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1 Introduction

Black holes are fascinating gravitational objects with many properties that are very surpris-
ing and peculiar. However, black holes share one common property with ordinary matter:
they also behave as thermodynamic objects. In Einstein’s theory of two derivative classical
gravity, also known as general relativity, they are solutions to the equations of motion, and
one can associate geometric notions with corresponding thermodynamic properties, such
as the area of the event horizon as its entropy, the surface gravity as the temperature, etc.
It has long been understood that the laws of black hole mechanics can be viewed as laws of
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thermodynamics [1–3]. We also know from [4] that this similarity is not an analogy. How-
ever, indeed one can derive the temperature of a black hole related to its surface gravity
in a rigorous way.

On the other hand, we know that general relativity is not a complete theory of gravity.
We must think of it as an effective theory valid at low energies or large length scales. In a
complete theory of quantum gravity, one can take its low energy limit and would get general
relativity as the leading theory. Following this procedure, one would also generate correc-
tions to general relativity. Without detailed knowledge of the UV complete theory and the
process of taking a low energy limit, we cannot be sure what corrections to be added to the
leading two derivative theory. Nevertheless, on general grounds, we expect that one would
get various higher derivative terms in the Lagrangian in addition to the Einstein-Hilbert
piece. Different higher derivative corrections will come with different dimensionful parame-
ters as coefficients in the Lagrangian, and this will signify the length scale, say lHD at which
the higher derivative terms would be as important as the leading Einstein gravity piece.
We denote the higher derivative couplings collectively as the dimensionless parameter α.1

Once we extend the scope of gravity theories by including arbitrary higher derivative
corrections in addition to the leading two derivative theory, the black holes still remain
to be solutions of these new theories, and they should also retain their thermodynamic
properties. Therefore although the laws of black hole mechanics were first understood
in general relativity, one can not ignore the importance of understanding the validity of
a similar set of laws for black hole thermodynamics in such higher derivative theories of
gravity. In [5, 6], it was shown that a version of the first law of black hole thermodynamics
could indeed be argued for an arbitrary diffeomorphism invariant theory of gravity. This
construction also suggested a geometric object defined on the horizon of the black hole as
the generalized definition of black hole entropy. This definition of black hole entropy is
known as the Wald entropy in the literature. It says that the Noether charge associated
with the Killing symmetry generator of the null horizon should be identified as the entropy
of black holes in such arbitrary diffeomorphism invariant theory of gravity. Of course,
this definition of entropy reduces to the area of the horizon as one considers black holes
in general relativity. However, once out-of-equilibrium dynamic processes involving black
holes are considered, the Wald entropy suffers from possible ambiguities known as the JKM
ambiguities [7–9]. Additionally, there is no general proof that the Wald entropy satisfies the
second law of thermodynamics. There have been various attempts at designing a proof for
the second law that will be valid for arbitrary higher derivative theories of gravity [6–14].2

Also, recently the construction of an entropy current in such theories was studied [17–19],
following the work of [12].

However, in this paper, our aim is to focus on the zeroth law of black hole thermody-
namics in higher derivative theories of gravity. As in an ordinary thermodynamic system,
the zeroth law for black hole mechanics is a characteristic signature of stationary or equilib-

1The higher derivative coupling will have dimensions in general, however, with the use of appropriate
powers of lHD we can define a dimensionless coupling α and also choose units by putting lHD = 1.

2See the recent reviews [15, 16] and the references therein for a detailed discussion on black hole ther-
modynamics for higher curvature theory of gravity.
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rium black hole configurations. Stationary black holes have a space-time metric that admits
a null hypersurface known as the Killing horizon, where a Killing vector becomes null. Us-
ing the fact that event horizons for stationary black holes are Killing horizons (due to the
rigidity theorems), and also that the temperature of the black hole is given by the surface
gravity for such stationary black hole metrics, one can make a precise statement of zeroth
law as follows: the surface gravity of a stationary black hole is constant over the entire
event horizon. This statement has been proven for two derivative theories of gravity, with
an additional assumption of the dominant energy condition for the matter stress tensor [2],
by analyzing the equations of motion in general relativity. Alternative proofs have been
constructed [20, 21], without any use of the equations of motion of the theory but assuming
extra symmetries of the space-time. If we do not use any additional symmetry of the black
hole space-time as mentioned above, it is an interesting question to ask if one can extend
the proof of the zeroth law to theories of gravity beyond general relativity. Recently in [22]
such proof was given for stationary black hole solutions in Gauss-Bonnet and Lovelock
theories of gravity by modifying and improving upon a previously reported negative result
in such theories [23]; also see [24, 25] for a similar result. As these results were worked out
for particular models of higher derivative theories of gravity, to the best of our knowledge,
a similar result is not yet known for arbitrary diffeomorphism invariant theories of gravity.
In this paper, we address this particular question and find that the answer to this is in the
affirmative: we have been able to construct a proof for the zeroth law in arbitrary diffeo-
morphism invariant theories of gravity where the higher derivative terms in the Lagrangian
are added as a correction to the leading two derivative theory of general relativity.

An important assumption in our construction is the fact that it applies to theories
where all higher derivative terms, appearing in the Lagrangian associated with a coupling
parameter α, are treated as corrections to a leading two derivative theory of gravity, namely
Einstein’s general relativity. In operational terms, this means that for theories that we
consider, a smooth limit of taking the higher derivative coupling α → 0 exists, and in
that limit, we recover the general relativity as the leading candidate theory. This, in
particular, enables us to obtain stationary black hole metrics as solutions in arbitrary
higher derivative theories of gravity as they can be constructed perturbatively around some
known stationary black hole solutions in two derivative general relativity when α = 0.
It is, however, important to highlight that our proof only requires the existence of this
perturbative higher derivative coupling α. However, it is valid for all orders in this α-
expansion and is also valid for any number of higher derivative coupling.

Let us now mention some of the salient features of the technical tools that we have
used in constructing our proof. We will be very brief here, and all of these issues will be
discussed in great detail in the subsequent sections. Firstly, we will work with a particular
choice for the metric of stationary black holes. This does not lose any generality as one can
always make these gauge choices for any stationary black holes. For our analysis, we will
focus on Killing horizons where a Killing vector becomes null on the co-dimension one null
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hypersurface.3 Further, we will associate the constancy of surface gravity on the horizon
with specific components of the equations of motion. In other words, the off-shell structure
of some specific components of the equations of motion, when evaluated at the horizon, will
be related to (actually, be proportional to) the derivative of the surface gravity with respect
to the coordinates on the horizon. Once we can establish this, the zeroth law would follow
automatically by equating these components of equations of motion to zero. However, we
must point out that we do not explicitly use equations of motion in our analysis apart
from this last step. Also, the main point here is to establish the following fact - it is
always possible to express the off-shell structure of a particular component of the equations
of motion in arbitrary higher derivative theories of gravity (with the assumption of them
augmenting the leading two derivative theory) in a form such that they get related to the
derivative of surface gravity with respect to coordinates tangent to the horizon — this is
the main result of our analysis in this paper.

As mentioned before, we organize our calculations in a perturbative expansion in the
higher derivative coupling. Within such a perturbative framework, we will use the method
of induction to prove that a particular component of the equation of motion has the desired
off-shell structure at arbitrary order. We first argue that at the leading order, i.e., when
α = 0, the equations of motion are indeed of the form expected, as this is just reviewing
the proof of zeroth law known in the literature. Next, we assume that the proof works at
an arbitrary order in the α-expansion, say at O(αm). Then we show that the proof will
also work at the next order O(αm+1). Therefore, following the method of induction, we
can conclude that the proof will work up to any arbitrary higher-order in the α-expansion.

In establishing our result, a crucial input used a residual gauge invariance for our choice
of the metric, named the boost symmetry. This boost symmetry is the consequence of a
Killing isometry for stationary black holes, and the Killing horizon is mapped to itself under
the flow generated by this boost transformation. Any covariant tensor, e.g., the equations of
motion, will transform in a particular way under this boost transformation. This symmetry
was an essential input for several recent works in the context of black hole thermodynamics.
For example, in [12], a proof of linearized second law for arbitrary higher derivative theories
of gravity was developed using this symmetry. Also, in [17] and [18], it was crucial to de-
termine the structure of the equations of motion to construct an entropy current with non-
negative divergence. In our present paper, assuming that the zeroth law is being satisfied
at the order, O(αm) of the α-expansion, this boost-symmetry enables us to constrain the
off-shell structure of the equations of motion at the next order O(αm+1) as the desired one.

Finally, we end this section with an overview of how the paper is structured. We begin
with a description of the basic setup and an operational statement of the problem at hand
in section 2. Here we discuss the particular choice of horizon adapted coordinates that we
will use throughout this paper and present a schematic sketch of how various quantities

3Sometimes, we also call it the event horizon of the black hole. However, one needs to account for various
global issues in the form of rigidity theorems to ensure that the local definition of a Killing horizon can be
associated with the global concept of an event horizon. It is known to be true for general relativity, but it
is still an open question to prove rigidity theorems beyond general relativity. Therefore, to be precise, we
will actually be working with the Killing horizon in this paper.
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can be organized in the perturbative expansion in the higher derivative coupling α. In the
following section 3, we present a detailed description of the boost-symmetry and the basic
rules following as a consequence of this, in connection to a stationary black hole and the
zeroth law. In the next section 4 we briefly discuss and summarise the basic strategy of our
proof without getting involved in the technical details of it. This is followed by a technically
rigorous presentation of the main proof in section 5. We divide this into several sub-sections,
each corresponding to various steps in the analysis following a method of induction. We
conclude this paper with some discussions in section 6. Important supplementary material
with various technical results is presented in the appendices A–D.

2 Basic set-up and statement of the problem

In this section, we start by describing the basic set-up of our analysis, and we will make a
precise statement of the problem using that.

