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1 Introduction and summary of results

Five-dimensional field theories, although perturbatively non-renormalizable, show interest-
ing UV dynamics. After the pioneering work of [1–6], in recent years several interesting
results have been obtained for theories with supersymmetry, using a variety of different
techniques, see for instance [7–46]. In particular, a whole zoo of superconformal field the-
ories (SCFT) have been shown to exist in five dimensions, some of which corresponding to
possible UV completions of supersymmetric gauge theories. These conformal theories enjoy
many interesting properties, such as enhancement of global symmetries [1, 2, 16, 47–52]
and emergence of non-perturbative Higgs branches [53–68].

A still open question is whether non-supersymmetric conformal field theories exist in
five dimensions. Some investigations have been carried out using ε-expansion and bootstrap
techniques, providing hints for their existence (see [69–79] for some recent works). However,
it is fair to say that we are still far from having a clear understanding about the existence
of interacting conformal field theories (CFT) in five dimensions without supersymmetry.

A possible strategy to tackle this problem is to start from some known SCFT and
deform it by a supersymmetry breaking deformation and study the corresponding RG-flow.
Its end-point could be, at least in a certain region of the parameter space, a CFT. This
approach was pursued in [80] where a non-supersymmetric deformation of the E1 SCFT [1]
was considered and conjectured to end in a CFT in the IR. In a subsequent work [81]
it was shown that this deformation induces an instability in the system but that tuning
the supersymmetry breaking deformation with the supersymmetry preserving deformation
that the E1 theory admits, a phase transition would emerge in the IR. A natural question
is what the order of this phase transition actually is.

In brane-web language the phase transition is due to an instability of the web against
recombination, in analogy with what happens with systems of branes at angles in flat space,
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h = 1/g2
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Figure 1. On the left the brane web describing the E1 fixed point. On the right its supersymmetric
mass deformation. Segments are (p,q) 5-branes intersecting at points on the (x, y) plane. Their
orientation is aligned with the corresponding (p,q) charges. Red circles/squares are [1,1] and [1,-1]
7-branes, respectively, which are orthogonal to the (x, y) plane.

see e.g. [82]. Neglecting interactions between the branes constituting the brane web, the
energies of the two competing webs, the connected and the reconnected ones, can be easily
computed and shown to dominate as a dimensionless parameter is above (resp. below) a
critical value. At such critical value the two configurations are instead degenerate in energy
and a phase transition between them occurs. At this level of approximation this looks first
order. This is however a crude estimate since, as shown e.g. in [83] in a similar context,
brane interactions are important in determining the actual order of the phase transition.

While the tree-level computation can be easily done for the E1 deformed brane web,
this is not so when brane interactions are taken into account. Hence, for the E1 theory the
order of the phase transition cannot be safely established using these techniques. What
we do in this work is to consider generalizations of the E1 theory, the so-called X1,N
SCFTs [84], which behave similarly to the former but for which, thanks to the possibility
of taking N large, brane interactions can be reliably computed. Interestingly, we will show
that there exists a large range of parameters where the phase transition is second order
and hence a non-supersymmetric CFT exists.

The rest of the paper is organized as follows. In section 2, using brane web language,
we review the analysis of [81] of the E1 theory and show, following the approach discussed
above, that a phase transition occurs which, neglecting brane interactions, looks first order
for any value of the parameters. While brane interactions are difficult to compute for this
system, in section 3 we consider a generalization of the E1 theory, the X1,N theory, which
admits a similar supersymmetry breaking deformation. In section 4 we analyze this system
at large N , in which the effect of brane interactions can be reliably computed, and show
that there exists a region of the parameter space where the corresponding phase transition
is in fact second order. We conclude in section 5 with a summary of our results and a
discussion on some open questions.

2 Phase diagram of mass deformed E1 theory: a review

The E1 theory is an interacting five-dimensional SCFT which, upon a supersymmetric
relevant deformation with parameter h ≡ 1/g2, flows in the IR to pure SU(2) SYM, with
gauge coupling g [1]. The corresponding brane webs, describing the interacting fixed point
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(a) (b)

(d)(c)

Figure 2. The supersymmetry breaking deformation of the E1 theory at infinite (above) and
finite (below) coupling. At infinite coupling the (1, 1) strings stretched between the two (half)
(1, 1) 5-branes develop a tachyonic mode. At finite coupling the four-brane junction split and the
strings get stretched and have a minimal distance of order h. This provides a positive mass squared
contribution which competes with the tachyonic one.

and SU(2) SYM, respectively, are reported in figure 1 (we refer to [4–6], whose conventions
we adopt, for details on the use of brane webs to describe five-dimensional field theories).

As shown in [80], the E1 theory admits also a relevant supersymmetry breaking de-
formation, parametrized by a mass squared parameter m̃. Also this deformation can be
described in brane web language [81]. It corresponds to a rotation of an angle α ∼ m̃ α′ of
the two right 5-branes around the x-axis, as described in figure 2.

At h = 0 the (1, 1) strings stretching between the (1, 1) 5-branes at angle, develop a
tachyonic mode and the system becomes unstable towards brane recombination [82]. At
finite h this same mode gets also a positive mass square contribution, since the (1, 1) strings
gets stretched due to the opening of the four-brane junction. This contribution competes
with the tachyonic one and for h2 > m̃ the overall mass square becomes positive. Hence
there exist two qualitative different regions as one varies the parameters h and m̃. For
h2 > m̃ the theory flows to pure SU(2) YM in the IR while for h2 < m̃ an otherwise
preserved global symmetry is spontaneously broken and the theory enters a new phase.1
The Yang-Mills and the symmetry broken phases are separated by a phase transition at
h2 ∼ m̃. A description of the resulting phase diagram is reported in figure 3.

