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1 Introduction

The origin of neutrino mass and mixing remains one of the most important questions
in particle physics, along with other unresolved questions such as the matter-antimatter
asymmetry of the Universe, and the possible unification of the strong and electroweak
interactions.

The excess of matter over antimatter in the Universe has been firmly established. Al-
though the standard model (SM) qualitatively satisfies the Sakharov conditions [1], the CP
violation in SM is too small to explain the baryon asymmetry. A dynamical generation of
baryon asymmetry requires new physics beyond SM. The discovery of neutrino masses and
mixing in neutrino oscillation experiments is a great progress in particle physics. The small-
ness of neutrino masses can be naturally explained in the type I seesaw mechanism in which
a number of heavy Majorana neutrinos are added to the SM, and a direct cosmological im-
plication is leptogenesis [2]. The observed baryon asymmetry can be produced by the out-of
equilibrium, CP and B − L violating decays of the right-handed neutrinos, see refs. [3, 4]
for recent review papers. In the type I seesaw model with three right-handed neutrinos,
18 additional parameters are introduced and the leptogenesis can successfully generate the
observed baryon asymmetry if the neutrino Yukawa couplings and right-handed neutrino
masses are freely chosen. It is difficult to test leptogenesis due to the large number of free
parameters of in a generic seesaw model.
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Masses and mixing angles of elementary fermions are known with good precision at
present. The mass eigenvalues of quarks and leptons have a large hierarchy, the flavor
mixings in quark and lepton sectors are drastically different from each other: small quark
mixing angles versus large lepton mixing angles. Understanding the origin of the flavor
structure of SM is another of the greatest challenges in particle physics. The fundamental
principal behind the observed patterns of fermion masses and mixing is still elusive, and the
approach of flavour symmetry has been extensively studied in the last several decades [5, 6].
Many candidate groups for flavor symmetry have been discussed, and many models which
can describe some pieces of the flavor puzzle were constructed. The flavor symmetry relates
three generations of matter fields so that the resulting quark and lepton mass matrices
have certain structure and the total number of free parameters in fermion mass matrices
are reduced.

The flavor symmetry can not be exact symmetry and it has to be broken explicitly
or spontaneously to accommodate the non-trivial mixing patterns of quarks and leptons.
As a consequence, the fermion mass matrices are usually expanded as power series of
the symmetry breaking parameters. The breaking of flavour symmetries typically relies on
several scalar multiplets called flavons whose vacuum expectation values should be oriented
along certain directions in flavor space. In addition, extra cyclic group generally is necessary
to forbid the unwanted operators and realize the correct vacuum alignment [6]. Thus the
construction of flavon potential is intricate and make the flavor symmetry models rather
complicated.

The modular invariance as flavor symmetry is recently proposed in [6]. From the
top-down perspective, modular invariance can naturally arise from the compactification
of a higher dimensional theory on a torus or an orbifold. In minimal schemes based on
modular invariance, flavons are not necessary and the complex modulus τ is the unique
symmetry breaking parameter, consequently the vacuum alignment problem is consid-
erably simplified. The action of modular symmetry on the matter fields is character-
ized by the modular weights and their transformations under the finite modular group
ΓN ≡ Γ/Γ(N), where Γ(N) is the principal congruence subgroup of level N of the mod-
ular group Γ ≡ PSL(2, Z) [6]. Modular invariance constrains the Yukawa couplings to be
level N modular forms which are specific holomorphic functions of τ . To be more general,
one can use any normal subgroup of Γ rather than Γ(N) such that the Yukawa couplings
are vector-valued modular forms of SL(2, Z) [7]. The modular invariance approach to the
flavor puzzle, especially for the lepton flavor structure have been extensively exploited,
and various modular invariant models have been constructed in past years with the groups
Γ2 ∼= S3 [8–11], Γ3 ∼= A4 [6, 8, 9, 12–38], Γ4 ∼= S4 [25, 39–47], Γ5 ∼= A5 [44, 48, 49]
and Γ7 ∼= PSL(2, Z7) [50]. Similar attempts have been made to construct modular invari-
ant models for quarks and quark-lepton unification models based on the modular groups
A4 [15, 18, 32, 36], S4 [47], T ′ [51], S′4 [52] and A′5 [53]. The formalism of modular in-
variance has been extended to include odd weight modular forms [54], fractional weight
modular forms [53, 55] and it can involve several moduli [41, 56]. The interplay of modular
symmetry and generalized CP symmetry has been studied [57–60]. Moreover, modular
invariance has been intensively discussed from a top-down perspective [58, 59, 61–64].
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The origin of all quark and lepton masses and mixing may be related with each other.
This suggests to combine the Grand unified theories (GUTs) with flavor symmetry. The
electromagnetic, weak, and strong forces are merged into a single force at high energies in
GUTs. The quark and lepton fields are embedded into one or few gauge multiplets, thus
GUTs specifically predict relations among the fermion masses. Inclusion of flavor symmetry
allows to predict the mixing parameters of quark and leptons. However, combining tra-
ditional flavor symmetry with GUTs also requires the introduction of flavons and vacuum
alignment in order to break the flavor symmetry, see ref. [65] for a review. Therefore there
is a strong motivation for introducing modular symmetry in the context of GUTs such that
the complication of flavor symmetry breaking can be removed and the predictive power
of the GUTs models can be improved considerably. The possible combinations of SU(5)
GUTs and modular symmetry groups have been discussed in the literature, and several
modular SU(5) GUT models have been built at level 2 [10, 66], level 3 [14, 67, 68] and level
4 [69–71].

Besides the simple SU(5) GUT, the SO(10) GUT is another prototype of grand unified
theory. The unification of matter is even more complete in SO(10) GUT, since the 16-
dimensional spinor representation of SO(10) can accommodate all the known SM chiral
fermions as well as the right handed neutrino. This makes SO(10) GUTs particularly
attractive candidates for explaining the origin of neutrino mass and mixing, the unification
of the strong and electroweak interactions, and the matter-antimatter asymmetry of the
universe, simultaneously. It is notable that both the right-handed neutrino mass matrix
and neutrino Yukawa coupling are constrained by the SO(10) GUT symmetry, and they
are related with the quark and lepton mass matrices. The SO(10) GUTs employing an
conventional flavor symmetry has been studied so far. For example, models with SO(10)×
A4 [72–75] and SO(10)×S4 [76–80] have already been investigated. As in SU(5) GUTs, the
cumbersome vacuum alignment required in conventional flavor symmetry can be eliminated
by the use of modular symmetry.

Following this line of reasoning, SUSY SO(10)×A4 modular models were constructed
in [81]. We found that the models involving in addition to the Higgs fields in the 10 and
the 126, also a Higgs field in the 120, proved to give a successful description of quark
and lepton (including neutrino) masses and mixing, with many such models being found
with sums of modular weights of up to 8 or less. The neutrino masses were generated
by the type-I and/or type II seesaw mechanisms [82–86] arising from the SU(2)L singlet
and/or triplet components of the Higgs in the 126 representation. However the question
of leptogenesis was not addressed for these models.

In this paper, we study the prediction for leptogenesis in two of the renormalizable
SUSY SO(10) × A4 modular models from [81] in which the neutrino mass is dominantly
generated by the type I seesaw mechanism.1 The evolution of the lepton asymmetries are
described in terms of the three-flavored density matrix equations for three heavy Majorana
neutrinos, where both vanishing initial condition and thermal initial condition of the right-

1The study of such models involving a mixture of type-I and type-II seesaw models is much more
complicated and left for a future project.
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handed neutrinos are considered. We also present an analytical approximation based on the
Boltzmann equations. We find regions of parameter space compatible with the measured
fermion masses and mixing parameters as well as the baryon asymmetry of the Universe.
The predictions for the light neutrino masses, the effective mass in neutrinoless double beta
decay and the leptonic CP violation phases are discussed.

This paper is organized as follows. In section 2 we briefly review the modular invariant
SO(10) models and the predictions for the fermion mass matrices. In section 3 we present
the formalism of density matrix to describe the evolution of the lepton asymmetries and
the number densities of right-handed neutrinos. Moreover, the decay and washout of three
right-handed neutrinos are considered in turns in the framework of Boltzmann equations,
and an approximation formula for the final lepton asymmetry is given. In section 4 we
present our numerical analysis for the concerned benchmark models, the results of the
fit and the predictions of the models are given. Section 5 concludes the paper. In the
appendix A we give two examples where the analytical approximations disagree with the
numerical results.

