturbative level.
Nonperturbatively, we cannot always write H as a total derivative and hence we need
the extension of the worldsheet Md to a higher dimensional manifold Nd+1. The anomaly
cancellation guarantees that the result does not depend on the choice of Nd+1.

We need to choose more data to define the theory. When [Md] ∈ Ωspin
d (X) is nontrivial,

we choose the phase of the partition function. The space of such choices is a torsor over
Hom(Ωspin

d (X),R/Z) as we discussed around (2.14). The group Ωspin
1 (X) is given by

Ωspin
1 (X) ' H0(X,Z2)⊕H1(X,Z). (2.30)

For Ωspin
2 (X), we have a short exact sequence

0→ H0(X,Z2)⊕H1(X,Z2)→ Ωspin
2 (X)→ H2(X,Z)→ 0 (2.31)

where H0(X,Z2) is a direct summand. These facts can be seen as follows. (We only
sketch the argument. See [41] for an explanation of how to use Atiyah-Hirzebruch spectral
sequences for the computation of bordism groups.) Without loss of generality we may
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assume that X is connected. Let pt be an arbitrary point on X. Then, by using the maps
pt → X → pt, we get Ωspin

d (pt) → Ωspin
d (X) → Ωspin

d (pt) and hence Ωspin
d (X) contains

Ωspin
d (pt) as a direct summand,

Ωspin
d (X) ' Ωspin

d (pt)⊕ Ω̃spin
d (X), (2.32)

where Ω̃spin
• is the reduced group. Then we use Atiyah-Hirzebruch spectral sequence for

Ω̃spin
• (X) whose E2-term is E2

p,q = H̃p(X,Ωspin
q (pt)). It is known [42] that the differentials

d2 : E2
p,q → E2

p−2,q+1 for q = 0, 1 are duals of the Steenrod square Sq2 (after Z2 reduction
for the case q = 0). By using

Ωspin
0 (pt)'Z, Ωspin

1 (pt)'Z2, Ωspin
2 (pt)'Z2, Ωspin

3 (pt) = 0, Ωspin
4 (pt) =Z (2.33)

we see that the differential d2 is zero in the range of dimensions of our interest. By
dimensional reasons all other differentials dr : E2

p,q → E2
p−r,q+r−1 (r ≥ 3) are also zero,

so the spectral sequence converges already at the E2-term. Notice also that the direct
summand discussed above is Ωspin

d (pt) = H0(X,Ωspin
d (pt)). Thus we get the desired results

for Ωspin
1 (X) and Ωspin

2 (X).
In the context of heterotic string theories, the meaning of the additional choice of the

phase is as follows. In the above discussion, we have only chosen the field strength 3-form
H. However, H does not completely determine the B-field. For instance, suppose that
H = 0. This means that the B-field is flat. Thus we need to choose such a flat 2-form.
This is the information contained in Hom(H2(X,Z),R/Z). There is also other information.
One (but not the only) way to satisfy the topological condition (2.26) is to require that
the manifold X admits an orientation and a spin structure (as well as another condition
about the characteristic class at degree 4) as we discuss later. However, we have not yet
chosen any explicit orientation nor spin structure on X. The choice of orientation and
spin structure is related to the topological terms Hom(H0(X,Z2),R/Z) ' H0(X,Z2) and
Hom(H1(X,Z2),R/Z) ' H1(X,Z2), respectively. We will discuss a little more detail later
for SQM in section 2.3. However, we remark that the target space X need not be orientable
nor spin in general, depending on the internal theory T , its symmetry G and anomalies.

2.3 Supersymmetric quantum mechanics

To illustrate the formulation of the previous subsection, let us consider the case of a simple
SQM (i.e. d = 1,N = 1) in more detail. We take the internal theory T to be trivial and
hence G = 1 and P = pt. We consider a target space X whose dimension is D = dimX.
Anomalies of quantum mechanics are discussed e.g. in [9, 10, 43]. We will naturally obtain
a spinc connection on X from the worldline perspective.

The Lagrangian of the fermions ψI (I = 1, · · · , D) with the O(D) symmetry is given by

Lψ = i
2ψ

I d
dtψ

I . (2.34)

The canonical anticommutation relation after quantization is {ψI , ψJ} = δIJ . These
fermions have anomalies [(h, ω)] ∈ (IΩspin)3(BOD). We want to impose the topological
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condition (2.26) on the characteristic class f∗[(h, ω)], where f is the classifying map
f : X → BOD determined by the tangent bundle TX.

Because Ωspin
3 (BOD) is torsion and hence Hom(Ωspin

3 (BOD),Z) = 0, the short exact
sequence (2.12) gives

(IΩspin)3(BOD) ' Ext(Ωspin
2 (BOD),Z). (2.35)

Notice also that Ωspin
2 (BOD) satisfies (2.31) with the replacement X → BOD.

Without loss of generality, we assume that X is connected. Then, H0(X,Z2) ' Z2 and
it actually comes from Ωspin

2 (pt) ' Z2. The anomaly associated to Ext(Ωspin
2 (pt),Z) ' Z2 is

just a pure gravitational anomaly in d = 1. If the number of fermions D is odd, the fermion
parity (−1)F is anomalous. Throughout the paper, we allow pure gravitational anomalies.

Next let us consider the anomaly associated to

Ext(H1(BOD,Z2),Z) ' H1(BOD,Z2) ' Z2, (2.36)

where the generator of H1(BOD,Z2) ' Z2 is the first Stiefel-Whitney class w1. This
anomaly can be explicitly seen as follows. We consider the path integral of fermions ψI

on S1 with the anti-periodic (bounding, NS) spin structure. We put an O(D) holonomy g
around S1 such that det g = −1. For instance, we can just take g = diag(−1,+1, · · · ,+1).
Then we have odd numbers of fermion zero modes, and hence the path integral measure
is not invariant under the fermion parity (−1)F . We conclude that our fermions ψI have
an anomaly.

The pullback f∗w1 ∈ H1(X,Z2) is the first Stiefel-Whitney class of the tangent bundle
TX. Thus, to avoid the above anomaly associated to w1, we impose the condition that X
is orientable. We remark that this conclusion is only because we have taken the internal
theory T to be trivial. For example, if we take T to be a single Majorana fermion (or fermi
multiplet in N = 1 supersymetry) which transforms under g ∈ O(D) as det g, then we can
cancel the anomaly of ψI . Then X need not be orientable.

Assume that X is orientable. As we discuss later, a choice of a topological term will
give an explicit orientation on X, so let us assume that X is oriented. Then, we can use
SO(D) instead of O(D). Let BSOD be a classifying space for SO(D). Now we consider the
anomaly associated to

Ext(H2(BSOD,Z),Z) ' H2(BSOD,R/Z)/H2(BSOD,R) ' Z2. (2.37)

This Z2 is generated by the second Stiefel-Whitney class w2 regarded as an element of the
group H2(BSOD,R/Z)/H2(BSOD,R). The fermions ψI have the anomaly corresponding
to this nontrivial element. A simple way to see this anomaly is to quantize the fermions
ψI and construct the Hilbert space. Then the Hilbert space is in a spinor representation
of Spin(D), and SO(D) acts as a projective representation. Thus SO(D) is anomalous.
Another way to see the anomaly is to repeat the original argument of Witten for the d = 4
SU(2) anomaly [44] in the current case of d = 1 and SO(D), by using π1(SO(D)) ' Z2. In
any case, we find that the fermions ψI have the nontrivial anomaly.
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The corresponding sigma model anomaly is given by the pullback f∗w2. However, it is
important that this pullback is regarded as an element of

Ext(H2(X,Z),Z) ' H2(X,R/Z)/H2(X,R) (2.38)

rather than H2(X,Z2). In more detail, the anomaly can be cancelled under the following
condition. The 2-dimensional bulk theory is given by exp(πi

∫
f∗w2), and it is cancelled if

and only if there exists a differential 2-form F on X such that

exp
(
πi
∫
N2
f∗w2

)
= exp

(
−2πi

∫
N2
F

)
(2.39)

for closed manifolds N2. In this case f∗w2, regarded as an element of H2(X,R/Z), actually
comes from (the image of) H2(X,R), and F is a differential form representing it. This is
exactly the condition for the existence of a spinc connection on X, and F is a curvature
2-form. By adding the counterterm (hF , 0) to the bulk theory in the notation of (2.9), the
anomaly is cancelled. (Notice that dF = 0 because of (2.39).) A choice of F satisfying the
above condition is part of the data of the theory.

We have seen the anomaly cancellation condition. Now let us discuss topological terms

Hom(Ωspin
1 (X),R/Z) ' H0(X,Z2)⊕H1(X,R/Z), (2.40)

where we have used (2.30).
For connected X, we have H0(X,Z2) ' Z2, which actually comes from

Hom(Ωspin
1 (pt),R/Z). In the path integral, the effect of the nontrivial element of

Hom(Ωspin
1 (pt),R/Z) ' Z2 is that it assigns (−1) to S1 with the periodic (non-bounding,

Ramond) spin structure. In other words, it assigns additional sign to tr(−1)F . Thus,
the fermion parity (−1)F of the states is flipped. This is related to the orientation of X
by the following reason. As we mentioned above, the quantization of ψI gives a spinor
representation of the Lie algebra so(D) of SO(D). (This is actually a representation of
Spinc(D) = (Spin(D) × U(1))/Z2.) States with (−1)F = +1 are said to have positive
chirality, while those with (−1)F = −1 are said to have negative chirality. If we add
Hom(Ωspin

1 (pt),R/Z), positive chirality and negative chirality are exchanged. This means
that the orientation of X is changed. Notice that at the beginning there is no canonical
way to specify which is positive chirality and which is negative chirality. Thus the choice of
orientation is a torsor over H0(X,Z2).