An interesting aspect that was emphasized in [81] is that while the phase transition
occurs at finite value of the (bare) gauge coupling h = 1/g2, the SU(2) (renormalized)
gauge coupling gYM diverges there. So, if the phase transition were second order, the fixed
point would represent a UV-completion of pure SU(2) YM. The latter would emerge as

1While for h = 0 the tachyon potential is runaway, evidence was given in [81] that finite h contributions
may affect the potential and stabilize the scalar VEV at finite distance in field space.
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Figure 3. Phase diagram of softly broken E1 theory for positive m̃ and h. The white region is
described by pure SU(2) YM at low energy and enjoys a U(1)I × U(1)R global symmetry. The
dashed region is a symmetry broken phase, U(1)I × U(1)R → U(1)D. Along the blue line a phase
transition occurs. The SU(2) YM effective gauge coupling diverges there.
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Figure 4. On the left the recombined brane web after tachyon condensation. The (1, 1) and (1,−1)
5-branes are separated in a direction transverse to the (x, y) plane. On the right the connected
supersymmetry breaking configuration. Each three junction is supersymmetric but the whole system
breaks supersymmetry since the boundary conditions of the D5-branes (horizontal line) on the two
three-junctions are mutually non-BPS.

the IR (free) fixed point of a RG-flow triggered by a relevant deformation of the CFT, to
be identified, in the IR, with the gauge coupling, very much like what happens for the E1
fixed point and N = 1 SU(2) SYM.

For generic values of h and m̃ there exist two brane webs compatible with charge con-
servation, a recombined smooth configuration after tachyon condensation and the original
connected one, as described qualitatively in figure 4. Following [81], we expect the former
to dominate for h2 < m̃ and the latter for h2 > m̃. At h2 ∼ m̃ a phase transition between
these topological distinct configurations is expected and one could wonder whether using
brane web dynamics the order of such phase transition can be determined.

The energy of the two configurations and, in turn, the way the transition between the
two brane webs occurs depends on the interaction between the constituent branes. This is
hard to compute, in particular in a non-supersymmetric setup as the one we are interested
in. Let us then analyze the brane system by neglecting brane interactions, first.

In this limit, the energies of the two configurations are nothing but the tensions of
the various branes shaping them. In the calculation, the 7-branes on which the 5-branes
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Figure 5. The connected configuration for α = 0. The (1,1) and (1,-1) 5-brane segments have all
length L.

end furnish a regulator, since this way the otherwise semi-infinite 5-branes become finitely
extended and their energy finite.

The 5-brane constituting the brane webs are of different kinds and so are their tensions.
In particular, the tension of a (p,q) 5-brane is

T(p,q) =
√
p2 + q2 T(1,0) , (2.1)

where T(1,0) is the D5-brane tension and, following [5], the complexified Type IIB string
coupling has been set to its self-dual point, τ = i. With this in mind, let us start considering
the connected configuration in the supersymmetric limit, as shown in figure 5. The energy
of this configuration is easily computed to be

Econ.(h, L) = 4
√

2L+ 2h (2.2)

in units of T(1,0). If we now rotate the right junction by an angle α ≤ π around the x-axis as
in figure 2, keeping the angle between the (1, 1) and the (1,−1) 5-brane fixed,2 the energy
remains the same since all lengths remain fixed. Hence, the total energy of the connected
configuration in the limit in which brane interactions are neglected equals (2.2) for any α.

In this same limit, the reconnected configuration compatible with charge conservation
is nothing but the straight brane version of the brane web on the left of figure 4. This comes
from merging of the (1, 1) 5-brane prongs into a unique straight (1, 1) 5-brane suspended
between the [1, 1] 7-branes, and similarly for the (1,−1) 5-branes, as shown in figure 6.
The energy Erec. of the configuration depends now on the rotation angle α and reads

Erec.(h, L, α) = 2
√

2
√

(h+
√

2L)2 + 2L2 cos2 α

2 . (2.3)

Comparing eqs. (2.2) and (2.3) we see that the connected configuration is the one with
minimal energy and hence is the true vacuum of the theory for h > h∗, while the reconnected
one has minimal energy for h < h∗, where

h∗ =
√

2L
√

1− cosα . (2.4)

At h = h∗ the two configurations, which exist and remain distinct for any value of h, are
degenerate in energy and there is a phase transition between them (in the supersymmetric

2This can be shown to be the configuration minimizing the energy.
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Figure 6. Recombined configuration neglecting brane interactions. Fixing the boundary condi-
tions, that is the positions of the 7-branes, the minimal energy configurations are straight lines, as
indicated.

limit, α = 0, the transition occurs at h∗ = 0 and, consistently, the connected configuration
is always dominant). The corresponding phase diagram is similar to figure 3 and suggests
that the phase transition, at least at this level of the analysis, is actually first order.3 In
particular, in both cases the transition depends on the angle α. However, in the phase
diagram of figure 3, the transition point h∗ is proportional to the string length ls, while
in our configuration, which is completely semi-classical, there is no dependence on this
parameter.4

One might wonder if anything could change once brane interactions are taken into
account. In fact, it is expected brane interactions to affect the order of the phase transition,
as it was shown to be the case in e.g. [83], where four-dimensional gauge theories were
studied using rather similar brane models. One of the key ingredients of the analysis
of [83] was the possibility of selecting a regime where few constituent branes could be
studied as probes in the background of many others, and take advantage of the gravitational
background generated by the latter. This is something we cannot achieve in our case, since
our brane web is composed by one (1, 1), one (1,−1) and, once h 6= 0, two (1, 0) 5-branes
and none of them can be treated as a probe in the background of the others. So, in order
to take advantage of an approach as in [83] a generalization of the E1 theory is required. A
natural such candidate is the so-called X1,N theory [84], whose structure will be reviewed
in the next section.

