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1 Introduction

An important part of the physics programme conducted at the Large Hadron Collider
(LHC) aims at extracting Standard Model parameters by measuring precisely particular
processes. This requires the definition of tailored event selections and the subtraction of
undesirable background processes. In the presence of irreducible backgrounds, this picture
gets complicated through non-vanishing interferences between the signal and background
processes. For vector-boson scattering (VBS), the irreducible background can be over-
whelming which warrants a detailed analysis of both the signal and background in order
to fully exploit its physics potential [1, 2].

The present article continues a series of studies [3–6] aiming at describing not only
VBS processes but also their irreducible backgrounds with next-to-leading-order (NLO)
accuracy. Given that the signal and background are connected through interferences, a
physical definition of a signal and background separately is not possible (even when using
exclusive cuts to enhance the electroweak (EW) component). At NLO, the situation be-
comes even more complicated as a separation of signal and background in an IR-finite way
must necessarily rely on approximations [7].

On top of these considerations, there are more pragmatic reasons to investigate in
detail both the EW and QCD components of VBS at full NLO accuracy. While for the
same-sign W channel the signal-to-background ratio is about 8/1, it is only of the order of
1/2 for the ZZ case. In addition, given the smallness of the cross sections it is critical to
know all contributions, including the loop-induced contribution.

Important steps towards describing pp→ e+e−µ+µ−jj+X at full NLO accuracy have
already been taken, especially regarding NLO QCD corrections. These are known for the
EW component [8] in the VBS approximation and have been implemented in the POWHEG
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BOX framework [9] to also include parton-shower (PS) corrections [10]. In addition, NLO
QCD corrections to the QCD component are known [11] and can in principle be obtained
at NLO QCD+PS accuracy from public multi-purpose Monte Carlo generators such as
MadGraph5_aMC@NLO [12] or Sherpa [13]. The full NLO corrections of orders O

(
α7)

and O
(
αsα

6) have been computed in ref. [6] along with the loop-induced contribution of
order O

(
α4

sα
4). Finally, in ref. [14], results for loop-induced ZZ production with up to 2 jets

merged and matched to parton showers have been presented. Therefore, at NLO level the
only missing piece is the order O

(
α2

sα
5), which is for simplicity sometimes referred to as EW

corrections to the QCD component in the following. With the present publication we fill
this gap by presenting for the first time the full NLO corrections to pp → e+e−µ+µ−jj+X

at the LHC in a unique setup.
Previous works [3–6] have put a strong emphasis on EW corrections of order O

(
α7).

These are exceptionally large for EW corrections and are an intrinsic feature of VBS at
the LHC [3]. They are even the largest NLO contribution for the same-sign WW (ss-WW)
channel which has thus motivated their implementation in the POWHEG BOX [15]. Such a
hierarchy of the NLO contributions is not only due to the general characteristics of VBS
but also to the large signal-over-background ratio in the ss-WW channel. In other cases,
like for vector-boson scattering into ZZ where the background is large, such a hierarchy
does not necessarily hold. In this article we study these implications and give new insights
in VBS and its irreducible background at the LHC.

The results presented in this article should be of great interest for experimental col-
laborations. In particular, the ATLAS and CMS collaborations have already observed the
EW ZZjj production [16–18]. Along with state-of-the-art theoretical predictions, upcoming
data will allow for deeper analyses of VBS at the LHC.

This article is structured as follows: in section 2 the process under consideration is
introduced. In section 3 the results are presented and analysed in detail. Finally, section 4
contains a summary and concluding remarks.

2 Description of the calculation

The present article complements ref. [6] by providing the two missing NLO contributions
of orders O

(
α2

sα
5) and O(α3

sα
4). Therefore, in the following, we often refer to this refer-

ence, and the interested reader is invited to look into it. For the sake of simplicity some
information is not repeated here as we focus on the salient features of the newly computed
contributions.

2.1 The process

The physical process under investigation is

pp→ e+e−µ+µ−jj +X (2.1)

at the LHC. In the same way as all processes containing VBS contributions, its cross section
possesses three leading-order (LO) components: an EW one of order O

(
α6) including VBS,

an interference of order O
(
αsα

5), and a QCD contribution of order O
(
α2

sα
4). Exemplary
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Figure 1. Examples of tree-level Feynman diagrams: EW (left) and QCD (middle and right).

Feynman diagrams of order O
(
g6) and O(g2

s g
4) are shown in figure 1. At order O

(
g2

s g
4),

besides partonic processes involving four quarks, also processes with two quarks and two
gluons appear (see figure 1c) with all possible crossings of gluons and quarks.

At NLO, there are four orders contributing: O
(
α7), O(αsα

6), O(α2
sα

5), and O(α3
sα

4).
The first two have been computed without approximations in ref. [6]. The latter has been
evaluated in ref. [11], while the order O

(
α2

sα
5) is calculated here for the first time. Given

that the first two orders are discussed in detail in ref. [6], the discussion in the following is
focused on the two remaining orders, which receive contributions from partonic processes
involving four quarks as well as from those with two quarks and gluons.

The order O
(
α2

sα
5) is made of corrections of both QCD and EW types [as the or-

der O
(
αsα

6)]. In particular, it features both types of real corrections: photon emissions
and emissions of QCD partons. The first contribution entails squared matrix elements of
photon-emission diagrams of order O

(
g2

s g
5) as shown in figure 2a. The second one is made

of interferences of QCD real matrix elements of orders O
(
gsg

6) (shown in figure 2b) and
O
(
g3

s g
4) (shown in figure 2c). Their infrared (IR) singularities are compensated by the

corresponding virtual corrections, which also receive two types of contributions. The first
one consists of one-loop amplitudes of order O

(
g2

s g
6) (as shown in figure 3a) interfered

with tree-level amplitudes of order O
(
g2

s g
4) (figure 1b). The second type is furnished by

one-loop amplitudes of order O
(
g4

s g
4) (as shown in figures 3b) interfered with tree-level

amplitudes of order O
(
g6) (figure 1a). We note that the two types of NLO corrections

cannot be defined in an IR-finite way on the basis of Feynman diagrams in a full com-
putation [4], i.e. without relying on any approximations [7]. For instance, the diagram in
figure 3a can be viewed as an EW correction to a LO diagram of order O

(
g2

s g
4) or as a

QCD correction to a LO diagram of order O
(
g6).

