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1 Overview

In studying gauge theories compactified on a circle, the holonomy along the latter

Pei
∫
S1 A (1.1)

often plays a central role in understanding the infrared nature of the theory. Take, for
instance, the confinement and de-confinement phase transition of pure Yang-Mills theory
in the finite temperature. The observable that discerns the confining phase is the vacuum
expectation value

〈trPei
∫ β

0 A〉 (1.2)

along the thermal circle; if the theory confines, this observable, written in the defining rep-
resentation of SU(N) has to vanish since a stand-alone quark cannot exist as a finite energy
state. The transition between the two phases is expected as we change the temperature
across a critical value.

We may attribute such behaviors to the temperature-dependent quantum effective
potential for the holonomy variable. In the confining phase, the lowest energy configuration
of the potential must be such that the eigenvalues of A along the circle are distributed
democratically along the holonomy circle so that its exponentiated values cancel one another.
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If the vacuum is not confining, on the other hand, the eigenvalues prefer to be typically
clustered around a single position, so that the exponentiated value would add up rather
than canceling one another.

Although the holonomy represents classically flat directions, the perturbative and
non-perturbative quantum effects would generally lift such degeneracy and favor particular
distribution of eigenvalues. This phenomenon of the holonomy variables acquiring quantum
effective potential persists with 4d N = 1 supersymmetry, where pure Yang-Mills theory is
expected to be confining again in low enough temperature. Demonstrating this scenario
analytically is one of the most coveted goals in theoretical physics.

On the other hand, one can also ask a simpler question of what happens if the circular
direction is not taken as a thermal circle but considered as a supersymmetric compactification.
Operationally, one would achieve this by demanding the periodic boundary condition on
fermions instead of the anti-periodic one associated with the thermal circle. The answer is
well-known [1]; the quantum effective superpotential emerges at a nonperturbative level [2],
and can be kept track of quite rigorously. In fact, this remains the best known demonstration
of the confinement on the space-time R3 × S1.

Generally, one may encounter more than one preferred holonomy vacua. One class of
4d object that shows this cleanly is the A-twisted partition function [3] for models with
non-anomalous U(1) R-symmetry; the latter symmetry is used to twist supercharge such
that supersymmetric partition function can be written for a spacetime manifold which is T 2

fibred over general Riemannian surface. In these classes of theories, the discrete vacua for
the T 2 holonomy demanded by the effective potential can be shown to be determined by a
certain modular function. When one of the two circles is taken to a small size, turning the
theory effectively to 3d N = 2, one finds these discrete solutions cluster at several values,
each of which gives an effective 3d supersymmetric theory [4].

We refer to this kind of phenomenon where interacting lower dimensional theories
emerge at certain preferred holonomy values as the holonomy saddle [5]. One place where
the holonomy saddle enters rather crucially is in the computation of the Witten index [6],
which, for 4d, is the same as the above A-twisted index with the simple spacetime, T 4. The
notion of the holonomy saddle enters physics in how the Witten index of a d dimensional
theory is expressible as a sum of several Witten indices of different d − 1 dimensional
theories. One hallmark of such holonomy saddles in the context of the Witten index is the
absence of decoupled U(1) factor in the zero radius limit in the reduced lower dimensional
theory [5, 7], since the latter’s free gaugino would kill the contribution to the bulk index.

With larger supersymmetries, on the other hand, the supersymmetric vacua can prove
to be continuously numerous. Take, for example, 4d N = 2 Seiberg-Witten theory [8, 9]
where a continuous set of superselection sectors are labeled by the Coulombic vacuum
expectation values. The Witten index no longer makes sense and the holonomy saddles
would take a little different meaning. Consider our main objective, i.e., 5d N = 1 theory
on a circle. If the holonomy along the circle takes a generic value and if the circle size is
infinitesimal, this would break the gauge symmetry to the Cartan at a scale 1/R5, with
all charged particles at such a mass scale, and one ends up with a product of free Abelian
theories as the effective 4d theories which are rather uninteresting.
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As such, we will extend the notion of the holonomy saddle for these higher supersym-
metric cases as those special corners of the holonomy torus where 5d Seiberg-Witten theory
reduces to non-Abelian and interacting 4d Seiberg-Witten theories. In general, the effective
4d Seiberg-Witten theory and its 5d origin need not share the same field content; one can
expect the former to form a subsector of the latter in general. The simplest example would
be 5d N = 1 SU(2) theories with fundamental flavors of light masses ∼ m � 1/R5. At
R5A5 ∼ 0, one finds 4d SU(2) theory with the same flavors, while at the opposite end
R5A5 ∼ σ3/2, one would find a pure SU(2) theory since there the fundamental quarks
would have acquired a large mass of order 1/R5 and decouple in the small radius limit [10].

In the context of the Witten index computation for gauged quantum mechanics, it
is known that pure Yang-Mills theory typically produces multiple holonomy saddles [5].
With gauge group G, distinct holonomy saddles are classified by the maximal non-Abelian
subgroups of G [5]. The classification originates from the Witten index counting and has
resolved an old puzzle [11, 12] on various D-brane bound state counting in the presence
of the orientifold [13]. As noted already, it is correlated to the absence of decoupled U(1)
in the small radius limit, so it remains relevant for our extended notion of the holonomy
saddles for 5d Seiberg-Witten theories on a circle. For the general Lie group, the maximal
non-Abelian subgroup may be constructed by cutting a single node from the affine Dynkin
diagram, so their variety for a given G goes like rG + 1 with rG = rank G. As such, there
are at least rG + 1 4d Seiberg-Witten theories that can be found in the small radius limit of
a single 5d pure G Seiberg-Witten theory.

SU(N), on the other hand, has only one type of maximal non-Abelian subgroup, namely
SU(N) itself. This does not mean a unique holonomy saddle, however. We would find
N = rSU(N) + 1 identical copies of such SU(N) holonomy saddles, evenly separated and
related by the left multiplications by the center ZN of SU(N) along the holonomy torus [5].
These copies would look identical to each other if we ignore how they are glued together in
the holonomy torus. If the SU(N) Chern-Simons level is turned off, this center symmetry
ZN remains intact, so there is another option of viewing the theory as SU(N)/ZN with
a single holonomy saddle. No local observable can detect a difference between two such
choices. If one chooses to keep all N saddles as distinct, the gauge volume becomes N -fold
larger, so we effectively multiply by N only to divide by N again at the end.1

With Chern-Simons level k, on the other hand, this latter option shrinks, ZN →
Zgcd(N,k), as we will see later more explicitly. Given these different global behaviors with
different k, it makes sense to associate the theory with the simply-connected SU(N) to
accommodate all these possibilities in a single framework, instead of minimizing down
to SU(N)/Zgcd(N,k) case by case. This universal viewpoint leads, for example, to the
description where 5d SU(N)0 is composed of a N -fold covering, each copy of which contains
a single 4d SU(N) in the small radius limit. In ref. [16], the authors took the opposite

1One should take care not to confuse the discussion here with what is commonly called “G/Γ theories”
in recent literature. The latter involves either 2-cycles in the spacetime along which Stiefel-Whitney classes
are invoked and the resulting topologically nontrivial bundles are summed over in the path integral [14], or
certain external objects, which cannot be built as a coherent object from the local fields, are inserted in the
path integral [15].

– 3 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
8

viewpoint for SU(2)0 where a division by Z2 halved the holonomy torus. More generally, the
Chern-Simons level controls how these N 4d saddles are glued together along the holonomy
torus to form the full 5d Seiberg-Witten geometry.

One motivation for studying the 5d Seiberg-Witten theory on a small circle is the
5d BPS quiver [17]. This gauged quantum mechanics governs the BPS spectrum of such
compactified 5d theory and generalizes the more familiar 4d BPS quivers. This constructive
approach is especially suitable for the small radius limit since here the magnetic and the
electric BPS objects enter on equal footing; recall how from a 5d viewpoint the magnetic
objects are string-like while electric ones are point-like and only upon compactification on a
circle the two types of charges can be both realized via particle-like states. The 5d nature
adds two additional conserved charges, namely the Pontryagin charge and the KK charge,
so the 5d BPS quiver picks up two more nodes, relative to its 4d cousin. The resulting
5d BPS quiver is in a sense more immediate than its 4d cousins, from the viewpoint of
geometrical engineering, as it happens to be the single D0 probe theory of the relevant local
Calabi-Yau. On the other hand, the question of how such a 5d BPS quiver is derived from
a pure field theory perspective has been unavailable.

One objective of this note is by understanding how multiple 4d Seiberg-Witten theories
are embedded in a single 5d Seiberg-Witten theory. Each 4d limit, i.e., each holonomy
saddle, comes with its own 4d BPS quivers, yet, in trying to smoothly interpolate one
from another, we find that the nodes of a pair of such 4d BPS quiver cannot be generally
identified. Rather, one finds some of the 4d BPS dyons in one saddle pick up a KK charge
and Pontryagin charges in the next holonomy saddle. This gives us a natural way to add
two mode nodes to a given 4d BPS quiver, as needed to complete the 5d BPS quiver.

Of course, the precise map and thus the precise shape of the 5d BPS quiver depends
on how one moves from one saddle to the next, and we identify the path that constructs
the canonical, via the toric diagram, D0 probe theory this way. Iterate routes would build
different shapes of the quiver, related to the canonical one by quiver mutations.

This note is organized as follows. In section 2, we study the toric geometry that builds
the local Calabi-Yau for SU(N)k. The spectral curve for the Seiberg-Witten geometry, for
circle-compactified theories, follows immediately and we also note a subtlety in how we
deal with the meromorphic differential. Given these data, we dote on special corners of the
holonomy torus that generates 4d Seiberg-Witten theories in the small radius limit and
point out how k-dependence enters the relations among these holonomy saddles.