3 Generalizations of E1: the X1,N theory

The brane web of N (1, 1) branes intersecting M (1,−1) branes at a 90 degrees angle
realizes the so-called XM,N fixed point [84]. Specializing to the case M = 1, the web
reduces to the one in figure 7.

3The same result was found independently by Oren Bergman and Diego Rodriguez-Gomez.
4We find here a spurious dependence on the parameter L that we used to regulate. We will further

comment about it when considering the effects of brane interactions, in section 4.
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Figure 7. X1,N fixed point (N = 3 in the figure).

t1

t2

t3

m1

m2

Figure 8. The X1,N brane web in the SU(2)N limit.

. . .SU(2) SU(2) SU(2) SU(2)

Figure 9. SU(2)N quiver.

Similarly to the E1 theory, one can switch on (the now several) supersymmetric relevant
deformations. These trigger an RG-flow and drive the theory to a supersymmetric gauge
theory in the IR. This corresponds to opening-up the brane web as shown in figure 8, while
figure 9 is the quiver diagram describing such low energy effective theory. This is a SU(2)N
supersymmetric gauge theory with matter in the bifundamental.

The lengths of the (1, 0) branes, that we dub ti in the following, correspond to the
square of the inverse (effective) gauge couplings of the SU(2) gauge factors. The vertical
distance between the D5-branes associated with the i−th and the (i+1)−th groups defines
instead the mass mi of the corresponding bifundamental.

For generic values of ti and mi the global symmetry of the system is U(1)NI ×U(1)N−1
F .

Similarly to what happens for E1, when ti = 0 the instantonic U(1)I associated with
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the i−th node enhances to SU(2)I . This is manifest from the brane web: when ti = 0
one can make two 7-branes of the same type (either [1, 1] or [1,−1]) to lie on top of
each other, hence enhancing the 8-dimensional gauge symmetry living on their world-
volume, which corresponds to an instantonic symmetry in the five-dimensional theory [6,
81]. Similarly, when mi = 0, two (1, 1) 5-branes become aligned, inducing an enhancement
of the corresponding flavor symmetry from U(1)F to SU(2)F .

At the fixed point, the global symmetry is believed to get enhanced to SU(2N) [48].
This can be understood from the brane web by the possibility of superimposing the 2N
[1, 1] 7-branes at the fixed point, see figure 7.5 This also implies that the Higgs branch,
parametrized at weak coupling by the massless bifundamentals, gets enhanced. At the fixed
point, this is the 2N -dimensional minimal nilpotent orbit O[2N ](su(2N)) , as can be shown
by drawing the corresponding magnetic quiver. This is nothing but the space of 2N × 2N
complex matrices M withM2 = 0,TrM = 0 or the Higgs branch of four-dimensional U(N)
supersymmetric gauge theory with 2N flavors.6

In the following we will consider a supersymmetry breaking deformation of the X1,N
theory very similar to the one we discussed previously for the E1 theory. Again, the
existence of a phase transition in the space of parameters will be manifest. However, very
much like what was done in [83], in this case the possibility to play with the large N limit
will let us get some insights on the nature of this phase transition. In particular, we will
show that in a certain range of parameters the phase transition is actually second order,
and a non-supersymmetric fixed point is then expected to exist in the phase diagram.

4 Phase transitions in the X1,N theory

Let us consider a deformation of the X1,N theory with parameters ti = −2mi = h for all i.
This makes the single junction of the fixed point theory to separate into two, as shown in
figure 10: the (1, 1) 5-branes remain perpendicular to the (1,−1) ones while (N + 1, N −1)
represents the intermediate (p,q) 5-brane, whose length equals h. The SU(2N) flavor
symmetry is broken to SU(N)L × SU(N)R × U(1)B while the SU(2) R-symmetry remains
unbroken, since the deformation takes place in the (x, y) plane, only.

It is worth noting that, for generic N , this deformation does not give any simple five-
dimensional field theory, but rather a limit in which some of the gauge couplings of the
N SU(2) gauge factors diverge.7 An exception is the case N = 1 for which the mass
deformation leads to pure SU(2) SYM.

Exactly as we did for E1, we can now break supersymmetry by rotating the right
brane junction by an angle α around the axis along which the (N + 1, N − 1) 5-brane is
aligned. The deformation involves the transverse directions to the (x, y) plane and hence
affects now also the SU(2) R-symmetry, which gets broken to its Cartan. This has a natural

5Strictly speaking, this argument is a bit naive since no affine extension of the AN−1 algebra can
be constructed from systems of 7-branes [85]. So the standard methods used in presence of exceptional
symmetries [6] cannot be applied.

6We thank Antoine Bourget for elucidating this point to us.
7For instance, for N = 2 after the deformation t1 = t2 = −2m, we get a theory where both gauge

couplings of the two SU(2) nodes diverge.
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Figure 10. Opening the fixed point via a supersymmetric deformation with parameters ti =
−2mi = h. The (1,−1) 5-branes remain at a 90 degrees angle with the (1, 1) 5-brane stack, while
the larger N the smaller the angle δ between the stack and the (N + 1, N − 1) 5-brane of length h.

field theory counterpart. The supersymmetry preserving deformation corresponds to give a
non-vanishing VEV to the lowest component of the background vector multiplet associated
with the global symmetry current, which is a singlet under the SU(2) R-symmetry. Here,
instead, we give a VEV to a highest component which, as such, breaks supersymmetry.
This is a triplet under SU(2) and so the R-symmetry is broken to U(1), very much like
what happens for the E1 theory [80, 81].

