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Abstract: Moments of the leptonic angular distribution in the Drell-Yan process have
recently been shown to be sensitive probes of a specific class of dimension-8, four-fermion
operators in the Standard Model Effective Field Theory, involving a pair of quarks and
leptons. The same operators are also subject to positivity bounds, when requiring the
associated (unknown) UV completion to obey basic principles of quantum field theory.
We perform a phenomenological study to quantify the sensitivity of the high-luminosity
LHC to this set of operators and, by extension, the positivity bounds. We further extend
the angular basis of moments and consider double differential information to improve the
ability to disentangle the different operators, leading to a sensitivity to new physics scales
up to 3TeV. We use this information to explore the violation of positivity at the LHC as
a way to test the underlying principles of quantum field theory. Finally, we present a case
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study which combines our results with information from other (current and prospective)
experiments, as well as the positivity cone to infer the properties of possible tree-level UV
completions. The data lead to robust, model-independent lower bounds on the M/

√
g

combination of the particle mass and coupling, for states that couple to right-handed
leptons and/or up quarks.
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1 Introduction

The last decade has seen the rise to prominence of indirect searches for new physics at
the Large Hadron Collider (LHC). The need for new physics beyond the Standard Model
(SM), and the compelling possibility that it resides at the TeV scale, is in tension with
the lack of evidence for new states in the LHC data. It is then plausible that these
states lie just out of reach, in terms of direct production, but may nevertheless lead to
deviations from SM predictions at high-energies that could be detected by the increasingly
precise measurements of the LHC experiments. The Standard Model Effective Field Theory
(SMEFT) has become the established framework to interpret data in the context of such
deviations. The theory supplements the SM with higher dimensional operators that respect
its symmetries and field content, and are suppressed by powers of the cutoff parameter, Λ,
representing a generic scale at which new physics is expected to reside.

The leading, non-trivial order at which the SMEFT operator expansion is truncated
is O(1/Λ2), i.e., involving operators of mass dim-6. (Henceforth, when referring to ef-
fective operators, we will abbreviate “dimension-n” by “dim-n”.) This class of operators
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yields contributions to physical observables at both O(1/Λ2) and O(1/Λ4). The O(1/Λ2)
contribution comes from the interference between the dim-6 operator and SM amplitudes
and is referred to as the “interference” or “linear” term, while the O(1/Λ4) piece comes
from the square of the dim-6 amplitude, and we refer to it as the “quadratic” or “squared”
term. Although the latter are formally beyond the desired leading order of the SMEFT,
there are a number of reasons for which they might be important. For instance, the lead-
ing term, which arises from an interference between SM and SMEFT amplitudes, may be
suppressed due to symmetries or helicity selection rules [1]. In practice, this means that
our current sensitivity to certain sectors of SMEFT operators can depend on whether such
O(1/Λ4) terms are included or not. However, for a complete description of SMEFT effects
at O(1/Λ4), one should also consider linear (interference) contributions from dim-8 opera-
tors, which also come in at this order. Although a fully general analysis up to O(1/Λ4) is
often difficult, mainly due to the large number of dim-8 operators, it is clearly of interest
to study them from both the theoretical and phenomenological perspective.

One of the pillars of the LHC physics programme is to measure the parameters of the
SMEFT, such that we can make statements about possible new physics at the multi-TeV
scale and steer the direction of future higher energy physics experiments. To this end, it is
crucial that the precision programme of the LHC experiments be continuously developed.
Aside from improved measurement techniques and more precise predictions for the SM and
beyond, new observables should be sought to complement existing searches. These can be
especially powerful when they single out unique features of new physics signatures and/or
exploit the known properties of SM contributions to processes of interest. In this work we
investigate moments of the leptonic angular distribution in the Drell-Yan process as such
a candidate observable. As we will discuss in detail later on, certain angular moments
have been shown to be especially sensitive to a class of dim-8 operators that would be
indistinguishable from other dim-8 operators in non-angular observables such as the usual
di-lepton invariant mass distribution [2]. The moments in question extract the coefficients
of the partial wave of total angular momentum l ≥ 3. At leading order both the SM and
dim-6 operator contributions to the qq̄ → `−`+ amplitude have l ≤ 1, so they cannot
affect the l > 2 moments. This picture is unchanged by QCD corrections and the first SM
contributions to l ≥ 2 arise from subleading EW logarithms. The l ≥ 3 partial waves are
therefore clean probes of pure dim-8 effects in the Drell-Yan processes.

One of the main motivations for gaining access to dim-8 coefficients is that it allows
us, for the first time, to test if the fundamental principles of quantum field theory are
obeyed in physics beyond the SM. This can be achieved by checking whether a particular
set of Wilson coefficients of the SMEFT are consistent with so-called positivity bounds [3].
Positivity bounds are constraints on the Wilson coefficients that can be bootstrapped from
assuming that the UV completion of the SMEFT satisfies the axiomatic principles such as
unitarity, causality/analyticity and locality [4] (see also earlier works [5, 6]; see [7] for a
recent review). That is, they are independent of the specific details of the UV completion
and can be taken as a proxy of robustness of the fundamental principles of quantum field
theory. Recent years have seen increased interest in the high energy physics community, in
extending the scope and applicability of positivity bounds [8–29]. These bounds imply that
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the naive parameter space of an EFT as furnished by the independent Wilson coefficients
is actually severely constrained by the fact that the EFT must be UV completed at high
energies.

In constraining the SMEFT up to O(1/Λ4) at tree-level, only the leading s2 positivity
bounds are phenomenologically relevant. Due to the large number of dim-8 operators in
the SMEFT, it is already non-trivial to extract the full information from these leading
bounds [8, 9]. The optimal s2 positivity bounds can be computed by viewing the twice
subtracted amplitudes as forming a convex cone. In practice, the positivity cone can
be constructed either by first identifying its extremal rays and then converting to the
positivity bounds (i.e., the boundaries of the positivity cone) [8] (see also [30]) or by directly
computing the extremal rays of its dual cone [9]. The former method involves constructing
the group projectors of irreducible representations from the Clebsch-Gordon coefficients
and is very effective for a problem with sufficient symmetries and a manageable number
of degrees of freedom, while the latter is useful for generic problems that lack sufficient
symmetries and consequently, the bounds are only extracted numerically in general. It
is found that only a small fraction of the parameter space of the SMEFT is consistent
with the positivity bounds, as discussed in [31–36] for the example of constraining the
anomalous quartic gauge couplings from vector boson scatterings. In [3], it was found that
future electron-positron colliders can be used to probe violations of positivity bounds or
the fundamental principles of quantum field theory up to the multi-TeV scale, regardless
of the presence of dim-6 operators.

The fact that the extremal rays of the positivity cone are the group projectors of irre-
ducible representations in the product decomposition of the symmetries of an EFT implies
that positivity bounds can be used to infer the UV states [8]. This is most significant
if experiments were to find some new physics located close to the boundary of the pos-
itivity cone, or even better, close to one of its extremal rays [3, 34]. In these favorable
circumstances, comparing the positivity cone with the experimental data would enable
the model-independent inference of UV particles’ quantum numbers. On the other hand,
should the future data indicate no deviation from the SM from dim-8 operators, then the
convex nature of the positivity cone would, in principle, allow us to conclude that no new
physics is present up to the scale probed by the experiments. This is different from ex-
perimentally constraining the scales of dim-6 operators, which do not form a convex cone,
i.e., nor satisfy positivity bounds, as there can be cancellations between different UV states
that produce null dim-6 coefficients. Therefore, excluding the dim-6 operators up to a cer-
tain scale does not necessarily mean that the SM is valid up to that scale and new physics
has to be at a higher scale. This provides another motivation to study dim-8 operators,
despite the fact that they are subleading compared to the dim-6 operators, as a way to
reverse-engineer UV models from the EFT interpretation of the data. Other applications of
positivity bounds in the SMEFT can be found in [37–44]. Finally, we note that positivity
bounds have also been widely used to constrain the EFT parameter spaces in other areas
of particle physics and cosmology, leading to various interesting results (e.g., [45–80]).

The paper is organized as follows. In section 2, we review the decomposition of the lep-
tonic angular distribution into spherical harmonics, introducing the observables associated
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to the l ≥ 3 moments, B0 and D0. We then enumerate the relevant effective operators,
discussing how they contribute to the l ≥ 3 moments and their connection to the positivity
bounds via the forward, elastic scattering amplitude. In section 3, we present a pedagogical
review of how positivity bounds on effective operators are obtained, and obtain the elastic
positivity bounds on our operators of interest. The angular dependence of the operator
contributions to the Drell-Yan process as well as the master formulae for calculating B0 and
D0, are presented and analyzed in section 4. Section 5 documents our phenomenological
analysis, in which we construct and analyse the likelihood, and obtain projected sensi-
tivities to the Wilson coefficients for the High-luminosity LHC (HL-LHC). We also study
the sensitivity to the scale of positivity violation, in the event that evidence for non-zero
Wilson coefficients is observed in section 6. Finally, in section 7, we present a case study
in which we take one operator from our study and combine it with other, related opera-
tors to derive the cone of extremal positivity bounds. Using the cone in conjuction with
current and projected data from our study and the existing literature, we determine the
novel implications for relevant UV states which include more robust, model-independent
bounds on the new physics scale. We summarise and conclude in section 8.

2 Effective operators

The SMEFT approach augments the Standard Model with all possible higher dimensional
operators that are built out of the Standard Model particles and consistent with the Stan-
dard Model symmetries in the unbroken phase:

LSMEFT = LSM +
∑
i

C
(6)
i

Λ2 O
(6)
i +

∑
i

C
(8)
i

Λ4 O
(8)
i + · · · , (2.1)

where LSM is the renormalizable SM Lagrangian, Λ is the cutoff scale, and the C(j)
i pa-

rameters are the (dimensionless) Wilson coefficients associated with the higher-dimensional
operators. We have, for our purposes, assumed lepton/baryon number conservation, which
forbids dim-5 and dim-7 operators. Needless to say, this is a Lagrangian with a large num-
ber of free parameters, even if we only concern ourselves with specific processes. However,
as discussed in the introduction, these Wilson coefficients are not allowed to take arbitrary
values, assuming that the underlying UV theory that generates them obeys some basic
principles of QFT.

In this paper, we study the Drell-Yan process, pp→ `−`+, in proton-proton collisions.
The kinematics of the process is often parametrised by the invariant mass and rapidity
of the dilepton system, m`` and η``, and the polar and azimuthal angles of one of the
leptons in the di-lepton rest frame, denoted by θ and φ, respectively. Most often, collider
experiments measure the m`` spectrum and the differential angular distributions of this
final state. The angular dependence can be factorised and described as an expansion in
spherical harmonics up to arbitrarily high total angular momentum. Following ref. [2], the
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expansion up to l = 3 is given by:

dσpp→`−`+

dm``dη``dΩ`
= 3

16π
dσpp→`−`+

dm``dη``

[(
1 + c2

θ

)
+ Ã0

2
(
1− 3c2

θ

)
+ Ã1s2θcφ + Ã2

2 s2
θc2φ + Ã3sθcφ

+ Ã4cθ + Ã5s
2
θs2φ + Ã6s2θsφ + Ã7sθsφ + B̃e

3s
3
θc3φ + B̃o

3s
3
θs3φ + B̃e

2s
2
θcθc2φ

+B̃o
2s

2
θcθs2φ + B̃e

1
2 sθ

(
5c2
θ − 1

)
cφ + B̃o

1
2 sθ

(
5c2
θ − 1

)
sφ + B̃0

2
(
5c3
θ − 3cθ

)]
,

(2.2)
where cα and sα represent the sine and cosine of an angle α respectively, Ωl is the solid
angle of the negatively charged lepton and all lepton angles are defined in the Collins-Soper
frame [81]. The Collins-Soper frame corresponds to the rest frame of the dilepton system,
with the z-axis defined as the external bisector of the angle between the momenta of the
two protons at the LHC [82]. At Leading Order (LO), the transverse momentum of the
dilepton system is zero, and the z-axis is aligned with the proton beam. The positive z-
axis is chosen based on the longitudinal direction of the dilepton system in the laboratory
frame. Finally the x-axis points along the positive transverse momentum direction of the
dilepton system. When there is no partonic transverse momentum, the direction of the
x-axis and the definition of the azimuthal angle is arbitrary. Our SMEFT predictions are
all taken at LO, while for the Next-to-Leading Order (NLO) QCD predictions from the
SM, we integrate over the partonic transverse momentum.

