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Conformal integrals [1] are the sine qua non of theories dealing with conformal symmetry.
The integrals make an appearance in the evaluation of Feynman diagrams in quantum field
theories [2, 3], as well as studying renormalization groups [4]. In particular, they furnish
representations of the conformal group. Conformal blocks, which in turn determine the
correlation functions of a conformal field theory, are expressed in terms of conformal inte-
grals. The integrals for N points have been evaluated in certain cases, for relatively small
values of N , looked at from different angles and various methods have been employed to this
end [5–18]. We present a general method to obtain analytic expressions of four-dimensional
N -point conformal integrals as infinite series in terms of conformal invariants, namely, the
cross ratios, obtained as solutions to previously derived Lauricella-like equations [19]. We
derive explicit expressions of the conformal integrals for arbitrary N , by showing that the
Lauricella-like equations are solved by certain GKZ A-hypergeometric functions.

Let us outline the strategy before presenting the details of the computation. We restrict
to the four-dimensional Euclidean space R4, indicating generalisation to higher dimensions
at the end. As a normed vector space R4 can be identified with the space of quaternions
H, the norm-squared being equal to the determinant of a quaternion. The conformal group
of R4 is the Möbius group of 2× 2 block matrices, each block being a quaternion (1). The
N -point conformal integral is defined in terms of quaternions in equation (6) to utilize this
connection. Differentiating with respect to quaternions within the integral sign, a system
of linear second-order differential equations (13) is then obtained of which the integral is a
solution, analogous to its two-dimensional counterpart [20]. Next, the conformal integral
is interpreted as the sheaf of germs of functions on the Fulton-MacPherson completion of
the configuration space of ordered N -tuple of points on the Euclidean space, allowing it
to be envisaged as a function of the determinant of pairwise differences of the N quater-
nions (22). Inserting it as an ansatz in (13) leads to a Lauricella-like system of differential
equations (24) for the invariant part of the conformal integral written in terms of the cross
ratios [19], generalising the Lauricella system for the two-dimensional case [20]. In the cur-
rent article we observe that this system of equations when cast in the form (27) is satisfied
by the solution of a GKZ A-hypergeometric system (47) and (48) corresponding to a matrix
of exponents of the norm of pairwise differences of the quaternions under the Möbius trans-
formation. The solutions are then explicitly obtained as infinite series (71). We discuss the
examples of N = 4, 5, 6 at length. These are consistent with previously obtained results [6],
but to the best of our knowledge the general solution has not appeared in literature before.

We now elaborate on the procedure, starting with a recount of the derivation of the
differential equations [19]. The conformal or Möbius group of R4 ∪ {∞} is isomorphic to
a certain group of matrices written as 2× 2 blocks of quaternions [21, 22], namely,

SL(2,H) =
{(

A B

C D

)∣∣∣∣∣ |AC−1DC −BC| = 1;A,B,C,D ∈ H
}
. (1)

The Möbius group acts on a quaternion Q as

Q 7−→ Q′ = (AQ+B)(CQ+D)−1. (2)
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A real Euclidean four-vector q = (q0, q1, q2, q3) in R4 is fashioned into a quaternion as

Q =
(
q0 + iq3 q1 + iq2
−q1 + iq2 q0 − iq3

)
. (3)

The determinant of the quaternion Q is the Euclidean norm-squared of the four-vector,
written as

|Q| = q2
0 + q2

1 + q2
2 + q2

3. (4)

The determinant of the difference of two quaternions, denoted Qij = Qi − Qj from now
on, transforms under the conformal transformation (2) as

|Q′ij | = |CQi +D|−1|CQj +D|−1|Qij |. (5)

A conformal integral is defined in terms of quaternions as

IµN (Q) =
∫

d4Q

|Q−Q1|µ1 |Q−Q2|µ2 · · · |Q−QN |µN
, (6)

where Q denotes an N -tuple of quaternions, Q = (Q1, Q2, · · · , QN ), µ = (µ1, µ2, · · · , µN )
is an N -tuple of real numbers and

d4Q = dq0 ∧ dq1 ∧ dq2 ∧ dq3 (7)

denotes the volume form of R4, the integral being over the whole space. The integral
transforms under the Möbius transformation (2) as

IµN (Q′) = |CQ1 +D|µ1 |CQ2 +D|µ2 · · · |CQN +D|µN IµN (Q), (8)

provided |µ| = µ1 + µ2 + · · · + µN = d. Here, d = 4. Representations of the Möbius
group SL(2,H) may be constructed out of |Qij | and IµN (Q). Our goal is to obtain the
conformal integral as a solution to a system of differential equations. The system, which
generalizes the Lauricella system appearing in two dimensions, is set up by differentiating
the integral (6) with respect to the Qi under the integration sign. Let us denote the
integrand of (6) as

FµN (Q,Q) =
N∏
i=1

1
|Q−Qi|µi

. (9)

Denoting the matrix component of a quaternion Qi by (Qi)ab, with a, b = 1, 2, as defined
in (3), we have

∂FµN (Q,Q)
∂(Qi)ba

= µi(Q−Qi)−1
ab F

µ
N (Q,Q). (10)