We are considering any arbitrary higher curvature theory of gravity without any matter
couplings4 in d space-time dimensions with coordinates denoted by xµ. Following [6], the
requirement of diffemorphism invariance restricts the Lagrangian for such theories to be of
the following form

L = L(gµν , Rµναβ , DσRµναβ , · · · ) (2.1)

However, for our analysis in this paper, we will work with theories such that the gravity
action has the following form

I = 1
4π

∫
ddx
√
−g

(
R+

∞∑
m=1

αm L2m+2

)
(2.2)

where the higher derivative couplings in the theory are denoted by the parameter α. The
other parameter present in the Lagrangian (i.e. m) counts the order of derivatives on the
metric tensor (i.e. gµν), the field variable in our theory. Therefore, it should be clear
that L2m+2 is the (2m + 2)-th order higher derivative term in the Lagrangian involving
(2m + 2)-derivatives acting on gµν . The leading term, i.e. m = 0, gives us the standard
Einstein-Hilbert Lagrangian for general relativity. It is important to mention that, apart
from having (2m + 2) number of derivatives on gµν , L2m+2 has no other restrictions and
is, therefore, completely arbitrary.

Ideally, all such higher derivative terms can, in principle, appear in the Lagrangian with
different numerical coefficients. Hence, one should allow for different coupling constants
for each of them in different order of the parameter m. Even within one same order
of m-th derivative coupling, different possible terms can appear with different coupling

4For a proof of the zeroth law in Einstein gravity, matter couplings can be introduced with the assumption
of dominant energy condition. We expect it would be straightforward to include matter couplings (even
non-minimal ones) in our set-up barring some subtleties with the definition of temperature as discussed
in [26]. However, we do not discuss them here.
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coefficients but with the same dimensionality.5 However, as we will see in the later parts
of our analysis, the only important thing for us is to have the Einstein-Hilbert term as the
leading contribution in a limiting sense when the higher derivative couplings are taken to be
small. In other words, all we need is to have theories with arbitrary higher curvature terms
in the Lagrangian, but any higher derivative couplings can be taken to zero in a smooth
limit, leaving us with two derivative classical general relativity as the most significant
one. Therefore, without any loss of generality, we collectively denote every possible higher
derivative coupling by αm for m = 1, 2, · · · , with a specific number of derivatives on gµν
determined by the corresponding value of m. We will treat α as a small parameter allowing
ourselves to perform a perturbative expansion in it. However, our analysis will be valid for
arbitrary higher-order in that α expansion, as we have already mentioned before.

As we have described, we will be working in a perturbative expansion in the parameter
α; it is obvious that the equations of motion (EoM) will have the following structure,

Eµν = E(0)
µν + αE(1)

µν + α2E(2)
µν + · · · , (2.3)

where, E(0)
µν = Rµν − 1

2gµνR, is the EoM coming from Einstein’s general relativity.
Next, we would like to comment on another essential ingredient in setting up our

analysis related to obtaining stationary black hole solutions in arbitrary higher derivative
theories of gravity. For purposes of the arguments presented in this paper, we do not need
to know the exact form of the stationary black hole metric as a solution to the equations
of motion. However, we assume that such solutions must exist in the higher derivative
theory of gravity that we are considering. One should, quite naturally, be able to construct
such solutions [27, 28] within our setup of perturbative expansion in α, the coupling of the
higher derivative terms in our theory.

Let us suppose we start with a given stationary black hole solution, denoted by g(bh)
µν , in

the leading order theory in α expansion, which is Einstein’s general relativity. It is obvious
that the stationary gµν = g

(bh)
µν solves the equation of motion E(0)

µν = 0. As a consequence
of this, g(bh)

µν will have a Killing horizon - a null hypersurface generated by a global Killing
vector field which we will denote by ∂τ . By definition, ∂τ will be a null geodesic on the
horizon, and all the metric components in g(bh)

µν will be independent of the τ coordinate. In
the following paragraphs, we will make this more precise.

We will be working with a particular horizon adapted set of the space-time coordinates
along with a particular gauge choice for the metric g(bh)

µν . In a d-dimensional space-time we
can always choose a coordinate system xµ = {τ, ρ, xi}, where i = 1, . . . , d − 2, so that the
stationary metric g(bh)

µν takes the following form

ds2 = g(bh)
µν dxµdxν = 2 dτ dρ−ρX(ρ, xi) dτ2 +2 ρωi(ρ, xi) dτ dxi+hij(ρ, xi) dxi dxj . (2.4)

5For example, let us consider the two terms at O(α2) in the Lagrangian: RνµRρνRµρ and DµRνρDµRνρ.
Both of them have six derivatives and hence can appear in the Lagrangian in the following way

α2L6 ∼ α2(c1 R
ν
µR

ρ
νR

µ
ρ + c2 DµRνρD

µRνρ) ,

where c1 and c2 are two different but O(1) coefficients.
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Let us briefly justify the gauge choice for the metric in eq. (2.4) (see section-(2.1) and
appendix-A of [29] for the details). The coordinates {τ, xi} span the co-dimension one
horizon which lies on ρ = 0. We should also note that ρ = 0 is a null hypersurface, for
which the null generators are taken to be the vector ξ = ∂τ . By construction, this is normal
to itself and the other spatial generators (∂i) of the horizon. At constant values of the coor-
dinates xi, the parameter τ runs along one null generator, whereas, for a constant value of
τ , the coordinates xi parametrizes different null generators on the horizon. The coordinate
τ is not necessarily affinely parametrized. To describe the geometry in the vicinity of a
null hypersurface, we need two null normals to it. Hence, apart from ξ, we have considered
the auxiliary vector χ = ∂ρ, which is also null. This gives us the coordinate ρ, which
parametrizes the distance away from the null horizon. The coordinate ρ has been chosen
to be affinely parametrized, and the inner products: (∂τ , ∂ρ)|ρ=0 = 1 and (∂i, ∂ρ)|ρ=0 = 0,
define the angles with which the null-vector ∂ρ pierces through the horizon at ρ = 0.

Next, the additional requirement of stationarity should explain why the metric coef-
ficients (the functions X, ωi, and hij) are independent of the coordinate τ . To this we
note that ξ is a Killing vector for the metric eq. (2.4), satisfying the Killing equation
Dµξν +Dνξµ = 0, where Dµ is the covariant derivative with respect to the full black hole
metric, g(bh)

µν . The norm of this Killing vector vanishes on the surface ρ = 0. Thus, in our
choice of coordinates, ρ = 0 hypersurface is a Killing horizon.

The vector field ξµ also satisfies the geodesic equation

ξν Dνξ
µ = κ ξµ . (2.5)

Note that, the r.h.s. of the above equation is not zero since τ is not necessarily an affine
parameter. This equation could be considered as the definition of the quantity κ, which is
in general a function of the coordinates (τ, xi) and is called the surface gravity. It can be
straightforwardly shown that the surface gravity for the black hole space-time described
by the metric given in eq. (2.4) can be written as

κ =
√
−1

2 (Dµξν) (Dµξν)
∣∣∣∣∣
horizon

. (2.6)

The surface gravity is related to the temperature of a stationary black hole, and thus
to prove the zeroth law, we must show that κ is constant over the horizon. It means that
the surface gravity is constant not only for evolutions along one null generator but also
does not change across different null generators of the null horizon. In other words, we
would aim to prove that, when evaluated on the horizon,

∂τκ = 0, and ∂iκ = 0 . (2.7)

Following the definition in eq. (2.6), we can evaluate the surface gravity for our choice
of metric eq. (2.4) for ξ = ∂τ , to get the following expression (see appendix-A for details
of the calculation)

κ = 1
2X(ρ, xi)

∣∣∣∣
ρ=0

. (2.8)

– 7 –



J
H
E
P
1
0
(
2
0
2
2
)
0
1
3

It is obvious from eq. (2.8) that κ is independent of the coordinate τ . Basically, since ξ
is a Killing vector, we trivially obtain the τ independence of X(ρ, xi), and hence ∂τκ = 0.
Therefore, to prove the zeroth law we have to show the following on the horizon

∂iX(ρ, xi) |ρ=0 = 0 . (2.9)

3 Boost symmetry in the context of the zeroth law and stationarity

As we have laid down the statement of the problem in operational terms, in this section,
we would like to highlight one crucial significance of the zeroth law or, equivalently, the
constancy of surface gravity over the horizon. Let us remind ourselves that the zeroth law is,
in a sense, one particular manifestation of stationarity for black hole solutions in our theory.
It is noteworthy that for our choice of the stationary black hole metric in eq. (2.4) the
coordinate τ runs along the null generators of the horizon but is not affinely parametrized.
However, a slightly different but very useful choice of coordinate system as written below

ds2 = g̃(bh)
µν dxµdxν = 2 dv dr − r2X(rv, xi) dv2 + 2 r ωi(rv, xi) dv dxi + hij(rv, xi) dxi dxj ,

(3.1)
also describes metric of stationary black holes with the horizon being set at r = 0,
see [12, 17, 18]. The crucial difference between this choice of metric in eq. (3.1), writ-
ten in terms of the new coordinates (r, v, xi), compared to the one in eq. (2.4), is the
fact that the v coordinate here is affinely parametrized along the null generators ∂v of the
horizon. It should also be noted that, although, for the choice of metric in eq. (2.4) the
metric coefficients are independent of the parameter τ , in eq. (3.1) the metric coefficients
are functions of the coordinate v. However, the dependence on v is not arbitrary but re-
stricted to the product r v. The reason for this is the following, for stationary metrics, the
Killing generator ∂τ and the affinely parametrized null generators are not the same but
proportional to each other, see appendix-A of [17] for a detailed discussion on this.

Let us now highlight the usefulness of writing the stationary black hole metric in the
form of eq. (3.1) with v being an affine parameter. This particular choice does not fix the
gauge completely and one still has some residual freedom of performing further coordinate
transformation. Particularly, one can do the following scaling of the coordinates (r, v)

r → λ r , accompanied with v → v

λ
, (3.2)

where λ is a constant parameter.6 It should be convincing that this transformation should
leave the metric invariant, since the metric functions depend on the coordinates (r, v) only
through their product. This is called the boost transformation and due to this the station-
ary black hole configurations are said to enjoy a boost symmetry, see [17, 18] for details.

