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1 Introduction

Black holes have long been a subject of intense study, as they are expected to contain hints
of non-perturbative quantum gravitational physics within semi-classical gravity. Particular
attention has been paid to the black hole information problem, which is an apparent tension
between semi-classical gravity and unitary quantum evolution; we refer the reader to [1, 2]
for recent reviews.

– 1 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

While the naive ‘Hawking paradox’ is not robust to small non-perturbative corrections,
as argued for example in [3], interest was reinvigorated by the discovery [4–6] of a version
that is robust to these small corrections. Consider a black hole that is formed by the
collapse of some matter in a pure state; as it radiates away its mass, it gets entangled with
the Hawking radiation. Importantly, the Hawking radiation and the black hole are purified
by each other. A semi-classical calculation shows that the Hawking radiation is in a state
very close to the thermal state. This leads to a paradox for an old black hole when the
apparent entropy of the Hawking radiation exceeds that of the remaining black hole, since
Page’s theorem guarantees that the entanglement entropy between two large subsystems
in a generic state is given by the dimension of the smaller one, which in this case is the
black hole. The time at which this transition happens is known as the Page time tPage and
the behaviour of the entropy — initially increasing and then decreasing — is known as the
Page curve.

Suppose the calculation of the radiation’s entropy gets small corrections that make it
consistent with Page’s theorem. In this case, the black hole is maximally entangled with
the ‘early radiation’ up to a time t. On the other hand, the requirement of a smooth
horizon at the semi-classical level, that one might expect from the equivalence principle,
means that the ‘late radiation’ from time t to time t+ δt is maximally entangled with the
effective field theory degrees of freedom just behind the horizon. But the EFT degrees
of freedom, being part of the black hole, are already maximally entangled with the early
radiation. This is in conflict with the monogamy of entanglement.

This led to a flurry of work suggesting a variety of resolutions. The one suggestion that
is relevant to us is the following: that the above argument consists of a monogamy paradox
only if we assume that the early radiation and the black hole interior are independent
subsystems. In other words, there is no paradox if the black hole interior degrees of freedom
are encoded in the early radiation, see for example [7–11]. The most memorable version
of this, riffing off the example of the duality between a thermofield double (TFD) state of
two CFTs and a two-sided eternal black hole in AdS, is known as ER=EPR [12]. Roughly,
the suggestion is that all entanglement (EPR) constitutes a (possibly Planck-sized) non-
traversable wormhole (ER) between the entangled degrees of freedom in quantum gravity.
While, as stated, this strong version of the proposal is clearly not verifiable with the tools at
our disposal, we can nevertheless attempt to verify the ER=EPR proposal by “condensing
all the quantum wormholes” into a classical wormhole by collapsing the radiation into
another black hole [13].

Recently, there has been significant progress on the black hole information prob-
lem [14, 15], see also [16–34], in AdS/CFT.1 These calculations involve coupling a holo-
graphic CFT in a black hole state to a (not necessarily gravitational) bath system that
collects the radiation, and calculating the entanglement entropy (EE) using the quan-
tum HRT formula [47–50]. This formula states that the EE of a UV subsystem A of a
holographic system dual to general relativity (GR) coupled to an effective field theory is

1There have been calculations in other asymptotics [35–44], see also [45] for a differing perspective. See
also [46] for a possible string-theoretic origin of the encoding effect found with the island rule.
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given by

SE(A) = min

 ext
a
∣∣∂a=X∪A

Sgen(a)

 , Sgen(a) = Area(X)
4GN

+ SE,bulk(a). (1.1)

The bulk region a whose generalised entropy Sgen is the EE is called the entanglement
wedge (EW) and the corresponding surface X is known as the HRT surface. SE,bulk(a)
denotes the von Neumann entropy of the bulk fields within the region a.

We take A to be the bath. The important conceptual advance made in the above
papers was the observation that in this case, the entanglement wedge (EW) a can contain
contractible disconnected components, or “islands,” deep in the bulk, e.g. in the black
hole interior. As the entanglement between the CFT and the bath increases, the minimal
quantum extremal surface (QES), also known as the HRT surface, transitions from the
empty surface to a surface near the horizon at the Page time. This implies that, at late
times, the interior of the black hole is in the entanglement wedge [51] of the bath and
therefore the radiation. By entanglement wedge reconstruction [51–56], this means that
the interior is encoded in the radiation.

The aim of our paper is to ask whether some of the recent conceptual and technical
advances can be used to demonstrate the ER = EPR conjecture that the entanglement
between the radiation and the black hole leads to the formation of a wormhole. Consider
the case in which the bath that collects the radiation is also a holographic CFT. From
the dual gravity perspective, we then have two black holes radiating into each other. The
expectation based on previous literature is sketched in the second line of figure 1, where
one of the interiors become an island in the entanglement wedge of the other boundary
CFT. According to the ER = EPR proposal, however, we should find that after the Page
time, a geometric (spatial) wormhole forms between the two black holes. In a sense, then,
this proposal states that the similarity between actual space and the “entanglement lines”
in figure 1 should be taken seriously, as in the case of holographic tensor networks, see
e.g. [57, 58]. If this is the case, the second picture in the second line of figure 1 is equivalent
to a connected geometry — i.e. the entanglement between the interiors forms a “bridge to
the island”.2

To explore the question of whether such a topology transition happens, we study var-
ious models in which the bath is a holographic system. (See also [61], which previously
studied a case with a gravitational bath and found similar results for the Page curve.)
As a cautionary remark, we remind the reader that the question of the topology of the
spatial slice in the bulk dual of a state is a somewhat meaningless one, since there is no
non-perturbatively diffeomorphism-invariant linear operator that can measure the ‘connect-
edness’ of spacetime [62–64]. Nevertheless, we may simply calculate the geometry of the
dominant saddle in various path integrals. We believe that this is a sufficiently interesting
exercise.