Differentiating twice and using the identity

(Q−Qi)−1Qij(Q−Qj)−1 = (Q−Qi)−1 − (Q−Qj)−1 (11)
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we derive
2∑

b,c=1
(Qij)bc

∂

∂(Qi)ba
∂FµN (Q,Q)
∂(Qj)dc

= µiµj
[
(Q−Qi)−1 − (Q−Qj)−1

]
ad
FµN (Q,Q), (12)

with i 6= j. Using (10) and (12) to perform the differentiations under the integral sign
in (6) we arrive at the Lauricella-like equation [19],

2∑
b,c=1

(Qij)bc
∂

∂(Qi)ba
∂IµN (Q)
∂(Qj)dc

= µj
∂IµN (Q)
∂(Qi)da

− µi
∂IµN (Q)
∂(Qj)da

, (13)

where i, j = 1, 2, · · · , N and i 6= j.
In order to obtain explicit expressions for the conformal integrals as a solution to (13)

we first interpret the solutions as sheaf of germs of functions on the Fulton-MacPherson
completion of the configuration space

CN (M) = MN \ {qi ∈M, qi 6= qj ; i, j = 1, 2, · · · , N} (14)

of N non-coalescing points on the Euclidean space, M = R4 ∪ {∞}. The Fulton-
MacPherson completion is furnished by the embedding [23, 24]

CN (M) ↪→MN ×
(
S3)(N2 ) × [0,∞](

N
3 ),(

q1, q2, · · · , qN
)
7−→

(
q1, q2, · · · , qN , v12, · · · , v(N−1)N , a123, · · · , a(N−2)(N−1)N

)
,

(15)

where every
vij = Qij

|Qij |
(16)

describes a three-sphere S3 and the scalars

aijk = |Qij |
|Qik|

(17)

are non-negative real numbers. We used the correspondence (3) to express vij and aijk
in terms of quaternions. With this interpretation the conformal integral can be expressed
in terms of the variables aijk, while invariance under translation and rotation forbids a
representation to depend on Qi alone and vij , respectively. However, a product of powers
of aijk can be uniquely written as a product of powers of |Qij |. Comparing (5) and (8) we
conclude that a product of |Qij | with appropriate exponents reproduces the transformation
property of the conformal integral under the Möbius group. While this takes care of
the equivariant part, the conformal integral, in general, is also a function of conformal
invariants, for example,

|χijkl| = aijkalkj , (18)

obtained as the determinant of the quaternion χijkl = QijQ
−1
ik QklQ

−1
jl . All the |χ|’s can be

expressed in terms of N0 = N(N − 3)/2 conveniently chosen invariants. We refer to these
special invariants as the cross ratios from now on and denote by ξ. We often collect the
cross ratios in a vector

ξ =
(
ξ1, ξ2, · · · , ξN0

)
. (19)
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The number N0 is actually an upper bound for N > 7 in four dimensions [13]. The
cross ratios satisfy relations amongst themselves. We shall ignore this subtlety here as
the conformal integrals may be obtained in those cases by restricting to the subspace of
independent cross ratios using the relations. The cross ratios are written as products of
ratios of |Qij | as

ξA =
∏
i,j

1≤i 6=j≤N

|Qij |
1
2α

A
ij , (20)

where A = 1, 2, · · · , N0, and each αAij is an integer, satisfying

αAji = αAij , αAii = 0, ∀i;
N∑
j=1

αAij = 0, ∀i, (21)

for each A. The factor of 1
2 is accounted for by the symmetry of the cross ratios under the

exchange of i and j. From this discussion it follows that the conformal integral (6) as a
function on the Fulton-MacPherson completion of the configuration space of N points on
M can be expressed as

IµN (Q) =
∏
i,j

1≤i 6=j≤N

|Qij |
1
2βijI0(ξ), (22)

where I0(ξ) is a function of the cross ratios ξ, and

βji = βij , βii = 0, ∀i;
N∑
j=1

βij = −µi;
∑
i,j

1≤i<j≤N

βij = −|µ|/2 = −d/2, (23)

The conformal integral is, therefore, a function of the determinant |Qij | of the quaternions.
Plugging in (22) as an ansatz and taking trace over the matrix indices a, b of quater-

nions, the differential equation (13) gives rise to a system of equations for the invariant
part, namely [19],∑

A,B

∑
k,l

1≤k,l≤N
k 6=i,l 6=j

αAikα
B
jlτijkl ξAξB∂A∂BI0(ξ)

+
∑
A

(
4αAij +

∑
k,l

1≤k,l≤N
k 6=i,l 6=j

(
αAikα

A
jl + αAikβjl + αAjlβik

)
τijkl

)
ξA∂AI0(ξ)

+
(

4βij +
∑
k,l

1≤k,l≤N
k 6=i,l 6=j

βikβjlτijkl

)
I0(ξ) = 0, (24)

where τijkl = Tr χijkl and ∂A = ∂
∂ξA

for A,B = 1, 2, · · · , N0. In order to express this set
of equations in terms of cross ratios alone we need to express the trace of χijkl in terms of
its determinant. From the identity [19]

χijklχijlk = χijkl + χijlk, (25)
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taking determinant and using det(1+M) = 1+Tr M +detM for 2×2 matrices, we derive

τijkl = 1− |χlijk|+ |χijkl|. (26)