Next consider H1(X,R/Z). If we add a topological term Aflat ∈ H1(X,R/Z) then in
the path integral on S1, we get an additional phase factor exp(2πi

∫
Aflat). This is a flat part

of the spinc connection. The non-flat part is specified by the curvature 2-form F introduced
above, but the curvature 2-form does not completely determine a spinc connection. It is
specified by the phase choice which is a torsor over H1(X,R/Z). In this way, we get a
complete spinc connection on the target space X. Indeed, the path integral of the fermions
under fixed bosonic fields φI gives the Wilson loops of the spinc connection.

So far we have assumed that the Lorentz symmetry of the worldline is Spin(d). Let us
briefly mention what happens if we include time-reversal symmetry T with

T2 = 1, TψIT−1 = ψI (I = 1, · · · , D). (2.41)
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In Euclidean spacetime, it corresponds to the symmetry group Pin−(d) (see [7, 34] for
details.) We have

Ωpin−
0 (pt) ' Z2, Ωpin−

1 (pt) ' Z2, Ωpin−
2 (pt) ' Z8, Ωpin−

3 (pt) = 0. (2.42)

Let us only mention the main differences from the case of Spin(d).
The pure gravitational anomaly is Ext(Ωpin−

2 (pt),Z)'Z8 rather than Ext(Ωspin
2 (pt),Z)'

Z2. The time reversal symmetry T gives a real structure to the Clifford algebra {ψI ,ψJ}=
δIJ , and Z8 is the famous mod 8 periodicity of the real representations of the Clifford
algebra (see e.g. [45] for a review).

The anomaly associated to f∗w2 should be now regarded as an element of H2(X,Z2)
rather than H2(X,R/Z)/H2(X,R) because of the difference between Ωpin−

0 (pt) ' Z2 and
Ωspin

0 (pt) ' Z. Thus, f∗w2 must be zero and hence X must admit a spin structure rather
than spinc.

One of the topological terms is classified by H1(X,Z2) rather than H1(X,R/Z) because
of the difference between Ωpin−

0 (pt) ' Z2 and Ωspin
0 (pt) ' Z. This is related to the spin

structure on the target space X.

2.4 Heterotic string theories

Let us return to the case of d = 2,N = (0, 1) theories, with an arbitrary internal theory
T . The fermions ψI are right-moving chiral fermions on the worldsheet. In general, the
topological condition (2.26) is complicated. Thus we only discuss a few points. For simplicity
we only consider the case P = pt.

Let λ(R) = − 1
4(2π)2 trR2 be one-half of the first Pontryagin class represented by the

Riemann curvature 2-form R of the target space X. Let c(F ) be the anomaly polynomial
of the theory T under the symmetry G, where F is the curvature 2-form of the G-bundle
on X. (Roughly c(F ) ∼ trF 2.) The differential form part of the anomaly cancellation
condition (2.27) is given by

dH = λ(R)− c(F ). (2.43)

Here λ(R) is the contribution from the anomaly of the fermions ψI under O(D), and c(F ) is
that from the anomaly of the theory T under G. This is the famous condition in heterotic
string theories at the differential form level. However, there is also conditions from the part
which cannot be expressed by differential forms.

As a simple case, suppose that G is connected and simply connected, π0(G) =
0, π1(G) = 0. In this situation, we can solve the condition (2.26) as follows.

First, X must admit orientation and spin structure. This can be seen as in the case of
SQM in section 2.3 with the time reversal symmetry. In fact, we can reduce a d = 2 theory
to a d = 1 theory by compactification on S1 that has the periodic (non-bounding, Ramond)
spin structure. The group G does not have any anomaly in d = 1 when it is connected and
simply connected, and hence there is no contribution from the theory T in d = 1 (except
possibly for pure gravitational anomalies). Moreover, the CPT symmetry in d = 2 reduces
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to the time reversal symmetry T in d = 1 as CPTd=2 = Td=1. Therefore, the results of the
previous subsection apply directly. (One can also directly work in d = 2.)

Thus let us assume that X admits orientation and spin structure. As mentioned in
section 2.3, X is equipped with an orientation and a spin structure by specifying the
topological terms classified by H0(X,Z2) ⊕H1(X,Z2). We can now take the symmetry
group of ψI to be Spin(D), which is connected and simply connected (assuming D ≥ 3).
Then, under the condition π0(G) = π1(G) = 0 we have (from Atiyah-Hirzebruch spectral
sequence)

(IΩspin)4(BG×BSpinD) ' (IΩspin)4(pt)⊕H4(BG×BSpinD), (2.44)

where BSpinD is the classifying space for Spin(D). Here (IΩspin)4(pt) ' Z corresponds to
pure gravitational anomalies and it is irrelevant for the condition (2.26) (see section 2.2).
Then the class [(h, ω)] ∈ (IΩspin)4(BG×BSpinD) that appears in the condition (2.26) is
actually given by λ− c, where λ ∈ H4(BSpinD) is the generator of H4(BSpinD) ' Z given
by one-half of the first Pontryagin class p1, and c ∈ H4(BG,Z) ' Z is a characteristic
class (not necessarily a generator) whose differential form representative is c(F ). Thus the
topological condition is

0 = f∗(λ− c) ∈ H4(X,Z). (2.45)

Notice that (2.43) ensures this condition at the level of de Rham cohomology, but this
topological condition must be satisfied at the level of integral cohomology. The condition
at the integral cohomology level was noticed in [4]. The necessity of this condition can also
be seen from the perspective of the target space p-form gauge theories as discussed in [46].

We remark that (2.43) does not give the complete condition for the differential form H .
The anomaly cancellation condition (2.27) requires H to satisfy∫

N3
H ∈ −h̃(N3) + Z. (2.46)

This is a generalized version of the Dirac charge quantization condition for H . If there were
no anomaly, the Dirac quantization is simply given by

∫
H ∈ Z. However, the anomaly h̃

modifies the quantization condition.
More generally, we can consider G that is neither connected nor simply connected. As

an illustration, suppose that the theory T consists of D left moving fermions (or fermi
multiplets) with the symmetry G = O(D). Then we can cancel the anomalies between the
left and right moving fermions by taking the G bundle to the same as the O(D) bundle
associated to the tangent bundle of X. Then X can be an arbitrary manifold. Another
example is to take T to be the sigma model with the target space S1 on which Z2 symmetry
acts by orientation reversal. Then we can take X so that the total theory is a sigma model
whose target space is an S1-bundle over X. If X is a pin− manifold, we can introduce a
spin structure to the total space. Also by imposing the condition (2.45) on the total space,
we get an anomaly-free theory. Considering pin− manifolds can be interesting because it
gives more anomalies and constraints. See e.g. [47] for such constraints.
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3 The torsion index of SQFTs

In this section, we introduce the notion of torsion index of 2-dimensional N = (0, 1) SQFTs.
As mentioned in the introduction, it is basically the same as the invariant proposed by
Gaiotto and Johnson-Freyd [18]. However, we define it in a way that is more suitable for
our later applications to the target space global anomalies of heterotic string theories. Our
definition also suggests different computational methods and we will discuss examples in
section 4.

We will avoid concepts that are valid only for CFT. In particular, instead of Virasoro
algebras, we just use

HL = 1
2(H + P ), HR = 1

2(H − P ). (3.1)

Here H and P are the Hamiltonian and the momentum operators on R× S1, where R is
time, and S1 is space with circumference 2π and the periodic (non-bounding, Ramond)
spin structure unless otherwise stated. The supercharge Q of N = (0, 1) supersymmetry is
such that

Q2 = HR. (3.2)

3.1 Noncompact SQFTs and their index

Before discussing the torsion index, we need some preparation. We consider “mildly
noncompact” SQFTs as discussed in [17–19]. We do not attempt to give a rigorous
definition of this concept, but it is easy to understand intuitively.

First, compact SQFTs are those for which the energy spectrum is discrete and sparse
enough so that the trace of the operator qHL q̄HR (q = e2πiτ ) is well-defined for any complex
modulus τ with Im τ > 0.

A mildly noncompact SQFT Z is an SQFT in which the compactness is violated in
a controlled way, as schematically shown in figure 1. In the figure, the black region is
compact. It is connected to the grey semi-infinite cylindrical region. The theory in the grey
region is of the form σ(R≥) ⊗ Y, where σ(R≥) is the sigma model with the target space
R≥ = {x ∈ R | x ≥ 0}, and Y is a compact SQFT. We call Y the boundary theory of Z.

A class of examples of mildly noncompact SQFTs is given by sigma models with a
target space X which we denote as σ(X). We require X to be as follows. It is not compact,
but the noncompactness comes only from a cylindrical region of the form R≥ × Y where Y
is compact. The metric in this region is assumed to be a product of the metrics in R≥ and
Y . In the case of sigma models, the supercharge Q is a kind of Dirac operator on Z. The
discussion of this section is really motivated by the analogy between Dirac operator and
supercharge. For string-manifolds, mathematical invariants corresponding to the torsion
index have been discussed in [48].