In section 3, we specialize in SU(2) theories and keep track of how various BPS states
transform as we follow them continuously from one saddle to the next. As is well known,
the BPS spectra of 4d SU(2) Seiberg-Witten theory can be built up from a pair of states,
a monopole and a dyon in their simplest form. As we move from one 4d saddle to the
other, we will find that these basis states pick up the KK charge and the instanton charge
appropriately. Stated backward this means that the usual pair of a monopole and a dyon in
the other saddle would come from BPS states in the first saddle that are equipped with the
instanton charge and the KK charge in some specific manner. These two extra BPS states
in the first saddle, together with the canonical 4d BPS states, span a quiver diagram, which
precisely reproduces the 5d BPS quiver previously obtained from the D0 probe dynamics.
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In this process, the discrete theta angle enters how the two 4d saddles are glued together
for the full 5d Seiberg-Witten geometry, which in turn affects the 5d BPS quiver thus
constructed, and results in the well-known D0 probe dynamics for F0 and F1 geometry,
respectively. With the observation that the discrete theta angle of SU(2) theory is funda-
mentally the same thing as the Chern-Simons level of SU(N > 2) theories, this exercise lift
to SU(3)k quite naturally. We devote section 4 to the latter exercise and comment on the
symmetry of the quiver diagram in section 5. In the appendix, we outline a previous related
work in ref. [18], which in effect performed a monodromy analysis that led to a mutated
version of the 5d BPS quiver.

2 5d Seiberg-Witten and holonomy saddles

We will be dealing with SU(2) and SU(3) theories mostly in this note. There is one
well-known topological difference between these two classes in that SU(3) theory admits
non-Abelian Chern-Simons level whereas SU(2) instead allows discrete θ angle associated
with π4(SU(2)) = Z2 [19]. The latter cannot be written as a local term in the effective
action but its effect manifests in the spectrum, such as how electric charges are conferred
to the instanton soliton.

However, these two types of topological couplings may be considered on equal footing,
as can be seen by realizing that both can be generated by coupling a fundamental hyper and
taking its mass m to infinite. Integrating out a massive hypermultiplet actually generates
an eta invariant

∆Seff ∼ π η(A), (2.1)

whose local part, i.e. the part that depends on A continuously is the Chern-Simons action [20,
21]. The precise coefficient depends on how we take the Pauli-Villars regulator field, but
the rule of thumb is that each hypermultiplet in the fundamental representation generates
half of the above, which translates to half of the unit-quantized Chern-Simons term as well.
For SU(2) = Sp(1) and in fact for Sp(k) more generally, this continuous part of the eta
invariant is absent, leaving behind the global and quantized part, rendering its would-be
Chern-Simons coefficient to be Z2 valued; the same can be viewed as the discrete θ angle
for Sp(k) theory. It is therefore not surprising that, for many purposes, the roles played by
the Chern-Simons level for SU(N > 2) would be emulated by the discrete theta angle of
SU(2) and vice versa.

The main question we wish to address in this note is exactly how these topological 5d
terms, with no analog in 4d, manifest as we compactify 5d theory on a small circle. If we
take the naive dimensional reduction of a 5d Seiberg-Witten theory with the gauge group
G, one should expect again a 4d G Seiberg-Witten theory. However, the point with the
holonomy saddles was that there is in general more than one possible 4d Seiberg-Witten
theory which appears at the infrared end if we take a more careful treatment and view
entire the holonomy torus.

On the other hand, as we already mentioned in the first section, a unique aspect of
pure SU(N) theories is that all holonomy saddles would carry the same gauge group SU(N),
related by the center-shift and thus locally indistinguishable. Indeed we will in this section
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see how this comes about by taking a close look at the spectral curves and the resulting
Seiberg-Witten geometries. We will find N holonomy saddles which are locally identical
to one another while these inherently 5d topologically couplings enter this picture in how
these identical copies of 4d SU(N) theories would glue together to form the genuine 5d
theory. We will deal with these questions in more depth in later sections, a byproduct of
which is the 5d BPS quivers.

2.1 The spectral curves from the toric data

Let us briefly review the 5d N = 1 supersymmetric gauge theory [22–30] and we refer
to [16] for various conventions. The Coulomb phase of the theory is parametrized by the
expectation value of a real scalar field φ in the vector multiplet. On a generic point in the
Coulomb phase, the gauge group G is broken to its Cartan part U(1)rG , where rG is the
rank of the group G. The dynamics on the Coulomb phase are encoded in the so-called
Intriligator-Morrison-Seiberg (IMS) prepotential [26], which is one-loop exact.

It is convenient to geometrically engineer the 5d theory using M-theory compactified
on a local Calabi-Yau 3-fold X̂, which is a crepant resolution of the singular Calabi-Yau
3-fold X [25, 26, 30]. The resolved geometry contains various 4-cycles (also called divisors)
and 2-cycles. The rank of the gauge group rG equals the number of the compact divisors
Si(i = 1, · · · , rG) and the M5-branes wrapped on Si give the 5d monopole strings charged
under the U(1)i. On the other hand, M2-branes wrapped on the compact 2-cycle C give
BPS particles, and the electric charges under U(1)i are given by the intersection numbers
C · Si inside the Calabi-Yau X̂.

We will focus on the toric local Calabi-Yau 3-folds whose geometries are encoded
in toric diagrams. For example, the toric Calabi-Yau 3-fold X̂ that gives rise to 5d
pure SU(N) theories is shown in figure 1, which is a subset of 2-dimensional lattice Z2.
Each node represents a divisor in X̂ and among them the external nodes D0, DN , DA, DB

correspond to non-compact divisors and the internal nodes S1, S2, · · · , SN−1 correspond to
compact divisors. The internal lines CAi, CBi and Ci are compact 2-cycles and they are the
intersections of the two divisors associated with the two endpoints of the line.

After compactification on a circle with radius R5 the prepotential will receive contribu-
tions from the membrane instantons and the theory becomes much more complicated [25, 31].
Also, with the Coulomb vev in the strongly coupled region, which would be below the
KK-scale 1/2πR5, the membrane instanton sum is divergent and must be resumed. One
way to probe such a strongly coupled region is to use mirror symmetry, mapping the type
IIA string theory compactified on the Calabi-Yau 3-fold X̂ to a type IIB string theory
compactified on the mirror Calabi-Yau 3-fold X̂ ′.

The mirror Calabi-Yau 3-fold [32, 33] X̂ ′ is given by a hypersurface in C2 × (C∗)2 with
the equation [18]

X̂ ′ =
{
v1v2 + P (t1, t2) = 0 | (v1, v2) ∈ C, (t1, t2) ∈ (C∗)2

}
, (2.2)

where P (t1, t2) is a polynomial which can be read directly from the toric diagram

P (t1, t2) =
∑
m∈Γ0

cmt
xm
1 tym2 , (2.3)
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Figure 1. The toric diagram for pure SU(N) theory.

and the sum is over all nodes Γ0 ⊂ Z2 in the toric diagram with coordinates (xm, ym).
The coefficients cm parametrize the complex structure of the mirror Calabi-Yau subject to
the redundancy

P (t1, t2) ∼ s0P (s1t1, s2t2). (s0, s1, s2 ∈ C∗) (2.4)

Those complex structure parameters of the mirror Calabi-Yau 3-fold X̂ ′ are related to the
K̈ahler structure parameters of X̂ via the mirror map, as usual.

Given a curve C in X̂, the complex volume is given by

tC =
∫
C

(B + iJ), (2.5)

here B is the anti-symmetric 2-form in IIA theory and J is the Kähler form of X̂. On the
other hand, the mirror parameter zC is given by

zC =
∏
m∈Γ0

(cm)C·Dm , (2.6)

where C ·Dm is the intersection number between 2-cycle C with the divisor Dm represented
by each node.

The mirror map associates tC and zC such that in the asymptotic region of the Kähler
moduli space (large volume limit) one has

tC ≈
1

2πi log (zC) +O (zC) . (2.7)

The spectral curve Σ is defined by the polynomial P (t1, t2) as

Σ = {P (t1, t2) = 0} ∈ (C∗)2, (2.8)

– 7 –
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Figure 2. The spectral curve Σ for SU(2)0 theory. The M5-brane is wrapping the spectral curve Σ.
The W-boson and instanton particle are M2-branes that end on a pair of 1-cycles on the spectral
curve as shown in the figure. In the 5d limit, the circular direction of the spectral curve will close
and it becomes the brane web for SU(2)0 theory.

and the periods of the holomorphic 3-form on X̂ ′ can be reduced to an integral along the
1-cycles on the spectral curve Σ

Πγ =
∫
γ
λSW, (2.9)

which gives the central charges of various BPS states, where the Seiberg-Witten differential
λSW obeys

dλSW = 1
i(2π)2R5

dt1
t1
∧ dt2
t2
. (2.10)

As usual, λSW is itself ambiguous and here this ambiguity goes a little beyond the one we
are familiar with in the 4d setting.

For this, it is useful to recall yet another construction, which relies on M5-brane [34].
Pure Yang-Mills may be constructed as a worldvolume dynamics on an M5-brane in flat
spacetime spanned by X0,··· ,9 and the M-theory direction X11, compactified on two circles,
say, along X5 and X11 of radii RM,5 and RM,11 respectively. Parameterizing t1, t2 as

t1 = e
X6+iX11
RM,11 , t2 = e

X4+iX5
RM,5 , (2.11)

a single M5-brane wrapped the above spectral curve P (t1, t1) = 0 reproduces the Seiberg-
Witten theory.2 See figure 2 for an illustration for SU(2)0 theory. This realization can

2IIB gs and the compactification radius R5 are related to this M5 brane side as, gs = RM,11/RM,5 and
R5 = α′/RM,5, such that

t1 = e2πR5TD1(X6+iX11), t2 = e2πR5TF 1(X4+iX5),

where TD1/TF1 is the tension of D/F-string. Also, note that R5 ∼ l3P /(RM,5RM,11) with the M-theory
Planck length lP .

