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1 Introduction

Understanding the zero-temperature properties of a physical system is a fundamental prob-
lem in theoretical physics. Such a limit is expected to be far from trivial for systems with a
large ground-state degeneracy. In the context of AdS/CFT duality [1] varying the temper-
ature of a conformal field theory (CFT) corresponds to deforming the boundary conditions
that fix the dual AdS string/gravitational observable. Sometimes the latter observable can
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be obtained from an action functional evaluated at a classical gravitational configuration.
When this dual configuration is a black hole, the temperature of the CFT is naturally
identified with the Bekenstein-Hawking temperature [2]. Other chemical potentials are
identified as well, on both sides of the duality, by matching the background geometry in
which the CFT is quantized upon, against the boundary conditions fixed by the dual AdS
geometry [3, 4].

In the context of AdS5/CFT4 a zero-temperature limit reaching extremal and su-
persymmetric (BPS) black hole solutions [5] within a larger family of non-extremal and
non-supersymmetric ones [6, 7], has recently gotten attention [4, 8–10]. On the CFT side of
the duality, it has been shown [4, 11–19] that such a limit reduces the statistical properties
of the strongly coupled system to that of a simpler subsystem of states preserving the same
supercharges as the dual BPS black hole, more precisely of states in the cohomology of
such supercharges. In these limits, the thermal partition function reduces to a refinement
of a Witten index, known as the superconformal index [20–22].

In the canonical example of AdS5/CFT4 duality, where the CFT4 is 4d SU(N) N = 4
SYM, the superconformal index is a function of various chemical potentials, among which
one finds angular velocities and other potentials dual to R-charges. A simplified version
of such an index depends on a single combination of angular velocities and R-symmetry
chemical potentials that we will denote as τ = τ1 + iτ2, with τ1 and τ2 being its real and
imaginary parts. For convergence reasons, the parameter τ is assumed to span the upper
half complex plane.

Using the index as a tool, a landscape of exotic phases has been recently identified [23]
in certain limits [23–27]. These phases accumulate along the real axis at τ2 = 0, more pre-
cisely when τ approaches generic rational points within appropriate angular sections. The
corresponding limits are called generalized Cardy or Cardy-like limits. They correspond
to a large charge/spin semiclassical expansion (independent of the large-N expansion). As
shown in [23], at large N , a Cardy-like limit of the index corresponds to a large R-charge
(Q) and large angular momentum (J) semiclassical expansion of the index, for which the
ratio between large vacuum expectation values Q3

J2 remains finite. The same happens at
finite N [28, 29] (as follows from the analysis of section 3.3 below).

Although these results have been found using the superconformal index, in virtue of
what was explained above, these phases also emerge in a zero-temperature limit of the
physical partition function, at generic gauge coupling; more precisely, in a double limit.
The first and dominating one is the zero-temperature limit dual to the gravitational BPS
limit above recalled, and the second and subleading one is the Cardy-like limit. A physical
or geometrical understanding of the properties of these phases has been missing so far. The
aim of this note is to contribute to filling such a gap.

We will argue that these phases are topologically ordered and that the effective theory
of vacua is (up to dualities) the gauged SU(N)1 WZNW model on T2. These vacua will be
shown to correspond to a set of bound states of an operator B supported over two discon-
nected T2 punctures. Four-dimensional gauge invariance is shown to imply the existence of
edge modes at the worldvolume of each of the two-component surface operators. These edge
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modes organize in representations of an affine SU(N)1 Kac Moody algebra. Previous re-
sults and consistency arguments coming from the representation theory of quantum groups
constrain the interactions between the worldvolume theories at each of the two surface
operators to be such that the effective theory of B becomes topological in the Cardy-like
limit. The remaining partition function then is essentially reduced to counting the number
of vacua in which the bound field B can condensate, which, e.g. in the limit τ → 0 is N .
The bound-state perspective also exists away from the Cardy-like limits, but in that case,
one may expect its effective theory to have less constrained dynamics.

The condensates of B, and thus the (m,n) phases, are shown to carry fractional elec-
tromagnetic flux, with electric flux proportional to m and magnetic flux proportional to n.
They are also shown to be characterized specific electromagnetic Z(1)

N one-form charges.
Let us summarize the content of the paper. In section 2 we explain what we mean

by emergent topological order in Cardy-like limits and set up the stage for the following
sections. In section 3 we revisit relevant backup material which has been already developed
in the literature. After giving a brief introduction to the concept of one-form symmetry,
section 4 proceeds to explain why and how the (m,n) phases, i.e. the states on which
the operator B condensates in the Cardy-like limit τ → − n

m carry both, electromagnetic
flux and electromagnetic Z(1)

N one-form charge, the latter being the order parameter of
the corresponding phase. To complete the analysis presented in section 2, in section A,
we show how four-dimensional gauge transformations induce a global SU(N)1 Kac-Moody
action on the phase space of flat connections at a punctured 2-torus, and bootstrap the
form of the effective action in the presence of the operator B in Cardy-like limit (We do so
by using classical results in the literature). In section 5 we conclude with a summary and
some questions for the future.

2 The origin of topological order

This initial section explains what it is meant by the emergence of topological order in
SU(N) N = 4 SYM.1

For the purposes of this manuscript we find convenient to focus the presentation on
4d N = 4 SYM. But our conclusions can be applied to more general examples, as the key
assumption we rely on is (at least in some limit):

• that the partition function and correlation functions of the corresponding system
reduce to integrals over the moduli space of flat connections.

This implies that our argument covers other cases such as, for instance, certain limits of
non-supersymmetric theories like four-dimensional pure SU(N) Yang-Mills theory.2

1The driving idea of the discussion presented in this section is closely related to the one used, for instance,
in [30], and [31, 32], to infer the relation between supersymmetric gauge theories, quantum groups, and
Bethe ansatz construction.

2A case that has been recently studied in [33].
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2.1 The main idea

The superconformal index of four-dimensional N = 4 SYM can be understood as a path
integral of the form

I =
∫

[DAµ][. . .] e−QV (2.1)

where Q is one of the supercharges of PSU(2, 2|4). The selection of Q corresponds to the
selection of a superconformal Killing spinor on S1 × Sτ3 a twisted version of S1 × S3 with
metric

ds2 = dt2E + dθ2 + sin2 θ

(
dφ1 + 2πτ

β
dtE

)2
+ cos2 θ

(
dφ2 + 2πτ

β
dtE

)2
, (2.2)

that we will comeback to introduce later on around equation (3.13). β is the period of the
Euclidean time tE , and θ ∈ [0, π2 ] and φ1,2 ∼ φ1,2 + 2π.

The V in (2.1) is a Q-odd functional of fields defined in such a way that the part
of QV that only includes bosons is semi-positive definite along the contour of integration
that defines the path integral. This integral can be exactly solved [4, 34] by cohomological
path-integration methods [35], a method that has been further developed in the last two
decades and it is nowadays known as supersymmetric localization [36]. The localization
method reduces the original path integral to an integral over flat connections∫

[DAµ][. . .] =
∫
Fµν=0

[DAµ][. . .] . (2.3)

Suppose we puncture S1 × Sτ3 by excising the T2 defined by the constraint θ = 0
on (2.2). Then, at least formally, one can define the path integral of e−QV with fixed
boundary conditions for the tangential components of the gauge field Aµ at θ = 0: let us
call these boundary conditions Aγ . As for every other field at the puncture, including the
normal components of the four-dimensional gauge field Aµ, one integrates over them. The
result of such a path integral must be a (two-dimensional) gauge invariant functional of Aγ

I× := e−S
×
2d- eff[Aγ ] . (2.4)

with a Schwinger-Dyson quantum effective action S×2d- eff.3 This action needs not to be
local, and indeed in the process of integrating out other degrees of freedom, determinant
contributions for Aγ can arise, for instance, from integrating out charged matter fields (as
it is well known to happen in closely related examples [30]).

Formally

I =
∫

D[Aγ ]
vol(orbit Aγ)

I× , (2.5)

where by vol(orbit Aγ), we denote the volume of the orbits induced by the action of the
four-dimensional gauge transformations upon the 2d connection Aγ .

3The contributions coming from the gauge-fixing Fadeev-Popov determinant associated with the four-
dimensional gauge degeneracy can be understood to be part of the effective action.
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The localization formula (2.3) implies that

I =
∫

D[Aγ ]
vol(orbit Aγ)

I× =
∫
F12[Aγ ]=0

D[Aγ ]
vol(orbit Aγ)

I× (2.6)

where F12 denote the components of the field strength tensor along the excised T2. Thus:

• The localization method can be used to reduce the path integral (2.5) to an integral
over the moduli space of two-dimensional flat connections Aγ .

More precisely, the localization method constraints the effective action S×2d- eff[Aγ ] to be a
closed element (not necessarily exact) in the equivariant cohomology of the moduli space
of flat connections on T2.

Applying non-abelian equivariant localization4 one could expect to further localize (2.6)
to a sum over a disconnected set of families of flat connections L. Indeed, starting from a
matrix integral representation that will be reviewed below, the index can be reduced to a
form [24, 38, 39] — that we schematically represent as —

I =
∑
L

I×(L)
H1-loop(L) . (2.7)

5 These L’s are called Bethe roots or fixed points of an equivariant action. The positions
of these fixed-points are defined by Bethe ansatz-like equations. The H1-loop relates to
the determinant of the kinetic operator of a localization-exact deformation of the effective
action in S×2d- eff.

In conclusion, the path integral (2.5) — which in principle runs over generic regular
field configurations Aγ — localizes to a path integral over the moduli space of 2d flat
connections [37]

Aγ = −iG−1
× dγG× . (2.8)

Such an integral can be always recast in the form

I =
∫

D[G×]
(vol (trivial G×)) e

−W1(G×) (2.9)

with G× being a regular map from the torus T2 to the group SU(N). By vol(trivial G×)
we mean the volume of the space of maps with trivial holonomy.

The interesting problem is not to write down the formal expression (2.9), but to de-
termine the correct effective action W1 that, again, needs not be local. Of course, further
cohomological reductions must be possible on (2.9), as it is already known to be localizable
to the Bethe ansatz form (2.7).

So far, we have discussed three different lower-dimensional representations of the su-
perconformal index, (2.6), (2.7), (2.9), the first and the last one, formal, the second one,
as we will recall below is entirely explicit. The three of them will be helpful next.

4A review of this method can be found in [37].
5Some of these L’s can be continuous families of solutions, and integration over such a subfamily must

be considered. To keep our presentation as simple as possible we are ignoring this subtlety.
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Bootstrapping the two-dimensional effective theory at ×. Let us focus on the
representation (2.6).

The gauge covariant data in a flat connection Aγ is encoded in path ordered holonomies

M` := Pe
∫
`
Aγ=` , (2.10)

where ` is a generic (space-like) one-cycle in T2 and Aγ=` =: A` denote the component
of Aγ along the cycle `. Formally, the set of OPEs defining the effective theory at × is
encoded6 in the factorization properties of the covariant correlators∫

D[Aγ ]
vol(orbit Aγ)

e−S
×
2d- eff[Aγ ] ∏

r
M`[Aγ ] , (2.11)

where r denote irreducible representation of SU(N).
The gauge invariant data is encoded in traces of the correlators (2.11)7∫

D[Aγ ]
vol(orbit Aγ)

e−S
×
2d- eff[Aγ ] (Tr

r1
M`[Aγ ]) . . . (Tr

rn
M`[Aγ ]) (2.12)

If one infers a product algebra (OPE) associated to the factorization of the covariant
correlators (2.11) (assuming such a factorization exists) then one could use that to constrain
the possible two-dimensional effective theories at the 2-torus puncture (up to dualities).