2 Fermion masses in SO(10) GUTs with A4 modular symmetry

It is known that all the fermionic multiplets of each SM generation, plus one right-handed
neutrino singlet, fit exactly into the 16 dimensional spinorial representation of the SO(10)
grand unification group. As a consequence, in renormalizable SO(10) models, the Higgs
fields that contribute to fermion masses are in the SO(10) representations 10, 126 and
120 which are denoted by H, ∆ and Σ respectively. The most general form of the Yukawa
superpotential for renormalizable SO(10) is given by

WY = Y10
ij ψiψjH + Y126

ij ψiψj∆ + Y120
ij ψiψjΣ , (2.1)

with i = 1, 2, 3, and ψi stand for the three generations of matter fields which are in the
16 dimensional representation of SO(10). The Yukawa coupling matrices Y10 and Y126 are
symmetric in generation space, whereas Y120

ij are antisymmetric. Their explicit forms can
be constrained by the flavor symmetry which relates the three generations of fermions. The
GUT Higgs H and ∆ contain one pair of up-type and down-type Higgs doublets while Σ has
two pairs of such doublets. It is assumed that only one linear combination of up-type and
one of down-type Higgs doublets are light, and the remaining combinations acquire GUT
scale masses. The vacuum expectation value (VEV) of the light Higgs doublets breaks the
electroweak symmetry and generate the fermion masses. The mass matrices of quarks and
charged leptons can be written as [81, 87–91]

Mu =
(
Y10 + r2Y126 + r3Y120

)
vu,

Md = r1
(
Y10 + Y126 + Y120

)
vd ,

Ml = r1
(
Y10 − 3Y126 + ceY120

)
vd , (2.2)

where vu and vd refer to the VEVs of the MSSM Higgs fields Hu and Hd respectively, and
some ratios of VEVs have been absorbed into the Yukawa matrices Y10, Y126 and Y120 [81].
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Moreover, the Higgs multiplet ∆ also contains the Pati-Salam multiplets (10,3,1) and
(10,1,3) which can generate the Majorana masses for the left-handed and right-handed
neutrinos. Hence generally the light neutrino mass receives contributions from both type I
and type II seesaw mechanism,

Mν = ML −MDM
−1
R MT

D , (2.3)

with
MD =

(
Y10 − 3r2Y126 + cνY120

)
vu, MR = vRY126, ML = vLY126 . (2.4)

The dimensionless parameters r1,2,3 and ce,ν in eqs. (2.2), (2.4) are determined by the
Clebsch-Gordan coefficients of SO(10) and the mixing among the Higgs fields. In the
present work, we consider the scenario of type I seesaw dominance which is the limit
of vL → 0.

2.1 SO(10) models with A4 modular symmetry

The A4 group has twelve elements and it can be generated by two generators S and T

obeying the relations
S2 = (ST )3 = T 3 = 1 . (2.5)

It has four non-equivalent irreducible representations: one triplet 3 and three singlets 1,
1′ and 1′′. We work in the basis where T is represented by diagonal matrix,

1 : S = 1, T = 1 ,

1′ : S = 1, T = ω ,

1′′ : S = 1, T = ω2 ,

3 : S = 1
3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω 0
0 0 ω2

 . (2.6)

The tensor product of two triplets is 3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A, where 3S and 3A
denote the symmetric and the antisymmetric triplet combinations respectively. In terms
of the components of the two triplets α = (α1, α2, α3)T and β = (β1, β2, β3)T , we has

α1β1 + α2β3 + α3β2 ∼ 1 ,
α3β3 + α1β2 + α2β1 ∼ 1′ ,
α2β2 + α1β3 + α3β1 ∼ 1′′ ,2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1
2α2β2 − α1β3 − α3β1

 ∼ 3S ,

α2β3 − α3β2
α1β2 − α2β1
α3β1 − α1β3

 ∼ 3A . (2.7)
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There are three linearly independent modular forms of weight 2 at level 3 [6], they transform
in the triplet representation of A4 up to the automorphy factor (cτ + d)2, and they can be
explicitly constructed in terms of the Dedekind eta-function η(τ) as follow [54]:

Y
(2)

3 (τ) =

 ε2(τ)√
2ϑ(τ)ε(τ)
−ϑ2(τ)

 ≡
Y1(τ)
Y2(τ)
Y3(τ)

 , (2.8)

with
ϑ(τ) = 3

√
2 η

3(3τ)
η(τ) , ε(τ) = −3η3(3τ) + η3(τ/3)

η(τ) , (2.9)

and
η(τ) = q1/24

∞∏
n=1

(1− qn) , q = ei2πτ . (2.10)

Then we can read out the q-expansion of the modular forms Y1,2,3(τ) as

Y1(τ) = 1 + 12q+ 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + 96q7 + 180q8 + 12q9 + 216q10 + . . . ,

Y2(τ) = −6q1/3
(
1 + 7q+ 8q2 + 18q3 + 14q4 + 31q5 + 20q6 + 36q7 + 31q8 + 56q9 + 32q10 + . . .

)
,

Y3(τ) = −18q2/3
(
1 + 2q+ 5q2 + 4q3 + 8q4 + 6q5 + 14q6 + 8q7 + 14q8 + 10q9 + 21q10 + . . .

)
.

(2.11)
The higher weight modular forms of level 3 can be constructed from the tensor product of
Y

(2)
3 . There are five linearly independent weight 4 modular forms which can be arrange

into the A4 multiplets 1, 1′ and 3, i.e.

Y
(4)

1 = (Y (2)
3 Y

(2)
3 )1 = Y 2

1 + 2Y2Y3 ,

Y
(4)

1′ = (Y (2)
3 Y

(2)
3 )1′ = Y 2

3 + 2Y1Y2 ,

Y
(4)

3 = 1
2(Y (2)

3 Y
(2)

3 )3S =

Y
2

1 − Y2Y3
Y 2

3 − Y1Y2
Y 2

2 − Y1Y3

 . (2.12)

At weight 6, we have three modular multiplets which transform in 1 and 3 of A4,

Y
(6)

1 = (Y (2)
3 Y

(4)
3 )1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3 ,

Y
(6)

3I = Y
(2)

3 Y
(4)

1 = (Y 2
1 + 2Y2Y3)

Y1
Y2
Y3

 ,

Y
(6)

3II = Y
(2)

3 Y
(4)

1′ = (Y 2
3 + 2Y1Y2)

Y3
Y1
Y2

 . (2.13)

Although the SO(10) GUT symmetry unifies all the fermions of each generation into
a single representation 16, the fermions in different generations are not related so that
the Yukawa coupling matrices Y10, Y126 and Y120 in eq. (2.1) can be arbitrary complex
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symmetric and antisymmetric matrices respectively. In order to understand the observed
flavor structure of quarks and leptons, the A4 modular symmetry is imposed in the SO(10)
GUT. We assign the three generations of matter fields ψ1,2,3 to a A4 triplet since the
flavor symmetry would effectively be the Z3 subgroup generated by T rather than A4
for the singlet assignment. The GUT Higgs multiplets H, ∆ and Σ all transform as 1,
the transformation of the matter fields and the GUT Higgs under A4 modular group is
summarized in table 1. In the present work, we have studied the leptogenesis in the
SO(10) models with A4 modular symmetry. The modular flavor symmetry was originally
formulated in the famework of supersymmetry [6], then the modular invariance and the
holomorphy of the superpotential require the Yukawa couplings be modular forms which
are holomorphic function of the modulus τ . There are other functions of the modulus τ
and τ̄ which transform in the same way as modular forms, nevertheless their properties
are not fully understood yet. Hence the non-supersymmetric modular flavor symmetry
is an important open question at present, and we shall work in supersymmetric (SUSY)
SO(10) GUT in the following. It is true there is no direct supporting evidence for low
energy SUSY, however the results in this paper do not rely on low scale SUSY, indeed only
SUSY near the compactification scale, which could be close to the GUT scale, is required,
while for gauge coupling unification the SUSY scale must be around the few TeV scale,
but not necessarily within the range of the LHC. On the other hand, non-SUSY SO(10)
leptogenesis works fine for similar parameters to those considered in this paper.