The coefficients in eq. (2.2) can be extracted by taking angular moments of spherical
harmonic functions, f(θ, φ), over the differential angular distribution. Theoretically, this
is defined by the following:

〈f(θ, φ)〉 ≡
∫
dΩ`

dσpp→`−`+
dm``dη``dΩ` · f(θ, φ)
dσpp→`−`+
dm``dη``

, (2.3)

and amounts to taking a weighted average over an event sample.1 The Ãi coefficients are
generated by the SM process and its QCD corrections, and have been measured by the
LHC experiments [82–86]. They are associated to the spherical harmonics of l ≤ 2. The
angular dependence associated to the B̃i coefficients, introduced in ref. [2], are described by
combinations of the l = 3 spherical harmonics, i.e., Y ±3

3 , Y ±2
3 , Y ±1

3 , and Y 0
3 ≡

√
7

16π (5c3
θ −

3cθ). The latter, associated to the coefficient B̃0, will be the focus of our study, as it
corresponds to the leading angular dependence arising from a particular class of dim-8
operators. We also introduce the D̃i coefficients, which correspond to the angular moment
of l = 4 spherical harmonics, i.e., Y ±4

4 , Y ±3
4 , Y ±2

4 , Y ±1
4 and Y 0

4 = 3
16

√
1
π (35c4

θ − 30c2
θ + 3),

since these will also be populated by our operators of interest and help us distinguish
1In practice, it is not possible to extract the coefficients in this exact way at collider experiments. This

is because of the fact that the finite detector acceptance limits the maximum scattering angle that can
be observed, introducing an effective cut in cθ that spoils the orthogonality of the spherical harmonics.
Typically, analyses resort to constructing templates that account for the effect of finite angular acceptance
on the angular dependencies associated to each coefficient and fitting the data to these template functions
to extract them (see e.g. [82, 83]).
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among them.

dσpp→`−`+

dm``dη``dΩ`
= 3

16π
dσpp→`−`+

dm``dη``

{
· · ·+ D̃e

4s
4
θc4φ + D̃o

4s
4
θs4φ + D̃e

3s
3
θcθc3φ + D̃o

3s
3
θcθs3φ

+ D̃e
2s

2
θ(7c2

θ − 1)c2φ + D̃o
2s

2
θ(7c2

θ − 1)s2φ + D̃e
1sθ(7c3

θ − 3cθ)cφ

+ D̃o
1sθ(7c3

θ − 3cθ)sφ + D̃0
2 (35c4

θ − 30c2
θ + 3)

}
(2.4)

We note that an analogous method of moments has previously been considered in the
context of measuring dim-6 SMEFT contributions in Electroweak Higgs production and
decay [87, 88].

There are several operators that can contribute to the production of lepton pairs at
the LHC, but only the following subset affects the l ≥ 3 spherical harmonics in the angular
expansion when interfering with the SM amplitude [2]:

O8,lq∂3 = (¯̀γµ
←→
D ν`)(q̄γµ

←→
D νq) (2.5)

O8,lq∂4 = (¯̀τ Iγµ
←→
D ν`)(q̄τ Iγµ

←→
D νq) (2.6)

O8,ed∂2 = (ēγµ
←→
D νe)(d̄γµ

←→
D νd) (2.7)

O8,eu∂2 = (ēγµ
←→
D νe)(ūγµ

←→
D νu) (2.8)

O8,ld∂2 = (¯̀γµ
←→
D ν`)(d̄γµ

←→
D νd) (2.9)

O8,lu∂2 = (¯̀γµ
←→
D ν`)(ūγµ

←→
D νu) (2.10)

O8,qe∂2 = (ēγµ
←→
D νe)(q̄γµ

←→
D νq) (2.11)

where ` and q denote the left-handed lepton and quark SU(2) doublet respectively, e and
u denote the right-handed lepton and up-quark singlet respectively, and τ I is the SU(2)
Pauli matrix. We shall denote the dimensionless Wilson coefficients for the operators in
eqs. (2.5)–(2.11) as

~C(8) = (C8,lq∂3, C8,lq∂4, C8,ed∂2, C8,eu∂2, C8,ld∂2, C8,lu∂2, C8,qe∂2). (2.12)

We consider a flavor universal scenario in our study, taking a single coefficient for each
operator to weight all diagonal flavor combinations of quarks and leptons, respectively.
The particular derivative structure of these operators yields an amplitude that depends on
t ∼ s(cθ− 1)/2 and t2. The SM amplitude, on the other hand, is mediated by spin-1 states
and therefore cannot exceed a single power of t. This is not affected by QCD corrections
which factorise. Interfering the two amplitudes leads to the minimum required angular
dependence ∝ c3

θ to populate the l ≥ 3 angular moments. The first SM contributions to
l ≥ 3 arise from subleading, Electroweak corrections involving box diagrams that generate
next-to-leading logarithmic (NLL) Sudakov logarithms ∝ log(t/m2

W ) [2, 89].
The angular dependence of the operators in eqs. (2.5)–(2.11) can be contrasted with

the other classes of dim-8 operators that mediate the same scattering amplitudes. Firstly,
it is clear that two derivatives are required to induce the t2 terms, which rules out the
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majority of operators that can modify qq̄ → `−`+ at O(1/Λ4) (See [90] for a complete list).
The only remaining class of operators has the schematic structure:

(q̄γµq) ∂2
(

¯̀γµ`
)
, (2.13)

whose amplitude contributions do not depend on t, and therefore also do not induce the
required angular dependence to populate the Bi.

The qq̄ → `−`+ amplitude squared relevant for the l ≥ 3 partial waves is then

|M|2 = |MSM NLL EW|2 +
∑
i

C
(8)
i

Λ4 ∆M(8)
i +

∑
i≥j

C
(8)
i C

(8)
j

Λ8 |M(8)
ij |

2, (2.14)

where ∆M(8)
i is shorthand for the interference between the dim-8 and the SM amplitudes,

and C
(8)
i runs through all the components of the ~C(8) vector defined above. Although

the leading contribution to the l = 3 partial waves from each dim-8 operator arises at
O(1/Λ4), we also investigate the effect of quadratic terms ∝ 1/Λ8 which can also populate
the same (and higher) moments. We note that dim-6 operators of the SMEFT do not lead
to the new l = 3 spherical harmonics contributions at leading order since they, like the SM
in this approximation, only give l = 1 contributions to the amplitude. The interference
between dim-6 and dim-8 operators ∝ 1/Λ6 can contribute to the l = 3 (B̃i) but not the
l = 4 (D̃i) harmonics. In our analysis, we take the simplifying assumption that the dim-6
operator coefficients are sufficiently constrained by LHC and other data to not contribute
significantly to our observables.

In summary, measuring the l ≥ 3 partial wave contributions to the differential Drell-
Yan cross section via the B̃i, D̃i coefficients affords direct access to a specific class of dim-8
operators. The leading SM and dim-6 effects, as well as the large set of other dim-8
operators that can mediate the qq̄ → `−`+ scattering amplitude, do not yield the required
angular dependence up to subleading EW Sudakov logarithms, and are therefore strongly
suppressed in these observables. In our work, we focus on B̃0 and D̃0, which are the only
coefficients that remain after azimuthal integration.

Interestingly, the specific kinematic dependence that makes our operator set interesting
for the higher partial waves in Drell-Yan (qq̄ → `−`+ amplitudes ∝ t2) is, by crossing
symmetry, precisely the kinematic dependence that allows for the derivation of positivity
bounds on the coefficients, ~C(8), from the elastic q` → q` scattering amplitude in the
forward limit. These observables can therefore provide an experimental test of positivity,
and consequently a window into the fundamental principles of QFT. In the next section,
we will review the origin and derivation of positivity bounds in more detail, and discuss
how to go beyond elastic positivity via extremal rays.

3 Positivity bounds

3.1 Pedagogical review

As mentioned in the introduction, positivity bounds are very reliable theoretical constraints
that can be imposed on the Wilson coefficients, or more generally, physical quantities
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Figure 1. Contour integrals in the complex s plane for the dispersion relation for d2Mijkl(s)/(2ds2).
The small contour denoted by “SMEFT” can be evaluated at low energies within the SMEFT, while
the big contour denoted by “UV”, which can be deformed from the small contour, can only be fully
evaluated in the UV completion. Even though the UV theory is unknown, the fundamental S-matrix
properties of the UV theory provide useful information about this big contour C ′, which, via the
dispersion relation, can be used to constrain the small contour C that contains information of the
Wilson coefficients.

involving the associated scattering amplitudes. They can be deduced by merely assuming
that the EFT has a UV completion that satisfies the principles of quantum field theory/S-
matrix such as Lorentz invariance, unitarity, causality and locality. Unitarity is essentially
the conservation of probability in quantum evolution for the UV theory, rather than the
EFT. In particle scatterings, it allows us to obtain the generalized optical theorem, which
states that the UV amplitudeMij→kl for the scattering i+ j → k + l satisfies

1
2i
(
Mij→kl −M∗kl→ij

)
= 1

2
∑
X

∫
dΠXMij→XM∗kl→X (3.1)

where X enumerates all possible intermediate states and dΠX is the Lorentz-invariant
phase space measure. This contains information on positivity, the simplest of which can
be extracted by the usual optical theorem in the forward limit:

ImMij→ij = 1
2
∑
X

∫
dΠX |Mij→X |2 > 0. (3.2)

This is the foundation for the simplest elastic postivity bounds. However, as pointed out
in [8, 9], the generalized optical theorem actually contains more positivity information, as
the right hand side is a positive sum ofMij→XM∗kl→X . A positive sum is also known as a
conical hull, so the generalized optical theorem defines an (abstract) convex cone structure,
which is the engine for the convex cone (or extremal) positivity bounds [8, 9].

Since we are concerned with tree-level EFT amplitudes including up to dim-8 operators,
the highest order terms in energy growth are the s2, st or t2 ones, once the poles in the
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amplitude are subtracted. On the other hand, as we shall see shortly, the positivity bounds
come from the dispersion relation with two derivatives with respective to s, so we can focus
on positivity bounds in the forward limit (t = 0) without loss of information. Causality
means that one can view the UV amplitude Mij→kl(s, t = 0) as an analytic function in
the complex s plane, with only poles and branch cuts on the real s axis. For simplicity, we
shall define a pole subtracted amplitude

Mijkl(s) ≡Mij→kl(s, t = 0)− (low energy poles), (3.3)

and then use Cauchy’s integral formula to write the UV amplitude as a contour integral

1
2
d2Mijkl(s)

ds2 =
∮
C

dµ

2πi
Mijkl(µ)
(µ− s)3 (3.4)

where C is a closed contour near s = 0 avoiding the branch cuts (see figure 1). Due to the
analyticity of the amplitude on the s plane, we can deform the contour C to infinity and
to go around the branch cuts, obtaining the contour C ′. This splits the right hand side of
eq. (3.4) into two parts: contributions from the two infinite semi-circles and contributions
from the discontinuities of the branch cuts on the real s axis. The contributions from
the semi-circles actually vanish, due to the Froissart bound [91], which states that any
amplitude that satisfies unitarity and locality should grow slower than s ln2 s as s → ∞.2

So we are left with
1
2
d2Mijkl(s)

ds2 =
∫ ∞
−∞

dµ

2πi
DiscMijkl(µ)

(µ− s)3 (3.5)

where the discontinuity is defined as Discf(s) = f(s + iε) − f(s − iε). This is a twice
subtracted dispersion relation, and furnishes a remarkable connection between the IR and
the UV: when s is small, the left hand side can be approximated by the EFT amplitude,
representing the IR; on the other hand, we have the µ integration going up to infinity, so
the right hand side represents unknown physics in the UV. As is standard, we shall assume
that the SMEFT is weakly coupled below the cutoff Λ so that we can approximate the
SMEFT amplitude with the tree-level amplitude. Also, assuming that Λ is much greater
than the SM masses, we shall take the massless limit for the SM particles, to the leading
approximation. Then, we can rewrite the dispersion relation, setting s = 0, as

1
2
d2Mijkl(0)

ds2 =
∫ ∞

Λ2

dµ

2πiµ3

(
DiscMijkl(µ) + DiscMil̃kj̃(µ)

)
, (3.6)

where the integration below the energy scale of the lowest lying UV state Λ2, which is
identified with the EFT cutoff squared for simplicity, is dropped because the SMEFT
tree-level amplitude with poles subtracted does not gives rise to any discontinuity, and we
have also used crossing symmetry Mijkl(µ) = Mil̃kj̃(−µ) in the massless, forward limit.
Here, ĩ denotes the antiparticle of state i. Crossing symmetry is also a consequence of

2Technically, the Froissart bound only works when the scattering particles are massive, but similar
bounds are generally expected to be valid even for massless particles. At worst, locality only requires the
amplitude to be polynomially bounded at large s.
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unitarity, causality and so on. Another basic property of the S-matrix is Hermitian an-
alyticity: M∗kl→ij(s, t) = Mij→kl(s∗, t), by which the left hand side of eq. (3.1) becomes
DiscMij→kl/(2i). Making use of the generalized optical theorem, the dispersion relation
finally reduces to

1
2
d2Mijkl(0)

ds2 =
∑
X

∫
dΠX

∫ ∞
Λ2

dµ

2πµ3

(
mijm

∗
kl +mil̃m

∗
kj̃

)
, (3.7)

where we have defined mij = Mij→X(µ). If we take a model-independent approach for
the UV theory, we should regard mij as unknown complex numbers that depend on µ,
with µ essentially encoding the UV particle masses. Again, for an inelastic scattering,
mijm

∗
kl + mil̃m

∗
kj̃

is generally not positive definite; the observation in [8, 9] is that the
summation and the integration in front of mijm

∗
kl + mil̃m

∗
kj̃

is positive. This means that
we can view d2Mijkl(0)/ds2 as a conical hull of the elements mijm

∗
kl + mil̃m

∗
kj̃
. That is,

the SMEFT amplitudes

d2Mijkl(0)/ds2 with different i, j, k, l form a convex cone,

which constrains the Wilson coefficients to a conical subspace of the total parameter space.
The convex cone positivity bounds generalize the elastic positivity bounds, which are just
the special cases where the out-going k and l particle are chosen to be the same as the
in-coming i and j particle:

1
2
d2Mijij(0)

ds2 ≥ 0 (3.8)

We shall make use of both the elastic positivity bounds and the convex cone bounds in
this paper. We emphasize that the positivity bounds are not a direct use of the generalized
optical theorem, which is valid for the UV theory; rather, the positivity bounds exist
because one can “bring down” the positivity of the UV theory to the EFT via the dispersion
relation, which encodes analyticity and unitarity of the S-matrix.