Using this in (24) we obtain, after rearrangement of terms, the system of differential equa-
tions in the concise form

LijI0(ξ) = 0, (27)

where for i 6= j, the indices i, j = 1, 2, · · ·N , and we define the differential operator

Lij =
∑
k,l

(
|χijkl|− |χlijk|

)(∑
A

αAikθA +βik

)(∑
B

αBjlθB +βjl

)
+ 4
(∑

A

αAijθA +βij

)
+µiµj ,

(28)
with A,B = 1, 2, · · · , N0, in terms of the logarithmic derivatives

θA = ξA
∂

∂ξA
. (29)

Singular values of |χ|’s are kept from appearing in the equations by choosing to cancel
them in the sums at the level of symbols and using (21) and (23) prior to expressing |χ|’s
in terms of the invariants.

Let us also note that thanks to the relations

|χjilk| = |χijkl|, |χkjil| = |χlijk|, (30)

the operators Lij and Lji give rise to identical equations, leaving N(N − 1)/2 equations
in (27). Moreover, since the ratios |χijkl| and |χlijk| are interchanged under the exchange
of the indices j and l, we have

N∑
j=1

Lij = 0, (31)

for each value of i. This takes away another N equations, so that (27) is a system of
N0 = N(N − 3)/2 independent ones. Hence, we have N0 linear second order partial
differential equations to solve in order to obtain I0 as a function of the same number of
variables, ξ. We choose the ones from the Lij by discarding the N − 1 equations coming
from L1i for i = 2, 3, · · · , N and also L23.

We now describe the method of solving (27). Let us introduce another notation for
later use. Expressing the determinant |χ| defined in (18) in terms of the cross ratios as

|χijkl| =
N0∏
A=1

ξ
γAijkl
A , (32)

and using (20), the consistency of the definition of |χ| requires

N0∑
A=1

αAabγ
A
ijkl = (δaiδbj + δajδbi + δakδbl + δalδbk)− (δaiδbk + δakδbi + δajδbl + δalδbj), (33)
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where a δ denotes a Kronecker delta. This relation can be inverted using a Gram matrix
to express γ’s in terms of the α’s. Explicitly,

N0∑
A=1

N∑
a,b=1

αBabα
A
abγ

A
ijkl = 2

(
αBij + αBkl − αBik − αBjl

)
. (34)

Clearly, (32) fails to hold in the instances wherein χ is null or singular. As mentioned
above, those will not appear in the formulæ below.

We now proceed to obtain solutions to the system of N0 equations (27). First let us
define the differential operators,

∂ij = ∂

∂|Qij |
, θij = |Qij |∂ij , (35)

L̂ijkl = ∂ij∂kl − ∂ik∂jl

= 1
|Qij ||Qkl|

(
θijθkl − |χijkl|θikθjl

)
. (36)

From (20), (22) and (29) we obtain

θijI
µ
N (Q) =

∏
m,n

1≤m 6=n≤N

|Qmn|
1
2βmn

(∑
A

αAijθA + βij

)
I0(ξ), (37)

so that

L̂ijklI
µ
N (Q) =

 ∏
m,n

1≤m 6=n≤N

|Qmn|
1
2βmn

 1
|Qij ||Qkl|

LijklI0(ξ), (38)

where

Lijkl =
(∑

A

αAijθA + βij

)(∑
B

αAklθB + βkl

)
− |χijkl|

(∑
A

αAikθA + βik

)(∑
B

αAjlθB + βjl

)
.

(39)
Requiring the conformal integral (22), which is but a function of |Qij | treated as indepen-
dent variables, to satisfy

LijklI0(ξ) = 0, (40)

or, equivalently,
L̂ijklI

µ
N (Q) = 0, (41)

we obtain the equation for the invariant part.
The crucial observation in the present article is that the equation (27) is obtained from

this by summing over the k and l indices as

LijI0(ξ) =
N∑

k,l=1
LlijkI0(ξ)−

N∑
k,l=1

LijklI0(ξ), (42)

where the symmetry of Q, α and β with respect to the indices has been used. We have
indicated the sum in the two terms separately, since it is easier to derive (42) by performing
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the sums on the r.h.s. before subtracting. It can be verified by explicit computation that
only the operators Lijkl with all the four indices distinct appear in the final expression Lij .
Many of these are, in turn, related through the inter-relations among the |χ|’s. We need
to consider only a few of these operators in order to obtain I0.

Thus, a simultaneous solution of (40) for the operators that appear in Lij is a solution
to (27). For a given set of α, the equation (40) is solved using the Frobenius’ method with

