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1 Introduction

It is well known that black holes in four-dimensional asymptotically Minkowski spacetime
are characterized by their masses, charges and angular momenta. For non-rotating black
holes, the Reissner-Nordstrom solution with massM and charge Q is the unique spherically
symmetric solution to the Einstein-Maxwell equations. A regular horizon exists forM ≥ Q,
with M = Q being extremal. This latter case is special as it has zero temperature and
satisfies a static no-force condition with gravitational attraction precisely balanced against
Coulomb repulsion. Moreover, it is a 1/2 BPS solution in the natural N = 2 supergravity
extension of Einstein-Maxwell theory.

The static no-force condition suggests that it should be possible to obtain a multi-
extremal-black hole configuration, and indeed such a solution was constructed in four-
dimensional Einstein-Maxwell theory by Majumdar and Papapetrou (MP) [1, 2]

ds2 = −H−2dt2 +H2d~x2, A = H−1dt,

H = 1 +
∑
i

qi
|~x− ~xi|

. (1.1)
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While general relativity is a non-linear theory, the remarkable property of the MP solution
is that it takes the form of a linear superposition of black holes with charge (or mass)
qi located at ~xi through the single function H(~x) which is harmonic on the transverse
Euclidean space. This MP solution and its various generalizations based on harmonic
superposition lies at the heart of numerous multi-centered solutions for BPS black holes
and branes in supergravity and string theory.

Most of what we know about multi-centered BPS configurations applies to ungauged
supergravities admitting a Minkowski vacuum. With the advent of AdS/CFT, it would be
natural to generalize such solutions to gauged supergravities and the resulting asymptoti-
cally AdS spacetimes. However, this appears rather difficult for several reasons. Firstly, in
a cosmological background, there is the addition of a cosmological force that can disrupt the
mass/charge balance of BPS black holes. This can potentially be dealt with by adjusting
the mass/charge ratio to restore force balance or by allowing for non-static configurations.
However, changing the mass/charge ratio will most likely render the black holes non-BPS.
Secondly, BPS black holes in AdS are generally more complicated than their asymptoti-
cally Minkowski counterparts. While asymptotically Minkowski BPS black holes can be
spherically symmetric, their asymptotically AdS counterparts often have to carry angular
momentum. This was demonstrated in the corresponding minimal gauged supergravities
in [3] for D = 4 and in [4, 5] for D = 5. These supersymmetric black holes carry angular
momentum and preserve only 1/4 of the N = 2 supersymmetries. Thus the starting point
for a multi-black hole configuration in AdS is already more involved, and it is unlikely that
a simple analytic solution will be found.

Curiously, the MP solution, (1.1), can be generalized to include a positive cosmological
constant [6]

ds2 = −H−2dt2 + e2HtH2d~x2, A = H−1dt,

H = 1 + e−Ht
∑
i

qi
|~x− ~xi|

, H = ±

√
Λ
3 . (1.2)

This solution corresponds to a collection of black holes in an expanding (or contracting)
de Sitter universe, and it is clear that this configuration is non-static. Given the existence of
this solution, one may wonder if a simple analytic continuation can yield an asymptotically
AdS multi-black hole solution. However, formally taking Λ→ −Λ yields a complex Hubble
constant H and hence a complex metric. While this can be removed by a ‘double’ Wick
rotation, swapping the time t with one of the space coordinates, the resulting configuration
then has an imaginary gauge field [7, 8]. Alternatively, we can take the de Sitter solution
as is without analytic continuation, and consider it to be a solution to gauged supergravity
with imaginary gauge coupling g, so that Λ = −3g2 is positive.

Of course, neither of these possibilities of analytic continuation or an imaginary cou-
pling constant is entirely satisfactory, and it remains an open question whether true multi-
centered BPS black hole configurations exist in AdS. This has been previously investigated
in [9–11] in various approximations or with different asymptotics. While we do not have
a complete answer to this question, we provide partial evidence for the existence of such
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solutions. In particular, we start with a single four-dimensional Reissner-Nordstrom AdS
(RNAdS) black hole in the BPS limit and boost it into a circular orbit in global coordi-
nates. The black hole is still following a geodesic, as the cosmological attraction in AdS is
responsible for the circular motion. We then superpose two such black holes in the same
circular orbit, but separated by a phase so they are kept at a fixed separation.

Of course, the superposition of two black holes is only a valid solution at the linearized
level, so the important step we take is to perturbatively construct the first non-linear
correction to this configuration. In particular, we work to quadratic order in the black hole
masses, and the first correction can be thought of as an interaction term proportional to
the product M1M2 of the individual masses.

It should be noted that we have made several technical simplifications in the analysis.
Firstly, the BPS limit of the RNAdS4 solution is actually a naked singularity, so in some
sense the starting point is not particularly physical. However, we believe any obstruction
to a true multi-centered BPS solution would arise not from the singularities but rather
from possible long range interactions. Hence we expect the constructed solution to remain
valid sufficiently far away from the singularities. Secondly, and perhaps more importantly,
the boosted black hole solution, while conceptually simple, is rather complicated to write
out explicitly. Thus we work only to second order in the boost velocity, which can be
thought of as a proxy for the orbital radius. This is a more serious limitation, as it restricts
us to infinitesimally displaced black holes and hence prevents us from examining the full
structure of the resulting spacetime.

Even with these limitations, we are able to investigate the supersymmetry properties
of the two black hole solution within N = 2 gauged supergravity. The single RNAdS4 black
hole was considered in [12] and found to be 1/2-BPS in the limit M = Q. However, we find
that the superposition of two or more such black holes leads to a 1/4-BPS solution. While
each individual black hole preserves two out of a possible four complex Killing spinors, they
only share a single common Killing spinor, thus giving rise to a 1/4-BPS configuration.

In the following, we present a class of solutions to the linearized Einstein-Maxwell
equations describing multi-centered black holes in AdS4. In section 2, we discuss the probe
limit of a two-black hole configuration in AdS by considering circular geodesics in an RNAdS
background. When the black hole and the test particle both have M = Q the circular
geodesic is unchanged from that of a geodesic in vacuum AdS. This suggests a stationary
multi-BPS configuration is possible, and provides a hint to start with a superposition of
two black holes. In section 3, we boost the black holes away from the origin of AdS in global
coordinates and discuss the BPS condition at the lowest order. In section 4, we obtain the
first perturbative correction to the linear superposition solution by solving the linearized
Einstein equation. We then revisit the BPS condition while taking these corrections into
account and demonstrate that the multi-center solution is 1/4 BPS. Finally, we conclude in
section 5 with some open questions. We include three appendices. The explicit two-black
hole solution is given in appendix A, and the Minkowski limit is taken in appendix B.
Appendix C gives the local Lorentz transformation parameters that compensate the boost
of the curved space Dirac matrices.
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2 Test particles and geodesics in AdS

Before turning to multi-centered black hole configurations, it is instructive to consider the
motion of test particles in AdS. Our expectation is that black holes satisfying a non-force
condition will move along geodesics, assuming they are treated as test particles. In a
Minkowski background, it is straightforward in this way to obtain a static configuration
of n particles at rest with each other, so long as M = Q so the gravitational attraction
is balanced by the electrostatic repulsion. However, in AdS there is also a cosmological
attraction to contend with, so that M = Q black holes will not necessarily remain at rest.

Consider a static spherically symmetric four-dimensional spacetime with metric

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2, (2.1)

and scalar potential At(r). The RNAdS4 solution corresponds to

f = 1− 2M
r

+ Q2

r2 + g2r2, At = Q

r
, (2.2)

while the vacuum AdS solution can be obtained by settingM = Q = 0. Because of spherical
symmetry, we can restrict to geodesics in the equatorial plane. Now consider a charged
test particle with mass m and charge q following the geodesic equation U̇µ = q

mF
µ
νU

ν

where Uµ = ẋµ is the four-velocity and dots denote derivatives with respect to the affine
parameter (or proper time for timelike geodesics). Since the spacetime is invariant under
shifts in t and φ (where φ is the azimuthal angle), we have two conserved quantities

E

m
= f(r)ṫ+ q

m
At(r),

L

m
= r2φ̇. (2.3)

Timelike geodesics satisfying UµUµ = −1 then obey the conservation of energy equation

ṙ2 + f(r)
(

1 + L2

m2r2

)
=
(
E

m
− q

m
At(r)

)2
. (2.4)

2.1 Geodesic of a test particle in AdS

Before turning to a test particle in a black hole background, we set M = Q = 0 to obtain
geodesics in AdS

ṙ2 +
(
1 + g2r2

)(
1 + L2

m2r2

)
=
(
E

m

)2
(2.5)

Radial timelike geodesics can be obtained by setting L = 0, in which case we have

ṙ2 + g2r2 =
(
E

m

)2
− 1. (2.6)

This has a simple harmonic solution

r(τ) = 1
g

((
E

m

)2
− 1

)1/2

sin(gτ), (2.7)
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up to constant shifts in τ . In particular, radial geodesics displaced from the origin, r = 0, of
global coordinates undergo simple harmonic motion in this coordinate frame. This suggests
that boosting the actual RNAdS black hole solution will lead to a rather complicated metric
when written out explicitly.

It is also instructive to consider constant radius circular geodesics in vacuum AdS.
Such geodesics sit at the minimum of the effective potential and satisfy

E = m(1 + g2r2
0), L = ±gmr2

0, (2.8)

where r0 is the radius of the orbit. This leads to the simple parametrization

t(τ) = τ, φ(τ) = ±gτ, (2.9)

where τ is the proper time. These orbits do not have a Minkowski counterpart, as they
depend on the cosmological attraction which vanishes in the flat-space limit.