3.2 Elastic positivity bounds on qq`` operators

For the operators in eqs. (2.5)–(2.11), we shall primarily consider the elastic bounds. That
is, we compute the tree-level elastic amplitudes for leptons and quarks with different species
and chiralities and impose the inequality (3.8). In the forward limit, only the 7 operators
in question give non-zero contributions to the twice-subtracted dispersion relation. One
can see that the other, similar operators with schematic form given in eq. (2.13) do not
contribute to the elastic process in the forward limit since, by crossing symmetry, they only
contribute like t2. The non-trivial bounds are summarized in table 1. The bounds listed
are directly results of eq. (3.8), retaining the factors of −4, which will be useful for later
purposes. Generally, each operator contributes to a different species/helicity configuration,
leading to a set of nearly independent elastic positivity constraints. Only the O8,ql∂3 and
O8,ql∂4 operators are correlated by elastic positivity as they both contribute to the fully
left-handed d`→ d` and u`→ u` amplitudes.

The simplicity and independence of the bounds on other operators beyond those of
eqs. (2.5)–(2.11) is the main reason why we restrict ourselves to the elastic positivity
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Positivity bound channel: |1〉+ |2〉 → |1〉+ |2〉
−4C8,lq∂3 + 4C8,lq∂4 ≥ 0 |1〉 = |e−L 〉 , |2〉 = |uL〉
−4C8,lq∂3 − 4C8,lq∂4 ≥ 0 |1〉 = |e−L 〉 , |2〉 = |dL〉

−4C8,ed∂2 ≥ 0 |1〉 = |e−R〉 , |2〉 = |dR〉
−4C8,eu∂2 ≥ 0 |1〉 = |e−R〉 , |2〉 = |uR〉
−4C8,ld∂2 ≥ 0 |1〉 = |e−L 〉 , |2〉 = |dR〉
−4C8,lu∂2 ≥ 0 |1〉 = |e−L 〉 , |2〉 = |uR〉
−4C8,qe∂2 ≥ 0 |1〉 = |e−R〉 , |2〉 = |uL〉

Table 1. Elastic positivity bounds for the operators (2.5)–(2.11). The right column shows the
scattering channel for the corresponding elastic bound.

bounds. This allows us to focus on the connection between these bounds and the B0
angular moments in the Drell-Yan process. Conversely, the convex cone positivity bounds
would involve many more operators, which makes their derivation a formidable task that
we leave for future work. Since the extra operators entering the convex cone positivity
bounds would be unconstrained by the angular moments considered in this paper, it is a
priori unclear how much we would benefit from imposing them, in terms of constraining
the Wilson coefficients space and therefore testing positivity. A complete understanding of
picture would require a global analysis of a larger set of data and dimension-8 operators
that is beyond the scope of this work.

3.3 Positivity cone and the inverse problem

One important feature of the convex cone bounds is that the extremal rays (ER) of the
positivity cone can often have important physical significance [8]. This is especially true
when the EFT is constrained by symmetries such as in the case of the SMEFT. An ER
is an element of the convex cone that cannot be represented by a sum of two other el-
ements. Since the convex cone of the amplitude d2Mijkl(0)/ds2 is obtained as a conical
hull of mijm

∗
kl + mil̃m

∗
kj̃
, ERs must be of the form of mijm

∗
kl + mil̃m

∗
kj̃
. Furthermore,

since the i, j, k, l particles live in some Lorentz and internal symmetry multiplets, the ERs
correspond to the mij ’s that are irreducible representations in the product decomposition
of the representation of i and j [3, 8, 33, 34]. When the symmetries of the theory are
sufficiently strong for a particular problem, this approach with ERs from irreducible rep-
resentations can constrain the convex cone to be mostly polyhedral, and we will mostly
have isolated ERs. In the case of a tree-level UV completion, each of these ERs represents
a UV particle with specific quantum numbers or symmetry structure that is a projection
of the symmetry of UV theory to that of the SM [8]. (For a loop-level UV completion, an
ER may not directly correspond to the UV particle but becomes a component of the UV
loop [34].) This implies that the convex cone bounds, or the dim-8 operators, are valuable
and pertinent to the inverse-problem of reverse-engineering the UV model from a set of
measured Wilson coefficients.
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In section 7, we shall consider the simplified problem of obtaining the convex cone
bounds for UV physics coupled to the right handed electron and up quarks, and show how
to use them to infer the properties of all possible UV states. This is a simplified problem,
because it only includes the O8,eu∂2 operator, as opposed to all the 7 operators in, eqs. (2.5)–
(2.11), that can be probed by the B0 and D0 quantities. Our projected sensitivity on its
operator coefficient will help determine the degree to which the properties of all possible
UV states that couple to right handed electrons and up quarks can be inferred. However,
as mentioned before, the convex cone bounds will bring in other operators involving these
states, which will require us to additionally make use of bounds derived from other processes
and observables.

4 Angular dependence

We now turn to the phenomenological analysis of the dim-8 contributions to Drell-Yan and
the use of angular moments to constrain the operators introduced in section 2, eqs. (2.5)–
(2.11). We start by obtaining the LO matrix elements for the partonic scattering process
q(p1)q̄(p2) → `−(p3)`+(p4). Here, q (q̄) denotes a quark (anti-quark) and `− (`+) denotes
an electron or a muon (positron or anti-muon). We do not consider τ final states in our
study and take all external states to be massless. The matrix-element squared of the SM
contribution to each helicity configuration, denoted by {L,R}, is as follows:

|MSM(qLq̄R → e−Re
+
L )|2 = 16π2α2(1− ĉθ)2 ·

∣∣∣∣∣Qf − (I3 − s2
WQf )ŝ

c2
W (ŝ−M2

Z)

∣∣∣∣∣
2

, (4.1)

|MSM(qRq̄L → e−Re
+
L )|2 = 16π2α2(1 + ĉθ)2 ·

∣∣∣∣∣Qf + s2
WQf ŝ

c2
W (ŝ−M2

Z)

∣∣∣∣∣
2

, (4.2)

|MSM(qLq̄R → e−Le
+
R)|2 = 16π2α2(1 + ĉθ)2 ·

∣∣∣∣∣Qf − (I3 − s2
WQf )(−1/2 + s2

W )ŝ
c2
W s

2
W (ŝ−M2

Z)

∣∣∣∣∣
2

, (4.3)

|MSM(qRq̄L → e−Le
+
R)|2 = 16π2α2(1− ĉθ)2 ·

∣∣∣∣∣Qf + Qf (−1/2 + s2
W )ŝ

c2
W (ŝ−M2

Z)

∣∣∣∣∣
2

, (4.4)

where ŝ is the partonic Mandelstam invariant ŝ = (p1 + p2)2 = m2
``, ĉθ is the cosine of

the polar angle between the incoming quark and the outgoing negatively charged lepton
direction in the partonic center-of-mass frame. α is the fine-structure constant, Qf and I3
are the electric charge and the third component of the quark isospin respectively, cW =
cos θW and sW = sin θW with the Weinberg angle θW , and MZ is the Z boson mass.
Hereafter, we neglect the Z boson decay width as we will concentrate on the high-energy
region

√
ŝ = m`` ≥ 100GeV in our analysis.

We find the leading contribution from each operator, corresponding to the interference
with the SM amplitude (cf. eq. (2.14)) to be

∆M8,lq∂3 = −C8,lq∂3
Λ4 8πα ĉθ(1 + ĉθ)2ŝ2 ·

(
Qf −

(I3 − s2
WQf )(−1/2 + s2

W )ŝ
c2
W s

2
W (ŝ−M2

Z)

)
, (4.5)
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∆M8,lq∂4 = C8,lq∂4
Λ4 8πα ĉθ(1 + ĉθ)2ŝ2(2I3) ·

(
Qf −

(I3 − s2
WQf )(−1/2 + s2

W )ŝ
c2
W s

2
W (ŝ−M2

Z)

)
, (4.6)

∆M8,ed∂2 = C8,ed∂2
Λ4 8πα ĉθ(1 + ĉθ)2ŝ2 · 1

3

(
1 + s2

W ŝ

c2
W (ŝ−M2

Z)

)
, (4.7)

∆M8,eu∂2 = −C8,eu∂2
Λ4 8πα ĉθ(1 + ĉθ)2ŝ2 · 2

3

(
1 + s2

W ŝ

c2
W (ŝ−M2

Z)

)
, (4.8)

∆M8,ld∂2 = C8,ld∂2
Λ4 8πα ĉθ(1− ĉθ)2ŝ2 · 1

3

(
1 + (−1/2 + s2

W )ŝ
c2
W (ŝ−M2

Z)

)
, (4.9)

∆M8,lu∂2 = −C8,lu∂2
Λ4 8πα ĉθ(1− ĉθ)2ŝ2 · 2

3

(
1 + (−1/2 + s2

W )ŝ
c2
W (ŝ−M2

Z)

)
, (4.10)

∆M8,qe∂2 = −C8,qe∂2
Λ4 8πα ĉθ(1− ĉθ)2ŝ2 ·

(
Qf −

(I3 − s2
WQf )ŝ

c2
W (ŝ−M2

Z)

)
. (4.11)

The higher order angular dependence ∝ ĉ3
θ is present in all cases, as discussed in section 2.

Finally, the quadratic contribution to the matrix element squared from each operator is
given by

|M8,lq∂3|2 =
C2

8,lq∂3
Λ8 ĉ2

θ(1 + ĉθ)2ŝ4, (4.12)

|M8,lq∂4|2 =
C2

8,lq∂4
Λ8 ĉ2

θ(1 + ĉθ)2ŝ4, (4.13)

|M8,ed∂2|2 =
C2

8,ed∂2
Λ8 ĉ2

θ(1 + ĉθ)2ŝ4, (4.14)

|M8,eu∂2|2 =
C2

8,eu∂2
Λ8 ĉ2

θ(1 + ĉθ)2ŝ4, (4.15)

|M8,ld∂2|2 =
C2

8,ld∂2
Λ8 ĉ2

θ(1− ĉθ)2ŝ4, (4.16)

|M8,lu∂2|2 =
C2

8,lu∂2
Λ8 ĉ2

θ(1− ĉθ)2ŝ4, (4.17)

|M8,qe∂2|2 =
C2

8,qe∂2
Λ8 ĉ2

θ(1− ĉθ)2ŝ4 (4.18)

|M8,lq∂3,lq∂4|2 = C8,lq∂3C8,lq∂4
Λ8 ĉ2

θ(1 + ĉθ)2ŝ4. (4.19)

The last term corresponds to the interference between the amplitudes from O8,lq∂3 and
O8,lq∂4. Not only is the higher order angular dependence ∝ ĉ3

θ present, but a further
dependence ∝ ĉ4

θ is also present in all cases.
The pp → `−`+ cross section at the LHC is obtained by convoluting with the parton

distribution functions (PDFs), and can be written:

σpp→`−`+ = 1
12
∑
ij

∫
dx1 dx2Gij(x1, x2, Q

2)
[∫

dĉθ
dσ̂

dĉθ
(ĉθ, ŝ)

]
, (4.20)

where the direction of parton 1 defines the positive z-axis,

Gij(x1, x2, Q
2) = fi/p(x1, Q

2) · fj/p(x2, Q
2) (4.21)
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is the product of PDFs for the two possible partonic initial states, ij = {qq̄, q̄q} with
q = (u, d, c, s, b), and Q is PDF factorisation scale. The partonic centre of mass energy,√
ŝ, is equivalent to the invariant mass of leptons m`` at leading order and is related to

the proton energy, Ep, by ŝ = 4x1x2E2
p . In the center-of-mass frame, taking the initial and

final states to be massless, dσqq̄→`−`+
dĉθ

= 1
32πŝ |M|

2, with the different pieces of the matrix
element squared given by eqs. (4.1)–(4.19), in which the initial spins are summed over,
but the colors are not. Thus, the prefactor of 1/12 = 3/(3 · 3 · 4) in eq. (4.20) arises from
summing over the colors and taking the average of spins and colors.