Another class of examples is as follows. Let x be the quantum mechanical mode in the
region R≥ = {x ∈ R | x ≥ 0}. Suppose that x is actually defined as an elementary scalar
field not just for R≥ but for the entire R, but its potential V (x) behaves as V (x)→ x2 at
x→ −∞. If V (x) = x2 in the entire region x ∈ R, then it would be a massive field and the
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Figure 1. Mildly noncompact SQFT. The black region is compact and it is connected to the grey
region in which the theory is of the form σ(R≥) ⊗ Y, where σ(R≥) is the sigma model with the
target space R≥ = {x ∈ R | x ≥ 0} (i.e. semi-infinite real line) and Y is a compact SQFT.

energy spectrum satisfies the condition of compactness. On the other hand, if V (x)→ x2

at x→ −∞ and V (x)→ 0 at x→∞, then it is expected to be mildly noncompact.
In general, we expect to have state vectors |x, a〉, where x ∈ R≥ is the position of the

quantum mechanical mode in the region x > 0 (which is the zero mode of the boson of
the sigma model σ(R≥) in the space S1), and a is any other discrete label specifying the
quantum state. It is normalized in the usual way, 〈x, a|x′, b〉 = δ(x− x′)δab. These states
are expected to be well-defined for x > 0 because they represent states localized at x and
hence they do not see the black (compact) region in figure 1. Then, for a given state vector
|Ψ〉, we can consider its wave function Ψa(x) = 〈x, a|Ψ〉 for x > 0. However, we remark
that this wave function describes only partial information of |Ψ〉 since the wave function is
defined only in the region x > 0. Two different quantum states |Ψ〉 6= |Ψ′〉 can have the
same wave function Ψa(x) = Ψ′a(x) in the region x > 0 if their difference is only in the
interior region.

Let Z be a mildly noncompact SQFT with a boundary theory Y. We are going to
define an index IZ(q) of Z. The eigenvalues of the momentum operator P take the form
n− ν/24, where ν ∈ Z ' (IΩspin)4(pt) is the pure gravitational anomaly of Z with the sign
convention that a sigma model σ(Z) has ν = dimZ coming from right moving fermions
ψI (I = 1, · · · , dimZ).11 We decompose the Hilbert space H of the theory Z in terms of
the eigenvalues of P

H =
⊕
n∈Z
Hn−ν/24, PHn−ν/24 = (n− ν/24)Hn−ν/24. (3.3)

We consider the case that (−1)F is defined on H, which requires that ν is even.
Now we want to consider kernels of the supercharge Q in the Hilbert space. However,

we can consider two types of kernels. One type, which we denote as KerQ, consists of states
|Ψ〉 ∈ H such that Q |Ψ〉 = 0 and |Ψ〉 is normalizable, 〈Ψ|Ψ〉 <∞. In the noncompact region
x > 0, we can consider wave functions Ψa(x) = 〈x, a|Ψ〉. In the definition of KerQ, the
condition 〈Ψ|Ψ〉 <∞ requires that Ψa(x) decay first enough so that

∑
a

∫
dx|Ψa(x)|2 <∞.

Another type of kernel, which we denote K̃erQ, is defined by requiring the wave functions
11This shift of momentum may be argued as follows. If there were no anomaly, then exp(2πiP ) is a trivial

translation on S1 and hence should be the identity. Thus the nontrivial values of exp(2πiP ) should be due
to gravitational anomalies. Now we may add decoupled spectator free fermions so that the total anomaly
is zero. After adding them, the total system has exp(2πiP ) = 1. Thus the computation of exp(2πiP ) is
reduced to that of free fermions.
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to be bounded as
∑
a |Ψa(x)|2 < (const.) for ∀x > 0. We do not require them to be square

normalizable.
Let us see more explicitly the behavior of the wave functions in the region x→∞. The

supercharge Q in the region x > 0 is of the following form. Let x and γx be the zero modes
of the boson and the fermion of the sigma model σ(R≥). In particular, we have γ2

x = 1 and
γx anticommutes with any other fermion modes. Notice that x and γx are superpartners
of each other. Let px = −i ∂∂x be the momentum operator corresponding to x. Then the
supercharge is given by

Q = γxpx +Q′, (3.4)

where Q′ is constructed from modes other than x and γx, including nonzero modes of
the sigma model σ(R≥). More precise statement is that we can consider matrix elements
〈x, a|Q |Ψ〉 and these matrix elements are expressed as (3.4) for x > 0. Let Q̂ be the
operator

Q̂ = iγxQ′. (3.5)

This operator is self-adjoint since Q′ and γx are self-adjoint and anticommute with each
other. Also, Q̂ does not contain the noncompact mode x. Thus we expect Q̂ to have a real
discrete spectrum. Suppose that its eigenvalue on |x, a〉 is λa ∈ R,

Q̂ |x, a〉 = λa |x, a〉 . (3.6)

If the state |Ψ〉 is in the kernel of Q, the wave function Ψa(x) behaves as follows:

0 = QΨa(x) = −iγx
(
∂

∂x
+ λa

)
Ψa(x)

=⇒ Ψa(x) ∝ e−λax (3.7)

For the state |Ψ〉 to be in KerQ, we must have Ψa(x) = 0 for all a such that λa ≤ 0. On
the other hand, for |Ψ〉 to be in K̃erQ, we must have Ψa(x) = 0 for all a such that λa < 0.
This is the difference between KerQ and K̃erQ. If all eigenvalues of Q̂ are nonzero, i.e.
λa 6= 0 (∀a), then KerQ = K̃erQ.

We denote by (KerQ)±n−ν/24 and (K̃erQ)±n−ν/24 the subspaces of KerQ and K̃erQ with
the eigenvalues of (−1)F and P given by ±1 and n − ν/24, respectively. These spaces
are expected to be finite dimensional by the following reason. In these spaces, we have
Q2 = 1

2(H −P ) = 0 and hence H = P = n− ν/24, so the states have a fixed energy. In the
situation as in figure 1 in which the noncompact direction is one-dimensional, we expect to
have only finite number of states at a given energy.

We remark that states in (K̃erQ)±n−ν/24 with λa = 0 may be part of a continuous
spectrum of states whose wave functions are of the form Ψ(x) ∼ Ae−ikx +Beikx for k ∈ R.
These are states which are injected from the region x = ∞ with momentum px = −k,
reflected by the compact region, and then going out to the region x =∞ with momentum
px = k. The eigenvalue of Q2 is k2, and k = 0 gives a state in K̃erQ. But this does not change
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the conclusion about the finiteness of (K̃erQ)±n−ν/24 since the number of wavefunctions with
k = 0 is still expected to be finite.

We define

Index(Qn−ν/24) = dim(K̃erQ)+
n−ν/24 − dim(KerQ)−n−ν/24

Ĩndex(Qn−ν/24) = dim(KerQ)+
n−ν/24 − dim(K̃erQ)−n−ν/24 (3.8)

and

IZ(q) =
∑
n∈Z

Index(Qn−ν/24)qn−ν/24

ĨZ(q) =
∑
n∈Z

Ĩndex(Qn−ν/24)qn−ν/24 (3.9)

where q = e2πiτ is a variable. Notice that Index(Qn−ν/24) and Ĩndex(Qn−ν/24) are zero
for sufficiently negative n. The reason is that in the kernel of Q we have P = H, but H
should be bounded from below. Also notice that if Z is a compact SQFT, then we have
IZ(q) = tr(−1)F qHL q̄HR and it is the elliptic genus [23].

The index (3.8) is defined by imitating the definition of the APS index of Dirac
operators [49]. In fact, for sigma models Z = σ(Z), the relation between IZ(q) and the
APS index in mildly noncompact theories is the same as the relation between the elliptic
genus and the Atiyah-Singer index in compact theories [23]. The motivation for using both
Ker and K̃er in the definition (3.8) is the same as the case of the APS index, and we will
explain it below.

The index IZ(q) has an important gluing law. To explain it, let us first introduce the
notion of orientation reversal Z of an SQFT Z. It is just defined by adding a topological
term corresponding to the nontrivial element of Hom(Ωspin

2 (pt),R/Z) ' Z2. (See also
section 2 for related discussions.) This is a generalized theta term, and its effect is that if
the worldsheet has the odd spin structure (meaning that the mod 2 index is nontrivial), then
this theta angle assigns an additional phase (−1) to the partition function. In particular,
the action of (−1)F on Ramond sector states gets an additional factor (−1). Thus the index
is changed as

IZ(q) = −ĨZ(q), ĨZ(q) = −IZ(q). (3.10)

In the noncompact region, the theory is of the form σ(R≥) ⊗ Y. If we flip the R≥
direction, then the fermion ψ in the chiral multiplet is transformed as ψ → −ψ. This
transformation is anomalous and the theta angle mentioned above is produced. Thus, in
the noncompact region, the effect of the orientation reversal can be compensated by the
change of the direction of R≥.