N0∏
A=1

ξνAA

∞∑
n1,n2,··· ,nN0=0

Cn1,n2,··· ,nN0
ξn1

1 ξn2
2 · · · ξ

nN0
N0

, (43)

where the solutions ν to the indicial equations can be chosen in terms of the parameters β
and the coefficients are given by the recursion relation
C
n1−γ1

ijkl
,n2−γ2

ijkl
,··· ,nN0−γ

N0
ijkl

Cn1,n2,··· ,nN0

=
(∑

Aα
A
ij(nA+νA)+βij

)(∑
B α

B
kl(nB+νB)+βkl

)(∑
Aα

A
ik(nA+νA)+βik+1

)(∑
B α

B
jl(nB+νB)+βjl+1

) ,
(44)

with the γ’s obtained from (34). The coefficients Cn1,n2,··· ,nN0
can now be written in terms

of Gamma functions involving the combinations appearing within the braces.
Solving the system (27) thus reduces to the combinatorial problem of obtaining the

exponents of |Q|’s in (20), that is, the α’s, and expressing ν’s in terms of β’s. In order
to obtain the α’s we consider each |Qij | in turn, which transforms according to (5) with a
factor for each of the indices i and j. Let us form a matrix from the Möbius transformation
of |Qij |. From (5) we note that it transforms by two factors, (CQi + D) and (CQj + D),
with exponents −1 for each. We define an N ×N(N − 1)/2 matrix A from this data. Its
columns correspond to |Qij | and rows correspond to Qi. The entry of A in the column of
Qij in both the rows i and j is unity. All other entries are taken to be zero. The indices
of the invariants under the Möbius transformation constitute the kernel of A. A choice of
the basis of the kernel is taken to define the α’s which in turn define the cross ratios ξ
from (20). The N0 cross rations are determined by the transpose of the matrix of these
basis vectors, denoted v, which is an N0 × N(N − 1)/2 matrix. Let us exemplify this
construction with the example of N = 4. In this cases, the matrix A is given by

A =



Q12 Q13 Q14 Q23 Q24 Q34

Q1 1 1 1 0 0 0
Q2 1 0 0 1 1 0
Q3 0 1 0 1 0 1
Q4 0 0 1 0 1 1

. (45)

This encodes, for example, the fact that |Q12| transforms by factors involving Q1 and Q2,
both having exponent −1, but does not contain factors involving Q3 or Q4, as can be
read off from (5). Let us denote the entries of A by ai,jk, with j < k. The kernel is
two-dimensional. Its transpose with a certain choice of basis vectors is

v =
(Q12 Q13 Q14 Q23 Q24 Q34

ξ1 1 0 −1 −1 0 1
ξ2 0 1 −1 −1 1 0

)
. (46)
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The A-th row of v gives αA, for example, α1
12 = 1, α2

34 = 0 etc, so that v = (αAij). Let us
recall that in our notation the GKZ A-hypergeometric system corresponding to the matrix
A is given by [25]  N∑

j,k=1
j<k

ai,jk
∂

∂|Qjk|
− µi

 f = 0, ∀i, (47)

∏
αAij>0

(
∂

∂|Qij |

)αAij
f −

∏
αAij<0

(
∂

∂|Qij |

)−αAij
f = 0, ∀A. (48)

The operators acting on f form an ideal in the Weyl algebra corresponding to the matrix
A. It can be checked that these imply (41). Hence, Lijkl belong to the GKZ ideal.
Inserting (22) for f the first set (47) is satisfied using (23). In order to obtain I0(ξ) it
thus suffices to solve the second set of equations (48). Expressing the GKZ operators in
terms of logarithmic variables, a series solution to these equations are obtained with its
coefficients satisfying (44). Hence the invariant I0(ξ) is given by the GKZ A-hypergeometric
function corresponding to the matrix A

We now present examples for N = 4, 5, 6. The general expression can be similarly
written.

Example 1. For four points, N = 4, six operators Lij , i, , j = 1, 2, 3, 4, i < j, are to be
considered in (27). Two of such operators determine the rest through the relations

L12 = L34, L13 = L24, L14 = L23,

L12 + L13 + L14 = L23 + L24 + L34 = 0.
(49)

Choosing L24 and L34 as the independent ones leads to the equations

(ξ1 + ξ2 − 1)θ2
1I0 + 2ξ1θ1θ2I0 + ξ1(2 + β13)θ2I0

−[ξ1(β14 + β23) + (1− ξ2)β13]θ1I0 + ξ1β14β23I0 = 0,
(ξ1 + ξ2 − 1)θ2

2I0 + 2ξ2θ1θ2I0 + ξ2(2 + β13)θ1I0

− [ξ2(β14 + β23) + (1− ξ1)β13] θ2I0 + ξ2β14β23I0 = 0,

(50)

respectively, where ξ1 and ξ2 are defined from v in (46) as

ξ1 = |Q12||Q34|
|Q14||Q23|

, ξ2 = |Q13||Q24|
|Q14||Q23|

. (51)

Using the freedom of choice of β’s from (23) to set β24 and β34 to zero these lead to the
system of equations for the Appell function F4 [19]. Here instead of solving (50), we solve
the system of equations for the operators Lijkl, as required from (42) without any ad hoc
choice of β’s. First, we write equation (42) for L24 and L34. The r.h.s. of the two equations
thus obtained contain the operators

L2431, L3241, L2413, L1243, L3412, L2341, L3421, L1342 (52)
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in linear combinations. The operators Lijkl, however, are also related among themselves
through the relations

L1243 = −ξ1L3241 = L3421

L1342 = −ξ2L2341 = L2431

ξ1L2413 = −ξ2L3412 = ξ1L2431 − ξ2L3421,

(53)

leaving only two of them independent. We choose these as,

L3421 = (θ1 + β12)(θ1 + β34)− ξ1(θ1 + θ2 − β14)(θ1 + θ2 − β23),
L2431 = (θ2 + β13)(θ2 + β24)− ξ2(θ1 + θ2 − β14)(θ1 + θ2 − β23).