As explained above, at the order O
(
α2

sα
5), some of the real corrections are made of

a photon emission of a LO QCD amplitude. It also means that in the final state one
can have a photon as well as one (or two) gluon(s). In the case where a hard photon is
recombined with a soft gluon in a single jet, the QCD singularity associated to the soft
gluon is not accounted for by the QED subtraction term. To avoid such configurations, a
veto is typically applied on jets that have a too large photon-jet energy fraction

zγ = Eγ
Eγ + Ea

, (2.2)

where Eγ and Ea are the energy of the photon and the QCD parton a, respectively. In the
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Figure 2. Examples of real tree-level Feynman diagrams: photon emission (left) and gluon emission
off LO EW (middle) and QCD diagrams (right).
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Figure 3. Examples of virtual one-loop Feynman diagrams: mixed EW–QCD loop (left) and
purely QCD loops (middle and right).

present case, the numerical limit has been chosen to be zγ < zγ,cut = 0.7. By cutting into
the collinear region, IR-safety is lost but can be restored upon including the nonperturbative
fragmentation of quarks into photons via the fragmentation function [19–22]. Schematically,
the NLO cross section in the relevant order can be written as

dσNLO =
∫
n+1

θ(zγ,cut − zγ) [dσreal − dσdipole] +∫
n

[
dσvirtual +

∫
1

(
dσdipole − dσγ coll

dipole(zγ,cut)
)
− dσfrag(zγ,cut)

]
, (2.3)

where the index at the integrals denotes the number of particles in the corresponding
phase spaces. The modification of the dipoles due to the rejection of hard photons is thus
encoded in

dσγ coll
frag (zγ,cut) = θ(zγ − zγ,cut)dσdipole. (2.4)

In addition, the contributions of final-state quarks fragmenting into a hard photon are
accounted for by

dσfrag(zγ,cut) =
∑
i

dσBorn

∫ 1

zγ ,cut
dzγ Dqi→γ(zγ), (2.5)

where the sum runs over all the final state quarks and Dqi→γ is the quark-to-photon
fragmentation function.
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For the present computation, the fit parameters entering the fragmentation function
have been taken from ref. [23] and read

µ0 = 0.14GeV, C = −13.26. (2.6)

Finally, the order O
(
α3

sα
4) is made of NLO QCD corrections only. This means that it

contains squares of amplitudes with a gluon attached to the O
(
g2

s g
4) diagrams as shown in

figure 2c, furnishing the real corrections of order O
(
α3

sα
4). The virtual contributions are

made of one-loop amplitudes of order O
(
g4

s g
4) (as shown in figures 3b and 3c) interfered

with tree-level amplitudes of order O
(
g2

s g
4) (figure 1b).

Note that we do not consider contributions with external bottom quarks in any of the
LO or NLO contributions. These are small or can be removed in experimental analyses
with the help of bottom-jet vetoes [5, 6].

2.2 Details and validation

The results presented here have been produced using the Monte Carlo program MoCaNLO
and the matrix-element generator Recola. The program MoCaNLO is able to com-
pute arbitrary processes within the SM at NLO QCD and EW accuracy. In order to
obtain a fast integration for high-multiplicity processes with many resonances, it takes
advantage of phase-space mappings similar to the ones of refs. [24–26]. On the other
hand, Recola [27, 28] is a general tree and one-loop matrix-element provider. It re-
lies on the Collier library [29, 30] that provides numerically the one-loop scalar [31–34]
and tensor integrals [35–37]. This combination has already shown to work well for high-
multiplicity processes (2 → 6 and beyond). Many of these applications concerned VBS
processes [3–7, 38]. During the course of these studies, the set of tools was verified against
BONSAY+OPENLOOPS [5] for WZ scattering, the Monte Carlo BBMC for same-sign W
scattering [3, 4], and against Powheg [15] for same-sign W scattering at order O

(
α7). For

non-VBS processes, it was checked against Sherpa in refs. [39, 40] and a multitude of tools
in ref. [41] for di-boson production at NLO EW.

Finally, in ref. [6], the partonic processes ud → e+e−µ+µ−ud, us → e+e−µ+µ−dc,
uu → e+e−µ+µ−uu, and uc̄ → e+e−µ+µ−ds̄ at order O

(
α7) were successfully compared

between MoCaNLO+Recola and BBMC+Recola. Also, selected contributions of
order O

(
αsα

6) were found in agreement within integration errors. For the present article,
about 10 representative partonic channels were confirmed to agree between MoCaNLO
and BBMC at the NLO orders O

(
α2

sα
5) and O(α3

sα
4) within statistical errors at the level

of a few per cent.
In MoCaNLO and BBMC, the subtraction of IR divergences in the real radiation

is realised with the help of the Catani-Seymour dipole formalism [42–44]. Within this
method, it is possible to vary the αdipole parameter [45], which restricts the subtraction to
IR-singular regions of the phase space. Obtaining consistent results with different values
αdipole ensures the correctness of the subtraction mechanism. We have therefore performed
two full computations of all NLO orders using MoCaNLO+Recola with αdipole = 1 and
αdipole = 10−2. Full statistical agreement has been found, and the results presented here
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are the ones obtained with αdipole = 10−2. Also, for the computation of order O
(
α2

sα
5) two

different modes of Collier have been successfully compared. The results presented here
have been obtained with the COLI mode throughout. In all computations, the complex-
mass scheme [25, 46–48] is utilised.