2.2 Geodesic of a charged test particle in RNAdS

We now consider the motion of a charged test particle in the RNAdS background, (2.2).
For radial timelike geodesics, we have

ṙ2 + 2
(
E

m

q

m
− M

Q

)
Q

r
+
(

1−
(
q

m

)2
)
Q2

r2 + g2r2 =
(
E

m

)2
− 1. (2.10)

Note that the 1/r and 1/r2 terms can be removed from the effective potential by taking

m

q
= 1, E

m
= M

Q
, (2.11)

in which case we end up with simply

ṙ2 + g2r2 =
(
M

Q

)2
− 1. (2.12)

At first glance, this appears similar to the vacuum AdS expression, (2.6). However, an
important distinction is that (2.6) holds for any energy E ≥ m, with the minimal energy
E = m geodesic stationary at the origin, r(τ) = 0, while the RNAdS geodesic is at a
fixed energy given by the M/Q ratio of the black hole. Moreover, while the condition
m = q corresponds to an extremal test particle, minimal geodesics in the sense of (2.12)
are possible for any M ≥ Q.

At this point it is worth noting that the extremality condition for the RNAdS black
hole is not the same as the BPS condition. Extremality is obtained when the outer horizon
is a double root of f(r), corresponding to

M = r+(1 + 2g2r2
+), Q = r+

√
1 + 3g2r2

+, (2.13)

where r+ is the location of the horizon. This implies that M/Q > 1 at extremality, while
the BPS condition givesM/Q = 1 (so the resulting solution is actually a naked singularity).
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For the extremal black hole, the minimal geodesic is sensible and has a simple harmonic
solution with turning point outside the horizon. However, for the BPS case with M/Q = 1,
the right-hand side of (2.12) vanishes, leaving only the r(τ) = 0 solution where the test
particle is sitting on top of the singularity.

It is interesting to contrast the behavior of radial timelike geodesics in an AdS versus dS
background. The dS case is readily obtained by analytically continuing g2 → −g2. Taking
m/q = 1 for the test particle and M/Q = 1 for the black hole, the minimal geodesics
in the dS black hole background obeys ṙ2 − g2r2 = 0, which has a non-trivial solution
r(τ) = r0e

±gτ , corresponding to a free particle comoving with the Hubble expansion.
We now turn to circular geodesics which can be obtained by demanding that the test

particle sits at the minimum of the effective potential in (2.4). For a given black hole of
massM and charge Q and test particle of mass m and charge q, we can solve for the energy
E and angular momentum L in terms of the orbital radius r0. While these expressions
are not particularly illuminating in general, they simply considerable when we consider an
extremal test particle with m = q orbiting a BPS black hole (actually a naked singularity)
with M = Q. The resulting circular geodesic (at radius r0) has

E = m

(
1 + g2r2

0
1− M

r0

)
, L = ± gmr2

0
1− M

r0

. (2.14)

Note that this reduces to (2.8) in the vacuum AdS limit, M → 0. The geodesic itself has
the proper time parametrization

t(τ) = τ

1− M
r0

, φ(τ) = ± gτ

1− M
r0

, (2.15)

which leads to the universal circular orbit

φ(t) = ±gt. (2.16)

This demonstrates that, at least for an extremal test particle in a circular orbit, its motion
is unaffected by the presence of the BPS black hole.

This feature of circular orbits is consistent with the existence of a no-force condition
for multi-BPS black holes in AdS. Note that this is specific to m/q = 1 and M/Q = 1,
so in particular extremal RNAdS black holes with M/Q > 1 do not have this universal
circular orbit property. This suggests that the no-force condition of BPS black holes in
asymptotically-flat spacetimes will have an AdS counterpart where the cosmological attrac-
tion does not disturb the M/Q = 1 condition, but is instead accounted for by placing the
black holes in circular orbits in AdS. This motivates us to look for multi-BPS-black hole
configurations where the black holes are orbiting the origin of AdS in global coordinates.

3 Superposing AdS black holes

Motivated by the test particle geodesics, we proceed to build a multi-BPS-black hole con-
figuration where each black hole has M = Q and orbits at radius r0, but with different
phases. A basic configuration would be to take two black holes separated by a phase of π,
but one can be more general.
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As indicated above, we work to second order in the black hole masses, so we start by
taking an RNAdS black hole in global coordinates and boosting it into an orbit at radius
r0. We then superpose to such solutions, keeping terms only up to O(M2

1 ) and O(M2
2 ). We

then work out the O(M1M2) interaction terms perturbatively using the linearized Einstein
equation.

Our starting point is thus to boost the RNAdS solution, (2.1) with (2.2), to move the
singularity to a radius r0. Conceptually this is simple, as we just perform a coordinate
transformation that respects the asymptotic O(3, 2) isometry of AdS4. However, the ex-
pressions for the transformed metric are cumbersome to work with, so we further simplify
by expanding for small boost velocities. This amounts to perturbatively expanding the
solution for small r0.

To motivate the boost, consider AdS4 as the hypersurface parameterized by

T 2
1 + T 2

2 −X2
1 −X2

2 −X2
3 = 1

g2 , (3.1)

in a 5D space with metric

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 + dX2
3 . (3.2)

We then introduce unconstrained four-dimensional coordinates {τ, ρ, θ, φ} by taking

T1 = 1
g

cosh ρ cos τ, T2 = 1
g

cosh ρ sin τ,

X1 = 1
g

sinh ρ sin θ cosφ, X2 = 1
g

sinh ρ sin θ sinφ, X3 = 1
g

sinh ρ cos θ. (3.3)

One additional transformation between {τ, ρ} and {t, r}

r = 1
g

sinh ρ, t = 1
g
τ, (3.4)

then yields the familiar global AdS4 metric

ds2 = −(1 + g2r2)dt2 + dr2

(1 + g2r2) + r2
(
dθ2 + sin2 θdφ2

)
. (3.5)

The isometry group of AdS4 is O(3, 2), and in the 5D embedding space, the generators
of O(3, 2) are just Lorentz transformations. A timelike geodesic at r = 0 sits at X1 = X2 =
X3 = 0 and moves along the T1-T2 circle. We can transform this into a circular orbit in
the X1-X2 plane by performing a simultaneous boost in T1-X1 and T2-X2 according to

T ′1
T ′2
X ′1
X ′2
X ′3

 =


γ −vγ

γ −vγ
−vγ γ

−vγ γ

1




T1
T2
X1
X2
X3

 , (3.6)

where γ = 1/
√

1− v2 and the boost velocity v will be related to the radius r0 of the
resulting orbit.
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When translated to the four-dimensional coordinates, the boost acts as

tan τ ′ = sin τ − v tanh ρ sin θ sinφ
cos τ − v tanh ρ sin θ cosφ,

cosh ρ′ = γ cosh ρ
√

1− 2v tanh ρ sin θ cos(φ− τ) + v2 tanh2 ρ sin2 θ,

sin θ′ =

√
sin2 θ − 2v coth ρ sin θ cos(φ− τ) + v2 coth2 ρ√

1− 2v coth ρ sin θ cos(φ− τ) + v2(coth2 ρ− cos2 θ)
,

tanφ′ = sin θ sinφ− v coth ρ sin τ
sin θ cosφ− v coth ρ cos τ . (3.7)

This boost is an isometry of global AdS4, but it takes a timelike geodesic at r = 0 into a
circular orbit at radius r0 = vγ/g with angular velocity governed by the AdS radius, ω = g,
as in (2.16).

The boost, (3.7), is not an isometry of the RNAdS black hole solution, but transforms
it into a black hole orbiting at radius r0. However, the resulting expressions are rather
unwieldy. So, in practice, we expand only to second order in the boost velocity v. The
boosted RNAdS metric represents a single orbiting black hole. However, we can take several
boosted solutions, each with a boost velocity vi (and corresponding orbital radius viγi/g)
and phase angle δi and combine them as a starting point for obtaining a multi-black hole
solution. All black holes rotate in the x-y plane around the origin with the same angular
velocity, but with independent orbital radii and phase angles.

Of course, we have to be careful about what we mean by “combining” black hole
solutions in a non-linear theory. Here we take a perturbative approach and start with a
linear superposition of the form

g(0)
µν = ḡµν +

∑
i

gi µν(vi, δi),

F (0)
µν =

∑
i

Fi µν(vi, δi), (3.8)

where ḡµν is the background AdS metric, (3.5), and gi µν is the metric corresponding to
the i-th black hole, with the background AdS subtracted out. Each subtracted metric gi µν
starts at O(Mi), but is otherwise fully non-linear in the mass Mi.

Of course, the linear superposition solution given by g
(0)
µν and F

(0)
µν is not a solution

to the non-linear Einstein equation, but it provides a starting point for a perturbative
expansion. We organize this expansion by powers of the “mass” where this mass can be
any one of the Mi masses or Qi charges. At O(M0), the solution is just the background
AdS. At O(M), we just have the linearized metric of a set of black holes orbiting in AdS.
At this order, the charges Qi do not backreact on the metric, and the individual black holes
are non-interacting. The first non-trivial order is quadratic in the masses. Since we use the
full AdS black hole metric gi µν , the separate O(M2

i ) and O(M2
j ) terms in the metric with

i 6= j ought to be valid by themselves. However, what is missing is the O(MiMj) interaction
term. This suggests that we perturb around the superposition metric g(0)

µν in (3.8) in order
to recover the interaction term. Since we work only to quadratic order in the masses in
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the metric, we only need the Maxwell field F (0)
µν to linear (i.e. non-interacting) order as the

stress-tensor is of O(F 2
µν).