2In this sense, this work can be seen as the spiritual converse of [59, 60], which try to build tensor
networks from geometries.
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Figure 1. Schematic representation of the entanglement wedge transition in a model of two coupled
black holes. The purple line is the HRT surface whose generalised entropy calculates the EE between
the two boundary CFTs. At early times, each black hole interior is contained in the entanglement
wedge of the corresponding boundary CFT. At late times, based on the island rule, we expect that
the build-up of entanglement between the interiors causes one of the interiors to become part of the
entanglement wedge of the other CFT. In this paper, we ask if this is the same as the entanglement
lines condensing into a geometric wormhole.

The examples we deal with are within the context of two-dimensional Jackiw-Teitelboim
(JT) gravity [65–70]. In two of the models, we take two pure-state black holes in two differ-
ent asymptotically AdS spacetimes and then entangle them. Each pure state is one of the
somewhat atypical Kourkoulou-Maldacena [71] states with end-of-the-world (ETW) branes
behind the horizon, obtained by a projection acting on one half of a thermofield double. In
the first model, the doubled Penington-Shenker-Stanford-Yang (dPSSY) [72] model, we al-
low the ETW brane in both black hole interiors to have multiple flavours and entangle this
flavour degree of freedom between the two black holes. In the second model, we consider
the JT gravity coupled to a 2d CFT in the bulk, following [15]. At time t = 0 we couple
the two spacetimes (each with a black hole) by imposing transparent boundary conditions
between them at the asymptotic boundaries, and then evolve for a long time. The third
model is similar to the second, except that the two black holes before the coupling are
taken to be in a thermofield double state.

The results in the three models of entanglement described above are different. In the
first model, at large entanglement, the bulk dual — the dominant saddle in the path in-
tegral that calculates the norm of the state — is a connected geometry, demonstrating
the ER = EPR hypothesis. The mechanism for this is unexpectedly simple. Remember
that even a factorised state of two boundaries generically has a non-zero O(e−S) overlap
with the thermofield double state. From the dual gravity perspective in our setup, this is
reproduced by a bulk geometry in which the ETW branes join up and create an ER bridge
between the two (uncoupled and unentangled) boundaries [64]. Similarly, a connected ge-
ometry also contributes an exponentially sub-leading amount to the norm of the factorized
(i.e. zero entanglement) state. As we build up entanglement, the two contributions ex-
change dominance, as in the Hawking-Page transition [73], and we find that the leading
contribution becomes the connected geometry.3

3There is a large body of work analysing dynamical topology-change in semi-classical gravity as well as
string theory, see [74–82] for a very incomplete set of references.
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Another way to think of the simplicity of the mechanism is to compare to the recent
derivations of the island rule [19, 72]. In these papers, the essential contribution comes from
a class of Euclidean wormholes, called replica wormholes. These are Euclidean wormholes
which turn up in a replica path integral computation with many ‘bra’ and many ‘ket’ copies
of the state of interest (relevant for the Rényi entropy) and can connect all the copies to
each other. The ER bridge that forms between two unentangled ‘ket’ boundaries in our
study is analogous to these replica wormholes; indeed, it is a ‘ket-ket’ wormhole.4

In addition to the norm, we also study the entanglement entropy between the two
coupled boundary quantum mechanics systems. We find that the quantum extremal surface
whose generalised entropy computes the entanglement entropy also lies in the connected
geometry after the Page time. A similar phenomenon was also found in [83].

In the second model, in which unentangled black holes are coupled in real time, the
results are different. As in the previous model, there is a second saddle with a connected
geometry. Further, the late time generalised entropy of a QES in this connected geometry
is less than that in the naive disconnected geometry; however, a replica trick argument
shows that the HRT surface remains in the disconnected geometry anyway. We then
explore whether any single-copy path integrals nevertheless exhibit a Hawking-Page-like
transition, and find that some do.

Finally, inspired by the alternate saddle above, we couple two black holes in a ther-
mofield double state. We find that the entanglement between the two black holes reduces till
scrambling time, after which the story becomes substantially similar to the second model.

An outline of this paper is as follows:

1. In section 2, we review some crucial facts about Jackiw-Teitelboim gravity that we
will use throughout. In particular, in section 2.1 we construct the bulk geometries
relevant to two coupled boundary CFTs, setting the stage for the calculations in the
rest of the paper.

2. In section 3, we study the static doubled PSSY model. This is a simple toy model
which illustrates our main results, without too much technical computation.

3. In section 4, we study the second model in which we allow two pure-state black
holes to radiate into each other. Despite the relative difficulty of this problem, the
main point is rather simple and is summarised with relatively few calculations in
section 4.1. We show that the path integral corresponding to certain correlation
functions exhibits an ER = EPR transition in section 4.1.2.

4. In section 5, we study the third model in which we allow two black holes in a ther-
mofield double state to radiate into each other.

5. We end by discussing open questions and making some observations in section 6.

4There has been some discussion on another special case, called the ‘bra-ket’ wormhole, see e.g. [83, 84].
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2 JT gravity

The 2d gravity theory we work with throughout this paper is Jackiw-Teitelboim (JT)
gravity with end-of-the-world (ETW) branes. Its Euclidean action, without bulk matter, is

I[φ, g] = −S0χ−
1

4π

[∫
M

√
g φ(R+ 2) +

∫
∂M

√
hφK

]
+ φrµ

∫
ETW brane

ds, (2.1)

where S0 is the extremal entropy, χ is the Euler character of the Euclidean spacetime, µ is
the tension of the ETW brane, and φ is the dilaton. The model is further defined by two
boundary conditions:

Asymptotic AdS boundary : φ = φr
ε
, du2 ≡ ε2ds2|bd,

ETW brane boundary : nα∂αφ = µ, K = 0. (2.2)

We take the limit ε → 0 to recover AdS2 physics. The second equation in the first line is
technically not a boundary condition but a definition of the UV time u.