Since the two partonic initial states have opposite z-axis orientations, the scattering
angle ĉθ is not observable. We therefore convert ĉθ to c∗θ, the scattering angle in the centre-
of-mass frame defined with respect to the positive z-axis in the lab frame, i.e., ĉθ = ±c∗θ for
the qq̄ and q̄q initial states, respectively. We note that redefining an integration variable
up to a sign has a trivial Jacobian when integrating over a symmetric interval. Changing
also from dx1 dx2 → dτ dη = 2(

√
ŝ/s)d

√
ŝ dη gives

dσpp→`−`+

d
√
ŝ dη dc∗θ

= 1
12 ·

2
√
ŝ

s

[
Gqq̄(ŝ, η,Q2) dσ̂

dĉθ
(c∗θ, ŝ) +Gq̄q(ŝ, η,Q2) dσ̂

dĉθ
(−c∗θ, ŝ)

]
(4.22)

with τ ≡ ŝ/s, s = 4E2
p , and η ≡ 1

2 log(x1/x2). We finally want to take the scattering angle
definition to be in the Collins-Soper frame, which (at leading order) orients the z-axis along
the direction of η,

cθ = c∗θ
η

|η|
≡ c∗θξ, (4.23)

such that
dσpp→`−`+

dm`` dη`` dcθ
= m``

6s

[
Gqq̄(m``, η``, Q

2) dσ̂
dĉθ

(cθξ,m``) +Gq̄q(m``, η``, Q
2) dσ̂
dĉθ

(−cθξ,m``)
]
,

(4.24)

where we now identify
√
ŝ = m`` and η = η``. Integrating over the scattering angle gives:

dσpp→`−`+

dm`` dη``
= m``

6s

∫ 1

−1
dcθ

[
Gqq̄(m``, η``, Q

2) +Gq̄q(m``, η``, Q
2)
] dσ̂
dĉθ

(cθξ,m``), (4.25)

where we changed variable from cθ → −cθ in the second term. Similarly, the angular
moment of an arbitrary function f(cθ) is obtained from eq. (4.24) as follows. For even
functions of cθ, i.e., fe(−cθ) = fe(cθ), the angular moment is

d〈fe〉
dm`` dη``

=m``

6s

∫ 1

−1
dcθ fe(cθ)

[
Gqq̄(m``, η``, Q

2) +Gq̄q(m``, η``, Q
2)
] dσ̂
dĉθ

(cθ,m``), (4.26)

while for odd functions of cθ, i.e., fo(−cθ) = −fo(cθ),
d〈fo〉

dm`` dη``
= ξ

m``

6s

∫ 1

−1
dcθ fo(cθ)

[
Gqq̄(m``, η``, Q

2)−Gq̄q(m``, η``, Q
2)
] dσ̂
dĉθ

(cθ,m``),

(4.27)

where we have made the additional variable change cθ → ξcθ and exploited the symmetry
properties of the weight functions, fe,o. The moments select the even and odd parts of the
cθ dependence of the differential cross section, respectively.
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4.1 Obtaining B0 and D0

We are primarily interested in the B̃0 and D̃0 coefficients associated to the Y 0
3 (cθ) and

Y 0
4 (cθ) spherical harmonics, as the other B̃ and D̃ (Y ±i3,4 (cθ, φ) with i = 1, 2, 3, and subscript

4 for D̃) first appear at O(αs) [2]. The coefficient B̃0 in eq. (2.2) is extracted by

B̃0(m``, η``) =
√

16π
7 · 14

3

∫ 1
−1 dcθ

dσpp→`−`+
dm``dη``dcθ

· Y 0
3 (cθ)

dσpp→`−`+
dm``dη``

. (4.28)

with Y 0
3 (cθ) =

√
7

16π (5c3
θ − 3cθ). Here, the factor of 2π from the azimuthal integration is

absorbed in the definition of the differential cross section. In general, both the numera-
tor and denominator of eq. (4.28) depend on the Wilson coefficients of interest, and the
denominator, especially, can potentially include effects from operators not contributing to
the l ≥ 3 spherical harmonics. We find it more convenient to define a new B0 which is not
normalized by a differential cross section:

dB0
dm``dη``

=
√

16π
7 · 14

3

∫ 1

−1
dcθ

dσpp→`−`+

dm``dη``dcθ
· Y 0

3 (cθ). (4.29)

Hereafter, we refer to the new, un-normalised moments as B0 and D0. Using eqs. (4.27)
and (4.26), we obtain the master formulae to compute B0 and D0, respectively:

dB0
dm`` dη``

= 4
√

7π
9 · ξm``

s

∫ 1

−1
dcθ Y

0
3 (cθ)

[
Gqq̄(m``, η``, Q

2)−Gq̄q(m``, η``, Q
2)
] dσ̂
dĉθ

(cθ,m``).

(4.30)
dD0

dm`` dη``
=
√
π

3 ·
m``

s

∫ 1

−1
dcθ Y

0
4 (cθ)

[
Gqq̄(m``, η``, Q

2) +Gq̄q(m``, η``, Q
2)
] dσ̂
dĉθ

(cθ,m``).

(4.31)

Since the differential cross section is a polynomial function of cθ, B0 and D0 select terms
with even and odd powers, respectively.

Finally, we remark that the Breit-Wheeler process γγ → e−e+ (and γγ → µ−µ+ in our
case) occurs at the LHC from the non-zero probability of finding a photon in the proton.
This process has been studied as part of the EW corrections to the SM angular coefficients,
Ai [92], and was found to have some impact on the predictions. Its LO, partonic angular
differential cross section in the centre of mass frame is given by:

dσ̂

dĉθ
(ĉθ) = 2πα2

ŝ
β

(
1 + β2ĉ2

θ

1− β2ĉ2
θ

+
2m2

`/E
2
γ

1− β2ĉ2
θ

−
2m4

`/E
4
γ

(1− β2ĉ2
θ)2

)
, (4.32)

where Eγ is the energy of the initial photon, ĉθ is defined between an incoming photon and
the outgoing negatively charged lepton, β = |~k|/Eγ , ~k is the momentum of the negatively
charged lepton in the center-of-mass frame, and m` is its mass. Since the initial state
is charge-symmetric, the angular dependence is symmetric in ĉθ and it therefore cannot
contribute to B0, while it does contribute to D0. Our work is focused on obtaining sensi-
tivity projections, such that we always assume that any irreducible SM component can be
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predicted and subtracted from the observed quantity with a rather small error compared
to the dominant statistical and systematic uncertainties. In the invariant mass region of
100 < m`` < 1000 GeV that we are interested in, the LO total cross section from the
Breit-Wheeler process is 11.8 pb, while the Drell-Yan process gives 151.8 pb. Applying
typical experimental kinematic selections on the leptons of pT > 25GeV and |η| < 2.4, the
cross sections become 0.8 pb and 68.9 pb respectively, reducing the Breit-Wheeler process
down to a percent-level effect. These numbers were obtained with MadGraph5_aMC@NLO [93],
using the NNPDF31_nlo_as_0118_luxqed PDF set (lhaid=324900) [94], which features an
inelastic photon PDF matched to an elastic photon PDF at low momentum transfer using
the LUXqed formalism [95–97].

5 High-luminosity LHC sensitivity to the cutoff scale

We now turn to determining the sensitivity of our differential angular observables to the
Wilson coefficients at the high Luminosity LHC (HL-LHC). We therefore take a col-
lider centre of mass energy,

√
s = 14TeV, and fix the cutoff to Λ = 2TeV. We use the

NNPDF31_nlo_as_0118_luxqed PDFs. We use eq. (4.29) to obtain differential distribu-
tions for the angular moments. The top row of figure 2 shows the linear and quadratic
contributions of each operator to the differential B0 distribution in m`` bins of 50GeV
from 100 to 1000GeV, for a Wilson coefficient value of 1. The lower left panel shows the
contributions from the full dim-8 amplitude (linear plus quadratic) of a given operator.
The lower right panel shows the contribution of each operator to the l = 4 moment, D0,
which only arises at quadratic level. The aforementioned SM NLL EW contribution is
also shown for reference. Apart from the mild shape differences at low invariant mass
from interference with the Z-pole, we can see the common, characteristic energy growth
with respect to the SM, which is even more pronounced at the quadratic level. Since all
operators have the same high-energy dependence, a-priori they cannot be distinguished in
the m`` distribution of B0 at the linear level. However, the relative magnitude and sign of
their linear and quadratic contributions are not always the same and the (positive-definite)
D0 moment also brings further discrimination power.

Table 2 illustrates the salient features of the angular dependence of each operator con-
tribution to the partonic channels of Drell-Yan and its angular moments. It summarises
the information in eqs. (4.5)–(4.19), in the

√
ŝ � MZ limit. The numerical coefficients in

front of the interference contributions are obtained by inserting the SM quantum numbers
into the corresponding expression, neglecting the common factors of 8παŝ2. They give an
indication of the relative importance of the interference contribution of each operator at
high invariant mass. The table highlights operators that we expect to be distinguishable,
due to either having different combinations of signs in their linear and quadratic contribu-
tions to B0 and D0, or by mediating different combinations of the uū and dd̄ initial states.
Although not evident in the invariant mass distributions, specific combinations of partonic
initial states leave an imprint in the η`` distribution, via the respective PDFs. We can
isolate combinations of operators that mediate specific initial states in all cases apart from
C8,qe∂2, which contributes to both with — coincidentally — the same numerical prefactor
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Figure 2. Individual operator contributions to the differential distributions for the B0 and D0
angular moments, setting Λ = 2TeV and the Wilson coefficient Ci = 1. Upper left: B0 contributions
linear in Ci. Upper right: B0 contributions quadratic in Ci. Lower left: sum of the linear and
quadratic contributions in Ci to B0. The SM NLL EW prediction is also shown, scaled by a factor
0.1 Lower right: D0 contributions quadratic in Ci (there are no linear contributions). The SM NLL
EW prediction is also shown, scaled by a factor 0.02.

Operators Quark ∆|M(8)|2 |M(8)|2 B0(lin.) B0(quad.) D0(quad.)
O8,lq∂3 +O8,lq∂4 dd̄ 1.9 · cθ(1 + cθ)2 c2

θ(1 + cθ)2 + + +
O8,lq∂3 −O8,lq∂4 uū −2.4 · cθ(1 + cθ)2 c2

θ(1 + cθ)2 − + +
O8,ed∂2 dd̄ 0.43 · cθ(1 + cθ)2 c2

θ(1 + cθ)2 + + +
O8,eu∂2 uū −0.87 · cθ(1 + cθ)2 c2

θ(1 + cθ)2 − + +
O8,ld∂2 dd̄ 0.22 · cθ(1− cθ)2 c2

θ(1− cθ)2 + − +
O8,lu∂2 uū −0.43 · cθ(1− cθ)2 c2

θ(1− cθ)2 − − +
O8,qe∂2 uū or dd̄ −0.22 · cθ(1− cθ)2 c2

θ(1− cθ)2 − − +

Table 2. Schematic angular dependence of the linear and quadratic contributions of the dim-8
operators to qq̄ → `−`+ scattering in the

√
ŝ � MZ limit. We also show the relative sign of

the induced B0 and D0 after integrating with the spherical harmonic functions Y 0
3 and Y 0

4 . The
“Quark” column denotes quark-anti quark channel(s) mediated by each operator.
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in the interference term. Furthermore, the relative size of the linear and quadratic terms
will modify the shape of the m`` spectra for a given value of the Wilson coefficient, which
may provide some distinguishing power at intermediate invariant masses. Finally, the mild
differences in the m`` spectra near the Z-pole may confer a modest amount of additional
information.

We see that it may be challenging to disentangle C8,lq∂3 + C8,lq∂4 from C8,ed∂2 and
C8,lq∂3−C8,lq∂4 from C8,eu∂2, using only B0 and D0, since they yield the same combination
of signs and mediate the same initial state. However, they do predict significantly different
relative importance of the interference term. A similar argument can be applied to C8,lu∂2
and C8,qe∂2; even though they do not mediate the same initial state in this case, they
appear difficult to distinguish in figure 2 for O(1) coefficients. Conversely, the operators
that have totally opposite signs in their B0 contributions may lead to cancellations in
specific directions of the parameter space. This may lead to relatively weakly constrained
directions and increase the importance of the D0 observable, which is positive definite. We
point out some instances of this interplay later on in this section and in section 6.

In our analysis, motivated by the desire to maximally distinguish the different operator
contributions using the angular moments, their energy dependence, and the sensitivity of
η`` to partonic initial states, we take a 10×10 rectangular binning of our (m``, η``) double-
differential distributions with the following bin edges:

m`` : {100, 190, 280, 370, 460, 550, 640, 730, 820, 910, 1000}GeV,
η`` : {−5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5},

and obtain the dimension-8 operator contributions as a function of the Wilson coefficients,
~C, up to quadratic order. We limit the maximum energy scale to 1TeV in an attempt to
mitigate the potential sensitivity to unknown effects from higher-dimensional operators,
which we further discuss at the end of this section. Each (m``, η``) bin will have pair of
observables ~Oi = (Bi

0, D
i
0) associated to it, with which we construct a binned χ2 formula.

The likelihood depends on the predicted and observed values of ~Oi, denoted by ~Oi~C =(
Bi

0( ~C), Di
0( ~C)

)
and ~Oi~C0

=
(
Bi

0( ~C0), Di
0( ~C0)

)
, respectively, and takes the standard form:

χ2( ~C, ~C0) =
∑
i

( ~Oi~C −
~Oi~C0

)> ·V−1 · ( ~Oi~C −
~Oi~C0

), (5.1)

where i sums over each (m``, η``) bin. C0 denotes the ‘true’ parameter space point that is
observed, which we assume to be the SM, ~C0 = ~0, unless otherwise stated. In this case,
~Oi~C0

= 0, meaning that the χ2 and ∆χ2 = χ2−χ2
min. formulae coincide, since the minimum

of the χ2 is at χ2
min. = 0. Constraints on the parameter space are then extracted via:

∆χ2( ~C) = χ2( ~C,~0) ≤ 3.84. (5.2)

The critical value of 3.84 corresponds to the 95% C.L. allowed region for a ~C comprised of
one degree of freedom, and should be replaced by the appropriate value for the dimension-
ality of the parameter space at hand. In a given bin, B0i and D0i are statistically correlated
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since they both depend on the underlying angular distribution. V denotes the associated
covariance matrix,3 whose entries are calculated for each bin as follows:

Vij = 1
L

∫ mmax.

mmin.
dm``

∫ ηmax.