Taking into account the A4 modular symmetry, the SO(10) Yukawa coupling of eq. (2.1)
becomes

WY =
∑
ra
αa
(
ψψY

(2kF+k10)
ra (τ)

)
1
H +

∑
rc
βb
(
ψψY

(2kF+k120)
rb (τ)

)
1

Σ

+
∑
rc
γc

(
ψψY

(2kF+k126)
rc (τ)

)
1

∆ , (2.14)

where kF , k10, k126 and k120 are the modular weights of ψ, H, ∆ and Σ respectively. Notice
that one has to sum over the contributions of all independent modular multiplets at the
relevant weights. Using the multiplication rules in eq. (2.7), the Yukawa matrices Y10 can
be read off as follows,

Y10
∣∣∣
k=2kF+k10

= α1Y
(k)

1 (τ)

1 0 0
0 0 1
0 1 0

+ α2Y
(k)

1′ (τ)

0 0 1
0 1 0
1 0 0



+α3Y
(k)

1′′ (τ)

0 1 0
1 0 0
0 0 1

+ α4


2Y (k)

3,1 (τ) − Y (k)
3,3 (τ) − Y (k)

3,2 (τ)
−Y (k)

3,3 (τ) 2Y (k)
3,2 (τ) − Y (k)

3,1 (τ)
−Y (k)

3,2 (τ) − Y (k)
3,1 (τ) 2Y (k)

3,3 (τ)

 ,

(2.15)

and Y126 takes a similar form with αi replaced by γi. Because the coupling with Σ is
antisymmetric in the generation indices, only the antisymmetric triplet contraction (ψψ)3A
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ψ1,2,3 H Σ ∆
SO(10) 16 10 120 126
A4 3 1 1 1
kI kF k10 k120 k126

Table 1. The transformation properties and modular weights of the SO(10) matter fields and Higgs
multiplets.

contributes to the Yukawa matrix Y120,

Y120
∣∣∣
k=2kF+k120

= β1


0 Y

(k)
3,3 (τ) − Y (k)

3,2 (τ)
−Y (k)

3,3 (τ) 0 Y
(k)

3,1 (τ)
Y

(k)
3,2 (τ) − Y (k)

3,1 (τ) 0

 . (2.16)

2.2 Benchmark models

In the following, we present two typical SO(10)×A4 modular models given in our previous
work [81], then study the predictions for leptogenesis. The first benchmark model denoted
as BM1 is characterized by the modular weights (2kF +k10, 2kF +k120, 2kF +k126) = (4, 2, 4),
and it is the non-minimal model 2 of [81]. Thus the modular invariant superpotential is
given by

WY = α1Y
(4)

1 ψψH + α2Y
(4)

1′ ψψH + α3Y
(4)

3 ψψH + β1Y
(2)

3 ψψΣ

+γ1Y
(4)

1 ψψ∆ + γ2Y
(4)

1′ ψψ∆ + γ3Y
(4)

3 ψψ∆ . (2.17)

The second model denoted as BM2 is specified by the modular weights (2kF + k10, 2kF +
k120, 2kF + k126) = (4, 6, 4), and it is the non-minimal model 3 of [81]. We can straightfor-
wardly read out the superpotential as follows,

WY = α1Y
(4)

1 ψψH + α2Y
(4)

1′ ψψH + α3Y
(4)

3 ψψH + β1Y
(6)

3I ψψΣ

+β2Y
(6)

3IIψψΣ + γ1Y
(4)

1 ψψ∆ + γ2Y
(4)

1′ ψψ∆ + γ3Y
(4)

3 ψψ∆ . (2.18)

In the case that the light neutrino mass is dominated by the type-I seesaw contribution,
the best fit values of the free parameters for the above two models are listed in table 3 and
table 4, and we see that the experimental data can be accommodated very well. It is clear
that there is not much to choose between the two models, so we decided to present both of
them, since, as we shall see in section 4, the above two models give different predictions for
the leptonic CP violation phases. In order to be more representative, we prefer to study
leptogenesis and flavor observables for both models although BM1 has one less complex
coupling than the BM2.

3 Prediction for baryon asymmetry via leptogenesis

The baryon asymmetry of the Universe is a puzzle in particle physics, and its value can
be inferred from observations in two independent ways. The first is from the big bang
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nucleosynthesis. With the assumption of only three light neutrinos, the predictions for
the abundances of the light elements D, 3He, 4He, and 7Li depend on a single parameter,
that is the difference between the number of baryons and anti-baryons normalized to the
number of photons:

η ≡ nB − nB̄
nγ

∣∣∣
0
, (3.1)

where the subscript 0 means “at present time”. The range of η which is consistent with
the abundances of D and 4He is determined to be [92]

η = (6.143± 0.190)× 10−10 , (3.2)

at 1σ confidence level. This range corresponds to

Y∆B = (8.72± 0.27)× 10−11 . (3.3)

Notice that Y∆B is defined as Y∆B ≡
nB−nB̄

s

∣∣∣
0
and it is related to the parameter η through

Y∆B ' η/7.04. Furthermore the baryon asymmetry produces acoustic oscillations in the
power spectrum of the cosmic microwave background [93]. Observing these oscillations
gives an even tighter bound on the value of baryon asymmetry,

Y∆B = (8.703± 0.113)× 10−11 (95%,TT,TE,EE+lowE) . (3.4)

It is impressive that the above two unrelated measurement approaches give consistent range
of baryon asymmetry. In this work, we will use the conservative value of eq. (3.3) from the
big bang nucleosynthesis.

Generally speaking, both type I and type II seesaw mechanisms contribute to the light
neutrino mass in SO(10) GUT, the contribution of type I seesaw is assumed to be dominant
over that of type II in the present work. Then the CP violating out-of-equilibrium decay of
the heavy Majorana neutrinos can generate a lepton asymmetry which is subsequently par-
tially converted to a baryon asymmetry through the B+L violating sphaleron processes [2].
In this section, we shall study whether the measured value of the baryon asymmetry of
the Universe Y∆B = (8.72± 0.27)× 10−11 in eq. (3.3) can be correctly generated through
thermal leptogenesis in the above benchmark SO(10)×A4 modular models. The evolution
of the lepton asymmetry is described by the density matrix equation.

3.1 Density matrix equation

In the simplest scenario of leptogenesis, the lepton and anti-lepton final states from the
decays of the heavy neutrino Ni are in coherent superposition of flavor,

|`i〉 =
∑
α

Ciα|`α〉 , |¯̀i〉 =
∑
α

C̄iα|¯̀α〉 , (3.5)

where i = 1, 2, 3 and α = e, µ, τ , and the projection coefficients at tree-level are given by

Ciα = C̄iα = (λν)αi√
(λ†νλν)ii

. (3.6)

– 9 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
1

Notice that we work in the basis where both charged lepton and right-handed neutrino mass
matrices are diagonal. This is a good approximation for high temperature T � 1012 GeV
when the charged lepton Yukawa interactions are negligible. However, the coherent evo-
lution of the states |`i〉 and |¯̀i〉 would be broken down and different lepton flavors are
distinguishable when these interactions are in thermal equilibrium. Then the left-handed
leptons can be rapidly converted to right-handed components through scattering with the
Higgs doublet. To be more specific, the τ and µ Yukawa interactions come into thermal
equilibrium at the temperature T ∼ 1012 GeV and T ∼ 109 GeV respectively.

It has been shown that the density matrix equation can provide an accurate descrip-
tion for the time evolution of the lepton asymmetry [94–100]. The approach of the density
matrix accounts for the quantum decoherence effect and it allows to quantitatively de-
scribe the transitions between the one-flavored, two-flavored and three-flavored regimes.
Comprehensive analysis of leptogenesis has been performed in the framework of density
matrix [101–103]. The formalism of the density matrix for leptogenesis has been given in
ref. [100], we shall follow closely the notation of [100] in the following. For three decay-
ing heavy Majorana neutrinos, the most general form of the density matrix equations are
given by

dNNi

dz = −Di(NNi −N
eq
Ni

) ,

dNB−L
αβ

dz =
∑
i

[
ε

(i)
αβDi(NNi −N

eq
Ni

)− 1
2Wi

{
P 0(i), NB−L

}
αβ

]
+

−=(Λτ )
Hz

(
δατN

B−L
τβ + δβτN

B−L
ατ − 2δατδβτNB−L

ττ

)
+

−=(Λµ)
Hz

(
δαµN

B−L
µβ + δβµN

B−L
αµ − 2δαµδβµNB−L

µµ

)
, (3.7)

with z = M1/T . The projection matrices are

P
0(i)
αβ = CiαC

∗
iβ , (3.8)

which describe how a given flavor of lepton is washed out. The quantity NNi is the number
of the heavy neutrino Ni in a portion of comoving volume which contains one photon at
the temperature z ' 0. Hence the equilibrium number density N eq

Ni
for the Boltzmann

statistics is given by
N eq
Ni

(z) = 3
8xiz

2K2(zi) , (3.9)

where xi = M2
i /M

2
1 , zi = √xiz, and K2(z) the modified Bessel functions of the second

kind. Consequently we have N eq
Ni

(z ' 0) = 3/4. The diagonal entries NB−L
αα are the

known number densities for the B/3−Lα asymmetry, and the off-diagonal elements NB−L
αβ

describe the degree of coherence between the flavor states. The rescaled decay rate Di of
the right-handed neutrino Ni is given by

Di(z) = Kixiz
K1(zi)
K2(zi)

, Ki = Mi(λ†νλν)ii
8πH(T = Mi)

, (3.10)
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where H is the Hubble expansion rate. The washout parameters Wi read

Wi(z) = 1
4Ki
√
xi z

3
i K1(zi) . (3.11)

Furthermore, the last two terms in eq. (3.7) describe the effect of charged lepton Yukawa
interactions which can induce the transition of left-handed leptons to right-handed lep-
tons. They describe decoherence via the damping of the off-diagonal terms of the B − L
asymmetry matrix NB−L and they are determined as