Because of the dilaton equation of motion, the bulk is always AdS2. The dynamics of
this theory reduces to the dynamics of a boundary particle, whose location is the boundary
of the ‘cutout’ of AdS2. Because of this simplicity, semi-classical Lorentzian JT gravity can
be exactly solved by keeping track of three SL(2,R) charges of the boundary; in appendix A,
we review this and derive some results we will use in section 4.

Since the bulk is always AdS2, we can use conventional coordinate systems. In real
time, they are

Kruskal-Szekeres : ds2 = 4dwdw̄
(1− ww̄)2 (2.3)

Poincare : ds2 = 4dxdx̄
(x+ x̄)2 , x = z + tP , x̄ = z − tP (2.4)

Global : ds2 = dsds̄

sin2 s+s̄
2

s = σ + tgl, s̄ = σ − tgl. (2.5)

Additionally, we will also use two coordinate systems that do depend on the geometry

Schwarzchild : ds2 = −(r2 − r2
h)du2 + dr2

r2 − r2
h

, (2.6)

UV : ds2 = 4x′(y)x̄′(ȳ)
[x(y) + x̄(ȳ)]2dydȳ, y = ρ+ u, ȳ = ρ− u. (2.7)

The UV coordinate y is so named because it is the light-cone extension of the UV time u,
i.e., the intrinsic proper time of the boundary particle; this coordinate system only extends
up to the causal horizons. Note that we are using conventions in which one of the light-
cone coordinates points backwards in time; this is useful for analytic continuation from
Euclidean time.

The actual physical parameters of the geometry are encoded in the dilaton. For a
Schwarzchild black hole of temperature T , it takes the value

φ = φrr = 2πTφr
1 + ww̄
1− ww̄

= 2φr
1 + (πT )2xx̄

x+ x̄
= 2πTφr

cos tgl
sin σ = 2πTφr coth [πTρ] . (2.8)

– 6 –
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Entropic Quantity Notation

EE of 2d CFT Sbulk

Generalised Entropy of a General Region Sgen,nE =
∑

endpts(S0 + φ)+Sbulk

Generalised Entropy of a Region Bounded by a QES Sgen = ext Sgen,nE

EE between two QM systems/UV EE SE = minSgen

Table 1. The various entropic objects we will deal with. We will stick with this notation through-
out, for clarity.

Finally, we shall also need the analog of the HRT formula (1.1) in this theory. We may
in general couple multiple asymptotic boundaries and 2d systems, and define the boundary
subregion to be a union A = A1 ∪ A2 of some of the 1d asymptotic boundaries A1 and a
subset A2 of a Cauchy slice of the 2d systems. The HRT formula in this system is

SE(A) = min

 ext
a
∣∣A2⊂a,∂a=(∪ixi)∪A1∪∂A2

Sgen(a)

 , Sgen(a) ≡
∑
i

(S0 + φ(xi)) + Sbulk(a).

(2.9)
This formula has three different entropic quantities, all of which play a role in our

discussion. For clarity, we adopt a consistent notation, which we summarise in table 1, for
these quantities.

2.1 Saddle point geometries with ETW branes

The gravitational set-up that we will analyse throughout this paper is the so-called
Kourkoulou-Maldacena (KM) state [71] of a single boundary quantum mechanics (say,
the SYK model). It can be thought of as a projection operator acting on one end of the
thermofield double (TFD) state of two SYKs, and is a useful toy model for a single-sided
black hole. This is because from the dual gravity perspective, this projection looks like
an ETW brane emanating from the position of the projection; the geometry ends at the
location of this brane. This state, then, is parametrised by two quantities; the mass µ of
the ETW brane and the amount ` of Euclidean evolution involved in creating the state.

In this paper, we will throughout consider two copies of this state. Focusing on the
norm path integral (i.e., the Euclidean path integral in the boundary corresponding to the
norm of the state), there are two allowed bulk saddles, shown in figure 2. We call these the
disconnected and connected saddles respectively. Notice that both of these have a Euclidean
time-reflection symmetry, which we will use to analytically continue the geometries to real
time in subsequent sections.

In this section, we calculate the saddle-point geometries for both of these topologies.
We highlight two important lessons. First, that the Lorentzian continuation of the bulk
geometry in the connected saddle is that of the eternal black hole. Second, that the con-
nected geometry is colder than either disconnected one for all values of µ, and consequently
has a lower entropy.

– 7 –
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(a) Disconnected geometry. (b) Connected geometry.

Figure 2. The geometries contributing to (3.8). Here `1 and `2 are the lengths of one half (i.e.,
the “ket” part) of the Euclidean boundaries. The solid black lines are the AdS boundaries, and the
red solid lines represent the ETW branes. The dashed red lines have no relevance in this picture,
but will complete index loops in section 3.

To find the bulk geometry, we have to find, from among the geometries that fill in
the boundary conditions given by the norm path integral, the one with minimal action.
Given the absence of matter, the set of bulk geometries we have to minimise the action
over is that of Euclidean Schwarzchild black holes, see for example [85]. The metric and
dilaton are as in (2.6) and (2.8). So, the minimisation of the action is a minimisation over
a single parameter, the horizon ‘radius’ rh. We can repackage this into an inverse effective
temperature,

βeff = 2π
rh
, (2.10)

which is the size of an effective thermal circle, i.e. the periodicity of Schwarzchild time. We
will use rh and βeff interchangeably below.