ηmin.
dη``

∫ 1

−1
dcθ

dσpp→`−`+

dη`` dm`` dcθ
· Fij(cθ),

F11 = 448π
9

(
Y 0

3 (cθ)
)2

; F22 = 36π3

49
(
Y 0

4 (cθ)
)2

; F12 = F21 =
√

16
7 4π2Y 0

3 (cθ)Y 0
4 (cθ),

(5.3)

with (mmin.,mmax.) and (ηmin., ηmax.) being the bin boundaries in m`` and η``, respectively,
and L being the integrated luminosity of the collider, which we set to be 3000 fb−1, the High
Luminosity LHC (HL-LHC) target. When the weight function is manifestly even in cθ, such
as for the individual variances (diagonal entries of V) the contribution is dominated by the
total cross section and A0 moment contributions to the angular distributions from the SM.
We compute these contributions at NLO QCD accuracy with MadGraph5_aMC@NLO, and
find the EW corrections to be negligible. We note that if one assumes the observation of
non-zero Wilson coefficients, the covariance matrix will receive sub-dominant contributions
from the SMEFT, not only from the dim-8 operators at hand but also potentially from
a priori unknown dim-6 operators that we have not considered in this work. We do not
expect these to qualitatively change our results, but stress that their impact should be
assessed in a more comprehensive analysis incorporating not only other angular moments
but also low-energy data in the spirit of ref. [98]. We leave this interesting possibility to
future work.

We perform the χ2 analysis in both the 1D and 2D cases, taking either the single-
or double-differential m`` and (m``, η``) distributions for B0, respectively. In the 1D case,
we use 10 bins in m`` only, integrating over η``. Moreover, we compare bounds obtained
when including the dimension-8 operator contribution to the differential cross section at the
linear and quadratic levels, i.e., by including only the second, or both the second and third
terms of eq. (2.14). The individual (setting all other coefficients to zero), 95% Confidence
Level (C.L.) bounds on various Wilson coefficients are shown in figure 3 and their numerical
values are given in table 3. We see that, at the individual level, bounds of order 1 or
better can be obtained for most of the operators. The exceptions are the two operators that
only mediate the dd̄ initial state and therefore have a suppressed overall contribution that
leads to bounds of order 2–4. Furthermore, the addition of the η`` information only mildly
improves the sensitivity, which is expected since it is mainly included to offer distinguishing
power that is not useful when looking at operators one at a time. The impact of quadratic
terms is more evident, especially in the more weakly constrained directions, since larger
coefficient values are allowed. Their inclusion generically leads to a tightening of the
bounds, at most by a factor 2.7. Table 3 also shows the mild impact of including D0,
which improves the sensitivity by 10-20%. Assuming, instead, Wilson coefficient values of
one, the scales probed range between 1.7 and 3TeV.

The distinguishing power of our observables can be quantified by considering profiled
results, allowing all operators to float simultaneously in the fit. Indeed, we find that

3See appendix A for a derivation of the covariance matrix for a set of such moment functions.
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1D lin.
1D lin.+quad.
2D lin.
2D lin.+quad.
Λ = 2 TeV

Allowed Region

-4 -2 0 2 4

C8,lq ∂3

C8,lq ∂4

C8,ed ∂2

C8,eu ∂2

C8,ld ∂2

C8,lu ∂2

C8,qe ∂2

Individual bounds

Figure 3. Individual bounds on the dimension-8 coefficients for Λ = 2TeV. 95% confidence intervals
are given at both the linear and quadratic levels and obtained with either the 1D or 2D differential
B0 analyses, see text for details. “Allowed Region” indicates the elastic positivity bounds of table 1.

Coeff. 1D lin. 1D lin.+quad. 2D lin. 2D lin.+quad. +D0

C8,lq∂3 (−0.46, 0.46) (−0.38, 0.72) (−0.41, 0.41) (−0.35, 0.55) (−0.32, 0.44)
C8,lq∂4 (−0.23, 0.23) (−0.24, 0.22) (−0.21, 0.21) (−0.22, 0.20) (−0.20, 0.18)
C8,ed∂2 (−2.2, 2.2) (−2.2, 1.2) (−2.0, 2.0) (−2.1, 1.1) (−1.8, 1.1)
C8,eu∂2 (−0.44, 0.44) (−0.39, 0.55) (−0.40, 0.40) (−0.36, 0.48) (−0.33, 0.41)
C8,ld∂2 (−4.4, 4.4) (−1.4, 1.9) (−4.1, 4.1) (−1.3, 1.9) (−1.1, 1.5)
C8,lu∂2 (−0.89, 0.89) (−1.5, 0.61) (−0.81, 0.81) (−1.5, 0.57) (−1.2, 0.5)
C8,qe∂2 (−1.3, 1.3) (−1.2, 0.64) (−1.2, 1.2) (−1.1, 0.61) (−0.93, 0.54)

Table 3. Individual bounds on the dimension-8 coefficients for Λ = 2TeV at the linear and
quadratic levels obtained with the 1D and 2D differential B0 analyses, as shown in figure 3. The
last column shows the impact of including D0 in the 2D linear+quadratic case.

Coeff. C8,lq∂3 C8,lq∂4 C8,ed∂2 C8,eu∂2 C8,ld∂2 C8,lu∂2 C8,qe∂2

B0 +D0 (−1.1, 1.1) (−0.95, 0.85) (−1.8, 1.8) (−1.2, 1.3) (−1.7, 1.7) (−1.2, 1.2) (−1.0, 1.0)

Table 4. Profiled bounds on the dimension-8 coefficients for Λ = 2TeV at the quadratic level
obtained with the 2D differential information in B0 and D0.

without the inclusion of the 2D information, the quadratic dim-8 effects, or the D0 angular
moment, flat directions exist that prevent the extraction of reliable confidence intervals.
Including the full information, however, does allow us to obtain profiled bounds, which
are given in table 4. They correspond to a reduced sensitivity to a scale of 1.7-2TeV
when assuming Ci = 1, as expected for a more global analysis. This shows that the
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-2 -1 0 1 2

C8,eu ∂2
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C8,lu ∂2

Λ = 2 TeV
B0 only (quadratic, individual)

B0 (linear, individual)

B0 & D0 (quadratic, individual)

B0 & D0 (quadratic, profiled)

Positivity allowed

Figure 4. Two-dimensional individual, 95% confidence regions in the dimension-8 coefficient space
using the double-differential distributions of the B0 and D0 angular moments. The elastic positivity
bounds of table 1 are shaded in green.

system is somewhat under-constrained, requiring, in particular, the inclusion of 1/Λ8 effects
to effectively distinguish different operator contributions. When we neglect these terms,
the Fisher information matrix has 2 relatively well constrained eigenvectors, and a third
moderately well constrained one. Their coefficients are bounded at values of 0.15, 2.5 and
40, respectively (again, assuming Λ = 2TeV), while the other four directions are essentially
unconstrained. This means that care should be taken in interpreting the results, since we
have not considered all possible effects arising at dimension greater than 8.

In order to explore the correlations between the different operators, we also study the
constraints in 2D sub-spaces of the Wilson coefficients, again assuming the SM hypothesis is
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observed. Figure 4 summarises the confidence regions obtained in different limits from our
analysis, in the 21 combinations of operators, corresponding to isocontours of χ2 = 5.99.
Individual regions (setting all other coefficients to zero) are given when including only the
B0 observable (orange), both B0 and D0 (solid blue) and for B0 neglecting the quadratic
contributions (dashed blue). The corresponding profiled regions, using the full B0 and
D0 information at quadratic level, are shown in black. For reference, we also shade in
green the region allowed by the positivity bounds. The constraints in the linear-only
limit clearly highlight the presence of flat directions in the corresponding likelihood, most
of which are lifted when including quadratic effects in B0. However, approximate flat
directions still remain in, e.g., the 2D planes involving C8,ed∂2. This operator is one of
the combinations that mediates only the dd̄ intial state, which explains why it has on of
the poorest sensitivities overall. The three operators with which the blind directions are
apparent, C8,qe∂2, C8,lu∂2 and C8,ld∂2, are exactly those which predict an opposite sign
in B0 (See table 2) and cancel in a particular pair of directions (hence the “x” shape,
since the quadratic term is insensitive to the coefficient sign). The poorest constrained
directions then approximately follow those of the linear-only contours, where the sign of
the coefficients is such that these terms also cancel. Ultimately, including D0 closes these
directions off, allowing for the final, marginalised regions to be reliably obtained. The
possible degeneracies highlighted in the discussion of table 2 are therefore never exact, and
including the full information allows us to resolve the parameter space. This suggests that
the low/intermediate invariant mass bins do play a role in discriminating the effects of the
seven operators.

Overall, we find that the LHC can bound O(1) coefficients for a new physics scale
of Λ = 2TeV, using the full information from B0 and D0 including the O(1/Λ8) effects
from the operators of interest. As previously mentioned, this result relies on the inclusion
of partial higher-order contributions in the SMEFT expansion, neglecting other possible
contributions at O(1/Λn≥6). These can come from the interference between dim-6 and dim-
8 amplitudes, or between dim-10/12 amplitudes and the SM. We have neglected the former
by assuming the relevant dim-6 operators can be adequately constrained elsewhere (See,
e.g., refs. [98, 99]). The contribution of operators of dim-(n > 8) has not been computed,
and hence our results should be interpreted with caution. In particular, the 4- and 6-
derivative counterparts of our dim-8 operators also contribute to the l ≥ 3 angular moments
and may alter the picture of constraints. That said, we have limited the maximum energy
bins of our analysis to 1TeV, in an attempt to partly mitigate these effects. Furthermore,
these operators will also contribute to even higher moments than our dim-8 ones, which
could be used to further reduce their impact. A full angular analysis up to higher energies
would be required to obtain an accurate picture of the sensitivity. Our study is intended
to be a proof of principle focused on the ability to probe the positivity cone and infer
information about UV states. Ultimately, these results should form part of a more complete,
global analysis including all relevant operators that is beyond the scope of this work.
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6 Testing positivity

The principles used to derive the positivity bounds are well-established, at least for the
energy scales we have probed so far, which makes positivity bounds very reliable, and there
is no concrete reason to expect any violation at high energies. Nevertheless, nature, i.e.
the experimental data must have the ultimate say on whether they are satisfied. Here we
shall entertain the possibility that the positivity bounds may be violated at scales not very
far from those probed the colliders. That is, we shall test the axiomatic principles of the
S-matrix by postulating their violations and the degree to which these can be confirmed
experimentally.

Following [3], we shall postulate that a particular set of non-zero values of the Wilson
coefficients, ~C0, are observed, and quantify the violation of positivity by computing

−∆−4 ≡ min
[

min
processes

1
2
d2M(0)
ds2 , 0

]
= δ( ~C0)

Λ4 , (6.1)

with

δ( ~C0) ≡ min [−4C8,lq∂3 + 4C8,lq∂4,−4C8,lq∂3 − 4C8,lq∂4,−4C8,ed∂2,−4C8,eu∂2,

−4C8,ld∂2,−4C8,lu∂2,−4C8,qe∂2, 0] . (6.2)

where the subtracted amplitude M(0) is defined in eq. (3.3) and “processes” in the mini-
mization denote the different elastic scattering processes in table 1. This is of course just a
crude estimate, which serves our purposes at this stage. Geometrically, in the space of the
Wilson coefficients, these bounds represent the facets of a polyhedral convex cone. Eq. (6.1)
can be visualized as evaluating a (scaled) distance between the prospective experimental
data point, ~C0, and the closest facet, ~C0 being outside the cone if the positivity is violated.
We will have ∆−1 = 0 or ∆ = ∞ if positivity is satisfied, and if it is violated we have
∆ = Λ/ 4

√
|δCmin|, where δCmin is the non-zero minimum found with eq. (6.2). In short, ∆

has dimensions of energy and will be taken as a proxy for the scale of positivity violation.
Of course, experimentally, the Wilson coefficients can only be determined within some

region at a given C.L., rather than pin-pointed to an exact location, so ∆ can only be
constrained in a range. Furthermore, the associated likelihood is a more complex function,
since the covariance matrix now depends on C0. It is instructive to first see this in a simple
example. To this end, we look at the 2D subspace (C8,qe∂2, C8,lu∂2), where a benchmark
(0.4, 0.4) is chosen for these two coefficients, and the other coefficients are set to zero. We
set Λ = 1TeV in this analysis. We confront this parameter space with the likelihood built
from the double-differential HL-LHC data for B0 and D0 that we have obtained in the
previous sections.4 In figure 5, we plot both the 1 and 2σ regions for this benchmark, and
we can see that the confidence region does not intersect with the positivity region (where
positivity bounds are satisfied) at the 1σ level, but does at the 2σ level. In this case, we

4We note that the presence of non-zero dim-8 coefficients would suggest (although not guarantee) the
presence of dim-6 operators as well. These operators can contribute indirectly to the dim-8 likelihood
through the covariance matrix entries of eq. (5.3), although we stress that they are typically dominated by
the SM cross section contributions in each bin.
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Figure 5. A benchmark case of positivity violation in the 2D subspace (C8,qe∂2, C8,lu∂2) in the
presence of experimental uncertainties. The green region is where the elastic positivity bounds are
satisfied. The grey solid lines are the values of ∆−1. We set Λ = 1TeV in this analysis.

would conclude that the positivity region cannot be excluded at 95% confidence-level and
therefore that we have not observed positivity violation.

