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1 Introduction

The double copy [1, 2] is by now a well-established relationship between gauge theory and
gravity, that has been demonstrated for scattering amplitudes as well as classical solutions.
An important focus of ongoing research is to ascertain how general the double copy is, and
in particular whether it applies to non-perturbative information. A successful understanding
of the latter may elucidate the underlying origin of the double copy, or reveal new ways of
thinking about different field theories, that make their common structures manifest.

Previous attempts to study non-perturbative effects include analysing strong coupling
solutions of equations of motion [3–7], examining exact algebras underlying the kinematic sec-
tors of different theories [8–10], using twistor methods [11–13], matching solution-generating
transformations between different theories [14–17], and studying whether topological infor-
mation (such as characteristic classes) can be identified in gauge and gravity solutions [18, 19]
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(see also ref. [20]). These studies suggest that it is worthwhile to consider other global
properties of gauge or gravity solutions, and to ascertain whether or not they can be
matched according to a double copy prescription. In this paper, we study the notion of
holonomy which, loosely speaking, describes how a vector is transformed after parallel
transport around a closed curve. The set of all such transformations forms a holonomy
group and particular elements of the holonomy group are described by path ordered integrals
of the Christoffel connection along the curve. In gauge theories, the equivalent concept
is how the phase of a charged particle transforms as it moves along a path. This is then
described by Wilson line operators, which involve integrating the gauge field along a curve.

It has long been known that holonomy properties of gauge and gravity theories are
mathematically analogous. Gauge theories can be thought of in terms of principal fibre
bundles, where a base space (corresponding to spacetime) is dressed by fibres acted on by
the gauge group. The gauge field itself is then associated with a connection on the fibre
bundle. The description in gravity is similar: one considers the tangent bundle obtained by
dressing spacetime with its tangent space at each point such that the tangent space is now
the fibre. The connection on this bundle corresponds to the connection in gravity. Thus,
the holonomy in gauge and gravity theories share a common geometrical origin in that they
both arise due to the fact that parallel transport in the base manifold induces transport
in the fibre. It is therefore tempting to conclude that the holonomy groups of gauge and
gravity theories are directly related by the double copy. As we will discuss in detail in this
paper, this assumption is false.

Attempts to explicitly relate holonomy properties and/or Wilson lines in gauge and
gravity theories have been made before. In particular, refs. [21, 22] studied the holonomy
properties of gravity solutions using a perturbative field theory approach, based on Wilson
line operators involving the Christoffel symbol.1 The behaviour of these operators in
perturbation theory was found to be in striking contrast with the situation in gauge theory,
an observation that has arisen more recently in the study of perturbative Wilson loops [26].
Given that the double copy relates scattering amplitudes in perturbation theory, this already
suggests that the traditional holonomy operator in gravity is not a double copy of its gauge
theory counterpart. Indeed, there is a second operator that one may write down in gravity,
involving the path-length of a particle traversing a curve, which has also been called a Wilson
line [26–30]. It represents the phase experienced by a scalar particle that travels around
a closed loop (see also the earlier work of ref. [31]), and in this sense is the correct physical
analogue of the holonomy operator in gauge theory, which arises in the description of the
Aharonov-Bohm effect. It has also been used in the description of soft radiation [29], and high-
energy scattering [32, 33], in both cases overlapping with results that can also be obtained
via the double copy of scattering amplitudes [34–36]. Recently, ref. [19] argued that the
single copy of this second operator is indeed the (unique) gauge theory Wilson line, and that
it can be used to express non-trivial topological information of gauge and gravity solutions
in a common language (see also ref. [37] for a related study from a different point of view).

1Similar gravitational Wilson lines have been used in lattice studies of quantum gravity [23, 24], and
even date back to much earlier work [25] that attempted to recast General Relativity in a manifestly
coordinate-independent form.
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The above discussion begs the following question: does the holonomy operator in
gravity have a single copy? The aim of this paper is to systematically explore this question,
and thus construct a square of four operators, such that we have a pair of gauge theory
operators which are a meaningful single copy of the two gravity operators mentioned above.
Doing so will allow us to clear up some confusions in the literature regarding the nature of
Wilson lines in gravity, as well as provide yet more glimpses of potential non-perturbative
aspects of the double copy.

The structure of our paper is as follows. In section 2, we review relevant topics in
the study of holonomy and Wilson lines. In section 3, we discuss the single copy of the
Riemannian holonomy, as well as its relationship to an alternative holonomy operator
involving the spin connection, which will prove useful for what follows. In section 4, we
present explicit results for the single copy operator, performing a detailed comparison with
its gravitational counterpart. Finally, we discuss our results and conclude in section 5.

2 Holonomy and Wilson lines

As discussed above, holonomy refers, in general, to the change in certain mathematical
objects as they are transported around a closed loop. The particular description depends
on which theory we are in, as well as which quantities are being transported. In this section,
we review the relevant ideas that we will need for the rest of the paper.

2.1 Riemannian holonomy

Given a (pseudo-)Riemannian manifold M, one may consider the tangent space Tp(M)
of all vectors at a point p. The tangent spaces Tp(M) and Tq(M) associated with points
p, q ∈M will be different in general, such that one must define a prescription for comparing
vectors at different points. As is well-known, the solution is to consider a curve γ(t) from p

to q, and to say that a given vector V µ undergoes parallel transport along the curve if it
satisfies the equation

d

dt
V µ + Γµσρ

dxρ

dt
V σ = 0, (2.1)

where Γµσρ is the Christoffel symbol. Vectors may be compared after they are parallel-
transported to the same point (or tangent space), and one may indeed solve eq. (2.1) to
find the total change in V µ after it has been transported from p to q:

V µ
q = [ΦΓ(γ)]µσ V σ

p , [ΦΓ(γ)]µσ = P exp
[
−
∫
γ
dxρΓµρσ

]
. (2.2)

Here, in a slight abuse of notation, we have exponentiated the Christoffel symbol considered
as the matrix [Γρ]µσ. Furthermore, the path-ordering symbol P indicates that, in expanding
the exponential, these matrices are to be ordered according to increasing parameter value τ .
A special case of eq. (2.2) occurs if q and p are taken to be the same point, on a closed
curve C. The vectors appearing on the left- and right-hand sides of eq. (2.2) are then living
in the same tangent space, such that the change in V µ upon being transported around C is
effected by the transformation matrix

[ΦΓ(C)]µσ = P exp
[
−
∮
C
dxρΓµρσ

]
, (2.3)
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which we will call the Riemannian holonomy operator. The set of all such transformations
forms the Riemannian holonomy group. For a generic d-dimensional Riemannian manifold,
one expects this group to be the maximal set of possible transformations on vectors in
the tangent space, namely O(d). If the manifold is orientable this group will reduce to
SO(d). Further reductions occur in other special cases [38], the details of which have been
of much study in the mathematical literature. For example, the holonomy group reduces to
SU(d/2) for Calabi-Yau manifolds, to Sp(d/4) for hyper-Kähler manifolds, and even to G2
for exceptional seven dimensional manifolds.

For the benefit of a more mathematical audience, it is worthwhile to briefly review how
holonomy can be defined in more formal terms, which is the subject of the following section.

2.2 Mathematical formulation of holonomy

The approach taken in the mathematics literature is to study the holonomy of a given
manifold by examining the parallel structures it contains. More precisely, let E be a vector
bundle over a base manifold M , and ∇ a connection on M . This then defines parallel
transport as above. For any piece-wise connected curve γ : [a, b] ⊂ R→M an isomorphism
of the vector spaces in the fibre of E is defined as

τγ : Eγ(a) → Eγ(b). (2.4)

To introduce the holonomy group Hol(∇), we fix a point p ∈M and parallel transport a
section of the bundle Xp ∈ Γ(Ep) along all piece-wise connected loops at p. This defines
the holonomy group of the connection Holp(∇). If we restrict ourselves to null-homotopic
loops (loops that are contractible to a point) then we find the restricted holonomy group
Hol0p(∇). If the manifold is simply-connected then Hol0p(∇) = Holp(∇), with the obvious
fundamental group homomorphism π1(M)→ Holp(∇)/Hol0p(∇). Since the holonomy groups
of a connected manifold at different points are isomorphic, we can talk about the holonomy
group of the connection Hol(∇) ⊆ GL(d,E).

A section X ∈ Γ(E) is called parallel if it is constant with respect to the connection, i.e.
∇X = 0. This is equivalent to saying that X is invariant under the parallel transport map

τγ : Xγ(a) → Xγ(b), (2.5)

for any piece-wise connected path γ : [a, b]→M . Equivalently, we may write τγ(Xγ(a)) =
Xγ(b), which is the non-coordinate basis expression of eq. (2.2). Let us state the fundamental
principle [39]:

Theorem. There exists a one-to-one correspondence between parallel sections X of the
bundle E and vectors Xp in the fibre Ep invariant under Holp(∇).

