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1 Introduction

Motivated by two fundamental problems of particle and astroparticle physics, namely the
origin of neutrino masses [1–9] and the nature of dark matter [10], there’s been a great
effort to relate them within a single, predictive framework. Unarguably, they both point
towards the presence of physics beyond the Standard Model (SM), presumably with the
addition of new particles and symmetries that account for a mass mechanism for neutrinos,
a viable dark matter candidate and its stability.

An economical approach to combine all these appealing properties is to consider ra-
diative neutrino mass models [11–18] (for a review see [19]). In this kind of models, fields
running in a loop generate neutrino masses, giving rise to two clearly distinguishable par-
ticle sectors, one of which can be regarded as a dark sector by means of a symmetry. The
stability of the dark matter candidate, i.e. the lightest of the particles belonging to the
dark sector, is determined by the transformation properties of the SM fields and the dark
sector under symmetries [20–22]. In the most simple scenarios, the SM fields transform
only under an invariant subgroup of the symmetry, while any particle beyond those of the
SM not belonging to this subgroup will not be able to decay solely to the SM, i.e. it will
be part of the dark sector. A popular implementation of this principle is the scotogenic
model [23] and its many variants (see for instance [24–33]).

While a large number of models built following the described approach are consistent
with experimental data from neutrino oscillations and bounds from dark matter searches,
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there are further unknowns about fundamental particles that are also important to address.
The SM lacks a suitable theoretical explanation for the masses and the mixing pattern of
fermions. Furthermore, the majority of input parameters of the SM are directly related to
this flavour puzzle. The lepton mixing angles, being large and with a completely different
structure in comparison to their analogues in the quark sector, manifest the lack of a
first principle explanation of the flavour phenomenology [34–36]. Here is where flavour
symmetries can play a major role in explaining such mixing patterns and mass hierarchies.1
By means of imposing a flavour symmetry between the three generations it’s possible to
predict strong correlations between different observables. This is essential for a flavour
symmetry model to be verifiable.

In this paper we build a model for radiative neutrino masses with a flavour symmetry
Σ(81). We focus on such a discrete group due to an interesting feature: Σ(81) contains
a non-trivial subgroup formed by the singlets and one of the triplet representations. This
ensures, as we will show in section 4, that for a reasonable choice of the transformation
properties of the field content under the flavour symmetry, one can straightforwardly obtain
a stable dark matter candidate. Thus, providing a natural framework to account for dark
matter stability along with light radiative Majorana neutrino masses through a scotogenic-
like mechanism. Other works with flavoured stability are, for example, [39–43]. Other
works with a flavour group Σ(81) are for example [44, 45].

A more conventional role played by Σ(81) symmetry is to strongly constrain the struc-
ture of the mass matrices of fermions, leading to strong predictions that can be tested in
the following years by the next generation of neutrino oscillation [46–50], and neutrinoless
double beta decay experiments [51–56]. While the idea of imposing a flavour symmetry is
certainly not new, we will show that our setup has a series of attractive and unique features,
namely explaining the lepton mixing pattern, as well as predicting the absolute mass scale
of neutrinos, their ordering and the Majorana phases, and therefore leading to a definite
prediction for neutrinoless double beta decay (0νee). Moreover, this is obtained without
the need of extra flavons, i.e. extra scalars that further break the flavour symmetry. In
our setup the breaking of the flavour symmetry is done by extending the number of Higgs
doublets, as a variant of a 3HDM and giving them non-trivial charges under Σ(81).

The paper is structured as follows: in section 2 we present the model setup, i.e. the
field content, the charges under the SM gauge group and flavour symmetry and discuss
some of its most important attributes. In section 3 we delve into its most important phe-
nomenological predictions: absolute neutrino mass scale and ordering, strong correlations
between oscillation observables and the implications for neutrinoless double beta decay. In
section 4 we explicitly flesh out the non-Abelian stability mechanism provided by Σ(81).
The paper then closes with a short summary and conclusions. Details about the symmetry
group Σ(81) are relegated to appendix A.

1While there is a vast bibliography on this topic, we direct the interested readers to the reviews [37, 38].
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Fields SU(3)C × SU(2)L ×U(1)Y Σ(81)

V
isi
bl
e L (1,2,−1/2) 3D

`R (1,1,−1) 3̄D
H (1,2, 1/2) 3̄D

D
ar
k NL,R (1,1, 0) 3A

η (1,2, 1/2) 3A
φ (1,2, 1/2) 3̄A

Table 1. Particle content and symmetry transformation properties under the SM gauge group
and the flavour symmetry Σ(81). Note that the fields of the visible sector transform as 3D, 3̄D or
1(i,j), while the dark sector transforms as 3A or 3̄A. The lightest particle of the dark sector will be
automatically stable. See text for details.