2.2 A universal quantum group structure from gauge invariance

Classical results [40–44], which essentially rely only on the algebraic structure (2.13) be-
low [41], imply that the subset of correlators (2.11) for a fixed cycle ` factorizes as follows
from the fusion rules of representations of Uq(SU(N)).8

In appendix A.1 we show that SU(N)1 KM algebra

− i[Aa` (α), Ab`(α′)] = − δab δ′per(α− α′) + δper(α− α′) fabcAc`(α) , (2.13)

is the global current algebra induced by the four-dimensional gauge transformations over
the phase space of tangential component Aγ=` = ∑

aA
a
` Xa of a flat connections along a

cycle γ = ` — with worldline coordinate α ∼ α+2π — at the punctured boundary ×. The
Xa are a basis of matrices for the adjoint representation of SU(N). As I and S×eff must
be invariant under the transformations induced by four-dimensional gauge transformations
then the space of modes over which the effective measure

∫
D[Aγ = −iG−1

× dγG×] is defined
over — must split in representations of such SU(N)1 KM algebra.

The SU(N)1 KM algebra carried by the A`’s is known to induce a Uq(SU(N)) quantum
group structure in the OPE among holonomy variables M` [40–44] with q = exp πi

1+N .
6. . . by using a map that in principle depends on the two spacetime coordinates in ×.
7Notice that products involving monodromy operators along disconnected loops `i=1,...p can be always

understood as a monodromy operator along a connected loop with pieces of the contour cancelling pairwise.
We are not demanding the effective theory to be topological.

8A review of the results of [40, 41] is left for future work. In this manuscript we are simply borrowing
their results.
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Relying on the results of [41], the monodromy matrices M` are bound to behave as T -
matrices of an underlying integrable system, in the sense that they satisfy the so-called RTT
relations with respect to the R-matrix of Uq(SU(N)), more precisely the RTT relations
are known to be equivalent to the defining commutation relations of Uq(SU(N)) [41].

The A`’s that are related by trivial four-dimensional gauge transformations,9 form ir-
reducible representations of the affine Kac-Moody algebra (2.13). Single gauge orbits are
classified by a gauge-invariant observable, which should depend on the irreducible represen-
tation. Irreducible representations of both the affine Kac-Moody algebra and Uq(SU(N))
can be labelled by the labels of their highest weight state, which we schematically represent
with the letter r. The monodromy operators give a natural gauge-invariant observable

Or[A`] := Tr
r
M`[Aγ ] . (2.14)

Moreover, as only states that belong to the same irreducible representation r are related
by trivial gauge transformations, we conclude that:

• The localized gauge orbits L (Bethe roots) are in one-to-one relation with irreps r of
the quantum group Uq(SU(N)).

This implies that in a limit of I where only N0 localized gauge orbits remain un-
suppressed

N0 = a # of irreps r of Uq(SU(N)) . (2.15)

Now, what is equation (2.15) useful for?
The OPE among “gauge orbits” L— represented by the operators Or[Aγ ]— is fixed by

the Uq(SU(N)) structure (more precisely by the so-called co-product structure, which will
be not reviewed in this manuscript). The finite set of L’s that dominate the corresponding
limit of I, must be closed under the previously mentioned OPE structure, otherwise the
quantum group symmetry would be broken and consequently the four-dimensional gauge
theory would be anomalous, which we know it is not the case.10

There exists a unique set of irreps of Uq(SU(N)) which is closed under the OPE
structure above mentioned, it is the so-called set of integrable representations. For q = e

πi
1+N

such a set is composed of N elements — the corresponding integrable representations —
which are known to be counted by the partition function of SU(N)1/SU(N)1 WZNWmodel
on T2, a TCFT2.

Of course, one can always consider direct sums of such OPE-closed set and that implies
that the number of gauge orbits N0 must be a multiple of N , i.e., that

N0|N , (2.16)

which is in a sense a sharper statement than (2.15).
9Represented as vol(Trivial G×) in (2.9), where by trivial we mean that the corresponding map generates

a connection with trivial monodromy along every one-cycle `.
10This OPE’s must match the answers obtained from (2.12) in the corresponding limit. As far as we

understand, there are not many of such possible closed OPE-structures.
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For example, in the limit τ → 0 where N0 = N , the constraint (2.16) implies that
the two-dimensional effective theory at the puncture must be equivalent (or dual) to the
gauged SU(N)1/SU(N)1 WZNW model on T2.

The previous analysis implies also other partial conclusions:

• To each gauge orbit L one can associate one of the N fundamental representations
of SU(N) (the antisymmetric tensor products of the defining N -dimensional repre-
sentation) which we denote with the letter r, and a gauge invariant non-local (line)
excitation/operator Or[Aµ] at a fixed Cauchy surface (line) `.

• The latter N gauge orbits L are in one-to-one relation with the N (chiral) confor-
mal blocks of the parent (ungauged) WZNW model: which are the degrees freedom
counted by the partition function of the gauged WZNW model [45–48].11

• The non-local operators Or inherit an OPE structure (at fixed time) which is equiva-
lent to the Verlinde fusion algebra [42] of the underlying Uq(SU(N)). Thus, in phys-
ical terms, the corresponding excitations are a one-dimensional higher generalization
of three-dimensional Anyons [52–54]. The worldvolume spanned by the propagation
in time of the excitations created by the operator Or in the Hilbert space of the
four-dimensional gauge theory at a fixed Cauchy surface, is not a line — as it is the
case for Anyons propagating in three-dimensions and more generally for point-like
particles propagating in any dimension — but a surface. Thus, the corresponding
excitation is non-local, more precisely one-dimensional at a fixed-Cauchy surface.

2.3 Another perspective on the gauge orbits L: the fibering operator and
condensates

This subsection presents a different approach. The superconformal index I can be written
as an expectation value of a surface-operator F in a different supersymmetric twist of
N = 4 SYM when the theory is placed on T2 × S2 [38]

I = 〈 F 〉T2×S2
. (2.17)

The F is the so-called fibering operator [38, 55]. This is a surface operator that wraps the
T2. The 〈. . .〉... means expectation value in the four-dimensional A-twist of N = 4 SYM on
T2 × S2

ds2 = dt2A + (dφA + τdtA)2 + (dθA)2 + sin2 θA(dψA)2 (2.18)

with θA ∈ [0, π] and φA, χA ∈ [0, 2π] and tA ∼ tA + β.

11In particular, the conformal primaries of the parent(ungauged) WZNW are also in one-to-one relation
with the latter gauge orbits L. The conformal spectrum of this CFT2 [49, 50] is defined by the one of the
integrable or highest weight representations of its chiral affine algebras (2.13) [51], — that is because the
corresponding mass matrix is diagonal —. Thus, the conformal primaries of this theory are in one-to-one
relation with the integrable representations of the chiral affine algebras (2.13) [51], and of those of the
underlying Uq(SU(N)).
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Let us briefly review the approach of [38, 55]. After using supersymmetric localization
to compute the expectation value in the right-hand side of (2.17)12 the authors found that

〈 F 〉T2×S2
=
∑
L

F(L)
H(L) , (2.19)

where F(L) equals the integrand of (A.16) evaluated at a specific set of configura-
tions L. These configurations correspond to vacua of the dimensionally reduced A-twist
(on T2) [38, 55], namely they correspond to SU(N) flat connections on T2. These con-
nections are parameterized by N − 1 complex variables va, and they are subject to the
identifications

va ∼ va + 1 , va ∼ va + τ . (2.20)

The positions va of the vacua {L} are determined by a Bethe ansatz like equation

Qa
QN

:= e−
∂W
∂va = 1 , a = 1 , . . . , N − 1 . (2.21)

which we write/solve (in Cardy-like limit) below in equation (D.7). The Qa, a=1, . . . , N−1
are called Bethe ansatz operators (the definition of Qa for SU(N) N = 4 SYM is recalled
in (D.2)). The fixed-points13 relevant to the present discussion are

va = a− â
N

(mτ + n) , (2.22)

with the label â = 0, . . . , N − 1 denoting different solutions L. (2.22) is not a gauge invari-
ant characterization of the orbits L. In terms of the va’s the gauge-invariant representa-
tive Or[Aγ ] localizes into character χr(v) of the Lie group SU(N) for some representation r.
These representations r are emergent in the sense they need not be just the adjoint, which
is the unique representation carried by the fields in the perturbative Lagrangian formula-
tion of the theory. In this case the irreps {r} denote the finite-dimensional highest weight
representations of the Lie algebra SU(N) that descend from integrable representations of
the affine Kac-Moody algebra (2.13) at level k = 1, the ones labelled by the N fundamental
weights of SU(N).14 They are also related to the labels â, i.e., different values of â are in
one-to-one relation with the N fundamental irreps r of SU(N).

Ref. [38] noticed that the one-loop exact computation of the four-dimensional A-twist
observable (2.19) on T2×S2, can be identified with the one of the superconformal index on
S1×S3 after identification of KK modes in the two different manifolds. We will comeback to

12. . . not to be confused with the twisted S1 × S3 partition function in the right-hand side of (2.1) that
instead localizes to (A.16) [4, 34].

13These are saddles of the twisted superpotential W. The fibering operator F and H are defined in
terms of W. These definitions, which are not relevant to our discussion below, can be found in the original
reference [38].

14These are the finite-dimensional highest weight representations of the simple Lie algebra SU(N) that
comes from the projection to grade 0 generators of a given integrable representation of the affine algebra
SU(N)k=1.
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this identification below. Using this observation the authors conjectured and perturbatively
tested (2.19) in some examples. Later on reference [39] derived the same formula

I =
∑
L

F(L)
H(L) , (2.23)

following an entirely independent approach. This approach does not use the relation with
the A-twist on T2 × S2, as it relies only on the quasiperiodicity properties of the analytic
extension of the integrand of (A.16). More recently, this formula has been understood to
be a realization of the Atiyah-Bott-Berline-Vergne equivariant integration formula over a
double dimensional space of complexified holonomies. This is shown in version 2 of [24] (to
appear). In section 3.1 we will use this last perspective to revisit the computation of the
asymptotic exponential growth of the superconformal index I in the limits τ → − n

m .15
Note that (2.23) is a concrete realization of the general discussion above given, with the

natural identification I×(L)
H1-loop(L)

∼ F(L)
H(L) .

16 The formula (2.23) is called the Bethe ansatz
representation of the superconformal index. The L′s correspond to condensates of the
surface fibering operator F on the trivially fibered T2 ⊂ T2 × S2.17 On S1 × S3 these
condensates translate into topological fluxes localized at two two-torus punctures ×1 and
×2, i.e., at the worldvolume of B. Let us explain how this happens.

Surface operators and condensates. The natural identification between the coordi-
nates in (2.18) and the coordinates of a rotating spacetime (3.13) is

θA ∼ 2θ , χA ∼
φ1 − φ2

2 , φA ∼
φ1 + φ2

2 , tA ∼ tE . (2.24)

Then the non-trivial fibration transforming (2.18) into (2.2) is implemented by the shift

dφA + τdtA −→ (dφA + τdtA + cos θAdψA). (2.25)

As mentioned before, with these identifications and transformation (2.25) the spectrum of
eigen-modes contributing to the computation of the A-twisted path integral in the geome-
try (2.18) is equivalent to the one relevant for the computation of the superconformal twist
in the geometry (2.2) [4], as observed in [38].