(54)

The solution I0(ξ1, ξ2) is annihilated by each of these operators. In this case there are
four independent solutions corresponding to the solutions of the indicial equations ensuing
from (54). For example, for the choice of indices, ν1 = −β34 and ν2 = −β24, the solution is

I0(ξ1, ξ2) = ξ−β34
1 ξ−β24

2 P2(µ; ξ), (55)

where P2 is an infinite series which can be identified with the Appell series F4 up to an
overall constant, namely,

P2(µ;ξ)=
Γ(1−µ1−µ2+d/2)Γ(1−µ1−µ3+d/2)

Γ(µ4)Γ(−µ1+d/2)

∞∑
n1,n2=0

ξn1
1
n1!

ξn2
2
n2!

Γ(n1+n2+µ4)Γ(n1+n2−µ1+d/2)
Γ(1+n1−µ1−µ2+d/2)Γ(1+n2−µ1−µ3+d/2)

,

(56)
where we have used |µ| = d = 4 as well as (23) to replace linear combinations of β’s with µ’s
in deriving this expression. With the prefactor chosen, the solution is the Appell function
F4. The four solutions to the indicial equations from (54) corresponds to the four solutions
to the Appell equation for F4, so that the general expression for the N = 4 conformal
integral becomes [19]

I
(µ)
4 = C1(µ)f1 + C2(µ)f2 + C3(µ)f3 + C3(µ)f4, (57)

where C’s are constants depending on the parameters µ and

f1 =|Q34|−µ3−µ4+d/2|Q24|−µ2−µ4+d/2|Q14|−µ1 |Q23|µ4−d/2F4

(
µ1,−µ4+d/2,1−µ3−µ4+d/2,1−µ2−µ4+d/2; ξ1,ξ2

)
,

f2 =|Q34|−µ3−µ4+d/2|Q13|−µ1−µ3+d/2|Q23|−µ2 |Q14|µ3−d/2F4

(
µ2,−µ3+d/2,1−µ3−µ4+d/2,1−µ1−µ3+d/2; ξ1,ξ2

)
,

f3 =|Q12|−µ1−µ2+d/2|Q24|−µ2−µ4+d/2|Q23|−µ3 |Q14|µ2−d/2F4

(
µ3,−µ2+d/2,1−µ1−µ2+d/2,1−µ2−µ4+d/2; ξ1,ξ2

)
,

f4 =|Q12|−µ1−µ2+d/2|Q13|−µ1−µ3+d/2|Q14|−µ4 |Q23|µ1−d/2F4

(
µ4,−µ1+d/2,1−µ1−µ2+d/2,1−µ1−µ3+d/2; ξ1,ξ2

)
. (58)

The solution is independent of the choice of β’s in the ansatz (22), as expected.
Our goal is to write the conformal integral in terms of a local system on the Fulton-

MacPherson completion of the configuration space, which possesses a canonical action of
the group of permutations of the points, to be reflected in the conformal integral. This
action is lifted to the conformal integral as the permutation of Qi and µi at once. While the
integral (6) is invariant under these permutations, the solution (57) is not. The permutation
symmetry has been broken by the choice of independent equations, namely (54). It can
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be restored by fixing the four constants such that they transform appropriately under
permutation of µi. The details of the computations to fix the constants is presented in the
appendix. The result is

C1(µ) = Γ(µ1)Γ(2− µ4)Γ(2− µ1 − µ2)Γ(2− µ1 − µ3),
C2(µ) = Γ(µ2)Γ(2− µ3)Γ(2− µ1 − µ2)Γ(2− µ2 − µ4),
C3(µ) = Γ(µ3)Γ(2− µ2)Γ(2− µ1 − µ3)Γ(2− µ3 − µ4),
C4(µ) = Γ(µ4)Γ(2− µ1)Γ(2− µ2 − µ4)Γ(2− µ3 − µ4),

(59)

up to an overall constant independent of ξ and µ, chosen to be unity here.

Example 2. For N = 5, we have

A =



Q12 Q13 Q14 Q15 Q23 Q24 Q25 Q34 Q35 Q45

Q1 1 1 1 1 0 0 0 0 0 0
Q2 1 0 0 0 1 1 1 0 0 0
Q3 0 1 0 0 1 0 0 1 1 0
Q4 0 0 1 0 0 1 0 1 0 1
Q5 0 0 0 1 0 0 1 0 1 1

 (60)

and

v =



Q12 Q13 Q14 Q15 Q23 Q24 Q25 Q34 Q35 Q45

ξ1 1 1 −1 −1 −1 0 0 0 0 1
ξ2 1 0 0 −1 −1 0 0 0 1 0
ξ3 1 0 −1 0 −1 0 0 1 0 0
ξ4 0 1 0 −1 −1 0 1 0 0 0
ξ5 0 1 −1 0 −1 1 0 0 0 0

. (61)

In (27) we take the equations corresponding to L24, L25, L34, L35, L45 as the independent
ones. The operators that contribute to these equations are

L1243, L1253, L1342, L1352, L1435, L1425, L1524, L1534, L2435, L2534, L2415, L2451. (62)

The simultaneous solution of the equations ensuing from these is

I0(ξ1, ξ2, ξ3, ξ4, ξ5) = ξ−β45
1 ξ−β35

2 ξ−β34
3 ξ−β25

4 ξ−β24
5 P5(µ; ξ), (63)

with the series P5 defined as

P5(µ;ξ) =
∞∑

n1,n2,n3,n4,n5=0

ξn1
1
n1!