2 The model setup

We extend the Standard Model gauge symmetry SU(3)C × SU(2)L ×U(1)Y by a global,
discrete flavour group Σ(81). This group is of the type Σ(3N3) and contains 9 singlets and
4 complex triplets, denoted as 1(i,j) with i, j = 0, 1, 2 and 3X(3̄X) with X = A,B,C,D

(see appendix A for details). The irreducible representations 3D (3̄D), together with the
singlets, form a closed set under tensor products, implying that if every Standard Model
field transforms as 3D, 3̄D or as one of the singlets, then any field transforming as 3A,B,C
and their conjugates, will belong to the dark sector. The lightest among them will then
be a dark matter candidate. This relation between Σ(81) and dark matter will be further
discussed in section 4.

The field content of the SM is extended by adding a vector-like singlet N and two Higgs-
like scalars, transforming non-trivially under Σ(81). All the fields and charges are given
in table 1. Comparing to the original scotogenic model [23], new fields were also required
to generate neutrino masses at one-loop with Σ(81). While for the simple Z2 symmetry
of the scotogenic model, any product of an odd field under Z2 times itself transforms as a
singlet under Z2, this is not the case for any of the triplet representations of Σ(81). For this
reason, one needs to promote the right-handed neutrino to a vector-like fermion and, on a
similar footing, two copies of the inert doublet Higgs are required, η and φ. For simplicity,
we split the most relevant parts of the Lagrangian as,

L ⊃ LVY + LDY − Vs , (2.1)

where the scalar potential is further divided into parts, for convenience, as Vs = Vν +
Vsoft + . . . . The first part of the potential contains the scalar interactions that enter in the
neutrino mass, the second of soft breaking terms of mass dimension 2 and “. . .” denotes
the rest of the usual four-scalar interactions, that are not interesting for the purpose of our
discussion. The terms in Vsoft are of the form,

Vsoft = µ2
ij H

†
iHj . (2.2)

– 3 –



J
H
E
P
1
0
(
2
0
2
2
)
0
8
0

These terms are necessary in order to satisfy phenomenological bounds. In the limit
µij → 0, which we will call the “symmetric limit”, the allowed VEV alignments will be
highly restricted by the Σ(81) symmetry. A preliminary analysis of the scalar potential,
solving the tadpole equations, always yields highly symmetrical VEV alignments in this
limit, for example (v1, v2, v3) = v (1, 0, 0) or v (1, 1, 1). However, from the mass matrices
shown in sections 2.1 and 2.2, it’s evident that realistic lepton mixing and masses cannot
be realized from such symmetric alignments. Including the µij terms will add nine new
parameters to the tadpole equations, allowing enough deviations from the symmetric limit
to get a realistic lepton mixing pattern. In particular, the alignment that has been obtained
from the phenomenological analysis is a perturbation from the tadpole equation solution,

v(1, 0, 0)→ v(1, ε1, ε2) with ε1, ε2 ∼ O(10−2). (2.3)

It is worth mentioning that such alignment approximately preserves a residual Z3 sym-
metry, which originates due to the invariance of the tadpole equation solution v(1, 0, 0)
under the a′ generator of Σ(81) in the 3̄D representation, as can be seen directly from
equation (A.5) in appendix A. On the other hand, the symmetric limit faces other phe-
nomenological challenges. Strong FCNCs are expected in this type of models, as well as
deviations from the Standard Model fermion-Higgs interactions. Following [57], after we
have chosen a particular VEV alignment, we can rotate to the Higgs basis H = ∑

i
vi
v Hi.

In this basis, only one doublet H has a non-zero VEV, while the other two orthogonal
combinations remain VEV-less. Then, the diagonal µ terms for these two doublets can be
taken to be arbitrarily large, thus effectively decoupling them from the rest of the model
without affecting the VEV structure. The doublet H will be SM-like. Finally, for a more
detailed analysis of the 3HDM scalar potential, see for example [58–65].

2.1 Charged lepton masses

In this section, we derive the mass matrix for the charged leptons given the particle content
of table 1. The relevant piece of the Lagrangian in equation (2.1) is the first term, which
contains the Yukawa interaction terms among fields of the visible sector. To make the
derivation clearer, all terms have been expanded in Σ(81) components, for example, L =
(L1, L2, L3)T, and similarly for the other triplets, following the tensor products given in
the second edition of the book “An Introduction to Non-Abelian Discrete Symmetries
for Particle Physicists” [66] (see also appendix A for more details). In this way, it’s made
explicit in the Lagrangian itself that several contractions may lead to a singlet under Σ(81).
For instance, three triplets 3D have three different contractions to an invariant singlet 1(0,0).