Finally, the implementation of the fragmentation function closely follows refs. [19–22].
Its implementation in MoCaNLO has been validated against BBMC which was used
in ref. [22] for the computation of the EW corrections to pp → `+`−jj + X. Also, this
implementation was employed in ref. [40] for pp→ e+νeµ

−ν̄µj+X where it was compared
against an approximate treatment.

3 Numerical results

3.1 Input parameters and event selection

The input parameters and event selection used in the present article are exactly the same
as those in ref. [6]. For completeness we reproduce them here.

Input parameters. The calculation is done for LHC characteristics and a centre-of-
mass energy of 13TeV. The set of parton distribution functions (PDF) NLO NNPDF-3.1
Lux QED with αs(MZ) = 0.118 [49, 50] and with fixed NF = 5 flavour scheme is used
throughout. All collinear initial-state splittings are treated by the MS redefinition of the
PDF. The PDF set is interfaced to our Monte Carlo programs using LHAPDF [51, 52].

The renormalisation and factorisation scales, µren and µfac, are chosen to be

µ0 = √pT,j1 pT,j2 (3.1)

for all contributions, where j1 and j2 are the two hardest (in pT) identified jets (tagging
jets). This is the scale choice that is usually used for VBS processes in the literature and
that has been also employed in ref. [6]. In cross sections and differential distributions, the
scale uncertainty is obtained with the standard 7-point scale variation, i.e. observables are
evaluated for the 7 pairs of renormalisation and factorisation scales

(µren/µ0, µfact/µ0) = (0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2), (3.2)

and the scale variation is determined from the resulting envelope.
The electromagnetic coupling is obtained through the Gµ scheme [53] via

α =
√

2
π
GµM

2
W

(
1− M2

W
M2

Z

)
with Gµ = 1.16638× 10−5 GeV−2, (3.3)

where Gµ is the Fermi constant. The numerical values of the masses and widths used as
input in the numerical simulation read [54]

mt = 173.0GeV, Γt = 0GeV,
MOS

Z = 91.1876GeV, ΓOS
Z = 2.4952GeV,

MOS
W = 80.379GeV, ΓOS

W = 2.085GeV,
MH = 125.0GeV, ΓH = 4.07× 10−3 GeV. (3.4)
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Everywhere, it is assumed that mb = 0GeV and as mentioned above no partonic channels
with external bottom quarks are considered. For the massive gauge bosons (W and Z),
the pole masses and widths utilised in the calculation are obtained from the on-shell (OS)
values [55] using

MV = MOS
V√

1 + (ΓOS
V /MOS

V )2
, ΓV = ΓOS

V√
1 + (ΓOS

V /MOS
V )2

. (3.5)

Event selection. The event selection of the present computation is largely inspired from
the CMS analyses [17, 18]. The process features four charged leptons and two jets in the
final state. Quarks and gluons with pseudorapidity |η| < 5 are clustered into jets with the
anti-kT algorithm [56] using R = 0.4. Following the same method and radius parameter,
the photons are recombined with the final-state jets or leptons.

The four leptons ` must fulfil

pT,` > 20GeV, |η`| < 2.5, ∆R``′ > 0.05, M`+`′− > 4GeV, (3.6)

where ` and `′ are any leptons while `+ and `′− are oppositely charged leptons regardless
of their flavour. On top of these cuts, the invariant masses of the leptonic decay products
of the Z bosons are restricted to

60GeV < M`+`− < 120GeV, ` = e, µ. (3.7)

Once the jet clustering is performed, at least two jets still have to fulfil the criteria

pT,j > 30GeV, |ηj| < 4.7, ∆Rj` > 0.4. (3.8)

Such jets are then denoted as identified jets. Out of these, the two with the highest
transverse momenta are called tagging jets.

In our default setup (inclusive setup for short) the tagging jets have to fulfil the con-
straint

Mj1j2 > 100GeV. (3.9)

We consider in addition a setup (VBS setup) where the last cut is replaced by a stronger one

Mj1j2 > 500GeV. (3.10)

3.2 Cross sections

In this section, various cross sections at LO and NLO accuracy are discussed. We start by
recalling the LO cross sections computed in ref. [6] in table 1. As opposed to ref. [6], here
the sum comprises only the contributions of orders O

(
α6), O(αsα

5), and O(α2
sα

4), while
the loop-induced contribution of order O

(
α4

sα
4) from gg → e+e−µ+µ−gg does not enter

the sum and is only shown for completeness. Contributions of partonic channels with four
external quarks, σ4q

LO, and of those involving gluons, σ2q2g
LO , which enter at order O

(
α2

sα
4),

are shown separately as well. When referring to relative corrections in the following,
they are always normalised to the above LO sum, and the loop-induced contribution is
not included in the NLO predictions. Table 1 clearly shows that the QCD contribution
of order O

(
α2

sα
4) is dominating and reaches 91% of the LO sum for Mj1j2 > 100GeV.