ξn2
2
n2!

ξn3
3
n3!

ξn4
4
n4!

ξn5
5
n5! (64)

× 1
Γ(1+n1 +n2 +n3−µ1−µ2 +d/2)Γ(1+n1 +n4 +n5−µ1−µ3 +d/2)

× 1
Γ(1−n1−n3−n5−µ4)Γ(1−n1−n2−n4−µ5)Γ(1−n1−n2−n3−n4−n5 +µ1−d/2) .

Plugging in (22), we obtain the conformal integral

I
(µ1,µ2,µ3,µ4,µ5)
5 = |Q12|−µ1−µ2+d/2|Q13|−µ1−µ3+d/2|Q14|−µ4 |Q15|−µ5 |Q23|µ1−d/2P5(µ; ξ),

(65)
independent of the choice of β’s.
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Example 3. For N = 6 we have

A =



Q12Q13Q14Q15Q16Q23Q24Q25Q26Q34Q35Q36Q45Q46Q56

Q1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Q2 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Q3 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
Q4 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
Q5 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
Q6 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1


(66)

and

v =



Q12Q13Q14Q15Q16Q23Q24Q25Q26Q34Q35Q36Q45Q46Q56

ξ1 1 1 0 −1 −1 −1 0 0 0 0 0 0 0 0 1
ξ2 1 1 −1 0 −1 −1 0 0 0 0 0 0 0 1 0
ξ3 1 1 −1 −1 0 −1 0 0 0 0 0 0 1 0 0
ξ4 1 0 0 0 −1 −1 0 0 0 0 0 1 0 0 0
ξ5 1 0 0 −1 0 −1 0 0 0 0 1 0 0 0 0
ξ6 1 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0
ξ7 0 1 0 0 −1 −1 0 0 1 0 0 0 0 0 0
ξ8 0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0
ξ9 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0


. (67)

Taking L24, L25, · · · , L56 as independent we derive

I0(ξ1, ξ2, · · · , ξ9) = ξ−β56
1 ξ−β46

2 ξ−β45
3 ξ−β36

4 ξ−β35
5 ξ−β34

6 ξ−β26
7 ξ−β25

8 ξ−β24
9 P9(µ; ξ) (68)

as the simultaneous solution of the corresponding GKZ system. The series

P9(µ;ξ) =
∞∑

n1,n2,··· ,n9=0

ξn1
1
n1!

ξn2
2
n2!

ξn3
3
n3!

ξn4
4
n4!

ξn5
5
n5!

ξn6
6
n6!

ξn7
7
n7!

ξn8
8
n8!

ξn9
9
n9! (69)

× 1
Γ(1+n1 +n2 +n3 +n4 +n5 +n6−µ1−µ2 +d/2)

× 1
Γ(1+n1 +n2 +n3 +n7 +n8 +n9−µ1−µ3 +d/2)

× 1
Γ(1−n2−n3−n6−n9−µ4)Γ(1−n1−n3−n5−n8−µ5)Γ(1−n1−n2−n4−n7−µ6)

× 1
Γ(1−n1−n2−n3−n4−n5−n6−n7−n8−n9 +µ1−d/2) .

The conformal integral is

I
(µ1,µ2,µ3,µ4,µ5,µ6)
6 =|Q12|−µ1−µ2+d/2|Q13|−µ1−µ3+d/2|Q14|−µ4 |Q15|−µ5 |Q16|−µ6 |Q2,3|µ1−d/2P9(µ;ξ).

(70)

These examples can be generalized to any N , with the matrices v obtained using
Mathematica. Let us point out the strategy to fix the ν’s in general. The matrix v in the
basis chosen has an exchange matrix, one with unity on the anti-diagonal entries as the only
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non-zero elements on the right. Then, if a ξA has a factor of |Qij | coming from this part,
we choose the corresponding index νA = −βij . However, as we have shown, the choice of
β’s is obliterated in the final result. Generally, the N -point conformal integral is given by

IµN (Q)=|Q12|−µ1−µ2+d/2|Q13|−µ1−µ3+d/2|Q14|−µ4 |Q15|−µ5 ···|Q1N |−µN |Q2,3|µ1−d/2PN0(µ;ξ),
(71)

where PN0(µ; ξ) is a power series in the cross ratios, with coefficients determined by the
rows of the matrix v through the combinations appearing in (44).