The main partial conclusion we will draw next is that:

• A generic smooth gauge connection along the T τ2 ⊂ T τ2 ×S2 corresponds to a singular
gauge connection on the four-dimensional space S1 × Sτ3 . These singularities can be
understood as a surface operator B that wraps two disconnected T2’s ⊂ S1×Sτ3 (3.8):

This is because the cycles φ1 and φ2 that add up to form the cycle φ, the one that the
operator F fibers over S2 to recover S1 × Sτ3 , are contractible at θ = 0 and θ = π

2 ,
15We note that this approach to the Cardy-like expansion is independent, and thus complementary to,

of the one studied in the companion paper [29].
16Note that we do not identify H1-loop(L) = H(L), that is because there could be determinants coming

from integrating out matter or ghost fields included in the definition of I×.
17In a sense the expectation value of the fibering operator at the state L, F(L), can be interpreted to be

the expectation value of the operator Or.
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respectively. For instance, a gauge connection of the form AφA 6= 0 and AχA = 0 would
translate into a singular gauge connection Aφ1 = Aφ2 6= 0 on S1 × Sτ3 . In other words, the
latter gauge connections define an infinite density of flux localized at the 2-tori θ = 0 and
θ = π

2 . Section 4.2 shows how this concentration of flux happens for the localized gauge
orbits L that dominate the Cardy-like limit (2.22).

• In this sense, we conclude that inserting the fibering operator F in T τ2 ⊂ T τ2 × S2
defines an operator B on S1×Sτ3 . This operator wraps two-disconnected T2 punctures
in S1 × Sτ3 .

The properties of the states on which B can condensate are defined by the L’s. In Cardy-
like limits we will show that these condensates carry fractional electromagnetic flux and
Z(1)
N one-form charge (see section 4.1).

The operator B represents the deformation (of the Hilbert space of states) implemented
by fixing non-trivial boundary conditions A×1,2

γ at two-punctures on S1×Sτ3 . The vacuum
expectation value

〈
B
〉
is formally defined as a path integral I×× in the presence of two

insertions, the obvious generalization of I×, but this time with two punctures, one at θ = 0,
which we denote as ×1, and the other at θ = π

2 , ×2. By definition∫ D[A×1
γ ]

vol(orbit A×1
γ )

∫ D[A×2
γ ]

vol(orbit A×2
γ ) I

×× = I . (2.26)

The defining relation of B in terms of the fibering operator F and the localization method
imply ∑

L

I××(L)
Hone-loop(L) =

∑
L

F(L)
H(L) . (2.27)

Repeating the same reasoning as before but starting from the left-hand side of (2.26) one
reaches a representation of the form

I =
∫

DG×1

vol(trivial G×1)

∫
DG×2

vol(trivial G×2) e
−W2(G×1 ,G×2 ) . (2.28)

Again, in virtue of the localization method, the integral in the left-hand side of (2.26)
localizes to an integral over two-dimensional flat connections A×1,2

γ on the tori at ×1,2,
which can be written as an integral over regular maps G×1×2 (with non trivial holonomy)
from T2 to SU(N).

In Cardy-like limit the effective theory defined by W2, must reduce to G/G WZNW
model with G = SU(N)1 on T2. This will then constrain the form of W2 drastically as it
is explained in appendix A.2.

Relation to the remaining part of the paper. We should briefly comment about
how the analysis presented in this section relates to the scope of the remaining part of
this paper.

Section 3 introduces background material that has been already reported in the liter-
ature. The scope of that section is to review more details of the localization computations
that were summarized before in this section. Sections 4.1 and 4.2 show that the gauge
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orbits L correspond to localized Dyonic flux at the T2 punctures θ = 0 and θ = π
2 , namely

it studies the condensates of the surface operator B at the relevant Bethe vacua L’s. Fi-
nally, subsection 4.3 shows how — as for their analogous system of Abelian Anyons in
three-dimensions — the condensates of the gauge orbits L that dominate in Cardy-like
limit are charged under a Z(1)

N one-form symmetry.

3 Quantum phases of 4d SU(N) N = 4 SYM

This section introduces necessary background material.

3.1 Zero-temperature BPS limit

Four dimensional SU(N) N = 4 SYM has a PSU(2, 2|4) global symmetry algebra. Among
the even Cartan generators one finds energy E, the two spin-1/2 Cartan generators
J1 = 1

2(J3L + J3R) and J2 = 1
2(J3L − J3R) of so(4) = su(2)J3L ⊕ su(2)J2R , and the

Cartan generators R1, R2, R3 of the R-symmetry algebra su(4), in some conventions. It is
always possible to find two complex conjugated supercharges Q and Q† = S in PSU(2, 2|4)
such that

2{Q,S} = H̃ = E − J1 − J2 −R1 −R2 −R3 ≥ 0 . (3.1)

Let X be the set of 1
16 BPS states in the Hilbert space H that are anihilated by both Q and

S. The charges of states in X saturate the BPS condition (3.1). Let F be the fermionic
number associated to Q and S. Assume that for any state not belonging to X,

H̃ ≥ ∆ > 0 . (3.2)

∆ will be called gap.
Define the chemical potentials dual to J1, J2, and R ≡ R1 +R2 +R3 as

Ω1 ≡
ω1 + β

β
, Ω2 ≡

ω2 + β

β
, Φ ≡ ϕ+ β

β
. (3.3)

Given (3.1) and (3.2), the zero-temperature limit [4]

β → ∞ ,

ω1,2 → finite ,
ω1 + ω2 − 2ϕ ≡ 2µ = ± 2πi + µ(1)(β) → 2πi ,

(3.4)

of the partition function

Z(β, µ , ω1,2) ≡ Tr
H
e−βH eβΩ1J1+βΩ2J2+βΦR = Tr

H
e−βH̃ eω1J1+ω2J2+ϕR , (3.5)

reduces to a (−1)F graded trace,18 as follows from the algebraic manipulations

Tr
X
eω1J1+ω2J2+ϕR = Tr

X
eµF e (ω1−2µ)J̃1+ω2J̃2 = Tr

H
(−1)F e (ω1−2µ)J̃1+ω2J̃2

≡ I(ω1 − 2µ, ω2) , µ(1)(β) = 0 ,
(3.6)

18Other gradings, not as protected as the superconformal index, have been recently studied in [56].
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where J̃1 = J1 + R
2 , J̃2 = J2 + R

2 . In (3.6) we have assumed the spin-statistics relation
F = 2J1modZ.
I is the superconformal index of SU(N) N = 4 SYM, and it can be recast as a

(N − 1)-dimensional integral [20–22]

I =
∫ 1

0

N−1∏
i=1

dva e
V , (3.7)

with a periodic potential V. The va ∼ va + 1 will be called eigenvalues.19 The physical
meaning of the va’s, which will be introduced in the next section, will be essential in our
discussion.

At any temperature, choosing µ(1) = 0 reduces Z to I, and the temperature depen-
dence disappears. For µ(1) 6= 0, but still µ(1) →

β→∞
0, there are no cancellations at finite

temperatures, and only at β = ∞ Z reduces to I. The first small-temperature correction
(not coming from the implicit dependence of µ(1) on β) to the BPS limit (3.4) of Z, is
suppressed with the gap ∆,20 i.e. it is of order ∼ e−β∆. Assuming µ(1) tends to zero fast
enough as β →∞ implies that for small enough temperatures, the temperature-dependent
corrections to the index coming from the implicit dependence in µ(1) can be neglected with
respect to the contributions coming from the gap at order e−β∆.

In the gravitational BPS limits of [4, 8] the chemical potentials depend implicitly
on the Bekenstein-Hawking temperature. The small-temperature corrections to the BPS
onshell action come from the implicit dependence of ω1,2 and µ on the Bekenstein-Hawking
temperature. These classical corrections seem to be conceptually unrelated to the order
e−β∆ corrections mentioned in the previous paragraph. By ignoring the dependence of
ω1,2 and µ on temperature, we have chosen not to pay attention to the former kind of
corrections and to their corresponding zero-temperature limits,21 which will be analyzed
elsewhere.

3.2 The index as a path integral: the twisted time cycle

The superconformal index I can also be understood as a supersymmetric path integral of 4d
N = 4 SYM on a non trivial fibration of S3 over S1 with appropriate periodicity conditions
for bosons and fermions along a twisted time-cycle of a given backrgound geometry [24].
In such a geometry, as one moves along the S1, the S3 rotates around two independent
directions. The corresponding angular velocities can be related to the parameters τ and σ
introduced before. The metric can be taken to be [4]

ds2 = dt2E + dθ2 + sin2 θ
(
dφ1 − iΩ1dtE

)2 + cos2 θ
(
dφ2 − iΩ2dtE

)2
, (3.8)

19They can be thought of as eigenvalues of a traceless N ×N Hermitian matrix.
20Note that this correction is independent of the specific value of µ(1), as long as the latter is different

from zero.
21These are the semiclassical limits studied, for instance, in [9]. Interestingly, reference [57] has argued

that perturbative quantum corrections in the bulk can produce exponentially suppressed contributions, that
could be related to the gap ∆.
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where θ ∈ [0, π2 ] and

βΩ1 = ω1 + β = 2πiτ + β (1 + η1) ,
βΩ2 = ω2 + β = 2πiσ + β (1 + η2) .

(3.9)

The localization method of [36] can be used to compute the path integral (2.1) [58–60].
See for instance section 4 of [4] where the method was used with the explicit form of the
metric (3.13) and a background U(1) graviphoton potential determined by a single param-
eter Φ (as reported around equation 4.1 in that reference). The Killing spinor solution
found in [4] depends solely on the combinations of the parameters

Ω1 + Ω2 − 2Φ (3.10)

which means that two backgrounds (Ω1,Ω2,Φ) and (Ω′1,Ω′2,Φ′) such that

Ω1 = Ω′1 + β η1 , Ω2 = Ω′2 + β η2 , Φ = Φ′ − β (η1 + η2)
2 , (3.11)

preserve the same supersymmetry.
This implies that for any η1 and η2 in (3.9), the result of the localization computation

can be recovered from the one reported in section 4 of [4] by substituting

ω1 → 2πiτ , ω2 → 2πiσ , ϕ → ϕ (3.12)

in the equations there given.
Focus on the choice η1 = η2 = −1, then

ds2 = dt2E + dθ2 + sin2 θ

(
dφ1 + 2πτ

β
dtE

)2
+ cos2 θ

(
dφ2 + 2πσ

β
dtE

)2
. (3.13)

The global structure of the manifold associated to (3.13) , is defined by the periodic iden-
tifications

φ1 ∼ φ1 + 2π , φ2 ∼ φ2 + 2π , tE ∼ tE + β . (3.14)

Note that the cycle φ1 ∼ φ1 + 2π contracts at the north θ = 0, and the cycle φ2 ∼ φ2 + 2π
contracts at the south (θ = π

2 ). At the level of the metric, the angular velocities will be
assumed to be real as we do not want to sacrifice the semi-positive definiteness of (3.13)
at early stages.22 Only at advance stages, for instance, in partition functions, or in the
superconformal index, analytic extension is useful as a regularization mean.23

22A similar argument has bee recently used in the gravitational context [61].
23From the Euclidean path integral perspective, all indications are that placing the N = 4 SYM on

the analytic extension of the Euclidean metric (3.13) is fine e.g. the supersymmetric partition function
of the complex background geometry is simply an analytic continuation of the answer obtained from the
supersymmetric trace formula (3.6), which is obtained by counting supersymmetric operators in the Hilbert
space of the Lorentzian theory. As recently done for various examples [62], an interesting question to ask
is if these geometries are allowable accordingly to the axioms of [63].
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Apart from the obvious time-like and space-like cycles, there is a family of one-cycles
that will be relevant in our discussion. From the semi-positive definiteness of (3.13) and
the identification tE ∼ tE + β, it follows that xµΓ(0) ∼ xµΓ(β) for

xµΓ(α) ≡ (tE , θ, φ1, φ2) =
(
α, θ0 , −

2πτ
β

α, −2πσ
β

α

)
, 0 ≤ α < β . (3.15)

We will call these cycles the twisted time cycles. The Γ’s can be located at any θ = θ0 in
the fiber S3. Note that Γ is, roughly speaking, the S1 base of the fibration.