If we have two mildly noncompact SQFTs Z and Z ′ with the same boundary theory Y ,
we can glue Z and Z ′ as in figure 2. This gluing is possible because the orientation reversal
on Z ′ changes the direction of R≥ in the noncompact region. For example, in sigma models
this gluing is just the gluing of two manifolds along their common boundaries. However,
our construction applies to any mildly noncompact SQFTs.
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Figure 2. Gluing of two mildly noncompact SQFTs Z and Z ′. The orientation of Z ′ is reversed
to Z ′.

By gluing Z and Z ′, we obtain a compact SQFT Z ′′. Now we claim that the index
IZ(q) satisfies the gluing law

IZ′′(q) = IZ(q) + ĨZ′(q) = IZ(q)− IZ′(q). (3.11)

This is argued as follows. (The following arguments are borrowed from the corresponding
arguments for the APS index of Dirac operators.)

First let us consider the case that all eigenvalues of Q̂ defined in (3.5) are nonzero.
Then, Q2 = p2

x + Q̂2 and Q̂2 > 0. In the theory Z, the positive definiteness Q̂2 > 0 means
that we need a positive “energy” to go to the region x→∞, where the “energy” is in the
sense of HR = Q2. Thus, all the almost zero energy states of HR = Q2 are localized in
the black compact region of figure 1. When we glue two theories Z and Z ′, we can take
the cylindrical region σ(R) ⊗ Y to be very long. Then, almost zero energy states must
be localized in the black compact region of either Z or Z ′ in figure 2. Because of the
deformation invariance of the index [12], the index can be computed by counting almost
zero energy states without caring whether the energy is exactly zero or not. Thus the index
is unchanged before and after the gluing, and we get the desired gluing law. Notice that if
Q̂ does not have zero eigenvalues, then KerQ = K̃erQ and hence IZ(q) = ĨZ(q).

Next we want to consider the case that Q̂ may have zero eigenvalues. In this case, we
can argue as follows. Let ε > 0 be a sufficiently small constant such that for all nonzero
eigenvalues λa 6= 0 of Q̂, we have ε < |λa|. In the theory Z, we consider the following
deformed operator Qε. Let ρ(x) be a function such that

ρ(x) =
{
εx (x→∞)
const. (x < 0)

(3.12)

By using it, we define a self-adjoint operator

Qε := e(−1)F ρ(x)Qe(−1)F ρ(x). (3.13)

This is defined in the entire region because ρ(x) is taken to be just constant in the region
x < 0. The kernels of Q and Qε are related by simply acting e−(−1)F ρ(x) to states. More
precisely, we have

(K̃erQ)+ 3 |Ψ+〉 7→ e−ρ(x) |Ψ+〉 ∈ (KerQε)+,

(KerQ)− 3 |Ψ−〉 7→ e+ρ(x) |Ψ−〉 ∈ (KerQε)−, (3.14)
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where (−1)F |Ψ±〉 = ± |Ψ±〉. We can see that both e−ρ(x) |Ψ+〉 and eρ(x) |Ψ−〉 for |Ψ+〉 ∈
(K̃erQ)+ and |Ψ−〉 ∈ (KerQ)− decay exponentially at x→∞ because of our choice of ε.
These maps give isomorphisms

(K̃erQ)+ ' (KerQε)+, (KerQ)− ' (KerQε)−. (3.15)

In fact, in the region x→∞, we have

Q̃ = −iγx
(
∂

∂x
+ Q̂+ ε(−1)F

)
. (3.16)

To obtain this formula, we have used the fact that (−1)F anticommutes with γx. The only
difference between Q and Qε is that Q̂ is replaced by Q̂+ ε(−1)F . The operator Q̂+ ε(−1)F

does not have zero eigenvalue because of our choice of ε, and

λa ≥ 0⇐⇒ λa + ε > 0, λa > 0⇐⇒ λa − ε > 0. (3.17)

Therefore, by the behavior of wavefunctions (3.7), we get the desired isomorphisms.
We can use the operator Qε for the definition of the index because of the isomor-

phisms (3.15). Since Q̂+ ε(−1)F does not have zero eigenvalue, the previous result applies
to Qε and we get the desired formula (3.11).

Now we can understand why two types of kernels Ker and K̃er are used in the def-
inition (3.8). We have the isomprhisms (3.15) after the deformation (3.13), and the
definition of the index in terms of Qε for ε > 0 gives the index as dim K̃erQ− dim KerQ.
We could also consider another deformation by replacing ε → −ε. In that case, we get
isomorphisms (KerQ)+ ' (KerQ−ε)+ and (K̃erQ)− ' (KerQ−ε)− and hence the corre-
sponding index is given by dim KerQ− dim K̃erQ. Thus we also have another gluing law
IZ′′(q) = ĨZ(q)− ĨZ′(q).

Incidentally, the relation between IZ(q) and ĨZ(q) can be derived by using the gluing
law. Let C = σ(R)⊗Y . We decompose the wave function as Ψa(x) = Ψ+

a (x) + Ψ−a (x) where
Ψ+
a (x) is the part with (−1)F = +1 and Ψ−a (x) is the part with (−1)F = −1. We impose the

boundary condition that Ψ+
a (x) is bounded for ∀x ∈ R, and Ψ−a (x) is square-normalizable.

Let IC(q) be the index with this boundary condition for C. If we glue the region x→∞
of Z and the region x → −∞ of C, we again get Z. However, the boundary condition is
different before and after the gluing. Before the gluing, we need to impose the boundary
condition for Z such that the index is ĨZ(q). This is necessary so that the gluing of Z and
C is possible. After the gluing, the boundary condition is such that the index is IZ(q). By
the gluing law, we get

IZ(q) = ĨZ(q) + IC(q). (3.18)

One can see that IC(q) is given in terms of Y as follows. The Hilbert space of Y is decomposed
as

HY =
⊕
n∈Z
HYn−(ν−1)/24, (3.19)
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where HYn−(ν−1)/24 is the subspace with P = n − (ν − 1)/24. Let KerQYn−(ν−1)/24 be the
kernel of the supercharge QY in the subspace HYn−(ν−1)/24. Then we have

IC(q) = η(τ)−1 ∑
n∈Z

qn−(ν−1)/24 dim KerQYn−(ν−1)/24 (3.20)

where η(τ) = q1/24∏
n≥1(1−qn) is the Dedekind η-function. The contribution of η(τ) comes

from the left-moving excited modes of σ(R) in C = σ(R)⊗ Y .

3.2 The torsion index

We have discussed some properties of mildly noncompact SQFTs. Now we can give a
definition of the torsion index.

To define the torsion index of an SQFT Y, we assume the following.

1. Y is a compact SQFT with the pure gravitational anomaly ν(Y) = ν − 1. We assume
ν is even, so that the theory σ(R)⊗Y has the even pure gravitational anomaly ν and
hence (−1)F is defined.

2. There exists an integer N and an SQFT Z such that N copies Y⊕N = Y ⊕ · · · ⊕ Y of
the theory Y is the boundary theory of Z. (Only the existence of N and Z is required,
and we will argue that the torsion index does not depend on their choice.)

Then the torsion index, which we denote as JY(q), will be defined by

JY(q) = 1
N
IZ(q) modulo some quantities (3.21)

where IZ(q) is the index of Z defined in section 3.1. We want JY(q) to be independent of
the choice of N and Z, and we also want JY(q) to be invariant under deformation of Y
(in the sense of “flowing up and down the renormalization group trajectories” as discussed
in [17]). Therefore we will need to divide by some quantities.

First let us discuss the dependence on (N,Z). Suppose that N ′ copies of Y can be
realized as the boundary theory of Z ′. Then, both (Z)⊕N ′ and (Z ′)⊕N has Y⊕NN ′ as the
boundary theory, so we can glue them to get a compact theory Z ′′. By the gluing law (3.11),
we get

1
N
IZ(q)− 1

N ′
IZ′(q) = 1

NN ′
IZ′′(q). (3.22)

Let η(τ) = q1/24∏
n≥1(1− qn) be the Dedekind η-function. For a compact theory Z ′′ with

the gravitational anomaly ν, the Witten genus η(τ)νIZ′′(q) is a weakly holomorphic modular
form of weight ν/2. Here, “weakly holomorphic” means that we can have poles at q = 0.
We denote by MF[∆−1]n the set of weakly holomorphic modular forms of weight n (where
∆ = η(τ)24 and this notation indicates that we can have powers of ∆−1 = q−1 + · · · ). More
explicitly, if f(τ) ∈ MF[∆−1]n, then f(τ) is a Laurent series of q = e2πiτ , f(τ + 1) = f(τ)
and f(−1/τ) = τnf(τ).
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We conclude
1
N
IZ(q)− 1

N ′
IZ′(q) ∈ η(τ)−νMF[∆−1]ν/2 ⊗Q, (3.23)

where Q is the set of rational numbers. Thus, 1
N IZ(q) is independent of the choice of (N,Z)

modulo η(τ)−νMFν/2 ⊗Q.
Next let us discuss deformation of Y. If necessary, we embed Y to a larger UV theory

as discussed in [17] such that the low energy theory is unchanged up to irrelevant operators.
Suppose that there is a one parameter family {Ys} of SQFTs parametrized by s ∈ [0, 1].
We want to make sure that Y0 and Y1 have the same torsion index.