– 8 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
8

be connected to the above local Calabi-Yau construction via IIB (p, q) 5-brane web [27]
compactified on a circle, as is well known.

The BPS states are associated with M2-branes that end on the M5-brane and their
central charges can be written as integrals of the holomorphic 2-form pulled back onto the
M2-brane [35, 36]

ZBPS = −iRM,5RM,11TM2

∫
M2

dt1
t1
∧ dt2
t2

(2.12)

with the integrand being part of the three Kähler forms

Re
(
dt1
t1
∧ dt2
t2

)
, Im

(
dt1
t1
∧ dt2
t2

)
,

i

2

(
dt1
t1
∧ dt̄1
t̄1

+ dt2
t2
∧ dt̄2
t̄2

)
(2.13)

for the underlying hyper-Kähler structure; for adding flavors, we allow the X4,5,6,11 part of
the spacetime to be curved with Taub-NUT singularities of collapsing x11 circle.

Note how the central charge depends only on the homology class of the boundary
1-cycle. Both t1,2 live in C∗ whose two phase variables span two 1-cycles, independent of
each other. Decomposing

∂M2 =
∑
A

γA (2.14)

with γA being the connected components of the boundary, the Stoke’s theorem gives

ZBPS =
∑∫

γA

λ
(A)
SW, (2.15)

where the differential λ(A)
SW is constrained to be tangent to γA. If γA carries a winding

number along the phase of t1 but involves no winding along that of t2, we must use
λ

(A)
SW ∼ log(t2)dt1/t1, and vice versa. For the more familiar 4d Seiberg-Witten theory, in

contrast, one universal version λ ∼ v dt/t worked for all BPS states. In the 5d setting,
therefore, individual λ(A)

SW to be used depends on the boundary component; this subtle
aspect will play an important role in the later sections of this note.

In the following, we will mainly focus on the Coulomb phase of the 5d SU(N)k theory
with Chern-Simons level 0 ≤ k ≤ N . The Coulomb moduli space for SU(N) theory is
parametrized by the expectation values of the real adjoint scalar Φ

Φ = diag{φ1, φ2, · · · , φN},
N∑
a=1

φa = 0, (2.16)

where one choose a Weyl chamber of SU(N) such that φ1 > φ2 > · · · > φN . The Cartan
generators {Ha} are the standard choices which read

(Ha)bc = δa,bδa,c − δa+1,bδa+1,c, a = 1, · · · , N − 1. (2.17)

In the following we will take

φa = ϕa − ϕa−1, a = 1, · · · , N, with ϕ0 = ϕN = 0, (2.18)

where {ϕa} are the analogue of the 5d central charges under the Cartan subgroup U(1)N−1.

– 9 –
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The spectral curve for SU(N) theory can be read according to the rules in (2.3)

PSU(N)k = fk(λ)
(
tm2 t1 + tn2 t

−1
1

)
+
(
tN2 + U1t

N−1
2 + U2t

N−2
2 + · · ·+ UN−1t2 + 1

)
, (2.19)

which describes the 5d SU(N) theory with Chern-Simons level k compactified on a circle.
The level k is given by [30]

k = m+ n−N, (0 ≤ m,n ≤ N) (2.20)

where m and n are the y-coordinates of the nodes Dx and Dy in the toric diagram. The
factor fk(λ) is,

fk(λ) =


1

λ−
1
2 +λ

1
2

(k = ±N)
√
λ (others)

(2.21)

which can be read from the asymptotic behaviour t2 → 0,∞ of the brane web. The bare 5d
instanton mass µ0 ≡ 8π2/g2

5 is associated to λ as

λ = e−2πR5µ0 , (2.22)

and g5 is the 5d bare coupling. In particular, when |λ| � 1 and the effective 4d bare
coupling is small, one can set fk(λ) =

√
λ for all k. The other parameters {Ua} are related

to the 5d Coulomb moduli such that in the asymptotic region of the Kähler moduli space
one has

Ua ≈ e−2πR5aa , (2.23)

where Re(aa) = ϕa are the complex versions of ϕa.
These spectral curves admit, collectively, a symmetry generated by Zgcd(k,N)

Zgcd(k,N) =
{

1, gl, g2l, · · · , g(gcd(k,N)−1)l
}
, (2.24)

with l ≡ N/gcd(k,N). Consider the ZN transformation g which acts on the moduli

Ua
g−→ Uae

2πi a
N , (a = 1, · · · , N − 1) (2.25)

and combined with a redefinition of t1, t2 which reads

t2
g−→ t2e

2πi
N , t1

g−→ t1e
n
N

2πi, (2.26)

the polynomial P (t1, t2) becomes

Pg(t1, t2) =
√
λ
(
e
k
N

2πitm2 t1 + tn2 t
−1
1

)
+
(
tN2 + U1t

N−1
2 + · · ·+ UN−1t2 + 1

)
. (2.27)

The first term ∼ tm2 t1 comes with an addition phase factor e kN 2πi under the transformation,
where k is the Chern-Simons level and we have used the relation k = m + n − N . As
such, after l repetitions of g, the phase cancels out. In the special case k = 0, l = 1 and
the group ZN is nothing but the center of SU(N) generated by g. This Zgcd(k,N) shuffles
different holonomy saddles on the Coulomb moduli space among themselves, by the left
multiplication on U , whose phase parts are the R5 holonomies

Arg(Ua) ∼
∫
S1
Aa ≡ ha . (2.28)
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Figure 3. The toric diagrams for SU(2)0 (left) and SU(2)π (right) theories. Note how the diagrams
have the same general shape as SU(N)k of figure 1. This can be traced to the fact that the discrete
theta angle for n = 2 is essentially the same thing as k mod 2 since the relevant eta invariant takes
discrete values.

2.2 4d holonomy saddles

As we have discussed, we use the word “holonomy saddle” in the current context to mean the
4d corners of this continuous Seiberg-Witten moduli space where the resulting 4d theories
yield interacting non-Abelian Seiberg-Witten theories. For example, for F0 theory one has
two identical 4d Seiberg-Witten limits corresponding to R5〈A5〉 = 0 and R5〈A5〉 = σ3/2,
and they are related by a Z2 symmetry described above. In general, for SU(N) theory
one has N holonomy saddles, and if Chern-Simons level k is zero we have a ZN symmetry
relating such saddles. For non-zero k the local 4d θ-angle of the two adjacent saddles will
differ by a shift of 2πk/N which will be shown in the following examples. Therefore the ZN
symmetry is broken to Zgcd(k,N) in these cases.

Recall two kinds of SU(2) theories differing by the discrete θ-angle: SU(2)0 and SU(2)π.
They are separately engineered by compactfying M-theory on F0 and F1 geometries whose
toric diagrams can be read directly from 1. Their spectral curves are, respectively

PF0(t1, t2) =
√
λ

(
t2
t1

+ t1t2

)
+
(
t22 + Ut2 + 1

)
= 0, (2.29)

for F0 theory and

PF1(t1, t2) =
√
λ

(
t2
t1

+ t1t
2
2

)
+
(
t22 + Ut2 + 1

)
= 0, (2.30)

for F1 theory. The F0 curve admits the above Z2 “symmetry”, involving U → −U .
There are two holonomy saddles labeled by h = 0, 1 on the U -plane located at U =

(−1)h2. One may consider the local expansion

U = (−1)h
(
−2 + (2πR5)2 u

)
, t2 = (−1)h (−1 + (2πR5) z) , (2.31)

where and the two polynomials PF0(t1, t2) and PF1(t1, t2) can be reduced to,

PF0 (t1, t2) =
√
λ (−1)h

(
t−1
1 + t1 +O (2πR5)

)
+ (2πR5)2

(
z2 − u+O (2πR5)

)
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PF1 (t1, t2) =
√
λ
(
(−1)h t−1

1 − t1 +O (2πR5)
)

+ (2πR5)2
(
z2 − u+O (2πR5)

)
. (2.32)

The goal is to rewrite the 5d polynomials P as

P (t1, t2, U ;λ) = (2πR5)2 P4d (t, z, u; Λ4d) +O
(
(2πR5)3

)
(2.33)

in the small R5 limit, for some choice of t and a 4d QCD scale Λ4d.
We introduce t variable

t1 = (2πR5)2t

(−1)h
√
λ
, (2.34)

for F0, while for F1-theory

t1 = −(2πR5)2t√
λ

, (2.35)

Then with the complex QCD scale Λk,h’s

Λ4
k,h = (−1)khΛ4 , λ = (2πR5Λ)4, (2.36)

where k = 0, 1 labels SU(2)0 and SU(2)π theories. We fix Λk,h and send the compactification
radius R5 to zero to obtain

PSU(2)4d,k,h =
(

Λ4
k,h

t
+ t

)
+ z2 − u, (2.37)

so that the 4d Seiberg-Witten curve becomes PSU(2)4d,k,h = 0.
Recall the QCD scale Λk,h is related to the local θ-angle of the 4d SU(2) theory via the