The Yukawa interactions among the visible sector are given by,

LVY = Y e
1

3∑
i=1

L̄i`RiHi (2.4)

+Y e
2

(
L̄1`R3H2 + L̄2`R1H3 + L̄3`R2H1

)
+Y e

3

(
L̄1`R2H3 + L̄2`R3H1 + L̄3`R1H2

)
+h.c. ,
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Figure 1. Diagram generating neutrino masses at one-loop in our model, analogous to the original
scotogenic model. Fields running in the loop are charged as 3A or 3̄A under Σ(81), while fields in
the external legs (SM) transform as 3D or 3̄D.

where SU(2)L indices and contractions have been omitted for simplicity. After electroweak
symmetry breaking (EWSB) the Lagrangian LVY in last equation gives rise to the mass
matrix for charged leptons,

Me = 1√
2


Y e

1 v1 Y e
3 v3 Y e

2 v2
Y e

2 v3 Y e
1 v2 Y e

3 v1
Y e

3 v2 Y e
2 v1 Y e

1 v3

 , (2.5)

in the basis {(L1, L2, L3), (`R1 , `R2 , `R3)}, with the vacuum expectation values of the Higgs
defined as, 〈Hi〉 = vi/

√
2 and ∑i v

2
i = v2

SM the Standard Model VEV. The mass matrix
Me is then diagonalised by the unitary rotations U` and V` as,

M̂e = U †`MeV`, with L→ U` L, `R → V` `R , M̂e = diag(me,mµ,mτ ) . (2.6)

2.2 Neutrino masses

The term LDY in the r.h.s. of equation (2.1), describes the interactions with the fields of the
dark sector. This piece, together with the scalar potential, will give rise to the one-loop
neutrino mass diagram depicted in figure 1 and its corresponding mass matrix. This term
in the Lagrangian is given by,

LDY = MN

(
N̄L1NR1 + N̄L2NR2 + N̄L3NR3

)
(2.7)

+Y N
1

(
L1N̄R2η1 + L2N̄R3η2 + L3N̄R1η3

)
+Y N

2 (L1NL1φ2 + L2NL2φ3 + L3NL3φ1)
+h.c. .

The relevant scalar couplings, analogous to the λ5 interaction from the original scotogenic
model [23], are

Vν ⊃ λ
(1)
5

[
(H1η

†
2)(H1φ

†
1) + (H2η

†
3)(H2φ

†
2) + (H3η

†
1)(H3φ

†
3)
]

+λ(2)
5

[
(H1η

†
1)(H2φ

†
3) + (H1η

†
3)(H3φ

†
2) + (H2η

†
2)(H3φ

†
1)
]

+h.c. . (2.8)
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The expansion in components of Σ(81) makes explicit that not every entry of the neutrino
mass matrix will be generated. In fact, there are only six possible diagrams with different
Σ(81) components outside the loop and running in it. After EWSB, the resultant neutrino
mass matrix is of the form,

Mν ∼
1
2


0 C1v

2
3 + C2v1v2 C1v

2
2 + C2v1v3

C1v
2
3 + C2v1v2 0 C1v

2
1 + C2v2v3

C1v
2
2 + C2v1v3 C1v

2
1 + C2v2v3 0

 . (2.9)

For the sake of clarity, we have assigned colours to each entry of the matrix and to its
corresponding terms in the Lagrangian LDY and the scalar potential Vν in equations (2.7)
and (2.8) respectively. The coefficients Ca are obtained by computing the different diagrams
of the type of figure 1 that contribute,

Ca ∼
1

16π2
λ

(a)
5 (Y N

1 ) (Y N
2 )

MN
. (2.10)

A very remarkable feature of the UV-realisation with Σ(81) that we present here, is the fact
that the neutrino matrix is exactly traceless with vanishing diagonal entries. This feature is
protected by the symmetry and yields several strong predictions in the neutrino sector, as
we will discuss in the next section. The matrix in equation (2.9) coefficients Ca correspond
to the dominant contribution. The neutrino mass matrix is, in general, given by,