Let ρ(x) be a function of x ∈ R such that

ρ(x)→
{

0 (x→ −∞)
1 (x→ +∞)

. (3.24)

Then, we introduce a dynamical chiral multiplet Φ in such a way that its scalar component
φ gives the deformation of Ys as s = ρ(φ). Then we obtain a new mildly noncompact
SQFT W whose gravitational anomaly is ν. Let IW(q) be the index of W with the
boundary condition that positive chirality wave functions Ψa(x), (−1)F |x, a〉 = |x, a〉 are
bounded at x→ +∞ and decay exponentially at x→ −∞, while negative chirality wave
functions Ψa(x), (−1)F |x, a〉 = − |x, a〉 decay exponentially at x→ +∞ and are bounded
at x→ −∞.

If we are given a theory Z0 whose boundary theory is Y⊕N0 , we can construct a theory Z1
whose boundary theory is Y⊕N1 by gluing W⊕N to Z0. Then, by a similar gluing argument
to that in section 3.1, we get

1
N
IZ1(q)− 1

N
IZ0(q) = IW(q). (3.25)

By definition, the index IW(q) is an element of q−ν/24Z((q)), where Z((q)) is the set of
Laurent series of q with integer coefficients. Thus the torsion index JY(q) is invariant under
deformation modulo q−ν/24Z((q)).

We can obtain a stronger result when ν ≡ 4 mod 8. The CPT symmetry CPT of a
theory with a pure gravitational anomaly ν has the following properties:

CPT2 = −1, CPT(−1)F = (−1)FCPT (ν ≡ 4 mod 8)
CPT(−1)F + (−1)FCPT = 0 (ν ≡ 2 mod 4)

(3.26)

One can check these statements explicitly for free Majorana-Weyl fermions in which case
they follow from the properties of the Clifford algebra of zero modes. Then they are true
for any theory because anomalies are universal.12 When ν = 4 mod 8, the existence of
the antiunitary operator CPT with CPT2 = −1 implies the 2-fold degeneracy of states (i.e.

12More concretely, one can add decoupled Majorana-Weyl fermions to a theory to cancel the gravitational
anomaly. Then CPT and (−1)F satisfy the non-anomalous relation CPT2 = 1, CPT(−1)F = (−1)F CPT,
and we can consider the effect of CPT and (−1)F to each decoupled theories. See also [50] for related
discussions.
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Kramers doubling). Thus, we have IW(q) ∈ 2q−ν/24Z((q)) in this case. For ν = 2 mod 4,
the operator CPT relates positive and negative chirality states (−1)F = ±1 because of the
anticommutation relation between CPT and (−1)F . For compact SQFTs, this implies that
the index is zero. However, for noncompact SQFTs, the definition of the index is asymmetric
between positive and negative parts, so the index IW(q) may not necessarily vanish.13

In conclusion, we define the torsion index JY(q) of a theory Y with an odd gravitational
anomaly ν(Y) = ν − 1 as

JY(q) = 1
N
IZ(q) mod η(τ)−νMF[∆−1]ν/2 ⊗Q + mq−ν/24Z((q)), (3.27)

where Z is a mildly noncompact SQFT whose boundary theory is Y⊕N , IZ(q) is the index
of Z defined in section 3.1, and

m =
{

2 (ν ≡ 4 mod 8)
1 (ν ≡ 0, 2, 6 mod 8)

. (3.28)

We will give simple examples later in section 4.
Let us discuss the implication of the torsion index for spontaneous supersymmetry

breaking in the infinite volume. Suppose that N copies of Y can be deformed to break
supersymmetry (by embedding it into a larger UV theory if necessary). More specifically,
we assume that there is a one parameter family of theories Ys parametrized by s ∈ [0,∞)
such that the vacuum energy density (i.e. cosmological constant) in the infinite volume
is given by s (at least for large s), and Y0 = Y⊕N . In this situation, we can construct
an SQFT Z by introducing a chiral multiplet Φ and taking its scalar component φ to be
s = ρ(φ), where

ρ(φ)→
{
φ2 (φ→ −∞)
0 (φ→ +∞).

(3.29)

The region φ → −∞ has the energy density φ2 that grows like the potential energy of a
massive scalar. Thus, this region is expected to be compact in the sense of the energy
spectrum. Therefore, we get a theory Z with the boundary Y⊕N at φ→ +∞. In particular,
if N = 1, we get JY(q) = IZ(q) which is 0 modulo mq−ν/24Z((q)). Therefore, theories
which can be deformed to break supersymmetry has the trivial torsion index. In other
words, if an SQFT has a nontrivial value of the torsion index, supersymmetry cannot be
spontaneously broken by a free parameter s of the theory. We remark that it is possible
that S1 compactification breaks supersymmetry by a vacuum energy of order the inverse
radius of S1 [17].

13This non-vanishing of IW(q) for ν ≡ 2 mod 4 is of the following nature. If the boundary operator
Q̂ defined in (3.5) does not have zero eigenvalue, then the difference of the boundary conditions does not
matter and IW(q) = 0. Thus, IW(q) can be nonzero only if Q̂ has zero modes. For example, suppose that
the family of theories Ys does not generically have zero eigenvalues for Q. However, at some points in the
parameter space s ∈ [0, 1], we may get an accidental zero of Q. In such a case, a spectral flow consideration
as in the case of a family of Dirac operators as well as the boundary conditions may show that IW(q) can
be nonzero if Y0 or Y1 is such an accidental point.
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It was conjectured [13, 14] that the space of N = (0, 1) SQFTs with a worldsheet
pure gravitational anomaly ν ∈ Z is homotopy equivalent to the (−ν)-th space TMF−ν
of a generalized cohomology theory known as topological modular forms TMF. This
conjecture implies, among other things, that the cohomology group of a point TMF−ν(pt) =
π0(TMF−ν) is the group of deformation classes of SQFTs with the gravitational anomaly
ν. Here, two SQFTs Y0 and Y1 are deformation-equivalent if they can be connected by a
one-parameter family of theories {Ys} (s ∈ [0, 1]). The zero element 0 ∈ TMF−ν(pt) may
be represented by an SQFT with spontaneous supersymmetry breaking. (See [19] for more
discussions.) The torsion index gives some of the invariants suggested by TMF−ν(pt). If the
torsion index of a theory Y with the gravitational anomaly ν(Y) is nonzero, its deformation
class [Y ] ∈ TMF−ν(Y)(pt) should represent a nontrivial element of TMF−ν(Y)(pt), assuming
the conjecture is true.

4 Global anomalies and the torsion index

In this section, we study global anomalies of heterotic string theories. However, we do not
assume that the worldsheet SQFT is conformal nor has the correct gravitational anomaly.
We just study SQFTs without integrating over the worldsheet supergravity. We will see
that target space anomalies are rephrased as the index of a class of SQFTs.

Because we consider general gravitational anomaly of the worldsheet, it is possible
that the target space has some anomalies. As we discuss, perturbative anomalies of the
target space theory are represented by the usual Witten index, and global anomalies are
represented by the torsion index.

4.1 Target space anomalies and index of SQFTs

The basic setup we consider is the one described in section 2.2. Let us briefly recall it. We
consider an internal SQFT T with a global symmetry G and a parameter space P which
is regarded as a background sigma model for T . We also consider a sigma model with a
target space X. Here X is assumed to be equipped with a Riemannian metric, a G-bundle
with a connection, and a map X → P. Then T is coupled to the sigma model X via the
connection of the G-bundle and the map X → P . For this coupling between T and X to be
well-defined, the anomaly cancellation condition discussed in section 2.2 must be satisfied.
We denote the combined theory as σ(X, T ). We also denote the pure gravitational anomaly
of a theory X as ν(X ), and in particular we have ν(σ(X, T )) = dimX + ν(T ).

In the following discussion, we always assume that a target space X is large enough so
that weakly coupled description for the sigma model is possible. (T is general and may be
strongly coupled.) We also assume that ν(σ(X, T )) is even so that the GSO projection to
states with (−1)F = +1 makes sense. However, the GSO projection may not be compatible
with the Majorana (i.e. real) structure imposed by CPT. We discuss the real structure a
little more later.
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Let us recall how the target space theory is described. It contains fermions and we are in-
terested in their anomalies.14 In actual heterotic string theories, we are only interested in the
states with the worldsheet momentum P = 0 (after including ghost fields and taking BRST
cohomology). However, we consider all states with any value of P unless otherwise stated.

By quantizing the theory except for the bosonic zero modes of the sigma model X, we
get a space

Sσ(X,T ) =
⊕
n∈Z
Sσ(X,T )
n−ν(σ(X,T ))/24, (4.1)

where Sσ(X,T )
n−ν(σ(X,T ))/24 is the eigenspace of P with eigenvalue P = n− ν(σ(X, T ))/24, and

Sσ(X,T )
n−ν(σ(X,T ))/24 = 0 for sufficiently negative n. The symmetry G acts on Sσ(X,T ). This

space is also a Clifford module because quantization of fermionic zero modes of the sigma
model X gives gamma matrices associated to the tangent bundle TX. Quantization of
the bosonic zero modes of the sigma model X gives quantum mechanical coordinates of X.
Then the space Sσ(X,T ) becomes a bundle (or more precisely a Clifford module of TX) over
X, and the total Hilbert space Hσ(X,T ) is the space of sections of the bundle Sσ(X,T ),

Hσ(X,T ) = Γ(Sσ(X,T )). (4.2)

Here we have neglected winding modes in X since we consider the large volume limit of X.
(It is possible that the internal theory T is a small volume sigma model.) The supercharge
is of the form

Q = i /D + M, (4.3)

where i /D is the Dirac operator constructed from the bosonic and fermionic zero modes of the
sigma model X, and M is constructed from other modes and can be interpreted as a mass
term. This M may depend on the parameters in P , and hence depend on the position in X via
the map X → P . Notice that M anticommutes with (−1)F , so it is odd under the Z2-grading
of (−1)F . We consider the target space fermions (including states with P 6= 0) described
by this Dirac operator. The operator (−1)F is interpreted as the target space chirality
operator, and hence the GSO projection (−1)F = +1 corresponds to taking chiral fermions.