The τ (resp. σ)-rotation has a fixed locus, which is a rotating two-torus (tE0, φ20)(
resp. (tE0, φ10)

)
fixed by the condition

θ = 0
(
resp. π2

)
,

dφ2
dα = − 2πσ

β

(
resp. dφ1

dα = − 2πτ
β

)
,
dtE
dα = 1 , (3.16)

with α running from 0 to β. The coordinates along the torus tE0 and φ20 (resp. φ10) range
over the domain of initial conditions in the first order differential equations (3.16).

3.3 Decomposition of I in sum over fixed-points: Cardy-like limits

This subsection reviews what is known about the eigenvalue configurations that define the
BPS phases [4] following the perspective of [24].

The integral (3.7) can be written as

I(q) =
∫ 1

0

N−1∏
i=1

dva e
V =

∫ 1

0

N−1∏
i=1

dv1a e
V(v1,v2=0) , (3.17)

with
va = v1a + v2a τ , v1a , v2a ∈ R . (3.18)

Without loss of generality, the potential V can be assumed to be doubly periodic [23, 24]

V(v1, v2) = V(v1 + 1, v2) = V(v1, v2 + 1) . (3.19)

More details about V can be found in [24].24 Exact equivariant integration formulas [64]25
can be used to determine the asymptotic form of the integral representation (A.16) at
leading order in the Cardy-like expansion (τ → − n

m with gcd(m,n) = 1) (and finite N).
In this way one obtains [24]

I '
τ→− n

m

1
N !

∑
(v∗1 ,v∗2)∈fixed-points

χ(v∗1 ,v∗2) e
V(v∗1 ,v∗2) . (3.20)

The factor χ denotes a potential subleading contribution coming from the expansion of the
one-loop determinant 1

H(L) which is inversely proportional to [24]

Det
(

∂2V
∂xa∂ya

)
. (3.21)

24We only note that it is related to a smoothening of a periodic extension of the twisted superpotential
W. More details on this can be found in [24].

25. . . which can be proven to be equivalent to (2.23). This will be shown in version 2. of [24] (to appear).
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The xa ≡ v1a + τv2a and ya ≡ v2a are two (complex) linear combinations of v1a ∼ v1a + 1
and v2a ∼ v2a + 1 that keep the periodicities xa ∼ xa + 1 and ya ∼ ya + 1.26 The same
asymptotic form (3.20) can be obtained using the Cardy-like expansion of the Bethe ansatz
representation (2.23) [38, 39]. Both representations are the same [17, 66]:27 equivariant
fixed-points are equivalent to Bethe roots L [38, 39], thus we will use both terms inter-
changeably.28

The subleading numerical factor χ is the same for all the fixed-points that are expected
to dominate the Cardy-like limit (which we will introduce below in (3.31)), and without loss
of generality we can set χ = 1. That all such contributions are the same is a consequence
of the double periodicity of V, and of its second derivatives, independently of the form of
V [23, 24]. The V can be defined out of a doubly periodic single-particle potential V0 as
follows

V =
N∑

v1, v2=1
V0(v1a − v1b, v2a − v2b) . (3.22)

In this equation v1N = −∑N−1
a=1 v1a and v2N = −∑N−1

a=1 v2a. The fixed-point conditions are

∂v1aV = 0 , ∂v2aV = 0 , a = 1 , . . . , N − 1 . (3.23)

Independently of the form of V0 the set of solutions to (3.23) always include

v
(d,q̂)
1a = da+ q̂

N
, v

(c,p̂)
2a = ca+ p̂

N
, a = 1 , . . . , N − 1 , (3.24)

where c and d are integers defined modulo N ; thus, we can assume them to range in between
1 and N . In this paper we assume N to be prime. The other known solutions group in
continuous families [69] and all indications are that they are exponentially suppressed in
the Cardy-like limit [29]. The labels p̂ and q̂ are defined modulo N as well, but they are
not always integers, instead

p̂ , q̂ = 0 , . . . , N − 1 , if N odd ,

p̂− 1
2 , q̂ −

1
2 = 0 , . . . , N − 1 , if N even .

(3.25)

Any smooth double-periodic potential V(x, y) (and the one-loop determinant contribu-
tion (3.21)) when evaluated on (3.24), does not depend on the labels p̂ and q̂.29 Moreover,

26In this paper we focus only on the Cardy-like limits where the exponential pre-factor eV(v∗
1 , v

∗
2 ) grows.

These Cardy-like limits correspond to the selection of M -wings, in the language of [65]. For the limits in the
W -wings our conclusions do not apply. For example, in such cases there could be logarithmic corrections
(to the effective action) of the form log(mτ + n), as shown in [65], and recently argued in [28]. In the
Cardy-like limits we are studying such corrections are not present [29]. We thank A. Ardehali for a useful
conversation regarding this point.

27This is shown in the version 2 of [66] (to appear).
28For example, the configurations (3.24) (below) are the same as the set of Bethe roots originally identified

by [39, 67, 68], in the context of the Bethe ansatz formula of [38, 39].
29More precisely, the values of V and (3.21) at fixed-points (3.24) are independent of p̂ and q̂ at fixed c

and d. They do depend non-trivially on the labels c and d. These two previous claims have been checked
without using an explicit form for V, only assuming double periodicity and smoothness in an open domain
where the fixed points lie.
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some solutions in (3.24) are identified under Weyl permutations. For instance, given any
` ∈ N and 0 ≤ p̂? , q̂? < N there exist 0 ≤ c, d, p, q < N such that

v(c,d),(p̂,q̂) ∼ v(`c,`d),(p̂?,q̂?) . (3.26)

Then, the only relevant fixed-points are the

(c, d) ∈ ZN × ZN /L (3.27)

where L is the identification (3.26), which can be incorporated by requiring c and d to be
co-primes, i.e., gcd(c, d) = 1. The set of solutions (3.24) will be called (m,n) fixed-points
for short.

Using (3.20), and the fact that the limit τ → − n
m selects at fixed p̂ and q̂ those solutions

with (c, d) = (m,n), one obtains (after substituting χ→ 1)

I '
τ→− n

m

(N − 1)!
N !

∑
(q̂ , p̂)

eV(v(n,̂q)
1 , v

(m,p̂)
2 ) + other fixed-points

= N eV(v(n,0)
1 , v

(m,0)
2 ) + other fixed-points ,

(3.28)

where the Casimir factor eV(v(n,̂q)
1 , v

(m,p̂)
2 ) is by definition the limit τ → − n

m of the integrand
of (A.16), or equivalently F , evaluated at the configurations (3.24).30

As mentioned before, the potential contributions coming from other fixed-points are
conjectured to be suppressed in the Cardy-like limit [29]. These potentially extra contribu-
tions vanish for m = 1, n = 0 at any N (as shown in [27, 70–72], see also the discussion in
the accompanying paper [29]). They also vanish when N = 2 [65, 73]. Although we have
not yet checked it for generic m and n, based on constraint (2.16) and on the fact that
only N out of the subset of fixed points (3.24) dominates in the limit τ → − n

m , we expect
that even if the other fixed points contribute at leading order in the expansion τ → − n

m ,
the gauge orbits associated to the N dominating ones within the family (3.24) forms a
representation of the Verlinde algebra by themselves (in the way explained in section 2.2).

Given this expectation, from now on, we will focus on the contributions coming from
the fixed-points (3.24). The N dominating solutions within (3.24) in the expansion τ →
− n
m are counted by the overall factor of N in the second line of (3.28). The latter factor

comes from the fact that at fixed c = m and d = n, there are

N2 × (N − 1)! (3.29)

solutions, all of them with the same potential V. The N2 comes from the N possible values
of p̂ times the N possible values of q̂. The (N − 1)! comes from the permutations of the
label a. The remnant factor of N comes from dividing (3.29) by N !.

The remaining N solutions can be parametrized by the following choice of

p̂ = mâmodN , q̂ = n âmodN , â = 0 , 1 , . . . , N − 1 . (3.30)
30The explicit expression for these Casimir factors is e−(N2−1)S(m,n)(τ)+πiO(1) were the function S(m,n)(τ)

has been given, for instance, in equation (D.5) of the accompanying paper [29].
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Note that the index â is independent of a. Other parametrizations are possible but we find
convenient to use (3.30).

Eq. (3.30) corresponds to the following N dominant solutions (in Cardy-like limit
τ → − n

m)

va = (a− â)modN
N

(mτ + n) , (3.31)

where for each of the solutions, labelled by â = 0, . . . N −1, the index (a− â)modN ranges
over N−1 different integer values corresponding to a = 1, . . . N−1. The different solutions
correspond to the possible sets of N − 1 different integers in between 0 and N − 1 (without
minding the ordering). For instance, for N = 3 the unique such 3 solutions, labelled by
the index â = 0, 1, 2, respectively, are

{{va}} =
{{

0 , 1
3(mτ + n)

}
,

{1
3(mτ + n) , 2

3(mτ + n)
}
,

{
0 , 2

3(mτ + n)
}}

. (3.32)

4 A quantum phase is defined by N condensates

This section shows that the fixed-points (3.31) can be understood as bound states of two
Dyonic surface condensates located at the north and south fixed loci of the rotational U(1)
action. These condensates carry a specific electromagnetic Z(1)

N one-form charges.

Center and 1-form symmetries

This subsection briefly introduces the concept of center (and one-form) symmetries.
Focus on gauge potentials Ãµ(x) for which there exists a point in their gauge orbit

where only the Cartan projection Aµ(x) is non vanishing. We will call these Abelian or-
bits, and the point at which only Cartan elements are non-vanishing, the Abelian ansatz.
A generic point in a Abelian orbit Ãµ(x) can be recovered via regular gauge transforma-
tions i.e.

Ãµ(x) = G−1Aµ(x)G− iG−1∂µG .

Aµ(x) ≡ Aaµ(x)T a .
(4.1)

The Ta are elements in a Cartan subalgebra of SU(N). For the matter content of N = 4
SYM Ta’s are in the adjoint representation, but as we mentioned before there can be
emergent or probe extended operators in other representations r.

It is convenient to define the holonomy integrals along the time cycle

va =
∮
tE

Aaµ dx
µ , a = 1 , . . . , rankG . (4.2)

As already mentioned, these are not gauge invariant variables but they carry gauge invariant
information about the gauge orbits. Take a generic point Ã in the orbit. The path ordered
exponential (which is closely related to the monodromy operators at the punctures M`)

Π = Pe

∮
tE
Ãµ dxµ (4.3)
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transforms covariantly under regular gauge transformations. Regular gauge transforma-
tions carry trivial holonomy along any cycle, thus Tr

r
Π, for any r, is an invariant of the

gauge orbit.
Under a singular gauge transformation G,

Π→ G−1
f ΠGi , (4.4)

where Gi is the value of G at a starting point of the cycle and Gf is the value of G at the
ending point of the cycle. If G is such that GiG−1

f = eiΦG,r belongs to the center of G, then,

Tr
r

Π −→
G

eiΦG,r Tr
r

Π , (4.5)

and G is said to generate a center transformation of the gauge group. For SU(N) the
center group is ZN : then a center transformation G on a Polyakov loop can be represented
as follows

Tr
r

Π −→
G

e
2πim
N

nr Tr
r

Π , (4.6)

where the integer m ∼ m + N ∈ Z depends on G, but not on the representation r. The
integer nr ∼ nr + N depends on r, it is its N -ality. For the fundamental representation
one can define nr = 1. For the anti-fundamental representation, which is the complex
conjugated of the fundamental, nr = −1. For the adjoint, which enters in the product
of fundamental and anti-fundamental, due to the fact that the overall phase of a tensor
product representation is the product of the overall phases of each factor representation,
e2πi(m−m) = 1, nr = 0. For a generic representation r, the nr happens to be equal to the
number of fundamental representations that are needed to construct r (modulo N); for
example, for the anti-fundamental such number is −1 +N , and for the adjoint, 0 +N .