Figure 6 shows the result of generalising this exercise over the 21, 2D subspaces of
Wilson coefficients for Λ = 2TeV, setting all other coefficients to zero. We shade in blue
the regions in which the parameter space allowed by positivity (shaded in green) can
be excluded at 95% C.L. . This corresponds to the regions in C0 where the 95% C.L.
contour does not intersect with the green areas in the figure. We see that the sensitivity
to positivity violation varies over the different 2D parameter slices, with some cases being
able to probe quite close to the edge of the cone and hence larger scales. The exact ranges
of ∆−1 probed are given in each panel. In some cases, the contour does not close around
the region allowed by positivity, extending out to large positivity violation, beyond the
coefficient ranges that we scanned. This highlights some remaining degeneracies in the
χ2 function, that become difficult to constrain in the even of the observation of large,
non-zero Wilson coefficients. The χ2 is dominated by the quadratic contributions here
and the aforementioned degeneracies discussed in table 2 leads to some symmetries under
sign flips of the coefficients, such that for a point of extreme positivity violation, there is
a degeneracy with the “mirror” point in the extreme positivity conservation, preventing
the exclusion of the allowed region. Ultimately, the exercise of distinguishing a point from
the SM hypothesis (origin) as was done for figure 4 is easier than that of distinguishing a
point from an entire set of points in the positivity region, so it is not surprising that some
additional weakly constrained directions arise. For this reason, we were not able to reliably
obtain results for the profiled case.

Nevertheless, we can study the general case of allowing all seven dim-8 operators at
once, by considering whether the allowed volume of parameter space intersects with the
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Figure 6. Sensitivity to positivity violation using the double-differential distributions of the B0
and D0 angular moments. The elastic positivity bounds of table 1 are shaded in green. Blue shaded
areas correspond to parameter points outside the allowed region that can be excluded at the 95 %
C.L. . We set Λ = 2TeV in this analysis.

positivity region. The allowed region is bounded by the 95% C.L. χ2 constraint χ2( ~C, ~C0) ≤
χ2
c , and we assume generically that the best-fit point given by the measurements can be

anywhere within this region. Consequently, the ∆−1( ~C0) corresponding to the best-fit
point can lie within the interval:

∆−1( ~C0) ∈
[
∆−1

low, ∆−1
high

]
, (6.3)
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Figure 7. Distribution of positivity violation in terms of (∆−1
low ,∆−1) at the 95 % confidence level

for the HL-LHC collider (red points, left vertical axis), for a sample of 105 points in the Wilson
coefficient space. We set Λ = 1TeV in this analysis. We also plot the ratio of points whose ∆−1

low
is nonzero for a given ∆−1 (blue solid line, right vertical axis). ∆−1 does not exceed the horizontal
axis value of the vertical grey dashed line that corresponds to the radius of the 7-dimensional ball.

with

∆−1
low = min

χ2( ~C, ~C0)≤χ2
c

(
δ( ~C0)

1
4

Λ

)
, ∆−1

high = max
χ2( ~C, ~C0)≤χ2

c

(
δ( ~C0)

1
4

Λ

)
. (6.4)

If positivity violation can be detected, we must have ∆−1
low > 0. The lower limit ∆low

gives a conservative estimate of the violation energy scale, i.e., the maximum of ∆. To
visualize how good the conservative estimate ∆−1

low is compared to the “idealized/theoretical
case” ∆−1 for the χ2( ~C, ~C0) from the HL-LHC collider, we randomly sample the Wilson
coefficient space, and plot ∆−1

low against ∆−1. Figure 7 plots the density of a random
sample of 105 points, uniformly distributed within a radius of 2 from the origin of Wilso
coefficient space. We set Λ = 1TeV in this analysis. By definition, the points in this
plot have to be below the ∆−1

low = ∆−1 line. However, as this is a complex numerical
minimisation problem, we cannot guarantee that the minimum obtained is the global one
in every case, but only that it is a local minimum found starting from the point ~C0. There
is an accumulation of points at the bottom of the plot with ∆−1

low = 0, which is due to the
fact that the χ2( ~C, ~C0) region intersects with the positivity region, even though ~C0 violates
positivity (see for example the 2σ case in figure 5). We see that typical ∆−1

low is roughly half
of ∆−1, which means that the reduction in the constraining power due to the experimental
uncertainties, as compared to the theoretical prediction, is usually mild for the HL-LHC.
On the other hand, it also shows that even when ∆−1 is relatively large, there are still
points where ∆−1

low = 0, that is, there are still cases where we cannot unambiguously say
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that above a certain amount of positivity violation, we can always detect it using this set of
observables. This is, again, because of the approximate flat directions and symmetries in χ2

function that we have referred to earlier. What can be ascertained is that, as the amount
of positivity violation grows, we are more likely to be able to detect it. This is shown by
the blue curve, which represents the fraction of points in the sample with ∆−1

low > 0, i.e.,
for which a finite, upper bound on the scale of positivity violation is obtained. This can be
interpreted as the probability of observing positivity violation (by ruling out the allowed
positivity region).

7 Implications for UV states

As mentioned previously, the convex cone/ER approach gives the strongest forward posi-
tivity bounds, and can be used to effectively infer the properties of the UV states. However,
the derivation of the bounds in the general case is much more challenging, and intercon-
nects a large number of operators. In this section, we therefore tackle a simplified problem,
reduced in scope to match our purposes. As a benchmark study, we shall consider the
O8,eu∂2 operator alongside all possible dim-8 operators that enter into the convex cone
positivity bounds involving only the right handed electron and up quark, and investigate
how these can be used in conjunction with the data to reverse-engineer the UV states.

7.1 ERs of the positivity cone and UV states

To find the convex cone positivity bounds involving only the right handed electron and up
quark, we shall focus on the following dim-8 operators [100, 101]:

C1 : (ēγµe) ∂2 (ēγµe) (7.1)
C2 : (ēγµe) ∂2 (ūγµu) (7.2)

C3 : (ēγµ
←→
D νe)(ūγµ

←→
D νu) (7.3)

C4 : (ūγµ
←→
D νu)(ūγµ←→D νu) (7.4)

C5 : (ūγµu) ∂2 (ūγµu) (7.5)

where C8,eu∂2 has been re-named as C3, and we are agnostic about all other dim-8 operators.
A (salient5) convex cone can be viewed as being generated by all conical hulls (i.e.,

positive linear combinations) of its ERs. The most distinct property of an ER is that it
cannot be conically decomposed to other rays. From dispersion relation (3.7), we see that
the convex cone of the amplitude d2Mijkl(0)/ds2 can be generated by a conical hull of
mijm

∗
kl + mil̃m

∗
kj̃
, so the ERs must take the form of mijm

∗
kl + mil̃m

∗
kj̃
. Recall that mij

is simply a 3-point amplitude from i and j to another state X. Therefore, an ER must
have an mij that cannot be split into a positive sum of other 3-point amplitudes. This
is only possible if X is an irreducible representation (irrep) in the product decomposition

5A salient convex cone is one that does not contain a straight line. That is, if one half line is in a salient
cone, then the opposite half line is not in the cone. The dispersion relation (3.7) defines a salient cone
because mijm

∗
kl + mil̃m

∗
kj̃

forms a subspace of the positive semi-definite cone, which is salient.
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of the representations of i and j under the Lorentz and internal gauge symmetries of the
SM. Therefore, to find the ERs, we can take a group-theoretical approach, and construct
them with Clebsch-Gordan coefficients. i.e. mij ∝ Cr,αi,j , where r runs through all irreps
and α labels the components in the r irrep. If there were only the mijm

∗
kl term in the

dispersion relation, then one could obtain all ERs by finding the projectors mijm
∗
kl ∝

P ijklr =
∑
αC

r,α
i,j (Cr,αk,l )∗. Now, we actually have mijm

∗
kl + mil̃m

∗
kj̃
, which means that

we should take a jl symmetric projection of the group projector. Under this projection,
some of the ERs become non-ERs, but for many cases, especially when there are sufficient
symmetries, it is relatively easy to find the real ERs among them. In short, to find the
ERs of the amplitude cone, we first find potential ERs (pERs) via [8]

(mijm
∗
kl +mil̃m

∗
kj̃

)(pER) ∝ P i(j|k|l)r =
∑
α

Cr,αi,(j|(C
r,α
k,|l))

∗ (7.6)

and we then geometrically pick out the real ERs among them.
Alternatively, we can construct the pERs by explicitly enumerating all possible tree-

level UV completions, which can be greatly aided by the group-theoretical construction [8],
and then integrating them out to get the Wilson coefficients for the pERs. This is often
an easier method in practice. Table 5 tabulates all of the pERs for the amplitude cone
describing the positivity bounds of operators (7.1)–(7.5) and their corresponding UV par-
ticles. Our notation for the UV particles closely follows that of [102], and we have defined
a dim-8 Wilson coefficient vector

~C = (C1, C2, C3, C4, C5) (7.7)

to represent the pERs. After integrating out a particular UV state X, we obtain a ~C vector
for it:

~CX
Λ4 = wX~cX , wX = g2

X

M4
X

≥ 0 (7.8)

where ~cX ’s are the dim-8 Wilson coefficients listed in table 5, and gX and MX are generic
couplings and masses of the UV states. For the partial UV states U4 and U1 in table 5, the
dimensionless coupling gX should be defined as gX = ḡXMX/MUV , where ḡX/MUV is the
dimensionful coupling for the corresponding UV interactions. In principle, there can be
several copies of each UV particles of a given type, such that wX =

∑
I g

2
XI/M

4
XI with I

labeling different copies, so in eq. (7.8) we have, for simplicity, assumed that one generation
dominates the summation in this paper. A generic UV completion is a combination of the
dim-8 coefficients generated by several UV states

~C

Λ4 =
∑
X

~CX
Λ4 =

∑
X

wX~cX (7.9)

where we can choose to sum X only over all the real ERs, since all other elements can be
written as a positive sum of these.

Two comments are in order. For our particular example with operators (7.1)–(7.5), the
tree-level one-particle UV extensions span the full space of ERs. This is not generally the
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UV interaction (SU(3), SU(2))spin
U(1) dim-8 EFT coefficients (~cX) ER?

ēceS2 + h.c. S2: (1, 1)0
2 (1, 0, 0, 0, 0) "

1
MUV

ūci
←→
D µujεijk U†k4µ + h.c. Uk4µ: (3̄, 1)1

4/3 (0, 0, 0,−1
2 ,−

3
2) "

(ūciuj Ω†ij4 + sym.) + h.c. Ωij
4 : (6, 1)0

4/3 (0, 0, 0,−1
4 ,

1
4) %

ēcuiω
†i
1 + h.c. ωi1: (3, 1)0

1/3 (0, 1
4 ,−

1
4 , 0, 0) "

ēγµui U†iµ5 + h.c. U iµ5 : (3, 1)1
5/3 (0,−1

2 ,−
1
2 , 0, 0) %

(sin θ ēγµe+ cos θ ūiγµui)Bµ Bµ: (1, 1)1
0 (sin2 θ, 2 cos θ sin θ, 0, 0, cos2 θ) "

ūiγµujT
a
ij G†aµ Gaµ: (8, 1)1

0 (0, 0, 0,−1
4 ,−

5
12) %

1
MUV

iēc
←→
D µuiU†i1µ + h.c. U i1µ: (3, 1)1

1/3 (0,−3
4 ,−

1
4 , 0, 0) "

Table 5. Potential ERs and the corresponding UV states for the amplitude cone positivity bounds
of operators (7.1)–(7.5). (SU(3), SU(2))spin

U(1) denotes the quantum numbers of the UV particles
charged under the symmetries of the SM. The “dim-8 EFT coefficients” column represents pERs
that can be constructed from group projectors or by integrating out the corresponding UV particles.
The “ER?” column specifies whether a pER is really an ER or not. ec denotes the charge conjugate
of e.

case. Barring the existence of partial UV completions with higher spin particles, in some
cases certain ERs can only be generated from a loop-level UV completion, in which a heavy
loop diagram gives rise to a sum of the ERs that includes those that cannot be generated
by tree-level one-particle UV completions. Furthermore, we have only enumerated the UV
particles up to spin-1, which is sufficient for our case. We expect that it will always be the
case that if the tree-level UV completions do not cover all of the ERs, adding the loop-
level UV completions will. If one however restricts themselves to tree-level (partial) UV
completions, some of the UV particles may have to be of higher spins, say, spin-2 massive
gravitons.6

From table 5, we conclude that the pERs Ω4, U5 and G are not really ERs, due to the
s ↔ u crossing symmetric projection of mijm

∗
kl + mil̃m

∗
kj̃
. To see this, we first determine

the dimensionality of the linear space spanned by all the pERs, which for our case is 5. We
must then find all of the (4D in our case) hyperplanes that bound the convex cone. This is
done by enumerating all of the hyperplanes spanned by any 4 of the 8 pERs and checking
whether the other pERs (and thus the cone) lie on one half space delineated by that
hyperplane. Having established the bounding hyperplanes (and their normal vectors), one

6For a long time, it was believed that theories with massive spin-2 particles were necessarily plagued by
the Boulware-Deser ghost problem [103, 104]. Recent studies have shown that one can construct massive
spin-2 theories without the troubling Boulware-Deser ghost [103–105]. However, these models have been
conjectured to be inconsistent with the standard S-matrix axioms (which are essentially distilled from
our understanding of quantum field theory without gravity), thus violating positivity bounds [63, 106].
Therefore, it might be interesting to consider (potential) ERs from massive spin-2 particle, providing a way
to test the fundamental principles of the S-matrix in a different sense. We leave this question for future
work.
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can easily check whether or not pER is a real ER. Finally, the dot products of the normal
vectors with the generic Wilson coefficient vector ~C give rise to the positivity bounds, i.e.,
the boundaries of the convex cone spanned by the ERs.