The ETW brane lies on a geodesic, as required by the second boundary condition
(K = 0) in (2.2). The AdS2-Schwarzchild black hole has a family of geodesics parametrised
by the coordinate location (tmin,

√
r2
h + r2

min) of its perihorizon, given explicitly by [85]

t(λ) = tmin + 1
rh

tan−1
(
rh
rmin

tanh λ
)

r(λ) =
√
r2
h + r2

min cosh λ, λ ∈ R. (2.11)

Here, λ is a proper length parameter. Comparing the previous equation with (2.2), we find
that an ETW brane lies on a geodesic with

rmin = µ. (2.12)

Since nα in (2.2) is the outward-pointing normal, the sign of µ dictates which side of the
geodesic is included. We will restrict to µ > 0, for which the outward-pointing normal
points towards increasing r.5 So the Schwarzchild time between the two ends of an ETW
brane of mass µ in a background with Schwarzchild radius rh is

∆t(βeff , µ) = 2
rh

tan−1 rh
µ

= βeff
π

tan−1
( 2π
βeffµ

)
. (2.13)

5The reason to restrict to this case is that there is no connected saddle for µ < 0.
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With these formulae in place, the strategy to find the saddle-point geometry will be as
follows. We add up all asymptotic boundary lengths and the time intervals in (2.13) and
equate it to βeff , giving an algebraic equation

βeff =
∑

bd components
`i +

∑
branes

∆ti(βeff). (2.14)

First let us consider the disconnected geometry, created by a boundary of length `i.
The norm has a boundary of length 2`i, giving

βeff = 2`i + βeff
π

tan−1
( 2π
βeffµ

)
. (2.15)

This is a transcendental equation and therefore not exactly solvable for arbitrary values of
µ. In the limits µ→ 0,∞, however, the solutions are

βeff(`i, µ) =

4`i −
16`2i
π2 µ+O(µ2) , µ→ 0

2`i + 2
µ +O(µ−2) , µ→∞

. (2.16)

Further, solving (2.15) for µ instead of βeff gives

µ = −rh tan(rh`i), µ ≥ 0 ⇒ βeff ≤ 4`i, (2.17)

which shows that βeff is a monotonically decreasing function of µ. Thus, we get that the
black hole entropy in this case is given by

SBH(`i, µ) = S0 + φrrh(µ, `i) ∈ S0 +
(
π

2`i
φr,

π

`i
φr

)
, (2.18)

with the lower and upper limits given by µ = 0,∞ respectively.
Secondly, let us consider the connected geometry, whose norm path integral has two

boundaries of lengths `1, `2 and two ETW branes, giving the equation

βeff = 2(`1 + `2) + 2βeff
π

tan−1
( 2π
βeffµ

)
. (2.19)

In the two limits, we find

βeff =


√

2π2

µ (`1 + `2) +O(√µ) , µ→ 0
2(`1 + `2) + 4

µ , µ→∞
(2.20)

The small µ divergence in βeff is related to the instability of the double trumpet geometry
mentioned in [79, 86]. βeff is again a monotonically decreasing function of µ. So, we get
for the black hole entropy in this case

SBH(`1, `2, µ) = S0 + φrrh(`1, `2, µ) ∈ S0 +
(

0, π

`1 + `2
φr

)
, (2.21)

where again the lower and upper limits correspond to µ = 0,∞ respectively.

– 9 –
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While we will not need it, notice that this method can be straightforwardly extended to
calculating the effective temperature of a path integral with n > 2 disconnected boundary
components of lengths 2`i, i = 1 . . . n. In the two limits, the solution is

βeff =

n−2
n

π2

µ + 4
∑

`i
n−2 +O(µ) , µ→ 0

2
∑
`i + 2n

µ +O(µ−3) , µ→∞
(2.22)

Coming back to the case of interest, we compare the limits of (2.18) with the cor-
responding limit of (2.21) to find that in both limits the connected solution has a lower
entropy:

S
(conn.)
BH (`1, `2, µ) < S

(dis.)
BH (`i, µ), i = 1, 2. (2.23)

Further, it is easy to check numerically that this is the case for all µ > 0. This shows that
the HRT surface, i.e. the extremal surface of minimal generalised entropy, is the bifurcation
point of the connected geometry, as promised in the previous subsection. The lower entropy
can be traced to the fact that the connected geometry has a lower temperature, as can be
seen by comparing (2.16) with (2.20).

3 A doubled PSSY model

We illustrate some of our main points in this section in a toy model based on that of [72].
We will introduce the setup of this toy model in section 3.1. We illustrate the main
point of this work, i.e., the ER-EPR phenomenon, in section 3.2. Finally, we perform an
exact analysis of the saddle point transition in a microcanonical version of our setup in
appendix B using techniques from [72, 87].

3.1 Setup

The Pennington-Shenker-Stanford-Yang (PSSY) model consists of an asymptotically AdS
black hole geometry in pure JT gravity, with an end-of-the-world (ETW) brane behind the
horizon. The Euclidean action is given by (2.1). The ETW brane is taken to host some
internal degrees of freedom, which will be labelled by the index i. We can think of these
degrees of freedom as corresponding to the in-falling Hawking modes. The black hole plus
ETW brane geometry is dual to a state in the boundary (ensemble averaged) quantum
mechanics; we will denote this state by |`, i〉 and take it to be normalized to one. We can
view this quantum mechanics state as being prepared at boundary Euclidean time u = 0
by a Euclidean path integral over a Euclidean time segment of length `, with the boundary
condition i at the other end of the segment u = −`. In [72], the process of black hole
evaporation was modelled by considering an entangled state:

|Ψ〉 = 1√
k

k∑
i=1
|`, i〉B ⊗ |i〉R, (3.1)

between the quantum mechanics dual to the black hole B and a non-gravitational reference
system R which serves as a “bath” which absorbs the radiation. The parameter k controls
the amount of radiation which has been emitted by the black hole. As shown in [72], when

– 10 –
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k � eS0 , the entanglement entropy between the black hole and the reference system R

grows with k. The HRT surface is the empty surface, and the entire black hole is in the
entanglement wedge of the boundary quantum mechanics B. However, when k � eS0 , there
is a new QES which takes over, namely the bifurcation point in the black hole geometry
(which is an extremum for the dilaton). Beyond this, the entanglement entropy saturates
to its extremal value S0 + φrrh (i.e., it is independent of k), and there is an “island”
region in the black hole geometry which now moves over to the entanglement wedge of the
radiation R.