Alternatively, we can also explain the boost symmetry, that we described above, in
the following way. In the coordinate system {r, v, x}, a stationary black hole solution, as
written in eq. (3.1), has a Killing vector

ξ = ξµ∂µ = (v∂v − r∂r) . (3.3)
6Actually, one can do a more general residual coordinate transformation v → f1(xi)v + f2(xi), along

with appropriate redefinition of r, but here we have restricted ourselves to a subclass of it.
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In other words, the metric eq. (3.1) satisfies the following

Lξgbhµν = 0 , (3.4)

where Lξ denotes the Lie derivative with respect to the vector ξ. It can be easily checked
that ξ is also the generator of the infinitesimal version of the boost transformation eq. (3.2).

As a consequence of this Killing symmetry, we can also confirm that the Lie derivative
of any arbitrary covariant tensor constructed out of the metric should also vanish. The
boost-symmetry is extremely useful in determining how any general tensor quantity built
out of the metric coefficients or various derivatives of them, would transform under the
aforementioned boost-transformation. In particular, any covariant tensor, say B, with all
components lowered, would transform in the following way

B → B̃ = λw B, under
(
r → r̃ = λ r , v → ṽ = v

λ

)
(3.5)

so that we define the boost-weight of B to be given by w. Alternatively, we can also show
that the boost-weight of any covariant tensor would be given by the number of excess lower
v-indices over the lower r-indices, see [18] and appendix-B for a justification in favor of this.

Let us mention one important result that follows from the set up of boost-symmetry
discussed above, any quantity with positive boost-weight will always vanish when com-
puted using metric corresponding to a stationary configurations and evaluated on the
Killing horizon. In order to explain this statement, let us first note that, from the def-
inition of boost weight given in eq. (3.5) it can be argued that the metric functions,
X(rv, xi), ωi(rv, xi), hij(rv, xi) appearing in eq. (3.1), are all boost invariant objects.
Additionally the derivatives ∂v and ∂r have boost weights given by +1 and −1 respectively,

∂v → λ ∂v , and ∂r → λ−1 ∂r . (3.6)

Therefore, any covariant tensor, say B(rv, xi), with positive boost weight can generically
be written as

B(rv, xi) ∼ (∂r)mr(∂v)mv B̃(rv, xi) , with mv > mr , (3.7)

where B̃(rv, xi) can include derivatives with respect to the spatial coordinates, but not any
∂v or ∂r. The functional dependence of B(rv, xi) or B̃(rv, xi) on the product of rv signifies
that they are evaluated on stationary configurations. Because of mv > mr, B has positive
boost weight equal to (mv − mr). Now, it is easy to convince ourselves that whenever
one operates (∂r)mr(∂v)mv on B̃(rv, xi), or in that case any function of the product rv,
(mv −mr) factors of r will be obtained, and hence it will vanish when we further evaluate
this on the horizon r = 0. This will also be very crucially used in our present paper.

In [17] and [18], this particular boost symmetry was used to construct a local entropy
current with non-negative divergence on the horizon of a dynamically perturbed stationary
black hole in an arbitrary diffeomorphism invariant theory of gravity. In order to study
non-stationary dynamical processes, this boost-symmetry is broken slightly by some matter
source hitting the stationary black hole space-time. One can organize the dynamics in a
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perturbative expansion around the initial stationary configuration in the small amplitude of
the external matter disturbance. Up to linearized order in the expansion in this amplitude
expansion, the vv-component of the equations of motion (EoM) in any diffeomorphism
invariant theory of gravity attains a universal structure as given below

Evv ∼ ∂v
(
∂vJ

v +∇iJ i
)

+ quadratic fluctuations , (3.8)

where the quantity Jv represents local entropy density, reproducing the Wald entropy
expression upon taking the stationary limit. On the other hand, the spatial components
J i signify the spatial flow of entropy on constant v-slices of the horizon. Using this result
obtained in general gravity theories, one further needs to use the null energy condition for
the stress-energy tensor coming from the matter sector to construct a proof for the local
version of a second law.

It was, therefore, indeed essential for the analysis in [18] to have the stationary metric
written in the form given in eq. (3.1). In this section, we will argue that if the zeroth law is
satisfied one can perform a coordinate transformation that changes the space-time metric
from eq. (2.4) to eq. (3.1). Although this was implicit in the calculations in appendix-A
of [18], here we would like to make it very explicit.

Once zeroth law is satisfied, we get the surface gravity constant over the horizon.
Therefore, we should be able to solve eq. (2.9) and obtain the following general solution
for the metric coefficient function X(ρ, xi)

X(ρ, xi) = c1 + ρ f(ρ, xi) , (3.9)

where c1 is an integration constant and f(ρ, xi) is some arbitrary function of (ρ, xi). Also,
note that in order to satisfy eq. (2.8), the constant c1 gets fixed as c1 = 2κ. We can
substitute this in eq. (2.4) to obtain

ds2 = 2 dτ dρ− ρ
(
c1 + ρ f(ρ, xi)

)
dτ2 + 2 ρωi(ρ, xi) dτ dxi + hij(ρ, xi) dxi dxj . (3.10)

Next we perform the following coordinate transformation from the coordinates {ρ, τ, xi}
to {r, v, xi} given by

τ → v = 2
c1

exp
(
c1
2 τ
)
, and, ρ→ r = ρ exp

(
−c1

2 τ
)

(3.11)

to arrive at

ds2 = 2 dv dr − r2 f(c1 r v/2, xi) dv2 + r ωi(c1 r v/2, xi) dv dxi + hij(c1 r v/2, xi) dxidxj ,
(3.12)

which is of the form eq. (3.1). Note that the horizon stays at r = 0 in the new coordinates,
and, also, the fact that c1 = 2κ is a constant was crucially used while performing this co-
ordinate transformation. Once written in this coordinate system, we can straightforwardly
use the consequences of boost-symmetry that the metric in this form enjoys.

Finally, before we end this section, let us make one comment on how these results that
one derives using boost invariance of a stationary black hole expressed in the coordinates
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as in eq. (3.12), would be helpful in the later sections of this paper as we aim to prove
zeroth law. This may seem puzzling since, to derive these results, we have already used the
zeroth law itself. However, as we will explain later, we will follow a methodology for the
proof of zeroth law by organizing our calculations as a perturbative correction in the higher
derivative coupling α correcting the leading order two derivative theory of general relativity.
In that perturbative set-up, we will construct the proof by using a method of induction.
More precisely, with the assumption that at n-th order in the α-expansion, our construction
validates the zeroth law, we will aim to extend the proof to n+1-th order. Therefore, while
working at n+ 1-th order, the truncated and corrected metric till the previous n-th order
could be brought to the form as in eq. (3.12) and thus would satisfy boost-invariance under
the transformation given in eq. (3.2). Consequently, when evaluated on the metric corrected
and truncated up to n-th order in α-expansion, any covariant tensor would transform with
a particular boost-weight entirely determined by its index structure alone. For our case,
using these concepts, we will see that the (vi)-component of EoM, i.e., Evi, would have a
boost weight equal to +1 and would thus vanish for stationary black hole configurations.

4 Brief outline of the strategy

In this section, our goal is to present a broad outline of the strategy of the proof without
getting into operational details. Following this, in the next section, we will construct a
technically rigorous proof.

The crucial ingredient in our strategy to prove the zeroth law will be to argue that
eq. (2.9) follows from the vanishing of a particular component of the equations of motion
(EoM). More precisely, we will explicitly show that the l.h.s. of eq. (2.9) must be expressed
in terms of the {τ i}-component of the EoM

Eτi |ρ=0 ∼ ∂iX(ρ, xi) |ρ=0 , (4.1)

upto numerical factors, where, following eq. (2.3), Eτi must include contributions from all
higher derivative terms present in the Lagrangian of the theory in addition to the leading
Einstein-Hilbert term. Next, we should use Eτi = 0, as the stationary black hole space-
times must solve the full EoM’s. It is clear that eq. (2.9) follows immediately.

With the explanations so far, let us summarise the main goal that we will pursue in the
rest of this paper: In order to prove the zeroth law (or equivalently, for proof of eq. (2.9)),
our primary goal would be to justify that the off-shell structure of the entire Eτi (including
corrections due to higher derivative coupling α as in eq. (2.3)) reproduces eq. (4.1). To
achieve this, we must evaluate Eτi for a stationary black hole solution obtained by treating
the higher derivative coupling α perturbatively in an expansion around a stationary black
hole solution of the leading two-derivative theory.

Before we proceed further with describing our strategy, let us take a small detour
to highlight the significance of this particular component of EoM’s, Eτi, in justifying the
zeroth law. On general grounds, looking at eq. (2.9), we should expect that ∂iX(ρ, xi) |ρ=0
should get related to some components of Eµν in order to be vanishing when evaluated
on on-shell configurations. The index structure then suggests that one of the two indices
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in Eµν must be the spatial indices (say, µ = i), leaving the other one to be either ν = τ ,
or, ν = ρ. If we now focus on Einstein’s gravity and compute the (τ, i) component of the
Einstein tensor, which is the EoM, we can immediately check that eq. (4.1) is reproduced.
Hence, the zeroth law is proved for the two derivative theory. In our set-up, we treat
arbitrary theories of gravity as perturbative corrections in the higher derivative coupling α
to a leading two derivative theory. Hence, it is expected that even in such general theories,
we must look into the off-shell structure of Eτi to justify eq. (2.9).