β-function as

(Λk,h)4 ∼ 1
(R5)4 e

− 8π2
g2
4d

+iθk,h
, (2.38)

given how 1/R5 naturally plays the role of the UV cut-off in the 4d sense. Therefore for
SU(2)0 theory the local 4d theories at the two holonomy saddles have the same θ-angle
reflecting the Z2 symmetry. On the contrary for SU(2)π theory the θ-angle at the two
saddles differ by π and the Z2 symmetry is lost.3

For pure SU(3)k, the toric diagrams can also be found in figure 1, and the spectral
curve is

PSU(3)k = fk(λ)
(
tm2
t1

+ t1t
n
2

)
+
(
t32 + U1t

2
2 + U2t2 + 1

)
= 0, (2.39)

where the level k is given by k = m + n − 3. As discussed before, SU(3)0 and SU(3)3
theories have a Z3 symmetry which acts as U1 → U1e

2πi
3 , U2 → U2e

4πi
3 . There are three

holonomy saddles located at

U1 = 3e
2πi
3 h, U2 = 3e

4πi
3 h. (2.40)

labeled by h = 0, 1, 2
3The overall and continuous phase of Λ arises from a (parameter) superpartner of λ that becomes available

upon the compactification. We will ignore this angle as it plays no particular role in our discussion.
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At each holonomy saddle, we can reduce the spectral curve to the 4d SU(3) Seiberg-
Witten curve via the following local expansion,

U1 = e
2πi
3 h
(
3 + (2πR5)2u− (2πR5)3v/2

)
(2.41)

U2 = e
4πi
3 h
(
3 + (2πR5)2u+ (2πR5)3v/2

)
(2.42)

t2 = e
2πi
3 h (−1 + (2πR5) z) (2.43)

such that the polynomial PSU(3)k can be expanded as

PSU(3)k,h = (2πR5)3
((

Λ6
k,h

t
+ t

)
+ z3 − uz − v

)
+O

(
(2πR5)4

)
, (2.44)

in small R5 as before, with

t1 = t

(−1)ne 2πinh
3
√
λ
, (2.45)

and
Λ6
k,h = (−1)k+1e

2πikh
3 Λ6 , λ = (2πR5Λ)6 , (2.46)

in line with the SU(2) examples earlier.
This results in 4d spectral curve PSU(3)4d,k,h = 0 with

PSU(3)4d,k,h =
(

Λ6
k,h

t
+ t

)
+ z3 − uz − v . (2.47)

Again, the QCD scale Λk,h is related to the local θ-angle of the 4d SU(3) theory via the
β-function as

(Λk,h)6 ∼ 1
(R5)5 e

− 8π2
g2
4d

+iθk,h
. (2.48)

For k = 0, 3, the local θ-angles at the three holonomy saddles are the same, reflecting the
Z3 symmetry. For k = 1, 2, the local θ-angles between the two adjacent saddles differ by
±2π/3 and the Z3 symmetry is lost.

3 Gluing 4d SU(2) Seiberg-Witten saddles

In this section, we will derive the quiver diagrams for 5d SU(2) theories with the help of the
spectral curve. We begin with the simplest rank one SU(2)0 theory and discuss the procedure
of the construction in much detail, and move on to SU(2)π and highlight the difference.
What we observe in this minimal example should apply to SU(3)k straightforwardly, again
because the discrete theta angle θ of SU(2) plays the role of k 6= 0 of SU(N > 2) for many
purposes. A detailed discussion of SU(3)k will follow in section 4.
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Figure 4. The path in the U -plane connecting two observers O and O′ probing the two holonomy
saddles for SU(2)0 theory.

3.1 SU(2)0

The spectral curve of F0-theory is given by (2.29)
√
λ

(
t2
t1

+ t1t2

)
+
(
t22 + Ut2 + 1

)
= 0, (3.1)

which is also geometrically depicted in figure 2. Let’s work on the t2 plane, by solving t1 as

t1 =
−
(
1 + Ut2 + t22

)
±
√(

1 + Ut2 + t22
)2 − 4λt22

2t2
√
λ

. (3.2)

We have two sheets of t2-plane depending on the sign factor, connected via the two square-
root branch cuts on the t2-plane determined by the zero loci of the discriminant. In the
following, we choose the plus sign in the solution of t1 which amounts to work with the left
half of the spectral curve depicted in figure 2.

There are two holonomy saddles, located near U = ±2 on the U -plane as shown
in figure 4 and around each saddle there is a pair of singularities. We will stick to the
convention in appendix A and call the half plane Re(U) < 0 region B and Re(U) > 0 region
A. The singularities at the two regions are also denoted as UB± and UA±. We will label
the two locations O and O′ sitting at the real axis on the U -plane moduli space as shown
in figure 4, symmetric under U → −U . Both of them would think the local theory is the 4d
SU(2) Seiberg-Witten theory.

The Seiberg-Witten differential λSW is given by (2.10)

dλSW = 1
i(2π)2R5

dt1
t1
∧ dt2
t2
, (3.3)

The normalization factor is such that it will reduce to the 4d λSW correctly at each holonomy
saddle. As pointed out in the previous section, in 5d Seiberg-Witten, λSW cannot be chosen
universally but depends on the M2-brane configuration, or more precisely on the topology
of each boundary component thereof. From (3.3) one finds λSW can be written as a linear
combination in general

i(2π)2R5λSW = c log t1
dt2
t2
− (1− c) log t2

dt1
t1
, (3.4)

For example, for the W-boson one should use i(2π)2R5λSW = −(log t2)dt1/t1 and for the
instanton particles i(2π)2R5λSW = (log t1)dt2/t2.
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Figure 5. The local branch cuts and choices of 1-cycles on t2-plane for the observers O and O′.

The BPS states are represented by the integral of a carefully chosen λSW along the
1-cycles on the spectral curve and the 1-cycles will also deform as the observer moves on the
U -plane moduli space. Take the λSW relevant for the W-boson. Near the two saddles we
can rewrite t1, t2, U, λ in terms of the local 4d parameters t, z, u,Λ following the discussion
before and one finds

λSW ≈
1

2πi
zdt

t
(At U = −2), λSW ≈

1
2πi

zdt

t
± dt

4πR5t
(At U = 2). (3.5)

Near U = −2 the Seiberg-Witten differential λSW reduce to exactly the 4d λSW for a pure
SU(2) Seiberg-Witten theory. However, near the other saddle U = 2 there is an additional
piece given by a total derivative dt/(4πR5t) and for any 1-cycle carrying a winding number
of t, it will contribute half the KK-charge.4 This term comes from the phase of log t2 and
the sign factor depends on how you move to U = 2 from U = −2. We will fix the sign later
in an explicit example.

It is also important to note that there are two other singularities of λSW at t2 = 0,∞
on the t2 plane. They correspond to the two asymptotic 1-cycles drawn in figure 2 and
contribute to the instanton charge. To evaluate them one needs to choose λSW correctly
and it turns out that each 1-cycle will contribute half of the instanton central charge µ0/2.
Together with how KK charge contribution arises, as described above, this gives us the
basic mechanism of how, starting with 4d BPS objects, we end up constructing 5d BPS
states simply by moving from one saddle to the other. By doing things backward, i.e., by
considering 4d BPS states in the other saddle and bringing them back to the first saddle,
we end up collecting all 4 BPS states in the first saddle, which will eventually span the 5d
BPS quiver of a pure SU(2) theory.

Note that with positive λ, the branch cuts on t2-plane will lie on the real axis and are
drawn in figure 5 for observers O and O′. Let’s first consider the saddle U = −2 probed
by O. We can choose a standard basis of 1-cycles on the t2-plane as A1, A2, B12 shown in

4This additional piece cannot be avoided. If one tries to eliminate it by shifting λSW with the same
total derivative, it will then show up in the 4d λSW at U = −2 instead. This term is responsible for the
KK-charge associated with one of the quiver nodes in the 5d quiver diagram.
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Figure 6. The deformations of branch cuts on the spectral curve (t2-plane) from O to O′ on the
U -plane for SU(2)0 theory.

the figure. Starting at O, if we approach the two singularities UB± in figure 4 form the
second quadrant, one will find the B12 collapse at UB+ and −B12 + A1 − A2 collapse at
UB−. Therefore these two contours correspond to the (1, 0) monopole and (−1, 2) dyon of
the local 4d Seiberg-Witten theory and are represented by the left two nodes of the first
quiver diagram in figure 7.

We also need to find the states represented by the other two nodes. Apparently, they
should come from the other holonomy saddle probing by O′ where the branch cuts and
the choices of 1-cycles A′1, A′2, B′12 are shown in the second diagram in figure 4. However,
the quiver diagram is drawn at a specific point on the moduli space. That means one of
the observers, let’s say observer O′, must move to the other observer O and combine their
local 4d quivers to form the 5d quiver. In order to do so, we will connect the two holonomy
saddles probing by O and O′ on the U -plane in a symmetric way via a path through the
origin depicted in figure 4.

The contour for one of the remaining two nodes is the blue contour B̃21 shown in
figure 5 which encloses the origin twice.5 The residue of λSW at the origin contributes to
half the instanton charge, therefore this state must carry a single instanton charge. If we
denote the solid contour circling the origin O only (counter-clockwisely) as CO, then B̃21 is
decomposed as B̃21 = −B12 +A1 +A2 + 2CO.