In the present work, we are interested in considering a similar setup, but with one
important difference — we wish to take our reference system to also be gravitational. As
a model for this, we will then consider an entangled state between two black holes in JT
gravity with ETW branes behind their respective horizons, each hosting some internal
degrees of freedom. We will call this the doubled PSSY model. On the face of it, this seems
to be a less novel model than the models in which CFTs are coupled to baths, since now
it is just some entangled state in the Hilbert space of two holographic CFTs. However,
this model has dramatically new physics — after the Page time, i.e., when the logarithm
of the brane entanglement rank log k exceeds the extremal entropy S0, there is a new
bulk geometry which takes over, namely the eternal black hole geometry with a wormhole
connecting the two boundaries. The new HRT surface is then the bifurcation point in this
new geometry. This is to be contrasted with the original PSSY model, where the black
hole geometry stays the same but there is a new QES which takes over after Page time.
We now turn to the details of this model.

3.2 ER = EPR: a first look

As discussed above, in the doubled PSSY model, we are interested in a state consisting of
two entangled black holes, with asymptotic boundary lengths l1, l2:

|Ψ〉 = 1√
N

D∑
i,j=1

Mij |`1, i〉1 ⊗ |`2, j〉
∗
2 , (3.2)

where the superscript ∗ on the second factor denotes the state obtained after the action
of the anti-unitary time-reflection operator, and we have introduced an arbitrary matrix
Mij to model the various different patterns of entanglement between the black holes. The
indices i, j etc. will be taken to run over 1 to D. The role of the Page time parameter k in
the PSSY model will now be played, roughly speaking, by the rank of the matrix M ; we
will continue to use the symbol k to denote this below. Pictorially, we could depict this
state as:

|Ψ〉 = . (3.3)

For k � eS0 , the bulk dual of this state consists of two AdS2 black holes with ETW branes
behind their respective horizons, as shown in figure 3. In this case, the entanglement
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Figure 3. The naive bulk dual of |ψ〉, given by analytically continuing the naive saddle-point
of the norm path integral (as described in section 1). Again, solid black lines represent the AdS
boundary, solid red lines the ETW branes and the green line is the black hole horizon.

entropy between the two dual quantum mechanics systems is given by

SE = −
∑
i

pi log pi, (3.4)

where pi = λi∑
j
λj

with {λj} being the eigenvalues of the positive matrix M †M . However,

for k � eS0 , this can exceed the UV dimension of the boundary quantum mechanical
systems, giving rise to an information paradox. Following [72], one could then look for new
quantum extremal surfaces in this geometry. There are three extremal surfaces, namely the
empty surface and the two bifurcation points of the individual black holes (see figure 3).
The generalised entropy of either of the latter two surfaces is the coarse-grained black hole
entropy

SBH(`i, µ) = S0 + φh(`i, µ), (3.5)

while that of the empty extremal surface is −
∑
pi log pi. Thus, a naive application of the

HRT/island rule in this situation would lead us to conclude that

SE
?= min

(
−
∑
i

pi log pi, SBH(`1, µ), SBH(`2, µ)
)
. (3.6)

While this is enough to avoid the information paradox, we will now show that this formula
is incorrect. In fact, what happens for k � eS0 is that a new gravitational saddle takes
over, in analogy with the Hawking-Page transition [73].

In order to see this, let us first study the norm of |Ψ〉; we will return to the computation
of the entanglement entropy subsequently. From equation (3.2), we find

〈Ψ|Ψ〉 = 1
N

k∑
i,j,i′,j′=1

MijM
∗
i′j′〈`1, i′|`1, i〉1〈`2, j|`2, j′〉2. (3.7)

We can now compute this overlap using the bulk gravity description.6 As shown in (3.8),
there are two possibilities: (i) the disconnected geometry where the sum over the intrinsic
brane degrees of freedom forms one loop, and (ii) a connected geometry where the sum

6More precisely, the gravity description computes the ensemble average 〈Ψ|Ψ〉 [80].
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over the intrinsic degrees of freedom gives two loops.

〈Ψ|Ψ〉 = (3.8)

We have dropped non-planar as well as higher-genus contributions, which are further sup-
pressed. Thus, we obtain

〈Ψ|Ψ〉 = 1
N

(
Tr (M †M)e2S0Z1(2`1)Z1(2`2) + Tr (M)Tr (M †)eS0Z2(2`1, 2`2) + . . .

)
,

(3.9)
where Z1(β) is the gravity answer for the partition function with one asymptotic boundary
of length β in the disconnected geometry, and Z2(β1, β2) is the gravity partition function
corresponding to the connected geometry with the boundary lengths β1 and β2 respectively.
If we take M to be the identity matrix for simplicity, then we see that for k � eS0 , the
connected geometry dominates. More generally, this transition happens when

Tr (M) Tr (M †)
Tr (M †M) � eS0Z1(2`1)Z1(2`2)

Z2(2`1, 2`2) . (3.10)

If we cut open the connected geometry along the time reflection-symmetric slice in the bulk
and use this as initial data to generate a Lorentzian spacetime, we get a two-sided eternal
black hole geometry with a wormhole between the two boundaries, as shown in section 2.1.
We thus find that when there is sufficient entanglement between the two systems, the
dominant bulk geometry is connected, with a spatial wormhole joining the two black holes.
We emphasize that the contribution of the connected geometry is enhanced here by a
quantum effect.