Although the adjoint holonomy operator does not detect changes under center trans-
formations, that does not mean that in a theory such as N = 4 SYM, center symmetry can
not be broken, it means that one can not use an adjoint holonomy operator to detect the
breaking. To detect center symmetry breaking for adjoint matter content, one can insert
a probe operator, such as the Polyakov loop,31

1
dimr Trr Π , (4.7)

with, say, r being the fundamental of SU(N). If the expectation value of the probe operator
vanishes, then center symmetry is preserved, as transformation (4.6) does nothing on zero.
On the contrary, if for any single one of such operators, the expectation value is different
from zero, center symmetry is broken. For example, insert a probe Polyakov loop in
representation r. Evaluated at the gauge orbit (4.1), the latter is only a function of the
Cartan ansatz (B.2)

1
dimR Tr

r
Π = χr(iv) = 1

dimr
∑
ρ∈r

eiρ(v) . (4.8)

χr is the character of the representation r of SU(N), and the ρ’s are the weight vectors
of r. For generic v, the center symmetry is broken. But sometimes it is not. Assume

31A Polyakov loop is a Wilson loop extended along the tE-time cycle.
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v localizes to the (m,n) = (0, 1) fixed-point. If one assumes r to be the fundamental
representation, the vacuum expectation value of the Polyakov loop vanishes. As every
other representation is a tensor product of the fundamentals, the result remains the same
for any other representation. Thus, center symmetry is unbroken in the (0, 1) phase.

We have only mentioned the center symmetry associated to the Polyakov cycle. More
generally, one can define a Wilson loop operator along other one-cycles, and draw similar
conclusions as for the Polyakov loop. In the formulation of [74], the associated center
symmetries are called Z(1)

N discrete one-form symmetries.

4.1 Complex fixed-points = singular flat potentials

Take the tangential differential to the family of twisted time cycles Γ

dxµ(α) ≡ (dtE , dθ, dφ1, dφ2) =
(
dα, 0, −2πτ

β
dα,−2πτ

β
dα
)
. (4.9)

Define the holonomy integral
∫

ΓAµ dx
µ
Γ ≡

∫ β
0 dαAµ(xΓ(α))dx

µ
Γ(α)
dα . Consider the simple

Abelian ansatz
(Aa)tE = const , (Aa)φ1 = const , (Aa)φ2 = const . (4.10)

32 At the moment (Aa)θ is not constrained, but eventually, it will be fixed to zero.33
The index (3.17) is obtained after regularizing a quotient of infinite products of

fermionic and bosonic eigenvalues of the twisted Hamiltonian [4]

H̃ ≡ dxµΓ(α)
da

(
−i∇µ

)
= ∇tE −

2πτ
β
∇φ1 −

2πτ
β
∇φ2 . (4.12)

H̃ generates translations along the twisted time cycle. It is also (up to a c-number normal-
ization) the square of the supercharge used to localize the original supersymmetric path
integral. In this expression ∇ represents the fully covariant derivative. From how the
gauge connection enters in the covariant derivatives ∇µ = . . . + iAµ + . . ., it follows that
the supersymmetric partition function (the index) depends only on a specific combination
of Aaµ: for a constant connection, as we will assume, such combination is

va = va1 + τva2 ≡
∫

Γ
(Aa)µ dxµ , (4.13)

with the periodic identifications va1 ∼ va1 + 1 ∈ R and va2 ∼ va2 + 1 ∈ R. From (4.9)
and (4.13) it follows that

va1 =
∫ β

0
dtE (Aa)tE , va2 = −

∫ 2π

0
dφ1(Aa)φ1 −

∫ 2π

0
dφ2(Aa)φ2 . (4.14)

These identifications imply that

va2 6= 0 =⇒ (Aa)φ1 + (Aa)φ2 6= 0 . (4.15)
32Flat gauge potentials require

(Aa)θ = (Aa)φ1 = (Aa)φ2 = 0 . (4.11)

33It will be fixed to zero by the BPS condition in the punctured geometry.
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Assuming an ansatz for Aaµ invariant under the transformation
(
θ, φ1

)
→

(
π
2 − θ, φ2

)
,

which is a discrete isometry of (3.13) for τ = σ, one obtains∫ 2π

0
dφ1(Aa)φ1 =

∫ 2π

0
dφ2(Aa)φ2 = − 1

2 va2 . (4.16)

Eq. (4.15) and (4.16) say that a fixed-point with v2a 6= 0, a complex fixed-point, can be
interpreted as a singular gauge configuration in spacetime (3.8).

4.2 Magnetic and electric cycles: fluxes

This subsection completes the interpretation of the fixed-points (3.31) as bound-states of
two surface operators localized at two punctures θ = 0 and θ = π

2 . At the level of the
geometry we will fix τ = σ = − n

m+ and infinitessimal number with m and n coprimes.
That is the set up at which fixed-points (3.31) dominate the BPS limit of the thermal
partition function.

Defining cycles and relations. To measure magnetic flux, we consider two families of
cycles, denoted as ΓmN and ΓmS

xµΓmN
(α) ≡

(
θ = g(α) , φ1 = α

)
,

xµΓmS
(α) ≡

(
θ = π

2 − g(α) , φ2 = α

)
,

(4.17)

with worldline parameter 0 ≤ α < 2π. We have omitted the components that remain
fixed as α varies. g is a real function that defines both, distance from the poles (θ = 0 and
θ = −π

2 ) and wiggling. The label m means magnetic and the N (resp. S) means north
(resp. south). Both cycles ΓmN and ΓmS are boundary of two-dimensional regions

ΓmN = ∂ΣΓmN , ΓmS = ∂ΣΓmS , (4.18)

with

ΣΓmN =
(
0 ≤ θ ≤ g(α) , φ1 = α

)
,

ΣΓmS =
(
π

2 − g(α) ≤ θ ≤ π

2 , φ2 = α

)
.

(4.19)

34 These two regions are centered at the fixed loci of the rotation.
To measure electric flux we use two families of cycles, ΓeN and ΓeS ,

xµΓeN(α) ≡
(
tE = α , θ = g(α) , φ2 = − 2πτ

β
α

)
,

xµΓeS(α) ≡
(
tE = α , θ = π

2 − g(α) , φ1 = − 2πτ
β
α

)
,

(4.20)

with worldline parameter 0 ≤ α < m × β. These cycles wind m times over the base
S1 (the twisted time cycle) and n times over a cycle on the base S3 around θ = 0 (resp.

34Coordinates components normal to the surface are not shown in these expressions.
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Figure 1. Schematic representation of the twisted time (grey), electric north (blue) and magnetic
north (red) cycles in the singular coordinates where the fibration looks trivial. This representation
is obtained after implementing the singular change of coordinates φ1,2 → φ1,2 − 2πτ

β tE (to the rest
frame). The loops in the hemisphere represent two-tori. One of the cycles of the tori contracts at
the north pole; the other one remains finite size. The magnetic and electric cycles move along the
former and are static on the latter. The twisted time cycle does not move along the S3 in the rest
frame. The figure does not represent the electric cycle’s non-trivial winding numbers, which are
m around the base S1 and n around the north locus represented with the letter N in the figure.
When located at the north (resp. south) locus N (resp. S) the electric north (resp. south) cycle is
identical to m copies of the twisted time cycle.

θ = π
2 ). This is illustrated in figure 1. The electric and twisted time cycles obey the

following relation

ΓeN −m× Γ = 0 at θ = 0 ,

ΓeS −m× Γ = 0 at θ = π

2 .
(4.21)

These relations hold because the difference between Γ and ΓeN (resp. ΓeS) comes from
their relative motion along the φ1 (resp. φ2) cycle, as well as from the fact that the latter
cycle contracts at θ = 0 (resp. θ = π

2 ). Instead, for θ 6= 0 (resp. θ 6= π
2 ), depending on m

and n, there are two possibilities, either:

ΓeN −m× Γθ=0 = ∂ΣΓeN , ΓeS −m× Γθ=π
2

= ∂ΣΓeS , (4.22)

or
ΓeN = ∂ΣΓeN , ΓeS = ∂ΣΓeS . (4.23)

In these expressions

ΣΓeN =
(
tE = α , 0 ≤ θ < g(α) , φ2 = − 2πτ

β
α
)
,

ΣΓeS =
(
tE = α ,

π

2 − g(α) ≤ θ <
π

2 , φ1 = − 2πτ
β
α

)
.

(4.24)

Relations (4.22) correspond to values of m and n for which the regions ΣeN and ΣeS are
orientable surfaces (left figure 2). Relations (4.23) correspond to the values of m and n for
which ΣeN and ΣeS are unorientable surfaces (right figure 2).
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Figure 2. The blue cycle represents the twisted time cycle Γ located at θ = 0 (resp. θ = π) Γθ=0
(resp. Γθ=π

2
). The red cycle represents the electric cycles ΓeN (resp. ΓeS). The ribbons represent

the regions ΣeN (resp. ΣeS). The figure to the left corresponds to the case (m = 1, n = 2). In this
case the ribbon is orientable and its boundary is Γe −mΓθ=0. The figure to the right corresponds
to the case (m = 1, n = 1). In this case the ribbon is unorientable and its boundary is ΓeN (ΓeS).
The case (m = 1, n = 0) corresponds to un-knotting the cycles in the figure to the left.

Chromomagnetic flux

Let us measure the fluxes. The differential of the magnetic cycle (4.17) is of the form

dxµΓmN
(α) ≡ (dtE , dθ, dφ1, dφ2) =

(
0, dg(α), d(α), 0

)
(4.25)

where g is a real and smooth function such that 0 < g(0) = g(2π) < π
2 , and α ∈ [0, 2π). If

we assume no wiggling i.e. dg
dα ≡ 0

∮
ΓmN

(Aa)µdxµ =
∫ 2π

0
dφ1(Aa)φ1 = − 1

2 va2 . (4.26)

On the other hand in case b) ,
∮

ΓmN
Aµdxµ = 0. Equation (4.18) and Stokes theorem imply∫

ΣmN
(Fa)θφ1 = − 1

2 va2 . (4.27)

Equation (4.27), which holds for any size of ΣmN as long as its boundary ∂ΣmN does not
wiggle in the θ-direction, implies that for every ΣmN, even for those with wiggling boundary
∂ΣmN, ∫

ΣmN
(Fa)θφ1 dθ ∧ dφ1 −→

g→ 0+
−1

2 va2 . (4.28)

Had ΓmN not surrounded the north cycle∫
ΣmN

(Fa)θφ1 → 0 . (4.29)
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in the limit in which ΓmN contracts to a point.35 These observations imply that

(Fa)θφ1 = −m2
a− â
N

1
2π δ(N) + integrable contribution , (4.30)

where δ(N) ≡ δ(θ) and δ is a Dirac delta, normalized as follows
∫ θ

0 dθ′ δ(θ′) = 1. We should
also note that the (localized) magnetic field lines associated to the configurations (4.30)
are directed along a closed cycle, thus there is no isolated magnetic charge localized at the
north locus, just flux (see figure 3).