(Mν)αβ = 1
16π2 (Y N

1 )βij (Y N
2 )αijMN

∑
X=R,I

σX (UαX)1i (UαX)i2B0(0,MN ,m
2
Xi) , (2.11)

where σR,I = ±1. The expression for the neutrino mass matrix (2.11) is very similar to
that of the original scotogenic model, where after electroweak symmetry breaking the neu-
tral part of the scalar doublet in the loop splits into its CP -even and CP -odd components
(denoted as R and I, respectively) due to the quartic coupling λ5. The result is the sum of
two B0 Passarino-Veltman loop functions [67] with a relative minus sign. Also, similar to
the generalised scotogenic models with several scalars [68], the mixing among the different
scalar doublets in the loop need to be considered. The main subtlety is that, given the
flavour symmetry Σ(81), not every coupling is allowed. The only non-zero Yukawa cou-
plings are (Y N

1 )112 = (Y N
1 )223 = (Y N

1 )331 = Y N
1 and (Y N

2 )121 = (Y N
2 )232 = (Y N

2 )313 = Y N
2 .

While the mass matrices mixing the neutral components of the scalars can be trivially
obtained from (2.8), with diagonalising matrices UαR and UαI , for the CP -even and odd
components respectively, in the basis (ηα, φk). Note that again Σ(81) only allows the
mixing among specific pairs of η and φ (see the scalar potential (2.8)).

It is worth noting that while lepton flavour is violated in the neutrino sector, the usual
dominant one-loop contribution to cLFV, mediated directly by Y N

i , is absent. The Yukawa
structure (2.7) leads to a diagonal contribution proportional to (|Y N

1 |2 + |Y N
2 |2) and the

charged lepton masses. Consequently, any cLFV process, like µ→ eγ, is suppressed.
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3 Predictions

The neutrino mass matrix in equation (2.9) is diagonalised as,

UTν Mν Uν = diag(m1,m2,m3) , (3.1)

where Uν is the neutrino unitary mixing matrix and mi are the neutrino masses. In the
Normal Ordering case m3 > m2 > m1, while in the Inverted Ordering case m2 > m1 > m3.
Considering both equations (2.6) and (3.1) we obtain the lepton mixing matrix,

Ulep = U †` Uν . (3.2)

Ulep is constrained by neutrino oscillation experiments. We choose the so-called symmetric
parametrisation of a general unitary matrix [5, 69],

Ulep = P (δ1, δ2, δ3)U23(θ23, φ23)U13(θ13, φ13)U12(θ12, φ12) , (3.3)

where P (δ1, δ2, δ3) is a diagonal matrix of unphysical phases and the Uij are complex
rotations in the ij plane, as for example,

U23(θ23, φ23) =


1 0 0
0 cos θ23 sin θ23 e

−iφ23

0 − sin θ23 e
iφ23 cos θ23

 . (3.4)

The phases φ12 and φ13 are relevant for neutrinoless double beta decay while the combina-
tion δCP = φ13 − φ12 − φ23 is the usual Dirac CP phase measured in neutrino oscillations.

Before going into the numerical results, let us note an interesting analytical property
of the matrix (2.9). The shape of this mass matrix, due to the Σ(81) flavour symmetry,
implies that the neutrino masses satisfy the relation,

1
2
∑

mi = mheaviest , (3.5)

wheremheaviest is the heaviest neutrino mass. Equation (3.5) is actually a general prediction
for a complex, symmetric, diagonal-less neutrino mass matrix. If we call such a mass matrix
A and define it in general as,

A =


0 a b
a 0 c

b c 0

 , with a, b, c ∈ C , (3.6)

diagonalised as usual by

UTAU = md = diagonal(m1,m2,m3) , (3.7)
U †A†AU = m2

d , (3.8)
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where md is real, diagonal and positive. With this definition the traces of the matrices
A†A and (A†A)2 can be computed straightforwardly,

Tr(A†A) = 2(|a|2 + |b|2 + |c|2) = m2
1 +m2

2 +m2
3 , (3.9)

Tr
[
(A†A)2

]
= 2(|a|2 + |b|2 + |c|2)2 = m4

1 +m4
2 +m4

3 . (3.10)

These traces fulfill the general relation,

1
2
[
Tr(A†A)

]2
= Tr

[
(A†A)2

]
, (3.11)

which translated to the mass eigenvalues reads,

m2
3 = (m1 ±m2)2 . (3.12)

Since mi are real and positive, only one solution survives after specifying the ordering. In
particular,

mNO
3 = mNO

1 +mNO
2 , (3.13)

mIO
2 = mIO

1 +mIO
3 , (3.14)

or in general, irrespective of the ordering, the sum rule (3.5).
Neutrino oscillations measure the mass squared differences of neutrino masses [70–75],

which in combination with the mass sum rules (3.13) and (3.14) lead to the prediction of
the absolute scale of the neutrino masses:

mNO
lightest ≈ 2.8× 10−2 eV , (3.15)

mIO
lightest ≈ 7.5× 10−4 eV . (3.16)

Both values are well below cosmological bounds [76] and direct measurements of neutrino
mass [77, 78]. However, they may be probed with astrophysical sources [79].