=(Λµ)
H z

=
8× 10−3 y2

µ T

Hz
= 1.72× 10−10 MPl

M1
,

=(Λτ )
H z

= 8× 10−3 y2
τ T

Hz
= 4.87× 10−8 MPl

M1
, (3.12)

whereMPl ' 1.22×1019 GeV is the Planck mass, the Yukawa couplings yµ ' 6.07×10−4 and
yτ ' 1.02×10−2 are fixed by the µ and τ masses mµ ' 105.66MeV and mτ ' 1776.86MeV
respectively. When the temperature goes below 1012 GeV, the τ Yukawa interactions come
into thermal equilibrium and lead to decoherence of τ lepton states. This implies the
transition from an unflavoured to two-flavoured regime. When the temperature drops
below 109 GeV the similar effects arise from the µ Yukawa interactions. Analogously, the
electron Yukawa dependent damping term should be considered for M1 < 105 GeV. Finally
the CP asymmetry ε(i)

αβ generated by Ni decay is of the following form [95, 98, 100, 104, 105]

ε
(i)
αβ = 3

32π
(
λ†νλν

)
ii

∑
j 6=i

{
i
[
(λν)αi(λ∗ν)βj(λ†λ)ji − (λ∗ν)βi(λν)αj(λ†νλν)ij

]
f1

(
xj
xi

)

+i
[
(λν)αi(λ∗ν)βj(λ†νλν)ij − (λ∗ν)βi(λν)αj(λ†νλν)ji

]
f2

(
xj
xi

)}
, (3.13)

with
f1(x) = 2

√
x

3

[
(1 + x) ln

(1 + x

x

)
− 2− x

1− x

]
, f2(x) = 2

3(x− 1) . (3.14)

The diagonal components ε(i)
αα of the CP asymmetry matrix are exactly the usual flavored

CP asymmetries,

ε(i)
αα = 3

16π
(
λ†νλν

)
ii

∑
j 6=i

{
=
[
(λ∗ν)αi(λν)αj(λ†νλν)ij

]
f1

(
xj
xi

)
+=

[
(λ∗ν)αi(λν)αj(λ†νλν)ji

]
f2

(
xj
xi

)}
,

(3.15)
while the off-diagonal components ε(j)

αβ = (ε(j)
βα)∗ and they are not necessarily real [100].

The trace of the matrix NB−L
αβ gives the total lepton asymmetry

N f
B−L =

∑
α

NB−L
αα , (3.16)

which is then converted into the baryon asymmetry of the Universe,

η = 28
79

1
27 N

f
B−L ' 0.013N f

B−L , (3.17)
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where the factor 28/79 accounts for the partial conversion of the B−L asymmetry into the
baryon asymmetry by sphaleron process, and the second factor 1/27 describes the dilution
of the baryon asymmetry due to the change of the photon density between leptogenesis
and recombination. In the following numerical analysis, we will use the Python package
ULYSSES [106] to solve the coupled density matrix equations shown in eq. (3.7).

3.2 Analytic approximation within the Boltzmann equations

In our benchmark models, the right-handed neutrino masses are hierarchical with M3 �
M2 & 1012 GeV while 109 GeV � M1 � 1012 GeV. Therefore the decays of N3 and N2
are in the single-flavored regime while N1 decay is in the two-flavored regime. In the
following, we shall analyze the sequential decay of the three heavy Majorana neutrinos
and evolution of lepton symmetry in terms of Boltzmann equations. In the first stage
around the temperature T ∼M3, a B − L asymmetry is generated from the N3 decay. In
the second (third) stage at T ∼M2(M1) another B − L asymmetry is generated from the
N2(N1) decays, while the inverse decay process of N2(N1) become effective and washout the
asymmetry of N3 decay to some level. In each stage we can use the Boltzmann equations
to obtain an approximate analytical expression for the B − L asymmetry.

In the first stage forM3 & T & TB3 , where TB3 'M3/zB3 is the freeze-out temperature
of the N3 inverse decay and zB3 ' 2 + 4K0.13

3 e−2.5/K3 = O(1 − 10) [107], the rates of the
τ and µ Yukawa interactions are much smaller than the expansion rate of the Universe.
Consequently the charged lepton state produced from N3 decay is in coherent superposition
and the flavor states are indistinguishable. In the single flavor approximation, the time
evolution of the number densities of N3 and B − L can be described by the following
semi-classical Boltzmann equations:

dNN3

dz3
= −D3(NN3 −N

eq
N3

) ,

dN∆3

dz3
= ε3D3(NN3 −N

eq
N3

)−W3N∆3 . (3.18)

The solution to the above equations is given by [108]

N∆3(T ' TB3) = 3
4ε3κ(K3) . (3.19)

where κ(K3) is the so-called efficiency factor and its value depends on the initial condition
of decaying heavy neutrinos. For thermal initial abundance of right-handed neutrinos, it
is well approximated by [108],

κ(x) = 2
xzB(x)

[
1− exp

(
−1

2xzB(x)
)]

. (3.20)

For the vanishing initial abundance of right-handed neutrinos, the approximation formula
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for the efficiency factor is [108]

κ(K) = κ−(K) + κ+(K) ,

κ−(K) = −2 e−
2
3N(K)

[
e

2
3N(K) − 1

]
,

κ+(K) = 2
zB(K)K

[
1− e−

2
3 zB(K)KN(K)

]
, (3.21)

with
N(K) = 9πK

16 , N(K) = N(K)(
1 +

√
N(K)
3/4

)2 . (3.22)

The lepton state |`3〉 produced by N3 decay can be regarded as coherent superposition of
a `2 parallel component and of a `2 orthogonal component which is denoted as |`2̃〉. To
be more concrete, |`2̃〉 is the projection of |`3〉 on the plane orthogonal to |`2〉 such that
〈`2̃|`2〉 = 0, and its explicit expression is

|`2̃〉 = 1√
1− p32

(|`3〉 − 〈`2|`3〉|`2〉) , (3.23)

where the probabilities p32 ≡ |〈`2|`3〉|2 and p32̃ ≡ |〈`2̃|`3〉|2 with p32 + p32̃ = 1. From
eq. (3.5), we can read out the general expression of pij as

pij =
∣∣∣∑
α

CiαC
∗
jα

∣∣∣2 = |(λ†νλν)ij |2

(λ†νλν)ii(λ†νλν)jj
. (3.24)

Correspondingly the same decomposition can be made for the asymmetry N∆3 ,

N∆2(T ' TB3) = p32N∆3(T ' TB3) = 3
4p32ε3κ(K3) ,

N∆2̃
(T ' TB3) = p32̃N∆3(T ' TB3) = 3

4(1− p32)ε3κ(K3) . (3.25)

These two asymmetries can be used as initial condition at the beginning of the N2 produc-
tion and decay. When the temperature goes down to T ∼ M2, the N2 decay and inverse
processes break the coherent evolution of |`3〉 which becomes an incoherent mixture of
|`2〉 and |`2̃〉. The |`2〉 component undergoes the washout from N2 while the orthogonal
component |`2̃〉 is unwashed. The kinetic evolution equations are given by

dNN2

dz2
= −D2(NN2 −N

eq
N2

) ,

dN∆2

dz2
= ε2D2(NN2 −N

eq
N2

)−W2N∆2 ,

dN∆2̃

dz2
= 0 . (3.26)

Hence the asymmetries at the temperature T ' TB2 take the form,

N∆2(T ' TB2) = 3
4ε2κ(K2) +N∆2(T ' TB3) e−

3π
8 K2 ,

N∆2̃
(T ' TB2) = N∆2̃

(T ' TB3) . (3.27)
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Since 109 GeV � M1 � 1012 GeV, the τ Yukawa interactions become effective before the
onset of N1 washout processes. Let us indicate with M1 � T? � 1012 GeV that value of
temperature below which one can approximate the coherence of |τ〉 and the orthogonal
component completely damped. Thus the lepton quantum state can be treated as an inco-
herent mixture of three components: |τ〉, |τ̃2〉 and |τ̃2̃〉, where |τ̃2〉 and |τ̃2̃〉 are projections
of |`2〉 and |`2̃〉 on the e−µ plane, respectively. Hence the lepton states |τ̃2〉 and |τ̃2̃〉 read as

|τ̃2〉 = 1√
1− p2τ

(|`2〉 − 〈τ |`2〉|τ〉) = 1√
1− p2τ

(C2µ|µ〉+ C2e|e〉) ,

|τ̃2̃〉 = 1
√1− p2̃τ

(|`2̃〉 − 〈τ |`2̃〉|τ〉) . (3.28)