From the structure of the brane web, and comparing with figure 4, one could argue
the effects of the supersymmetry breaking deformation to be qualitatively similar to what
happens for the E1 theory [81]. A scalar mode is expected to become tachyonic for small
enough h and the brane web wants to recombine. The two competing configurations,
compatible with brane charge conservation, are shown in figure 11. Their energies, in the
limit in which brane interactions are neglected, are a generalization of eqs. (2.2)–(2.3) and
read

Erec. =
√

2 [f(sin δ) +Nf(cos δ)] , f(a) ≡
√

(h+ 2La)2 + 4L2(1− a2) cos2 α

2 ,

Econ. =
√

2
[
2NL+ 2L+

√
N2 + 1h

]
,

(4.1)

where the reconnected configuration is the natural generalization to N > 1 of the straight
brane configuration of figure 6. It is possible to show that also in this case there exists a
(single) critical value h∗ that separates two regions in the space of parameters where one
brane web dominates against the other, and viceversa.

So far this is no different from what we discussed in section 2, and neglecting interac-
tions the phase transition looks again first order. The point, now, is that we can consider
N to be parametrically large. This has two effects. The first is that it makes easier to
compute brane interactions in the recombined brane system, left of figure 11, since in the
large N limit this can be treated as a probe (1,−1) 5-brane in the gravitational background
of N (1, 1) 5-branes. The second effect is that it makes the angle δ between the two stacks
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(N + 1,N − 1)
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Figure 11. The two competing brane webs after the supersymmetry breaking deformation. The
recombined system consists of one (1,−1) 5-brane and N (1, 1) 5-branes, separated in a direction
transverse to the (x, y) plane.
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Figure 12. The deformed X1,N theory in the large N limit. The system becomes that of N (1, 1)
5-branes on which two (1,−1) 5-branes ends.

of N (1, 1) 5-branes and the (N + 1, N − 1) 5-brane go to zero

cos δ = N√
N2 + 1

, lim
N→∞

δ = 0 , (4.2)

while the (N + 1, N − 1) 5-brane becomes indistinguishable from a stack of N (1, 1) 5-
branes. Hence, in the strict N → ∞ limit the system in figure 10 reduces to that in
figure 12. Physically, in this limit brane charge conservation at brane junctions does not
force the N stack to bend anymore (and to change its nature) due to the (1,−1) branes
which end on it. In this regime, the energies (4.1) of the two configurations simplify as

Erec. =
√

2
[
N(h+ 2L) +

√
h2 + 4L2 cos2 α

2

]
+O (1/N) ,

Econ. =
√

2 [N(h+ 2L) + 2L] +O (1/N) .

(4.3)

The transition point h∗ is at h∗ = 2L sinα/2.
We note, in passing, that in this limit our system becomes very similar to the one

considered in [83], yet in one dimension higher. This will be useful later.
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Figure 13. The two competing brane webs after the supersymmetry breaking deformation, in the
large N limit.

4.1 Phase transitions in the backreacted X1,N brane-web

In this section we will take brane interactions into account and see how the nature of the
phase transition discussed previously may change.

As already noticed, in the large N limit the original supersymmetric configuration
simplifies to the one depicted in figure 12. Rotating by an angle α the non-supersymmetric
connected and reconnected brane webs look instead as in figure 13.

The difference in energy between the two configurations depends on the (1,−1) 5-brane
only, since the (1, 1) 5-brane stack is unperturbed in this limit, as in the non-interacting
case. Hence, its contribution will be factored out in what follows, and we will just compute
the (1,−1) 5-branes energy. The system can be treated as a probe (1,−1) 5-brane in the
gravitational background of N (1, 1) 5-branes which can exert a force on (and hence bend)
the probe brane. Note, however, that by the very geometry of the problem, this does not
happen for the connected brane web, right of figure 13, whose energy is then the same
as when interactions are neglected, eq. (4.1). In what follows, we will hence compute the
effects of brane interactions on the left brane web of figure 13.

Let us start considering the background generated by the (1, 1) branes stack. We
can align these branes along the 01234x directions, while the (1,−1) branes, in the su-
persymmetric configuration, are aligned along 01234y. It is useful to introduce cylindrical
coordinates as

(x, y, z) = (x, ρ cosφ, ρ sinφ) . (4.4)

In these coordinates the N (1, 1) 5-branes are located along (x, 0, 0) while the (1,−1) 5-
brane, after the supersymmetry breaking deformation, has boundary conditions on the
[1,−1] 7-branes it ends on P1 ≡ (x1, ρ1, 0) and P2 ≡ (x2, ρ2 cosϕ, ρ2 sinϕ), where

ϕ = π − α . (4.5)

The supersymmetric limit corresponds to ϕ = π. In these cylindrical coordinates the
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back-reacted metric of the N (1, 1) 5-branes takes the form8

ds2
10 = H−1/4ds2

R1,4 +H−1/4dx2 +H3/4(dρ2 + ρ2dφ2 + ds2
R2) , H = 1 + `2

ρ2 , (4.6)

where ` = 21/4ls
√
N . To simplify notations we will measure quantities in units of `, and

reïnstate the correct factors through dimensional analysis when needed. The axio-dilaton
equals

τ = C0 + i e−Φ = 1 +H

1−H + 2 i
√
H

1 +H
, (4.7)

while the three forms have support on the S3 sphere surrounding the stack

1
(2πls)2

∫
S3
F3 = N,

1
(2πls)2

∫
S3
H3 = N. (4.8)

The brane action of the (1,−1) 5-brane consists of a DBI term and a WZW term, given by

S(1,−1) = −T(1,0)

∫
d6ξ∆(τ, τ̄)

√
− det

(
P [gµν ] + P [C2 −B2]

∆(τ, τ̄)

)
+ T(1,0)

∫
(C6 −B6) .