The domain of definition of the series PN0 and hence the choice of independent cross
ratios vary in computing conformal correlation functions depending on the specific channel.
The correct germ to be chosen is dictated by monodromy projection. Accordingly, the
expressions presented here are to be analytically continued to other domains of convergence
of PN0 by Barnes’ integrals. This can be performed since the coefficients are expressed
in terms of Gamma functions. Unlike the case of four points wherein the series can be
expressed in terms of an Appell series, however, the cases with higher number of points the
series could not be identified with known functions. Also, let us point out that (57) has
four terms, expressed in terms of the Appell series with different parameters. This stems
from the special form of the Gale matrix (46), in which each column is repeated twice.
For N > 4 the columns of the Gale matrices are all different, leading to a single series
appearing in the expression for IµN (Q), as in (65) and (70).

To conclude, we have presented a method for computing conformal integrals in the
four-dimensional Euclidean space with explicit expressions in terms of infinite series of
cross ratios. The method is very general and relates conformal integrals to the GKZ A-
hypergeometric functions by defining them over the Fulton-MacPherson completion of the
configuration space of N points on the real Euclidean space. In the case of N = 4 we have
presented explicit expressions for the conformal integral invariant under permutation of
points, with computational details given in the appendix. This is required for the integral
to be a “good” function on the configuration space. Let us remark that in a conformal field
theory the permutation symmetry is broken by the choice of radii of convergence of operator
products. Thus, in using the integrals in such a theory, the constants need to be fixed anew,
preserving only the required subgroup of S4. For use in other contexts the constants are to
be fixed according to physical requirements. The conformal integrals for higher points may
be treated similarly with more cumbersome formulæ. From the scaling properties of the ex-
pressions it appears that the same formulæ will continue to hold in any dimension, d, as in-
dicated in the expressions in anticipation. Finally, the appearance of the GKZ system seems
to indicate an underlying real toric variety associated to the configuration space of points.

A Fixing the constants in example 1

We present the details of the computations to derive the constants (59). This is achieved by
demanding invariance of the expression (57) under the action of the permutation group S4
of {1, 2, 3, 4} on Qi and µi. It suffices to consider the generators σ12, σ23, σ14 of S4, where
σij denotes a cycle of the group exchanging i and j. A permutation of the Qi transforms
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the cross ratios (51) according to

σ12 : (ξ1, ξ2) −→ (ξ1
ξ2
,

1
ξ2

) (A.1)

σ23 : (ξ1, ξ2) −→ (ξ2, ξ1) (A.2)
σ14 : (ξ1, ξ2) −→ (ξ2, ξ1), (A.3)

thereby transforming the Appell functions appearing in (58). The first four arguments
depending on µi also change. Using the transformation formulæ of F4, namely,

F4(a, b; c, d;x, y) = F4(a, b; d, c; y, x), (A.4)

which follows from the definition, and

F4(a, b; c, d;x, y) = Γ(d)Γ(b− a)
Γ(d− a)Γ(b)(−y)−aF4

(
a, a− d+ 1; c, a− b+ 1, x

y
,

1
y

)
+ Γ(d)Γ(a− b)

Γ(d− b)Γ(a)(−y)−bF4

(
b, b− d+ 1; c, b− a+ 1, x

y
,

1
y

)
, (A.5)

the Appell functions can be expressed back in terms of F4 with arguments (ξ1, ξ2). Since
the functions (58) are the solutions to the four indicial equations associated to (54), these
are the germs of the local system in a neighborhood of ξ = 0 forming a basis. Hence, I(µ)

4
in (57) can be expressed in terms of the same functions (58) with new constants. In this
manner the permutations induce an action on the C’s. Let us denote the action of the
generators σij on the constants by

C ′i(µ) = σ12Ci(µ), C ′′i (µ) = σ23Ci(µ), C ′′′i (µ) = σ14Ci(µ), (A.6)

i = 1, 2, 3, 4. Writing the quadruple of C’s as a vector we obtain a matrix representation
of the permutations. For example, C′1(µ)

C′2(µ)
C′3(µ)
C′4(µ)

 = Σ12(µ)

 C1(µ)
C2(µ)
C3(µ)
C4(µ)

 , (A.7)

where Σ12(µ) denotes the transformation matrix under σ12, and similarly for the other two
generators. The three transformation matrices are

Σ12(µ) =

(−1)µ4Γ(3−µ1−µ4)Γ(2−µ1−µ3)
Γ(µ2) Γ(1−µ1)

(−1)−µ1Γ(3−µ2−µ3)Γ(2−µ1−µ3)
Γ(2−µ3)Γ(µ4−1) 0 0

(−1)−µ2Γ(3−µ1−µ4)Γ(2−µ2−µ4)
Γ(µ3−1)Γ(2−µ4)

(−1)µ3Γ(3−µ2−µ3)Γ(2−µ2−µ4)
Γ(1−µ2)Γ(µ1) 0 0

0 0 (−1)−µ3Γ(3−µ1−µ4)Γ(2−µ1−µ3)
Γ(µ2−1)Γ(2−µ1)

(−1)µ2Γ(3−µ2−µ3)Γ(2−µ1−µ3)
Γ(1−µ3)Γ(µ4)

0 0 (−1)µ1Γ(3−µ1−µ4)Γ(2−µ2−µ4)
Γ(µ3)Γ(1−µ4)

(−1)−µ4Γ(3−µ2−µ3)Γ(2−µ2−µ4)
Γ(2−µ2)Γ(µ1−1)

 ,

Σ23 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , Σ14 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 . (A.8)