Note, however, that the neutrino mass matrix in equation (2.9) is more restricted
than the matrix in equation (3.6). In particular, the strong hierarchy in the masses of the
charged leptons implies a strong hierarchy between the VEVs of the Higgs doublets, further
restricting the neutrino mass matrix. We have performed a numerical scan and found the
following results and predictions for both orderings.

3.1 Inverted ordering

In the Inverted Ordering case, a strong correlation appears between θ12 and δCP when the
charged lepton masses, neutrino masses, θ13 and θ23 are fitted to their experimental values.
The model can accommodate all oscillation observables inside their 3σ ranges with a slight
tension in the θ12 vs δCP plane, see figure 2. However, the best fit value of δCP is very
sensible to new data sets. An update from the Nova collaboration [73] may change the
picture in 2022.

Moreover, we are using the global fit [80] to produce the plots, although the other two
global fits [81, 82] yield slightly lower values for δCP , thus reducing the tension of the model.

– 8 –
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Figure 2. Correlation between θ12 and δCP in the IO case when the other observables are fitted
inside their 3σ experimental ranges: charged lepton masses, neutrino squared mass differences, θ13
and θ23. The 3σ tension in the combined θ12− δCP plane may be relieved if δCP is measured to be
around CP conserving values. In that case, θ12 would lie in its 1σ experimental region. χ2 profiles
extracted from the global fit [80].

Taking θ12 alone, we can see that the model can accommodate θ12 ≈ θbest fit12 if δCP ≈ π.
In other words, this model prediction may be tested in the following data releases of
neutrino oscillation experiments. Furthermore, the Majorana phases φ12 and φ13, relevant
for neutrinoless beta decay experiments, also obtain a strong correlation, as seen in figure 3.
The striking similarities between these correlations and the ones in [83, 84] may indicate
that our setup leads to the partial conservation of some of the TBM symmetries of the
neutrino mass matrix.

For neutrinoless double beta decay, if the Majorana neutrino mass mechanism is the
dominant contribution to 0νββ, its rate will be proportional to the quantity |mee|, given by,

|mee| =
∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ = |c2
12c

2
13m1 + s2

12c
2
13e

2iφ12m2 + s2
13e

2iφ13m3| . (3.17)

In our model the Majorana phases are approximately fixed as φ12 ≈ 0.45π and φ13 ≈
0.12π, while the neutrino masses are also predicted to be around m3 ≈ 7.51 × 10−4 eV,
m1 ≈ 4.95× 10−2 eV, m2 ≈ 5.02× 10−2 eV. Small deviations from these values are possible
due to the experimental uncertainty on ∆m2

ij and the variance in φij . This automatically
leads to a definite prediction of |mee| in our model:

|mmodel
ee | ≈ 0.018 eV , (3.18)

Note that the term with φ13 in (3.17) interferes constructively to |mee| but is strongly
suppressed by s2

13m3, while the term with φ12 interferes destructively. This is why the
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Figure 3. Correlations between physical phases in the IO case. Left up: correlation between φ12
and δCP . Right up: correlation between φ12 and δCP . Down: correlation between the Majorana
phases φ13 and φ13. In all the plots blue dots arise when the other observables are fitted inside
their 3σ experimental ranges except for θ12 and δCP , which are free. In addition, purple dots fit θ12
and red dots also fit δCP at the 3σ level. By imposing all the experimental constraints, the model
predicts δCP ≈ 1.2π, φ12 ≈ 0.45π and φ13 ≈ 0.12π plus a small variance.

allowed points in the model are in the lower region of |mee| as seen in figure 4. The nEXO
experiment is expected to test this model prediction in the future [85, 86].

3.2 Normal ordering

In the Normal Ordering case, after imposing the correct charged lepton and neutrino masses
at 3σ, a strong correlation appears between the mixing angles θ23 and θ13 in the neutrino
sector. This correlation is not compatible with experimental constraints by more than
7σ, as can be seen in figure 5. Therefore, Normal Ordering of neutrino masses cannot be
realised in this model.
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Figure 4. |mee| is restricted to a small region in this model. The reason is that mlight and the
Majorana phases are predicted, as well as the ordering. The deviation from a single point comes
from the experimental uncertainties in ∆m2

ij and a small variance in φij . The current experimental
constraints are given by KamLAND [51] and Planck [76]. In the future, nEXO is expected to have
enough sensitivity to completely rule out the inverted ordering region [86].