Target space anomalies are classified by the Anderson dual of some bordism theory as
discussed in section 2.1. For the current case, we are interested in target space manifolds
X equipped with a metric, a G-bundle with a connection, a map X → P, and a B-field
as discussed in section 2.2. At the topological level, the condition is given by (2.26). We
denote this type of structure (including all data mentioned above) on manifolds as B, and
the corresponding bordism groups as ΩB• . Thus the target space anomalies are classified
by (IΩB)D+2(pt), where D = dimX is the dimension of the target space.15 It satisfies the

14We do not necessarily restrict our attention to massless fermions to take into account the possibility of
coupling space anomalies of the type discussed in [51–54]. When we vary parameters in P of the theory T ,
some massive modes may become massless at some points of P and they can produce anomalies.

15Strictly speaking, the classification of anomalies in terms of (IΩB)• is not yet established in the literature
for structure types like B which are sometimes called 2-groups. We believe that this is not an essential
problem and just assume that (IΩB)• is the correct cohomology theory for the classification of anomalies.
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short exact sequence (2.12) discussed in section 2.1,

0→ Ext(ΩBD+1(pt),Z)→ (IΩB)D+2(pt)→ Hom(ΩBD+2(pt),Z)→ 0 (4.4)

Let us briefly recall how to describe anomalies of chiral fermions. See [9] for detailed
explanations of the following procedure.

Suppose that we have a chiral fermion χ+ in D-dimensions with positive chirality. Let
χ− be the corresponding fermion with negative chirality. Then we consider a (D + 1)-
dimensional massive fermion Ψ such that if it is restricted to a manifold of the form R×X,
then it has components of the form (χ+, χ−). Putting this fermion on a manifold Y with
boundary ∂Y = X with an appropriate boundary condition, we get a localized chiral
fermion χ+ on the boundary X. The APS η-invariant of a Dirac-like operator DD+1 acting
on this fermion Ψ gives the (D+1)-dimensional bulk theory.16 In the notation of section 2.1,
the bulk theory is given by

(h, ω) = (−η, I) ∈ (̂IΩB)D+2(pt) (4.5)

where η is the APS η-invariant of DD+1, and I is the associated (D + 2)-form that appears
in the APS index theorem in (D + 2)-dimensions. In more detail, the APS index of the
corresponding Dirac operator DD+2 on a (D+ 2)-manifold Z with boundary ∂Z is given by

IndexDD+2(Z) =
∫
Z
I + η(∂Z), (4.6)

where IndexDD+2(Z) means the index of the Dirac operator DD+2 on the manifold Z,
and η(∂Z) is the APS η-invariant of the Dirac operator DD+1 on the boundary ∂Z. This
(D + 2)-form I is the anomaly polynomial of the chiral fermion χ+. (We have not yet
incorporated the Majorana condition. We will take it into account later.)

Perturbative anomalies are described as follows. We consider the Atiyah-Singer index
on all possible closed Z (i.e. ∂Z = ∅),

IndexDD+2(Z) =
∫
Z
I. (4.7)

This gives a map

ΩBD+2(pt) 3 [Z] 7→ IndexDD+2(Z) ∈ Z. (4.8)

16This Dirac-like operator DD+1 may contain a mass term M of the type discussed in (4.3). This mass is
different from the mass that is used to make the bulk (D + 1)-dimensional theory completely gapped. We
assume that the APS η-invariant and the APS index theorem are still valid in the presence of such M which
is odd under the Z2-grading. In our situation, M may be an infinite dimensional matrix whose eigenvalues
have spectral flows. For instance, T may be a sigma model σ(S1) ⊗WZWk(U(1)) where WZWk(U(1))
is a level k Wess-Zumino-Witten, and we may introduce a holonomy

∫
S1 a ∈ R/Z of a U(1) field a. The

holonomy is one of the parameters in P. The mass M may be of the form M ∼ diag(· · · , n +
∫

S1 a, · · · )
where n ∈ Z. By changing the holonomy as

∫
S1 a→

∫
S1 a+ 1, we get a situation in which M has a spectral

flow. Presumably, the definition of the APS η-invariant and the APS index theorem work even in such a
situation by considering the η-invariant of the total self-adjoint operator DD+1 = i /D + M.
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This is the part Hom(ΩBD+2(pt),Z) in (4.4). If this is zero for all elements of ΩBD+2(pt),
the short exact sequence (4.4) implies that we have I = dJ for some gauge invariant
(D + 1)-form J . Then we can modify the bulk (D + 1)-dimensional theory by adding a
counterterm −(hJ , dJ ), where as in section 2.1 we have defined

hJ (Y ) =
∫
Y
J . (4.9)

After adding the counterterm, we get

(h̃, 0) := (−η, I)− (hJ , dJ ). (4.10)

This is a new bulk theory which is equivalent to the original one in the sense discussed in
section 2.1. Now its anomaly polynomial is zero and h̃ is an element of Hom(ΩBD+1(pt),R/Z).
The equivalence class [(h̃, 0)] is an element of

Ext(ΩBD+1(pt),Z) = Hom(ΩBD+1(pt),R/Z)/Hom(ΩBD+1(pt),R). (4.11)

Computation of the global anomaly h̃, or more precisely its equivalence class [(h̃, 0)],
may be performed as follows. We only need to consider the torsion part of ΩBD+1(pt). Let Y
be a representative manifold of a torsion element of ΩBD+1(pt). Then there exists an integer
N and a (D + 2)-manifold Z such that its boundary is given by the disjoint union of N
copies of Y ,

∂Z = Y t · · · t Y (N copies of Y ). (4.12)

Then, from the APS index theorem we get

h̃(Y ) = − 1
N

IndexDD+2(Z) mod Z. (4.13)

When we consider Majorana fermions, we divide the η-invariant by 2 and hence

(h, ω) = 1
2(−η, I). (4.14)

Whenever we can impose a Majorana condition in D-dimensions, the APS index
IndexDD+2(Z) is always even. (See [9] for detailed explanations.) By repeating the
above discussion, we get

h̃(Y ) = − 1
2N IndexDD+2(Z) mod Z. (4.15)

Let us return to the case of SQFT σ(X, T ). The appearance of the Dirac operators
DD+1 and DD+2 is automatically achieved just by considering the theories σ(Y, T ) and
σ(Z, T ) for (D+ 1)-manifolds Y and (D+ 2)-manifolds Z, respectively. The supercharge of
the sigma models correspond to the Dirac operator of the target space fermions.

The description of perturbative and global anomalies (4.7) and (4.13) (or (4.15)) are
almost directly related to the Witten index (3.9) and the torsion index (3.27) discussed
in section 3. Let ν = ν(σ(Z, T )). Each term qn−ν/24 in the q-expansion of Iσ(Z,T )(q) and
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Jσ(Y,T )(q) is basically the perturbative and global anomalies of the fermions obtained from
the corresponding summand Sn−ν(X,T )/24 in the Hilbert space. However, we need to take
into account two corrections and a clarification discussed below.

One correction is as follows. When we increase the target space dimensions from D

to D + 2, we are not only increasing the zero modes of the sigma model (i.e. the quantum
mechanical coordinates of the target space and gamma matrices), but also excited modes of
the chiral multiplets. Let us recall that when we realize a D-manifold X as a boundary of
a (D + 1)-manifold Y , the region near the boundary is of the form R×X. When restricted
to this region, the increased direction is just a free direction R. The contribution of the
extra excited modes from this direction is given by η(τ)−1 that comes from the left-moving
excited modes of bosons. This contribution can be cancelled by multiplying the results
in (D + 1)-dimensions by η(τ). The same remark applies to the relation between (D + 1)-
dimensions and (D + 2)-dimensions. Therefore, we multiply the results of the computation
in the sigma model σ(Z, T ) for dimZ = D + 2 by η(τ)2. Another correction comes from
the standard ghost field contribution if we are interested in actual heterotic string theories.
Its effect is given by η(τ)2. Therefore, in total we include the additional factor η(τ)4.