It is perhaps worth pausing here to make a remark about the role of ensemble averaging
in the above calculation. At the level of path integrals in JT gravity, one encounters a
similar set of saddles in the computation of |〈ψ1|ψ1〉|2, where ψ1 is a one-boundary state
with an EOW brane behind the horizon. In that context, the connected geometry7 only
appears because of ensemble averaging — in a single instance of the theory, the bulk
computation of |〈ψ1|ψ1〉|2 should clearly give a factorized answer. The transition exhibited
here is different; it is a transition in the dominant saddle for the norm 〈Ψ|Ψ〉, which is not
clearly obligated to factorise. In fact, the transition here is a two-dimensional analog of the
Hawking-Page phase transition between thermal AdS and the two-sided eternal black hole,
and requires no more ensemble averaging than that transition. However, there is reason to
believe that the existence of the two-sided black hole itself requires some form of ensemble
averaging, as we discuss in section 6.

Now we return to the question of entanglement entropy. In order to compute the en-
tropy, we will study the Rényi entropy by computing the replica path integral for tr ρn1 , and

7Which is exponentially suppressed, but gives the dominant contribution when analytically continued
to late Lorentzian times.
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then analytically continue n → 1. In order for the density matrix to be properly normal-
ized, we must choose the normalization N such that the right hand side of equation (3.9)
is unity. The replica path integral is illustrated for the specific case n = 2 in (3.11):8

tr
(
ρ2

1

)
= (3.11)

In the third configuration above, all the boundaries in the connected component corre-
spond to system 1 and the boundaries of the disconnected components all correspond to
system 2; the fourth one is the same with systems 1 and 2 interchanged. In (3.11) we have
only shown the replica-symmetric geometries; there are also replica-symmetry-breaking
geometries, but we will defer a discussion of these to appendix B. Following [72], we de-
fine eS0Zr(2`1, · · · , 2`r) as the partition function of Euclidean AdS with r disconnected
boundary components of lengths {2`i} and ETW branes between adjacent boundary com-
ponents. At small k, the dominant contribution in the replica calculation is the one with
most number of disconnected bulk components, as each of these components comes with a
topological factor of eS0 . In this limit, we get

Tr (ρn1 ) ∼ Tr [(M †M)n]
[Tr (M †M)]n , · · · (k � eS0). (3.12)

At large k, the dominant contribution is the completely connected geometry as this has
the most number of brane loops:

Tr (ρn1 ) ∼ e(1−n)S0Zn(2`1, 2`2, · · · , 2`1, 2`2)
Zn2 (2`1, 2`2) , · · · (k � eS0). (3.13)

Both of these are Zn-symmetric solutions, and thus the corresponding extremal surfaces
are the Zn-symmetric points. In the small k limit, this procedure lands us on the empty
surface as expected; all the dependence on the gravity path integrals in (3.12) cancels out
and we get after taking n→ 1:

SE = −
∑
i

pi log pi. (3.14)

On the other hand, the large k limit holds a surprise, in that the QES is in a connected
geometry, which, after continuation to Lorentzian signature, does not give the geometry of

8Since we can think of the ETW brane as the fixed point of a reflection symmetry [71], we can double
these two pictures. After doubling, the ETW brane becomes just a massive particle, and the saddle-point
geometries worked out in section 2.1 are valid on each side of this massive particle. The second picture
then becomes the ‘type IV’ replica wormhole from [88], with the difference that the bulk effective theory is
massive rather than massless. The second contribution in (3.9) is, after doubling, what [88] call a ‘cylinder
wormhole’.
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figure 3. Indeed, the entanglement entropy obtained from equation (3.13) is given by

SE = S0 + φh(`1, `2, µ), (3.15)

where φh is the value of the dilaton at the extremal surface in the connected geometry. It
was shown in section 2.1, specifically (2.23), that this is smaller than any of the generalised
entropies that appear in (3.6). Thus, in the large k limit, the correct entanglement entropy
is given by the “horizon area” of a new gravitational saddle point, and the naive application
of the island rule (equation (3.6)) fails.

We regard this phenomenon — the change in the dominant saddle geometry for these
calculations — as a realisation of the ER = EPR paradigm [12] and one of the central
points of this paper. In the usual Hawking-Page transition, a new gravitational saddle
dominates when some classical parameter controlling the boundary conditions, such as the
temperature, is tuned. It is important to stress that in the present case, the transition to
a connected geometry is a quantum effect; this transition is forced upon us by the large
entanglement rank of the matrix M †M . In this sense, entanglement leads to a connected
geometry. Another important point here is that the calculation above is unaffected by the
precise structure of the entanglement between the two branes, i.e., the details of the matrix
M , thus giving another example of classical gravity exhibiting averaging [72, 80, 86, 89–92].

4 Coupling two pure-state black holes

In this section, we try to extend the discussion of section 3 to a state in which the en-
tanglement is built up by coupling the two black holes in real time. We first study the
entanglement between the two black holes and find that there is no Hawking-Page-like
transition that realises the ER = EPR proposal. We then attempt to find such a transition
for other quantities (such as correlation functions) in a single-copy path integral.

We consider a state of two 1D quantum mechanical (QM) systems obtained by begin-
ning with two energetic pure states and evolving them with a coupled Hamiltonian for a
real time u. We attempt to calculate some path integrals, like the replica trick and simple
correlation functions, semi-classically and find ourselves forced to consider a second saddle
of connected topology.