In other words, finding on a given (pseudo-)Riemannian manifold geometric objects
whose covariant derivative vanishes is equivalent to finding the invariants of the holonomy
group [40]. To elucidate the above statements, we now consider some examples of common
Riemannian manifolds.

– 4 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
9

Example 1. On orientable Riemannian manifolds one can define the metric tensor g as a
section on the tensor product of the dual tangent bundle with itself g ∈ Γ(TM∗⊗ TM∗), so
that the metric tensor at a point p ∈M is a map gp : TpM ⊗ TpM → R. There is a unique
torsion-less connection called the Levi-Civita connection such that ∇g = 0. Therefore, g is
called parallel. To find Holp(∇), denote the group of linear transformations preserving g by
O(TpM, gp). Since g is parallel, we find Holp(∇) ⊂ O(TpM, gp). Furthermore, as TpM ∼= Rd

we identify the holonomy group with a subgroup in SO(d).

Example 2. Kähler Manifolds are complex manifolds of dimension d = 2n and have a
closed symplectic form ω = g(J, ·) ∈ Λ2(MC), where J is the almost complex structure and
∇ω = 0. Now not only the metric tensor has vanishing exterior covariant; the symplectic
form ω, which is invariant under the symplectic group Sp(2n,R), also has vanishing covariant
derivative. Going by our philosophy, the holonomy group must both preserve lengths and the
symplectic form. The sought after group is then U(n). This can be seen as the intersection

U(n) = SO(2n) ∩ Sp(2n,R). (2.6)

Example 3. Hyper-Kähler manifolds of dimension d = 4n have three almost complex
structures (I, J,K) with vanishing covariant derivative and obey the quaternionic relations
I2 = J2 = K2 = Id and IJ = JI = −K. The subgroup of SO(4n) that preserves the
quaternionic almost complex structure is Sp(n) ⊂ SO(4n). Therefore Hol(∇) = Sp(n). An
example of this is the holonomy group of the self-dual Taub-NUT metric with Hol(∇) =
Sp(1) ∼= SU(2).

2.3 The spin connection holonomy

In eq. (2.1) we have defined parallel transport explicitly with the Christoffel connection.
One may also use an alternative formalism involving the spin connection, which would in
any case be necessary if one were to consider the parallel transport of spinors. Let us now
describe the role of the spin connection. As is well known (see e.g. ref. [41] for a pedagogical
summary), at each point in spacetime, one may introduce a set of orthonormal basis vectors
ê(a), related to the usual tangent space vector basis e(µ) ≡ ∂µ by

e(µ) = eaµê(a), ê(a) = e µ
a e(µ), (2.7)

which defines the (inverse) vielbein eaµ (e µ
a ), satisfying

eaµe
b
νηab = gµν , e µ

a e
ν
b gµν = ηab, eaµe

µ
b = δab , eaµe

ν
a = δνµ, (2.8)

where ηab is the Minkowski metric of the flat tangent space.2 Thus, the Roman indices
(a, b, . . .) are raised and lowered with this flat metric, while the Greek indices (µ, ν, . . .) are
raised and lowered using the curved metric gµν .

The vielbein may now be used to relate the components of an arbitrary vector V µ at a
point p to the components of a vector in the tangent space at p via

V a = eaµ(p)V µ, V µ = e µ
a (p)V a. (2.9)

2We use a (−, +, +, +) metric signature throughout.
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From the vielbein we may calculate the spin connection ωab using Cartan’s first structure
equation. In differential form language, with the torsion set to zero, this is:

dea + ωab ∧ eb = 0 . (2.10)

We may also invert this to write the components of the spin connection in terms of the
vielbein:

(ωµ)ab = 1
2e

aν
(
∂µe

b
ν−∂νebµ

)
− 1

2e
bν
(
∂µe

a
ν−∂νeaµ

)
− 1

2e
aρebσecµ (∂ρecσ−∂σecρ) . (2.11)

A vector in the tangent space will then satisfy the parallel transport equation as in
eq. (2.2), but now with the spin connection:

d

dt
V a + (ωµ)ab

dxµ

dt
V b = 0 . (2.12)

The solution of eq. (2.12), by direct analogy with eq. (2.2), is

V a
q = [Φω(γ)]abV b

p , [Φω(γ)]ab = P exp
[
−
∫
γ
dxµ(ωµ)ab

]
, (2.13)

where P denotes path-ordering of the matrices (ωµ)ab along the worldline. Choosing p and
q to correspond to the same point on a closed curve C, one obtains the holonomy of the
spin connection:

[Φω(C)]ab = P exp
[
−
∮
C
dxµ(ωµ)ab

]
. (2.14)

This form of the holonomy is straightforwardly related to the Riemannian holonomy
operator of eq. (2.3). Upon transforming both sides of eq. (2.2) to the orthonormal basis
and rearranging, one obtains [22]

[Φω(p, q)]ab = eaµ(p) [ΦΓ(p, q)]µν e ν
b (q), (2.15)

so that for a closed curve one has

[Φω(C)]ab = eaµ [ΦΓ(C)]µν e ν
b , (2.16)

where the two vielbeins on the right-hand side are evaluated at the same point. The physical
interpretation of this relation is straightforward. The Riemannian holonomy operator tells
us how the components of a vector transform after the vector has been transported around
C. The expression in terms of the spin connection does the same, but in the orthonormal
basis. Then, the two holonomy operators are related by a similarity transformation, which
is the content of eq. (2.16).

Thus, in discussing the holonomy of a given manifold, one is free to use either. For
our later purposes, it is convenient to rewrite eq. (2.14) yet further. Noting that the spin
connection is valued in the Lie algebra of the Lorentz group, we may introduce explicit
Lorentz generators Mab via

(ωµ)cd = i

2(ωµ)ab(Mab)cd, (2.17)

– 6 –
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where the normalisation factor arises from the components of the generators in the spin-1
representation:

(Mab)cd = i(ηacδbd − ηbcδad). (2.18)

The operator of eq. (2.14) is then

[Φω(C)]cd = P exp
[
− i2

∮
C
dxµ (ωµ)abMab

]c
d
. (2.19)

Here it is worth noting that this form allows us to easily extend the notion of holonomy to
spinors. One replaces the generators in the spin-1 representation with the generators in
the spin-(1/2) representation constructed from the associated Clifford algebra. Concretely,
instead of Mab one uses (Γab)αβ and the holonomy group will be generically Spin(d) valued.
Doing this relies on lifting the tangent bundle of the manifold to a spin bundle, which
requires the existence of a spin structure on the manifold. There may of course be global
obstructions to doing this which are given by the second Stiefel-Whitney class. In what
follows we will not worry about such spinor-valued holonomies, however it is certainly worth
understanding how the double copy works in this case and how different representations in
the tangent bundle are related to representations in the single copy. Having described how
holonomy works in gravity, let us now consider gauge theory.

2.4 Holonomy in gauge theory

Consider a gauge theory defined on a spacetime manifoldM with gauge group G. A field
Ψa transforming in a particular representation of the gauge group can then be defined as
a section of a principal fibre bundle, where the gauge field itself is associated with the
connection. If we want to compare field values at different points p, q ∈ M, we must
transform the gauge information according to a suitable definition of parallel transport,
leading to an equation analogous to eq. (2.2):

Ψa
q = [ΦA(γ)]ab Ψb

p, [ΦA(γ)]ab = P exp
[
−g

∫
γ
dxµAµ

]a
b

. (2.20)

Here Aµ = AaµTa is the matrix-valued gauge field, Ta are the generators of the Lie algebra
in the representation appropriate to the field Ψa, and g is the coupling. If we again take p
and q to be the same spacetime point lying on a closed curve C, the change in Ψa after
transport around the loop is given by

ΦA(C) = P exp
[
−g

∮
C
dxµAµ

]
. (2.21)

The set of all such transformations forms the holonomy group associated with gauge theory
solutions, which will be a subgroup of the gauge group G.

The operator appearing in eq. (2.20) is known as a Wilson line in the gauge theory
literature.3 It transforms covariantly under gauge transformations according to

ΦA(γ)→ UpΦA(γ)U−1
q , (2.22)

3Note that we have chosen anti-Hermitian colour generators, such that there is no explicit factor of i in
the exponent of eq. (2.20).
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where Up is an element of G in the appropriate representation, and represents a local gauge
transformation at the point p. Thus, Wilson lines are ubiquitous in the study of scattering
amplitudes, and typically crop up whenever some physical behaviour has to be expressed
in a gauge-covariant manner. The operator of eq. (2.21) is known as a Wilson loop once
the trace is taken on the right-hand side. From eq. (2.22), this renders the Wilson loop
gauge-invariant.