The arguments presented in the previous paragraph may appear to be heuristic. How-
ever, a more rigorous justification can be devised to support the following statement: for
a proof of the zeroth law, one should investigate the off-shell structure of (τ i)-component
of EoM. This has already been noted in the literature. It is possible to show that (see [2]
for proof)

eµi Dµ κ = −Rµν ξµ eνi , (4.2)

where eµi are the space-like tangent vectors to the horizon at ρ = 0. Most significantly, we
should note that to derive eq. (4.2) one does not need to use any EoM, and hence this is valid
universally in any theory of gravity. For two derivative Einstein gravity, once we use EoM,
the r.h.s. in eq. (4.2) gets related to components of the stress-energy tensor, Tµν , coming
from the matter sector coupled to gravity, if any. One can further use the dominant energy
condition for the stress-energy tensor, and consequently, the r.h.s. in eq. (4.2) vanishes,
proving the zeroth law. However, once we focus on higher derivative theories of gravity, in
this process of substituting Rµν in terms of Tµν we get extra contributions in the EoM due
to the higher derivative terms in the Lagrangian

E(0)
µν + αEHD

µν = Tµν , (4.3)

where E(0)
µν = Rµν − (1/2) gµν R is the Einstein tensor, and EHD

µν is the EoM coming from
the higher derivative terms in the theory along with the coupling α. With this, we are
convinced that in order to prove that the r.h.s. of eq. (4.2) vanishes, we must need to
investigate the off-shell structure of EHD

µν ξµ eνi , which, in our chosen coordinate system, is
precisely the EHD

τi .
With the set-up that we have discussed so far, we are now in a position to give a

schematic overview of the operational strategy that will be followed to argue that Eτi is
indeed of the form given in eq. (4.1). The main idea will be to organize the analysis in a
perturbative expansion in higher derivative coupling α around the leading two derivative
theory. The EoM has already been written in eq. (2.3) in order by order expansion in
α. In order to investigate the off-shell structure of Eµν constructed out of the space-time
metric gµν and derivatives acting on it, we would also need to take a similar ansatz for gµν
expanded in powers of α

g(bh)
µν = g(0)

µν + α g(1)
µν + α2 g(2)

µν + · · · , (4.4)

where the superscript in g(n)
µν signifies that it corresponds to the n-th order in the expansion

of α. We would demand that this ansatz for g(bh)
µν solves the EoM given in eq. (2.3) order
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by order in the expansion of α. This, in turn, would allow us to justify that eq. (4.1) is
indeed true up to all orders in the perturbative expansion in α.

We will follow the method of induction to establish the desired off-shell structure of Eτi
up to arbitrary order in the α-expansion. First, we would show that it is indeed the case at
the leading order with α = 0 for two-derivative Einstein gravity. Then we will extend this to
arbitrary order of O(αm+1) in the α-perturbative expansion, assuming that things do work
out till the previous order of O(αm). In this process, we will need to know specifics about
the generic structure of Eµν in an arbitrary order of the perturbation. To evaluate Eµν , we
need to substitute for g(bh)

µν , given in eq. (4.4), in eq. (2.3) and isolate the terms contributing
at O(αm+1). We will see that at this order (i.e. at O(αm+1)), Eµν can be partitioned into
two types of terms. The first type being the zeroth order EoM E

(0)
µν evaluated on g

(0)
µν +

αm+1g
(m+1)
µν , where we will treat αm+1g

(m+1)
µν as linearized perturbation around g(0)

µν . The
second type of terms involve the coefficient of αm+1 in the full EoM evaluated on the metric
corrected till the previous order, i.e. till g(m)

µν . Schematically, this looks as the following

AtO(αm+1): E(0)
µν [g(0)

µν +αm+1g(m+1)
µν ]+Eµν [g(0)

µν +αg(1)
µν +α2g(2)

µν +···+αmg(m)
µν ]=O(αm+2),

(4.5)
where for the second term on the l.h.s. we should truncate it to O(αm+1).

The first term on the l.h.s. of eq. (4.5) has an universal structure as it is basically the
Einstein’s tensor linearized around g(0)

µν for a small perturbation given by g(m+1)
µν .

To treat the second term on the l.h.s. in eq. (4.5), however, we have to be more careful.
Since this term has no universal structure like the first one, a further non-trivial argument
must be invoked. We should take note of the fact that this second term is an arbitrary
covariant tensor of rank two, but most importantly, built out of metric coefficients truncated
at O(αm). When we are looking at the order O(αm+1), we will assume that eq. (4.1) and
eq. (2.9) have been satisfied till the order of O(αm). This, in turn, enables us to ascertain
that the surface gravity, κ, computed with the corrected metric till O(αm), will be constant
over the horizon. As a consequence of this, we know that ∂iX(ρ, xi)|ρ=0 = 0 up to O(αm),
and hence we can use the coordinate transformation eq. (5.24) to write the metric in
terms of coordinates (r, v, xi), as in eq. (5.25). As we have discussed before, once we have
succeeded in writing the space-time metric in this new coordinate system, we can use the
boost-symmetry. Consequently, we would now be able to assign boost weights to various
covariant tensors just by counting the difference in lower v and r components. By standard
rule of how tensors should transform under coordinate transformation one can see that Eτi
in the original (ρ, τ, i)-coordinates will be proportional to Ẽvi - the (vi)-component of the
new EoM in the new coordinates. Finally, we note that Ẽvi has boost-weight= +1, and
hence should vanish when computed for stationary configurations. Therefore we conclude
that the second term on the l.h.s. of eq. (4.5) will not contribute at O(αm+1). With this,
we will be able to show that Eτi has indeed the form mentioned in eq. (4.1) and, thereby,
we will be able to complete the proof of the zeroth law.
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5 Constructing the proof for the zeroth law

This section will construct the proof for the zeroth law with all details. The discussions
in this section will be divided into several sub-sections. Following the outline of our strat-
egy presented in section 4, we would start with understanding the general structure of the
equations of motion (EoM) order by order in an expansion in the higher derivative coupling
α. This would be followed by explicitly working out the leading order term in this expan-
sion, which is actually the Einstein tensor coming from the Einstein-Hilbert Lagrangian.
We would review how zeroth law is satisfied at this leading order. Next, we would ex-
tend this procedure to an arbitrary higher-order in the α-expansion adopting a method of
induction. Finally, we will also explicitly see how the application of boost symmetry for
stationary metric corrected up to a particular order of α-expansion helps us determine the
(τi)-components of the EoM to the following order.

5.1 General structure for the equations of motion in α-expansion

As we have already mentioned before in section 2, the key assumption in our working
principle is that we could solve the EoM perturbatively in an expansion in the higher
derivative coupling α. Thereby, the EoM has a structure given in eq. (2.3), which we
rewrite here for convenience

Eµν = E(0)
µν + αE(1)

µν + α2E(2)
µν + · · · , (5.1)

where E(0)
µν is the Einstein tensor - the EoM in the two derivative theory of gravity. Also,

αkE
(k)
µν , for k ≥ 1, are all higher derivative corrections to the EoM. They depend on the

details of the theory. We have also noticed in section 4, that as a consequence, the metric
will also admit a similar expansion, given in eq. (4.4). Here we present that as well

g(bh)
µν = g(0)

µν + α g(1)
µν + α2 g(2)

µν + · · · . (5.2)

In our choice of coordinates this will lead to an expansion of the metric components X, ωi
and hij as given below

X(ρ, xi) = X(0)(ρ, xi) + αX(1)(ρ, xi) + α2X(2)(ρ, xi) + · · · ,

ωi(ρ, xi) = ω
(0)
i (ρ, xi) + αω

(1)
i (ρ, xi) + α2 ω

(2)
i (ρ, xi) + · · · ,

hij(ρ, xi) = h
(0)
ij (ρ, xi) + αh

(1)
ij (ρ, xi) + α2 h

(2)
ij (ρ, xi) + · · · .

(5.3)

We are viewing the EoM in eq. (5.1) to be evaluated on the metric g(bh)
µν in eq. (5.2), and

the corresponding structures should be analysed order by order in the α-expansion. Let us
now see what we can learn at the very leading order, i.e. at O(α0). At this order very leading
order the metric functions X(0)(ρ, xi), ω(0)

i (ρ, xi) and h(0)
ij (ρ, xi) should be exact solutions of

the zeroth order equation (i.e. the Einstein’s equation for two derivative theory of gravity)

E(0)
µν [g(0)

µν ] = 0 (5.4)
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Therefore, we should be viewing this as a differential equation for g(0)
µν , which is the unknown

variable at leading order, and by solving this, we would be able to fix g(0)
µν .

Now, let us suppose that we want to solve the EoM Eµν = 0 upto the first sub-leading
order (i.e., upto order O(α1)). We have already determined g

(0)
µν while working at the

previous order O(α0). At this order of O(α1), we realise that g(1)
µν (or the metric functions

X(1)(ρ, xi), ω(1)
i (ρ, xi) and h(1)

ij (ρ, xi)) are the unknowns. To find out the relevant part of
EoM from eq. (5.1) at this order, we will basically have to evaluate the tensor Eµν on the
metric g(bh)

µν , neglecting all terms proportional to quadratic or higher powers of α. In other
words, it is obvious that E(n)

µν and g(n)
µν for every n ≥ 2 are negligible at this order of O(α1).

As a result, the differential equation for the unknowns will have the following structure

E(0)
µν

[
g

(0)
αβ + α g

(1)
αβ

]
+ α E(1)

µν

[
g

(0)
αβ

]
= O(α2) , (5.5)

Here, in eq. (5.5), the first term on the l.h.s. is basically the Einstein tensor, linearised
around g(0)

µν where g(1)
µν plays the role of the small fluctuation metric. The second term is

actually not of any universal structure like Einstein tensor since the explicit form would
depend on the type of higher derivative theory that we are focussing on at linear order
in α. However, for our purpose, that is not at all a problem since we just need to know
that E(1)

µν is a covariant tensor of rank two (constructed out of appropriate contractions of
Riemann tensors and its covariant derivatives) evaluated on the exact stationary black hole
solution, i.e., g(0)

µν , of the two-derivative theory of gravity. From eq. (5.5), it is clear that
this term will act as a source term in the inhomogeneous PDE for g(1)

µν . The first term, on
the other hand, is homogeneous in g(1)

µν and has a known and universal structure.
Consequently, at the next sub-leading order at O(α2), the unknowns are g(2)

µν (or, as
usual, X(2)(ρ, xi), ω(2)

i (ρ, xi) and h(2)
ij (ρ, xi)), and the PDE for them should look like

E(0)
µν

[
g

(0)
αβ + α2 g

(2)
αβ

]
+ Eµν

[
g

(0)
αβ + α g

(1)
αβ

]
= O(α3) , (5.6)

where the first term on l.h.s. is the homogeneous piece and the other term is the source
term for g(2)

µν . The source term, again, is evaluated on metric functions g(1)
µν and g(0)

µν , which
are already solved in the previous iteration at O(α2).