3.1 Multi-centered black holes and the BPS condition

Before constructing the O(MiMj) interaction term, it is instructive to examine the BPS
condition at the linearized order for a multi-centered solution. To fix our conventions, we
take pure gauged N = 2 supergravity in four dimensions with bosonic Lagrangian

e−1L = 1
4R−

1
4F

2
µν + 3

2g
2. (3.9)

We have set κ2 = 2 and work with (− + ++) signature. The corresponding gravitino
variation is

δψµ = ∇̂µε ≡
[
∇µ − igAµ + i

4Fρσγ
ρσγµ + 1

2gγµ
]
ε, (3.10)

where the spinors are Dirac.
The BPS condition for a single AdS black hole was studied in [12]. The starting point

is the Killing spinor equation, ∇̂ε = 0, and the corresponding integrability condition

Ωµνε ≡ [∇̂µ, ∇̂ν ]ε = 0. (3.11)

Working out the commutator of the supercovariant derivative gives an explicit expres-
sion [12]

Ωµν = 1
4Cµν

abγab + i

2γ
abγ[ν

(
∇µ]Fab

)
+ i

8gFab
(
3γabγµν + γµνγ

ab
)
. (3.12)

The advantage of studying the integrability condition, (3.11), is that it is purely algebraic.
Hence to count the Killing spinors, all we need to do is to count the number of zero
eigenvalues of the Ωµν matrix and keep track of the corresponding eigenvectors.

At linear mass order, the integrability matrix Ωµν decomposes into a linear superposi-
tion of terms

Ωµν =
∑
i

Ωi µν(vi, δi). (3.13)

Furthermore, since the quantities Cµνρσ and Fµν are already first order in mass (or charge),
it is sufficient to use the background AdS vielbein, which we take to be

e a
µ = diag

(√
1 + g2r2,

1√
1 + g2r2 , r, r sin θ

)
. (3.14)

Focusing on the t-r integrability matrix Ωtr, and taking a single M = Q black hole at the
origin of AdS, we find

Ωtr = 2iM
r3 γrΠ+, (3.15)

where Π± is the projection

Π± = 1
2

(
1± grγ1 − iγ0√

1 + g2r2

)
. (3.16)
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(Integrability in the other directions works similarly.) This shows that the single AdS black
hole is a 1/2 BPS object with Killing spinors of the form ε = Π−ε̂ for some (not necessarily
constant) Dirac spinor ε̂. The explicit Killing spinors for a single black hole at the origin
have been constructed in [12], thus verifying that no obstruction arises in this case from
higher order integrability.

We are, of course, more interested in the superposition of boosted solutions, (3.13). For
a single black hole, the boost as a general coordinate transformation respects supersymme-
try. Hence the solution remains 1/2 BPS, although the Killing spinors are correspondingly
boosted. Working to O(v2) in the boost velocity and taking a vanishing phase shift δ, we
find explicitly two independent solutions to the integrability condition, (3.11)

ε̂1 =
(

1, 0, 0, i1 +
√

1 + r2

r

)

+
[
ve−i(φ−t)

1 +
√

1 + r2

r2 − v2e−2i(φ−t) (1 +
√

1 + r2)2

r3 sin θ +O(v3)
] (

0, 0, 1,−eiθ
)
,

ε̂2 =
(

0, 1, i1 +
√

1 + r2

r
, 0
)

+ e−iθ
[
ve−i(φ−t)

1+
√

1+r2

r2 − v2e−2i(φ−t) (1+
√

1+r2)2

r3 sin θ +O(v3)
] (

0, 0, 1,−eiθ
)
.

(3.17)

Here we have set g = 1 and used the Dirac representation

γ0 =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 , γ1 =


0 0 0 i

0 0 i 0
0 −i 0 0
−i 0 0 0

 , γ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , γ3 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 ,
(3.18)

with antihermitian γ0. The phase shift δ can be restored by taking φ→ φ− δ. Note that
ε̂1 and ε̂2 are zero eigenvectors; the actual Killing spinors, ε1 and ε2 will take the form
εi = fi(t, r, θ, φ)ε̂i for some appropriate functions fi that can only be obtained by directly
solving the first order Killing spinor equation, ∇̂ε = 0.

Regardless of the undetermined functions f1 and f2, the velocity dependence of (3.17)
demonstrates that the actual Killing spinors ε1 and ε2 necessarily depend on the boost
velocity v. However, it is possible to take a linear combination ε̂1 − eiθ ε̂2 to obtain a
velocity independent eigenvector up to O(Mv2):

ε̂ =
(

1,−eiθ,−ieiθ 1 +
√

1 + r2

r
, i

1 +
√

1 + r2

r

)
. (3.19)

More generally, we see that the corresponding Killing spinor is of the form

ε = f(t, r, θ, φ)ε̂, ε̂ = Π−Π̃−ε0, (3.20)

where ε0 is a constant spinor and the additional projection is

Π̃± = 1
2
(
1± (γ012 − ieiθ(γ013 + γ23))

)
. (3.21)

– 10 –



J
H
E
P
1
0
(
2
0
2
2
)
0
5
9

The eigenvector ε̂ in (3.19) is independent of mass, boost velocity and phase shift. At
linear mass order, there is no interaction term in the integrability matrix, so the linear
superposition, (3.13), holds. Since ε̂ serves as a common eigenvector to all boosted BPS
black holes regardless of Mi, vi, or δi, we see that, to this order, at least, the Killing spinor
for a multi-centered black hole configuration will still take the form (3.20). Note, however,
that the function f(t, r, θ, φ) multiplying ε̂ may have dependence on the boost velocities vi
and phase shifts δi.

One may wonder if a second more complicated eigenvector ε̂′ could exist that depends
on boost velocities and phase shifts in some manner. However, we will show below that
the integrability matrix Ωtr for a two black hole configuration only has a single vanishing
eigenvalue, so the universal eigenvector, (3.19), is unique. This demonstrates, at least from
an integrability point of view, that the multi-centered black hole configuration is a 1/4
BPS solution with Killing spinor given by (3.20).

While we have worked to second order in boost velocity v, we expect the eigenvector ε̂
in (3.19) to remain independent of v to all orders, so that integrability can be satisfied at
the level of linear superposition of independently boosted black holes. One way to test this
beyond quadratic order in v is to start with a black hole at the origin of AdS, where the
Killing spinors are explicitly known. Out of the two linearly independent Killing spinors,
we focus on the combination proportional to ε̂ in (3.19) and perform the ‘boost’ coordinate
transformation, (3.7). From general covariance, the transformed spinor will remain a zero
eigenvector to the ‘boosted’ integrability condition, (3.11).

To be more precise about the transformation, we have to keep in mind that spinors are
actually sections of the spin bundle, and do not transform directly under general coordinate
transformations. This suggests the transformation

ε̂→ ε̂′ =
(

1,−eiθ′
,−ieiθ′ 1 +

√
1 + r′2

r′
, i

1 +
√

1 + r′2

r′

)
, (3.22)

where the primed coordinates are given by (3.7) and (3.4). However, this is not quite
what we want when linearly superposing solutions at first order in the black hole masses.
In particular, in order for the superposition of the integrability matrices Ωi µν to hold
in (3.13), it is necessary to use a consistent set of Dirac matrices

γt =
√

1 + g2r2 γ0, γr = 1√
1 + g2r2 γ1, γθ = r γ2, γφ = r sin θ γ3, (3.23)

that are independent of the boost parameters v and δ. This necessitates a compensating
local Lorentz transformation to accompany the boost coordinate transformation such that

γµ → γµ′ ≡ ∂xν

∂xµ′ SγνS
−1 = γµ, (3.24)

where
S = exp

(1
4ωabγ

ab
)

(3.25)

is the spinor transformation matrix and ω[ab] are the six local Lorentz transformation
parameters.
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Unfortunately, the coordinate transformation procedure leading to (3.7) does not ap-
pear to lend itself to a simple expression for the Lorentz parameters ωab. Nevertheless, we
have obtained S to O(v4) in the boost parameter v by directly solving (3.24). Since the
quartic-order parameters are rather long and unilluminating, we present ωab only up to
third order in appendix C. Given the local Lorentz transformation matrix (3.25), we then
verify up to O(v4) that

ε̂→ ε̂′ ≡ Sε̂(xµ′) = ζ(xµ)ε̂(xµ), (3.26)

where ζ(xµ) is an overall shift in normalization. Since we focus only on zero eigenvectors
of the integrability condition, this additional factor of ζ(xµ) is irrelevant, and we conclude
that the velocity independence of the zero eigenvector ε̂ survives at least up to quartic
order in v. We expect this to hold at all orders in v and have numerical evidence that
this is the case. However we have been unable to demonstrate this analytically due to the
complicated nature of the compensating local Lorentz transformation.

4 Towards a multi-centered solution

We now take the linear superposition solution, (3.8), as a starting point, and consider the
perturbative corrections to the metric. The first non-trivial correction occurs at O(MiMj),
corresponding to a pairwise ‘interaction’ between two black holes. Note that the gauge field
does not need to be corrected at this order, since the lowest-order stress tensor is already
quadratic in the masses.