If all the ERs are isolated, i.e., the cone is polytopal, all of this can be solved by a
vertex/face enumeration algorithm with widely-available, efficient codes such as polymake.
However, while other ERs are isolated, the ER associated to the state B is parametrized by
an angle θ, which characterises its relative coupling strength to electrons and up-quarks.
The ER is continuous, or alternatively, represents a set of infinitely many connected ERs.
This complicates the task of solving for the positivity bounds. In particular, after obtaining
the positivity bounds, we also need to get rid of all continuous variables, which in our
case is only the θ angle. After eliminating θ, the convex cone positivity bounds for the
operators (7.1)–(7.5) are given by

C3 ≤ 0, −3C4 + C5 ≥ 0, C4 ≤ 0, C1 ≥ 0,

− (2
√
C1(−3C4 + C5)− 3C3) ≤ C2 ≤ 2

√
C1(−3C4 + C5)− C3

(7.10)

We will refer to the convex cone formed by these inequalities as the C cone. These (ex-
tremal/convex cone) positivity bounds on operators (7.1)–(7.5) are obtained for the first
time here. It is worth mentioning that, generally, extremal positivity bounds are stronger
than elastic positivity bounds. For example, for our case, the extremal bounds on C3 are
stronger than the elastic scattering bound C3 ≤ 0 (i.e., C8,eu∂2 ≤ 0 in table 1), when C4,
C5, and C1 satisfy the inequalities (7.10) and C2 is nonzero.

7.2 Inferring the UV states

In the previous section, we encoutered the continuous ER for the B state, parametrized
by an angle θ. This can be interpreted as the fact that the leading s2-order dispersion
relation cannot resolve the degeneracy between the Bµ coupling to ēγµe and ūiγµui. The
existence of continuous ERs can be easily identified in the positivity bounds (7.10) by the
presence of non-linear, square-root terms, reflecting the fact that the cone is non-polytopal.
Geometrically, C is a 5D salient cone with six 4D faces. Since a cone consists of rays that
can be infinitely extended, we can take a cross section of the 5D convex cone, resulting in a
4D convex object. To visualize this object, we take two 3D cross-sections in figure 8, both
of which include the continuous ER. The two 3D cross-sections are representative in the
sense that we are able to include all the ERs/UV states with the two cross-sections.

In figure 8, we see that the S2 ER lies on the continuous ER, which is due to the
degeneracy between the ēceS2 and ēγµeBµ interaction from the viewpoint of the dispersion
relation. That is, the positivity cone cannot tell the difference between Bµ with θ = π/2
and S2. On the other hand, we can also see from these plots that the states Ω4, U5 and
G are not real ERs, as they can be decomposed as a positive sum of other states. For
example, in the subfigure (a), U5 is not a real ER because it is in between U1 and ω1 and
thus can be written as a positive combination of U1 and ω1, and in the subfigure (b), G
and Ω4 are between U4 and B(θ = π), so they are not real ERs.

Figure 8 presents a visualisation of how the convex cone positivity bounds can be used
to infer the UV states. Assuming that the SMEFT has a standard UV completion, any
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Figure 8. Two 3D cross-sections for the 5D positivity bound cone (described by (7.10))
in eu scattering. In Subfigure (a), the (x, y, z) coordinate values correspond to
(C2,− 2C1−3C3+C4+2C5

3
√

2 , C5−C1√
2 ), while in Subfigure (b), the (x, y, z) values correspond to

(C2,
2C1+C4+2C5

3 , C5−C1√
2 ).

future experimental measurements should point to a ~C vector that stays within the two
geometries of figure 8. Of course, experimental data comes with uncertainties, and we will
take this into account momentarily, but, to get the basic idea, let us for a moment assume
that the data are sufficiently accurate for the energy scales we consider such that we can
represent our measurements as a sharp point within the geometries. Then, for example, if
the data suggest a ~C that is close to that of U4, we can predict that the UV theory must
interact with the SM via a spin-1 particle that is in the 3̄ representation of SU(3)c, a singlet
in the left handed SU(2) and with hypercharge 4/3, when the internal symmetries of the
UV theory are projected down to those of the SM. Similarly, if the future measurements
find ~C to be at some point on the circle, we can infer that there must be a UV state B
with (SU(3), SU(2))spin

U(1) = (1, 1)1
0. On the other hand, if the future collider finds ~C to be

near U5, which is a pER, it may be tempting to infer that there might be a UV state with
(SU(3), SU(2))spin

U(1) = (3, 1)1
5/3. However, we cannot conclude that this must be the case,

as a combination of ω1 and U1 would give the same EFT coefficients.

Since the angular dependence with B0 (and D0) in previous sections can only probe
the C3 ≡ C8,eu∂2 coefficient, it is instructive to look at the cone in the C3 dimension. As
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we can see in table 5, only the two ERs, ω1 and U1, have nonzero C3 components. They
both have (3, 1)1/3 as their SM gauge group quantum numbers, but differ in their Lorentz
group representations, which are spin-0 and spin-1, respectively. Additionally, the pER U5
also has a nonzero C3 component. These projected UV states are the ones that can be
probed by the B0 (and D0) angular dependence.

To use the positivity cone to infer or exclude the UV states in practice, we also need to
take into account experimental uncertainties. That is, we should combine the information
on the Wilson coefficients from the positivity cone and some dataset to constrain the UV
states. First, let us assume that future experimental results are consistent with the SM.
For simplicity, we shall take the resulting 95% C.L. intervals implied by the data as the
region of the parameter space in which we claim that no BSM signals are observed. That
is, we shall take all ~C satisfying χ2( ~C, ~C0) ≤ χ2

c as the viable data points, where ~C0 is
the null vector representing the observation of the SM, and χ2

c is fixed by the desired
95% confidence level and depends on the number of degrees of freedom. In this case,
the likelihood must be constructed from data that is sensitive to the 5 Wilson coefficients
for which we have constructed the positivity cone. The operators generally contribute to
different scattering amplitudes and will therefore be constrained by different measurements
or experiments. Our phenomenological study provides sensitivity to the C3 direction,
but we need to supplement the projections obtained with results from other works that
have studied how to constrain the other Wilson coefficients. For instance, C1 mediates
e−e+ → e−e+ scattering, while C2 and C3 could be probed by Drell-Yan (which we use
in our study), e+e− → 2 jets or Deep inelastic scattering. Finally, C4 and C5 mediate
uū→ uū scattering, with hadron colliders being a good candidate to probe then via, e.g.,
di-jet production. We have collected the best available constraints or projections to use
in our example from the existing literature. Although this results in a rather hodgepodge
collection of LHC Run 1 data and projections from HL-LHC and future electron-positron
colliders, we stress that this theoretical exercise is mainly intended as an example, for which
we preferred to use numbers that were at least well motivated, rather than substituting
with ad hoc values.

Coefficients that contribute to unrelated measurements will consequently not be cor-
related in the associated, combined likelihood. We therefore take a simplified approach,
assuming that the likelihood is derived from an uncorrelated, multivariate Gaussian dis-
tribution, whose errors are characterised by the 2σ intervals taken from our work and the
existing literature. Central values are taken to be 0 in all cases, as required by the obser-
vation of the SM hypothesis. This yields the following “uncertainties” for C1, C2 and C3,
for Λ = 2TeV:

C1 = 0± 0.024, C2 = 0± 0.45, C3 = 0± 0.37 (7.11)

These estimates correspond individual limits or projections, neglecting all other operators,
consistent with the assumption that new physics only couples to the right-handed up quark
and electron.7 For C1, we use the projected sensitivity obtained in [3], from e−e+ → e−e+

7We note that these individual limits neglect the possible presence of dim-6 operators that are typically
generated by the new physics scenarios we consider. Allowing for the presence of such operators would
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scattering at the ILC running with a center-of-mass energy of 250 GeV and with a possible
upgrade to 1 TeV (For more details, see the ILC-1000 scenario in [3]). For C2, we use the
limit obtained from the process pp→ `−`+ (` = e, µ) at the 8TeV LHC with an integrated
luminosity of 20.3 fb−1 in table 1 of [90], taking the average of the upper and lower 2σ
ranges. For C3 we use our result, i.e., the projections for pp → `−`+ (` = e, µ) at the
HL-LHC utilizing B0 and D0 given in table 3, averaging over the upper and lower bounds.
To our knowledge, there are no available results for C4 and C5. We shall therefore consider
two limiting cases: 1) C4 = C5 = 0, 2) C4, C5 = 0 ± 10, where the latter case is, for our
purposes, roughly equivalent to being agnostic about C4 and C5. Although the bounds on
C2 and C3 come from the same underlying process (Drell Yan), we do not expect significant
correlations between the two operators, since the latter bound is extracted from the l ≥ 3
angular moments, to which the former do not contribute. Ultimately, a full, combined
projection should be performed, quantifying the HL-LHC sensitivity to both operators as
well as the, e.g, di-jet sensitivity to C4 and C5.

Having established the allowed region from data, we now impose the positivity
bounds (7.10), which means that we require the allowed data region to be consistent with
the positivity bounds (7.10). That is, the allowed data region should have some overlap
with the positivity cone C. Then, we ask the following: given the experimental measure-
ments, what is the maximum value of wH = g2

H/M
4
H that is allowed for the UV state H

by the data and the positivity bounds? Or, equivalently, what is the lower bound, or the
exclusion limit, ofMH/

√
gH for the UV state H that potentially exists? This can be solved

by the following optimization problem

maximize : λ

subject to : ~C − λ~cH ∈ C and χ2( ~C, ~C0) ≤ χ2
c (7.12)

where for clarity ~C is the dim-8 Wilson coefficient vector, ~cH is the ER for the UV state H
in table 5, C is the positivity cone, ~C0 = ~0 and χ2

c is determined by the 95% confidence level.
Note that ~C and λ are decision variables we want to run over to maximize λ. The solution
λmax gives the maximum of allowed wH , which can be converted to the lower bound of
MH/

√
gH for the UV state H. To see that why λmax gives the maximum of wH , we note

that, as ~C is a positive sum of all ~cX ERs, subtracting λ~cH from ~C is essentially changing ~C
by reducing the contribution from the ~cH ER, and the maximum of λ is obtained when all
of the ~cH contribution is removed in the positive sum ~C/Λ4 =

∑
X wX~cX and the remaining

vector is still in the C cone. It is important to note that, thanks to our use of the positivity
cone, the derived bound on the properties of a given UV state in table 5 is independent
of the possible existence of any of the others. The positivity cone has allowed us to make
a more model-independent statement compared to the usual exercise of simply matching
the SMEFT to UV models. In the latter case, the SMEFT likelihood is typically mapped

result in a somewhat weakened sensitivity that is difficult to quantify without repeating the associated
studies. We expect this effect to be larger for the C1 and C2 bounds, since they are obtained from analyses
of the full differential distributions in scattering angle and invariant mass, respectively. In our analysis of
C3, the impact of dim-6 operators will be reduced since they do not contribute to the l ≥ 3 moments, as
discussed in sections 2 and 5.
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UV particle H λmax [TeV−4] MH√
gH

[TeV])
S2 0.0015 ≥ 5.1
U4 0 ∞
Ω4 0 ∞
ω1 0.090 ≥ 1.8
U5 0.045 ≥ 2.2
B 0 ∞
G 0 ∞
U1 0.049 ≥ 2.1

Table 6. Lower bounds for the UV scale MH/
√
gH assuming C4 = 0, C5 = 0. Strictly speaking, B

here stands for the cases where θ 6= 0; when θ = 0, B becomes degenerate with S2, so one cannot
tell the difference between them from the view point of the positivity cone. Similar understanding
applies for the later tables where C4 = C5 = 0.

UV particle H λmax [TeV−4] MH√
gH

[TeV]
S2 0.0015 ≥ 5.1
U4 1.2 ≥ 0.95
Ω4 1.1 ≥ 0.97
ω1 0.092 ≥ 1.8
U5 0.046 ≥ 2.2
B 0.00075 ≥ 6.1
G 2.5 ≥ 0.80
U1 0.092 ≥ 1.8

Table 7. Lower bounds for the UV scale MH/
√
gH assuming C4 = 0± 10, C5 = 0± 10. This is for

our purposes roughly speaking equivalent to being agnostic about C4 and C5.

to the parameter space of a given model, assuming all of the other states are not present.
In order to match the level of information used in the positivity case, one would need to
interpret the data in the context of a comprehensive UV model, defined as the union of
the 8 models that we consider.