(4.9)
where

∆(τ, τ̄) =
√

2i(1− τ)(1− τ̄)
τ − τ̄

. (4.10)

Note that the two-form gauge potentials are transverse to the (1,−1) 5-branes, and the
six-form gauge potentials are equal, thus the brane action will only depend on the ten-
dimensional metric and axio-dilaton.

Filling in the metric pull-back and the value of τ one finds that

S(1,−1) = −
√

2T(1,0)

∫
dx
√
H−1 + ρ̇2 + ρ2φ̇2 , (4.11)

where we have denoted derivatives with respect to x with a dot. Modulo an overall nor-
malization, the DBI (4.11) is the same as for a D5 brane in the background of a NS5
brane [83]. Indeed, the two configurations are SL(2,R) dual. Since the corresponding La-
grangian, L(1,−1), does not explicitly depend on x and φ we find the following two constants
of motion

I =HL(1,−1) , (4.12)
Q =Hρ2φ̇ . (4.13)

We search for brane configurations ending on the points P1 and P2. These develop a
minimum xm at which ρ̇(xm) = 0. This represents the turning point of the solution,
namely the minimal distance of the probe from the brane stack. Taking ρm = ρ(xm), we
find that √

1 + ρ2
m +Q2 = ρmI . (4.14)

8We present the metric in Einstein frame, and take asymptotic values of the axio-dilaton equal to τ0 = i,
as before.
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To solve the full equations of motion we split the solution into two branches x ∈ [xi, xm],
where i = 1, 2 and, as mentioned below eq. (4.4), xi labels the positions of the [1,−1]
7-branes along the x direction. We can then use eqs. (4.13) and (4.14) to solve eq. (4.12)
through separation of variables

√
1 +Q2(xm − x1) =

ρ1∫
ρm

dρ
H√

Hm −H
= ρm

√
ρ2

1 − ρ2
m + θ1 ,

√
1 +Q2(x2 − xm) =

ρ2∫
ρm

dρ
H√

Hm −H
= ρm

√
ρ2

2 − ρ2
m + θ2 ,

(4.15)

where, for later convenience we have defined θi = arccos(ρm/ρi). Similarly we find, using
the equation of motion for ρ, that√

1 +Q2φm = −Q θ1 ,
√

1 +Q2(φm − ϕ) = Q θ2 , (4.16)

To further analyse the system we will assume the simplification ρ1 = ρ2 ≡ L, and thus
θ1 = θ2 ≡ θ, such that√

1 +Q2h = L2 sin 2θ + 2θ ,
√

1 +Q2ϕ = 2Q θ , (4.17)

where h ≡ x2 − x1. Solving the second equation in (4.17) for Q we can rewrite the first
equation as (re-instating the appropriate factors of ` defined below eq. (4.6))

`h(θ) =
√

1−
(
ϕ

2θ

)2
(L2 sin 2θ + 2`2θ) , (4.18)

which is transcendental and does not have a closed-form expression when solving for θ.
Since the constant of motion Q is real, and 0 ≤ ϕ ≤ π we conclude that ϕ ≤ 2θ ≤ π. In the
supersymmetric limit this equation trivializes and one has a solution only for h = 0. This
is consistent since in this regime the reconnected and the connected brane webs become
the same, while for h 6= 0 the reconnected one does not exist.

The energies for the reconnected and connected configurations can be now easily com-
puted as (minus) their evaluated brane actions and read

`Erec. = 2
√

2T(1,0)

√
Hm −

(
ϕ

2θ

)2
ρmL sin θ , Econ. = 2

√
2T(1,0)L , (4.19)

where, as already noticed, the energy of the connected configuration is unaffected by brane
interactions and hence equals that in eq. (4.1). This implies that(

Erec.
Econ.

)2
=
(

1− ϕ2

4θ2Hm

)(
1 + ρ2

m

`2

)(
1− ρ2

m

L2

)
. (4.20)

The natural variables of interest are the distance between the two [1,−1] 7-branes along
the x direction, h, the relative rotation between them, ϕ, and their distance from the (1, 1)
5-branes stack, L. To rewrite the ratio of energies in terms of these physical variables
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Figure 14. The reconnected and connected brane webs for α = π. In this case everything happens
on the (x, y) plane only. Blue squares and circles refer to 7-branes orthogonal to the (x, y) plane
which look however as anti-branes compared to unrotated ones.

one must solve eq. (4.18) to find θ(h, ϕ, L). This requires a combination of analytical and
numerical methods and will be dealt with below.

We will first focus on the case α = π, that can be studied almost completely analyt-
ically. This will be important when we move on studying the system for general values
of α, which will turn out to be qualitatively similar, albeit one must resort to numerical
methods.