The previous analysis can be extended to the south locus and one obtains, when there
is no wiggling, ∫

ΓmS
(Aa)µdxµ =

∫ 2π

0
dφ2(Aa)φ2 = − 1

2 va2 . (4.31)

Following analogous steps as before, one obtains

(Fa)θφ2 = − 1
2
m(a− â)

N

1
2π δ(S) + integrable contribution (4.32)

where δ(S) ≡ δ(θ− π
2 ) and δ is the laterally normalized Dirac delta function defined above

but this time centered at south.
Eqs. (4.30) and (4.32) define (magnetic) singular boundary conditions for the gauge

potentials at the north and south fixed loci of the rotation.
Requiring the Cartan ansatz to satisfy the BPS conditions in the punctured spacetime,

with all scalar VEVs fixed to zero, forces the gauge potentials to be locally flat away from
the fixed loci of the rotation.36 That condition fixes the integrable contribution in (4.30)
and (4.32) to zero. Thus the magnetic flux measured by a fundamental probe Wilson line
is independent of the area enclosed by the line, as long as the latter encloses a puncture,
otherwise the measured flux is zero (in strict Cardy-like limit).

Chromoelectric field strength

Let us measure the electric flux. The tangential differential to the cycle ΓeN in (4.20) is

dxµΓeN(α) ≡ (dtE , dθ, dφ1, dφ2) =
(
df(α), dg(α), 0, − 2πτ

β
dα
)

(4.34)

where g is a real and smooth function such that 0 < g(0) = g(mβ) < π
2 , and α ∈ [0,mβ).

35This is because for bounded gauge potentials the holonomy integral along any such infinitesimal loop
is proportional to the difference in between the values of the angular coordinate φ1 of the initial and final
point of the loop, if such coordinates are the same, as it is the case for a loop not surrounding the north
locus, then such a loop integral vanishes in the zero-area limit.

36Following the conventions of [34], and for the spacetime metric used there, which relates to (3.13) by a
local diffeomorphism transformation, the Euclidean 1

16 -BPS conditions take the form:

F03 + F12 = −1
2

[
φj , φj

]
, F02 + F31 = F01 + F23 = 0 ,

(iD1 −D2)φj = 0 (D0 + iD3 + 1)φj = 0 , [φi, φj ] = 0 .
(4.33)

Thus, for vanishing scalars the gauge potential must be flat for a classical configuration to be supersym-
metric.
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Σϕ1
ϕ2 - cycle

E

θ

B

ϕ2

θ = 0

Figure 3. The bound-state is made of a pair of two-dimensional components carrying Dyonic flux
localized at the fixed-point of the rotational U(1) action. They arise due, in part, to the rotation
of (3.8). Flatness condition away from the fixed loci of the rotation implies the absence of isolated
electric and magnetic charge. The time cycle is not shown in this figure.

When ΓeN does not wiggle∫
ΓeN

(Aa)µdxµ =
∫ mβ

0
dα

(
(Aa)tE

dtE
dα + (Aa)φ2

dφ2
dα

)
,

= m

(
v1a + τ

va2
2

)
= m

(
v1a −

n

m

v2a
2

)
.

(4.35)

The second line comes from using (4.14), (4.16), (4.34), and τ = − n
m + an infinitesimal

number. The effect of wiggling is irrelevant in the zero area limit g → 0+. Then (4.35)
implies that for any ΓeN ∫

ΓeN
(Aa)µdxµ −→

g→ 0+
m

(
v1a −

n

m

v2a
2

)
. (4.36)

Assume the choice of m and n corresponds to an unorientable ΣeN. Then, using rela-
tion (4.23) and Stokes theorem one obtains∫

ΓeN
(Aa)µ dxµ =

∫
ΣΓeN

(Fa)θtE dθ ∧ dtE . (4.37)

From (4.36) and (4.37) it follows that∫
ΣΓeN

(Fa)θtE dθ ∧ dtE −→
g→ 0+

(
v1a −

n

2m v2a

)
. (4.38)

Moreover, for the same reason mentioned above for the magnetic cycles ΓmN it follows that
had ΓeN not surrounded the north cycle then∫

ΓeN
(Aa)µdxµ → 0 (4.39)

in its zero-area limit. Repeating the same analysis but for the south cycle ΓeS one reaches∫
ΣΓeS

(Fa)θtE dθ ∧ dtE −→
g→ π

2−0+

(
v1a −

n

2m v2a

)
, (4.40)
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and again, had ΓeS not surrounded the south pole then∫
ΓeS

(Aa)µdxµ → 0 . (4.41)

in its zero-area limit. When m and n correspond to orientable ΣeN and ΣeS, then start-
ing from relations (4.22) and applying Stokes theorem one obtains analogous equations
to (4.38)–(4.41).37 From (4.38), (4.39), (4.40), and (4.41) it follows that

(Fa)θtE = 1
2β

n (a− â)
N

(
δ(N)− δ(S)

)
− (Ea)θ . (4.43)

(Ea)θ stands for integrable contributions that we have given a name for latter convenience
(see footnote38). As the supersymmetric path integral in the punctured space I××, localizes
to flat connections, then (Ea)θ = 0.

Similarities with Gukov-Witten surface operators. The boundary condi-
tions (4.30), (4.32), (4.38), (4.40) are reminiscent of the ones used in [75] to define surface
operators. In particular, of the choice α 6= 0, β = γ = 0 in (2.2) [75].

The constituents of the (m,n) bound-states (as defined by the path integral I×× in
the presence of punctures) are reminiscent of the surface operators defined by the (α, β =
0, γ = 0)-boundary conditions of [75]. In the case here studied, the connection A has more
than one non-vanishing components fixed. It would be interesting to explore if there is a
relation in between the S-dual pair (α, η) discussed in [75] and the eigenvalue components
(v1, v2) here discussed.

The Dyonic fluxes ((4.30)+(4.32), (4.43)) (say at N) span a lattice descending from
the one in which the couple (va1, va2) lives in. This should be implemented generalizing
ideas of [75] (subsection Extensions of Bundles). For the present purposes, we do not
need to go into such construction. Instead, we have assumed that such an extension of
bundle exists; and chosen to focus on a specific patch, on which the Dyonic fluxes take the
forms ((4.30)+(4.32), (4.43)).

Infinite Noether charges. There is a difference between the surface condensates here
discussed, and what is called a monodromy defect: the former emerge when the geometric
background (including background gauge fields) on which the UV theory is placed upon
is deformed to specific set ups (τ → − n

m). The latter, instead, are defined by an explicit
deformation of the fundamental path integral.

37Note that the form of the fixed-points (3.31) implies that the integral along the twisted time cycle
vanishes at τ → − n

m ∫
Γ
Aaµ dxµ = v1a + τv2a '

τ→− n
m

0 . (4.42)

38In appendix C we will use these terms to clarify why there is no condensation of electric charge at the
fixed loci of the rotational action even if there is a non-vanishing distributions for the charge density located
at such position.
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Note that the Noether charges of these bound-states are infinity.39 Regularizing these
infinities would require modifying the UV theory.40 Thus, we are draw to accept that
the infinite Noether charges of the (m,n) bound-states are not a misunderstanding, but a
feature of these configurations.41

4.3 Electromagnetic Z(1)
N one-form charge of phases: an order parameter

The goal of this section is to explain how the (m,n) phases are characterized by a doublet
of Z(1)

N one-form charges: the electromagnetic Z(1)
N one-form charge of the phase. This

charge is an order parameter in the sense that it specifies a single phase among the family
of phases coming from the fixed points that we have focused on (3.24).

The set of solutions (3.24) includes fixed-points that are equivalent under Weyl trans-
formations and contains more solutions than the ones dominating as τ → − n

m , i.e., the
ones that characterize the (m,n)-phase. The gauge orbits intersected by the potentials
associated to (3.24):

A
(p̂, q̂)
(c, d) =

N−1∑
a=1

(
a d+ p̂

N
dtE −

a c+ q̂

N
dφ
)
Ta , φ = 1

2(φ1 + φ2) , (4.44)

42 form a representation of a Z(1)
N × Z(1)

N one-form transformation at any fixed (p̂, q̂). For
reasons that will be clear below, these transformation will be called electromagnetic Z(1)

N

one-form symmetry.
The Cardy-like expansion τ → − n

m selects only solutions with (c, d) = (m,n)
within (4.44). These are

va = (a− â)modN
N

(mτ + n) . (4.45)

â = 0, . . . N − 1. These N leading fixed points carry the very same electromagnetic Z(1)
N

one-form charges. We recall that in this note, we are assuming N to be prime, but our
conclusions can be generalized to other values of N .

The Lie algbra generators Ta in (3.24) are assumed to be in any of the N fundamental
representations of the Lie algebra of SU(N): the defining representation together with its
fully anti-symmetrized tensor product representations.

Electric Z(1)
N one-form charge: let us explain what we mean by electric Z(1)

N one-
form charge. Let us start with the subsector p̂ = q̂ = 0. That this subsector carries a

39They involve integrals of a product of coincident Dirac deltas with constant test functions.
40One would need to insert the inverse monodromy defect in the fundamental theory. Meaning by that,

a (supersymmetric) defect that would cancel the monodromy charges of the bound-state, however, such an
insertion would also be perceived by every other observable in the theory, and thus it would be a meaningful
modification of the UV theory, and we do not wish to do so.

41The fact that these operators have infinite Noether charges, and are charged under Z(1)
N -form symmetry,

makes them potential candidates for redundant operators/states in 4d N = 4 SYM. By redundant we refer
to the definition given in [76]: although they have infinite energy in the fundamental UV theory they remain
as fundamental degrees of freedom in the effective field theory of the ordered phases as argued in section 2.

42The conventions used in this subsection are summarized in appendix B.

– 27 –



J
H
E
P
1
0
(
2
0
2
2
)
0
5
2

representation of the center (or electric) ZN symmetry follows from the fact that for p̂ = 0
the time component of (4.44) is generated by the maps

Gel(tE ; d) ≡ e2πi d tE
β

∑N−1
a=1

a
N
Ta , n = 1 , . . . N modN . (4.46)

When one moves along the Polyakov cycle once, Gel interpolates between the unit element
at tE = 0 and an element of the center of SU(N)

Gel(β; d) = e2πi d
N
nr I . (4.47)

where nr is the N -ality of the fundamental representation r.
Thus, in particular, the (m,n) bound-state (with p̂ = q̂ = 0) carries discrete charge

n under the center (electric one-form) Z(1)
N symmetry. Using an obvious generalization

of (4.46), one can interpolate from the root of identity (4.47), which is the one associated
to the phase (m,n) (with p̂ = q̂ = 0), to the root of the identity associated to any other
phase (c, d) (with p̂ = q̂ = 0).

Magnetic Z(1)
N one-form charge: equivalently, the space-like component of (4.44) is

generated by

Gmag(φ; c) ≡ e−i c φ
∑N−1

a=1
a
N
Ta , cmodN = 1, . . . N , (4.48)

with φ ≡ φ1+φ2
2 . Analogously, when one moves along the magnetic φ-cycle once, the map

Gmag interpolates between the unit element at φ = 0 and an element in the center of SU(N)

Gmag(2π;m) = e−2πi c
N
nr I . (4.49)

Thus the conclusions are analogous to the ones of the electric case and we do not re-
peat them.

Generic values of p̂ and q̂: for p̂ , q̂ 6= 0 the generalization of the above conclusion is
simple. In that case the time and angular components of the gauge potential A associated
to a given (c, d) fixed-point, do not exponentiate to a root of unity, but the difference
between the components associated to a gauge potential A of any two such fixed-points
exponentiate to a root of unity. This means that one can move between fixed-points, at
fixed p̂ and q̂, by using the obvious generalizations of the maps Gel and Gmag i.e. those that
implement the changes in discrete charges ∆c and ∆d from one (family of N) fixed-point
to another, as one winds around the relevant cycle once.