Notably, the gravitational operator of eq. (2.2) also transforms similarly to eq. (2.22),
but where the gauge transformations are replaced by diffeomorphisms. That is, upon
changing coordinates according to xα → yα, one has [22]

[ΦΓ(γ)]µσ → [Λp]µα [ΦΓ(γ′)]αβ [Λ−1
q ]βσ, [Λp]λδ =

(
∂yλ

∂xδ

)
p

, (2.23)

where the path γ is transformed according to the diffeomorphism to γ′. This property,
together with the fact that there is a common geometric interpretation of the operators
ΦΓ(γ) and ΦA(γ) in gravity and gauge theory respectively, has led to ΦΓ also being referred
to as a Wilson line in the gravity literature [21–24]. However, there is a more sensible
candidate for this, as we discuss in the following section.

2.5 The gravitational Wilson line

In an abelian gauge theory, the Wilson line operator of eq. (2.21) has a useful physical
interpretation, in that it represents the phase change experienced by a charged particle as it
traverses a closed loop. The non-abelian version is a generalisation of this, once the trace is
taken to form a gauge-invariant quantity. The analogous operator in gravity is easy to write
down. In gravity the equivalent of the charge is the mass of the particle and so the phase
will only depend on the (Lorentz-invariant) path length of the closed curve multiplied by
the particle mass. For an arbitrary curve γ, one may then define the gravitational Wilson
line [27] as follows (this is also discussed in the much earlier work of ref. [31]):

Φg(γ) = exp
[
−im

∫
γ
dτ
√
−gµν ẋµẋν

]
, (2.24)

where m is the mass of the particle, τ its proper time, and ẋµ ≡ dxµ/dτ . Throughout this
paper ẋµ will always denote differentiation with respect to the variable parameterising the
curve. In perturbation theory (as appropriate to the weak field limit), one may introduce a
graviton field hµν via

gµν = ηµν + κhµν , κ =
√

32πGN , (2.25)

where ηµν is the Minkowski metric, and GN Newton’s constant. Then the operator of
eq. (2.24) simplifies, to first non-trivial order in κ, to4

Φg(γ) = exp
[
iκ

2

∫
γ
ds hµν ẋ

µẋν
]
, (2.26)

4We have ignored an overall multiplicative constant in eq. (2.26), which will vanish in any vacuum
expectation value of Wilson lines, once this is correctly normalised.
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where we have rescaled the integration variable to have mass dimension −2. The square root
in eq. (2.24) is cumbersome in general, and one may further worry that the operator ceases
to be defined for massless particles. One may remove both problems by noting that the
exponent of eq. (2.24) contains the action for a point particle. The latter can be replaced
with the alternative action5

Spp = 1
2

∫
dτ

[ 1
e(τ)gµν ẋ

µẋν − e(τ)m2
]
, (2.27)

where e(τ) is an auxiliary parameter known as the einbein. Its field equation yields

δS

δe
= − 1

2e2 gµν ẋ
µẋν − m2

2 = 0, (2.28)

such that solving for e(τ) and substituting this into eq. (2.27) yields the original action of a
point particle that appears in eq. (2.24), in the massive case. The parameter e(τ) plays the
role of a “metric” on the worldline, and transforms appropriately under reparametrizations.
Choosing a value for e then amounts to fixing a gauge, and the choice e = 1 in the massless
case immediately leads to the Wilson line of eq. (2.26).

It has recently been argued [19] that the operator Φg(γ) is the double copy of the gauge
theory Wilson line of eq. (2.20), which can be seen in a number of ways. It may be related
to scattering amplitudes, for example, by considering a semi-infinite set of Wilson lines
emanating from a common point. Vacuum expectation values of such Wilson lines are known
to describe the infrared singularities of scattering amplitudes, where the latter have been
proven to formally double copy [34]. That eq. (2.24) is the correct Wilson line associated
with IR singularities has been established in refs. [28, 29]. Similar evidence comes from
the high energy (Regge) limit, where amplitudes are again known to double-copy [35, 36],
and where there is also a description in terms of the Wilson line operators of eqs. (2.20)
and (2.26) [32, 33, 42]. More directly, one may rewrite the operator in eq. (2.20) as

Φ(γ) = P exp
[
igT̃a

∫
γ
dsAaµ ẋ

µ
]
, (2.29)

where we have temporarily adopted Hermitian colour generators defined via T̃a ≡ iTa. If
we consider a gauge field for which the double copy is known, then the gravitational Wilson
line of eq. (2.26) is obtained by making the replacements

g → κ

2 , T̃a → ẋµ, (2.30)

precisely mirroring the usual coupling and colour/kinematic replacements associated with
the BCJ double copy for amplitudes. Note that in the second replacement, the adjoint index
a is replaced by a spacetime index µ, in accordance with the fact that colour information
is stripped off and replaced by kinematic information when performing the double copy.
Further to the discussion in ref. [19], it is interesting to note that the explicit double
copy between the gauge and gravity Wilson lines is manifest when using the alternative

5The use of this alternative point particle action in a double copy context has been emphasised previously
in ref. [37].
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point particle action of eq. (2.27), for a particular choice of einbein. This is perhaps not
surprising: the original BCJ double copy for amplitudes is known to be manifest only
in certain generalised gauges, where conventional gauge transformations as well as field
redefinitions have potentially been applied. The same property occurs also for classical
solutions in general. Thus, the fact that a particular einbein is needed to get the double
copy to work — itself a choice of gauge, as described above — is entirely consistent with
previous instances of the double copy.

Aside from special kinematic limits of amplitudes, there are also other situations in
which Φg(γ) manifests itself as the double copy of ΦA(γ). It may be used, for example,
to quantify certain topological information that is the relevant gravitational counterpart
of that obtained in a gauge theory [19]. Furthermore, a particular Wilson loop involving
ΦA may be used to derive the Coulomb potential between two static charges, such that
replacing ΦA with Φg instead yields Newton’s law of gravity [27]. That the two potentials
should indeed be related follows from the non-relativistic limit of the classical double copy
between the point charge and the Schwarzschild black hole [43].

Given that the holonomy operator in gauge theory is related to the Wilson line of
eq. (2.26) in gravity, it is therefore not true that the holonomy operators in the two theories
are related by the double copy. The question then arises of whether one may find a gauge
theory single copy of the gravitational holonomy operator of eq. (2.3). Indeed one can, as
we explain in the following section.

3 The single copy of the gravitational holonomy

Above, we have seen that the holonomy operators in gauge and gravity theory, whilst natural
mathematical counterparts of each other, are not physical counterparts in the sense of being
related by the double/single copy. To find the correct single copy of the gravity result, one
must map the latter to a physical situation whose single copy is already well-known. In
the present case, the holonomy operator of eq. (2.19) turns out to arise in the dynamics of
spinning particles, whose properties we review in the following section.

3.1 Relativistic spinning particles

In eq. (2.27), we have seen the action for a spinless point particle coupled to gravity. It is
possible to generalise this to the case in which a (possibly extended) object has an intrinsic
angular momentum (see ref. [44] for a modern pedagogical review, and also the classic
works of refs. [45–48]). To this end, it is conventional to define a vierbein on the worldline,
eAµ(τ). The upper-case latin indices (A,B, . . .) are those of a body-fixed frame; a frame
fixed to the point-particle as it traverses the worldline. The vierbein eAµ therefore relates
the body-fixed frame to the general coordinate frame. The angular velocity of the object is
then defined to be

Ωµν = eAµ
DeAν
Dτ

, (3.1)

where
DeAν
Dτ

≡ ẋαDαe
A
ν = ẋα

(
∂αe

A
ν − ΓλανeAλ

)
(3.2)

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
9

is the spacetime covariant derivative of the body-fixed vierbein. That eq. (3.1) satisfies
the expected antisymmetry, Ωµν = −Ωνµ, follows from eq. (2.8) and the vanishing of the
covariant derivative of the metric tensor gµν . The total action for the object can be written as

Stot = Spp + Sspin, (3.3)

where Spp is the spinless action of eq. (2.27), reflecting the fact that an extended object
looks pointlike from a sufficient distance. The correction term due to the spin is6

Sspin =
∫
dτ

[1
2ΩµνS

µν
]
, (3.4)

where Sµν is the spin tensor of the object, namely the dynamical variable conjugate to the
angular velocity. Physically this represents the intrinsic angular momentum of the object
(in either a classical or quantum setting).