The α = π case. Taking α = π, the brane setup is SL(2,R) dual to a D5-NS5 system
that is T-dual to the D4-NS5 brane system studied in [83]. Following a completely analog
analysis as in [83] we will give strong evidence that, in a certain range of parameters, the
X1,N brane-web undergoes a second order phase transition. Even though the computation
is cognate to the one in [83] we will go through it in detail since it will provide a good
intuition for the physics when α 6= π.

Taking α = π several quantities simplify. The transcendental eq. (4.18) now becomes
Kepler’s equation9

`h(θ) = L2 sin 2θ + 2`2θ , (4.21)

where 0 ≤ θ ≤ π/2. A maximum for h is reached at

`h0 = L2 sin 2θ0 + 2`2θ0 , with L2 cos 2θ0 = −`2 , (4.22)

which can only be solved when L ≥ `. In the following, we will split the analysis into two
cases, L ≤ `, and L > `, which will turn out being qualitatively different.

• L ≤ `: We find that h monotonically increases from h(0) = 0 to h(π/2) = π`. In the
regime 0 ≤ h ≤ π` there are thus two solutions to the brane action, the reconnected
and the connected ones, whose brane webs are depicted in figure 14. The ratio of
their respective energies is given by

(
Erec.
Econ.

)2
=
(

1 + ρ2
m

`2

)(
1− ρ2

m

L2

)
< 1 . (4.23)

9This equation can actually be solved analytically for θ, in terms of a series of Bessel functions, within
the range −`π < h < `π.
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E
h > π`

h = π`

h < π`

Figure 15. The potential energy as a function of the configuration space of the web as h is varied,
for L ≤ `.

This ratio is always smaller than one, so we find that the energetically favorable
configuration is the reconnected one. At h = π` we find that ρm = 0, the ratio
goes to one and, consistently, the reconnected and the connected brane webs become
degenerate. For h > π` eq. (4.21) ceases to have a solution, and thus only the
connected configuration solves the equations of motion.

Schematically we depict the distinct phases of the brane configurations through a po-
tential in figure 15. Whenever h < π`, the potential has a minimum coinciding with
the reconnected configuration and a maximum coinciding with the connected one.
As the value h increases, the minimum of the potential does as well, until h = π`, at
which point the two extrema merge and the potential has a single minimum corre-
sponding to the connected configuration. We thus find that the system undergoes a
second order phase transition when h passes the value π` = π 21/4`s

√
N . We note,

for future purpose, that this value is independent of L.

• L > `: the function h(θ) has a maximum, h0, given by eq. (4.22). This maximum
decreases whenever L does, until L = `, at which it is at θ0 = π/2. Whenever h > h0
there is no solution to eq. (4.21), and therefore only the connected configuration
exists. Instead, in the region

h0 ≥ h ≥ π` , (4.24)

Kepler’s equation has two solutions labeled by θS , θL, denoting the previous angles
as, respectively, the smallest and the largest ones associated with the same value of h.
These solutions are associated with two distinct reconnected 5-brane configurations.

For h < π` one can show that

(
Erec.
Econ.

)2
=
(

1 + ρ2
m

`2

)(
1− ρ2

m

L2

)
=
(

1 + L2 cos2 θ

`2

)
sin2 θ ≤ 1 . (4.25)
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E h > h∗

h = h∗

π` < h < h∗

Figure 16. The potential energy as a function of the configuration space of the web for some values
of h, for L > `.

The reason is that the ratio is monotonically increasing in θ and smaller than or equal
to 1 for

θ ≤ θ∗ , where θ∗ = arcsin `/L < θ0 , (4.26)

where h∗ = h(θ∗) > π`. Hence for h < π` the reconnected brane configuration is
always energetically favorable with respect to the connected one.
When h > π` the analysis is slightly more involved. There are now three brane con-
figurations whose energies (Econ., E

S
rec., E

L
rec.) we have to compare, where the energies

ESrec., E
L
rec. are associated with the smooth solutions with θS , θL respectively. Since

π/2 > θL > θ0, and the ratio of energies decreases in this region, we have that(
ELrec.
Econ.

)2

>

(
Erec.(π/2)
Econ.

)2
= 1 , (4.27)

with Erec.(π/2) represents the energy of the reconnected configuration with θ =
π/2. This tells us that the connected configuration is always energetically favorable
compared to the reconnected one with θ = θL. Moreover, it can be shown that
ELrec. > ESrec., using the fact that the sum and differences of θL and θS are bounded by

0 ≤ θL + θS ≤ π , and 0 ≤ θL − θS ≤ π/2 , (4.28)

and that h(θL) = h(θS). The discussion above shows that ESrec./Econ. can be either
bigger or smaller than 1, depending on the value of h(θS). We denote with h∗ = h(θ∗)
the value of h(θS) for which ESrec./Econ. = 1. Schematically the different phases are
depicted through a potential in figure 16.
The connected configurations correspond to the left minimum of the potentials, the
smooth reconnected solutions with θ = θL correspond to the maxima of the potentials,
and the smooth reconnected solutions associated with θS correspond to the right
minima. Depending on h, these minima can be either local or global, showing that
the brane configuration undergoes a first order phase transition when h passes through
h∗. Note that contrary to the case L ≤ `, the point at which the phase transition
occurs, h∗, now depends on L through eq. (4.26).
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Figure 17. Plot of `ϕ/` as a function of ϕ. The yellow dotted line is represents the analytical
function π/

√
π2 − ϕ2, and the purple dots show the numerical results.