The other correction is about the Majorana condition. When the target space fermions
are Majorana in the generalized sense of the real structure imposed by the antiunitary
operator CPT, the worldsheet has the property that m of (3.27) is 2. The reason is as
follows. Majorana fermions (in addition to the chirality condition (−1)F = +1) are possible
when the worldsheet CPT for Lorentz signature target spaces X satisfies CPT2 = +1 and
(−1)FCPT = CPT(−1)F . The operator algebra acting on the bundle Sσ(X,T ) for a Lorentz
signature D-manifold X is of the form CliffD−1,1⊗̂A′, where CliffD−1,1 is the Clifford
algebra with the metric signature (D−1, 1), and A′ is the algebra of other modes. The CPT
gives a real structure for the representation of this algebra on Sσ(X,T ). On the other hand,
for a Euclidean signature (D + 2)-manifold Z, the algebra is of the form CliffD+2,0⊗̂A′′.
The difference between A′ and A′′ does not affect the real structure, and the difference
between CliffD−1,1 and CliffD+2,0 changes the property of CPT from CPT2 = 1 (strict real)
to CPT2 = −1 (pseudo real). Thus we have CPT2 = −1 for Euclidean (D + 2)-manifolds Z.
This fact implies that we have m = 2 as discussed in section 3.2. This is possible if and
only if ν(σ(Z, T )) ≡ 4 mod 8.

The claim that the torsion index Jσ(Y,T )(q) (or its multiplication by η(τ)4) gives global
anomalies requires the following clarification. In the definition of the torsion index, we
have divided by η(τ)−νMF[∆−1]ν/2 ⊗Q. However, this is not appropriate when we want to
study global anomalies for a fixed T . Instead, let the subset MFT [∆−1]ν/2 ⊂ MF[∆−1]ν/2
be defined by

MFT [∆−1]ν/2 = {η(τ)νIσ(Z,T ) | ∂Z = ∅, ν(σ(Z, T )) = ν}. (4.16)

It is possible to define an analog of the torsion index (3.27) only for theories of the form
Y = σ(Y, T ) with a fixed T by restricting our attention to Z of the form Z = σ(Z, T ) with
∂Z = Y tN ,

Jσ(Y,T )(q) = 1
N
Iσ(Z,T )(q) mod η(τ)−νMFT [∆−1]ν/2 ⊗Q + mq−ν/24Z((q)). (4.17)
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This is the more appropriate description of global anomalies for a fixed T by the following
reason. The part η(τ)−νMFT [∆−1]ν/2 ⊗ Q is the set of (rationalization of) perturbative
anomalies. We consider global anomalies only when perturbative anomalies are already
absent. Thus we are only interested in a linear combination of coefficients of the q-expansion
of Jσ(Y,T )(q) such that the linear combination is zero for elements of η(τ)−νMFT [∆−1]ν/2⊗Q.
Thus, (4.17) describes global anomalies for a fixed T . The part mq−ν/24Z((q)) is also
appropriate since evaluation of global anomalies takes values in R/Z rather than R.

Although the definition of the torsion index as in (4.17) is appropriate for a fixed T ,
we may also consider “stronger anomalies” as follows. We no longer restrict our attention
to theories of the form σ(Z, T ) and σ(Y, T ). Instead we consider general SQFTs Z, Y with
ν(Z) = ν and ν(Y) = ν − 1 for a fixed ν. Then we regard IZ(q) and JY(q) (multiplied
by η(τ)4) as the stronger perturbative and global anomalies. Notice that if anomalies are
absent in this stronger sense, then anomalies are also absent in the conventional sense of
considering σ(Z, T ) and σ(Y, T ) for a fixed T . The actual heterotic strings, i.e. ν = −20
with only the q0-term as the physical term, are anomaly-free in the stronger sense as we will
discuss below. Also, theories with ν 6= −20 are not really heterotic strings, and our interest
in them is just as SQFTs. By these motivations, we study the stronger anomalies in which
we consider all possible Z and Y. The target space meaning of the stronger anomaly-free
condition is not clear, but it is tempting to speculate the following. In quantum gravity, we
may have transitions (or bordisms) between different internal theories. In other words there
may be bordisms from σ(X, T ) to σ(X ′, T ′) for T 6= T ′. (See [55] for related discussions.)
If we consider all such general processes, it may be better to consider all possible SQFTs
and their bordisms.

We conclude as follows. We consider stronger anomalies in the sense of the previous
paragraph. The target space dimension D = dimX is such that ν(σ(X, T )) = ν − 2 for a
fixed ν. The actual heterotic strings have ν = −20.

1. Perturbative anomalies are given by the homomorphism

Z 7→ η(τ)4IZ(q) (4.18)

where Z is an element of SQFTs with ν(Z) = ν, and IZ(q) = tr(−1)F qHL q̄HR is the
index.17

2. Global anomalies are given by (the negative of) the homomorphism

Y 7→ η(τ)4JY(q) (4.19)

where Y is an element of SQFTs with ν(Y) = ν − 1, and it is a torsion element (i.e.
there exists N ∈ Z such that Y⊕N is a boundary theory of some SQFT), and JY(q) is
the torsion index as defined in (3.27).

17Recall that we avoid using notations of CFT because we do not assume σ(X, T ) to be a CFT, so instead
we defined HL = 1

2 (H + P ) and HR = 1
2 (H − P ) in terms of the worldsheet Hamiltonian H and momentum

operator P .
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Figure 3. An integration contour C in the τ -plane. It encloses the fundamental region of the
SL(2,Z) action.

3. For Majorana fermions in the sense of the real structure imposed by the worldsheet
CPT, we divide the results by 2. As mentioned above, the m appearing in (3.27) is
given by m = 2 in that case and hence we just get q−ν/24Z((q)) after the division by 2.
Equivalently, we can just consider JY(q) modulo 2q−ν/24Z((q)) without dividing by 2.

4. If we are interested in actual heterotic string theories, we take the q0 term.

We need to consider all possible SQFTs Z with ν(Z) = ν for IZ(q), and Y with ν(Y) = ν−1
for JY(q).

For perturbative anomalies, the above discussion is just a rephrasing of the original
discussion in [25–27]. Let us review the fact that perturbative anomalies are zero for the
case ν(Z) = −20. This is the case relevant for actual heterotic string theories. More
generally, the argument applies when

ν(Z) ≡ 4 mod 24. (4.20)

We give a proof which might give some insight into global anomalies later in section 4.3.
The q0-term of (4.18) is extracted by the integral in the τ -plane,∫ + 1

2 +i∞

− 1
2 +i∞

η(τ)4IZ(q)dτ. (4.21)

Notice that η(τ)4IZ(q) is a modular form of weight 2, so the 1-form η(τ)4IZ(q)dτ is modular
invariant. By using this fact, we can extend the integration contour on the τ -plane to the
closed contour C in figure 3. It is taken to enclose the fundamental region of the SL(2,Z)
action. Only the part [−1

2 + i∞, 1
2 + i∞] contributes to the integral, because the other parts

are cancelled with each other due to the modular invariance of η(τ)4IZ(q)dτ . By the Stokes
theorem and holomorphy of the integrand, the integral on C vanishes. We conclude that
the q0 term of η(τ)4IZ(q) is zero when ν(Z) = 4 mod 24.
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4.2 Examples of torsion index

We have formulated the torsion index (3.27) but have not yet given examples. Here we give
some examples from sigma models.

A simple but nontrivial example is the class of sigma models discussed in [17]. The
target space is S3, and we introduce a B-field such that its field strength 3-form H is given by

H = H0 + kH1, (4.22)

where k ∈ Z is a parameter, and H0 and H1 are taken as follows. The first term H0 is
chosen to satisfy the anomaly cancellation condition (2.27). In the S3 sigma model, there
is a canonical choice for H0 if the metric on S3 is the standard metric preserving the O(4)
symmetry. The APS η-invariant on such O(4)-symmetric S3 is zero. Then we can just take
H0 = 0 to satisfy the anomaly cancellation condition. If the metric is not O(4) symmetric,
we need to deform H0 so that its integral on S3 coincides with the APS η-invariant. In the
following we just consider O(4)-symmetric S3 and take H0 = 0. The second term H1 is a
closed 3-form dH1 = 0 such that ∫

S3
H1 = 1. (4.23)

We can add kH1 without spoiling the anomaly cancellation condition (2.27). We denote
the 3-sphere with the B-field flux kH1 as S3

k , and the corresponding sigma model as σ(S3
k).

Let us compute the torsion index of σ(S3
k). Let Z be a 4-manifold obtained by removing

24 copies of a ball B4 from a K3 surface,

Z = K3 \ (B4 t · · · tB4). (4.24)

Then we can realize σ(S3
−1)⊕24 as the boundary theory of σ(Z). The condition that we

need 24 copies of S3
−1 comes from the following facts. The anomaly cancellation requires

dH = λ(R) where λ(R) = 1
2p1(R) is one-half of the first Pontryagin class represented by

the Riemann curvature 2-form R. The K3 and hence the manifold Z has
∫
Z λ(R) = −24.

This can be seen by Atiyah-Singer or signature index theorem on K3. Thus we have∫
∂Z H =

∫
Z λ(R) = −24.

The APS index on Z is the same as the Atiyah-Singer index on K3. For the purpose of
demonstrating that the torsion index is nontrivial, let us focus on the lowest term in the
expansion Iσ(Z) = aq−1/6 + · · · . The coefficient a of q−1/6 is given by the APS index of the
Dirac operator without coupling to any other bundle. Thus it is a = 2. From this fact, we
see that

η(τ)4Jσ(S3
−1) = 1

24η(τ)4Iσ(Z) mod MF[∆−1]2 ⊗Q + 2Z((q))

=
( 2

24 + · · ·
)

mod MF[∆−1]2 ⊗Q + 2Z((q)) (4.25)

where we have put ν = 4 and m = 2 in the definition (3.27). As discussed in the paragraph
containing (4.21), the q0 term of a weight 2 modular form is zero. Thus, from this term,
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we get an invariant 2/24 mod 2Z. As discussed in section 3.2, this gives an obstruction to
spontaneous supersymmetry breaking in the infinite volume worldsheet R2.