Once we have studied the EoM to the second sub-leading order in the α-expansion, we
should be able to extend this analysis to any arbitrary order in α. Let us assume that we
are currently focussing on the (m + 1)-th order term in the expansion. We have learned
that if we would like to determine the solution correctly up to order O(αm+1), we have to
evaluate Eµν on g(bh)

µν neglecting all terms of order O(αm+2) and higher. At this order, i.e. at
O(αm+1), the unknowns would be the components of g(m+1)

µν or in our choice of gauge, the
metric functionsX(m+1)(ρ, xi), ω(m+1)

i (ρ, xi) and h(m+1)
ij (ρ, xi). Now, we would like to know

what would be the structure of the EoM at this order. As it is true for any perturbative
solution technique, the homogeneous part of the equation at every order has an universal
structure. In this case it is the Einstein equation E

(0)
µν linearized around the zeroth order

black hole metric g(0)
µν , but now the role of the fluctuation metric will be played by g(m+1)

µν .7

7The reason for this universality is as follows. The correction to the solution i.e., g(m+1)
µν already carries a
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But the source terms (analogous to the second term in eq. (5.5)) will not have this
universal form. At order O(αm+1), where the metric upto order O(αm) is already fixed by
solving the equations at previous orders, the source terms will be the coefficient of αm+1

in Eµν once evaluated on g(bh)
µν as in eq. (5.2) but corrected upto O(αm), that is

g(bh)
µν |corrected upto O(αm) = g(0)

µν + α g(1)
µν + · · ·+ αm g(m)

µν .

Therefore, at O(αm+1), the equation looks like the following

E(0)
µν

[
g(0)
µν + αm+1 g(m+1)

µν

]
+ Eµν

[
g(0)
µν + α g(1)

µν + α2 g(2)
µν + · · ·+ αm g(m)

µν

]
= O(αm+2) ,

(5.7)
However, all the terms contributing to the source term in eq. (5.7) are obtained from
metric functions, which are all solved until the previous order in this iterative construction.
Interestingly, for our proof, we do not need the details of the source term, except for the
fact that at any given order, it is a covariant tensor evaluated on a metric that solves the
EoM up to the previous order.8

5.2 Zeroth law for two derivative theories of gravity, at leading order in α-
expansion

In the previous subsection, we have described the general structure of the EoM at any
given order in α-expansion. We have seen that the starting point must be Einstein’s two
derivative gravity, and g(0)

µν must be an exact stationary black hole solution of the Einstein
equations E(0)

µν .
It is well known that in the two derivative theory of gravity, the temperature of a

stationary black hole is constant over the horizon. In this sub-section, we will review, fol-
lowing the strategy outlined in section 4, how this can be proved in our choice of coordinate
system eq. (2.4). As we have already mentioned, to achieve this, we must look into the
off-shell structure of the (τi) component of the zeroth-order EoM E

(0)
µν . It will turn out

that E(0)
τi is indeed of the form eq. (4.1). When EoMs are satisfied by stationary black

hole configurations, we will readily obtain eq. (2.9). This is, therefore, enough to prove
the desired result in two-derivative theories of gravity. In the following, we will argue that
eq. (4.1) is indeed true.

Let us consider two derivative theories of gravity without any matter field. To be more
explicit, let us reiterate that the equation of motion eq. (2.3) is

Eµν = E(0)
µν . (5.8)

factor of αm+1. Since we are interested in evaluating the equation at order O(αm+1) and also if we want to
collect only those terms that involves g(m+1)

µν , everything else in the equation must be of zeroth order in α.
It follows that at order O(αm+1) none of the E(m)

µν , for m > 0 can contribute to terms that has g(m+1)
µν and

the same is true for product terms of the form g(m) g(n), for m > 0. Therefore at order O(αm+1), terms that
contain g(m+1)

µν can only come from the EoM at zeroth order linearized around the zeroth order solution.
8We must emphasize that for this perturbative technique to work at a given order (say O(αm+1)),

EoM must be solved till the previous order. This will ensure that the source term i.e., Eµν , evaluated on
(g(0)
µν + αg

(1)
µν + · · ·+ αm g

(m)
µν ) will be non-zero only at order O(αm+1).
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The metric eq. (2.4) upto order O(α0) in the horizon adapted coordinate system is

ds2 = 2dτ dρ− ρX(0)(ρ, xi)dτ2 + 2ρ ω(0)
i (ρ, xi)dτdxi + h

(0)
ij (ρ, xi)dxidxj . (5.9)

We would calculate τi component of the EoM on the horizon.

Eτi = Rτi −
1
2Rgτi ⇒ Eτi|ρ=0 = Rτi|ρ=0 . (5.10)

We must now compute Rτi for our choice of metric eq. (5.9). Using the expression of Rτi
(see appendix C), we get

Eτi|ρ=0 = −1
2(∂iX(0))|ρ=0 (5.11)

Using EoM, we can straightforwardly conclude

∂iX
(0)(ρ, xi)|ρ=0 = 0 , (5.12)

which is basically eq. (2.9) upto O(α0), and therefore, implies zeroth law at the same order.

5.3 Zeroth law for higher curvature theories of gravity at arbitrary order in
α-expansion

After establishing the zeroth law at the leading order in α-expansion for two derivative
theories, in this section, we aim to extend this to arbitrary higher-order in the perturbative
α expansion. We will construct our proof using a method of induction. It will be shown
that if the temperature is constant over the horizon till order O(αn), then it will remain
constant at order O(αn+1). Following our strategy described in section 4, and just like what
we did at the zeroth order, we will again use the off-shell structure of the (τi) component
of the EoM to show this.

For convenience, let us first re-write the metric and its α-expansion, eq. (5.2) and
eq. (5.14),

ds2 = g(bh)
µν dxµdxν = 2 dτ dρ− ρX(ρ, xi)dτ2 + 2ρωi(ρ, xi)dτdxi + hij(ρ, xi)dxidxj , (5.13)

where,

X(ρ, xi) = X(0)(ρ, xi) + αX(1)(ρ, xi) + α2X(2)(ρ, xi) + · · ·

ωi(ρ, xi) = ω
(0)
i (ρ, xi) + αω

(1)
i (ρ, xi) + α2 ω

(2)
i (ρ, xi) + · · ·

hij(ρ, xi) = h
(0)
ij (ρ, xi) + αh

(1)
ij (ρ, xi) + α2 h

(2)
ij (ρ, xi) + · · · .

(5.14)

We start with the statement that we have solved the EoM accurately upto order O(αm).
Also, following the same logic, we are assuming that the temperature is constant on the
horizon upto order O(αm). In terms of equation it implies

∂i
(
X(0)(ρ, xi) + α X(1)(ρ, xi) + · · ·+ αm X(m)(ρ, xi)

) ∣∣∣
ρ=0

= 0, (5.15)

Given this, now, we would like to solve the EoM at order O(αm+1). As we have
discussed in the previous sub-section 5.1, in the context of the general structure of the

– 17 –



J
H
E
P
1
0
(
2
0
2
2
)
0
1
3

EoM at an arbitrary order of the α-expansion, working at O(αm+1), we will get a linear
partial differential equation for the unknown g(m+1)

µν . This will be a linear PDE with two
types of terms; one is the homogeneous term along with another source term. In the
following, we will analyze these two terms one by one.

From eq. (5.7) we have learned that the homogeneous part of the equation could be
universally evaluated as linearisation of the Einstein tensor

(
i.e., E(0)

µν

)
around g(0)

µν ,

Homogeneous part of the PDE atO
(
αm+1

)
= E(0)

µν

[
g(0)
µν + αm+1g(m+1)

µν

]
+O(αm+2) .

(5.16)
Note in the above equation the r.h.s. will have the leading contribution at order O(αm+1)
since by construction E

(0)
µν

[
g

(0)
µν

]
= 0. For our purpose, we just need to look at the (τi)

component of the EoM. By explicit evaluation in our choice of coordinate system we could
show (see appendix D)

E
(0)
τi

[
g(0)
µν + αm+1g(m+1)

µν

]
ρ=0

= − 1
2 α

m+1
(
∂iX

(m+1)
)∣∣∣∣
ρ=0

+O(αm+2) (5.17)

It should be noted that in deriving eq. (5.17), we have used the result obtained in eq. (5.12)
for the leading order two derivative theory.

Now we come to the source terms. These are the known terms at order O(αm+1).
These could be computed by evaluating the EoM, keeping terms up to order O(αm+1), and
ignoring all higher-order terms on the metric corrected up to order O(αm).

Before we proceed, let us introduce a new notation here for convenience. For any
function Y that admits an α expansion, Y (m) denotes the coefficient of αm and Y [m]

denotes the expansion of Y correct upto order O(αm). In other words, if Y could be
written as Y =

∑∞
m=0 α

m Y (m), then Y [m] denotes

Y [m] ≡
m∑
k=0

αk Y (k) . (5.18)

According to this notation, then, for the corrected and truncated metric and EoM till order
O(αm), we get

g[m]
µν ≡

m∑
i=0

αm g(m)
µν , and E[m]

µν ≡
m∑
i=0

αmE(m)
µν . (5.19)

Using this new notation, let us now write down the source term in the PDE for g(m)
µν ,

working at order O(αm+1), as the following

Source terms of the PDE at O(αm+1) = E[m+1]
µν

∣∣∣
evaluated on g[m]

µν

+O(αm+2) (5.20)

Note that according to our assumptions, g[m]
µν solves the EoM up to order O(αm). It

follows that the source terms as written above will have the first non-zero contribution at
order O(αm+1). As we have mentioned before, the source terms do not have any universal
structure, unlike the homogeneous piece. However, for the constancy of the temperature,
we need to analyze only the (τi)-component of the EoM and that too only at the horizon,
i.e., ρ = 0 hypersurface in our choice of coordinates. This will simplify our analysis.
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5.3.1 Boost symmetry for the truncated metric and vanishing of the source
term

In the previous sub-section, we have shown that the homogeneous part of the (τi) compo-
nent of the EoM at this order is simply proportional to ∂iX(m+1), see eq. (5.17). Therefore,
what is left to be checked is that the source term in the PDE for g(m+1)

µν vanishes at this order
O(αm+1). In the following, we will argue that this is exactly what will turn out to be true.