It is sufficient to consider the interaction between two black holes, with masses M1
and M2 and charge to mass ratios λ1 = Q1/M1 and λ2 = Q2/M2. While the individual
black hole BPS conditions demand λi = ±1, we work more generally so that we can more
directly examine the supersymmetry of the two black hole solution. For simplicity, we
boost both black holes with a single boost parameter v, and introduce δ as a relative phase
between the two black holes in the orbital plane. As noted above, we work only to O(v2)
in the boost velocity due to the complicated nature of the boosted metric. The solution
then depends on the parameters {M1,M2, λ1, λ2, v, δ}.

4.1 Solving the linearized Einstein equation

The equations of motion arising from the Lagrangian (3.9) are the Maxwell equation
∇µFµν = 0 and the Einstein equation

Rµν −
1
2gµνR− 3g2gµν = 2(FµλF λν −

1
4gµνFρσF

ρσ)︸ ︷︷ ︸
Sµν

, (4.1)

or equivalently
Rµν + 3g2gµν = Sµν . (4.2)

At the order we are interested in, we only need the Maxwell field to O(Mi). Hence we do
not need to go beyond the lowest order Maxwell equation. This also implies that we can
take the lowest order stress energy tensor Sµν .
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As in (3.8), we start with a linear superposition metric and add an interaction term
hµν . In particular, we take

gµν = ḡµν + g1µν + g2µν + hµν ,

Fµν = F1µν + F2µν , (4.3)

where ḡµν is the background AdS metric, gi µν is the i-th black hole metric with ḡµν sub-
tracted and hµν is the O(M1M2) interaction we are solving for. Note that the fields
{ḡµν + gi µν , Fi µν} is just the RNAdS solution for the i-th black hole.

We now consider the linearized Einstein equation about the background

gµν = ĝµν + hµν , (4.4)

where
ĝµν = ḡµν + g1µν + g2µν (4.5)

is the linear superposition metric. The linearized Ricci tensor can be written as

Rµν = R̂µν + 1
2(∇̂α∇̂µhνα + ∇̂α∇̂νhµα − ĝαβ∇̂ν∇̂µhαβ − ∇̂α∇̂αhµν), (4.6)

where ∇̂α is the covariant derivative with respect to the metric ĝµν , and R̂µν is the Ricci
tensor computed from ĝµν . Substituting this expression into (4.2) then gives

∇̂α∇̂µhνα+∇̂α∇̂νhµα−ĝαβ∇̂ν∇̂µhαβ−∇̂α∇̂αhµν+6g2hµν = −2(R̂µν+3g2ĝµν−Sµν), (4.7)

where Sµν is calculated to quadratic (i.e. lowest) order in the masses. The right-hand side
is the Einstein equation for the linear superposition metric ĝµν . This would vanish for a
single {M1, λ1} (or a single {M2, λ2}) black hole, but gives a non-vanishing contribution
at O(M1M2), which is a source to the linearized Einstein equation for hµν .

Since hµν is of O(M1M2), and we only work to this order, we can make a further simpli-
fication on the left-hand side of (4.7) by replacing the linear superposition ĝµν background
metric with the vacuum AdS metric ḡµν . The result is the linearized Einstein equation in
an AdS background sourced by the M1-M2 interaction

∇̄α∇̄µhνα+∇̄α∇̄νhµα−ḡαβ∇̄ν∇̄µhαβ−∇̄α∇̄αhµν+6g2hµν = −2(R̂µν+3g2ĝµν−Sµν). (4.8)

Here ḡµν is the AdS metric, (3.5), and ∇̄µ are covariant derivatives with respect to this
background.

We expand the right-hand side of (4.8) to second order in the boost velocity v for the
two black holes. (Recall that both black holes are given the same boost velocity, but have a
relative phase angle δ.) From the boost, (3.7), we see that the resulting expression involves
combinations of trigonometric functions of θ and φ − gt along with rational polynomials
of r. This provides a hint for solving the linearized Einstein equation with source using
separation of variables. We find a solution to this system of equations up to O(M1M2v

2).
The expressions are rather long and are presented in appendix A.

– 13 –



J
H
E
P
1
0
(
2
0
2
2
)
0
5
9

4.2 The BPS condition for the two black hole solution

What we have found is a perturbative solution up to O(M2v2) for two black holes in AdS.
Both black holes orbit the origin at the same radius since the same boost velocity was used,
but they have a relative phase angle of δ. To be clear, this is not a complete solution; the
expansion in small boost velocity does not really separate the two centers. Nevertheless,
there is already enough information in the perturbative solution to put some constraints
on the possibility of realizing a full multi black hole solution.

We have already considered the BPS condition at the linear superposition order and
demonstrated that the multi-centered solution is at most 1/4 BPS. It is instructive to
reconsider this condition for the two-black hole solution to O(M2v2). In fact, one of
the main reasons we have taken arbitrary charges Q1 = λ1M1 and Q2 = λ2M2 in the
perturbative solution is to see where the M = |Q| BPS condition arises in the solution.

Instead of constructing the Killing spinor as we did above in (3.19), we look for zero
eigenvalues of the integrability matrix Ωµν defined in (3.12). For simplicity, we focus on t-r
integrability, namely the Ωtr matrix and take the two black holes to have a phase difference
of π. Since each entry in Ωtr begins at O(M), the determinant of Ωtr starts at O(M4).
Since the perturbative solution is valid to O(M2v2), we can then examine det Ωtr up to
O(M5v2), which is also the lowest non-trivial order that is sensitive to the interaction
between the two black holes.

The determinant of Ωtr can be expanded order by order in terms of mass and veloc-
ity, and at each order the component should be vanishing. We present the three lowest
orders below:

O(M4) : (M1 +M2 −Q1 −Q2)2 (M1 +M2 +Q1 +Q2)2 = 0, (4.9a)

O(M4v) : (M1 +M2 −Q1 −Q2) (M1 +M2 +Q1 +Q2)
(
Q2

1 −Q2
2 −M2

1 +M2
2

)
= 0,
(4.9b)

O(M5v) : (Q1 +Q2) (M1 +M2 −Q1 −Q2) (M1 +M2 +Q1 +Q2)

·
[

(Q1M2 −Q2M1)
(
r2 + 1

)
cos(t− φ) + i

(
M2

1 −M2
2

)
r2 sin(t− φ)

]
v = 0.
(4.9c)

At this order, the determinant vanishes when

M1 +M2 = ±(Q1 +Q2), (4.10)

indicating that all that is needed is for the total mass to equal the total charge. At O(M4),
we are still in the linear superposition regime, and this is why the eigenvalues of Ωtr only
depend on the total mass and total charge of the two black holes.

At O(M5v) we may have expected to be sensitive to the individual charges and masses.
However, this does not seem to be the case. Instead, we have to go to O(M5v2) before
this is revealed. By substituting (4.10) into det Ωtr and working to O(M5v2), we find, in
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particular, a combination of the form

(M1 ∓Q1)(M1 +M2)3
[
4i(M1 ∓Q1)(1 + r2) cos(t− φ)

±r2
(
4(M1 −M2) + 3(M1 ∓Q1)(1 + r2)

)
sin(t− φ)

]
= 0. (4.11)

Here we have used (4.10) to remove Q2 from this expression. Now it is clear that the
only solution is Q1/M1 = Q2/M2 = ±1. Furthermore, one can see that this is a repeated
root for (4.9a) and (4.9b), but is merely a single root of (4.9c) and (4.11). This further
demonstrates that a single Q = ±M black hole, upon boosting, is still 1/2 BPS. However,
when taking interactions into account, the best we could expect is 1/4 BPS.

5 Discussion

At the first non-trivial order in interactions that we are working at, we can write down a
stationary two black hole solution for any set of masses M1 and M2 and charges Q1 and
Q2. However, if the forces are unbalanced, we would not expect the solution to remain
stationary if expanded to higher orders in mass and the boost velocity. Alternatively, one
may end up with a stationary solution where the two black holes are kept apart by a strut,
i.e. a line singularity connecting the black holes.

From the perturbative solution alone, this force balance requirement does not show
up at O(M2v2). Nevertheless, as we have seen, the solution is only supersymmetric when
mass is equal to the charge. We thus expect that the BPS condition will be a requirement
for the existence of a truly stationary multi-centered black hole solution beyond the first
order in interactions.

While the explicit solution we presented in appendix A involves two black holes, at
this order it is easy to generalize to any number of black holes by simply adding together
pairwise interaction terms among all the black holes. Of course, the solution is specialized
to the case of all black holes with the same boost velocity and hence orbiting at the
same radius, but with various phase angles. We anticipate that it should be possible to
generalize the solution for the interaction term to the case where each black hole has its
own independent boost velocity. We believe, however, that the angular momenta of the
black holes must remain aligned, lest the BPS condition becomes completely broken.

As shown in appendix B, one can recover the asymptotically Minkowski limit of the two
AdS black hole solution by taking the gauge coupling constant g → 0 while keeping r0 = v/g

fixed. Even in this limit, there is the freedom to perform coordinate transformations, which
we can exploit to put the metric in a diagonal form. For general masses and charges (i.e.
general λ1 and λ2) the solution remains rather complicated. However, in the BPS limit,
λ1 = λ2 = ±1, it indeed reduces to the MP solution, (1.1), expanded to O(M2r2

0). Again,
global issues such as horizons and possible strut singularities when the black holes are
unbalanced cannot be seen at this perturbative order.

An important limitation of the two black hole solution is that it is only constructed
to O(M2v2). In principle, there should not be any obstruction to all orders in the boost
velocity v, as this is just a technical issue of working with a rather complicated source
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term in the linearized Einstein equation, (4.8), resulting from the full expressions for the
boost, (3.7). What would be considerably more difficult would be to work out the inter-
action to higher order in the masses. It would of course be desirable to obtain a complete
solution to all orders in the masses and boost velocity. However, it is unlikely that an
analytic solution would be found. Instead, it would be interesting to see if a numerical
solution can be constructed. If so, this would provide stronger evidence for the existence
of multi-centered BPS black holes in AdS.