When applying the tighter VBS event selection, Mj1j2 > 500GeV, it is reduced to 63%,
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Order O
(
α6) O

(
αsα

5) O
(
α2

sα
4) Sum O

(
α4

sα
4)

Mj1j2 > 100GeV
σ4q

LO[fb] 0.097683(2) 0.008628(1) 0.22138(1) 0.32770(1) —
σ2q2g

LO [fb] — — 0.84122(5) 0.84122(5) 0.1210(6)
σLO[fb] 0.097683(2) 0.008628(1) 1.06260(5) 1.16891(5) 0.1210(6)

fraction[%] 8.36 0.74 90.91 100 10.35
Mj1j2 > 500GeV
σ4q

LO[fb] 0.073676(3) 0.005567(1) 0.046230(4) 0.125470(4) —
σ2q2g

LO [fb] — — 0.08992(2) 0.08992(2) 0.0135(3)
σLO[fb] 0.073676(3) 0.005567(1) 0.13614(2) 0.21539(2) 0.0135(3)

fraction[%] 34.21 2.58 63.21 100 6.24

Table 1. LO cross section of the individual orders O
(
α6), O(αsα

5), O(α2
sα

4), and their sum
for pp → e+e−µ+µ−jj + X at 13TeV CM energy. Contributions of partonic channels with four
external quarks, σ4q

LO, and those with two external quarks and two external gluons, σ2q2g
LO , are

shown separately as well. The loop-induced contribution of O
(
α4

sα
4) is also listed but does not

enter the sum of contributions. Each contribution is given in fb and as fraction relative to the
sum of the three contributions (in per cent). While the numbers in the upper part of the table are
for the inclusive setup, those in the lower part are for the VBS setup. The digits in parentheses
indicate integration errors.

demonstrating hence the impact of such cuts in enhancing the EW contribution. While
the partonic channels involving quarks and gluons contribute 79% at O

(
α2

sα
4) and 72% of

the LO sum for the inclusive case, their share is diminished to 66% and 42%, respectively,
for the VBS setup. The tighter VBS cuts also reduce the relative contribution of the loop-
induced process from 10% down to 6%. Including 7-point scale variations, the full LO cross
section comprising the orders O

(
α6), O(αsα5), and O(α2

sα
4) reads

σLO = 1.16879(5)+29.1%
−20.7% for Mj1j2 > 100GeV,

σLO = 0.21539(2)+26.0%
−18.3% for Mj1j2 > 500GeV. (3.11)

With 30% the LO scale dependence has the typical order of magnitude for a cross section
of order O

(
α2

s
)
. It is somewhat reduced for Mj1j2 > 500GeV owing to the larger fraction

of the EW contribution.
The full NLO cross section, including orders O

(
α7), O(αsα

6), O(α2
sα

5), and O(α3
sα

4),
reads with 7-point scale variations

σNLO = 1.040(2)+0.99%
−9.27% for Mj1j2 > 100GeV,

σNLO = 0.194(1)+0.64%
−5.40% for Mj1j2 > 500GeV, (3.12)

i.e. the scale dependence is reduced by more than a factor 3 when including NLO correc-
tions.
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Order O
(
α7) O

(
αsα

6) O
(
α2

sα
5) O

(
α3

sα
4) Sum

Mj1j2 > 100GeV

∆σ4q
NLO[fb] −0.01557(4) 0.0231(1) −0.0162(1) −0.0444(7) −0.0531(7)

∆σ2q2g
NLO[fb] — — −0.0673(1) −0.0081(18) −0.0754(18)

∆σNLO[fb] −0.01557(4) 0.0231(1) −0.0835(1) −0.0525(19) −0.1285(19)
∆σNLO/σLO[%] −1.33(1) 1.98(1) −7.14(1) −4.49(16) −10.99(16)

Mj1j2 > 500GeV

∆σ4q
NLO[fb] −0.01299(5) 0.00008(25) −0.00476(9) 0.0016(3) −0.0160(4)

∆σ2q2g
NLO[fb] — — −0.00926(3) 0.0041(6) −0.0051(7)

∆σNLO[fb] −0.01299(5) 0.00008(25) −0.01402(9) 0.0058(7) −0.0211(8)
∆σNLO/σLO[%] −6.03(2) 0.04(11) −6.51(4) 2.69(34) −9.81(36)

Table 2. NLO corrections for the process pp → e+e−µ+µ−jj + X at the orders O
(
α7), O(αsα

6),
O
(
α2

sα
5), O(α3

sα
4), and for the sum of the four NLO corrections. Contributions of partonic channels

involving four quarks, σ4q
LO, and those involving two quarks, σ2q2g

LO , are shown separately. The contri-
bution ∆σNLO corresponds to the absolute correction for the central scale choice, while ∆σNLO/σLO
gives the relative correction normalised to the sum of all LO contributions at the central scale. The
absolute contributions are expressed in femtobarn while the relative ones are expressed in per cent.
The statistical uncertainty from the Monte Carlo integration on the last digit is given in paren-
theses.

In table 2 the NLO corrections of orders O
(
α7), O(αsα

6), O(α2
sα

5), and O
(
α3

sα
4)

are shown separately, split into contributions from four-quark processes and gluon-quark
processes where appropriate. The relative corrections are normalised to the sum of the LO
contributions of orders O

(
α6), O(αsα

5), and O(α2
sα

4). As for table 1, two setups with
Mj1j2 > 100GeV and Mj1j2 > 500GeV are displayed. For the case Mj1j2 > 100GeV, the
largest correction is the one of order O

(
α2

sα
5) with −7.1%, dominated by the EW correc-

tions to the LO QCD-induced contribution, followed by the one of order O
(
α3

sα
4) with

−4.5%, the corresponding QCD corrections. The corrections of order O
(
α7) and O(αsα

6)
are on the other hand between 1% and 2%. The picture changes when imposing the restric-
tion Mj1j2 > 500GeV. Then, the two largest NLO contributions are the EW corrections
of orders O

(
α7) and O

(
α2

sα
5) being both negative and between −6% and −6.5%. The

contributions of order O
(
α2

sα
5) are dominated by partonic channels involving two quarks,

which amount to 80% for the inclusive setup and 66% for the VBS setup. At O
(
α3

sα
4), the

four-quark channels dominate for Mj1j2 > 100GeV, while the gluon-quark channels take
over for Mj1j2 > 500GeV. In the sum of all NLO corrections contributions from four-quark
and gluon-quark channels are of similar size.