Figure 5. Model prediction in the NO case. The correlation between θ13 and θ23 is incompatible
with current experimental constraints at more than 7σ. Therefore the model predicts IO. χ2 profiles
extracted from the global fit [80].
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Figure 6. Stability diagrams of the dark matter sector in the model. The lightest particle charged
as 3(3̄)A,B,C cannot decay into only Standard Model fields. Left: allowed decay channels for a
dark sector particle will necessarily include at least one dark sector particle in the final state (if
kinematically allowed). Right: the lightest dark sector particle cannot decay into Standard Model
particles due to the flavour symmetry, thus ensuring its stability.

4 Dark matter sector

The Σ(81) flavour symmetry has the additional property of stabilizing the lightest of the
dark sector fields. In order to see how this mechanism works, we must first note that the
singlets 1(i,j) and the 3D, 3̄D triplets form a closed subset under the tensor products, i.e.

1(i,j) × 1(k,l) = 1(i+k, j+l), 1(i,j) × 3(3̄)D = 3(3̄)D, (4.1)
3(3̄)D × 3(3̄)D = 3̄(3)D, 3D × 3̄D = 1(i,j) . (4.2)

We start by imposing the condition that all of the visible sector fields, i.e. the Standard
Model fermions and Higgs, transform as either 1(i,j), 3D or 3̄D. This automatically implies
that any effective operator formed by any arbitrary combination of SM particles, Ovisible,
will still transform under the same subgroup, i.e. as 1(i,j), 3D or 3̄D.

Consider now a field η belonging to the dark sector and transforming as, for example,
3A. It’s clear that the effective operator η .Ovisible cannot be invariant under Σ(81), because
no operator of the type Ovisible transforms as 3̄A.

In conclusion, any symmetry invariant decay operator of a particle belonging to the
dark sector must involve, at least, one dark sector particle in the final state and, thus, the
lightest of them will necessarily be stable (see figure 6). In our model the dark matter
could be either the lightest neutral mass eigenstate of the scalars η, φ or the vector-like
fermion N , if lighter than the scalars.

Note that this is a generalised, non-Abelian version of the original scotogenic mecha-
nism of [23], where the stability of the dark matter candidate is enforced by a Z2 symmetry.
This mechanism was extended to Abelian symmetries in [20, 21]. Moreover, in [40] the au-
thors present a similar mechanism for some discrete subgroups of SU(2).

While similar to the original scotogenic model, Σ(81) makes a clear distinction as
already explained, even at the neutrino mass level: there are three independent scotogenic-
like diagrams. Each set of unconnected fields and couplings were denoted with colours on
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eqs. (2.7)–(2.9) for clarity. Regarding the dark matter, this means that the model contains
a three-component DM, where the candidates are the lightest of each triad {η1, φ3, N2},
{η2, φ1, N3} and {η3, φ2, N1}. Of course, after EWSB the neutral part of each scalar dou-
blet will split into its CP-odd and CP-even components due to the usual λ5 term in equa-
tion (2.8). For more details on the scalar sector, we refer to appendix B.

It is worth noting that while in most of the Scotogenic scenarios the scalar DM is
normally preferred [87], due to the problems of underproduction versus large cLFV for the
fermion singlet candidate [88], in this case the issue is largely mitigated. The fact that
we have a three-component DM and no large contributions to cLFV, makes the singlet
fermion DM case again phenomenologically interesting. Nevertheless, a complete study of
the dark matter phenomenology is beyond the scope of this paper.

5 Conclusions

We have presented a simple but extremely predictive variant of the scotogenic model. We
promoted the scotogenic Z2 symmetry of the original work to a non-Abelian Σ(81) sym-
metry, which will satisfy the same role of stabilizing the dark matter candidates running in
the neutrino mass loop. We considered that leptons, as well as the Higgs doublet H, trans-
form as triplets under the flavour symmetry, thus, resembling a 3HDM. These three scalar
doublets are responsible for all the spontaneous symmetry breaking, which implies that the
model does not need extra flavons in order to fit the experimental data. We found that such
a model can, not only satisfy the current experimental constraints, but also lead to very
strong and testable predictions in the close future. Fitting the charged lepton masses, θ13
and θ23 inside their 3σ allowed ranges, we automatically obtained the following predictions:

• Neutrino mass sum rule: 1
2
∑
mi = mheaviest.