The arguments of the latter two are suppressed since they do not depend on µ.
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To fix the constants, we first impose the condition that σ12 acting twice on Ci(µ) keeps
them unchanged. From (A.7), then, we conclude that the vector of C’s is an eigenvector of
the product matrix Σ′12(µ)Σ12(µ) with unit eigenvalue. Here the prime on Σ12 signifies that
the arguments of Σ12 are permuted by σ12. Solving the eigenvalue problem fixes the ratios

C2(µ)
C1(µ) = sin πµ1 sin πµ4

π sin π (µ2 + µ4)
Γ(1− µ1)Γ(µ2)Γ(2− µ3)Γ(µ4 − 1)

Γ(2− µ1 − µ3)Γ(3− µ1 − µ3) , (A.9)

C4(µ)
C3(µ) = sin πµ2 sin πµ3

π sin π (µ2 + µ4)
Γ(2− µ1)Γ(µ2 − 1)Γ(1− µ3)Γ(µ4)

Γ(2− µ1 − µ3)Γ(3− µ1 − µ3) . (A.10)

According to (A.8), C ′′1 (µ) = C1(µ) and C ′′2 (µ) = C3(µ) under the action of σ23.
Acting (A.9) with σ23 we obtain

C ′′2 (µ)
C ′′1 (µ) = C3(µ)

C1(µ) = sin πµ1 sin πµ4
π sin π (µ3 + µ4)

Γ(1− µ1)Γ(2− µ2)Γ(µ3)Γ(µ4 − 1)
Γ(2− µ1 − µ2)Γ(3− µ1 − µ2) . (A.11)

Using this in (A.10) we obtain
C4(µ)
C1(µ) = sinπµ1sinπµ4

sinπ(µ2+µ4)sinπ(µ3+µ4)
Γ(1−µ1)Γ(2−µ1)Γ(µ4)Γ(µ4−1)

Γ(2−µ1−µ3)Γ(3−µ1−µ3)Γ(2−µ1−µ2)Γ(3−µ1−µ2)
(A.12)

We have thus obtained C2(µ), C3(µ) and C4(µ) in terms of C1(µ) in (A.9), (A.11)
and (A.12), respectively.

While we have used the invariance of the constants under σ12 acting twice up till now,
we have not used the transformation (A.7) directly. Using (A.9), (A.11) and (A.12) in (A.7)
we obtain the ratios

C ′1(µ)
C1(µ) = Γ(µ2)Γ(2− µ2 − µ3)

Γ(µ1)Γ(2− µ1 − µ3) ,

C ′2(µ)
C2(µ) = Γ(µ1)Γ(2− µ1 − µ4)

Γ(µ2)Γ(2− µ2 − µ4) ,

C ′3(µ)
C3(µ) = Γ(2− µ1)Γ(2− µ2 − µ3)

Γ(2− µ2)Γ(2− µ1 − µ3) ,

C ′4(µ)
C4(µ) = Γ(2− µ2)Γ(2− µ1 − µ4)

Γ(2− µ1)Γ(2− µ2 − µ4) .

(A.13)

Since the primed constants are the transformed ones under σ12, we deduce

C1(µ) ∝ Γ(µ1)Γ(2− µ1 − µ3),
C2(µ) ∝ Γ(µ2)Γ(2− µ2 − µ4),
C3(µ) ∝ Γ(2− µ2)Γ(2− µ1 − µ3),
C4(µ) ∝ Γ(2− µ1)Γ(2− µ2 − µ4).

(A.14)

The constants transform under the other two generators as well. Under the action of σ23
these expressions transform to

C ′′1 (µ) ∝ Γ(µ1)Γ(2− µ1 − µ2),
C ′′2 (µ) ∝ Γ(µ3)Γ(2− µ3 − µ4),
C ′′3 (µ) ∝ Γ(2− µ3)Γ(2− µ1 − µ2),
C ′′4 (µ) ∝ Γ(2− µ1)Γ(2− µ3 − µ4).

(A.15)
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The constants C1 and C4 remain invariant under Σ23, while the other two are exchanged,
as is seen from (A.8). Incorporating extra factors thus arising we obtain

C1(µ) ∝ Γ(µ1)Γ(2− µ1 − µ2)Γ(2− µ1 − µ3),
C2(µ) ∝ Γ(µ2)Γ(2− µ1 − µ2)Γ(2− µ3)Γ(2− µ2 − µ4),
C3(µ) ∝ Γ(2− µ2)Γ(2− µ1 − µ3)Γ(µ3)Γ(2− µ3 − µ4),
C4(µ) ∝ Γ(2− µ1)Γ(2− µ2 − µ4)Γ(2− µ3 − µ4).

(A.16)

Furthermore, the constants C2 and C3 are invariant under σ14, in accordance with Σ14
in (A.8), while C1 and C4 transform to

C ′′′1 (µ) ∝ Γ(µ4)Γ(2− µ4 − µ2)Γ(2− µ4 − µ3)
C ′′′4 (µ) ∝ Γ(2− µ4)Γ(2− µ2 − µ1)Γ(2− µ3 − µ1).

(A.17)

The matrix Σ14 exchanges C1 and C4. Incorporating the additional factors in these two
we derive the expressions (59) taking the constant of proportionality as unity.
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