The hierarchy of NLO contributions is quite different from the one in pp→µ+νµe+νejj+
X, which was computed in ref. [4]. There, the largest NLO corrections were those of order
O
(
α7) with−13.2% followed by those of orderO

(
αsα

6) with−3.5%, while the contributions
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of orders O
(
α2

sα
5) and O(α3

sα
4) were subleading and below 1%. This different hierarchy

between the NLO corrections for the two signatures is linked to the rather different LO
hierarchy between the EW and QCD components, which originates to a considerable extent
from the appearance of partonic channels involving gluons, which are not present for ss-
WW. While the EW component of order O

(
α6) represents 86.5% of the total LO in the

case of ss-WW, it contributes only 34.2% in the case of ZZ for the most exclusive setup.
The LO hierarchy strongly determines the one of the NLO corrections. For example, when
normalising the corrections of order O

(
α7) for VBS into ZZ to the LO EW contribution of

order O
(
α6), one obtains −17.6% in line with the results of refs. [3–5].

Interestingly, the corrections of order O
(
α2

sα
5) are sizeable and when normalised to the

order O
(
α2

sα
4) they are about −8% and −10% for Mj1j2 > 100GeV and Mj1j2 > 500GeV,

respectively. Such a characteristics has not been observed in the case of ss-WW where the
O
(
α2

sα
5) corrections, with the same normalisation, are only of the order of 0.2%. The reason

of this different behaviour is revealed when considering the separate contributions to the
O
(
α2

sα
5) corrections, namely EW corrections to the LO O

(
α2

sα
4) contributions and QCD

corrections to the LO O
(
αsα

5) interferences. While this split is obvious for real radiation
contributions, it cannot be unambiguously done for virtual corrections [4]. For the sake of
this analysis, we count all contributions involving EW bosons in the loop (see figure 3a)
as EW corrections, while QCD corrections include only diagrams with merely gluons and
quarks in the loop (see figures 3b and 3c). For ss-WW the EW O

(
α2

sα
5) corrections in

fact amount to −12.3% of the LO O
(
α2

sα
4) contributions. These corrections are, however,

almost completely cancelled by the O
(
α2

sα
5) corrections of QCD origin resulting in a net

correction below a per cent. This cancellation is possible since the LO interference of order
O
(
αsα

5) reaches 30% of the LO QCD contribution. For VBS into ZZ, on the other hand, the
LO interference is only 4% and 0.8% of the LO QCD contribution for Mj1j2 > 100GeV and
Mj1j2 > 500GeV, respectively. As a result, the NLO QCD corrections of order O

(
α2

sα
5) are

small and reduce the NLO EW corrections to the LO O
(
α2

sα
4) only slightly from −8.2% to

−7.9% forMj1j2 > 100GeV and from −11.6% to −10.3% orMj1j2 > 500GeV. The situation
is different for some partonic channels (see below). Note also that for ZZ the behaviour of
the O

(
αsα

5) corrections is largely determined by the partonic channels involving gluons,
which are absent for ss-WW.

Some qualitative understanding of the NLO EW corrections of order O
(
α2

sα
5) can

be obtained from an high-energy approximation of the virtual corrections in the pole ap-
proximation, i.e. for the process pp → ZZjj → e+e−µ+µ−jj + X. To keep it simple, we
restrict the discussion to the dominant contributions of left-handed quarks and transverse
Z bosons and consider only the double EW logarithms, the collinear single EW logarithms,
and the single EW logarithms resulting from parameter renormalisation. We do not in-
clude the angular-dependent leading logarithms, which have a much more complicated
structure. Based on ref. [57], we find for the EW correction factor to the cross section of
order O

(
α2

sα
4) for qq → ZZqq (nq = 2) and qg→ ZZqg (nq = 1) in the leading-logarithmic

approximation:

δLL = α

4π
{
−2CEW

W Fq − 2nqCEW
q

}
ln2
(
Q2

M2
W

)
+ α

4π6nqCEW
q ln

(
Q2

M2
W

)
. (3.13)

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
8

The constants are given by

CEW
W = 2

s2
w
≈ 8.97, CEW

q = 1 + 26c2
w

36c2
ws

2
w
≈ 3.40, (3.14)

and

Fq =
I3

w,q(1− s2
w)

I3
w,q − s2

wQq
, Fu ≈ 1.106, Fd ≈ 0.913, (3.15)

where I3
w,q and Qq denote the weak isospin and relative charge of the quark q, respectively,

while sw and cw stand for the sine and cosine of the EW mixing angle. The correction
factor (3.13) also applies unchanged to processes resulting from crossing symmetry and/or
if one of the quark pairs is replaced by a different quark pair with the same quantum
numbers, e.g. u→ c. For processes involving quarks with different quantum numbers, the
simple formula (3.13) does not hold, however, in the limit of vanishing hypercharge it is
valid for arbitrary quark combinations with Fq = 1. Since the correction factor (3.13) only
describes EW corrections to the LO cross section of order O

(
α2

sα
4), this approximation

does not apply if QCD corrections to the LO interference of order O
(
αsα

5) are sizeable,
which is usually the case if the LO EW cross section of order O

(
α6) is comparable or larger

than the QCD one of order O
(
α2

sα
4). This happens, in particular, for the partonic processes

dd̄ → e+e−µ+µ−uū, uū → e+e−µ+µ−dd̄, du → e+e−µ+µ−du, and d̄ū → e+e−µ+µ−d̄ū,
where the contributions of orders O

(
α2

sα
4) and O(α6) are comparable.