Generic values of α. We now want to generalize the previous analysis to generic values
of α. The transcendental equation is now

`h =
√

1−
(
ϕ

2θ

)2
(L2 sin 2θ + 2`2θ) , (4.29)

and h has an extremum at

L cos 2θ
[
2θ(4θ2 − ϕ2) + ϕ2 tan 2θ

]
= −8`θ3 . (4.30)

Eq. (4.30) is not solvable analytically, so we will have to resort to numerical analysis. In
this way, one can show that this equation has a zero only for

L ≥ `ϕ = π`√
π2 − ϕ2 ≥ 1 , (4.31)

where `ϕ plays the same role as ` of previous section (`ϕ=0 = `). The function h has at
most one extremum, which is a maximum, when L ≥ `ϕ. This follows from the fact that
for π/2 > θ > θ0, where θ0 is the value for which h reaches its maximum h0, the second
derivative of h with respect to θ is strictly negative.

Qualitatively, h behaves similarly to the case α = π, just replacing ` → `ϕ. In the
following, we then distinguish the case L ≤ `ϕ from the case L > `ϕ.

• L ≤ `ϕ: There are two brane configurations, a connected configuration and a recon-
nected one. Additionally, since the reconnected energy is monotonically increasing in
h and h itself is monotonically increasing in L, we find that(

Erec.
Econ.

)2
≤
[
1 + θ2 − 4ϕ2

(π/2)2 − 4ϕ2
(π/2)2

θ2 cos2 θ

]
sin2 θ ≤ 1 . (4.32)

The ratio only saturates the bound at θ = π/2. Therefore, when L ≤ `ϕ the re-
connected configuration is energetically favorable. When h increases and crosses the
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value h̃ = `
√
π2 − ϕ2, a second order phase transition occurs, after which only the

connected brane configuration remains. We thus find a behavior that is qualitative
the same as in the case α = π.
The minimal distance ρm between the recombined (1,−1) brane and the stack de-
creases continuously from ρm = L cosϕ/2 at h = 0 down to ρm = 0 at the transition
h = h̃. In the process, the reconnected brane comes closer and closer to the stack
and flattens along the direction of the latter, until ρm reaches zero. At this point,
the reconnected configuration becomes indistinguishable from the connected one, as
it can be shown taking the ρm → 0 limit in the equations of motion (4.12)–(4.13),
realizing the second order phase transition.

• L > `ϕ: the function h does have a maximum h0, and when

h0 ≥ h ≥ h̃ , with h̃ = `
√
π2 − ϕ2 , (4.33)

there exist two reconnected configurations, together with the connected one. The two
reconnected configurations are again associated with two values θS ≤ θL, for which
h(θS) = h(θL). Analogously to the α = π case, we denote the energies of the three
configurations as Econ., ESrec., and ELrec.. Numerically, it is possible to show that(

ELrec.
ESrec.

)
≥ 1 ,

(
ELrec.
Econ.

)
≥ 1 , (4.34)

and that ESrec./Econ. can be either bigger or smaller than 1, depending if h(θS) is
above or below a critical value h∗. In figure 18 we show the generic behavior of the
ratio of energies in function of h, here specifically at values L/` = 2, and ϕ = π/16,
illustrating the behavior mentioned above.
Whenever h < h̃, one can argue, in a similar way as we did in the L ≤ `ϕ case, that
there is only one reconnected configuration, and that its energy is always favored
over the connected one. Therefore we can conclude that if L > `ϕ, the brane system
undergoes a first order phase transition when h increases and crosses a value h∗, as
in the α = π case.

All in all, we then see that the brane system behaves qualitatively the same, indepen-
dent of the value of α. For the ease of the reader, we summarize below the different cases
and the associated phase transitions.

Summary. When L ≤ `ϕ and h < h̃ = `
√
π2 − ϕ2, there are two brane configurations,

a reconnected configuration and a connected one, and the former is always energetically
favorable compared to the latter. As the value of h increases and passes h̃, the two config-
urations become the same and a second order phase transition occurs at h = h̃.

When L > `ϕ and h < h̃ there is one reconnected configuration that is always en-
ergetically favorable with respect to the connected one, as for L ≤ `ϕ. However, when
h ≥ h̃, there are three brane configurations: two reconnected and one connected. The θL
reconnected configuration is unstable, having maximal energy. The θS and the connected
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Figure 18. Ratio of energies for the different configurations as a function of h/`, for the val-
ues L = 2` and ϕ = π/16. The red dashed line represents the value h̃/` =

√
π2 − ϕ2 above

which two reconnected configurations exist. The black dashed line represents the value h∗/`, where
ES

rec./Econ. = 1 and the first order phase transition occurs.

configurations represent a global and a local minimum, respectively, whenever h < h∗. For
h > h∗, the role of the two solutions exchange and the connected one becomes an abso-
lute minimum. So, as h increases, the brane configurations undergo a first order phase
transition at h = h∗.

It is worth noting that for small supersymmetry breaking parameter, α ∼ 0, one gets
that `ϕ ∼ α−1/2 → ∞ and the range in which the phase transition is second order, i.e.
L ≤ `ϕ, can be made parametrically large.

4.2 On the tachyonic origin of the phase transition

In section 4.1, by computing energies of brane webs in the limit of a large number N
of (1, 1) 5-branes, we have shown that a phase transition of first or second order occurs
between a connected and a reconnected configuration, as one varies h, at fixed L. As in
the simplest setup of the E1 theory [81], the instability of the connected brane web against
decay to the reconnected one is expected to originate from a tachyonic mode of an open
(1,−1) string stretched between the (1,−1) 5-branes which develops for small enough h.