In general, the vierbein eaµ that we choose for a given spacetime will not correspond
to the body-fixed vierbein eAµ, and there will therefore be a Lorentz transformation that
relates the two:

eAµ = ΛAaeaµ. (3.5)

The combination of terms appearing in eq. (3.4) can then be decomposed as [49]

SµνΩµν = SµνΛAaeaµ
DΛAbebν

Dτ

= Sab
(
ΛAaΛ̇Ab − (ωµ)abẋµ

)
, (3.6)

where in the second line we have used eq. (3.2) together with the known relation between
the Christoffel symbol and spin connection (see e.g. [41])

Γσµν = e σ
a e

b
ν(ωµ)ab + e σ

a ∂µe
a
ν . (3.7)

3.2 The holonomy from a spinning particle

We now argue that the dynamics of spinning particles can be used to construct a physical
manifestation of the holonomy operator of eq. (2.19). To this end, note that the two terms in
eq. (3.6) have a straightforward physical interpretation: the action of eq. (3.4) dictates the
dynamics of the internal spin of the object under consideration, namely how the body-fixed
vierbein changes as one proceeds along the worldline. Put another way, the action governs
how a vector fixed to the moving object will be modified, and there are clearly two distinct
effects causing such a vector to change: (i) the rotation of the object; (ii) the fact that
the body-fixed frame is changing due to the underlying spacetime. These two effects are
captured by the first and second terms in the second line of eq. (3.6) respectively, where
the first (rotation) term would be present even if the object were moving in flat space.

6In writing eq. (3.4), we have ignored additional gauge-fixing terms which are needed to eliminate residual
arbitrary degrees of freedom in the precise definition of the spin tensor. Such terms will not matter for the
arguments presented here.

– 11 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
9

In the previous section, we noted that the point particle action of eq. (2.27) could be
used to form a Wilson line operator representing the phase experienced by a particle as it
traverses a given contour. To do this, one forms the combination

eiSpp , (3.8)

and discards terms associated with flat space only i.e. that do not involve the gravitational
field. Such terms amount to an overall multiplicative factor, that vanishes upon normalising
vacuum expectation values of Wilson lines. It is straightforward to repeat this procedure
for the action of eq. (3.3), where the corresponding Wilson line now represents the phase
experienced by a spinning particle. A given spin tensor will have the form

Sab(τ) = Qabcd(τ)M cd, (3.9)

where, as above, {M cd} are the Lorentz generators. The quantity Qabcd denotes how much of
each spin generator is “turned on”, and may in general depend on the parameter τ along
the worldline. We wish to examine how all possible vectors are transported around all
possible loops. Thus, we may choose a spin tensor such that

Qabcd = 1
2
(
δac δ

b
d − δbcδad

)
, (3.10)

which physically amounts to a democratic assignment of unit spin along all axes. This
discussion holds for a classical particle. For a quantum particle in state |ψ〉, the spin tensor
will be given by a normalised expectation value

Sab = 〈ψ|Q
ab
cdM

cd|ψ〉
〈ψ|ψ〉

. (3.11)

However, one may again make the choice of eq. (3.10), and for concreteness we focus on a
spin-1 particle with arbitrary orientation. Furthermore, we will take our generalised Wilson
line to be matrix-valued in spin space, such that it describes how the spin state of a test
particle changes as it moves along its worldline. This is directly analogous to how the gauge
theory Wilson line of eq. (2.21) is matrix-valued in colour space, and in practical terms
amounts to the replacement

Sab →Mab (3.12)

whilst defining the Wilson line according to the appropriate generalisation of eq. (3.8). The
result is

Φspin
g (γ) = P exp

[
iκ

2

∫
γ
ds
(
hµν ẋ

µẋν − ẋµ(ωµ)cdM cd
)]
, (3.13)

where the path ordering is now necessary due to the matrix-valued nature of the spin
generators in the second term (note that there is also an implicit identity matrix in spin
space in the first term). The first term of eq. (3.13) represents how the mass of the
test particle couples to gravity, while the second term describes how its spin degrees of
freedom couple to gravity. In line with the above remarks, only the second term on the
right-hand side of eq. (3.6) is relevant, given that it is this that represents the coupling to
the gravitational field.
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As discussed above, a number of previous studies have attempted to identify the operator
of eq. (2.3) (and, by association, the operator of eq. (2.19)) as a gravitational Wilson line,
due to its mathematical similarity to the Wilson line in gauge theory. However, the double
copy tells us that eq. (2.19) is not the gravitational counterpart to the gauge theory Wilson
line of eq. (2.21). Rather, it is a spin-dependent correction7 to the gravitational Wilson line
of eq. (2.26), and represents the additional phase change that a particle experiences if it
happens to be spinning. It is interesting to note that a related observation was made as
early as the 1960s [31] (see also ref. [25]), predating the introduction of Wilson lines!

3.3 Single copy of the holonomy

In the previous section, we have seen that a Wilson line constructed from the action for
a spinning particle coupled to gravity contains the holonomy operator of eq. (2.19). This
immediately tells us how to take the single copy of the holonomy: we can simply write
down the action for a spinning particle coupled to a gauge field, and use this to create a
generalised Wilson line that contains a spin correction to the phase. The relevant action for
a spinning particle coupled to a gauge field is (see e.g. ref. [50])

Sgauge =
∫
dτ

[
1

2e(τ)ηµν ẋ
µẋν − e(τ)m2

2 + 1
2ΩµνS

µν + gca(τ)
(
ẋµAaµ −

e(τ)
2 F aµνS

µν
)]

.

(3.14)
Here the first two terms are the usual point particle action of eq. (2.27) considered in
Minkowski space. Furthermore, Ωµν is the flat space version of the angular velocity of
eq. (3.1), such that its contraction with the spin tensor Sµν matches the first term in the
second line of eq. (3.6). There are then two terms involving the gauge field, where ca(τ) is
a colour vector obtained by evaluating the expectation value of the colour generator T̃a

at a given position on the worldline. The first of these terms gives rise to the Wilson line
operator of eq. (2.21), once one replaces the expectation value of the colour generator by
the generator itself. The remaining term couples the field strength F aµν to the spin tensor,
and thus represents the spin-dependent correction to the vacuum dynamics of the spinning
particle due to the presence of a gauge field. This is the precise gauge theory analogue of
the spin connection term in eq. (3.6), which amounts to the extra contribution to the spin
dynamics of the object arising from the gravitational field.

Indeed, the double copy relationship between gauge theory and gravity actions for
spinning particles has been addressed in detail in refs. [50, 51] (see also refs. [52, 53]),
which considered radiation from such a particle interacting with a Yang-Mills field. The
authors calculated the effects of this radiation perturbatively, before double-copying the
results order-by-order in perturbation theory. The resulting system is that of a spinning
particle interacting with a graviton, axion and dilaton, which is the usual spectrum arising
from the double copy of pure Yang-Mills theory. Thus, roughly speaking, the final term in
eq. (3.14) double copies to multiple operators, representing the coupling of the spin to the

7Physically, the effects of the spin term are suppressed by a power of the emitted graviton momentum,
as we discuss in section 3.4. So it is in this sense a small correction to the spinless term in an appropriate
kinematic limit.
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full field spectrum in the gravity theory. This one-to-many nature of the double copy does
not affect our arguments here: given we are taking the single copy, which is many-to-one,
we can unambiguously identify the single copy of the graviton spin coupling as the final
term appearing in eq. (3.14). Interestingly, refs. [50, 51] found that the spinning particle
actions in gauge theory and gravity were only strict physical double copies of each other (in
the sense that a conserved energy-momentum tensor was found in the gravity theory) if
a certain fixed numerical coefficient was placed in front of the spin coupling in the gauge
theory (see ref. [52] for a similar conclusion). We shall ignore this complication here, given
that such a coefficient is irrelevant in elucidating the group of transformations induced by
the generalised Wilson line in the gauge theory. Replacing the spin tensor according to
eq. (3.12) as before, as well as fixing the einbein e = 1, this Wilson line is found to be

Φspin(γ) = P exp
[
igT̃a

∫
γ
ds

(
Aaµẋ

µ − 1
2F

a
µνM

µν
)]

. (3.15)

The terms in this operator are obtained from the final two terms in eq. (3.14), namely those
explicitly containing the coupling of the worldline to the gauge field. Evaluating the spin
correction over a closed curve C gives the single copy of the gravitational holonomy:

ΦF (C) = P exp
[
− ig2 T̃a

∮
C
dsF aµνM

µν
]
. (3.16)

As in the gravity theory, we can furnish the operator appearing in the action of eq. (3.14)
with a physical interpretation, where we may focus on the case of an abelian gauge theory
for simplicity. Identifying the electric and magnetic fields by

F0i = Ei, Fij = εijkBk, (3.17)

one finds

FµνS
µν = 2F0iS

0i + FijS
ij

= −2 (E · d+B · µ) , (3.18)

where we have defined
di = −S0i, µi = −1

2εijkS
jk. (3.19)

Equation (3.18) constitutes the electromagnetic coupling of an electric dipole moment d
and magnetic dipole moment µ, and we may consider our test particle to have both of these
turned on in general.