It is worth keeping in mind that we have focused on the non-rotating RNAdS4 solu-
tion in the BPS limit of M = Q, which is actually a naked singularity. As we work locally
in a perturbative expansion, our analysis does not depend on the existence of a regular
horizon. Nevertheless, the construction of a true multi-centered black hole solution would
have to start from a BPS black hole with regular horizon, which necessarily carries angular
momentum in AdS4 [3]. Working this out, even to perturbative order, would be consid-
erably more involved. (But see appendix E of [13] for a probe giant graviton analysis in
a Gutowski-Reall AdS5 black hole background.) Nevertheless, we conjecture that such a
solution is possible, and moreover that the spins of the black holes as well as their orbital
angular momenta would all have to be lined up in order to preserve supersymmetry.

Our consideration of supersymmetry has been in the context of pure four-dimensional
gauged N = 2 supergravity. If we allowed for additional vector multiplets, then static
BPS black holes with regular horizons do exist [14–16]. Finding multi-centered BPS so-
lutions in this context could be more straightforward, as the starting point would still
be spherically symmetric. Moreover, such multi-centered solutions could help shed addi-
tional light on the connection between the topologically twisted index and AdS4 black hole
microstates [17, 18].

Finally, although we have focused on the four-dimensional case, much of the analysis
and the perturbative construction method can be extended to dimensions higher than four.
It would be a simple generalization to consider the d-dimensional RNAdS solution with
M = Q and to boost into a common rotation plane. Again, a regular solution would have
to start with a rotating BPS black hole, such as the Gutowski-Reall solution in AdS5 [4, 5].
While higher dimensional black holes can carry multiple angular momenta, it is again likely
that a multi-centered solution would have to have all angular momenta including black hole
spin lined up along a common axis. The AdS5 case is especially interesting in light of recent
developments in counting 1/16 BPS states in N = 4 SYM.

Acknowledgments

This work was supported in part by the U.S. Department of Energy under grant DE-
SC0007859.

A The Full metric

The full metric gµν of two Reissner-Nordstrom black holes with Q1 = λ1M1, Q2 = λ2M2
could be written as the sum of 4 parts

gµν = ḡµν + g1µν + g2µν + hµν , (A.1)
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where ḡµν is the background AdS metric described by (2.1), g1µν represents the metric
for the first black hole, g2µν represents the metric for the second black hole, and hµν
corresponds to their interactions. For the sake of convenience, we have set the gauge
coupling constant g = 1; explicit dependence on g is easily restored using dimensional
analysis.

A.1 The boosted black hole terms

The metric g1µν of the first black hole is obtained by boosting the standard RNAdS solution
using (3.7). While g1µν can be given to all orders in the boost velocity v, given the
complexity of the boost, we only expand up to second order in v

g1µν = g
(0)
1µν + vg

(1)
1µν + v2g

(2)
1µν . (A.2)

Recall also that we work only to O(M2). At zeroth order, we have just the RNAdS solution
expanded to second order in mass with the AdS background subtracted out

g
(0)
1µν =


2M1
r −

M2
1λ

2
1

r2 0 0 0
0 2M1

r(r2+1)2 + (4−(r2+1)λ2
1)M2

1
r2(r2+1)3 0 0

0 0 0 0
0 0 0 0

 . (A.3)

At O(v), the boosted black hole is given angular velocity in the x-y plane. Hence the
metric components pick up sin(t− φ) and cos(t− φ) dependence

g
(1)
1 tt =

(
−2M1

(
3r2 + 1

)
r2
√
r2 + 1

+ 2λ2
1M

2
1
(
2r2 + 1

)
r3
√
r2 + 1

)
sin(θ) cos(t− φ), (A.4a)

g
(1)
1 tr =

(
− 4M1

r (r2 + 1)3/2 + 2M2
1
(
λ2

1
(
r2 + 1

)
− 2

)
r2 (r2 + 1)5/2

)
sin(θ) sin(t− φ), (A.4b)

g
(1)
1 tθ =

(
− 2M1√

r2 + 1
+ λ2

1M
2
1

r
√
r2 + 1

)
cos(θ) sin(t− φ), (A.4c)

g
(1)
1 tφ =

(
2M1√
r2 + 1

− λ2
1M

2
1

r
√
r2 + 1

)
sin(θ) cos(t− φ), (A.4d)

g
(1)
1 rr =

(
−2M1

(
3r2 + 1

)
r2 (r2 + 1)5/2 −

2M2
1
(
4
(
3r2 + 1

)
− λ2

1(r2 + 1)
(
2r2 + 1

))
r3 (r2 + 1)7/2

)
sin(θ) cos(t− φ),

(A.4e)

g
(1)
1 rθ =

(
2M1

r (r2 + 1)3/2 + M2
1
(
4− λ2

1
(
r2 + 1

))
r2 (r2 + 1)5/2

)
cos(θ) cos(t− φ), (A.4f)

g
(1)
1 rφ =

(
2M1

r (r2 + 1)3/2 + M2
1
(
4− λ2

1
(
r2 + 1

))
r2 (r2 + 1)5/2

)
sin(θ) sin(t− φ), (A.4g)

g
(1)
1 θθ = g

(1)
1θφ = g

(1)
1φφ = 0. (A.4h)
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At O(v2) the metric components now have second harmonic components sin(2t− 2φ) and
cos(2t− 2φ)

g
(2)
1tt = M1

2r3

(
−2(r2 + 1) +

(
7r2 + 3

)
sin2(θ) +

(
17r4 + 8r2 + 3

)
sin2(θ) cos(2t− 2φ)

r2 + 1

)

+ M2
1

2r4

{
8r2 sin2(θ) sin2(t− φ)

(r2 + 1)2 + λ2
1

[
2
(
r2 + 1

)
−
(
7r2 + 4

)
sin2(θ)

−
(
13r4 + 11r2 + 4

)
sin2(θ) cos(2t− 2φ)

r2 + 1

]}
, (A.5a)

g
(2)
1 tr =

(
3M1

(
3r2 + 1

)
r2 (r2 + 1)2 + M2

1
(
4
(
8r2 + 3

)
− λ2

1(r2 + 1)
(
11r2 + 5

))
2r3 (r2 + 1)3

)
sin2(θ) sin(2t− 2φ),

(A.5b)

g
(2)
1 tθ =

(
2M1r

(r2 + 1) −
M2

1
(
4 + λ2

1(r2 + 1)
(
5r2 + 1

))
4r2 (r2 + 1)2

)
sin(2θ) sin(2t− 2φ), (A.5c)

g
(2)
1 tφ = −2M1 sin2(θ)

(
2r2 cos(2t− 2φ) + r2 + 1

)
r (r2 + 1)

+ M2
1 sin2(θ)

(
λ2

1
(
r2 + 1

) ((
5r2 + 1

)
cos(2t− 2φ) + 3

(
r2 + 1

))
− 8 sin2(t− φ)

)
2r2 (r2 + 1)2 ,

(A.5d)

g
(2)
1 rr = M1

2r3 (r2 + 1)3

{
−6(r2 + 1)2

+ sin2(θ)
(
(r2 + 1)(9r2 + 5) +

(
15r4 + 8r2 + 5

)
cos(2t− 2φ)

)}
+ M2

1
2r4 (r2 + 1)4

{
−4
[
2(r2 + 1)(3r2 + 2)

− sin2(θ)
(
18r4 + 16r2 + 5 +

(
24r4 + 16r2 + 5

)
cos(2t− φ)

) ]
+ λ2

1(r2 + 1)
[
4(r2 + 1)2

− sin2(θ)
(
(r2 + 1)(8r2 + 5) +

(
12r4 + 11r2 + 5

)
cos(2t− 2φ)

)]}
, (A.5e)

g
(2)
1 rθ = −M1 sin(2θ)

((
3r2 + 1

)
cos(2t− 2φ) + r2 + 1

)
r2 (r2 + 1)2

+ M2
1 sin(2θ)

4r3 (r2 + 1)3

{
−4
[(

8r2 + 3
)

cos(2t− 2φ) + 6r2 + 3
]

+ λ2
1

(
r2 + 1

) ((
7r2 + 3

)
cos(2t− 2φ) + 3

(
r2 + 1

))}
, (A.5f)

g
(2)
1 rφ =

(
−2M1

(
3r2 + 1

)
r2 (r2+1)2 + M2

1
(
λ2

1
(
(r2+1)(7r2+3

)
− 4

(
8r2+3

))
2r3 (r2 + 1)3

)
sin2(θ) sin(2t− 2φ),

(A.5g)
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g
(2)
1 θθ = M1 cos2(θ)

r

(
1− r2 − 1

r2 + 1 cos(2t− 2φ)
)

+ M2
1 cos2(θ)

(
λ2

1
(
r2 + 1

) ((
r2 − 1

)
cos(2t− 2φ)− r2−1

)
+ 8 cos2(t− φ)

)
2r2 (r2 + 1)2 , (A.5h)

g
(2)
1 θφ =

(
−M1

(
r2 − 1

)
2r (r2 + 1) + M2

1
(
λ2

1
(
r4 − 1

)
+ 4

)
4r2 (r2 + 1)2

)
sin(2θ) sin(2t− 2φ), (A.5i)

g
(2)
1φφ = M1 sin2(θ)

r

(
1 + r2 − 1

r2 + 1 cos(2t− 2φ)
)

− M2
1 sin2(θ)

(
λ2

1
(
r2 + 1

) ((
r2 − 1

)
cos(2t− 2φ) + r2 + 1

)
− 8 sin2(t− φ)

)
2r2 (r2 + 1)2 . (A.5j)

The expressions for the second black hole follow from g1µν with the substitutionM1 →M2,
λ1 → λ2 and φ→ φ− δ where δ is the phase difference between the two black holes.