Let us start considering two D5 branes at an angle α. At weak string coupling, the
spectrum of the strings ending on the branes can be explicitly calculated and the modes
localized at the intersection are tachyonic with mass m2

T ∼ −2πα `2sT 2
(1,0). This holds both

at small angles α and at large angles α ∼ π. Separating the D5 at a distance h, the lowest
excitations develop an additional positive mass ∼ h2T 2

(1,0) since the minimal length of these
strings is now h. So, when h2 = h̃2

flat ∼ 2πα`2s, the lowest mode becomes massless and the
system is locally stable. This is expected to remain true also at strong gs coupling, as was
argued in [83] in the case of two D4 branes at angles.
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Since this brane system is SL(2,Z) dual to a system of two (1,−1) 5-branes, one can
argue that also in this latter system a tachyonic mode is present at small enough distance
between the branes, while for h2 ∼ α`2s the configuration should become locally stable.

Our previous analysis shows that this is what actually happens for L ≤ `ϕ:10 there is a
phase transition at h = h̃ and, for h > h̃, the connected configuration becomes an absolute
minimum of the energy system. At this point, h̃ ∼

√
α for both α ∼ 0 and α ∼ π, so we

expect the tachyon to condense and to be responsible for the second order phase transition.
For L > `ϕ, the connected configuration ceases to be a maximum at h ∼ h̃ but remains

globally unstable until h = h∗. At that point, this is energetically favorable and becomes
the absolute minimum of the configuration energy. So at h ∼ h̃, the local instability is
resolved when the tachyon becomes massless, but a non-perturbative one remains until
h ∼ h∗. This realizes the first order phase transition we saw in section 4.1.

Note that our transition point h̃ is of order
√
N , while the tachyonic mass between the

branes is expected to be ∼ O(1). The same mismatch was found in [83] in the case of two
D4 branes at an α = π angle in a background of N NS5 branes. This apparent tension of
the parameters was related to the presence of the NS5 stack11 which was found to modify
the tachyonic contribution to the mass as

m2
T ∼ −πα `2T 2

(1,0). (4.35)

This was argued to remain true also at strong gs coupling.
Although the system in [83] is only SL(2,R) dual to ours, we find the same behavior for

our brane set-up at α = π and a similar transition at α 6= π. We are then led to conclude
that also in our case the second order phase transition is mediated by a tachyon becoming
massless at h ∼ h̃. Figures 15 and 16 provide a qualitative behavior of the tachyon potential
whose minimum, the tachyon VEV, goes smoothly to zero as h is varied or jumps abruptly
when the transition is, respectively, second order, figure 15 or first order, figure 16.

5 Discussion

In this paper we have considered a generalization of the supersymmetry breaking deforma-
tion of the E1 theory proposed in [80], by considering a similar setup for the X1,N theory.
The response of the system upon this supersymmetry breaking deformation is qualitatively
similar to the E1 case [81]. In particular, considering both the supersymmetry preserving
and the supersymmetry breaking deformations at once, it was shown that the parameter
space is divided in two different regions separated by a phase transition. For the E1 theory,
the order of the phase transition could not be unequivocally established. In the present
case, instead, thanks to the possibility of taking N large, it was possible to characterize the
phase transition, which, in a certain regime of parameters, was shown to be second order.
This gives evidence for the existence of non-supersymmetric fixed points in five dimensions.

One could wonder whether finite N corrections could change this state of affairs. Fol-
lowing arguments similar to those in [83], whose brane system is similar to ours, one could

10Remind that `ϕ = π`√
π2−ϕ2

with ` = 21/4`s
√
N .

11In their case, the angle was fixed to α = π.
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argue that no qualitative difference is expected. Note, however, that while finite N cor-
rections modify both brane systems, an advantage of the system considered in [83] is that
a small string coupling limit can be taken in which 1/N corrections can in principle be
computed. This is not the case for our brane web, whose structure changes as the string
coupling is modified.

Another aspect which deserves attention has to do with the dependence of our result
on the fixed length L of the 5-brane prongs. In particular, as L crosses `ϕ from the bottom,
the phase transition turns from being second order to be first order. For one thing, in the
supersymmetric limit L is not a relevant parameter, as the five-dimensional dynamics of
the system is independent of L (indeed, one can send the 7-branes on which the 5-brane
prongs end all the way to infinity without any change in the dynamics [6]). This does
not seem to be the case after we break supersymmetry. From the 7-brane theory point of
view, this does not come as a surprise, since L is related to a Coulomb branch modulus
of the eight-dimensional theory living on the 7-branes. By rotating the brane system this
modulus is lifted, but only a detailed study of the 7-brane dynamics could tell whether this
would be stabilized to some finite value or, say, sent all they way to infinity. This is hard
to figure out, since the brane system is intricate and more complicated than a system of
branes at angle in isolation. This is an important aspect worth investigate further, even
though present string techniques do not seem to be enough to tackle it. This said, it is
reassuring that whenever the phase transition is second order, the value of h at which
the phase transition occurs, h = h̃, does not depend on L. Notice, further, that if the
supersymmetry breaking deformation is taken to be small, `ϕ can be made parametrically
large and hence one can take L large as well, still having the phase transition being second
order. In this regime the 7-branes are far from the stack compared to the scale h̃ at which
the transition happens. Therefore, the 7-brane metric, which would change non-trivially
the background and which we have not considered in our analysis, would not have any
sensible effect on the dynamics triggering the phase transition.

The property of the X1,N theory may be shared by other systems, some of which could
also admit an holographic dual description. While no fully stable non-supersymmetric
AdS6 backgrounds are known (see [86–89] for recent works addressing this point), this is
yet an interesting and potentially far reaching direction to be pursued.

We hope to return on some of these issues in a future work.
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