3.4 Relation to scattering amplitudes

In the previous section, we have used known results from the classical double copy to
identify the single copy of the gravitational holonomy. We may also note, however, that our
results can be linked to known properties of scattering amplitudes. For example, ref. [54]
recently argued that the Kerr (spinning) black hole and its single copy can be obtained
from 3-point amplitudes that are double-copies of each other. The implications of this were
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explored further in refs. [55, 56]. Similar conclusions have been obtained independently in
refs. [57–59], which also linked the double copy for spinning particles with the well-known
(next-to-)soft theorems for emission of low-momentum radiation [29, 60–66]. We can see this
directly from the above results as follows. Starting with the Riemannian parallel transport
operator of eq. (2.2), we can use the well-known relation between the Christoffel symbol
and the metric,

Γµρσ = 1
2g

µα (∂ρgασ + ∂σgαρ − ∂αgρσ) , (3.20)

as well as the graviton definition of eq. (2.25), to obtain

[ΦΓ(γ)]µσ = P exp
[
−κ2

∫
γ
dxρ

(
∂ρh

µ
σ + ∂σh

µ
ρ − ∂µhρσ + . . .

)]
, (3.21)

where the ellipsis denotes terms of higher order in κ. Now let us choose the case of a
straight-line contour emanating from the origin, as would be appropriate for a fast-moving
particle with momentum pµ emerging from a scattering process:

xµ = spµ, 0 ≤ s <∞. (3.22)

The first term in eq. (3.21) is a total derivative, and integrates to give a gauge-dependent
artifact associated with the endpoints of the contour. It will vanish for physical processes
e.g. in forming gauge-invariant amplitudes, or squaring amplitudes to form a cross-section,
which involves closing Wilson line contours to make a closed loop. The remaining terms
take the form

−κ2

∫ ∞
0

dspρ
(
∂σh

µ
ρ − ∂µhρσ

)
= iκ

2 p
ρ
∫

ddk

(2π)d
∫ ∞

0
ds
(
kσh̃

µ
ρ − kµh̃ρσ

)
e−isk·p, (3.23)

where we have introduced the Fourier components of the graviton field via

hµν =
∫

ddk

(2π)d h̃µν(k)e−ik·x. (3.24)

Carrying out the s integral in eq. (3.23) yields8

ln(Φg) ∼
∫

ddk

(2π)d h̃βρ(k)
[
κ

2
pρkα(Mαβ)µσ

p · k

]
, (3.25)

where we have written the second line in terms of the spin-1 Lorentz generators of eq. (2.18).
The square bracketed factor can be recognised as the appropriate contribution to the
next-to-soft theorem for emission of a graviton [65]. Its appearance in this context arises
given that the spin-dependent coupling to the worldline is suppressed by a single power
of the momentum of emitted radiation compared to the leading Wilson line operator of
eq. (2.24). Furthermore, one may perform an analogous calculation for the gauge theory
operator of eq. (3.16), finding

ln(ΦF ) ∼
∫

ddk

(2π)d Ã
a
µ(k)

[
gT̃akνM

µν

p · k

]
, (3.26)

8The upper limit of the s integral in eq. (3.23) will vanish upon careful implementation of the Feynman
iε prescription.
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again in agreement with the appropriate next-to-soft theorem [66]. The known double copy
properties of these results in the study of scattering amplitudes again corroborates the
fact that the single copy of the gravitational holonomy is the operator of eq. (3.16). It is
also worth noting that these generalised Wilson lines were derived before in the context of
next-to-soft physics, before the next-to-soft theorems were more widely recognised [29, 67].

Having presented a variety of arguments in favour of our single copy holonomy operator,
let us now note that further useful insights can be obtained by focusing on a particular class
of solutions, namely the Kerr-Schild solutions in terms of which the first classical double
copy was formulated [43].

3.5 Insights from Kerr-Schild solutions

Kerr-Schild solutions of General Relativity (GR) are those for which the metric assumes a
particularly simple form, namely

gµν = ḡµν + φ(x)kµkν . (3.27)

Here ḡµν is a background metric, which we will take to be Minkowski throughout (ḡµν = ηµν),
albeit not necessarily in Cartesian coordinates. Furthermore, φ(x) is a scalar field and kµ a
4-vector field which is both null and geodesic:

ḡµνkµkν = gµνkµkν = 0, k ·Dkµ = 0. (3.28)

Comparing with eq. (2.25), we see that Kerr-Schild solutions have a graviton field given by

hµν = φkµkν .

This ansatz turns out to greatly simplify the Einstein equations, which then have a linear
dependence on the graviton only. This allows for an infinite family of exact solutions to
be obtained, which incudes e.g. known black holes. Also, the “factorised” form of the
graviton (i.e. involving an outer product of a 4-vector with itself) allows a single copy to be
straightforwardly obtained. Reference [43] proved that for static solutions, the gauge field

Aµ = AaµTa, Aaµ = caφkµ, (3.29)

where ca is an arbitrary colour vector, solves the Yang-Mills equations, which again simplify
to a linear form. Consequently, the field strength tensor for the gauge field takes an
abelian-like form:

F aµν(x) = DµA
a
ν(x)−DνA

a
µ(x). (3.30)

In an orthonormal basis, one has

gµν = ηabe
a
µe
b
ν , (3.31)

which in turn implies the following form for the Kerr-Schild vierbein:

eaµ = ē aµ + 1
2φk

akµ, e µ
a = ē µ

a −
1
2φkak

µ. (3.32)
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Here ē aµ is the vierbein associated with the background metric in eq. (3.27), which for our
purposes is the Minkowski metric ηµν . As we review in appendix A, the spin connection
associated with this particular vierbein (subject to the additional conditions of eq. (3.28))
assumes the form

(ωµ)ab = ∂beaµ − ∂aebµ. (3.33)

Unlike the general expression of eq. (2.11), this has the pleasing property of being linear in
the vierbein. Substituting the results of eq. (3.32) (after lowering indices appropriately)
yields

(ωµ)ab = 1
2 [∂b(φkµka)− ∂a(φkµkb)] (3.34)

= 1
2 [e σ

b ∂σ(φkµka)− e σ
a ∂σ(φkµkb)] . (3.35)

Note that due to the null property of the Kerr-Schild vectors, kµkµ = 0, conversion between
coordinate and orthonormal bases is done simply with the background vierbein:

ka = e µ
a kµ = ē µ

a kµ −
1
2φkak

µkµ = ē µ
a kµ. (3.36)

Thus, the spin connection in eq. (3.35) can be written as

(ωµ)ab = 1
2 [ē ν

a e
σ
b − ē ν

b e
σ
a ] ∂σ(φkµkν). (3.37)

If we now write the remaining vierbeins explicitly, a great deal of simplification occurs. To
see this, consider the first term in the above expression:

ē ν
a e

σ
b ∂σ(φkµkν) = ē ν

a

[
ē σ
b −

1
2φkbk

σ
]
∂σ(φkµkν) (3.38)

= ē ν
a ē

σ
b ∂σ(φkµkν)− 1

2φkakbkµk
σ∂σφ. (3.39)

In the second equality, we have expanded ∂σ(φkµkν) using the product rule, from which two
of the three resulting terms vanish due to the geodesic condition kσ∂σkµ = 0. Performing
the same procedure for the second term in eq. (3.37), we find that the terms which contain
only a derivative of the scalar field φ cancel, such that eq. (3.37) is simply

(ωµ)ab = 1
2 [ē ν

a ē
σ
b − ē ν

b ē
σ
a ] ∂σ(φkµkν). (3.40)

Finally, if we expand the spin connection in terms of the Lorentz generators, we obtain
i

2(ωµ)cdM cd = − i2∂σ(φkµkν)Mνσ, (3.41)

where we have identified the spin-1 Lorentz generators as

(Mνσ)ab = i [ē ν
a ē

σ
b − ē ν

b ē
σ
a ] . (3.42)

Thus, we are left with a simple expression in which the exponent appearing in the Kerr-Schild
gravitational holonomy operator is written directly in terms of the graviton:∮

dxµ(ωµ)abMab = −
∮
dxµ∂σ(hµν)Mνσ. (3.43)
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Gauge Theory Gravity

P exp [−g
∮
C dx

µAµ] exp
[
iκ
2
∮
C dsẋ

µẋνhµν
]

P exp
[g

2
∮
C dsFµνM

µν
]
P exp

[
− iκ

2
∮
C dx

µ(ωµ)abMab
]

Table 1. Holonomy operators in gauge and gravity theories, and their single/double copies.