At last, as discussed around (3.26), some solutions in (4.44) are identified under Weyl
permutations. This is the same as saying that part of the electromagnetic Z(1)

N × Z(1)
N

discrete symmetry group is gauge. The physically relevant global discrete charges being

(c, d) ∈ Z(1)
N × Z(1)

N /L, (4.50)

where L was defined in (3.26). In short, the division by L is equivalent to disregarding non
co-primes c and d. The co-prime c and d are called magnetic and electric Z(1)

N one-form
charges of the phases, respectively.
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5 Brief summary and questions for the future

We have shown that in the zero-temperature limit where the thermal partition function
of SU(N) N = 4 SYM (at any coupling) reduces to the superconformal index, topological
order emerges when a certain complex parameter q = e2πiτ related to the rotation of the
spatial part of the geometry (where the theory is quantized upon) is taken to a root of
unity. Each of these phases is characterized by N bound-states made out of two surface
components. The two component operators are localized at the fixed loci of the rotational
action. The fixed loci are two two-tori located at north and south of the S3, respectively.
Both components carry localized electromagnetic flux, this is, when the flux is measured
by two independent families of probe fundamental Wilson-line operators, the measured
holonomy remains independent of the area enclosed by the lines.

These bound states are classified by their charge under a Z(1)
N × Z(1)

N one-form sym-
metries [74]. The two discrete Z(1)

N one-form symmetries in the tensor product are called
magnetic and electric, respectively, because they act upon the fundamental Wilson loops
of SU(N) when the latter rest along time-like and space-like cycles, respectively.43 Like the
magnetic (resp. electric) flux, the magnetic (resp. electric) discrete charge of the (m,n)
bound-state is determined by the integer m (resp. n). The magnetic (resp. electric) dis-
crete one-form symmetry acts over the flux charge m (resp. n), transforming bound-states
into bound-states. The Cardy-like limit projects the representation of the electromagnetic
one-form symmetry to a subset of N solutions with well-defined set of electromagnetic one-
form charges specified by two co-prime integers m and n. The electromagnetic one-form
charge is the order parameter of the specific (m,n) quantum phase.

The bound states that superpose to form these phases are a one-dimensional uplift
of Anyons. In particular, based on classical results in the literature we have argued that
the operators creating the physical excitations in the effective theory at the a given (m,n)
phase form a Verlinde fusion algebra (section 2.2).

There are some questions and problems that we have decided to leave for the future
to study. Some of these are:

• To find the explicit relation between the approaches described in the subsection 2.2
and subsection 2.3. In particular, it would be interesting to understand how the
Verlinde algebra among the operators Or arises from the Cardy-like expansion of the
description in terms of the fibering operator F on T τ2 × S2. Notice that doing so,
requires the extraction of the leading Casimir pre-factor and a careful analysis of
subleading corrections in the limit τ → − n

m , along the lines of the one presented in
the companion paper [29].44 We will address this problem in forthcoming work.

• Does a larger quantum group structure exist at finite values of τ? Such a possibility is
suggested by the naive observation that one can define a quantum group Uq(SU(N))

43Only part of this symmetry is global i.e. Z(1)
N ×Z(1)

N /L ∈ Z(1)
N ×Z(1)

N where the operation L was defined
in (3.26).

44Similar results, at least in spirit, have been already reported in the literature [77] about 3d A-twisted
gauge theories.
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for every loop ` in T2. It would be interesting to identify such larger structures, e.g., it
is plaussible that one could find structures reminiscent of the ones studied in [78–81].

• What is the interpretation of the Z(1)
N symmetry in the AdS side of the duality? These

symmetry transformations should leave invariant certain subsets of the (Euclidean)
gravitational solutions studied in [82]. It would be interesting to study this problem
in more details.

• Can the interpretation of (m,n) phases as a mixed state of N bound states45 be
helpful to understand universal near zero-temperature corrections of the thermal
partition function in expansions other than (3.4)?46

• Can the imaginary part of τ (considered to be non-vanishing due to convergence
reasons) be re-interpreted as the η discussed in [75]. If yes, then the conclusions in
this paper can be translated to a set-up with a real background geometry defined
as τ = − n

m . If that is the case then it would be interesting to aim for a deeper
understanding of the relation with the framework studied in [75, 83, 84] and other
relevant references.

• Generic four dimensional N = 1 superconformal indices are known to have a factor-
ized expression in terms of vortex and anti-vortex blocks, each of them localized at
the north and south loci of the rotational action [85–87]. A similar type of formula
has been put forward in [25]. It would be interesting to find the relation between
such a formula and the Bethe ansatz one (2.23).47

• One could ask if non-supersymmetric gauge theories could exhibit zero-temperature
topologically ordered phases similar to the ones here argued. We note that phase
structures with different physical properties, but with seemingly related mathematical
roots have been identified in varied contexts [88–93].

45To these phases one can associate the density matrix

ρG/G =
N∑
â=1

|â〉〈â| (5.1)

with |â〉 (â = 1, 2, . . . , N), being a ket associated to the â-th bound-state. We assume the normalization
〈â|â〉 = 1, then

I(1) ↔ TrρG/G =
N∑
â=1

〈â|â〉 = N . (5.2)

46As the superconformal index is protected under variations of the gauge coupling our conclusions should
remain valid at any value of the gauge coupling. It would be interesting to check this robustness coming
from observables that depend on the gauge coupling. In order to do this, integrability tools can be useful.

47Understanding such a relation (which does not seem to be trivial) would probably hint at the form of
the effective action of B at finite τ .
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A Universal affine Kac-Moody algebras from four-dimensional gauge
transformations

In this section, we show how the gauge transformations of a 4d gauge theory48 induce
an affine Kac-Moody algebra per one-cycle ` for the effective theory at the punctured
boundary.

A.1 Chiral current algebras from gauge transformations

The tangential component of the fundamental gauge potential along the cycle ` at the
puncture × is

A` ≡
dxµ`
dα Aµ

(
xµ`
)

= Aγ=` . (A.1)

This can be understood as a linear combination of the two components in the boundary
conditions Aγ defined and used in the introductory section 2.1. Take now a smooth map
G from the geometry (3.13) onto SU(N), and denote its restriction to the cycle ` in × as
G
∣∣∣
`
= G`(α). The gauge transformation induced by the group element G upon Aµ, when

restricted to the cycle γ, is

δG`A` = −iG−1
` ∂αG` +G−1

` A`G` −A` . (A.2)

If we focus on configurations Aγ=` that are locally pure gauge, i.e., pure gauge in the
punctured spacetime (these include the connections associated to the complex fixed-point
configurations (4.44)), then one can decompose A` in components

Aa` (α) = 1
N

Tr
(
XaA`(α)

)
. (A.3)

where Xa is an element of the Lie algebra of SU(N) and Tr is the trace in the adjoint
representation.

From the transformation (A.2) and the decomposition (A.3) it follows that

δG`A
a
` = − i

N
Tr
(
XaG−1

` ∂αG`
)

+ 1
N

Tr
((
G`X

aG−1
` −X

a) Ã`) . (A.4)

Acting with a gauge transformation induced by a generic group element

G` = exp
(
− i
∑
b

εbX
b
)
, (A.5)

48. . . for which physical observables localize into integrals over the phase space of 4d locally flat connec-
tions. . .
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with infinitesimal Lie algebra parameter ε, on Ja` , then (A.4) takes the form

δεA
a
` (α) = − 1

N
∂αεbTr

(
XaXb

)
− i
N
εbTr

(
[Xa , Xb]A`(α)

)
= − 1

N
∂αεbTr

(
XaXb

)
+ εbf

ab
c J

c
` (α) ,

(A.6)

which means that a variation of Ja` induced by motion along a gauge orbit is generated by
a Kac-Moody algebra action at level k = 1. In a phase space of locally flat connections the
variation (A.6) can be thought of as induced by the Poisson bracket action of J` upon itself

− i[Aa` (α), Ab`(α′)] = − δab δ′per(α− α′) + δper(α− α′) fabcAc`(α) . (A.7)

The symbol δper denotes the periodic delta function with period 2π. The factor of N that
cancels the 1

N in the central extension, comes from the fact that Xa is in the adjoint of
SU(N). In that case (Xa)bc = −ifabc, the identity facdfbcd = Nδab implies

Tr
(
XaXb

)
= N δab . (A.8)

The same analysis can be repeated for any other cycle `: note that the level does not
depend on the selection of `.

A.2 On the binding between north and south edge modes

As explained in the main part of the paper

I '
τ→ 0

eCasimir-type contributionZG/G , (A.9)

where ZG/G = ∑N
â=1 1 = N is the partition function of the gauged SU(N)1 WZNW model

on T2 [45–48, 94].
The G/G WZNW model can be quantized via BRST-like [45, 46] or path inte-

grals [47, 48, 94] methods. The path integral representation of the partition function of
such model can be factorized [48] and written in the form

ZG/G :=
∫

DADB χ(A,B)χ(A,B)

= # of conformal primaries at genus one = N
(A.10)

49 where χ, χ are the holomorphic and anti-holomorphic wave functions defined in [48] for
G = SU(N)1

χ :=
∫

DGN e−I(GN ;A,B) , χ :=
∫

DGS e−I
′(GS ;A,B) . (A.11)

49The second line in this equation can also be shown using the relation between G/G WZNW on a
two-torus and G Chern-Simons theory on a three-torus [42, 43, 95, 96].
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50 A = A` and B = B` are gauge fields for the two chiral symmetries that were previously
identified with the symmetries generated by the holomorphic and anti-holomorphic currents
J` at each of the punctures. Then the two wave functions in (A.10) can be thought of as
path integrals over the north and south edge modes degrees of freedom (in the presence of
gauging). At last, an expression for W2 can then be obtained by plugging (A.11) in (A.10)
and the result in (A.9), and comparing the answer with (2.28).

A.3 Polyakov loop correlators in Cardy-like expansion

The localization procedure reduces gauge potentials to Cartan holonomy variables

Aµ, Aγ −→ ui ∼ ui + 1 . (A.14)

Moreover, for a supersymmetric choice of cycle ` (for instance the time-cycle that we will
define below as Γ) the Polyakov loop operators in representation r localize to characters of
the gauge group

TrM`| −→ χ(u) (A.15)

with χ(u) := ∑
ρ∈r e(ρ(u)) being the character of the representation r of the gauge group.

The path integral representation localizes to the following expression,

I = κ

∫ 1

0

N−1∏
i=1

dui

N∏
i>j=1

(
θ0(uij) θ0(uji)

) N∏
i 6=j=1

3∏
a=1

Γe(uij + ∆a; τ) , (A.16)

which matches the Hamiltonian representation of the index. The constant κ and the
elliptic functions in the argument are the ones given in the introduction of the companion
paper [29].

The expectation values of Polyakov loops ∏rM` localize to

1
I
κ

∫ 1

0

N−1∏
i=1

dui

N∏
i>j=1

(
θ0(uij) θ0(uji)

) N∏
i 6=j=1

3∏
a=1

Γe(uij + ∆a; τ)
∏
r
χ(u) . (A.17)

50

I(G;A,B) := I(G) + 1
2π

∫
d2αTrA2G

−1∂α1G−
1

2π

∫
d2 αTrB1∂α2GG

−1

+ 1
2π

∫
d2αTrB1GA2G

−1 − 1
4π

∫
d2αTr(A1A2 +B1B2) ,(

and I ′(G;A,B) := I(G;B,A)
)
,

(A.12)

is the action of the WZNW model on a two-torus with world line coordinates α1 ∼ α1 + 2π and α2 ∼
α2 + 2π and line element dα1dα2, in the presence of background gauge fields A := A1dα1 + A2dα2 and
B := B1dα1 + B2dα2 dual to the commuting chiral currents whose origin will be motivated below. The
action of the undeformed WZNW model being

I(g) := − 1
8π

∫
d2αTr

(
G−1∂α1G ·G

−1∂α2G
)
− iΓ(G) (A.13)

with the Wess-Zumino term Γ(G) defined in a three-dimensional manifold with a two-torus (spanned by α1

and α2) as boundary [48].