The state we begin with is the Kourkoulou-Maldacena [71] state |µ〉. This state is a
pure state of a 1D QM system that is dual to an ETW brane of mass µ; we take the limit
µ→∞, which will simplify our calculations. The state at time u = −iδ,9 is two copies of
µ evolved by a Euclidean time `,

|ψ(−iδ)〉 = e−HL`−HR` |µ〉L ⊗ |µ〉R . (4.1)

We evolve with a coupled Hamiltonian to u = 0 to perform a joining quench regulated
by δ,

|ψ(0)〉 = e−(HL+HR+Hint)δ |ψ(−iδ)〉 . (4.2)
9We are choosing u = 0 to be the moment at which real-time evolution begins. As such, the ETW

branes meet the boundary at u = −i`− iδ.
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Here δ plays the role of a regulator, smoothing out the UV behaviour of the joining quench
We then evolve for a real time u with the coupled Hamiltonian to find the final state

|ψf 〉 = e−i(HL+HR+Hint)u |ψ(0)〉 . (4.3)

Let us now describe the bulk dual picture. Each QM system is dual to a 2d system of
JT gravity with negative cosmological constant coupled to a 2d CFT of central charge c.
We take the limit 1� c� φr/`, and further assume that the 2d CFT is itself holographic
with a 3d bulk dual whose effective theory is pure general relativity (GR) at leading order
in c. The trajectory of the QM system in time is conformal to the asymptotic boundary
of the AdS2. The lack of exact conformal symmetry in one dimension is accounted for by
the important role of an explicit cutoff ε in the bulk; all states in JT gravity are different
cutouts of AdS2, with the boundary having metric (2.2). As already mentioned, the state
|µ〉 is dual to an ETW brane of mass µ.

Finally, we have to define the interaction Hamiltonian Hint. We assume that it creates
transparent boundary conditions for the bulk CFT in the limit ε → 0. Away from ε = 0,
this specific boundary condition will prove somewhat inconvenient since it would require
us to keep careful track of the shape of the cutouts in coupling the two bulk spacetimes.
As a way to pretend that the AdS goes all the way to the asymptotic boundary, we attach
a strip of flat space CFT to fill in the ‘gap’, as it were. The CFT strip has the metric

ds2
CFT = 1

ε2
dydȳ, (4.4)

y − ȳ
2 = u. (4.5)

Equation (4.5) will define y throughout this paper. The ε2 in (4.4) allows for simple
matching to the AdS2 cutouts with boundary conditions (2.2), when the gluing is purely
along u i.e. at constant y + ȳ.

We first give an overview of the calculation of entanglement entropy and a simple
correlation function in section 4.1, and study the details in section 4.2. We will also use
some results that are derived in detail in section 5.

4.1 Overview of results

The naive bulk dual of the norm path integral is as follows. At time 0, we have two pure
state black holes of inverse temperature β0 = 2` + O(1/µ), see (2.16) for a derivation of
the temperature. Coupling them produces symmetric shocks that fall into the two black
holes, heating them up to inverse temperature β1 = β0 [1−O(cβ0/φr)]. These two systems
are now in equilibrium and no more energy is exchanged, as we will show in section 4.2.
We thus have two identical coupled AdS-Vaidya black holes with ETW branes behind the
horizons, as shown in figure 4a.

However, as with section 3, this ‘disconnected history’ is not the whole story. There
is an alternate saddle, a ‘connected history’ that we show in figure 4b; the details of this
saddle are studied in section 5, in a different context. We will study whether this saddle
dominates over the one described above at late times, in any path integral. We caution,
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(a) The disconnected history. (b) The connected history.

Figure 4. The disconnected and connected histories, without the splitting quench. The two
boundaries are coupled at u = 0, which produces a symmetric pair of shocks (orange), kicking the
boundary particle outward and moving the future horizon towards the boundary; all causal horizons
are green lines. We have also indicated the rough position of the late time QESs.

Property Disconnected History Connected History

Temperature before quench β0 = T−1
0 = 2` β̃0 = T̃−1

0 = 4`
CFT State Before Quench Two copies of TFD state (Kruskal vacuum) TFD state (Kruskal vacuum)
Location of ETW Brane(s) Far behind horizon (z ≈ µ) Nowhere

Table 2. A summary of the main properties of the two histories, shown in figure 4, that we have
to consider in the dynamical situation.

given the difficulty of performing an exhaustive search over the space of semiclassical saddle
points, that neither of these saddles may be the leading saddle in any of these cases.

We can understand this connected saddle from the following perspective, which is
beautifully explained in [64]: even factorised states can have non-vanishing (but exponen-
tially suppressed) overlap with the TFD state. In the present context, the realisation of
this in bulk classical theory is a saddle in which the two ETW branes join up as in fig-
ure 2b, and the geometry near the time-reflection symmetric slice is precisely that of a
two-sided eternal black hole. The inverse temperature of the black holes in this saddle
is β̃0 = 4` + O(1/µ) ≈ 2β0, see (2.20). Again, coupling the ends produces shocks but
no more energy exchange thereafter, giving rise to a two-sided AdS-Vaidya geometry of
inverse temperature β̃1 = β̃0 [1−O(cβ0/φr)]. We summarise the main properties of the
two histories in table 2.

We first study the replica trick path integral and look for the HRT surface that calcu-
lates the entanglement entropy between the two QM systems. We then proceed to discuss
the possibility of a similar phase transition for the bulk dual as well.