The Kerr-Schild single copy of eq. (3.29) implies that we should single copy eq. (3.43) by
replacing

ẋµ → T̃a, kµ → ca, (3.44)

such that one obtains∮
dxµ(ωµ)abMab → −T̃a

∮
ds ∂σ(φkνca)Mνσ = −T̃a

∮
ds ∂σ(Aaν)Mνσ (3.45)

= 1
2T̃a

∮
dsF aνσM

νσ. (3.46)

This agrees with the conclusion reached above, namely that the single copy of the gravita-
tional holonomy is the operator of eq. (3.16). Note that the single copy in eq. (3.44) entails
replacing a spacetime index µ with an adjoint index a, given that kinematic information is
replaced by colour degrees of freedom.

By way of summarising the results of this section, we collect all of the operators we
have discussed in table 1. The gauge theory and gravity holonomies appear in the top-left
and bottom-right respectively, and the gravitational Wilson line appears in the top-right.
The operator in the bottom-left corner completes the square, and has not been considered
before as an analogue of the gravity holonomy, due to its not having the appropriate
differential geometric definition. Indeed, its role is entirely different to the gauge theory
holonomy. Considering a gauge field via a connection on a principal fibre bundle, the usual
holonomy describes how vectors in the internal colour space (associated with the fibres)
are transported as one moves along a curve. By contrast, the single copy of the gravity
holonomy instead describes how spacetime vectors are transported, thereby linking the
gauge field with vectors living in the tangent space of the base manifold. Thus, the vectors
being transported in each case live in different vector spaces. Nevertheless, our hope is
that the single-copy holonomy operator might also prove useful in classifying properties of
different Yang-Mills solutions, and we develop this notion in the following section.

4 Results for the single copy holonomy operator

The gravitational holonomy is useful in that it allows us to classify solutions of General
Relativity (and arbitrary manifolds more generally) into qualitatively different types. In
general, one expects the holonomy group of a given manifold to be the most general
group acting on vectors in the tangent space, namely SO(d) for a d-dimensional orientable
spacetime in Euclidean signature, or SO(1, d− 1) for Lorentzian signature. In some cases,
however, the holonomy group reduces to a subgroup, and the classification of manifolds
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based on this idea has been widely studied (see e.g. ref. [38] for the most well-known
incarnation). This suggests that our single copy holonomy operator might have a similar
purpose. Certainly, the operator of eq. (3.16) defines a group of transformations for a given
gauge theory solution. For ease of reference, we shall refer to eq. (3.16) as the SCH operator
(short for “single copy holonomy operator”), and the resulting group of transformations as
the SCH group. It may well be that the SCH group reduces for certain gauge fields. There
is also the interesting possibility of taking gauge theory solutions that are known single
copies of particular gravity solutions, and asking if the SCH and holonomy groups match
up! We will investigate this by considering particular solutions, of increasing complexity.

4.1 The Schwarzschild black hole

Arguably the simplest non-trivial gravity solution is the Schwarzschild solution. It may
be sourced by a point mass M sitting at the origin, and has a known Kerr-Schild form
involving spherical polar coordinates (t, r, θ, ϕ), where the functions entering eq. (3.27) may
be chosen as

φ(r) = M

4πr , kµ = (1, 1, 0, 0). (4.1)

We can then use eq. (3.43) to ascertain the holonomy group, for which we must choose a
number of different closed contours, and see what the various elements of the holonomy
group are. Let us first choose a circular orbit at constant time t, in the equatorial plane,
parametrised by

C : xµ = (0, 0, 0, ϕ), ϕ ∈ [0, 2π). (4.2)
The integral appearing in the holonomy operator then reduces to∮

C
dϕ∂σ(hϕν)Mνσ = 0, (4.3)

where we have used the fact that the Kerr-Schild graviton implied by eq. (4.1) has no
non-zero hϕν components. The element of the holonomy group associated with C is thus
the identity element. Furthermore, spherical symmetry implies that similar constant time
loops that are tilted with respect to the equatorial plane will also have a trivial holonomy.

To achieve a non-zero result, one may instead consider the curve shown in figure 1,
consisting of three segments. The first segment C1 is parallel to the time direction, and
may be parametrised by

C1 : xµ = (t, r0, 0, 0), 0 ≤ t ≤ T, (4.4)

such that the curve is at a fixed radius r = r0, and of total length T . We have also chosen
fixed values θ = ϕ = 0. From eq. (3.43), one finds∫

C1
dxµ∂σ(hµν)Mνσ =

∫ T

0
dt∂r(h00)M0r = −MT

4πr2
0
M0r, (4.5)

where we have noted the only non-zero contribution after contraction of indices in the
intermediate step. The remaining segments are parametrised by

C2 : xµ = (t, r0 + T − t, 0, 0), T ≥ t ≥ T/2,

C3 : xµ = (t, r0 + t, 0, 0) , T

2 ≥ t ≥ 0, (4.6)
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t

r

C1

C2

C3

Figure 1. A loop consisting of three segments in the (r, t) plane, where C2 and C3 are null lines.

such that one finds∫
C2
dxµ∂σ(hµν)Mνσ =

∫ T/2

T
dt∂r(h00)M0r

∣∣∣∣∣
r=r0+T−t

+
∫ r0+T/2

r0
dr∂r(hr0)M0r;

∫
C3
dxµ∂σ(hµν)Mνσ =

∫ 0

T/2
dt∂r(h00)M0r

∣∣∣∣∣
r=r0+t

+
∫ r0

r0+T/2
dr∂r(hr0)M0r. (4.7)

One sees that the radial components cancel. Evaluating the remaining integrals after using
eq. (4.1) gives ∫

C2∪C3
dxµ∂σ(hµν)Mνσ = M

2π
T

r0(T + 2r0)M
0r, (4.8)

such that the total contribution from the entire loop is∮
dxµ∂σ(hµν)Mνσ = αM0r, α = −M4π

T 2

r2
0(T + 2r0)

. (4.9)

This constitutes an infinitesimal boost in the (t, r) plane with hyperbolic angle α. To see
this, we may recall the definition of the boost generators Ki and rotation generators Ji in
terms of the {Mµν}:

Ki = M0i, Ji = 1
2εijkM

jk, (4.10)

in terms of which the Lorentz algebra

[Mµν ,Mρσ] = i (ησµMρν + ηνσMµρ − ηρµMσν − ηνρMµσ) (4.11)

may be written as

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (4.12)

Equation (4.9) is then clearly seen to contain the boost generator Kr. If one considers
loops with the same r0 but different fixed values of θ and ϕ, the full set of boosts associated
with arbitrary directions will be obtained. This in turn implies that the holonomy group
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of the Schwarzschild spacetime is SO(1, d− 1): from eq. (4.12), one sees that the boosts
do not close upon themselves, such that exponentiating the boost generators will produce
transformations corresponding to combinations of boosts and rotations in general. Note
that our conclusions are in qualitative agreement with those of e.g. ref. [68] which also
considered the holonomy in Schwarzschild spacetime. Our explicit result for the boost
angle differs due to having a loop with a slightly different orientation, and also the use of
Kerr-Schild rather than conventional Schwarzschild coordinates.

Given this holonomy group, we may now consider the single copy, which is well-known
to be an abelian-like point charge in the gauge theory [43]. We may thus consider an abelian
exponent for the SCH operator:

ln(ΦF )→ ig

∮
C
dsFµνM

µν . (4.13)

The only non-zero component of the field strength in this case is

F0r = Q

4πr2 , (4.14)

where Q is the charge. Plugging this into eq. (4.13), we see immediately that an infinitesimal
boost in the (t, r) plane is obtained, directly analogous to the Schwarzschild case. Thus,
the SCH group of the point charge is SO(1, d− 1). It is reasonable to ponder at this point
whether it is always the case that the SCH and holonomy groups match up for gauge theory
and gravity solutions related by the double copy. That this is not the case will be seen in
the following example.

4.2 Taub-NUT space

The Taub-NUT solution, first derived in refs. [69, 70], is a non-asymptotically flat solution
of GR, that has a rotational character to the gravitational field at infinity. This is due to a
so-called NUT charge N , that is present in addition to a Schwarzschild-like mass M . With
a suitable choice of coordinates, the metric may be written in Lorentzian signature as

ds2 = −A(r) [dt+B(θ)dφ]2 +A−1(r)dr2 + C(r)
[
dθ2 +D(θ)dφ2

]
, (4.15)

where for convenience we have defined

A(r) = (r−r+)(r−r−)
r2+N2 , B(θ) = 2N cosθ, C(r) = r2+N2, D(θ) = sin2 θ, (4.16)

and
r± = M ±

√
M2 +N2. (4.17)

The single copy of this solution was first considered in ref. [71], and relied on the fact that
coordinates exist in which the Taub-NUT solution has a double Kerr-Schild form [72]. In the
single copy, the mass M maps to an electric charge Q, as is familiar from the Schwarzschild
case. The NUT charge N , on the other hand, corresponds to a magnetic monopole in the
gauge theory, such that the single copy of the full Taub-NUT solution is an electromagnetic
dyon. This correspondence was considered further in refs. [6, 19], which demonstrated how
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magnetic monopoles in arbitrary non-abelian gauge theories can be mapped to NUT charge
in gravity.