– 33 –



J
H
E
P
1
0
(
2
0
2
2
)
0
5
2

The previous arguments imply that in Cardy-like expansion (around τ → 0) the correla-
tors (A.17) must be re-writable as correlators of the gauged SU(N)1 WZNW theory on T2,
which have the form [97]

N−1∑
j=0
X (χ(φ(j)

i ))
∏
a

χra(φ(j)
i ) . (A.18)

In these expression X is some function of characters of SU(N). The φ(0)
i = 0 and the con-

figurations over which the correposponding integral localizes over (the L’s before) are [97]

φ
(j)
i (n) := 1 + δi,j

k +N
, i, j = 1, . . . , N − 1 . (A.19)

51 Similarly to SU(N), for the U(N) index we expect the set of Polyakov loop correlators
to be equivalent to correlators of the U(N)k/U(N)k WZNW model. The U(N) ones are
obtained from the SU(N) (A.18) by exchanging the characters of SU(N) by the U(N) ones.
In this case the configurations φ(j)

i over which the sum runs over are determined by the
folllowing equations, (which we borrow from [98])

(N + k)φ(j)
a −

N∑
b=1

φ
(j)
b + N − 1

2 − ja = 0 , ja ∈ Z , (A.20)

with the equivalence relation φ
(j)
i ∼ φ

(j)
i + 1 in mind. Assuming N prime, and using

level-rank duality these equations map to [98, 99]

N φ(j) − j = 0 , j ∈ Z . (A.21)

which naturally correspond to N -th roots of unity. These configurations solve the Bethe
ansatz equations of the gauged U(1)N WZNW model which is level-rank dual to the gauged
U(N)1 model, and thus are equivalent in the infrared [38] i.e. they have the same quantum
group symmetry. The roots (A.21) are predicted to be in one-to-one relation with the
gauge orbits L’s (Bethe roots) that dominate the Cardy-like limit of the U(N) index.
They need not to look the same: theories that are equivalent (duals) can have Bethe roots
with different forms. We will comeback to identify thee roots in section A.2 (see also the
last paragraph in appendix D).

B Center elements from the defining representation of SU(N)

Let us ask for the set of N − 1 real va’s solving

exp
(

2πi
∑
a

va g
−1T ag

)
= X(`) IN×N , X(`) = e2πi `

N , (B.1)

with ` ∈ Z. In this equation g is an arbitrary element of SU(N), and Ta is the defining
representation of Lie algebra of SU(N). The other fundamental representations are the

51It seems possible to check this prediction from scratch, we will try to do this elsewhere.
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fully antisymmetrized tensor product of the defining one. As said before, in this paper we
assume N to be prime. Note that the solutions for the numbers X(`) is independent of g,
however, the form of the components va(`) does depend on the choice of g.

If we fix the basis for the defining representation as

Tk = ek , k − ek+1, k+1 , k = 1 , . . . , N − 1 , (B.2)

with ei , j denoting the N × N matrix with unique non-vanishing entry 1 in the (i, j)-th
position, the equations (B.1), for a fixed ` = 1, . . . N , are solved by

e2πiva(`) =
(
X(`)

)a
,

va(`) = `
a

N
modZ , ` = 1 , . . . N .

(B.3)

We note that in the basis (B.2) the Cartan matrix takes its canonical form i.e. 2 in the
diagonal elements and −1 in the main off-diagonal elements. As said before, should we
have chosen a different basis for the Ta’s, related to (B.2) by a similarity transformation,
the X(`) remains the same but the form of the va(`)’s changes. For the N fundamen-
tal representations r we will always use the basis obtained from antisymmetrized tensor
products (B.2).

C Chromoelectric charge?

Let us show how there is no accumulation of electric charge in the two components of
the (m,n) bound-states, even though the charge density is a non-vanishing distribution at
north and south loci of the rotational action. There are only two choices of (Ea)θ in (4.43)

− (Ea)θ ≡ 0 or ∝ qabulk√
detg(θ)

,
√
detg(θ) =

r3
S3

2 sin(2θ) , (C.1)

52 for which the distribution of chromoelectric charge can be localized at north and south
i.e. for which

ρae ≡ ∇µ
(
F aµtE

)
= 2

(
cot(2θ)

) 1
r2
S3

F aθtE + 1
r2
S3

∂θF
a
θtE

= 2
(
cot(2θ)

) (qa + qabulk)δ(N)− (qa + qabulk)δ(S)
(2π)2 + qaδ′(N)− qaδ′(S)

(2π)2 ,

(C.2)

with qa ∝ na
N

rS3
2β , is made of distributions localized at the north and south loci. The second

choice in (C.1), which implies condensation of electric charge, is both non-integrable and
not locally flat, thus we can take it to be zero. Such contribution is the electric field
generated by an homogeneously charged string carrying total electric charge qabulk. We
have kept this contribution to make clear how qa can not be interpreted as electric charge
in equation (C.2).

52In these expressions we have reinstated the radius of S3.
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Indeed, assuming qabulk = 0, and using Gauss law (C.2) to compute the electric charge
enclosed by a portion of the three sphere tE = fixed within 0 < θ < θ0, one obtains∫ θ0

0
dθ

∫ 2π

0
dφ1

∫ 2π

0
dφ2

√
detg ρie =

∫ θ0

0
dθ

∫ 2π

0
dφ1

∫ 2π

0
dφ2

√
detg∇µ

(
F iµtE

)
= 0 .

(C.3)

Thus, although the density of charge is a non-vanishing distribution at the position of the
emergent operators, there is no condensation of chromoelectric charge there.

D Cardy-like limit of the Bethe ansatz equations

This appendix checks that the Cardy-like limit τ → 0 of the Bethe ansatz equations of [39]
give the same number of solutions as the Bethe roots of the lattice Phase model of [100].
These are the N dominating fixed-points (3.31) for the limit m = 1 and n = 0. As it
will be illustrated below, the generalization of this statement to generic m and n is more
involved and it will be left for future work.

Our starting point are the SU(N) Bethe ansatz equations of [39, 73]

Qi
QN
− 1 = 0 , i = 1 . . . N − 1 , (D.1)

where

Qi(v,∆, τ) ≡ e
−2πi

∑N

j=1 vij
3∏

a=1

N∏
j=1

θ0(vji + ∆a, τ)
θ0(vij + ∆a, τ) . (D.2)

The chemical potentials are assumed to obey the linear constraint

3∑
a=1

∆a − 2τ = n ∈ Z . (D.3)

Let us define z ≡ z(vij) = vji + ∆a. For a complex number x let us define its two real
components x⊥ and x|| by the relation x = x⊥ + x||τ̃ , with τ̃ ≡ mτ + n with m > 0 and n
two co-prime integers.

As explained in the companion paper [29] for generic ∆a away from the walls in the
complex z-plane at which the component ξ`⊥ (with ` ∈ Z) of

ξ`(z) = z − `τ −
⌊
z⊥ − `

n

m

⌋
− 1 , (D.4)

equals 0 or 1,

θ0(z) = eπi
∑m−1

`=0 B2,2(ξ`|τ̃ ,−1)+L(z) '
τ→− n

m

eπ i
∑m−1

`=0 B2,2(ξ`|τ̃ ,−1)+Disc . (D.5)

In this equation
B2,2(z − 1 | τ,−1) ≡ −1

τ
B2(z) +B1(z)− τ

6 . (D.6)
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Furthermore, the Cardy-like limit of function L(z) vanishes almost everywhere except for at
walls where the limit can happen to be undefined. In the cases where the limit is undefined
only the lateral limits to the walls are well-defined and the corresponding discontinuities,
denoted as Disc in (D.5), are bound to cancel the discontinuities across the very same walls
(branch cuts) that the piecewise polynomial part π ∑m−1

`=0 iB2,2(ξ`|τ̃ ,−1) exhibits.53 The
symbol ' in (D.5) means equality up to exponentially suppressed corrections in the limit
τ → − n

m . The objects B1 ≡ z − 1
2 and B2 ≡ z2 − z + 1

6 are the first and second Bernoulli
polynomials.

From (D.5) it follows that to keep the Qi’s, and consequently the Qi
QN

finite and non-
vanishing in the limits τ → − n

m one can require vij → uij τ̃ + Z with finite and real
uij = ui − uj ≡ v||ij 6= 0 for i 6= j. That follows from the fact that in limits τ → − n

m

where the real component v⊥ij takes generic values, the quantity Qi
QN

can not be equal to
1 because either it vanishes or diverges.54 For generic values of m and n there are ways to
ensure finiteness of Qi

QN
, for instance by requiring vij → uij τ̃ + Z

m . As announced, we focus
on the case m = 1 and n = 0 in that case, starting from (D.5)55 a computation shows that
in the Cardy-like limit the Bethe ansatz equations become

Qi
QN

=
(
ζ̃i
)N

= 1 , i = 1 , . . . , N − 1 , (D.7)

where we have defined ζ̃i ≡ e2πi (ui−uN ). The solutions to (D.7) are ζ̃i = N -roots of
unity. Discarding solutions with coincident ζi’s and solutions that are identified after
permutations, it follows that there are N different solutions, which are (3.31).56 These are
also the Bethe roots of the previously mentioned phase model [98, 100]. For the reasons
explained in the main body of the paper we expect the same conclusion to hold for generic
Cardy-like limits τ → − n

m .

A comment about Bethe/Gauge correspondence. The Bethe roots (or fixed-points)
of the system here studied [24, 39] are expected to be in one-to-one correspondence with
Hamiltonian eigenstates of an integrable system [31]. Given the results presented in refer-
ences [98, 100, 101], the proposal just put-forward suggests that in Cardy-like limit such
an integrable model could be related to the Phase model studied in [100] for the values
zthere = 1, kthere = 1 particles moving along a circle with nthere = N sites. This lattice
model is solvable by the Algebraic Bethe ansatz method. It was also shown in [98] that
the partition function of the U(N)1/U(N)1 WZNW model on a Riemann surface of genus
h corresponds to the sum of the Bethe norms (to the power 1 − h) of the Hamiltonian

53Such cancellation follows from the fact that θ0(z) has no branch cuts in the complex z-plane.
54It diverges or vanishes because for generic v⊥ij /∈ Z there is a nontrivial component proportional to 1

τ̃

contributing in the limits τ → − n
m
. This divergent contribution to the exponent vanishes for v⊥ij ∈ 1

2 + Z
as well but the contribution to the index coming from the roots that could potentially arise from ansatz
obeying v⊥ij ∈ 1

2 + Z can be shown to be exponentially suppressed with respect to the one associated to
the ansatz v⊥ij ∈ Z ones (3.31).

55Working at values of ∆a for which the discontinuities Disc are away from v⊥ ∈ Z.
56That the solutions to the equations (D.1) in the limit τ → 0 are related to roots of unity was previously

found in [68] in a related context.
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eigenstates of a Phase model. Thus, on the two-torus (h = 1) such partition function
equals the number of Bethe roots of the algebraic equations (6.2) of [100] for zthere = 1,
kthere = 1, and nthere = N , which again is N . In appendix D we check that the limit τ → 0
of the Bethe ansatz equations of [12, 38, 39] gives the same number of solutions as the
Bethe roots of the lattice Phase model of [100] for zthere = 1, kthere = 1, and nthere = N .
These are the N dominating fixed-points (3.31) for m = 1 and n = 0.57
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