Tables 6 and 7 summarise the results of the two cases C4 = C5 = 0 and C4, C5 = 0±10
respectively. As one would expect, the case of C4 = C5 = 0 gives stronger exclusions for the
UV states. Particularly, as we see in table 6 the UV states U4, Ω4, B and G are completely
excluded by assuming C4 = C5 = 0. This is not surprising as the pERs corresponding to
U4, Ω4, B and G contain nonzero components for C4 and C5 (see table 5). By a similar
token, being agnostic about C4 and C5 in table 7 only slightly weakens the lower bounds
on S2, ω1, U5 and U1. However, the lower bounds on the U4, Ω4 and G state significantly
relax if we do not have precise information on C4 and C5, while the exclusion limit on B
becomes comparable with that of S2. All in all, we see that, using our chosen dataset, we
can robustly exclude the possible UV states S2, ω1, U5, B and U1 up to a few TeVs.
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UV particle H λmax [TeV−4] MH√
gH

[TeV]
S2 0.0015 ≥ 5.1
U4 0 ∞
Ω4 0 ∞
ω1 0.22 ≥ 1.5
U5 0.053 ≥ 2.1
B 0 ∞
G 0 ∞
U1 0.053 ≥ 2.1

Table 8. Lower bounds on the UV states assuming the UV model contains only the ω1 particle,
assuming Mω1 = 2TeV and gω1 = 1.

UV particle H λmax [TeV−4] MH√
gH

[TeV]
S2 0.0015 ≥ 5.1
U4 0 ∞
Ω4 0 ∞
ω1 0.10 ≥ 1.7
U5 0.10 ≥ 1.7
B 0 ∞
G 0 ∞
U1 0.17 ≥ 1.5

Table 9. Lower bounds on the UV states assuming the UV model contains only the U1 particle,
assuming MU1 = 2TeV and gU1 = 1.

On the other hand, in the event of a BSM observation from other channels in the
future, we can similarly use the positivity cone to put lower bounds on the UV states,
as shown in tables 8 and 9. As a crude estimate, we shall assume that the experimental
uncertainties on C1, C2, C3 are the same as those in eq. (7.11), even though we are now
considering scenarios where the central values of C1, C2, C3 are shifted away from zero. For
a benchmark, we shall consider scenarios where the UV states have vanishing C4, C5, which
allows us to limit the discussions to the subspace C4 = C5 = 0. Under this restriction, we
may assume that the BSM state is either ω1 or U1. (U5 is neglected for further simplicity
because it is a potential ER and cannot be uniquely determined from the dim-8 data only.)
For concreteness, we further assume that the UV state has a mass of 2TeV and the UV
coupling constant g is 1. Then, for the case of only the ω1 particle in the UV, we have
ω1 : C1 = 0, C2 = 0.25, C3 = −0.25 as the central values, with Λ = 2TeV. For the
case of the U1 particle, we have U1 : C1 = 0, C2 = −0.75, C3 = −0.25 as the central
values. Again, the reason why the U4, Ω4, B and G states are excluded in the tables is
simply because their corresponding pERs contain nonzero components for C4 and C5. We
see that the lower bound for a UV state is relaxed when it is the new heavy particle, which
may be taken as evidence for such a new state. (The bounds on U5 are also relaxed in both
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tables, particularly in table 9, because it is not a real ER but instead can be constructed
from a positive sum of ω1 and U1.) Another interesting observation is that when the new
state is ω1 the bounds for U1 and U5 are very close, and when the new state is U1 the
bounds for ω1 and U5 are very close.

Finally, one may also wonder whether an upper bound on MH/
√
gH can be derived

for a possible UV state H using the method devised in [3], which involves constructing a
new cone by flipping the sign of H’s ER. However, an explicit calculation shows that this
is not possible if the UV state is ω1 or U1.

8 Summary and conclusion

In this paper, we have explored the interplay between collider observables that are sensitive
to new physics effects starting at dim-8 in the SMEFT expansion and the theoretical
positivity bounds on this parameter space that arise from assuming that the associated
UV completion obeys the fundamental principles of quantum field theory. Specifically we
considered certain moments of the leptonic angular distribution in the Drell-Yan process
at the LHC, which were recently shown to be populated by dim-8 operators. Crucially,
since these moments correspond to spherical harmonics of total angular momentum l ≥ 3,
both the SM and dimension-6 operators are not able to populate them up to sub-leading
EW corrections, meaning that they constitute clean probes of operators beyond dim-6.

Following a general discussion of the angular moment observables in Drell-Yan, we
introduce the B0 andD0 moments, and discuss the relevant dim-8 operators and the reasons
for which they contribute to the higher moments, while the SM and dim-6 operators do
not. We then give a pedagogical review of the positivity bounds, and establish the elastic
positivity bounds on our operators of interest.

We then turn to our phenomenological study, calculating the contributions from the
various operators to the B0 and D0 moments. This is accompanied by a discussion on the
information content, focused the possibility of distinguishing the effects of different opera-
tors. We observe that, since the leading, interference contributions arising at O(1/Λ4) have
the same high energy behaviour, they should not be able to be disentangled in a global fit to
the Drell-Yan data. The only discriminating variable at this order is whether the operators
mediate the uū or dd̄ initial states, which motivated us to include differential information
on the rapidity of the dilepton system in our analysis. We show that the contributions from
the matrix element squared (of O(1/Λ8)) bring additional discriminating power: from the
shape of the dilepton invariant mass distribution, the relative sign of the B0 contributions
at interference- and squared-order, and also by using the D0 moment, which only get pop-
ulated at this order. We therefore establish that the double-differential measurement in
dilepton invariant mass and rapidity as containing the maximum information available to
probe the B0 and D0 moments at LO.

Using these results, we study the projected sensitivity of the HL-LHC dataset, as-
suming that we observe the SM hypothesis and that the uncertainties are statistically
dominated. We find that, at the individual level, the double-differential B0 moment is
able to probe coefficients of order 1–2, setting Λ = 2TeV. The quadratic effects do not
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significantly alter the bounds, except for the two most weakly constrained operators. As
expected, the rapidity information, however, is not found to have a strong impact, since
it is mainly intended to be used for operator discrimination. Moving to the global case,
the profiled bounds are found to be heavily dependent on using the full information. As
expected, several flat directions appear at O(1/Λ4), which we find to completely close at
O(1/Λ8), but not without the inclusion of D0. We also study the correlations among the
operators by visualising the bounds in 2D subspaces, showing how the quadratic effects
and the inclusion of B0 pin down the likelihood. We finally discuss how, given the sen-
sitivity to formally higher order effects, ours results should be interpreted with care. In
particular, certain dim-10 and -12 operators have not been considered, which may affect
our conclusions on the sensitivity. We did, however, intentially limit the energy range of
our analysis to partly mitigate these effects. We also point out that the dim>8 operators
contribute to yet higher (l > 4) moments, which our operators do not populate, meaning
that the full picture would require a complete analysis of the angular distributions, also
including the lower l moments, which are likely to provide further information.

Next, we turn to the interesting possibility of observing the violation of positivity
bounds. We therefore posit that some non-zero set of Wilson coefficients are observed
and quantify the extent to which we can use the data to rule out the allowed positivity
region. We show how this task is a more challenging one than simply ruling out the
SM hypothesis, since one must now rule out an entire region of parameter space. As
a basic level, this results in a slightly reduced reach in the scale of positivity violation.
Looking at 2D subspaces, we also point out some approximate blind directions in our
sensitivity to positivity violation, which arise due to the interplay of cancellations among
B0 contributions and lead to approximate symmetries in the likelihood. They prevent
us from observing certain directions of large positivity violation because of our inability
to exclude the mirror points, deep in the positivity allowed regions. These suggest that
establishing positivity violation in a general 7D approach will be challenging using only this
data. Nevertheless, we conclude the section with a probabilistic study of positivity violation
in the full parameter space, finding that although it is not possible to unambiguously rule
out the positivity allowed region, the probability of doing so improves with the amount of
positivity violation observed.

We then examine the prospects for using our projected sensitivities as part of an
exercise in combining data with the positivity cone to infer the properties of UV states.
We first argue that determining the cone in the most general case is an onerous task, and
permit ourselves to simplify our investigations to new physics that couples only to right-
handed electrons and quarks. This corresponds to considering only one of the 7 operators
we have studied alongside four new dim-8 operators that involve the same SM states. We
proceed to derive and analyse the positivity cone in this space using a group-theoretical
approach, connecting potential extremal rays of the cone with specific UV states that
generate the operators at tree-level. The ensuing bounds have not been derived before,
and represent an improvement over the elastic positivity bounds.

Finally, we use existing and projected sensitivities from existing works alongside our
projections from leptonic angular moments in the Drell-Yan process to establish the ex-
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perimental sensitivity in this space of operators. This allows us to finally quantify the
ability to pin down the model space using data and the positivity cone. First assuming the
observation of the SM hypothesis, the additional information provided by the cone allows
us to set truly model-independent lower bounds on the scale of specific UV completions.
That is, the bounds are independent of the existence of any of the other UV states that we
consider. This is in contrast to the usual approach of interpreting the SMEFT likelihood
directly in the context of a specific model to set lower bounds, which implicitly assumes
that no other new physics is present. This allows us to set the exclusion limits on M/

√
g

(the ratio between the mass of the corresponding UV state and the square root of its cou-
pling) to be a couple of TeVs. Assuming instead a certain benchmark model is observed,
we see that the lower bounds for that particular model are significantly relaxed, while the
other remain approximately unchanged, which could be used as a way to identify specific
UV states in the data.

Throughout this work, we have chosen to focus solely on the effects of dim-8 operators
generated by heavy new physics. As we have discussed, this is primarily because both the
observables that we consider as well as the positivity bounds are not directly sensitive to
possible dim-6 operators. Furthermore it has been shown that, thanks to positivity, dim-8
operators are unavoidable in the presence of non-decoupled BSM states, while the presence
of unsuppressed dim-6 effects is not guaranteed (see, e.g., [31]). However, dim-6 operators
are generally expected to appear, and their complete cancellation could be regarded as
rather fine-tuned. However, the pattern of Wilson coefficients, and the relation to the
dim-8 ones that we study are highly model-dependent. Nevertheless, we have discussed
how they could contribute at higher orders to the l ≥ 3 angular moments and also how
they might alter the statistical likelihood function, should non-zero values be observed in
the data.

What is clear is that unsupressed dim-6 operators are likely to also leave an imprint in
the data, particularly in the lower angular moments of Drell-Yan, as well as other low energy
experiments. A complete picture of BSM sensitivity via the qq̄ → `−`+ amplitude can only
be drawn via a global analysis, incorporating all of this data. Allowing for generic, unknown
dim-6 and -8 coefficients has previously been shown to significantly dilute the sensitivity
of Drell-Yan, with low energy data being crucial to disentangle their effects [90, 98]. In our
case, the analysis of angular moments is expected to reduce the correlations between the
two classes of operator. In the case of specific models, such as those studied in section 7,
the combined analysis would improve the bounds on the UV states and allow, in principle,
for sharper conclusions to be drawn about the model space when combining the data with
positivity bounds. The question of whether the LHC data will provide sufficient sensitivity
to the positivity region, given the non-observation of dimension-6 effects thus far is a
poignant (albeit model-dependent) one that we leave for future investigation.

Our work is a comprehensive case study in exploiting the marriage between theoretical
insights on the S-matrix and experimental sensitivity to a specific class of dimension-
8 operators to gain unprecedented and robust sensitivity to heavy new physics beyond
the SM.
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A Covariance matrix for moment functions

In this appendix, we briefly derive the statistical covariance of a set of generic moment
functions calculated over an event sample. Consider a collection of N measured events
corresponding to a particular integrated luminosity, L, over which we would like to estimate
the “un-normalized” moment variable of a number of functions, fi,

‖fi‖ ≡
∫
dσ fi(dσ), (A.1)

where dσ represents the fully differential cross section and the integrals are performed
over kinematic phase space. By “un-normalized”, we mean that the quantities are not
divided by the total cross section, in which case they would correspond to estimates of the
expectation values of the fi(dσ). Instead, they the dimensions of a cross-section and are
intended as placeholders for the B0 and D0 observables considered in this work.

The total cross section, σ, and its variance, (δσ)2, are estimated by

σ =
∫
dσ ' N

L
, (δσ)2 = N

L2 . (A.2)

To estimate the covariance matrix of ‖fi‖’s, we assume that the sample can be divided into
a discrete set of classes with particular values of each function, fαi = {fα1 , fα2 , . . . , fαn }, and
an associated cross section, σa. The value of ‖fi‖ is then

‖fi‖ =
∑
α

σαf
α
i '

1
L

∑
α

Nαf
α
i . (A.3)

The source of statistical uncertainty is Poissonian and is associated to the number of events,
in each class, Nα: δNα =

√
Nα. The estimate of the covariance of ‖fi‖’s, Vij , can then be

propagated, taking the Nα’s to be uncorrelated.

Vij =
∑
α

∂‖fi‖
∂Nα

∂‖fj‖
∂Nα

δN2
α = 1

L2
∑
α

Nαf
α
i f

α
j

= 1
L
‖fifj‖ =

∫
dσ fi(dσ)fj(dσ)

L
.

(A.4)

Replaceing fi and fj with the correctly normalised spherical harmonic functions associated
to B0 and D0, Y 0

3 and Y 0
4 , we obtain the statistical covariance matrix in eq. (5.3).
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