As we have described before, the source term at order O(α(m+1)), given in eq. (5.20),
is simply the leading piece (in terms of α-expansion) in E[m]

µν evaluated on g[m]
µν . We should

remember that, the corrected space-time metric g[m]
µν is truncated at O(αm). Also, it is

corrected, because, it solves the EoM till the same order. The truncated black hole metric
g

[m]
µν , leads to the following line element

ds2
[m] = 2 dτ dρ− ρX [m](ρ, xi) dτ2 + 2 ρω[m]

i (ρ, xi) dτ dxi + h
[m]
ij (ρ, xi) dxidxj (5.21)

As a consequence of our assumption in eq. (5.15), the zeroth law can be assumed
to be satisfied for the metric g[m]

µν till O(αm). So, we are allowed to use the fact that
X [m](ρ = 0, xi) is constant over the horizon (ρ = 0 hypersurface),

∂i

∑
m≤n

(
X(0)(ρ, xi) + αmX(m)(ρ, xi)

)∣∣∣∣∣∣
ρ=0

= O(αm+1) . (5.22)

This in turn enables us to ascertain that the surface gravity, κ, computed with the corrected
metric till O(αm), will be constant over the horizon. In other words X [m] could be written,
by solving eq. (5.22), as

X [m](ρ, xi) = C [m] + ρF [m](ρ, xi) , (5.23)

where C [m] is a constant, and F [m](ρ, xi) is an arbitrary function of (ρ, xi), and both of
them are corrected upto O(αm).

Following our discussion in section 3 (see eq. (3.11)) we would like to perform the
following coordinate transformation from xµ = {τ, ρ, xi} to x̃µ = {v, r, xi} where, v is the
affine parameter along the null generator of the horizon,

v = 2
C [m] exp

(
C [m]

2 τ

)
, r = ρ exp

(
−C

[m]

2 τ

)
. (5.24)

The truncated metric in the new coordinates takes the form

ds2
[m] = 2dv dr − r2 F [m](C [m]rv/2, xi)dv2 + 2r ω[m]

i (C [m]rv/2, xi)dv dxi

+ h
[m]
ij (C [m]rv/2, xi)dxidxj (5.25)

Now, E[m]
µν is just a covariant tensor of rank two, constructed out of appropriate contractions

of the product of Riemann tensors and/or their covariant derivatives. So, without knowing
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any details about it, we could tell how its component would transform under the above-
mentioned coordinate transformation. By which we mean that Ẽ[m]

µν in the new coordinates
will be related to E[m]

µν in the old coordinates, as follows

E[m]
µν (ρ, τ, xi) = ∂x̃α

∂xµ
∂x̃β

∂xν
Ẽ

[m]
αβ (r, , v, xi) . (5.26)

For our purpose we just need to study the τi-component of E[m]
µν (ρ, τ, xi). Also, we can

readily obtain the relevant components of ∂x̃α

∂xµ from eq. (5.24),

∂v

∂τ
= exp

(
C [m]

2 τ

)
, and ∂r

∂τ
= −ρC

[m]

2 exp
(
−C

[m]

2 τ

)
. (5.27)

Using them we obtain

E
[m]
τi (ρ, τ, xi)

∣∣∣
ρ=0

= exp
(
C [m]

2 τ

)
Ẽ

[m]
vi (r, , v, xi)

∣∣∣∣∣
r=0

(5.28)

It is important to note that we have obtained E[m]
τi is proportional to Ẽ[m]

vi when evaluated
on the horizon. To decide about Ẽ[m]

vi in the new coordinate system (r, , v, xi) we can
directly use the boost-invariance of the metric eq. (5.21). As we can see that Ẽ[m]

vi contains
one extra lower v-index compared to r-index. According to the arguments due to this
boost-symmetry the boost-weight assigned to Ẽ[m]

vi comes out to be +1. Therefore, if we
compute Ẽ[m]

vi on the stationary metric eq. (3.12) at r = 0 it will simply vanish. This in
turn shows that, by using eq. (5.28), in our old (ρ, τ, xi) coordinates E[m]

τi also vanishes.
Therefore, we have now established the fact that at O(αm+1) the source term contri-

bution to the PDE for g(m+1)
µν vanishes. The homogeneous piece is the only contribution

and that too is of the form argued in eq. (5.17). With this we have also successfully
demonstrated that

∂iX
(k)(ρ, xi)|ρ=0 = 0, for k = (m+ 1) , (5.29)

once we start with the assumption of ∂iX(k)(ρ, xi)|ρ=0 = 0 for k ≤ m. Finally, by method
of induction, we, therefore also prove that, starting with a positive result in the leading
two derivative gravity, the zeroth law is true upto all orders in the perturbative expansion
in the higher derivative coupling α.

6 Discussions

In this paper, we have worked out a proof for the zeroth law of black hole thermodynamics
in diffeomorphism invariant theories of gravity. Our analysis crucially depends on the fact
that we consider only such theories of gravity where arbitrary higher derivative theories of
gravity augment the leading two derivative theory of general relativity. We assumed that
the higher derivative coupling (denoted by α in this paper) could be taken to zero in a
smooth limit leaving us with the leading two derivative theory. This, in turn, allows us
to organize our analysis in a perturbative expansion in the higher derivative coupling α.
For example, suppose we have an exact solution in the form of a black hole metric of the
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equations of motion coming from the two-derivative Einstein’s equation. We can correct
this solution in that perturbation scheme and expect to obtain the corresponding black
hole solution in the higher derivative theory of gravity. The zeroth law is a statement
about stationary configurations. We used a particular coordinate system, like choosing a
particular gauge, to write down the space-time metric of a stationary black hole. Since the
temperature of a black hole is identified with the geometric quantity called surface gravity,
working within our choice of metric gauge, our main aim was to prove that the surface
gravity is constant over the horizon for stationary black holes. We want to stress here that
for our construction of the proof we did not need to use any extra symmetry, we have only
used the boost-symmetry which follows from stationarity.

The crucial ingredient in our construction for the proof was to use specific components
of the equations of motion (EoM). We expanded the EoM order by order in a perturba-
tion series in the higher derivative coupling α, with the leading term (with α = 0) being
Einstein’s equation. The metric was also expanded in a similar perturbative expansion in
α, with the leading order term being the stationary black hole solution in Einstein gravity.
We followed a method of induction for the proof. First, we showed that the components of
EoM have the desired off-shell structure needed for the proof to go through at the leading
order in Einstein’s gravity. Then we assumed that this is true at the n-th order, and we
argued that it should be satisfied at the following order in α-expansion.

Working at O(αm+1), once we assumed that the zeroth law is satisfied at the previous
order, i.e., till O(αm), we made use of a specific residual gauge symmetry to perform a
coordinate transformation. In this new coordinate system, the coordinate along the null
generators of the horizon happens to be affinely parametrized, and the new metric enjoys a
symmetry called the boost-symmetry of the stationary black holes. Using this symmetry,
we could predict the structure of the components of the EoM without knowing its explicit
form. In other words, we viewed the EoM at O(αm+1) as a covariant tensor built out of the
metric components corrected till O(αm) to satisfy the zeroth law. Then, by knowing how
the EoM for any arbitrary higher derivative theory should transform under the coordinate
transformation (boost transformation), we could prove that it indeed has the required
structure to satisfy the zeroth law at O(αm+1).

It is essential to highlight that this particular boost symmetry can be used only when
the metric can be cast in the new coordinate system we mentioned above. This was crucially
used in constructing the entropy current, using which the local version of the second law
was argued for arbitrary diffeomorphism invariant theory of gravity. We also understood
that one could write down the stationary black hole metric in these new coordinates if
the zeroth law is satisfied. This was an important assumption in constructing the entropy
current in [17] and [18]. Therefore, our proof of zeroth law in this paper justifies this
important assumption that was made in those works aimed at proving the second law.

Another critical point in constructing our proof in this paper is the assumption that
it only applies to such theories where, in an appropriate α expansion, the leading order
piece has to be Einstein’s two derivative theory. It was one significant input in our proof.
However, we have not argued that there cannot be any other proof that will not require
this assumption of starting the perturbation series from Einstein’s gravity. From the per-
spective of a UV complete theory of quantum gravity, it is pretty natural to expect that the
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low energy effective theories following from any quantum theory of gravity would organize
themselves in such a perturbative framework starting with two derivative general relativ-
ity. However, it is exciting to note that without having access to the details of how UV
completion is achieved and staying entirely within a low energy perspective, principles like
the laws of black hole thermodynamics also hint toward general relativity as the leading
theory in a perturbative framework.

Although, our proof is perturbative in higher derivative coupling constant α, we want
to stress that it works up to arbitrary order in the perturbative expansion. With this
statement, we might hope that finding a proof of zeroth law for theories non-perturbatively
connected to general relativity will be worth exploring. We leave that for future work.
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A Computing the Christoffel symbols and the surface gravity for the
metric eq. (2.4)

A.1 Computing the Christoffel symbols

In this appendix, we will calculate the Christoffel symbols for the metric eq. (2.4) upto
order O(α).

ds2 = 2dτ dρ− ρ
[
X(0)(ρ, xi) + αX(1)(ρ, xi)

]
dτ2 + 2ρ

[
ω

(0)
i (ρ, xi) + αω

(1)
i (ρ, xi)

]
dτdxi

+
[
h

(0)
ij (ρ, xi) + αh

(1)
ij (ρ, xi)

]
dxidxj (A.1)

Different components of the metric are

gττ = −ρ
[
X(0)(ρ, xi) + αX(1)(ρ, xi)

]
, gτρ = 1, gτi = ρ

[
ω

(0)
i (ρ, xi) + αω

(1)
i (ρ, xi)

]
,

gρρ = 0, gρi = 0, gij =
[
h

(0)
ij (ρ, xi) + αh

(1)
ij (ρ, xi)

]
(A.2)

Different components of the inverse metric up to order O(α) are

gττ = 0, gτρ = 1, gτi = 0,

gρρ = ρ
[
X(0) + αX(1)

]
+ ρ2hij(0)ω

(0)
i ω

(0)
j + αρ2

[
2hij(0)ω

(0)
i ω

(1)
j − h

ij
(1)ω

(0)
i ω

(0)
j

]
gρi = −ρ

[
hij(0)ω

(0)
j + α

(
hij(0)ω

(1)
j − h

ij
(1)ω

(0)
j

)]
, gij = hij(0) − αh

ij
(1)

(A.3)

where, hij(0) is defined as hik(0)h
(0)
kj = δij and h

ij
(1) is defined as hij(1) = him(0)h

jn
(0)h

(1)
mn.