Let us explain why this complicated contour B̃21 is special. Consider moving from O to
O′ along the path described in figure 4, the spectral curve will also deform since it depends
on the moduli U . To be more explicit, we trace the deformations of the two branch cuts
on the spectral curve and depict them in figure 6. Initially, for O on the U -plane, the two

5More precisely, the contours enclose the origin contains one contour (solid line) circling the origin on the
first t2-sheet, and another contour (dashed line) circling the origin on the second t2-sheet reversely. Their
contributions are actually the same.
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branch cuts are colored in red and they will rotate following the dashed line to reach the
blue branch cuts at the other side, which corresponds to O′ on the U -plane. The A-cycles
transform as

A1 → A′2, A2 → A′1, (3.6)

where A′1, A′2 are shown in the second diagram in figure 5.
Similarly, if we trace the blue contour B̃21 in the first diagram in figure 5, we will find

it becomes the simple blue contour B′12 in the second diagram, namely

B̃21 → B′12. (3.7)

On the other hand, the red contour B12 will transform into the red contour B̃′21 which
becomes complicated instead. The local Seiberg-Witten differential at U = 2 is shifted by a
total differential ±dt/(4πR5t) as discussed in (3.5). However, the B′12 cycle does not carry
any winding numbers of t so this contour corresponds to the (1, 0) monopole of the second
local 4d Seiberg-Witten theory probed by O′.

Now we can simply write down the contour for the fourth node based on the previous
discussion. This must be a complicated contour that becomes simple when we move to O′
and we expect it to be the (−1, 2) dyon of the second local 4d Seiberg-Witten theory at O′.
Therefore the fourth contour should be −B̃21 −A1 +A2 such that if we push the contour
to O′ by applying the transformation (3.6) and (3.7) we get −B′12 + A′1 − A′2, which is
associated to the (−1, 2) dyon of the second local 4d Seiberg-Witten theory at O′. Moreover,
the A′-cycles carry the winding number of t, therefore the total differential ±dt/(4πR5t)
will contribute.

The sign is determined in the following way. The 5D Seiberg-Witten differential is given
by λSW = −(4π2R5i)−1dt1/t1 log t2 before reduction on the holonomy saddles. The t2-plane
is depicted in figure 6 and A1, A2 cycles rotate to A′2, A′1 in different way as shown in the
figure. During the rotation the log t2 will pick up a phase −πi for A′1 and +πi for A′2 and
the total differential is +dt/(4πR5t) for A′1 and −dt/(4πR5t) for A′2. Therefore the contour
−B′12 +A′1−A′2 actually gives a (−1, 2) dyon with an addition KK-charge i/R5. In order to
get exactly the (−1, 2) dyon state we should start with the contour B̃21 −A1 +A2 − [KK]
for the fourth node, where [KK] represents a contribution of KK-charge i/R5.

As a summary, with the base point located at O we have four 1-cycles represented as
B12, −B12 +A1−A2, B̃12 and −B̃12−A1 +A2− [KK]. Here B̃12 can also be decomposed as

B̃21 = −B12 +A1 +A2 + 2CO. (3.8)

Actually, the combination of A1 and A2 is trivial due to the following reason. The contour
enclosing A1 and A2 is equivalent to the reversed contour enclosing the origin t2 = 0 and
the infinity point t2 → ∞. One can check they cancel with each other and therefore the
integral of λSW along A1 +A2 is zero. One possible charge assignments for these four BPS
states at base point O are

• B12: a monopole of charge (1, 0, 0, 0)

• −B12 +A1 −A2: a dyon of charge (−1, 2, 0, 0)
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Figure 7. The quiver diagrams for 5d SU(2)0 theory (left) and SU(2)π theory (right).

• −B12 + 2CO: an anti-monopole of charge (−1, 0, 0, 1), carrying a unit of instanton
charge

• B12 −A1 +A2 − 2CO − [KK]: a dyon of charge (1,−2,−1,−1), carrying −1-unit of
both KK and instanton charge

Moreover, the intersection numbers between the 1-cycles are chosen to be

A1#B12 = B12#A2 = 1, (3.9)

such that it is consistent with the Dirac pairing of the charges. Therefore we reproduce the
5d quiver diagram given by the left diagram in figure 7 [17].

3.2 SU(2)π
With the above SU(2)0 example, the strategy is clear: we construct two local 4d quivers at
two saddles symmetrically as some contours on the t2-plane, and then pull the contours at
the second saddle back to the first saddle along a path on the moduli space. We will apply
this procedure to SU(2)π.

For F1 theory the spectral curve is given by (2.30) as

PF1(t1, t2) =
√
λ

(
t2
t1

+ t1t
2
2

)
+
(
t22 + Ut2 + 1

)
= 0, (3.10)

which does not possess the Z2 symmetry. Without loss of generality, we will adjust the
phase of λ such that the two singularities on the U -plane at the first holonomy saddle
U = −2 are lying on the real axis, just like that in figure 4 for SU(2)0 theory. Then the
other two singularities at the second holonomy saddle U = 2 in figure 4 are rotated by 90
degree which is sketched in figure 8.

Following the previous discussion, let’s consider the two observers O and O′ as shown
in figure 8 and their local geometries are the same. Then we can follow the path described
in figure 4 and trace the transformation of the spectral curves. There is a complication for
F1-theory: the branch cuts on the spectral curve for O′ are no longer the blue cuts given in
figure 6. This can be seen as follows. The local 4d curve is written as

PSU(2)4d =
(

Λ4

t
+ t

)
+ z2 − u = 0, (3.11)
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Figure 8. The path in the U -plane connecting two observers O and O′ probing the two holonomy
saddles for SU(2)π theory.

Figure 9. The transformations of branch cuts of the t2-plane following the path from OB to OA
on the U -plane for SU(2)π theory.

where Λ4 is proportional to eiθ and θ is the 4d θ-angle. Shifting the θ-angle by ∆ is amount
to multiplying Λ4 by ei∆. It can be compensated by the following transformation

t→ te
i∆
2 , z → ze

i∆
4 , u→ ue

i∆
2 , (3.12)

which will bring the curve back to its original form. For the second holonomy saddle, the
local θ-angle is shifted by ∆ = π as discussed before so that the local u-plane is rotated
by 90-degree which gives vertical branch cuts in figure 8 connecting the UA+ and UA−.
Further, the two branch cuts on the spectral curve (parametrized by z locally) will rotate a
45-degree corresponding to the two slanted blue cuts in figure 9. The dash lines show how
the branch cuts transform when we follow the path depicted in figure 8. Since the local
theories at O and O′ are totally the same, one may similarly choose the 1-cycles at O′ as
shown in figure 10.

With the help of figure 9 we can determine the 5d quiver diagram straightforwardly
as we did in the SU(2)0 case. We have two 4d theories located at O and O′. For both of
them the local quivers consist two nodes representing the (1, 0)-monopole and (−1, 2)-dyon,
which are further associated with the contours B12 and −B12 +A1 −A2 at O or B′12 and
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Figure 10. The choices of 1-cycles for SU(2)π theory at the second holonomy saddle.

Figure 11. The pullback of the contours B′12 (left) and −B′12 +A′1 −A′2 (right) to O.

−B′12 + A′1 − A′2 − [KK] at O′. Where the shift of KK-charge is due to the same reason
discussed in the SU(2)0 theory. The next step is to combine these two 4d quivers to make
the 5d quivers. In order to do so we will follow the transformation in figure 9 to pull
the contours B′12 and −B′12 +A′1 −A′2 − [KK] at O′ back to O. The results are shown in
figure 11. Both of them enclose the origin of t2-plane twice which give rise to the instanton
charges. They can be decomposed using the local basis A1, A2, B12 at O as

B′12 → −B12 +A1 + 2CO, −B′12 +A′1−A′2− [KK]→ B12− 3A1− 2CO − [KK], (3.13)

where CO is the contour circling the origin counter-clockwisely and we have used the fact
that A1 +A2 is trivial.

At the base point O, one possible charge assignments for the resulting four BPS
states are

• B12: a monopole of charge q1 = (1, 0, 0, 0)

• −B12 + 2A1: a dyon of charge q2 = (−1, 2, 0, 0)

• −B12 +A1 + 2CO: an dyon of charge q3 = (−1, 1, 0, 1), carrying one unit of instanton
charge

• B12 − 3A1 − 2CO − [KK]: a dyon of charge q4 = (1,−3,−1,−1), carrying −1-unit of
instanton charge and KK charge

which are consistent with the intersection numbers (3.9). These give the second quiver in
figure 7.
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Figure 12. The quiver diagram for 5d SU(3)k theories for k = 0, 1, 2, 3 (top-left, top-right, bottom-
left and bottom-right).

We may follow the same method described in the previous sections to obtain the 5d
quivers for F2 theory. As before two nodes of the 5d quiver is given by the contours B12 and
−B12 +A1 −A2 at O and the other two nodes are B′12 and −B′12 +A′1 −A′2 − [KK] from
the other saddle at O′. We then need to pull them back to O following the path described
in figure 4. The results are

B′12 → −B12 +2A1 +2A2 +2CO, −B′12 +A′1−A′2−[KK]→ B12−3A1−A2−2CO−[KK].
(3.14)

Moreover since A1 + A2 is trivial, we get the same two contours as in the F0 theory.
Therefore the 5d quiver diagram for F2 theory is the same to that for F0 theory as expected.

4 5d SU(3)k BPS quivers

Let us move on to SU(3). We will mainly repeat the previous exercise for SU(3)0 and SU(3)1
as an illustration and in the last subsection present results for SU(3)2,3. The resulting BPS
quivers are presented below in figure 12 [17], each of which reproduces the standard D0
theory probing the respective local Calabi-Yau.