The only free parameter of (3.13) is the scale Q. While for a 2 → 2 process one
usually picks the centre-of-mass energy, a 2 → 4 process involves many more scales. As
a typical scale, we choose the invariant mass of the ZZ pair, Q = MZZ = M4`, which is
the scale appearing in the leading double logarithms multiplied with the largest coupling
factor. Determining the average of M4` from LO distributions, yields values for Q in
the range 330–470GeV for all types of processes in the inclusive setup. Using Q = M4`
in (3.13) event by event results in correction factors that agree with the full calculation
within about 2% for all partonic processes with external gluons, which dominate the cross
section at O

(
α2

sα
4), and within 3% for most four-quark processes. In the VBS setup, we

find average values for Q within 390–550GeV for four-quark processes and 370–530GeV
for gluon-quark processes as well as correction factors δLL that agree with the full relative
corrections within about 3% for the gluonic processes and within 4% for most four-quark
processes. The approximation fails completely for the four-quark processes with sizeable
O
(
α6) contributions mentioned at the end of the preceding paragraph. Besides those, the

approximation is worse than the above-stated figures only for dd̄→ e+e−µ+µ−cc̄ and uū→
e+e−µ+µ−ss̄, owing to somewhat larger QCD corrections to the EW LO interference, as well
as for uu→ e+e−µ+µ−uu, which has the highest scales M4` among all partonic processes.
In general, the logarithmic approximation predicts larger corrections for processes involving
up-type quarks as compared to those with down-type quarks, which is also observed in
the full calculation. In summary, the simple approximation (3.13) with the scale choice
Q = M4` reproduces the O

(
α2

sα
5) corrections to the fiducial cross section within a few per

cent for all partonic processes that are dominated by the LO O
(
α2

sα
4) contributions and

for the sum of all partonic channels.
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3.3 Differential distributions

In this section, results for differential distributions at 13TeV are discussed for the inclusive
setup defined in section 3.1. In the first part, we display the contributions of the different
orders separately. In the upper panels of figures 4–7, all LO contributions of orders O

(
α6),

O
(
αsα

5), and O(α2
sα

4) are shown together with the complete NLO predictions. In the
lower panels, the NLO corrections of orders O

(
α7), O(αsα

6), O(α2
sα

5), and O(α3
sα

4) are
plotted separately, normalised to the complete LO predictions. In the second part of this
section we present full LO and NLO predictions with the corresponding scale uncertainty.

The first set of differential observables in figure 4 relates to the two tagging jets as
defined in eqs. (3.8) and (3.9). The distributions in the invariant mass (figure 4a) and the
rapidity separation (figure 4b) of the two tagging jets are typically used to improve the
ratio of the EW component over the QCD one. These two distributions differ substantially
from all others shown in this paper, since they receive sizeable contributions from the
order O

(
α6) for large Mj1j2 or large ∆yj1j2 , as can be seen in the upper part of both plots,

while all other distributions are dominated by the order O
(
α2

sα
4) throughout. Thus, the

normalisation of the relative corrections is dominated by the O
(
α2

sα
4) contributions for

small Mj1j2 and ∆yj1j2 , but by the O
(
α6) ones for large variables. Owing to this varying

normalisation, the EW corrections of order O
(
α7) are large for large Mj1j2 or large ∆yj1j2

(reaching −18% atMj1j2 = 2TeV) and small otherwise. The normalisation also explains the
opposite behaviour of the (EW) corrections of order O

(
α2

sα
5), which reach about −15%

at Mj1j2 = 400GeV but are reduced to about −5% to −7% at 2TeV in the invariant-
mass distribution. Despite the fact that these large EW corrections can be traced back to
Sudakov logarithms, they become relatively smaller at high energies as the LO contribution
of order O

(
α2

sα
4) (to which these corrections act on) is suppressed there. The corrections

of QCD type, O
(
αsα

6) and O
(
α3

sα
4), stay within ±10% apart from the region of large

rapidity separations. In particular, the QCD corrections of order O(α3
sα

4) turn very large
(over +40%) there, but this part of the phase space is rather suppressed. These QCD
corrections are positive for invariant masses above Mj1j2 = 500GeV and tend to increase
towards higher invariant masses.

The corrections to the distributions in the azimuthal angle (figure 4c) and the cosine
of the angle between the two tagging jets (figure 4d) show rather mild variations that do
not exceed 10% over the full phase-space range. The EW corrections of order O(α7) vary
by less than 2% with the exception of cos θj1j2 ≈ −1. The EW corrections of order O(α2

sα
5)

are almost −10% for small angles between the jets, while they decrease in magnitude to
−5% for large angles. The pure QCD corrections of order O(α3

sα
4) grow in the azimuthal-

angle distribution from −10% up to almost 0%, while they are minimal for small values of
cos θj1j2 and maximal for cos θj1j2 = ±1.

In figure 5, several leptonic observables are shown, including distributions in the in-
variant mass (figure 5a) and transverse momentum (figure 5b) of the four leptons as well as
in the invariant mass (figure 5c) and the transverse momentum (figure 5d) of the electron-
positron pair. The distributions in the invariant mass and transverse momentum of the four
leptons and the transverse momentum of the electron-positron pair display qualitatively
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Figure 4. Separate contributions of LO and NLO. The upper panels show absolute predictions
of orders O

(
α6) (LO EW), O

(
αsα

5) (LO INT), O
(
α2

sα
4) (LO QCD) and the complete NLO

prediction. The lower panels display the contributions of orders O
(
α7), O(αsα

6), O(α2
sα

5), and
O
(
α3

sα
4) relative to the complete LO predictions. The observables read as follows: invariant mass

of the two tagging jets (top left), rapidity separation of the two tagging jets (top right), azimuthal
angle between the two tagging jets (bottom left), and cosine of the angle between the two tagging
jets (bottom right).