A.2 The interaction term

The interaction term hµν is obtained by solving the linearized Einstein equation, (4.8),
order by order in the boost velocity v

hµν = M1M2
(
h(0)
µν + v h(1)

µν + v2 h(2)
µν

)
. (A.6)

By separating and expanding in trigonometric functions of θ and t−φ, we are able to convert
the resulting partial differential equations into a set of ordinary differential equations for
functions of r. Even so, the solution is not unique for two reasons. Firstly, one can always
add a general solution to the homogeneous equation. And, secondly, there is the freedom
to perform diffeomorphisms on the solution. To fix the homogeneous solution, we demand
that the falloff as r → ∞ is faster than that of the standard RNAdS solution so that the
asymptotic behavior is unchanged. As for diffeomorphisms, we leave this free at first, but
will return to it below.

At O(v0), the black holes are sitting on top of each other, and the interaction comes
simply from the expansion (M1+M2)2 =M2

1+M2
2+2M1M2 (and a similar one for the charge)

h(0)
µν =


−2λ1λ2

r2 0 0 0
0 8−2λ1λ2(r2+1)

r2(r2+1)3 0 0
0 0 0 0
0 0 0 0

 . (A.7)

At O(v), we have

h(1)
µν =



4λ1λ2
√
r2+1(3−8r4) cos( δ2 +t−φ)

3r3 −
8
(

2−λ1λ2(r2+1)2
)

sin( δ2 +t−φ)
r2(r2+1)5/2 0 0

−
8
(

2−λ1λ2(r2+1)2
)

sin( δ2 +t−φ)
r2(r2+1)5/2

8(λ1λ2+λ1λ2r4+2(λ1λ2−3)r2−4) cos( δ2 +t−φ)
r3(r2+1)7/2 0 0

0 0 0 0
0 0 0 0


× cos

(
δ

2

)
sin θ. (A.8)
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Finally, at O(v2), we have

h
(2)
tt = cos(2θ)

16r4 (r2 + 1)2

{
−135r6 − 302r4 − 199r2 − 32 +

(
135r6 + 302r4 + 135r2 + 32

)
cos(δ)

+ 90r
(
r2 + 1

)2 (3r2 + 1
)

sin2
(
δ

2

)
cot−1(r)

+ λ1λ2
(
r2 + 1

)2
[ (

13r2 + 8
)

cos(δ)− 18
(
3r2 + 1

)
r sin2

(
δ

2

)
cot−1(r) + 51r2 + 24

]}
,

(A.9a)

h
(2)
tr =− sin2(θ) sin(δ + 2t− 2φ)

16r5 (r2 + 1)3

{(
−585r8 − 1269r6 − 1103r4 − 99r2 + 64

)
cos(δ)

+ 585r8 + 1269r6 + 591r4 − 157r2 − 64 + 390r
(
r2 + 1

)3 (3r2 − 1
)

sin2
(
δ

2

)
tan−1(r)

+ λ1λ2
(
r2 + 1

)2
[
23r4 + 13r2 − 16 + 3

(
35r4 + 17r2 − 16

)
cos(δ)

− 6
(
3r4 + 2r2 − 1

)
r sin2

(
δ

2

)
tan−1(r)

]}
, (A.9b)

h
(2)
tθ = 0, (A.9c)

h
(2)
tφ =

sin2(θ)
(
λ1λ2

(
r2 + 1

)2 (2 cos(δ) + 1)− 4 cos(δ)
)

r2 (r2 + 1)2 , (A.9d)

h(2)
rr = 1

16r6 (r2 + 1)4

{
60r8 + 340r6 + 532r4 + 412r2 + 160− 120

(
r2 + 1

)4
r sin2

(
δ

2

)
cot−1(r)

+ cos(2θ)
(
−225r8−918r6−1033r4−340r2 + 90

(
r2 + 1

)2 (5r2 + 3
)
r3 sin2

(
δ

2

)
cot−1(r)

)
+ cos(δ)

(
−60r8 − 148r6 − 916r4 − 604r2 − 160+

(
225r8+342r6 + 265r4 + 84r2) cos(2θ)

)
+ 4 sin2(θ) cos(δ + 2t− 2φ)

(
r2 + 1

) (
399r4 + 281r2 + 80 + 195

(
r2 + 1

)2
r tan−1(r)

)
− 4 cos(δ) sin2(θ) cos(δ + 2t− 2φ)

(
15r6 + 296r4 + 233r2 + 80 + 195

(
r2 + 1

)3
r tan−1(r)

)
+ λ1λ2(1 + r2)

[
− 36r6 − 112r4 − 116r2 − 40 +

(
69r6 + 129r4 + 60r2) cos(2θ)

+ cos(δ)
(
132r6 + 304r4 + 212r2 + 40 +

(
27r6 + 31r4 + 4r2) cos(2θ)

)
− 6r

(
r2 + 1

)
sin2

(
δ

2

)
cot−1(r)

(
3r2 (5r2 + 3

)
cos(2θ)− 4

(
r2 + 1

)2
)

+ 4 sin2(θ) cos(δ + 2t− 2φ)
(

20r6 + 45r4 + 51r2 + 20

+ 3
(
4r6 + 33r4 + 47r2 + 20

)
cos(δ)− 6r

(
r2 + 1

)2 sin2
(
δ

2

)
tan−1(r)

)]}
, (A.9e)

h
(2)
rθ =− sin(2θ)

64r5 (r2 + 1)3

{
2
[
2r2 (r2 + 1

) (
−45r4 − 33r2 + 76 + 3

(
15r4 + 11r2 − 4

)
cos(δ)

)
+ cos(δ + 2t− 2φ)

((
195r8 + 421r6 + 181r4 − 237r2 − 64

)
cos(δ)

− 195r8 − 421r6 + 75r4 + 365r2 + 64− 390r
(
r2 − 1

) (
r2 + 1

)3 sin2
(
δ

2

)
tan−1(r)

)
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+ 180r3 (r2 − 1
) (
r2 + 1

)2 sin2
(
δ

2

)
cot−1(r)

]
+ λ1λ2(1 + r2)

[
36r6 − 12r4 − 48r2

+ 4r2 (7r4 + 3r2 − 4
)

cos(δ)− 72r3 (r4 − 1
)

sin2
(
δ

2

)
cot−1(r)− 2 cos(δ + 2t− 2φ)·(

29r6 + 14r4 − 19r2 − 16 +
(
3r6 − 14r4 − 77r2 − 48

)
cos(δ)

− 6r
(
r2 − 1

) (
r2 + 1

)2 sin2
(
δ

2

)
tan−1(r)

)]}
, (A.9f)

h
(2)
rφ = sin2(θ) sin(δ + 2t− 2φ)

16r5 (r2 + 1)3

{(
−195r8 − 421r6 − 181r4 + 237r2 + 64

)
cos(δ)

+ 195r8 + 421r6 − 75r4 − 365r2 − 64 + 390r
(
r2 − 1

) (
r2 + 1

)3 sin2
(
δ

2

)
tan−1(r)

+ λ1λ2(1 + r2)
[
29r6 + 14r4 − 19r2 − 16 +

(
3r6 − 14r4 − 77r2 − 48

)
cos(δ)

− 6r
(
r2 − 1

) (
r2 + 1

)2 sin2
(
δ

2

)
tan−1(r)

]}
, (A.9g)

h
(2)
θθ = 1

16r4 (r2 + 1)2

{
−
(
r2 + 1

)2 (45r2 + 32
)

+
(
45r6 + 122r4 + 173r2 + 32

)
cos(δ)

+ 30r
(
r2 + 1

)2 (3r2 + 1
)

sin2
(
δ

2

)
cot−1(r)− 2 sin2

(
δ

2

)
sin2(θ) cos(δ + 2t− 2φ)·(

r2 + 1
) (

195r4 + 325r2 + 64 + 195
(
r2 + 1

)2
r tan−1(r)

)
− λ1λ2(1 + r2)·[

− 17r4 − 25r2 − 8 +
(
49r4 + 57r2 + 8

)
cos(δ) + 6r

(
3r4 + 4r2 + 1

)
sin2

(
δ

2

)
cot−1(r)

+ sin2(θ) cos(δ + 2t− 2φ)
(

13r4 + 27r2 + 16− 6
(
r2 + 1

)2
r sin2

(
δ

2

)
tan−1(r)

+
(
51r4 + 101r2 + 48

)
cos(δ)

)]}
, (A.9h)

h
(2)
θφ = 0, (A.9i)

h
(2)
φφ = sin2(θ)h(2)

θθ . (A.9j)

By restoring the gauge coupling constant g, we note that h(2)
µν becomes singular in the

Minkowski limit g → 0. However, this is only a coordinate artifact, as can be seen by
making the transformation

r → r − v2M1M2
64r5

(
2 sin2

(
δ

2

)(
6r
(
3r2 + 1

)
(5− λ1λ2) cot−1(r)− 16(4− λ1λ2)

)
− 32

(
cos(δ)(3λ1λ2 − 4) + λ1λ2 + 4

)
sin2(θ) cos(δ + 2t− 2φ)