For our present purposes, we want to examine the relationship (if any) between the
SCH group in gauge theory, and the holonomy in gravity. Given that we have already seen
this relationship for a mass term M in gravity, it is convenient to take this to zero, and thus
to consider the metric associated with a pure NUT charge N , which maps to a magnetic
monopole in gauge theory, whose magnetic field may be written as

B = g̃

4πr2 r̂, (4.18)

where g̃ is the magnetic charge, r the spherical radius and r̂ a unit vector in the radial direc-
tion. Note that we have again chosen an abelian gauge group in the single copy for simplicity,
but the generalisation to a non-abelian context is straightforward [6, 19]. From eq. (3.17),
one sees that the only non-zero components of the electromagnetic field strength are

Fθφ = −Fφθ = Br = g̃

4πr2 . (4.19)

Thus, the integral appearing in the SCH operator of eq. (3.16) reduces to∮
C
ds

g̃

2πrM
θφ, (4.20)

such that only the rotation generator in the (θ, φ) plane is turned on. This integral is indeed
non-zero in general. Perhaps the simplest case one may consider is a constant-time curve of
radius r = r0 in the equatorial plane. All factors appearing in the integrand in eq. (4.20) can
then be taken outside the integral, which then simply yields the length of the curve. Taking
all possible curves, the generator M θφ will generate rotations in all possible (Cartesian)
directions, but not boosts. From eq. (4.12), one sees that the rotation algebra closes upon
itself. Thus, we straightforwardly obtain that the SCH group of the magnetic monopole is
SO(3) in four dimensions, and is therefore reduced compared to the electric case of SO(1,3).

Let us now consider whether this matches up with the holonomy group of the Taub-NUT
solution in gravity. Given the metric of eq. (4.15), we may choose the vierbein

e0 = A
1
2 (dt+Bdφ), e1 = A−

1
2dr, e2 = C

1
2dθ, e3 = (CD)

1
2dφ. (4.21)

It will also be useful to have the inverse of these expressions:

dt = A−
1
2 e0 −B(CD)−

1
2 e3, dr = A

1
2 e1, dθ = C−

1
2 e2, dφ = (CD)−

1
2 e3. (4.22)

The spin connection can be obtained from the torsion-free form of Cartan’s structure
equations,

ωab ∧ eb = −dea, (4.23)

along with the metric compatibility condition

ωab = −ωba. (4.24)
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Thus, we first calculate the exterior derivatives of the basis in eq. (4.21), and use eq. (4.22)
to write the results in terms of the vielbein basis:

de0 = (∂rA
1
2 )e1 ∧ e0 + (∂θB)C−1

(
A

D

) 1
2
e2 ∧ e3, (4.25)

de1 = 0, (4.26)

de2 = (∂rC
1
2 )
(
A

C

) 1
2
e1 ∧ e2, (4.27)

de3 = (∂rC
1
2 )
(
A

C

) 1
2
e1 ∧ e3 + (∂θD

1
2 )
( 1
CD

) 1
2
e2 ∧ e3. (4.28)

These can now be used in the Cartan structure equations of eq. (4.23) which, along with
the metric compatibility condition in eq. (4.24), yields the following non-zero components
of the spin connection:

ω0
1 = ω1

0 = (∂rA
1
2 )A

1
2 (dt+Bdφ), (4.29)

ω0
2 = ω2

0 = 1
2(∂θB)

(
A

C

) 1
2
dφ, (4.30)

ω0
3 = ω3

0 = −1
2(∂θB)

(
A

CD

) 1
2
dθ, (4.31)

ω1
2 = −ω2

1 = −(∂rC
1
2 )A

1
2dθ, (4.32)

ω1
3 = −ω3

1 = −(∂rC
1
2 )(AD)

1
2dφ (4.33)

ω2
3 = −ω3

2 = −1
2(∂θB) A

CD
1
2

(dt+Bdφ)− (∂θD
1
2 )dφ. (4.34)

Now by substituting eqs. (4.16) and performing the derivatives we find for Taub-NUT:

ω0
1 = ω1

0 = M(r2 −N2) + 2N2r

(r2 +N2)2 [dt+ 2N cos θdφ] , (4.35)

ω0
2 = ω2

0 = − N sin θ
r2 +N2

√
(r − r+)(r − r−)dφ, (4.36)

ω0
3 = ω3

0 = N

r2 +N2

√
(r − r+)(r − r−)dθ, (4.37)

ω1
2 = −ω2

1 = − r

r2 +N2

√
(r − r+)(r − r−)dθ, (4.38)

ω1
3 = −ω3

1 = − r sin θ
r2 +N2

√
(r − r+)(r − r−)dφ, (4.39)

ω2
3 = −ω3

2 = N(r − r+)(r − r−)
(r2 +N2)2 dt+

[
2N2(r − r+)(r − r−)

(r2 +N2)2 − 1
]

cos θdφ. (4.40)

For the single copy solution of a magnetic monopole above, we considered a loop at constant
time and radius in the equatorial plane θ = π/2. The integral in the holonomy operator is
then simply∮

dxµ(ωµ)abMab = 2
∮
dφ[(ωφ)02M

02+(ωφ)13M
13] = 4π[(ωφ)02M

02+(ωφ)13M
13]. (4.41)
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This yields a boost in the 0-2 plane and a rotation in the 1-3 plane, with coefficients (ωφ)02
and (ωφ)13 respectively, where

(ωφ)02 = N

r2 +N2

√
(r − r+)(r − r−), (4.42)

(ωφ)13 = − r

r2 +N2

√
(r − r+)(r − r−). (4.43)

Note that the boost and rotation planes are mutually orthogonal, and such a transformation
is conventionally referred to as a Lorentz four-screw. Furthermore, our results are in
agreement with those of ref. [73], despite the different choice of vierbein adopted by that
reference. Equations (4.42), (4.43) still correspond to the general Taub-NUT solution. We
wish to consider the double copy of the pure magnetic monopole, i.e. a pure NUT charge,
such that we may set M → 0 in eqs. (4.42), (4.43). The integral of eq. (4.41) then becomes∮

dxµ(ωµ)abMab = 4π
√
r2 −N2

r2 +N2

[
NM02 − rM13

]
. (4.44)

We thus see that the boost generator survives even in the case of a pure NUT charge. By the
arguments of the previous section, this will potentially lead to the holonomy group SO(1,3),
unless the effect of the boost can be removed by performing a similarity transformation on
all group elements. However, upon considering other loops, boosts in different Cartesian
directions are generated. To see this, we may use the fact that the metric for a pure NUT
charge has a single Kerr-Schild form, and thus we may use the expression of eq. (3.41) for
the integrand of holonomy operator. The coefficient of the boost generators, including the
measure, is then

dxµ∂σ(φkµ)M0σ = dxµ [∂σ(φkµ)− ∂µ(φkσ)]M0σ, (4.45)

where we have used the fact that k0 = 1 for this solution [74], and in the second term we
have introduced a total derivative term that integrates to zero around a closed loop. From
eq. (3.29), we may recognise the expression in the closed brackets as the field strength
tensor of a gauge field that is the single copy of a Kerr-Schild graviton. One then finds

dxµ∂σ(φkµ)M0σ = dxµFσµM
0σ

= dxjεijkBkKi

= K · [dx×B] , (4.46)

where we have used eqs. (3.17), (4.10). The physical content of eq. (4.46) can be understood
by considering a loop at constant time and radius, that is tilted relative to the equatorial
plane, as shown in figure 2. The field of a magnetic monopole points radially outwards,
whereas the tangent 3-vector to the curve dx points into the page at the point shown. This
generates a boost in the direction k ∝ dx×B, which is easily seen to be in the increasing
θ direction. Thus, the conclusion reached above for the θ = π/2 case, namely that there is
a boost in the (t, θ) plane, turns out to be general for all such constant time loops. We can
therefore conclude that boosts in all Cartesian directions will be turned on, such that the
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B

k

O

Figure 2. A closed spatial loop tilted with respect to the equatorial plane, where O denotes the
origin. A monopole magnetic field B generates a boost in the direction k.