The corresponding probabilities are p2τ = |〈τ |`2〉|2 = |C2τ |2, p2τ̃2 = |〈τ̃2|`2〉|2, p2̃τ =
|〈τ |`2̃〉|2 and p2̃τ̃2̃ = |〈τ̃2̃|`2̃〉|2 with

p2̃τ = |〈τ |`2̃〉|
2 = 1

1− p32

[
p3τ + p32p2τ − 2<

(∑
α

C3τC
∗
2τC2αC

∗
3α

)]
,

p2τ + p2τ̃2 = p2̃τ + p2̃τ̃2̃ = 1 . (3.29)

Thus the B − L asymmetry before N1 decay can be decomposed into the following three
parts:

N∆τ (T ' T?) = p2τN∆2(T ' TB2) + p2̃τN∆2̃
(T ' TB2) ,

N∆τ̃2
(T ' T?) = (1− p2τ )N∆2(T ' TB2) ,

N∆τ̃2̃
(T ' T?) = (1− p2̃τ )N∆2̃

(T ' TB2) . (3.30)

The asymmetries in the tau flavor and the orthogonal components |τ̃1〉 and |τ̃1̃〉 experience
different washout from inverse decay, The quantum state |τ̃1〉 is the projection of |`1〉 on
the e− µ plane and |τ̃1̃〉 is the quantum state orthogonal to |τ̃1〉 in e− µ plane,

|τ̃1〉 = 1√
1− p1τ

(|`1〉 − 〈τ |`1〉|τ〉) = 1√
1− p1τ

(C1µ|µ〉+ C1e|e〉) ,

|τ̃1̃〉 = 1√
1− p1τ

(
−C∗1e|µ〉+ C∗1µ|e〉

)
, (3.31)

with p1τ = |C1τ |2. One can use the two-flavored Boltzmann equations to describe the time
evolution of the asymmetries during N1 leptogenesis,

dNN1

dz1
= −D1(NN1 −N

eq
N1

) ,

dN∆τ

dz1
= ε1τD1(NN1 −N

eq
N1

)− p1τW1N∆τ ,

dN∆τ̃1

dz1
= ε1τ̃1D1(NN1 −N

eq
N1

)− p1τ̃1W1N∆τ̃1
,

dN∆τ̃1̃

dz1
= 0 , (3.32)
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where ε1τ̃1 ≡ ε1e+ε1µ. Thus the frozen values of the asymmetries at the end of N1 washout
are given by

N∆τ (T ' TB1) = 3
4ε1τκ(K1τ ) +N∆τ (T ' T?) e−

3π
8 K1τ ,

N∆τ̃1
(T ' TB1) = 3

4ε1τ̃1κ(K1τ̃1) +N∆τ̃1
(T ' T?) e−

3π
8 K1τ̃1 ,

N∆τ̃1̃
(T ' TB1) = N∆τ̃1̃

(T ' T?) , (3.33)

where K1τ̃1 ≡ K1e+K1µ. Notice that decomposing N∆τ̃2(T ' T?) and N∆τ̃2̃(T ' T?) along
the directions of |τ̃1〉 and |τ̃1̃〉 gives rise to N∆τ̃1

(T ' T?) and N∆τ̃1̃
(T ' T?) as follows,

N∆τ̃1
(T ' T?) = pτ̃2τ̃1N∆τ̃2

(T ' T?) + pτ̃2̃τ̃1N∆τ̃2̃
(T ' T?) ,

N∆τ̃1̃
(T ' T?) = (1− pτ̃2τ̃1)N∆τ̃2

(T ' T?) + (1− pτ̃2̃τ̃1)N∆τ̃2̃
(T ' T?) , (3.34)

with

pτ̃2τ̃1 = |〈τ̃1|τ̃2〉|2 =

∣∣∣C∗1µC2µ + C∗1eC2e
∣∣∣2

(1− p2τ )(1− p1τ ) ,

pτ̃2̃τ̃1 = |〈τ̃1|τ̃2̃〉|
2 =

∣∣∣C∗1µC3µ + C∗1eC3e − (C∗1µC2µ + C∗1eC2e)
∑
αC
∗
2αC3α

∣∣∣2
(1− p1τ )(1− p2̃τ )(1− p32) . (3.35)

We would like to mention that the factors C1α, C2α, C3α depend on the neutrino Yukawa,
as shown in eq. (3.6). The total final asymmetry is the sum of the three terms

NB−L(T ' TB1) = N∆τ (T ' TB1) +N∆τ̃1
(T ' TB1) +N∆τ̃1̃

(T ' TB1) . (3.36)

It turns out that our benchmark models are in the strong washout regime with K3,K2,

K1τ ,K1τ̃1 � 1, thus we neglect the contributions which undergo the washout exponential
suppression of at least one right-handed neutrino. The final lepton asymmetry will be then
dominated by the unwashed terms and it is approximately given by

N f
B−L = 3

4
[
ε1τκ(K1τ ) + ε1τ̃1κ(K1τ̃ ) + (1− pτ̃2τ̃1)(1− p2τ )ε2κ(K2)

+ (1− pτ̃2̃τ̃1)(1− p2̃τ )(1− p32)ε3κ(K3)
]
. (3.37)

Notice that this approximation formula is applicable to both thermal and vanishing initial
abundance of right-handed neutrinos, and the corresponding efficiency factors are given in
eq. (3.20) and eq. (3.21) respectively.

4 Numerical results

In this section, we shall perform a detailed numerical analysis to explore whether the
renormalizable SO(10)×A4 modular models of section 2.2 can explain the experimentally
measured values of masses and mixing parameters of both quarks and leptons as well as
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Parameters µi ± 1σ Parameters µi ± 1σ
mt/GeV 83.155± 3.465 θq12 0.229± 0.001
mb/GeV 0.884± 0.035 θq13 0.0037± 0.0004
mu/mc 0.0027± 0.0006 θq23 0.0397± 0.0011
mc/mt 0.0025± 0.0002 δqCP/

◦ 56.34± 7.89
md/ms 0.051± 0.007 sin2 θl12 0.304± 0.012
ms/mb 0.019± 0.002 sin2 θl23 0.450+0.019

−0.016

me/mµ 0.0048± 0.0002 sin2 θl13 0.02246± 0.00062
mµ/mτ 0.059± 0.002 δlCP/

◦ 230+36
−25

mb/mτ 0.73± 0.03 r ≡ ∆m2
21/∆m2

31 0.02956± 0.00084
YB (8.72± 0.27)× 10−11 ∆m2

21/eV2 7.42+0.21
−0.20 × 10−5

Table 2. The best fit values µi and 1σ uncertainties of the quark and lepton parameters when
evolved to the GUT scale as calculated in [109], with the SUSY breaking scale MSUSY = 500GeV
and tan β = 10, where the error widths represent 1σ intervals. The values of lepton mixing angles,
leptonic Dirac CP violation phases δlCP and the neutrino mass squared difference are taken from
NuFIT 5.1 [110] for normal ordering neutrino masses with Super-Kamiokande data.

the matter-antimatter asymmetry of the Universe. We perform a χ2 analysis to optimize
the values of the free parameters. The χ2 function is defined as

χ2 =
∑
i

(
Pi(x)− µi

σi

)2
. (4.1)

Here µi and σi denote the experimental central values and the 1σ uncertainties of the
observables respectively, and their values are obtained by evolving their low energy values
to the GUT scale with the renormalization group equations, as shown in table 2. For the
neutrino oscillation data, we assume normal ordering neutrino mass spectrum2so that the
renormalization group induced corrections to the neutrino masses and mixing parameters
can be negligible for small tan β, and we use the most recent results from the NuFit
collaboration [110].

The mechanism of modulus stabilization is still an open question, consequently we treat
the complex modulus τ as a free parameter in the fundamental region D =

{
τ ∈ C

∣∣∣Imτ >
0, |Reτ | ≤ 1

2 , |τ | ≥ 1
}
, which can represent all possible values of τ in the upper half complex

plane up to a modular transformation. In the numerical analysis, the magnitudes of all
coupling constants are limited in the region [0, 104] and their phases are freely varied in the
range [0, 2π]. The overall scales α1vu, α1r1vu and α2

1v
2
u/vR are fixed by the experimentally

measured values of top quark mass, bottom quark mass and solar neutrino mass squared
difference ∆m2

21. For each set of given values of the input parameters, the quark and lepton
mass matrices in eqs. (2.2), (2.3) can be straightforwardly diagonalized and subsequently

2The numerical results show that the neutrino mass spectrum is strongly normal hierarchy at the best
fit point.
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mixing angles and CP violation phases can be extracted in the usual way. We numerically
minimize the χ2 function by using the minimization algorithms TMinuit [111] developed
by CERN to determine the optimum values of the input parameters. In the present work,
we will focus the scenario of type I seesaw dominance, and the out of equilibrium decay of
right-handed neutrinos is used to generate the baryon asymmetry of the Universe.