4.1 SU(3)0

We begin with SU(3)0 theory whose spectral curve is given by

PSU(3)0 =
√
λ

(
t22
t1

+ t1t2

)
+
(
t32 + U1t

2
2 + U2t2 + 1

)
= 0, (4.1)
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with the Z3 symmetry generated by

U1 → U1e
2πi
3 , U2 → U2e

4πi
3 . (4.2)

The three local SU(3) holonomy saddles are identical and they permute under the Z3
transformation. At each saddle, the local theory is described by the 4d SU(3) Seiberg-Witten
theory and a reduction of the spectral curve is presented in section 2. Unlike SU(2) theory,
the moduli space for compactified SU(3) theory is complex 2-dimensional parametrized
by U1 and U2 and the ‘singularities’ will be (complex) co-dimensional one singular strings,
which makes the analysis of the moduli space rather complicated. Nevertheless, we will
work with a specific (complex) hyperplane in the following which is sufficient to derive the
5d quiver.

Let’s consider a specific hyperplane U1 = U2 = U and call it U -plane in the following.
This suffices for explaining how we move from one saddle to the next. The spectral curve is
simplified as

PSU(3)0 =
√
λ

(
t22
t1

+ t1t2

)
+
(
t32 + Ut22 + Ut2 + 1

)
= 0. (4.3)

There are three branch cuts on the t2-plane solved by the discriminant equation(
t32 + Ut22 + Ut2 + 1

)2
− 4λt32 = 0, (4.4)

and the singularities on the U -plane are further determined by solving the discriminant of
the above one with respect to t2. One of the 4d holonomy saddles is located at U = 3 and
the local theory is like a 4d SU(3) Seiberg-Witten theory.

There are three singularities6 P1, P2, P3 surrounding U = 3 at the U -plane which are
depicted in the first diagram in figure 13. Here we have adjusted the phase of λ such
that one of them will lie on the real axis. We consider a base point located at O and
the branch cuts on the spectral curve (t2-plane) are simply shown in the first diagram in
figure 14, where standard choices of the A/B-cycles are also depicted in the figure. The
Seiberg-Witten differential λSW is again chosen as λSW = −(4π2R5i)−1dt1/t1 log t2.

It is sufficient to construct the 4d quiver diagram using the massless states at two of
those three singularities and we will choose P1 and P2 in the following. If we approach P1
and P2 from O we will find the following contours collapse

• At P1: B12 and B23

• At P2: B12 −A1 +A2 and B23 −A2 +A3

The local 4d quiver diagram consists four nodes q1, · · · , q4 and we may choose the four
contours collapsing at P1 and P2 as representatives, namely B12,−B12 +A1 −A2, B23 and
−B23 +A2 −A3. And the 4d quiver diagram is drawn as the left one in figure 15.

We need to determine the other two nodes in the 5d quiver diagram and the method is
the same as in the previous cases: we consider another holonomy saddle O′ whose local

6On a generic (complex) hyperplane in the moduli space there are six singularities. However, with the
special choice U1 = U2 there will be three double-degenerated singularities.
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Figure 13. The U -plane for SU(3)0 theory and the path connecting the two observers OB and OA
probing the two holonomy saddles.

Figure 14. The local branch cuts and choices of 1-cycles on t2-plane for the observers O.
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Figure 15. These two types of quiver diagrams arise from cutting off a pair of 5d BPS states in
SU(3)k BPS quiver. The left one is the usual 4d BPS quiver for 4d SU(3) theory. The one on the
right is equivalent to the left via quiver mutation, to be performed on node 4, followed by a switch of
the resulting nodes 3 and 4. This is of course consistent with the fact that locally the 4d holonomy
saddle is always the ordinary 4d SU(3) theory.

geometry is indistinguishable from the original one at O. Then we may similarly write
down the four contours parallel with those at O and pull them back from O′ to O.

Consider applying an Z3 transformation given above to arrive at another holonomy
saddle located at U1 = 3e 2πi

3 , U2 = 3e− 2πi
3 , as shown in the second diagram in figure 13.

Note that the two diagrams in figure 13 represent different hyperplanes in the moduli space
parametrized by U1, U2: the first is U1 = U2 and the second is U1 = e

4πi
3 U2. Nevertheless,

we will call both of them U -plane where U is related to U1, U2 as shown in the figure.
The branch cuts and 1-cycles on the spectral curve are depicted in the second diagram in
figure 14 and we may consider the local quivers whose four nodes are represented by the
contours B′12,−B′12 +A′1 −A′2 − [KK], B′23 and −B′23 +A′2 −A′3, where the KK-charge will
be explained soon.

We choose a path from O to O′ as shown in figure 13. Starting at O we follow the
path in the U1 = U2 plane given by the first diagram and move to the origin, then we enter
the U1 = e

4πi
3 U2 plane given by the second diagram and move to the other saddle O′. The

branch cuts on the spectral curve will rotate according to figure 16. Initially for O the three
branch cuts are colored in red and they will rotate following the dashed line to reach the
blue branch cuts, which corresponds to O′ at the other saddle. The three branch cuts will
permute after the rotation, which gives

A1 → A′2, A2 → A′3, A3 → A′1. (4.5)

Recall the Seiberg-Witten differential λSW is chosen as λSW = −(4π2R5i)−1dt1/t1 log t2 and
we can shift that by a total derivative to make sure it gives the standard 4d λSW = zdt/(2πit)
at the first holonomy saddle. Then from figure 16 we can see that the contribution of A′2
and A′3 will get an additional piece −i/3R5 from the phase of log t2 while A′1 will get 2i/3R5
instead. Therefore the cycle A′1 −A′2 will carry a KK-charge and that is the reason for the
−[KK] term mentioned above.

For B′-cycles one finds

B12 → B′23, B23 → B′31 + 2CO, B31 → B′12 − 2CO, (4.6)

– 24 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
8

Figure 16. The transformations of branch cuts on the t2-plane following the path from O to O′ on
the U -plane for SU(3)0 theory.

where CO represents the cycle enclosing the origin contour-clockwisely which contributes
to half the instanton charge. Here we have used the fact that the combination of three
A-cycles is trivial due to the cancellation of residues at t2 = 0 and t2 =∞. Therefore the
four contours at O′ will transform backward as

B′12 → B31 + 2CO, −B′12 +A′1 −A′2 − [KK]→ −B31 +A3 −A1 − 2CO − [KK] (4.7)

and

B′23 → B12, −B′23 +A′2 −A′3 → −B12 +A1 −A2. (4.8)

Note that the pullback of the second pair B′23 and −B′23 + A′2 − A′3 are already part of
the 4d quivers for O. Therefore we can associate the remaining two nodes q5, q6 in the 5d
quiver diagram with the contours B31 + 2CO and −B31 +A3 −A1 − 2CO − [KK].

With these sets of states, the 5d quiver diagram is obtained as the first diagram in
figure 12, and can be seen as an extension of the 4d one in figure 15. The arrows can be
worked out using the intersection numbers given as,

A1#B12 = B12#A2 = 1,
A2#B23 = B23#A3 = 1,
A3#B31 = B31#A1 = 1, (4.9)

with all others vanishing.
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Figure 17. The U -plane for SU(3)1 theory and the path connecting the two observers O and O′
probing the two holonomy saddles.

4.2 SU(3)1

We then move further to construct the quiver diagram for the SU(3)1 theory based on the
previous discussions. The spectral curve is given by (2.30) as

PSU(3)1 =
√
λ

(
t22
t1

+ t1t
2
2

)
+
(
t32 + U1t

2
2 + U2t2 + 1

)
= 0. (4.10)

There is no Z3 symmetry in SU(3)1 theory since the local θ-angles between the two adjacent
holonomy saddles differ by 2π/3.

The analysis in the following is parallel to SU(2)π and SU(3)0 cases. Let’s consider the
hyperplane U1 = U2 = U which is labeled by U . One of the holonomy saddle O is sitting
around U = 3, and if we consider the 4d limit |λ| � 1 (Equivalently, one fix the QCD scale
Λ and send R5 to zero) there will be three singularities P1, P2, P3 surrounding U = 3. One
can always adjust the phase of λ to let one of the singularities sit at the real axis such that
the U -plane will look the same as that in SU(3)0 theory, which is also depicted as the first
diagram in figure 17.

The same complication as in the SU(2)π theory arises if we move to the next saddle O′
in the hyperplane U1 = e

4πi
3 U2 where the local θ-angle is rotated by 120-degree. Following

the same discussion below (3.11) the three singularities P1, P2, P3 will rotate a 40-degree
(counter-clockwise) which gives the second diagram in figure 17. Moreover, the branch cuts
on the spectral curve will rotate a 20-degree (counter-clockwise) which gives the blue branch
cuts in figure 18.

Following the path described in figure 17 to move from one saddle O to its counterpart
O′, the rotation of branch cuts are sketched in figure 18. Initially for O the three branch
cuts are colored in red and they will rotate following the dashed line to reach the blue
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Figure 18. The transformations of branch cuts on the t2-plane following the path from OB to OA
on the U -plane for SU(3)1 theory.

cuts, which corresponds to O′ at the other saddle. The choices of A/B-cycles are still
given in figure 14 except the three cuts in the second diagram need to rotate 20-degree
counter-clockwise to match those in figure 18. One can work out the transformations of the
A/B-cycles and we have

A1 → A′2, A2 → A′3, A3 → A′1, (4.11)

for A-cycles and

B12 → B′23, B23 → B′31 +A′1 + 2CO, B31 → B′12 −A′1 − 2CO, (4.12)

for B-cycles.
We again choose the contours B12,−B12 + A1 − A2, B23 and −B23 + A2 − A3 as the

representatives of the local 4d quiver diagram for the first saddle O, and the ‘prime’ version
B′12,−B′12 + A1 − A2 − [KK], B′23 and −B′23 + A2 − A3 for the second saddle O′. Pulling
the four contours at O′ backward according to the above transformation we will find

B′12 → B31 +A3 + 2CO, −B′12 +A′1 −A′2 − [KK]→ −B31 −A1 − 2CO − [KK], (4.13)

and
B′23 → B12, −B′23 +A′2 −A′3 → −B12 +A1 −A2. (4.14)

The pullback of the second pair B′23 and −B′23 +A′2 −A′3 are again part of the 4d quivers
for O. Therefore we can associate the six nodes q1, · · · , q6 in the 5d BPS quiver diagram
with the contours B12, −B12 + A1 − A2, B23, −B23 + A2 − A3, B31 + A3 + 2CO, and
−B31 −A1 − 2CO − [KK]. The 5d quiver diagram is then drawn as the top-right diagram
in figure 12 with the intersection numbers found again via (4.9).
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Figure 19. The U -plane for SU(3)2 theory and the path connecting the two observers O and O′
probing the two holonomy saddles.