Now we will compute different components of Christoffel symbols. We would require the
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expression of one component of the Christoffel symbol Γρiτ off the horizon. The expression
of Γρiτ up to order O(ρ) is

Γρiτ = −ρ2∂i
(
X(0) + αX(1)

)
− 1

2ρ
(
X(0)ω

(0)
i + αX(1)ω

(0)
i + αX(0)ω

(1)
i

)
(A.4)

The rest of the components are on the horizon

Γρρτ =−1
2
[
X(0) +αX(1)

]
, Γτiτ =−1

2
[
ω

(0)
i +αω

(1)
i

]
, Γρρj = 1

2
[
ω

(0)
i +α ω

(1)
i

]
,

Γjiτ = 0, Γjρτ = 1
2
[
ωj(0) +α ωj(1)−αh

jk
(1)ω

(0)
k

]
, Γρij = 0, Γτττ = 1

2
[
X(0) +αX(1)

]
,

Γττρ = 0, Γτiρ = 0, Γjττ = 0, Γτij =−1
2
(
∂ρh

(0)
ij +α∂ρh

(1)
ij

)
, Γρττ = 0, Γiττ = 0,

(A.5)

Where, ωi(0) and ωi(1) are defined as ωi(0) = hij(0)ω
(0)
j and ωi(1) = hij(0)ω

(1)
j

A.2 Computing the surface gravity

The metric of the space-time is given in eq. (2.4) and we write it here again for convenience

ds2 = 2dτ dρ− ρX(ρ, xi)dτ2 + 2ρ ωi(ρ, xi)dτdxi + hij(ρ, xi)dxidxj (A.6)

This metric admits a Killing vector ξ = ∂τ with the horizon being chosen to be at ρ = 0.
The definition of surface gravity is given by

κ =
√
−1

2(∇µξν)(∇µξν)
∣∣∣∣∣
ρ=0

. (A.7)

We use the inverse metric expressions written in eq. (A.3) to obtain the following
components of ξµ,

ξρ = 1, ξτ = −ρX(ρ, xi), ξi = ρωi(ρ, xi) . (A.8)

Next we compute the components of ∇µξν evaluated on ρ = 0 and the non-vanishing
components are as follows

∇τξρ|ρ=0 = −∇ρξτ |ρ=0 = −1
2 X(ρ = 0, xi) ,

∇ρξi|ρ=0 = −∇iξρ|ρ=0 = 1
2 ωi(ρ = 0, xi) ,

(A.9)

Using these, we obtain

(∇µξν)(∇µξν) |ρ=0 = 2gτρgτρ (∇τξρ) (∇ρξτ ) |ρ=0 = −1
2 X

2(ρ = 0, xi) (A.10)

Finally, we obtain the surface gravity as the following

κ = 1
2X(ρ, xi)

∣∣∣∣
ρ=0

. (A.11)
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B Few details regarding the boost weight of covariant tensors

In this appendix we aim to provide some more detail regarding the boost invariance of the
stationary metric written in eq. (3.1). We write the metric here again for convenience,

ds2 = g̃(bh)
µν dxµdxν = 2 dv dr − r2X(rv, xi) dv2 + 2 r ωi(rv, xi) dv dxi + hij(rv, xi) dxi dxj .

(B.1)
The vector ξ defined in eq. (3.3), generates Killing symmetry of the stationary background
with the metric in eq. (B.1). Due to this, as we have already mentioned before, when we
operate Lie derivative with respect to ξ on any covariant tensor constructed out of the
stationary metric eq. (B.1), will vanish. To be more precise, acting with the Lie derivative
with respect to ξ, on a covariant tensor, say Bµ1µ2···µk with all lowered indices, will produce
the following,

LξBµ1µ2···µk = ξβ∂βBµ1µ2···µk +
(
∂µ1ξ

β
)
Bβµ2···µk +

(
∂µ2ξ

β
)
Bµ1β···µk + · · ·

+
(
∂µkξ

β
)
Bµ1µ2···β .

(B.2)

Furthermore, when we evaluate this for the metric eq. (B.1), and with xi given in eq. (3.3),
we will get

LξBµ1µ2···µk = [w + (v∂v − r∂r)]Bµ1µ2···µk , (B.3)

where w is the boost weight of Bµ1µ2···µk and from eq. (B.3) we can also confirm that w
counts the excess number of lower v indices compared to lower r indices in Bµ1µ2···µk . Fol-
lowing this argument, it is also obvious that the vi-component of EoM, Evi will have boost
weight equal to +1, and hence, will vanish for stationary configurations when evaluated on
the horizon. This is the main ingredient that we have used in section 5.3.1.

Before we conclude this appendix let us summarise the useful points that we should
remember while using the boost weight analysis,

1. We should think about any component of a covariant tensor to have a structure with
some number of ∂r, ∂v and ∇i operators acting on the metric coefficients in eq. (B.1):
(X, ωi, and hij) or product of such structures.

2. The boost weight of any covariant tensor can be obtained by looking at the factor w
in eq. (B.3), when a Lie derivative Lξ, with respect to ξ (= v∂v − r∂r), acts on it.

3. Any expression with positive boost weight will vanish when evaluated on the horizon
for a stationary metric.

For more details we refer the reader to section-(2.3) and appendix-B of [18].

C More detailed calculation for Einstein’s gravity

In this appendix, we will calculate τi component of equation of motion E(0)
τi for Einstein’s

gravity.
Rτi = Rτ ττi +Rρτρi +Rjτji (C.1)
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Using the expressions of Christoffel symbols computed in appendix-(A.1), we can calculate
different components of Riemann tensor upto order O(α0)

Rτ ττi|ρ=0 = ∂τΓτiτ − ∂iΓτττ + ΓττEΓEiτ − ΓτiEΓEττ

= −1
2∂iX

(0) (C.2)

Rρτρi|ρ=0 = ∂ρΓρiτ − ∂iΓ
ρ
ρτ + ΓρρEΓEiτ − ΓρiEΓEρτ

= 0 (C.3)

Rjτji|ρ=0 = ∂jΓjiτ − ∂iΓ
j
jτ + ΓjjEΓEiτ − ΓjiEΓEjτ

= 0 (C.4)

Finally we get
Eτi|ρ=0 = Rτi|ρ=0 = −1

2(∂iX(0))|ρ=0 (C.5)

D Calculation of the homogeneous part

In this appendix, we will derive the expression of the homogeneous part eq. (5.17). As has
been discussed in sub-section 5.1, we have to linearize E(0)

µν around g(0)
αβ . We have to calculate

E
(0)
µν

[
g

(0)
αβ + δgαβ

]
, where, we will treat δgαβ ≡ αm+1g

(m+1)
αβ as linearized perturbations

around g(0)
αβ . E

(0)
µν is the Einstein’s tensor

E(0)
µν = Rµν −

1
2Rgµν (D.1)

As, g(0)
µν is an exact solution of E(0)

µν

E(0)
µν

[
g

(0)
αβ + δgαβ

]
≡ δE(0)

µν = δRµν −
1
2g

(0)
µν δR−

1
2R

(0)δgµν (D.2)

R(0) is the Ricci scalar evaluated on the metric g(0)
µν . We have to calculate τi component of

the above equation at ρ = 0. We can compute δE(0)
τi off the horizon, but for our purpose

that is not required.

δE
(0)
τi |ρ=0 = δRτi −

1
2g

(0)
τi δR−

1
2R

(0)αm+1g
(m+1)
τi = δRτi (D.3)

Since we have denoted the coordinates by {τ, ρ, xi}, for notational convenience, instead
of using µ, ν we will be denoting the spacetime coordinates by {A,B,C . . .}. We will
be using this notation only for this appendix. If we calculate the Christoffel symbols on
g

(0)
AB + αm+1g

(m+1)
AB we can decompose it as follows

ΓABC = Γ̄ABC + δΓABC (D.4)

where Γ̄ABC is the Christoffel symbols for g(0)
µν . Linearized Ricci tensor is

δRAB = ∇DδΓDAB −∇BδΓDAD (D.5)
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We can very easily read-off the expressions of Γ̄ABC and δΓABC from eq. (A.5).

δRAB = ∂D
(
δΓDAB

)
+ Γ̄DDEδΓEAB − Γ̄EDAδΓDEB − Γ̄EDBδΓDAE − ∂BδΓDAD + Γ̄EBAδΓDED (D.6)

δRτi = ∂D
(
δΓDτi

)
+ Γ̄DDEδΓEτi − Γ̄EDτδΓDEi − Γ̄EDiδΓDτE − ∂iδΓDτD + Γ̄EiτδΓDED (D.7)

Now, we will compute different terms of the above equation on ρ = 0 separately

∂DδΓDτi = ∂ρδΓρτi + ∂τδΓττi + ∂jδΓjτi

= −1
2α

m+1∂i
(
X(m+1)

)
− 1

2α
m+1

(
X(m+1)ω

(0)
i +X(0)ω

(m+1)
i

)
(D.8)

Γ̄DDEδΓEτi = Γ̄DDτδΓττi
=
(
Γ̄τττ + Γ̄ρρτ

)
δΓττi

=
(1

2X
(0) − 1

2X
(0)
)(
−1

2α
m+1ω

(m+1)
i

)
= 0 (D.9)

Γ̄EDτδΓDEi = Γ̄τDτδΓDτi + Γ̄ρDτδΓ
D
ρi + Γ̄jDτδΓ

D
ji

= Γ̄τττδΓττi + Γ̄ρρτδΓ
ρ
ρi + Γ̄jρτδΓ

ρ
ji

= 1
2X

(0)
(
−1

2α
m+1ω

(m+1)
i

)
− 1

2X
(0) 1

2α
m+1ω

(m+1)
i

= −1
2X

(0)αm+1ω
(m+1)
i (D.10)

Γ̄EDiδΓDτE = Γ̄τDiδΓDττ + Γ̄ρDiδΓ
D
τρ + Γ̄jDiδΓ

D
τj

= Γ̄ττiδΓτττ +
(
Γ̄ρρiδΓ

ρ
τρ + Γ̄ρjiδΓ

j
τρ

)
+ Γ̄jτiδΓ

τ
τj

= −1
2ω

(0)
i

1
2α

m+1X(m+1) + 1
2ω

(0)
i

(
−1

2α
m+1X(m+1)

)
= −1

2ω
(0)
i αm+1X(m+1) (D.11)

∂iδΓDτD = ∂i
(
δΓρτρ + δΓτττ

)
= ∂i

(
−1

2α
m+1X(m+1) + 1

2α
m+1X(m+1)

)
= 0 (D.12)

Γ̄EiτδΓDED = Γ̄τiτδΓDτD
= Γ̄τiτ

(
δΓρτρ + δΓτττ

)
= −1

2ω
(0)
i

(
−1

2α
m+1X(m+1) + 1

2α
m+1X(m+1)

)
= 0 (D.13)

Substituting eq. (D.8) - eq. (D.13) in eq. (D.7) we get

δRτi = −1
2α

m+1∂i
(
X(m+1)

)
(D.14)

– 26 –



J
H
E
P
1
0
(
2
0
2
2
)
0
1
3

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971)
1344 [INSPIRE].