• Only Inverted Ordering is realised.

• These two conditions together lead to mlightest ≈ 7.5 × 10−4 eV, with some small
deviations due to experimental uncertainty in ∆m2

ij .

• Strong correlation between θ12 and δCP as shown in figure 2, testable in the near
future [89, 90].

• Majorana phases predicted to be around φ12 ≈ 0.45π and φ13 ≈ 0.12π, when all the
other observables are in their experimental allowed ranges (see figure 3).

• The prediction of the Majorana phases and mlightest lead to |mee| ≈ 0.018 eV, testable
in future neutrinoless double beta decay experiments [86] (see figure 4).

• The flavour symmetry Σ(81) ensures the stability of the dark matter candidate, which
could be either fermionic or scalar. No other symmetries are required apart from the
Standard Model gauge symmetries and the spontaneous symmetry breaking comes
solely from the three Higgs gauge doublets arranged into a flavour triplet.

– 13 –



J
H
E
P
1
0
(
2
0
2
2
)
0
8
0

Acknowledgments

The authors want to thank Andreas Trautner for double covering us with wisdom and
Rahul Srivastava for helpful comments. We also thank professor Luís Lavoura and pro-
fessor Martin K. Hirsch for helpful insight. O.M. is supported by the Spanish grants
PID2020-113775GB-I00 (AEI/10.13039/501100011033), CIPROM/2021/054 (Generalitat
Valenciana) and Programa Santiago Grisolía (No. GRISOLIA/2020/025). R.C. is sup-
ported by the Alexander von Humboldt Foundation Fellowship.

A Σ(81) group

The group Σ(81) is a discrete, non-Abelian subgroup of U(3) [91] and belongs to the
family of groups Σ(3N3). It has four generators denoted by a, a′, a′′, and b, which fulfill
the relations,

a3 = a′
3 = a′′

3 = 1, aa′ = a′a, aa′′ = a′′a, a′a′′ = a′′a′, (A.1)
b3 = 1, b2ab = a′′, b2a′′b = a′, b2a′b = a. (A.2)

All the elements of Σ(81) can be written in terms of the four generators as,

∀g ∈ Σ(81), g = bkana′
n
a′′
l
, with k, n, n, l = 0, 1, 2. (A.3)

The representations of Σ(81) used for the fields multiplets in this model are 3A, 3̄A, 3D,
and 3̄D. We choose the following basis for these representations: in the 3̄A,

b =


0 1 0
0 0 1
1 0 0

 , a =


ω 0 0
0 1 0
0 0 1

 , a′ =


1 0 0
0 1 0
0 0 ω

 , a′′ =


1 0 0
0 ω 0
0 0 1

 , (A.4)

where ω = ei
2π/3. In the 3̄D representation,

b =


0 1 0
0 0 1
1 0 0

 , a =


ω2 0 0
0 1 0
0 0 ω

 , a′ =


1 0 0
0 ω 0
0 0 ω2

 , a′′ =


ω 0 0
0 ω2 0
0 0 1

 . (A.5)

Notice that the generators in the 3A representation are the complex conjugate of the
generators in the 3̄A, and similarly between the 3D, and 3̄D.

It’s worth showing explicitly one of the key properties of Σ(81) that give rise to dark
matter stability in the model presented, i.e. the singlet irreps together with 3D and 3̄D
form a close subgroup. This can be seen by looking at the products (A.7)–(A.11).

1(k,l) × 3D(3̄D) = 3D(3̄D) , 3D × 3D = 3̄D + 3̄D + 3̄D , 3D × 3̄D = 1(k,l) , (A.6)

with k, l = 0, 1, 2.
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Expanding in components in the basis defined by (A.4) and (A.5), we have the tensor
products,

x1

x2

x3


3D

⊗


y1

y2

y3


3̄D

=
∑

k=0,1,2
[(x1y1+ω2kx2y2+ωkx3y3)1(k,0)⊕(x2y3+ω2kx3y1+ωkx1y2)1(k,2)

⊕(x3y2+ω2kx1y3+ωkx2y1)1(k,1) ]. (A.7)
x1

x2

x3


3D

⊗


y1

y2

y3


3D

=


x1y1

x2y2

x3y3


3̄D

⊕


x2y3

x3y1

x1y2


3̄D

⊕


x3y2

x1y3

x2y1


3̄D

, (A.8)

(x)1(k,0)⊗


y1

y2

y3


3(3̄)D

=


xy1

ωkxy2

ω2kxy3


3(3̄)D

(A.9)

(x)1(k,1)⊗


y1

y2

y3


3(3̄)D

=


xy3

ωkxy1

ω2kxy2


3(3̄)D

(A.10)

(x)1(k,2)⊗


y1

y2

y3


3(3̄)D

=


xy2

ωkxy3

ω2kxy1


3(3̄)D

(A.11)

The label 1(k,l), with k, l = 0, 1, 2, represent the nine different one dimensional irreps of
Σ(81), being 1(0,0) the invariant singlet.