4.3 SU(3)2 and SU(3)3

In the last part of this section, we will briefly show the results of SU(3)2 and SU(3)3 for
completeness. The spectral curves are

PSU(3)2 =
√
λ

(
t22
t1

+ t1t
3
2

)
+
(
t32 + U1t

2
2 + U2t2 + 1

)
= 0, (4.15)

for SU(3)2 and

PSU(3)3 =
√
λ

(
t32
t1

+ t1t
3
2

)
+
(
t32 + U1t

2
2 + U2t2 + 1

)
= 0, (4.16)

for SU(3)3.7 For each theory there are three holonomy saddles on the moduli space where
the local theories are 4d SU(3) theory. For SU(3)2 the adjacent two saddles are glued
with a relative shift of 4d θ-angle by 4π/3 and for SU(3)3 theory by 2π. Therefore the Z3
symmetry is preserved in SU(3)3 theory but is broken in SU(3)2 theory.

We choose the U -plane in the same way as before and in the 4d limit |λ| � 1 there are
three singularities on the U -plane at each holonomy saddles. We will adjust the phase of
λ such that at the first saddle one of the singularities sits at the real axis just as in the
previous cases, for example, as shown in the first diagram in figure 4 and 8. Starting at O,
we will follow a path through the origin in the moduli space to move to its counterpart at
the second holonomy saddle. For SU(3)3 the path is the same to the SU(3)0 theory shown
in figure 4 and for SU(3)2 the destination O′ is shown in figure 19.

The 5d quiver diagrams can be constructed in the same way by combining the two
local 4d quivers at the two holonomy saddles. Choosing the A/B/A′/B′ cycles in a similar
way, one finds for both SU(3)2 and SU(3)3 the A-cycles just permute as before

A1 → A′2, A2 → A′3, A3 → A′1. (4.17)

For SU(3)2 theory the B-cycles transform as

B12 → B′23 +A′2−A′3, B23 → B′31−A′2 +2CO, B31 → B′12 +A′3−2CO, (4.18)
7We consider |λ| � 1 such that f3(λ) ≈

√
λ in (2.21).
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and for SU(3)3 theory the B-cycles transform as

B12 → B′23 +A′2 −A′3, B23 → B′31 +A′1 −A′2 + 2CO, B31 → B′12 −A′1 +A′3 − 2CO,
(4.19)

where we have used the fact that A1 + A2 + A3 (or A′1 + A′2 + A′3) is trivial. In the
present cases we will associate the four nodes q1, · · · , q4 in the 5d quiver diagram with
the contours B12,−B12 + A1 − A2, B23 + A2 − A3 and −B23 for both theories. The 4d
quiver diagram is depicted as the right one in figure 15 which is related to the left one via
a quiver mutation. At the other saddle O′ the four contours are just the ‘prime’ version
B′12,−B′12 + A′1 − A′2 − [KK], B′23 + A′2 − A′3 and −B′23, and if we pull the four contours
backward following the path described in figure 4 or 19 we will find the following results.
For SU(3)2 theory they will become

B′12 → B31−A2 + 2CO, −B′12 +A′1−A′2− [KK]→ −B31− 2A1− 2CO − [KK], (4.20)

and
B′23 +A′2 −A′3 → B12, −B′23 → −B12 +A1 −A2. (4.21)

The pullback of the second pair B′23 +A′2 −A′3 and −B′23 are part of the 4d quivers for O.
Therefore the remaining two nodes q5, q6 in the 5d quiver diagram for SU(3)2 theory are
associated with the contours B31−A2 + 2CO and −B31− 2A1− 2CO − [KK]. The 5d quiver
diagram is depicted as the bottom-left diagram in figure 12.

For SU(3)3 theory the B-cycles transform as

B′12 → B31−A2 +A3 + 2CO, −B′12 +A′1−A′2− [KK]→ −B31−A1 +A2− 2CO− [KK],
(4.22)

and
B′23 +A′2 −A′3 → B12, −B′23 → −B12 +A1 −A2. (4.23)

The pullback of the second pair −B′23 and B′23 +A′2 −A′3 are again part of the 4d quivers
for O and we can associate the remaining two nodes q5, q6 in 5d quiver diagram with the
contours B31−A2 +A3 + 2CO and −B31−A1 +A2− 2CO− [KK]. The 5d quiver diagram is
depicted as the bottom-right diagram in figure 12 where the Z3 symmetry is also manifest.

5 Duality of SU(N)N

In the preceding sections, we constructed 5d BPS quivers by noting how each 4d holonomy
saddle supplies a 4d BPS quiver, and how the relation between adjacent 4d saddles supplies
two additional nodes which are needed to complete the 5d quiver. In all of these procedures,
the two additional 5d nodes would be labeled as the (2n−1)-th and 2n-th for n = 1, 2, · · · , N
which itself labels the N 4d holonomy saddles. Although this by itself is universal for all
level, SU(N)0 is special in that no matter which n we take, the excised 5d BPS quiver
produces the same 4d BPS quiver, rather than modulo mutation. The spectral curve for
SU(N)0 also admits ZN symmetry manifestly where U ’s shift between 4d saddles, naturally.

For SU(N)N with Zgcd(N,N) = ZN , on the other hand, the shape of the 5d BPS quivers
we have found are clearly more symmetric beyond this ZN . To see the origin of this
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phenomenon, it is more instructive to generalize an alternate form of the F0 curve, rather
than its equivalent F2 curve, to higher rank. The F0 curve we used was

√
λ
(
t̃2t̃1 + t̃2/t̃1

)
+
(
t̃ 2
2 + Ut̃2 + 1

)
= 0 (5.1)

where we introduced a tilded t’s to avoid a confusion with t variables for the SU(N)N curve
below. It may be more suggestively written, after division by t̃2λ1/4,

Uλ−1/4 +
(
λ1/4t̃1 + λ−1/4 t̃2

)
+
(
λ1/4 t̃−1

1 + λ−1/4t̃−1
2

)
= 0 (5.2)

With V ≡ λ−1/4U , s1 ≡ λ1/4t̃1, and s2 ≡ λ−1/4t̃2, this gives

V + (s1 + s2) + λ1/2

s1
+ 1
λ1/2s2

= 0 (5.3)

This form of F0 curve is invariant under

B : s1,2 → s2,1 , λ1/2 → λ−1/2 (5.4)

This changes the coupling λ, so it is not a symmetry of the field theory, strictly speaking; it
would be more appropriately called a duality.

In the (p, q) 5-brane web realization, the map B can be seen as a swap of the vertical
direction and the horizontal direction, or the swap of D5-branes and NS5-branes. The
invariant value λ = 1 would correspond to a square form of the internal face, at which
the W -boson represented by the F-string segment, and a charged instanton represented
by the D-string segment, would become massless simultaneously. With λ > 1, the SU(2)
symmetry restoration occurs with massless W -boson, and B maps this to λ < 1 where a
charged instanton plays the role of W -boson instead. This well-known duality extends all
the way to the strict 5d limit of R5 →∞, where λ is real and positive.

For higher ranks, the usual (p, q) brane-webs thereof do not show such a duality
manifestly. On the other hand, we may try to map the generalization of F2 curve

1
λ1/2 + λ−1/2

(
t1 + t−1

1

)
+
(
tN2 + U1t

N−1
2 + U2t

N−2
2 + · · ·+ UN−1t2 + 1

)
= 0, (5.5)

to a form similar to the above alternate version of F0, with the new coordinates s’s and the
Coulomb vev V ’s as

t1 = s1
λ1/2s2

, t2 = s1 + s2

(λ1/2 + λ−1/2) 1
N

, Ua = Va

(λ1/2 + λ−1/2) aN
. (5.6)

The curves is now rewritten as

VN−1 +VN−2(s1 +s2)+ · · ·+V1(s1 +s2)N−2 +(s1 +s2)N−1 + λ1/2

s1
+ 1
λ1/2s2

= 0, (5.7)

with dλSW retaining the same general form both in t coordinates and in s coordinates. The
above coordinate transformation is actually the Hanay-Witten transition [37] in terms of
the 5d brane web.
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The expected ZN=gcd(N,N) symmetry manifest here no differently as8

A : s1,2 → s1,2 e
2πi/N , Va → Va e

2πai/N (5.8)

while, allowing λ to transform as well, we find again a Z2 duality

B : s1,2 → s2,1 , λ1/2 → λ−1/2 (5.9)

The latter Z2 generated by B flips λ1/2 → λ−1/2, so λ = 1 is a self-dual point in that the
transformation maps within the same Seiberg-Witten moduli space. Otherwise, the map
relates theories with |λ| > 1 to those with |λ| < 1. The quantity log(λ) is proportional to
the bare inverse coupling squared in the 5d sense, so the map relates Seiberg-Witten theory
with positive and negative values of 5d bare coupling squared. The latter does not lead to
inconsistency, as is well known, by the Coulomb phase being cut off before the effective
coupling turns negative.