[2] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics,
Commun. Math. Phys. 31 (1973) 161 [INSPIRE].

[3] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[4] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199
[Erratum ibid. 46 (1976) 206] [INSPIRE].

[5] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427
[gr-qc/9307038] [INSPIRE].

[6] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical
black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[7] T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys.
Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

[8] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587
[gr-qc/9312023] [INSPIRE].

[9] T. Jacobson, G. Kang and R.C. Myers, Increase of black hole entropy in higher curvature
gravity, Phys. Rev. D 52 (1995) 3518 [gr-qc/9503020] [INSPIRE].

[10] S. Sarkar and A.C. Wall, Generalized second law at linear order for actions that are functions
of Lovelock densities, Phys. Rev. D 88 (2013) 044017 [arXiv:1306.1623] [INSPIRE].

[11] S. Bhattacharjee, S. Sarkar and A.C. Wall, Holographic entropy increases in quadratic
curvature gravity, Phys. Rev. D 92 (2015) 064006 [arXiv:1504.04706] [INSPIRE].

[12] A.C. Wall, A second law for higher curvature gravity, Int. J. Mod. Phys. D 24 (2015)
1544014 [arXiv:1504.08040] [INSPIRE].

[13] S. Bhattacharjee, A. Bhattacharyya, S. Sarkar and A. Sinha, Entropy functionals and
c-theorems from the second law, Phys. Rev. D 93 (2016) 104045 [arXiv:1508.01658]
[INSPIRE].

[14] A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary
horizon slices, Phys. Rev. D 85 (2012) 104049 [Erratum ibid. 87 (2013) 069904]
[arXiv:1105.3445] [INSPIRE].

[15] A.C. Wall, A survey of black hole thermodynamics, arXiv:1804.10610 [INSPIRE].

[16] S. Sarkar, Black hole thermodynamics: general relativity and beyond, Gen. Rel. Grav. 51
(2019) 63 [arXiv:1905.04466] [INSPIRE].

[17] J. Bhattacharya, S. Bhattacharyya, A. Dinda and N. Kundu, An entropy current for
dynamical black holes in four-derivative theories of gravity, JHEP 06 (2020) 017
[arXiv:1912.11030] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.26.1344
https://doi.org/10.1103/PhysRevLett.26.1344
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C26%2C1344%22
https://doi.org/10.1007/BF01645742
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C31%2C161%22
https://doi.org/10.1103/PhysRevD.7.2333
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD7%2C2333%22
https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C43%2C199%22
https://doi.org/10.1103/PhysRevD.48.R3427
https://arxiv.org/abs/gr-qc/9307038
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD48%2CR3427%22
https://doi.org/10.1103/PhysRevD.50.846
https://arxiv.org/abs/gr-qc/9403028
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9403028
https://doi.org/10.1103/PhysRevLett.70.3684
https://doi.org/10.1103/PhysRevLett.70.3684
https://arxiv.org/abs/hep-th/9305016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9305016
https://doi.org/10.1103/PhysRevD.49.6587
https://arxiv.org/abs/gr-qc/9312023
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9312023
https://doi.org/10.1103/PhysRevD.52.3518
https://arxiv.org/abs/gr-qc/9503020
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9503020
https://doi.org/10.1103/PhysRevD.88.044017
https://arxiv.org/abs/1306.1623
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.1623
https://doi.org/10.1103/PhysRevD.92.064006
https://arxiv.org/abs/1504.04706
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.04706
https://doi.org/10.1142/S0218271815440149
https://doi.org/10.1142/S0218271815440149
https://arxiv.org/abs/1504.08040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.08040
https://doi.org/10.1103/PhysRevD.93.104045
https://arxiv.org/abs/1508.01658
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.01658
https://doi.org/10.1103/PhysRevD.85.104049
https://arxiv.org/abs/1105.3445
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3445
https://arxiv.org/abs/1804.10610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.10610
https://doi.org/10.1007/s10714-019-2545-y
https://doi.org/10.1007/s10714-019-2545-y
https://arxiv.org/abs/1905.04466
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.04466
https://doi.org/10.1007/JHEP06(2020)017
https://arxiv.org/abs/1912.11030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.11030


J
H
E
P
1
0
(
2
0
2
2
)
0
1
3

[18] S. Bhattacharyya, P. Dhivakar, A. Dinda, N. Kundu, M. Patra and S. Roy, An entropy
current and the second law in higher derivative theories of gravity, JHEP 09 (2021) 169
[arXiv:2105.06455] [INSPIRE].

[19] S. Bhattacharyya, P. Jethwani, M. Patra and S. Roy, Reparametrization symmetry of local
entropy production on a dynamical horizon, arXiv:2204.08447 [INSPIRE].

[20] I. Rácz and R.M. Wald, Global extensions of space-times describing asymptotic final states of
black holes, Class. Quant. Grav. 13 (1996) 539 [gr-qc/9507055] [INSPIRE].

[21] Y. Xie, J. Zhang, H.O. Silva, C. de Rham, H. Witek and N. Yunes, Square peg in a circular
hole: choosing the right ansatz for isolated black holes in generic gravitational theories, Phys.
Rev. Lett. 126 (2021) 241104 [arXiv:2103.03925] [INSPIRE].

[22] R. Ghosh and S. Sarkar, Black hole zeroth law in higher curvature gravity, Phys. Rev. D 102
(2020) 101503 [arXiv:2009.01543] [INSPIRE].

[23] S. Sarkar and S. Bhattacharya, Issue of zeroth law for Killing horizons in Lanczos-Lovelock
gravity, Phys. Rev. D 87 (2013) 044023 [arXiv:1205.2042] [INSPIRE].

[24] A. Sang and J. Jiang, Black hole zeroth law in the Horndeski gravity, Phys. Rev. D 104
(2021) 084092 [arXiv:2110.00903] [INSPIRE].

[25] S. Dey, K. Bhattacharya and B.R. Majhi, Thermodynamic structure of a generic null surface
and the zeroth law in scalar-tensor theory, Phys. Rev. D 104 (2021) 124038
[arXiv:2105.07787] [INSPIRE].

[26] K. Hajian, S. Liberati, M.M. Sheikh-Jabbari and M.H. Vahidinia, On black hole temperature
in Horndeski gravity, Phys. Lett. B 812 (2021) 136002 [arXiv:2005.12985] [INSPIRE].

[27] R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014
[hep-th/0109133] [INSPIRE].

[28] L. Ma, Y.-Z. Li and H. Lü, D = 5 rotating black holes in Einstein-Gauss-Bonnet gravity:
mass and angular momentum in extremality, JHEP 01 (2021) 201 [arXiv:2009.00015]
[INSPIRE].

[29] S. Bhattacharyya, F.M. Haehl, N. Kundu, R. Loganayagam and M. Rangamani, Towards a
second law for Lovelock theories, JHEP 03 (2017) 065 [arXiv:1612.04024] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP09(2021)169
https://arxiv.org/abs/2105.06455
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.06455
https://arxiv.org/abs/2204.08447
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2204.08447
https://doi.org/10.1088/0264-9381/13/3/017
https://arxiv.org/abs/gr-qc/9507055
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9507055
https://doi.org/10.1103/PhysRevLett.126.241104
https://doi.org/10.1103/PhysRevLett.126.241104
https://arxiv.org/abs/2103.03925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.03925
https://doi.org/10.1103/PhysRevD.102.101503
https://doi.org/10.1103/PhysRevD.102.101503
https://arxiv.org/abs/2009.01543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.01543
https://doi.org/10.1103/PhysRevD.87.044023
https://arxiv.org/abs/1205.2042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.2042
https://doi.org/10.1103/PhysRevD.104.084092
https://doi.org/10.1103/PhysRevD.104.084092
https://arxiv.org/abs/2110.00903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.00903
https://doi.org/10.1103/PhysRevD.104.124038
https://arxiv.org/abs/2105.07787
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.07787
https://doi.org/10.1016/j.physletb.2020.136002
https://arxiv.org/abs/2005.12985
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12985
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/hep-th/0109133
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.65.084014%22
https://doi.org/10.1007/JHEP01(2021)201
https://arxiv.org/abs/2009.00015
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fjhep01%282021%29201%22
https://doi.org/10.1007/JHEP03(2017)065
https://arxiv.org/abs/1612.04024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.04024

	Introduction
	Basic set-up and statement of the problem
	Boost symmetry in the context of the zeroth law and stationarity
	Brief outline of the strategy
	Constructing the proof for the zeroth law
	General structure for the equations of motion in alpha-expansion
	Zeroth law for two derivative theories of gravity, at leading order in alpha-expansion
	Zeroth law for higher curvature theories of gravity at arbitrary order in alpha-expansion
	Boost symmetry for the truncated metric and vanishing of the source term


	Discussions
	Computing the Christoffel symbols and the surface gravity for the metric eq. (2.4)
	Computing the Christoffel symbols
	Computing the surface gravity

	Few details regarding the boost weight of covariant tensors
	More detailed calculation for Einstein's gravity
	Calculation of the homogeneous part