rather similar features as they are correlated. In absolute, they all reach a maximum at
low values to decrease steeply towards high energy. The O(α2

sα
5) corrections show the typ-

ical negative increase owing to Sudakov logarithms reaching up to −30% in the considered
kinematical range. The corresponding behaviour of the O(α7) corrections is damped by the
normalisation to LO including the dominating QCD contributions. The QCD corrections
of order O(α3

sα
4) show an even stronger impact towards high energy scales reaching −50%

at M4` = 2TeV and −40% at pT,e+e− = 700GeV. This is caused by our choice of the

– 13 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
8

dσ

(a)

dσ

(b)

dσ

(c)

dσ

(d)

Figure 5. Same as for figure 4 but for the observables: invariant mass of four-lepton system (top
left), transverse momentum of the four leptons (top right), invariant mass of the electron-positron
system (bottom left), and transverse momentum of the electron-positron system (bottom right).

renormalisation scale (3.1) that is adapted to the VBS contributions of order O(α6). For
large energy scales in leptonic variables this scale is too small leading to a too large LO
cross section and thus large negative QCD corrections. Note that the O(αsα

6) corrections,
i.e. the QCD corrections to the VBS contributions, stay within ±10% for all distributions
in figure 5. The distribution in the invariant mass of the electron-positron pair (figure 5c)
is characterised by the Z-boson resonance at ∼ 91GeV in all LO contributions. While the
QCD corrections are rather flat across the resonance, the EW corrections of order O(α2

sα
5)

exhibit a pronounced radiative tail below the resonance. The corrections due to final-state
photon radiation exceed +30% around 70GeV. The corresponding radiative tail is also
present in the corrections of order O(α7) but suppressed by one order of magnitude by the
LO QCD contributions.
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Figure 6. Same as for figure 4 but for the observables: transverse momentum of the hardest jet
(top left), rapidity of the hardest jet (top right), transverse momentum of the muon (bottom left),
and rapidity of the positron (bottom right).

In figure 6 we present distributions related to the leading jet or a single lepton. In
the distribution in the transverse momentum of the hardest jet (figure 6a), the corrections
of order O(α3

sα
4) show the most interesting behaviour. They start around 6% at 30GeV,

reach a minimum of about −12% around 350GeV to finally grow to 1% at 800GeV. The
moderate rise of these corrections towards high transverse momenta can be attributed to
the choice (3.1) of renormalisation scale. The increase of the QCD corrections towards
small pT,j1 has already been observed in other VBS/VBF processes [4–6, 58] and is due to
the real QCD radiation. The corrections of order O(α2

sα
5) decrease steadily towards high

energy by about 10%. Regarding the rapidity distribution of the hardest jet (figure 6b),
the corrections of order O(α2

sα
5) vary only by few per cent in the whole kinematic range.
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Figure 7. Same as for figure 4 but for the observables: azimuthal angle between the positron and
the electron (top left), azimuthal angle between the positron and the muon (top right), cosine of
the angle between the positron and the electron (bottom left), and cosine of the angle between the
positron and the muon (bottom right).

The O(α3
sα

4) corrections, on the other hand, go from +8% in the peripheral region down
to −7% in the central one. The differential distributions in the transverse momentum of
the muon (figure 6c) and the rapidity of the positron (figure 6d) are rather standard. The
pT,µ− distribution behaves like other transverse-momentum distributions of leptons shown
above, while the variation of all corrections to the ye+ distribution is below about two
per cent.

Next we consider leptonic angular distributions in figure 7. The fraction of the LO EW
contribution is somewhat enhanced for small and moderate cos θe+µ− . In all distributions of
figure 7, the corrections of orders O(α7) and O(αsα

6) are small, inheriting their value from
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the one of the fiducial cross section. The distortion of the LO distributions results mostly
from the O(α3

sα
4) corrections and to some extent from the O(α2

sα
5) corrections. Both

types of corrections are largest for small angles between the electron-positron pairs and
large angles between the muon-positron pairs, which typically appear for events at large
energies. Thus, the variation of these corrections is driven by EW Sudakov logarithms
and the choice of the QCD renormalisation scale. The corrections of order O(α3

sα
4) vary

between −20% and +3% for different angles between electron-positron pairs and between
−10% and +3% with angles between muon-positron pairs. The corresponding variations
of the O(α2

sα
5) corrections are from −12% to −5% and from −9% to −6%, respectively.

We now turn to the discussion of scale uncertainties for distributions. In the upper
part of figures 8 and 9, absolute LO and NLO predictions are presented including 7-point
variations of the QCD renormalisation and factorisation scales. The lower parts show
NLO corrections including scale uncertainties relative to the LO predictions at the central
scale (3.1) together with the relative LO scale uncertainty. While the full LO predictions
include the orders O(α6), O(αsα

5), and O(α2
sα

4), the NLO ones comprise O(α7), O(αsα
6),

O(α2
sα

5), and O(α3
sα

4) contributions. In particular, these predictions do not include loop-
induced contributions of order O

(
α4

sα
4) which have already been shown in ref. [6].

The total corrections to the distribution in the invariant mass of the two tagging jets
(figure 8a) vary between −10% and −30% and are smallest at about 800GeV. These
corrections are not dominated by one particular contribution but result from the interplay
of the four NLO contributions (see figure 4a). The scale uncertainty is roughly of the same
size as for the fiducial cross section. On the other hand, the corrections to the distribution
in the rapidity difference of the two tagging jets (figure 8b) are mostly determined by the
corrections of order O(α3

sα
4) and to some extent of order O(α2

sα
5). Accidentally, the other

NLO corrections cancel each other quite well. The NLO scale uncertainty strongly increases
for extreme rapidity difference. The NLO corrections to the distribution in the transverse
momentum of the hardest jet (figure 8c) range between 0% and −25%, where the overall
behaviour is directed by the one of the O(α3

sα
4) corrections. It is worth noting that the NLO

prediction is beyond the edge of the LO scale-uncertainty band for pT,j1 > 200GeV and
that the scale uncertainty for this distribution is rather large. As for all other distributions,
the central value is close to the upper edge of the scale envelope. The behaviour of the
NLO corrections to the distribution in the transverse momentum of the second hardest jet
(figure 8d) is quite different from the one of the hardest jet. The NLO corrections are at the
level of −20% at 30GeV and reach a minimum at 100GeV close to 0% to steadily decrease
to −20% at 800GeV. The NLO scale uncertainty stays small over the whole considered
kinematic range.