ZN generated by A acts with λ fixed, so may be considered as a symmetry that relates
different Coulombic vacua and thus is capable of moving between holonomy saddles. The
above Z2 generally changes λ, so cannot be a map among 4d holonomy saddles of a single
Seiberg-Witten theory. What does happen with B is that, across |λ| = 1, the nature of N
4d holonomy saddles changes. In the strict 5d limit, this connects with how SU(2) symmetry
restoration happens differently depending on the sign of log(|λ|); the light charged vector
meson that becomes massless at the symmetric restoration point is either a fundamental
W -boson or a charged instanton, depending on the sign of log(|λ|). B swaps these two
regimes to each other.

Once we move to |λ| > 1 region, i,e. to the region where the inverse bare coupling
squared µ0 becomes negative, the charge states that become light in the 4d holonomy
saddles are different from |λ| < 1 region. In the simplest examples of F0, either the 2nd
and the 3rd nodes of the 5d BPS quiver or the 4th and the 1st would remain light in the
infrared if we insist on |λ| � 1 [18].

This suggests that, for general SU(N)N , BPS states which become light in the 4d
saddles are 2i-th and (2i+ 1)-th nodes, for integer i mod N except for one pair, instead of
(2i− 1)-th and 2i-th pairs which we have seen in the previous two sections. Although we
still have N holonomy saddles for |λ| � 1, the 4d BPS quiver at the 4d holonomy saddles
would be obtained by dropping from 5d BPS quiver 2n-th and (2n+ 1)-th nodes for some
n mod N instead of (2n− 1)-th and 2n-th nodes. Again, the mutation plays an important
role in bringing us back to the standard 4d SU(N) BPS quivers.
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8At λ = −1, this ZN symmetry extends to a Z2N symmetry, as can be seen easily in the latter
variable choice,

C : s1,2 → s2,1 e
πi/N , Va → Va e

aπi/N

This manifests in the singularity distribution in the Coulomb moduli space. See the appendix for a related
comment at the end.

– 31 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
8

A An alternate view on F0-theory

Ref. [18] analyzed the F0-theory by solving the Picard-Fuchs equation with some special
values of λ and performing computations that largely relied on the monodromies around
singularities on the U-plane. Here we assume 0 < λ < 1 more generally and briefly repeat
their analysis and give some more explicit results. In particular, we aim at illustrating how
our choice of the basis leads to the quiver figure 7 is found in this alternate view.

The Picard-Fuchs equation of the F0 spectral curve (2.29) is given by

∂2Ω
∂w2 + 4(8w −A−B)

(4w −A)(4w −B)
∂Ω
∂w

+ 4
(4w −A)(4w −B)Ω = 0, (A.1)

where one works with w = U2/16 due to the Z2 symmetry U → −U . Ω denotes the period
of the spectral curve and the parameters A and B are given by

A = (1 + λ) + 2
√
λ, B = (1 + λ)− 2

√
λ. (A.2)

The magnetic and electric central charges aD and a are related to the periods as

ΩaD = daD
dU

=
√
w

2
daD
dw

, Ωa =
√
w

2
da

dw
. (A.3)

Solving the Picard-Fuchs equation one obtains the solutions of periods on the w-plane

daD
dw

= i

2πR5

1√
w

(
w − (1−

√
λ)2

4

) 1F2

1
2 ,

1
2 , 1;

4w −
(
1 +
√
λ
)2

4w −
(
1−
√
λ
)2

 , (A.4)

and
da

dw
= 1

4πR5

1√
w

(
w − (1−

√
λ)2

4

) 1F2

1
2 ,

1
2 , 1; 4

√
λ

4w −
(
1−
√
λ
)2

 , (A.5)

where the coefficients can be fixed by their values in the asymptotic region on the moduli
space. From these one can solve a and aD on the w-plane.

The full U -plane can be obtained by gluing two w-plane, the left half-plane and right
half-plane in figure 20, along the imaginary axis in the lower plane such that a and aD vary
smoothly. The branch cuts are inherited from the w-plane and are drawn in a symmetric
way. Although the origin U = 0 is a branch point, the monodromy around U = 0 is actually
trivial. There are four singularities U = UA±, UB± on the U -plane and we choose the base
point P in the second quadrant. Denoting the magnetic and the electric central charges as
a column vector (aD, a)T , and the 2× 2 monodromy matrix M acting the pair can be read
off immediately from the above explicit solution. Since the above are actually w derivatives,
we need to work a little more to include the instanton and KK-charges in the monodromy
matrix.

We can complete the full 4× 4 monodromy including instanton and KK-charge. The
full central charges are collected as a column vector (aD, a, i/R5, µ0)T , where i/R5 and µ0
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Figure 20. The contours and monodromies on U-plane for SU(2)0 theory.

are the central charges of a unit KK mode and a bare instanton. Going around a singularity
on the U -plane, the central charges are shifted as M · (aD, a, i/R5, µ0)T where M is the
extended 4× 4 monodromy matrix associated to the singularity. First, notice that moving
along a large circle in the asymptotic region of U -plane amounts to shifting the electric
central charge by a → a+ i

R5
. Since the magnetic central charge aD is approximated as

iR52a(2a+ µ0), one can read the monodromy M∞ as

M∞ =


1 −8 −4 −2
0 1 1 0
0 0 1 0
0 0 0 1

 , (A.6)

We assume the two singularities at U = UB± correspond to purely 4d monopole and dyon
points, namely one has

MUB+ =


1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

 , MUB− =


−1 4 0 0
−1 3 0 0
0 0 1 0
0 0 0 1

 . (A.7)

Using the fact that UA± are conjugated to UB± in terms of w-plane, one can also work out
MUA± using M∞ and MUB±

MUA+ =


−3 16 4 4
−1 5 1 1
0 0 1 0
0 0 0 1

 , MUA− =


−1 4 0 2
−1 3 0 1
0 0 1 0
0 0 0 1

 . (A.8)
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Figure 21. The quiver diagrams for 5d SU(2)0 theory. The left diagram is constructed according
to the above analysis and the right diagram is obtained via a quiver mutation of qA− node.

The four singularities are due to massless BPS particles whose charges are inert under
the respective monodromy, which can be read off as

• U = UB+ : A monopole of charge qB+ = (1, 0, 0, 0), becomes massless

• U = UB− : A dyon of charge qB− = (−1, 2, 0, 0), becomes massless

• U = UA− : A dyon of charge qA− = (−1, 2, 0, 1), becomes massless

• U = UA+ : A dyon of charge qA+ = (1,−4,−1,−1), becomes massless

If we take these as the basis BPS states for the quiver, the 5d BPS quiver should look like
the left of figure 21 [18]. A natural question is how does this choice of basis differ from
those we found in section 3 and the underlying reason.

Note how this quiver is related to the standard one in figure 7 or the one on the right
of figure 21 via a quiver mutation of the qA− node

q′A− = −qA− = (1,−2, 0,−1), q′A+ = qA+ + 2qA− = (−1, 0,−1, 1). (A.9)

What are the corresponding contours on the U -plane for q′A− and q′A+? Note that in
the second quiver diagram the symmetry between two holonomy saddles for F0-theory is
manifest and the local 4d quivers are represented by the two blue nodes or the two red
nodes. Following the same idea in section 3, let’s consider two observers probing the two
holonomy saddles on the U -plane, sitting at O′ and O which are symmetric under U → −U
as shown in figure 4. Since the quiver diagram is drawn at a specific point on the moduli
space, one of the observers, let’s say observer O′, must move to the other observer O and
combine their local 4d quivers to form the 5d quiver. That implies the following choices
of the last contour enclosing UA+ in figure 22 such that if we change the base point to O′
these two contours enclosing UA± will become standard but the contour enclosing UB+ will
become involved instead.

Among the four contours, the two enclosing UB+, UB− and UA− are the same as before
and their monodromy are still given by MUB+ ,MUB− and MUA− . The last one is
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Figure 22. The monodromies associated with the nodes in the 5d BPS quiver. The 3rd and the
4th paths become simple when we move from O to O′ which amounts to the motion from the first
saddle to the second, adopted in section 3 above. These paths differ from those of ref. [18], which
explains the difference in the resulting quiver.

M ′UA+ = MUA− ·MUA+ ·M
−1
UA−

=


1 0 0 0
−1 1 −1 1
0 0 1 0
0 0 0 1

 , (A.10)

and the charge vector q′A+ = (−1, 0,−1, 1) is indeed consistent with this monodromy.
One way to motivate the latter set of contours and the monodromies in the U plane is

to imagine moving from the base point O to O′, through the middle region between UA±
and UB± . The somewhat convoluted contours at O enclosing UA± would become simplified
as the base point moves to O′. In fact, if we further rotate the entire plane 180 degrees
so that O′ moves into the position of cO and UA± into UB± , the newly deformed contour
would look identical to the two original contours at O enclosing UB± . O and O′ each probes
local geometry of the two 4d holonomy saddles in our language, so this means that q′A± play
exactly the same role in the second saddle as qB± do in the first saddle. The latter criterion
is how we picked up the 3rd and the 4th BPS states to complete the 5d BPS quiver at
O, so it is no surprise that we reproduce figure 7 from this alternate set of contour and
monodromies.

There is a special case where λ = −1 and the Z2 symmetry of the U -plane is enhanced
to Z4, which is studied in detail in [18]. When λ = −1 the discriminant of the spectral
curve is reduced to

∆(U, λ = −1) = U4 + 64, (A.11)

such that the four singularities on the U -plane are located at U = 2
√

2e
(2k+1)πi

4 where
k = 0, 1, 2, 3. The corresponding BPS states will give the Z4-symmetric quiver as shown in
the right of figure 21.
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