For more general k, there exists a 4-manifold Z ′ such that ∂Z = S3
k t S3

−1 t · · · t S3
−1

where there are k copies of S3
−1.18 From this fact, we see that

η(τ)4Jσ(S3
k
) = −kη(τ)4Jσ(S3

−1) mod MF[∆−1]2 ⊗Q + 2Z((q)). (4.26)

The question about possible obstruction to spontaneous supersymmetry breaking in the
class of sigma models σ(S3

k) was raised in [17]. The aforementioned conjecture on topological
modular forms TMF and the fact TMF−3(pt) = Z24 suggest the existence of an invariant
taking values in Z24 which forbids spontaneous supersymmetry breaking. An answer was
proposed in [18]. Although our invariant is basically the same, our basic definition and
computation are different.

We may also interpret the above result as a global anomaly of the target space fermion
for D = 2 sigma models σ(X). In fact, a Z24 global anomaly was found in [20] which is
described as follows. First, recall that a D = 2 Majorana-Weyl fermion has an anomaly
given by

(h, ω) =
(
−1

2η,−
1
24λ(R)

)
∈ (̂IΩB)4(pt). (4.27)

The differential form part − 1
24λ(R) can be cancelled by adding a counterterm −(hJ , dJ ) as

in (4.10), where we take J = − 1
24H. This cancellation is possible because of the condition

dH = λ(R). Then we get a target space global anomaly

(h̃, 0) =
(
−1

2η,−
1
24λ(R)

)
− (hJ , dJ ) =

(
−1

2η + 1
24H, 0

)
. (4.28)

Evaluating it on S3
k , we get

h̃(S3
k) = k

24 mod Z. (4.29)

This is the q0-term of −1
2η(τ)4Jσ(S3

k
). The D = 2 sigma models σ(X) without an internal

theory T is a “wrong heterotic string theory” and hence the target space theory can have
anomalies.

Let us also briefly comment on the target space Tn. We set H = 0, and take the spin
structure in each direction to be the periodic (non-bounding, Ramond) spin structure. The
APS index theorem on R× Tn (or the direct computation of the APS η-invariant on Tn)
gives the following results. For n = 1 we get

Jσ(S1) =
(1

2q
−2/24 + · · ·

)
mod q−2/24Z((q)) (4.30)

18When k < 0, “k copies of S3
−1” should be interpreted as |k| copies of S3

−1 = S3
1 , which is the orientation

reversal of S3
−1. One can always relate JY and JY by taking Z = σ(R)⊗Y whose boundary theory is Y ⊕Y.

Then we find JY = −JY .
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where we have used MF[∆−1]1 = 0. For n = 3 we get

Jσ(T 3) =
(
1 · q−4/24 + · · ·

)
mod η(τ)−4MF[∆−1]2 ⊗Q + 2q−4/24Z((q)). (4.31)

Both of them are nonzero and have order 2. The nontriviality of σ(S1) is also seen by the
mod 2 index of the Hilbert space. Our torsion index is not directly defined for σ(T 2) since
its pure gravitational anomaly ν(σ(T 2)) = 2 is even. However, the nontrivial torsion index
of σ(T 3) = σ(T 2)⊗ σ(S1) implies that σ(T 2) must also be nontrivial.

4.3 Global anomalies of heterotic string theories

Let us come back to the case ν = −20 and hence ν(Y) = −21. We already know that
perturbative anomalies are absent. Let us consider global anomalies.

Assume that the conjecture [13, 14] on TMF is true. We have TMF21(pt) = 0. (The
list of TMF•(pt) is reproduced in an appendix of [21].) This fact implies that all SQFTs
with the pure gravitational anomaly ν = −21 can be deformed to a theory with spontaneous
supersymmetry breaking. Then the torsion index of any theory with ν = −21 must be
zero because the torsion index gives obstruction to supersymmetry breaking in the infinite
volume. We conclude that there is no global anomaly in the target space of actual heterotic
string theories.

Reduction of heterotic string global anomalies to TMF21(pt) = 0 has been originally
discussed by different (although related) mathematical arguments in [21]. Our discussion is
more field-theoretical, and avoids some assumptions made there.19

It would be desirable if we could prove the vanishing of the torsion index more directly
without using the conjecture on TMF. A naive application of the argument for perturbative
anomalies fails in the following way. Let Z be an SQFT with ν(Z) = −20 whose boundary
is given by N copies of Y so that we have

JY(q) = 1
N
IZ(q). (4.32)

Let us denote the partition function tr(−1)F qHL q̄HR of the theory Z as Z(Z). We assume
that this partition function transforms as expected under modular transformations. For
compact Z (i.e. Y = ∅), we have IZ(q) = Z(Z). The 1-form η(τ)4Z(Z)dτ is modular
invariant, so we have ∫ 1

2 +i∞

− 1
2 +i∞

η(τ)4Z(Z)dτ =
∫
C
η(τ)4Z(Z)dτ (4.33)

where C is the contour shown in figure 3. By using the Stokes theorem, we get∫
F
η(τ)4∂Z(Z)

∂τ̄
dτ ∧ dτ̄ (4.34)

19On the other hand, we need to assume that various field-theoretical constructions discussed in this
paper are well-defined. In particular, we assume that theories like σ(Z, T ) can be UV-completed, at least
for manifolds Z which are necessary for the purpose of computation of anomalies. We remark that σ(Z, T )
itself need not be UV-complete. Only the existence of a UV-completion is assumed.
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where F is the fundamental region of the SL(2,Z) action on the τ -plane. If we had
IZ(q) = Z(Z) and in particular if Z(Z) were holomorphic, we would have finished the proof
of the absence of global anomalies as in the case of perturbative anomalies. However, in
general Z(Z) is not a holomorphic function of τ . In fact, we have already seen examples in
section 4.2 for ν(Z) = 4 in which global anomalies are present, so this proof should fail.

The derivative of Z(Z) by τ̄ is given by the one-point function of the supersymmetry
current in the boundary theory [18, 56]. Let ∂Z be the boundary theory. The derivative is
given by20

∂Z(Z)
∂τ̄

= iC 1
√
τ2η(τ)〈Q〉∂Z (4.35)

where τ = τ1 + iτ2, Q is the supercharge, and C is a constant.
To get some insight, let us neglect all excited modes and just consider SQM rather than

SQFT. Also, instead of the fundamental region F , we consider the region τ1 ∈ [−1/2, 1/2]
and τ2 > 0. Then the role of the integration over τ1 is to project the states to P = 0. Then
we reduce qHL q̄HR → exp(−4πτ2Q

2). We also neglect η(τ) and set η(τ)→ 1. Thus, instead
of (4.34) we consider

∫ ∞
0

dτ2C
1
√
τ2

trQ exp(−4πτ2Q
2) = 1

2C tr
(
Q

|Q|

)
(4.36)

where the trace is taken in the boundary theory ∂Z. Recall that for sigma models Q is
given by the Dirac operator, Q = i /D. Thus, 1

2 tr(Q/|Q|) is a formal expression for the APS
η-invariant.21 In SQFT rather than SQM, the integration region is actually F rather than
[−1/2,+1/2]× (0,∞), and there are also other contributions such as the 3-form H. For
instance, we may get a term in (4.28) proportional to H from a term HIJKψ

IψJψK in Q
as in [56]. In any case, the basic lesson is that the proof of vanishing of (4.34) fails by the
quantities that are related to global anomalies. Therefore, it seems not straightforward to
extend the proof of the vanishing of perturbative anomalies to the case of global anomalies.

To illustrate the difficulty a little more, we note that there is a theory T with the pure
gravitational anomaly ν(T ) = −24 such that its partition function or the index is given by
IT (q) = tr(−1)F qHL q̄HR = 24.22 Let us also take Y = S3

−1 and Z = K3 \ (B4 t · · · t B4)
that are considered in section 4.2. Then, Z = σ(Z)⊗T has the pure gravitational anomaly
ν(σ(Z) ⊗ T ) = −20. The torsion index Jσ(Y )⊗T (q) is zero, but 1

24Iσ(Z)⊗T (q) is nonzero
before dividing by mq−νZ((q)). Thus we cannot hope that IZ(q) itself is exactly zero. We
really need to take into account the fact that global anomalies are torsion.

20Without conformal invariance, we need to change not only τ̄ but also the volume of the worldsheet
T 2 in an appropriate way for the following formula to be correct. We suppress the dependence on the
worldsheet volume in the following discussion. Also,the formula in [18, 56] used the one-point function of
the supersymmetry current rather than the supercharge Q, but the difference is just a constant factor.

21See also [57] for discussions of the APS index theorem in SQM.
22For example, such a theory is constructed by taking 24 copies of fermi multiplets and gauging its axial Z2

symmetry [16]. The Z2 is anomaly free if the number of Majorana-Wely fermions is a multiple of 8 [4, 9, 58].
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