For further details of the properties of the Σ(81) group and the explicit expressions of
the tensor products of dark sector fields we refer the reader to the second edition of the
book “An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists” [66],
since the first edition had inconsistencies in the representations used in the tensor products.

B Scalar sector

We now explicitly write down the relevant Lagrangian terms that lead to the masses of the
scalars η and φ. These are given by equations (2.8) and

Vν ⊃ m2
η (η†η) +m2

φ (φ†φ) (B.1)

+
3∑
i=1

λHηi
[
(H†H)(η†η)

]
i
+ λHφi

[
(H†H)(φ†φ)

]
i

+
6∑
i=4

λHηi
[
(H†η)(η†H)

]
i
+ λHφi

[
(H†φ)(φ†H)

]
i
.
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where the sub-index outside a bracket [X]i represent the different contractions under Σ(81)
to the trivial singlet. Explicitly,

m2
X(X†X)=m2

X(X†1X1+X†2X2+X†3X3), (B.2)

λHX1
[
(H†H)(X†X)

]
1
=λHX1

(
(H†1H1)(X†1X1)+(H†2H2)(X†2X2)+(H†3H3)(X†3X3)

)
, (B.3)

λHX2
[
(H†H)(X†X)

]
2
=λHX2

(
(H†1H1)(X†2X2)+(H†2H2)(X†3X3)+(H†3H3)(X†1X1)

)
, (B.4)

λHX3
[
(H†H)(X†X)

]
3
=λHX3

(
(H†1H1)(X†3X3)+(H†2H2)(X†1X1)+(H†3H3)(X†2X2)

)
, (B.5)

λHX4
[
(H†X)(X†H)

]
4
=λHX4

(
(H†1X1)(X†1H1)+(H†2X2)(X†2H2)+(H†3X3)(X†3H3)

)
, (B.6)

λHX5
[
(H†X)(X†H)

]
5
=λHX5

(
(H†1X2)(X†2H1)+(H†2X3)(X†3H2)+(H†3X1)(X†1H3)

)
, (B.7)

λHX6
[
(H†X)(X†H)

]
6
=λHX6

(
(H†1X3)(X†3H1)+(H†2X1)(X†1H2)+(H†3X2)(X†2H3)

)
, (B.8)

with X ∈ {η, φ}.
As usual, the scalars ηi and φi can be written down into their SU(2)L components as,

ηi =
(
η+
i ,

1√
2

(ηRi + i ηIi)
)T

, (B.9)

φi =
(
φ+
i ,

1√
2

(φRi + i φIi)
)T

. (B.10)

After EWSB, the charged components of each ηi and φi remain as mass eigenstates,
with masses

mη+
i
≈ m2

η + v2
1λHηi (B.11)

mφ+
i
≈ m2

φ + v2
1λHφi (B.12)

in the limit v1 � v2, v3 (see (2.3)).
On the other hand, the neutral components mix through the λ(k)

5 terms given in equa-
tion (2.8). Assuming a CP conserving scalar potential, which implies λ(1)

5 , λ
(2)
5 ∈ Reals, the

mixing only happens among CP-odd and CP-even scalars and in pairs {η1, φ3}, {η2, φ1}
and {η3, φ2}. Respectively, the mass matrices for each pair is given by

mR,I1 ≈

m2
η + v2

1(λHη1 + λHη4) ±v1v2λ
(2)
5

±v1v2λ
(2)
5 m2

φ + v2
1(λHφ3 + λHφ6)

 , (B.13)

mR,I2 ≈

m2
η + v2

1(λHη2 + λHη5) ±v2
1λ

(1)
5

±v2
1λ

(1)
5 m2

φ + v2
1(λHφ1 + λHφ4)

 , (B.14)

mR,I3 ≈

m2
η + v2

1(λHη3 + λHη6) ±v1v3λ
(2)
5

±v1v3λ
(2)
5 m2

φ + v2
1(λHφ2 + λHφ5)

 . (B.15)

By choosing appropriate signs for the λ couplings one can make sure that a neutral
component is the lightest field of each set.
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