The NLO corrections to the distribution in the transverse momentum of the electron-
positron pair, i.e. of one of the Z bosons, are shown in figure 9a. As expected from figure 5d,
the full NLO corrections become negatively large towards high energy to reach −60% at
700GeV. The NLO corrections leave the LO scale uncertainty band at about 200GeV,
and the NLO scale uncertainty increases significantly for high transverse momenta. This
behaviour results from our scale choice (3.1), which is tailored to the O

(
α6) contributions

but not to the dominating O
(
α2

sα
4) contributions at high leptonic energies, where the
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Figure 8. Differential distributions including 7-point scale uncertainties. The upper panels show
absolute predictions for LO and NLO while the lower ones show relative NLO corrections with
respect to the LO predictions at the central scale and the relative LO scale uncertainty. The full
LO predictions include orders O(α6), O(αsα

5), and O(α2
sα

4), while the NLO ones comprise O(α7),
O(αsα

6), O(α2
sα

5), and O(α3
sα

4) contributions. The observables read as follows: invariant mass of
the two tagging jets (top left), rapidity difference between the two tagging jets (top right), transverse
momentum of the hardest jet (bottom left), and transverse momentum of the second hardest jet
(bottom right).

scales are underestimated. The azimuthal angle between electron and positron is correlated
to the transverse momentum of the electron-positron pair. Accordingly, the corrections
are small for ∆φe+e− ≈ 180◦ and increase smoothly to −30% for small ∆φe+e− , where
the corresponding rate is minimal and the scale uncertainty is about 20%. Since the
correlation of the angle between the positron and the muon to the transverse momentum
of the electron-positron pair is smaller, the corrections vary only from −5% to −20% with
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Figure 9. Same as for figure 8 but for the observables: transverse momentum of the electron-
positron system (top left), azimuthal angle between the positron and the muon (top right), cosine
of the angle between the positron and the muon (bottom left), and total transverse energy HT
(bottom right).

increasing angle. Finally, we show the distribution in the total transverse energy, defined
as the sum of transverse energies of the tagged final-state objects,

HT = ET,e+ + ET,e− + ET,µ+ + ET,µ− + ET,j1 + ET,j2 , (3.16)

which are defined from the transverse momenta pT,i as

ET,i =
√
p2

T,i +M2
i , (3.17)

where the invariant massMi is nonzero after recombination. The large negative corrections
below 400GeV result exclusively from the order O

(
α3

sα
4) corrections, more precisely from
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a suppression of the corresponding real contributions resulting from the restriction of the
related phase space for small HT. The smooth increase of the corrections to 20% at 2TeV
is basically driven by the positive O

(
α3

sα
4) corrections combined with negative O

(
α2

sα
5)

corrections. The scale uncertainty remains small apart from the region of very small HT.

4 Conclusion

Given the current and upcoming expected precision of the LHC experiments, VBS processes
offer great opportunities to further probe the EW sector of the Standard Model. In this
context, precision does not only refer to the EW signal that contains VBS contributions
but also to the irreducible background that can be overwhelming. In addition of being
sometimes large, the background can not be trivially separated from the signal making it
a crucial component of any VBS studies. This calls for a full NLO description of VBS
signatures including all possible contributions.

In this article we have followed this avenue by presenting full NLO predictions for
pp → e+e−µ+µ−jj + X. While some of the NLO contributions were already known in
the literature, they are shown together in a unique setup for the first time here. This
allows to single out salient features of VBS into ZZ pairs. It is worth noting that the
hierarchy of NLO corrections is rather different from the one in the ss-WW case (which
was the only channel known at full NLO accuracy up to now), in particular, owing to the
appearance of partonic channels with gluons. Comparing two different setups, with different
invariant-mass cuts on the two tagging jets, we have demonstrated that the LO hierarchy
strongly influences the size of the NLO corrections. The newly computed corrections of
order O

(
α2

sα
5) turn out to be much more sizeable here than for the ss-WW signature.

While for the ss-WW cross section, they were found to be below a per cent, they are
between −6% and −8% (depending on the setup) for the ZZ case discussed here. We have
traced back these corrections to typical EW Sudakov logarithms which appear for both
signatures. While these corrections contribute for VBS into ZZ with their natural order of
magnitude, they were accidentally compensated for ss-WW by QCD corrections to the LO
interference appearing at the same order. This cancellation does not happen here due to the
larger LO QCD contribution upon which these EW corrections act. This has an important
implication: in arbitrary experimental setups, none of the four NLO corrections can safely
be neglected at the 10% level. Indeed, the impact of the various NLO corrections strongly
depends on the hierarchy between the LO contributions which eventually originates from
the experimental event selections.

In high-energy tails of distributions, the O
(
α2

sα
5) corrections reach 30%, while the

O
(
α3

sα
4) corrections can amount to 50%. Angular distributions are distorted by up to

10% and 25% by the corrections of orders O
(
α2

sα
5) and O

(
α3

sα
4), respectively. Owing

to the enhancement from Sudakov logarithms and the scale choice adapted to the VBS
contributions, the total NLO corrections exceed the LO scale uncertainty band in various
regions of phase space.

The results presented here should prove particularly useful for current and upcoming
analyses for ZZ production in association with two jets at the LHC. We hope that ex-
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perimental collaborations will take into account such NLO corrections, paving the way to
precise comparisons between experimental measurements and theoretical predictions. We
would like to emphasise that tailored corrections can be provided upon request.
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