For each model, we present the point in parameter space which minimizes the χ2,
as a result of a numerical minimization procedure. We shall consider two typical initial
conditions of heavy Majorana neutrinos: thermal initial abundance and vanishing initial
abundance. We show the numerical results in table 3 and table 4 for vanishing and thermal
initial conditions respectively. It is notable that the value of τ is close to the residual
modular symmetry fixed point τST ≡ −1/2 + i

√
3/2. Since both models at the best

points are in the strong washout regime, the prediction for the baryon asymmetry is not
so sensitive to the initial condition of right-handed neutrinos. Thus the values of each
input parameter have little difference for the concerned two initial conditions. We also
present the predictions for the mass ratios of charged fermions me/mµ, mµ/mτ , mu/mc,
mc/mt, md/ms, ms/mb and mb/mτ , the mixing angles θl12, θl13, θl23, θ

q
12, θ

q
13 and θq23 as

well as the quark CP violation phase δqCP, which are compatible with experimental data.
Moreover, from the fitted values of the parameters, we can derive the predictions for the
still unmeasured observables including the leptonic Dirac CP violation phase δlCP and
Majorana CP phases α21 and α31, the light neutrino masses m1,2,3, the effective Majorana
neutrino mass mββ for neutrinoless double decay and the right-handed neutrino masses
M1,2,3 at the best fit point. The right-handed neutrino masses have a hierarchical pattern
M3 � M2 � M1 which are in the range of 1010–1013 GeV. The effective Majorana mass
mββ is determined to be 0.532 (1.059)meV and 0.622 (0.550)meV in the models BM1 and BM2
respectively for vanishing (thermal) initial condition, they are much below the current most
stringent bound mββ < (61–165) meV given by the KamLAND-Zen collaboration [112].
Future tonne-scale neutrinless double decay experiments can reduce the sensitivity on mββ

to few meV such as mββ < (4.7–20.3) meV from nEXO [113] and mββ < (9–21) meV
from LEGEND-1000 [114]. Consequently our predictions for mββ are even out of reach
of tonne-scale detectors. As shown in tables 3 and 4, we have split the χ2 function into
four different contributions χ2

total = χ2
l + χ2

q + χ2
bτ + χ2

YB
, where χ2

l , χ2
q , χ2

bτ and χ2
YB

stand
for the contributions induced by the deviations of the lepton sector observables, the quark
sector observables, the mass ratio mb/mτ and the baryon asymmetry YB from their central
values respectively. We see that the largest deviation arises from the quark sector in both
models, and χ2

total is dominated by χ2
q although the predictions for the quark masses and

mixing parameters are in the experimentally allowed region.
Regarding the baryon asymmetry, the concrete form of the neutrino Yukawa coupling

matrix and right-handed neutrino masses are fixed at the best fit point, we numerically
solve the density matrix equation of eq. (3.7) with the help of ULYSSES to obtain the frozen
value of B −L asymmetry. It is remarkable that the numerical results agree well with the
analytical approximations. We see that the observed matter-antimatter asymmetry can be
accommodated. In general, the decays of three right-handed neutrinos N1,2,3 all contribute
to the final baryon asymmetry, and asymmetries generated by N2,3 are partially washed
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parameters BM1 BM2

τ −0.4982 + 0.8862i −0.4796 + 0.8958i
r2 1.293 ei1.790π 1.572 ei1.219π

r3 0.343 ei0.395π 1.374 ei1.921π

ce 9.891 ei1.447π 1.591 ei0.731π

cν 7.485 ei0.108π 0.952 ei1.644π

α2/α1 0.310 ei1.839π 0.600 ei1.025π

α3/α1 0.307 ei1.838π 0.597 ei1.034π

β1/α1 0.093 ei0.862π 3.481 ei0.139π

β2/α1 — 0.025 ei1.606π

γ1/α1 0.295 ei1.400π 0.243 ei0.664π

γ2/α1 0.297 ei0.094π 0.112 ei1.550π

γ3/α1 0.300 ei0.095π 0.114 ei1.555π

α2
1v

2
u/vR(meV) 15.272 7.053
α1vu/GeV 20.673 18.157
α1r1vd/GeV 0.272 0.240

sin2 θl12 0.308 0.294
sin2 θl13 0.02178 0.02248
sin2 θl23 0.465 0.455
δlCP/

◦ 267.074 333.240
α21/

◦ 212.233 222.547
α31/

◦ 237.998 31.091
me/mµ 0.00488 0.00484
mµ/mτ 0.0584 0.0586
m1/meV 3.065 2.645
m2/meV 9.143 9.011
m3/meV 50.597 50.375
mββ/meV 0.532 0.622
M1/GeV 6.546× 1010 7.447× 1010

M2/GeV 1.716× 1012 3.307× 1012

M3/GeV 4.853× 1013 3.012× 1013

vR/GeV 2.798× 1013 4.674× 1013

θq12 0.230 0.229
θq13 0.00411 0.00332
θq23 0.0432 0.0421
δqCP/

◦ 83.606 76.967
mu/mc 0.00329 0.00285
mc/mt 0.00286 0.00287
md/ms 0.0353 0.0491
ms/mb 0.0169 0.0206
mb/mτ 0.715 0.803
Y num
B 8.541× 10−11 8.516× 10−11

Y ap
B 6.806× 10−11 6.355× 10−11

χ2
l 3.523 9.202
χ2
q 33.912 16.555

χ2
bτ 0.264 5.958

χ2
YB

0.441 0.573
χ2

total 38.140 31.715

Table 3. The best fit values of the free parameters and the corresponding predictions for the masses
and mixing parameters of leptons and quarks as well as the baryon asymmetry YB in the two typical
models BM1 and BM2. We assume vanishing initial abundance of the right-handed neutrinos, Y num

B

is the numerical result from density matrix equation, and Y ap
B denotes the result of analytical

approximation in section 3.2.
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parameters BM1 BM2

τ −0.4949 + 0.8861i −0.4997 + 0.8975i
r2 1.414 ei1.811π 2.441 ei1.377π

r3 0.315 ei0.268π 1.910 ei1.903π

ce 10.425 ei1.365π 1.675 ei0.613π

cν 7.276 ei0.149π 0.890 ei1.214π

α2/α1 0.286 ei1.912π 0.626 ei1.011π

α3/α1 0.283 ei1.912π 0.631 ei1.016π

β1/α1 0.104 ei0.774π 3.590 ei0.104π

β2/α1 — 0.016 ei1.247π

γ1/α1 0.197 ei1.405π 0.333 ei0.639π

γ2/α1 0.311 ei0.102π 0.140 ei1.600π

γ3/α1 0.313 ei0.102π 0.141 ei1.597π

α2
1v

2
u/vR(meV) 12.574 8.865
α1vu/GeV 19.718 13.894
α1r1vd/GeV 0.266 0.242

sin2 θl12 0.321 0.305
sin2 θl13 0.02258 0.02235
sin2 θl23 0.438 0.433
δlCP/

◦ 329.478 229.431
α21/

◦ 175.644 184.054
α31/

◦ 240.818 287.703
me/mµ 0.00481 0.00502
mµ/mτ 0.0585 0.0599
m1/meV 2.156 7.053
m2/meV 8.880 11.133
m3/meV 49.719 50.466
mββ/meV 1.059 0.550
M1/GeV 7.083× 1010 2.798× 1010

M2/GeV 1.682× 1012 1.793× 1012

M3/GeV 5.608× 1013 1.739× 1013

vR/GeV 3.092× 1013 2.177× 1013

θq12 0.229 0.230
θq13 0.00359 0.00416
θq23 0.0421 0.0440
δqCP/

◦ 55.549 86.564
mu/mc 0.00278 0.00285
mc/mt 0.00274 0.00260
md/ms 0.0302 0.0446
ms/mb 0.0173 0.0156
mb/mτ 0.708 0.702
Y num
B 8.526× 10−11 8.458× 10−11

Y ap
B 7.800× 10−11 5.215× 10−11

χ2
l 10.694 2.539
χ2
q 16.122 35.517

χ2
bτ 0.554 0.847

χ2
YB

0.518 0.940
χ2

total 27.888 38.843

Table 4. Similar to table 3, but for thermal initial abundance of the right-handed neutrinos.
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Figure 1. The evolution of the baryon asymmetry YB with temperature for the two benchmark
models, the free parameters take the best fit values in table 3 and table 4. The red line and blue line
are the numerical results obtained by solving the density matrix equation and Boltzmann equation
of section 3.2 respectively. The top-left (right) panel is for the BM1 (BM2) model with vanishing initial
abundance. The bottom-left (right) panel for the BM1 (BM2) model with thermal initial abundance.

out by the N1 process. In the model BM1 for both initial conditions and the BM2 model with
vanishing initial abundance, the leptogensis is dominated by N1 decay. The contributions
of N2 and N3 are as important as the that of N1 in the BM2 for thermal initial abundance.
Moreover, we plot the evolution of YB with the temperature T for the two benchmark
models in figure 1, and the corresponding numerical results of Boltzmann equations are
displayed for comparison.