)
. (A.10)

This transformation is not unique, but was chosen to remove some of the cot−1(r) terms
from the above in addition to removing the singular terms in the g → 0 limit.
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Since this transformation is explicitly of O(v2M1M2), it only affects h(2)
µν . The trans-

formed expression is then as follows.

h
(2)
tt =−

8 sin2
(
δ
2

)
sin2(θ) cos(δ + 2t− 2φ)

r4 +
15
(
3r2 + 1

)
sin2

(
δ
2

)
(3 cos(2θ) + 1) cot−1(r)
8r3

+
−
(
135r2 + 32

)
cos(2θ) + cos(δ)

(
(135r6+302r4+135r2+32) cos(2θ)

(r2+1)2 + 32
)
− 32

16r4

+ λ1λ2

(
−(3 cos(δ) + 1) sin2(θ) cos(δ + 2t− 2φ)

r4

+ −8 cos(δ) + cos(2θ)
((

13r2 + 8
)

cos(δ) + 51r2 + 24
)

+ 8
16r4

−
3
(
3r2 + 1

)
sin2

(
δ
2

)
(3 cos(2θ) + 1) cot−1(r)
8r3

)
, (A.11a)

h
(2)
tr = 195

(
3r2 − 1

)
(cos(δ)− 1) tan−1(r) sin2(θ) sin(δ + 2t− 2φ)

16r4

+
(
585r6 + 1269r4 + 1167r2 + 227

)
cos(δ) sin2(θ) sin(δ + 2t− 2φ)

16r3 (r2 + 1)3

−
(
585r4 + 684r2 − 29

)
sin2(θ) sin(δ + 2t− 2φ)

16r3 (r2 + 1)2

+ λ1λ2

(
−3

(
3r2 − 1

)
(cos(δ)− 1) sin2(θ) tan−1(r) sin(δ + 2t− 2φ)

16r4

− sin2(θ)
(
3
(
35r2 + 17

)
cos(δ) + 23r2 + 13

)
sin(δ + 2t− 2φ)

16r3 (r2 + 1)

)
, (A.11b)

h
(2)
tθ = 0, (A.11c)

h
(2)
tφ = λ1λ2(2 cos(δ) + 1) sin2(θ)

r2 − 4 cos(δ) sin2(θ)
r2 (r2 + 1)2 , (A.11d)

h(2)
rr =

195 sin2
(
δ
2

)
tan−1(r) sin2(θ) cos(δ + 2t− 2φ)

2r5(r2 + 1)

+
(
303r4 + 408r2 +

(
81r4 − 24r2 + 23

)
cos(δ) + 105

)
sin2(θ) cos(δ + 2t− 2φ)

4r4 (r2 + 1)4

+
15
(
5r2 + 3

)
sin2

(
δ
2

)
(3 cos(2θ) + 1) cot−1(r)

8r3 (r2 + 1)2

+ cos(δ)
(
−105r6 − 61r4 − 447r2 +

(
225r6 + 342r4 + 265r2 + 84

)
cos(2θ)− 107

)
16r4 (r2 + 1)4

−
(
−105r4 − 148r2 +

(
225r4 + 693r2 + 340

)
cos(2θ) + 85

)
16r4 (r2 + 1)3

+ λ1λ2

(
−

3 sin2
(
δ
2

)
tan−1(r) sin2(θ) cos(δ + 2t− 2φ)

2r7 + 2r5
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+ 127 cos(δ) + cos(2θ)
((

27r2 + 4
)

cos(δ) + 69r2 + 60
)

+ 141r2 cos(δ)− 45r2 − 31
16r4 (r2 + 1)2

+
(
20r4 + 21r2 + 3

(
4r4 + 9r2 + 3

)
cos(δ) + 7

)
sin2(θ) cos(δ + 2t− 2φ)

4r4 (r2 + 1)3

−
3
(
5r2 + 3

)
sin2

(
δ
2

)
(3 cos(2θ) + 1) cot−1(r)

8r3 (r2 + 1)2

)
, (A.11e)

h
(2)
rθ =−

45
(
r2 − 1

)
sin2

(
δ
2

)
sin(2θ) cot−1(r)

8r2 (r2 + 1)

+
195

(
r2 − 1

)
sin2

(
δ
2

)
sin(θ) cos(θ) tan−1(r) cos(δ + 2t− 2φ)

8r4

+ sin(2θ)
(
45r4 + 33r2 − 3

(
15r4 + 11r2 − 4

)
cos(δ)− 76

)
16r3 (r2 + 1)2

−
(
−195r6 − 421r4 + 11r2 + 237

)
sin(2θ) cos(δ + 2t− 2φ)

32r3 (r2 + 1)3

−
(
195r6 + 421r4 + 245r2 − 109

)
cos(δ) sin(2θ) cos(δ + 2t− 2φ)

32r3 (r2 + 1)3

+ λ1λ2

(9
(
r2 − 1

)
sin2

(
δ
2

)
sin(2θ) cot−1(r)

8r2 (r2 + 1) + sin(2θ)
((

4− 7r2) cos(δ)− 9r2 + 12
)

16r3 (r2 + 1)

−
3
(
r2 − 1

)
sin2

(
δ
2

)
tan−1(r) sin(2θ) cos(δ + 2t− 2φ)

16r4

+
(
29r4 + 14r2 +

(
3r4 − 14r2 − 29

)
cos(δ)− 3

)
sin(2θ) cos(δ + 2t− 2φ)

32r3 (r2 + 1)2

)
, (A.11f)

h
(2)
rφ =

195
(
r2 − 1

)
sin2

(
δ
2

)
tan−1(r) sin2(θ) sin(δ + 2t− 2φ)

8r4

−
(
−195r6 − 421r4 + 11r2 + 237

)
sin2(θ) sin(δ + 2t− 2φ)

16r3 (r2 + 1)3

−
(
195r6 + 421r4 + 245r2 − 109

)
cos(δ) sin2(θ) sin(δ + 2t− 2φ)

16r3 (r2 + 1)3

+ λ1λ2

((
29r4 + 14r2 +

(
3r4 − 14r2 − 29

)
cos(δ)− 3

)
sin2(θ) sin(δ + 2t− 2φ)

16r3 (r2 + 1)2

−
3
(
r2 − 1

)
sin2

(
δ
2

)
tan−1(r) sin2(θ) sin(δ + 2t− 2φ)

8r4

)
, (A.11g)

h
(2)
θθ =−

3
(
65r2 + 87

)
sin2

(
δ
2

)
sin2(θ) cos(δ + 2t− 2φ)

8r2 (r2 + 1)

+
(
45r4 + 90r2 + 109

)
cos(δ)− 45

(
r2 + 1

)2
16r2 (r2 + 1)2
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+ 195
(
r2 + 1

)
(cos(δ)− 1) sin2(θ) tan−1(r) cos(δ + 2t− 2φ)

16r3

+ λ1λ2

(
17− 49 cos(δ)

16r2 − sin2(θ)
((

51r2 + 53
)

cos(δ) + 13r2 + 11
)

cos(δ + 2t− 2φ)
16r2 (r2 + 1)

− 3
(
r2 + 1

)
(cos(δ)− 1) sin2(θ) tan−1(r) cos(δ + 2t− 2φ)

16r3

)
, (A.11h)

h
(2)
θφ = 0, (A.11i)

h
(2)
φφ = sin2(θ)h(2)

θθ . (A.11j)

B The asymptotically Minkowski limit

The Minkowski limit of the two RNAdS black hole solution can be recovered by taking
g → 0 while holding the displacement radius r0 = v/g fixed. In this limit, the black holes
no longer orbit with angular momentum and become static while remaining displaced from
the origin.

To avoid coordinate singularities in the g → 0 limit, we work with the transformed
second-order interaction metric, (A.11). Even in this limit, the second order metric, (A.1),
is not particularly simple, although one can verify that it is static and stationary, as the
metric becomes time independent and is block diagonal between gtt and the spatial compo-
nents. The metric can be diagonalized (at least at this perturbative order) by performing
a coordinate transformation

r → r +M1

(
1−

(
r0
r

)2 1− sin2(θ) cos2(φ)
2

)
+M2

(
1−

(
r0
r

)2 1− sin2(θ) cos2(δ − φ)
2

)

+ λ2
1r

2
0M

2
1

r3
1− sin2(θ) cos2(φ)

2 + λ2
2r

2
0M

2
2

r3
1− sin2(θ) cos2(δ − φ)

2

+ r0M1M2
r2

[
cos

(
δ

2

)
cos

(
δ

2 − φ
)

sin(θ)(λ1λ2 − 4)

+ r0
3264r

(
1632 cos(δ − 2φ) sin2(θ)(cos(δ)(2λ1λ2 − 23) + 27)

+ 4 cos(2θ)(cos(δ)(443− 35λ1λ2) + 259λ1λ2 − 1075)

+ 3733λ1λ2 cos(δ)− 8221 cos(δ)− 1173λ1λ2 + 7293
)]
, (B.1a)

θ → θ + r0M1
r2

(
1− r0

r
sin(θ) cos(φ)

)
cos(θ) cos(φ)

+ r0M2
r2

(
1− r0

r
sin(θ) cos(δ − φ)

)
cos(θ) cos(δ − φ)

+ r0M
2
1

r3

(
−1

3
(
λ2

1 + 2
)

cos(θ) cos(φ)