holonomy group of the pure NUT charge is indeed SO(1,3), in contrast to the SCH group of
the magnetic monopole. Naïvely, one might have expected these groups to match up, given
that there are a well-known set of analogies between electromagnetism and gravity known
as gravitomagnetism. The pure NUT charge is an extremal case of the Taub-NUT solution,
that is most like a magnetic monopole from a purely gravitational point of view. However,
the fact that its holonomy is sensitive to gravitoelectric as well as gravitomagnetic effects
is well-documented [73], and arises from the fact that spacelike hypersurfaces in the NUT
solution have a nonzero extrinsic curvature. This is not the case in the single copy gauge
theory, which lives in Minkowski space.9

4.3 Self-dual solutions

The above examples probe different types of behaviour of the SCH operator. For the
Schwarzschild/point charge system, neither the SCH nor the holonomy group reduce from
their general form of SO(1,3). For the NUT/monopole solutions, the SCH group does indeed
reduce, but the holonomy does not. In this section, we demonstrate another possibility.
Namely, that the SCH and holonomy groups both reduce to mutually isomorphic subgroups
of SO(1,3). We will explicitly consider the case of self-dual solutions in gauge theory and
gravity. In gravity, one may decompose the Riemann tensor into self-dual and anti-self-dual
parts, given respectively by

R±µνρλ = (P±)αβµνRαβρλ, (4.47)

where we have defined the projectors

(P±)αβµν = 1
2
(
δαµ δ

β
ν − δαν δβµ ±

√
gεαβµν

)
, (4.48)

with g denoting the determinant of the metric. Note also that we work in Euclidean signature
throughout this section only. We may use Stokes’ theorem to rewrite the holonomy operator

9The fact that both electric and magnetic-like generators are turned on in gravity can also be understood
in terms of the intrinsic non-linearity of GR compared to abelian gauge theory. We are grateful to the
anonymous referee for raising this point.
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of eq. (2.19) as [31]

Φω = P exp
(
− i2

∫∫
Σ
dΣµν RcdµνM

cd
)

= P exp
(
− i2

∫∫
Σ
dΣµν (R+

ρλµν +R−ρλµν)Mρλ
)
, (4.49)

where Σ is the area bounded by the curve C, with area element dΣµν , and we have also
converted vielbein indices to coordinate frame indices in the second line. Note that Σ is
simply connected, and therefore the holonomy group reduces to the restricted holonomy
group Hol0(∇), which is only equal to the full group Hol(∇) when the fundamental homotopy
group π1 is trivial. The second term is zero by definition for a self-dual solution, in which
case the holonomy operator becomes

Φω = P exp
(
− i2

∫∫
Σ
dΣµν (P+)αβρλRαβµνM

ρλ
)

= P exp
(
− i2

∫∫
Σ
dΣµν Rαβµν(M+)αβ

)
, (4.50)

where we have defined two linearly independent sets of Lorentz generators via

(M±)αβ = (P±)αβρλM
ρλ. (4.51)

This amounts to the known lie algebra isomorphism so(4) ' su(2)⊕ su(2), where each su(2)
subgroup corresponds to the generators (M±)αβ respectively. It follows that for self-dual
solutions, the holonomy group reduces to SU(2), and similar arguments can be applied to
the case of anti-self-dual solutions.

The single copy of a self-dual gravity solution is also self-dual in the gauge theory [75].
One may define the (anti-)self-dual parts of the field strength as follows:

F±µν = (P±)µν
αβ
Fαβ , (4.52)

where one uses the projectors of eq. (4.48), but where now the metric corresponds to that
of Euclidean flat space (albeit potentially in a curvilinear coordinate system, so that one
must keep the factor of √g). Self-dual solutions are defined by F−µν = 0, so that the SCH
operator becomes

exp
[
ig

∮
C
dsF+

µνM
µν
]

= exp
[
ig

∮
C
ds(P+)µν

αβ
FαβM

µν
]

= exp
[
ig

∮
C
dsFαβ(M+)αβ

]
. (4.53)

Again only half of the generators are turned on, so that the SCH group reduces to SU(2).
The self-dual sector thus provides an interesting example, in which the SCH and holonomy
groups reduce, and are isomorphic. Furthermore, it is interesting to ponder whether the
arguments of this section generalise to manifolds of exotic holonomy in higher dimensions,
such as the well-known cases with holonomy groups G2 and Spin(7). It is not known how to
explicitly single copy such manifolds (see e.g. ref. [76] for a related discussion), but seeking
Yang-Mills solutions with a suitable SCH group might be a good place to start.
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5 Discussion

In this paper, we have considered the holonomy group in gravity, which consists of the
group of transformations acting on vectors that have been parallel transported around a
closed curve. The analogue of this in a (non)-abelian gauge theory is the Wilson loop,
which has a physical interpretation in terms of the phase experienced by a scalar particle
traversing a closed contour. Attempts to match up the physical properties of the holonomy
and Wilson line — or to interpret the holonomy operator itself as a gravitational Wilson
loop — have been made before [21–24, 26], with the conclusion that the gravitational
holonomy should not be thought as the being the correct physical analogue of the gauge
theory Wilson line. Indeed, a different gravitational Wilson line exists, which corresponds
to the phase experienced by a scalar particle [27–29, 31].10 This begs the question of what
the correct gauge theory analogue of the gravitational holonomy is. To investigate this we
have used the single copy. We showed that the gravitational holonomy arises naturally
in the description of a spinning particle interacting with a gravitatonal field. The single
copy of this situation is well-known to be a spinning particle interacting with a gauge field.
This allowed us to construct a generalised Wilson line operator in the gauge theory, which
gives the phase (non-diagonal in spin space) experienced by a spin-1 test particle having an
electric and magnetic dipole moment.

Having found the single copy of the holonomy operator — which we dubbed the SCH
operator — we then commenced an exploration of its properties. We looked at certain
special cases in which the SCH group reduces, which includes the case of a pure magnetic
monopole, and also solutions which are self-dual. For the former, the SCH group reduces
even though the gravitational holonomy of the monopole’s double copy counterpart (a pure
NUT charge) does not.

There are a number of avenues for further work. Firstly, one could apply the SCH
operator to different Yang-Mills solutions, and see what general conclusions can be reached
about their possible SCH groups. It would also be interesting to look at how to match the
holonomy and its single copy in gauge and gravity theories more generally, which might help
in extending the classical double copy to more complicated cases than are currently possible.
Thirdly, it would be nice if the SCH operator could shed light on non-perturbative aspects
of the double copy. In particular, we note that the SCH operator is matrix-valued both in
colour and spin space. It thus rotates vectors both in the internal space associated with the
colour degrees of freedom, and also in the tangent space of the manifold, which is associated
with kinematic information. Might the single copy of the holonomy then have something to
do with BCJ duality [77], which links colour and kinematics in an intriguing way?

10The transformation groups spanned by the gauge theory holonomy and the gravitational Wilson line
will be different in general. Interestingly, however, they match up for the case of abelian gauge theory, given
that both the abelian gauge transformations and gravitational phases correspond to the group U(1). We
thank the anonymous referee for this observation.
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A Derivation of the Kerr-Schild spin connection

In this appendix, we provide a derivation of the form of the spin connection in Kerr-Schild
coordinates, as reported in eq. (3.32). The spin connection satisfies Cartan’s first structure
equation in the absence of torsion,

dea + ωac ∧ ec = 0. (A.1)

In tensorial language this takes the form

∂µe
a
ν − ∂νeaµ + (ωµ)aν − (ων)aµ = 0, (A.2)

were we have contracted the vierbein with the spin connection. Multiplying by a factor of
e µ
b e

ν
a , one finds

(∂beaν)e ν
a − (∂beaµ)e µ

b + (ωb)ac − (ωc)ab = 0. (A.3)

Next, one can substitute the explicit forms of the Kerr-Schild vierbein given in eq. (3.32),
and use the null condition from eq. (3.28), to obtain

∂be
a
c − ∂ceab + (ωb)ac − (ωc)ab −

1
4φ

2kakµ [kc∂bkµ − kb∂ckµ] = 0. (A.4)

Upon lowering the index a, one may cyclically permute the indices (a, b, c) and consider the
combination (a, b, c)− (b, c, a)− (c, a, b) = 0, which yields

(ωµ)bc = (ωa)bceaµ = (∂ceab − ∂beac) eaµ + 1
4φ

2kµk
ν (kc∂bkν − kb∂ckν) , (A.5)

where we have also multiplied the entire equation by eaµ to turn a into a spacetime
index. One may again use eqs. (3.32), (3.28) for the vierbein in the first term, after which
cancellations occur, leading to

(ωµ)ab = ∂beaµ − ∂aebµ. (A.6)

This agrees with a similar result in ref. [78], and can also be obtained by plugging the
Kerr-Schild vierbein of eq. (3.32) into eq. (2.11).
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