Furthermore, we comprehensively scan the parameter space around the best fit points
of table 3 and table 4, and we require all the fermion masses and mixing parameters
are in the experimentally preferred 3σ regions. The experimentally allowed values of the
complex modulus τ and the correlations between the masses and mixing parameters are
shown in figures 2, 4, 6 and 8 for the benchmark models with vanishing and thermal initial
conditions. The corresponding predictions for the baryon asymmetry YB with respect to
sin2 θl23, δlCP, α21, α31 are displayed in figures 3, 5, 7 and 9. We would like to mention that
the contribution of YB to χ2 is not included in these figures. We see that imposing successful
leptogenesis yields specific predictions for the fermion masses and mixing parameters.
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Figure 2. The values of the complex modulus τ compatible with experimental data and the
correlations between the neutrino mixing angles, CP violation phases, quark mass ratios and mixing
parameters for the model BM1 with vanishing initial condition. The vertical and horizontal dashed
lines are the 3σ bounds taken from [110]. Note that the contribution of YB to χ2 is not included here.

5 Conclusion

In this paper we have studied the prediction for leptogenesis in two renormalizable super-
symmetric SO(10)×A4 modular models in which the neutrino mass is dominantly generated
by the type I seesaw mechanism. The evolution of the lepton asymmetries are described in
terms of the three-flavored density matrix equations for three heavy Majorana neutrinos,
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Figure 3. The numerical results for the correlation between the baryon asymmetry YB and sin2 θl23,
δlCP, α21, α31 in the BM1 model with vanishing initial condition. The horizontal band denotes the
experimentally allowed region of YB . The star “F” stands for the best fitting point in table 3. Note
that the contribution of YB to χ2 is not included here.

where both vanishing initial condition and thermal initial condition of the right-handed
neutrinos are considered. We also presented an analytical approximation based on the
Boltzmann equations. We found regions of parameter space compatible with the measured
fermion masses and mixing parameters as well as the baryon asymmetry of the Universe.
The predictions for the light neutrino masses, the effective mass in neutrinoless double beta
decay and the leptonic CP violation phases were discussed.

The right-handed neutrinos naturally appear in SO(10) GUT, all the chiral fermions
of one generation plus one additional right-handed neutrino are unified into a single 16
dimensional spinor representation of SO(10). Thus SO(10) GUT provides a natural expla-
nation for the tiny neutrino mass through the type I seesaw mechanism. From the view of
cosmology, it is well known that the CP violating decay of the right-handed neutrinos can
generate the matter-antimatter asymmetry of the Universe, this is the so-called leptogen-
esis. Moreover, the mass and Yukawa coupling of the right-handed neutrinos are closely
related to those of quarks and charged leptons, and their concrete values can be determined
by requirement that the measured masses, mixing angles and CP violation phases of both
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Figure 4. The values of the complex modulus τ compatible with experimental data and the
correlations between the neutrino mixing angles, CP violation phases, quark mass ratios and mixing
parameters for the model BM2 with vanishing initial condition. The vertical and horizontal dashed
lines are the 3σ bounds taken from [110]. Note that the contribution of YB to χ2 is not included here.

quarks and leptons should be accommodated. It is attractive that the fermion masses
and mixing together with baryon asymmetry of the Universe can be explained in a given
SO(10) model.

Modular symmetry is an important progress to address the flavor puzzle of the SM, the
vacuum alignment problem in conventional flavor symmetry models is greatly simplified,
and the complex modulus τ could be the unique source of flavor symmetry breaking. As

– 23 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
1Figure 5. The numerical results for the correlation between the baryon asymmetry YB and sin2 θl23,

δlCP, α21, α31 in the BM2 model with vanishing initial condition. The horizontal band denotes the
experimentally allowed region of YB . The star “F” stands for the best fitting point in table 3. Note
that the contribution of YB to χ2 is not included here.

a consequence, the modular symmetry models could be quite predictive. In the present
work, we have analyzed the prediction for leptogenesis in two benchmark renormalizable
SO(10) models with A4 modular symmetry where the neutrino masses dominantly arise
from type I seesaw mechanism. The three generations of matter fields are assigned to
triplet of A4 modular symmetry, and the Higgs fields H, Σ, ∆ in the 10, 120 and 16
dimensional representations of SO(10) are invariant under A4. As a consequence, the
structure of the SO(10) × A4 modular models are fully specified by the modular weights
of the fermion fields and Higgs fields, as shown in table 1. The modular weights are
(2kF +k10, 2kF +k120, 2kF +k126) = (4, 2, 4) and (2kF +k10, 2kF +k120, 2kF +k126) = (4, 6, 4)
respectively in the two concerned benchmark models.

We used the density matrix equations to describe the kinetic evolution of the lep-
ton asymmetry. In comparison with Boltzmann equations, the density matrix equations
give a quantitative description of lepton flavor effects in leptogenesis, and allows to pre-
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Figure 6. The values of the complex modulus τ compatible with experimental data and the
correlations between the neutrino mixing angles, CP violation phases, quark mass ratios and mixing
parameters for the model BM1 with thermal initial condition. The vertical and horizontal dashed
lines are the 3σ bounds taken from [110]. Note that the contribution of YB to χ2 is not included here.

cisely calaulate the final lepton asymmetry for arbitrary right-handed neutrino mass spec-
trum. The right-handed neutrino masses are hierarchical with M3 � M2 & 1012 GeV and
109 GeV � M1 � 1012 GeV in our benchmark models. Hence the decays of N3 and N2
are in the single-flavored regime while N1 decay is in the two-flavored regime. In order
to understand the physical process of leptogenesis, we assume the three heavy Majorana
neutrinos decay in sequence. The lepton asymmetries generated from the decay of each
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Figure 7. The numerical results for the correlation between the baryon asymmetry YB and sin2 θl23,
δlCP, α21, α31 in the BM1 model with thermal initial condition. The horizontal band denotes the
experimentally allowed region of YB . The star “F” stands for the best fitting point in table 4. Note
that the contribution of YB to χ2 is not included here.

right-handed neutrino and the washout effects are governed by the Boltzmann equation,
the analytical approximate solutions are given. The approximation agrees with the numer-
ical results of density matrix equations well if the interplay of the different right-handed
neutrinos and the interference of lepton flavour are insignificant.

It is important to distinguish two sorts of possible corrections in flavour models: higher
order operators and renormalisation group running. Unlike traditional flavour models,
modular symmetry models without flavons, such as considered here, forbid higher order
operators in the superpotential. However both traditional flavour models and modular
symmetry models are subject to the usual renormalisation group corrections. In detail,
the procedure we used is as follows. We numerically minimized the value of χ2 function to
determine the best fit values of the free parameters. In the χ2 function, the experimental
data and errors of the fermion masses and mixing parameters are evolved to the GUT
scale, consequently the effect of renormalization group evolution (RGE) has been taken
into account. Moreover, the light neutrinos mass spectrum is strongly normal hierarchy, as
can be seen from table 3 and table 4, consequently the RGE corrections to neutrino masses
and mixing parameters are small enough to be negligible.
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Figure 8. The values of the complex modulus τ compatible with experimental data and the
correlations between the neutrino mixing angles, CP violation phases, quark mass ratios and mixing
parameters for the model BM2 with thermal initial condition. The vertical and horizontal dashed
lines are the 3σ bounds taken from [110]. Note that the contribution of YB to χ2 is not included here.

The superpotential of the Yukawa is strongly constrained by modular symmetry, it
involves 7 couplings α1,2,3, β1 and γ1,2,3 in the BM1 model, and an additional parameter β2
in the BM2 model. Moreover, the quark and lepton mass matrices depend on 5 parameters
r1,2,3, ce,ν which describe the light Higgs combinations. Notice that the Higgs sector of
the renormalizable SO(10) models with all 10, 120 and 126 dimensional Higgs multiplets
are complicated and it reduces the predictive power of SO(10) models. The 126-plet Higgs
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δlCP, α21, α31 in the BM2 model with thermal initial condition. The horizontal band denotes the
experimentally allowed region of YB . The star “F” stands for the best fitting point in table 4. Note
that the contribution of YB to χ2 is not included here.