+ r0
8r
((
λ2

1 − 1
)

cos(2φ) + λ2
1 + 3− 2

(
λ2

1 + 1
)

cos(2θ) cos2(φ)
)

cot(θ)
)
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+ r0M
2
2

r3

(
−1

3
(
λ2

2 + 2
)

cos(θ) cos(δ − φ)

+ r0
8r
((
λ2

2 − 1
)

cos(2(δ − φ)) + λ2
2 + 3− 2

(
λ2

2 + 1
)

cos(2θ) cos2(δ − φ)
)

cot(θ)
)

+ r0M1M2
r3

(1
6(λ1λ2 − 16) cos(θ)(cos(δ − φ) + cos(φ))

+ r0
1632r sin(2θ)

(
cos(δ)(137λ1λ2 − 545)− 408 cos(δ − 2φ)

+ 1224 cos(2(δ − φ)) + 47λ1λ2 + 1224 cos(2φ) + 2401
)

− r0
r

cot(θ) sin(φ) sin(δ − φ)
)
,

φ→ φ− r0M1
r2

(
1− r0

r
sin(θ) cos(φ)

)
csc(θ) sin(φ)

+ r0M2
r2

(
1− r0

r
sin(θ) cos(δ − φ)

)
csc(θ) sin(δ − φ)

+ r0M
2
1

r3

(1
3
(
λ2

1 + 2
)

+ r0
4r csc(θ) cos(φ)

((
λ2

1 + 3
)

cos(2θ)− λ2
1 + 1

))
csc(θ) sin(φ)

− r0M
2
2

r3

(1
3
(
λ2

2+2
)

+ r0
4r csc(θ) cos(δ−φ)

((
λ2

2+3
)

cos(2θ)−λ2
2+1

))
csc(θ) sin(δ−φ)

+ r0M1M2
r3

(1
6(λ1λ2 − 16) csc(θ)(sin(δ − φ)− sin(φ))

+ r0
2r sin(δ − 2φ)

(
1 + 6 cos(δ)− 2 csc2(θ)

))
. (B.1b)

After this transformation, the diagonal metric components become

gtt = − 1
H2 −

M2
1

r2 (λ2
1 − 1)

(
1− 2

(
r0
r

)
sin(θ) cos(φ)−

(
r0
r

)2 (
1− 4 sin2(θ) cos2(φ)

))

− M2
2

r2 (λ2
2 − 1)

(
1− 2

(
r0
r

)
sin(θ) cos(δ − φ)−

(
r0
r

)2 (
1− 4 sin2(θ) cos2(δ − φ)

))

− 2M1M2
r2 (λ1λ2 − 1)

[
1−

(
r0
r

)
sin(θ)(cos(δ − φ) + cos(φ))

−
(
r0
r

)2 (
1− 1

2 sin2(θ)(3 cos2(δ − φ) + 2 cos(δ − φ) cos(φ) + 3 cos2(φ))
)]
, (B.2a)

grr = 1
−gtt

+ 2r2
0M

2
1

r4

(
λ2

1 − 1
) (

sin2(θ) cos2(φ)− 1
)

+ 2r2
0M

2
2

r4

(
λ2

2 − 1
) (

sin2(θ) cos2(δ − φ)− 1
)

+ r2
0M1M2
544r4 (λ1λ2−1)

(
8 sin2(θ)(136 cos(δ−2φ)−47) + cos(δ)(4 cos(2θ)+857)+35

)
,

(B.2b)
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gθθ = grrr
2 +M2

1 (λ2
1 − 1)

(
1− 4

3

(
r0
r

)
sin(θ) cos(φ) + 2

(
r0
r

)2
)

+M2
2 (λ2

2 − 1)
(

1− 4
3

(
r0
r

)
sin(θ) cos(δ − φ) + 2

(
r0
r

)2
)

+ 2M1M2(λ1λ2 − 1)
[
1− 2

3

(
r0
r

)
sin(θ)(cos(δ − φ) + cos(φ))

− 1
816

(
r0
r

)2 (
3(35 cos(δ) + 149) cos(2θ) + 755 cos(δ)− 51

+ 1224 sin2
(
δ

2

)
sin2(θ) cos(δ − 2φ)

)]
, (B.2c)

gφφ = gθθ sin2(θ) + r2
0M1M2
408r2 (λ1λ2 − 1)(137 cos(δ) + 47) sin4(θ), (B.2d)

where

H = 1 + M1
r

(
1−

(
r0
r

)
sin(θ) cos(φ) + 1

2

(
r0
r

)2 (
3 sin2(θ) cos2(φ)− 1

))

+ M2
r

(
1−

(
r0
r

)
sin(θ) cos(δ − φ) + 1

2

(
r0
r

)2 (
3 sin2(θ) cos2(δ − φ)− 1

))
. (B.3)

Note that this reduces to the MP solution, (1.1), in the BPS limit when λ1 = λ2 = ±1.
Here the harmonic function H is expanded only to second order in the displacement r0,
but it is clear that it is the perturbative expansion of

H = 1 + M1
|~r − ~r1|

+ M2
|~r − ~r2|

, (B.4)

where
~r1 = −r0î, ~r2 = −r0(̂i cos δ + ĵ sin δ), (B.5)

in standard isotropic coordinates with x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ.

C The local Lorentz parameters

Here we present the compensating local Lorentz transformation parameters ωab that ac-
company the boost coordinate transformation, (3.7). This transformation ensures that the
AdS Dirac matrices with curved space indices retain their simple form, (3.23), after boost-
ing. Although we have constructed ωab to quartic order in v, for brevity we present the
parameters only to O(v3).

ω01 = −v sin(θ) sin(t− φ)√
r2 + 1

+ v2 (3r2 + 1
)

sin2(θ) sin(2t− 2φ)
4r (r2 + 1)

+ v3 sin3(θ) sin(t− φ)
24r2 (r2 + 1)3/2

{(
r2 + 1

)
csc4(θ)

( (
r2 + 3

)
cos(2θ) + 3r2 + 1

)
+
(
31r4 + 22r2 + 7

)
cos(2t− 2φ) + 17r4 + 16r2 + 7

}
, (C.1)
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ω02 = −v cos(θ) sin(t− φ) +
v2 sin(2t− 2φ)

(
sin(θ) cos(θ) + r2 sin(2θ) +

(
r2 + 1

)
cot(θ)

)
4r
√
r2 + 1

+ v3 cot(θ) csc(θ) sin(t− φ)
192r2 (r2 + 1)

{
88r4+134r2+61+

(
136r4+216r2+101

)
cos(2t− 2φ)

+ 4 cos(2θ)
(
− 2

(
7r2 + 8

)
r2 − 7−

(
24r4 + 30r2 + 13

)
cos(2t− 2φ)

)
+ cos(4θ)

(
8r4 + 10r2 + 7 +

(
16
(
r4 + r2

)
+ 7

)
cos(2t− 2φ)

)}
, (C.2)

ω03 = v cos(t− φ) + v2 csc(θ) sin2(t− φ)
(
− cos(2θ)r2 + 3r2 + 2

)
4r
√
r2 + 1

− v3 csc2(θ) cos(t− φ)
192r2 (r2 + 1)

{
53r4 + 88r2 + 56−

(
85r4 + 120r2 + 56

)
cos(2t− 2φ)

+ 4r2 cos(2θ)
( (

9r2 + 2
)

cos(2t− 2φ)− r2 + 6
)

+ 14r4 cos(4θ) sin2(t− φ)
}
, (C.3)

ω12 = −v cos(θ) cos(t− φ)
r

− v2 cot(θ)
8r2
√
r2 + 1

{((
3r2 + 2

)
cos(2θ)− 5r2 − 4

)
cos(2t− 2φ)

+ r2 cos(2θ) + r2 + 2 cos(2θ)
}
− v3 cot(θ) csc(θ) cos(t− φ)

192r3 (r2 + 1)

{
−117r4 − 168r2 − 72

+ 16 cos(4θ) + 68r4 cos(2θ)−7r4 cos(4θ)+40r2 cos(2θ)+16r2 cos(4θ) + cos(2t−2φ)·(
189r4+304r2+136− 4

(
41r4+58r2+24

)
cos(2θ) +

(
31r4+40r2+16

)
cos(4θ)

)}
,

(C.4)

ω13 = −v sin(t− φ)
r

−
v2 csc(θ)

( (
2r2 + 1

)
cos(2θ)− 4r2 − 3

)
sin(2t− 2φ)

8r2
√
r2 + 1

− v3 csc2(θ) sin(t− φ)
192r3 (r2 + 1)

{
4 cos(2θ)

(
− 2

(
7r2+6

)
r2−3−

(
24r4+26r2+9

)
cos(2t−2φ)

)
+
(
132r4 + 196r2 + 85

)
cos(2t− 2φ) + 84r4 + 114r2 + 45

+ cos(4θ)
(
12r4 + 14r2 + 7 +

(
20
(
r4 + r2

)
+ 7

)
cos(2t− 2φ)

)}
, (C.5)

ω23 = −v
√
r2 + 1 cot(θ) sin(t− φ)

r
−
v2 (r2 + 1

) (
cos(3θ)− 9 cos(θ)) csc2(θ) sin(2t− 2φ)

)
16r2

+ v3

192r3
√
r2 + 1

{
2 cot(θ)

(
− 11r4 − 2r2 +

(
3r4 + 2r2 + 7

)
cos(2θ) + 1

)
sin(t− φ)

− 1
4
(
r2 + 1

)2 (
302 cos(θ)− 53 cos(3θ) + 7 cos(5θ)

)
csc3(θ) sin(3t− 3φ)

}
. (C.6)
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