∆ contains a right-handed scalar triplet ∆R whose vacuum expectation value 〈∆R〉 = vR
gives mass to the right-handed neutrinos. The parameters α1, r1 and vR can be taken
real without loss of generality. Including the complex modulus τ , the BM1 and BM2 models
depend on 25 and 27 real parameters respectively. We fit all these free parameters using
the 20 observables in table 2. In particular, we take into account the matter-antimatter
asymmetry of the Universe through leptogenesis besides the measured masses and mixing
parameters of quarks and leptons. As shown in table 3 and table 4, the experimental
data can be well accommodated and it is remarkable that all the coupling constants are
order one. Furthermore, we can obtain predictions for unmeasured quantities such as the
Majorana CP phases α21, α31, the effective mass mββ of neutrinoless double decay and the
right-handed neutrino masses M1,2,3. mββ is predicted in the range 0.5–1.1meV, it is far
below the sensitivity of current and future experiments. Hence our models would be ruled
out if a positive signal of neutrinoless double beta decay is reported in future.
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A Two examples of analytical approximation failure

The formalism of density matrix allows for a more general description of leptogenesis than
the semi-classical Boltzmann equations. The off-diagonal elements of the density matrix
describe the degree of coherence between the flavour states, so that the decoherence effects
are incorporated into the equations. Moreover, the density matrix equations can describe
the dynamical process of the transition between flavour-regimes, and allows to calculate the
lepton asymmetry in the intermediate regimes where the single-flavored and two-flavored
treatments are inadequate. Hence it is found that the Boltzmann equations fail to de-
scribe correctly the generation of baryon asymmetry in many cases [101–103]. Although
the analytical approximation agree well with the numerical results of the density matrix
equation in section 4, we note that this not always true. In particular, when the effects of
decoherence cannot be neglected or there are non-trivial interplay between the decays and
the washout processes of the three right-handed neutrinos. We give two such benchmark
points in table 5 at which our analytical estimates fail to give the correct value of baryon
asymmetry, and even the sign of YB is wrong.

For the model BM1 with the values of the free parameters given in table 5, the decay pa-
rameters of N2 and N3 are determined to be K2 = 90 and K3 = 98 respectively. Therefore
the freeze-out temperature of N3 is approximately TB3 ' M3/9 ' 2M2, the effects of N2
are not negligible before the freeze-out of N3 inverse decay, as can be seen from the left-top
panel of figure 10. In addition, the asymmetries generated by N2 and N3 are only partially
washed out by the N1 decay and inverse decay processes and in fact they dominate the
final asymmetry. Moreover, the mass of N1 is 2.308 × 1011 GeV, consequently it is in the
transition region between the single- and two-flavored leptogenesis. This might contribute
to the failure of the analytical estimates, since the transitions between the different flavour
regimes are not taken into account in the Boltzmann equations and the baryon asymmetry
η could change its sign during the transitions [103]. Analogously, for another model BM2,
there is also non-trivial interplay between the decay and the washout processes of the heavy
right-handed neutrinos. The contribution of N1 is found to be subdominant, and the N1
mass is 8.367 × 109 GeV which is close to the transition scale between the two-flavor and
three-flavor regimes. Furthermore, from figure 10 we see that the decoherence of flavor
states is not infinitely fast as assumed in the Boltzmann equations. This can also lead to
deviations of analytical approximation from the numerical results of density matrix.

– 29 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
1

parameters BM1 BM2

τ −0.4863 + 0.8863i −0.5 + 0.9031i
r2 1.305 ei1.880π 2.067 ei1.488π

r3 0.267 ei0.402π 1.731 ei1.902π

ce 8.188 ei1.401π 1.247 ei0.785π

cν 7.473 ei0.139π 0.890 ei0.999π

α2/α1 0.286 ei1.852π 0.555 ei0.948π

α3/α1 0.282 ei1.862π 0.554 ei0.948π

β1/α1 0.082 ei0.801π 3.321 ei0.085π

β2/α1 — 0.014 ei1.995π

γ1/α1 0.299 ei1.180π 0.340 ei0.511π

γ2/α1 0.247 ei0.129π 0.154 ei1.539π

γ3/α1 0.247 ei0.120π 0.149 ei1.546π

α2
1v

2
u/vR(meV) 8.242 12.535
α1vu/GeV 24.249 15.606
α1r1vd/GeV 0.313 0.272

sin2 θl12 0.313 0.309
sin2 θl13 0.02241 0.02247
sin2 θl23 0.443 0.430
δlCP/

◦ 280.211 318.757
α21/

◦ 199.009 163.502
α31/

◦ 237.526 205.183
me/mµ 0.00467 0.00471
mµ/mτ 0.0592 0.0571
m1/meV 2.009 3.206
m2/meV 8.845 9.191
m3/meV 50.036 50.132
mββ/meV 0.374 0.325
M1/GeV 2.308× 1011 8.367× 109

M2/GeV 5.582× 1012 1.934× 1012

M3/GeV 1.023× 1014 1.641× 1013

vR/GeV 7.134× 1013 1.943× 1013

θq12 0.229 0.229
θq13 0.00535 0.00393
θq23 0.0414 0.0366
δqCP/

◦ 86.767 65.647
mu/mc 0.00269 0.00250
mc/mt 0.00268 0.00292
md/ms 0.0306 0.0601
ms/mb 0.0171 0.0177
mb/mτ 0.767 0.672
Y num
B 8.681× 10−11 8.454× 10−11

Y ap
B −6.378× 10−11 −1.179× 10−12

χ2
l 3.151 8.969
χ2
q 41.647 16.306

χ2
bτ 1.540 3.775

χ2
YB

0.021 0.971
χ2

total 46.359 30.021

Table 5. Benchmark points at which the analytical approximation of section 3.2 fails for the
concerned models. The vanishing initial abundance of right-handed neutrinos is assumed in BM1
model while thermal initial abundance is assumed in BM2.
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Figure 10. The evolution of the baryon asymmetry YB with temperature for the local minimum
shown in table 5. The left and right panels are the BM1 with vanishing initial abundance and the
BM2 with thermal initial abundance respectively. The evolution of the B − L asymmetry number
densities NB−L

αβ , α, β = e, µ, τ displayed in the lower panel is described by the density matrix
equations in eq. (3.7).

B Fermion mass matrices at the best fit point

From the general expressions of the Yukawa matrices shown in eq. (2.15) and eq. (2.16), we
see that there is no strong hierarchy among the elements of the fermion mass matrix in our
working basis. As a result, some fine-tuning in the coupling constants is necessary in order
to accommodate the mass hierarchies of the quarks and charged leptons as well as the small
quark mixing angles. In the following, we list the fermion mass matrices using the best fit
values of parameters given in table 3 for the model BM1 with vanishing initial abundance
of the right-handed neutrinos. The numerical values of the mass matrices for other cases
in table 3 and table 4 can be obtained analogously. All the quark and charged lepton mass
matrices are expressed in GeV unit while the unit of light neutrino mass matrix is eV,

Mu =

 39.2397 ei1.8652π 17.8093 ei0.1946π 37.6353 ei0.5362π

18.0002 ei0.2042π 8.1583 ei0.5349π 17.2716 ei0.8744π

37.2362 ei0.5265π 16.8542 ei0.8522π 35.8054 ei1.1994π

 , (B.1)
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Md =

 0.4264 ei1.9595π 0.1792 ei0.3065π 0.4190 ei0.6261π

0.2002 ei0.2947π 0.0869 ei0.6330π 0.1929 ei0.9662π

0.3752 ei0.6378π 0.1480 ei0.9998π 0.3793 ei1.3003π

 , (B.2)

Me =

 0.4662 ei1.1989π 0.1481 ei1.4459π 0.7266 ei1.8981π

0.3494 ei1.5651π 0.1075 ei1.8707π 0.5342 ei0.2420π

0.3050 ei1.7784π 0.1202 ei1.9295π 0.4902 ei0.5299π

 , (B.3)

Mν =

 0.0100 ei1.3832π 0.0101 ei1.2670π 0.0190 ei0.0603π

0.0101 ei1.2670π 0.0051 ei1.5097π 0.0193 ei1.9905π

0.0190 ei0.0603π 0.0193 ei1.9905π 0.0291 ei0.8691π

 . (B.4)

In the basis of eq. (2.6), these mass matrices are quite democractic. The corresponding
quark CKM and lepton PMNS mixing matrices are determined to be

VCKM =

 0.9737 ei1.9604π 0.2276 ei1.4175π 0.0041 ei1.4005π

0.2274 ei1.6338π 0.9728 ei0.0906π 0.0432 ei0.5382π

0.0102 ei1.9581π 0.0421 ei0.5499π 0.9991 ei1.9905π

 , (B.5)

UPMNS =

 0.8225 ei1.9503π 0.5493 ei1.5399π 0.1476 ei0.1277π

0.4104 ei1.5566π 0.6135 ei0.2405π 0.6747 ei0.2830π

0.3938 ei0.6669π 0.5674 ei1.1497π 0.7232 ei0.2549π

 . (B.6)

As shown in eq. (2.2), the Yukawa couplings of all the quarks and charged leptons are
linear combination of Y10, Y120 and Y126, while the mass matrix of the heavy right-handed
neutrinos only depends on Y126 and light neutrino masses are generated by the type-I
seesaw mechanism. The different mass generation mechanism hence leads to small quark
mixing angles and large lepton mixing angles.
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