4.1.1 The entanglement entropy

To calculate the entanglement entropy between the two QM systems, which we shall often
refer to as the UV EE, we might try to use the 2d HRT formula (2.9); as we shall see, it
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is too naive for our present purposes, but it is useful to calculate the generalised entropies
that the HRT formula instructs us to minimise over. To calculate the CFT EE Sbulk we
use standard CFT techniques for a CFT on the backreacted geometry, in sections 4.2.2
and 5.2.

Before going ahead, we note that the symmetry of the setup will lead to the existence
of pairs of degenerate QESs, which is somewhat non-standard. According to the results
of [93–95], these provide an upper bound to the corresponding generalised entropies, with
O(
√
φr) corrections. These corrections will not modify the main story.
At early times, the dominant QES is the empty surface and

SE(early) = Sgen(∅) ≈ π

3 cT1u+O
(
φ0
r

)
, (4.6)

where T1 is the temperature of the two black holes after the quench. This is the leading
behaviour at u ∼ φr and later, as we show in section 4.2.2. We have ignored some transients
at times much shorter than φr. Of course, as time goes on, this linear growth needs to be
cut off at the Page time uPage ∼ S0/c. It is in fact cut off by a pair of symmetric QESs,
shown by purple lines in figure 4a, giving an entropy

Sgen(disconnected,late) ≈ S0 + 2πT1φr −O(
√
φr). (4.7)

In the connected history as well there are two sets of QESs, that exchange dominance
at a time ∼ φr/c. There is a single QES that dominates at early times close to the bifurcate
horizon with

Sgen(connected,early) ≈ S0 + 2πT̃0φr + π

3 cT̃1u−O
(√
c
)
, (4.8)

where T̃0 ≈ 1
2T0 is the temperature of the eternal black hole in the connected saddle and

T̃1 is the post-quench temperature in this history. This QES is not quite at the bifurcate
horizon, but its position is symmetric between the two boundaries and to the future of the
bifurcate horizon, as in [96]. There is also a degenerate pair of surfaces at late times, right
outside the late-time horizons, each of which is similar to that in [22], with

Sgen(connected,late) = S0 + 2πT̃1φr −O(
√
φr). (4.9)

To find the minimum of the four generalised entropies above, we note a rather interest-
ing fact: that before the quench, the black holes in the connected history are significantly
cooler than those in the disconnected history, T̃0 ≈ 1

2T0. Since the stress energy carried by
the shock does not scale with φr but the ADM energy of the pre-quench black holes does,
we expect that (T1 − T0) and (T̃1 − T̃0) are both O(φ−1

r ). This means that

T̃1 ≈ T̃0 = 1
2T0 ≈

1
2T1, (4.10)

Thus, the black holes in the connected geometry are colder and the shocks do not change
this fact. Just minimising these generalised entropies, then, would tell us that the UV EE
saturates to the value (4.9) at late times and the HRT surface is in the connected history.
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However, let us check this expectation more carefully. We calculate the EE using the
replica trick, in which we first calculate tr ρn and then analytically continue the Rényi
entropy Sn = (log tr ρn) /(1− n) in the index n to n = 1. tr ρn is written as Zn/Zn1 , where
Zn is the path integral given by the following boundary condition: we take n ‘ket’ and n
time-reversed ‘bra’ copies of the 1d path integral creating the state |ψf 〉 in (4.3) and sew
them up in the usual way corresponding to the replica path integral [97]. Then, we have
to find the dominant saddle consistent with these asymptotic boundary conditions.

Restricting to replica-symmetric saddles, we may take a Zn quotient to get a geometry
filling just one ‘ket’ and one ‘bra’ copy with a zero-dimensional “twist brane,” which has
the following properties: (a) it has a ‘tension’ ∼ φr(1−1/n), (b) it acts as a twist operator
for bulk quantum fields, and (c) it has to be homologous to the two QM systems10 [98–100].
Following [19], we don’t quotient the matter CFT so that the matter partition function on
the quotiented manifold is effectively a Rényi partition function ZCFT,n. This path integral
is thus computed by any bulk history consistent with the asymptotic boundary conditions
corresponding to the norm of the QM state, but with one or more twist branes in the
bulk. The semiclassical partition function, keeping track only of terms that potentially
scale with S0, is

logZn =
∑

semi-classical saddles

[
S0

{
n χquotient + (1− n)

∑
twist branes

1
}

+ logZCFT,n + . . .

]
,

(4.11)

χquotient is the Euler characteristic of the quotient manifold, and the object in the braces is
that of the unquotiented manifold [19].11 In the limit n→ 1, the location of the twist brane
is precisely the QES; thus, a QES in any history consistent with the asymptotic boundary
conditions is a valid candidate for the true HRT surface.

We first notice that the disconnected history has χquotient = 2 whereas the connected
one has χquotient = 1, and at late times both have one twist brane in the bulk, and so
the connected history is suppressed because of the topological term in the action, as in
section 3. In section 3, however, the analog of logZCFT,n competes with this, giving a
factor of kn. In our case, this is a CFT partition function on the background that includes
the twist brane as well as its backreaction. Since the mass of the brane vanishes as n→ 1
(though it is still O(φr)) its backreaction is generically O((n− 1)φ0

r).12 Thus, in this limit,
we can approximate the background (at leading order in n− 1) as the saddle-point of the
norm path integral; meaning that ZCFT,n is simply related to the twist-operator correlation
function in this geometry, as ZCFT,n = ZnCFT,1 〈

∏
i σn(xi)〉. Because of the unitarity of time

evolution, ZCFT,1 is independent of time in our set-up.
But we have seen that in both histories the twist operator correlation function saturates

to some O(1) constant at late times, meaning that ZCFT,n does so as well. Therefore, the
10More clearly, this is a set of point sources on a Cauchy slice that splits the Cauchy slice into two regions,

each of which contains one of the boundary QM systems.
11This is easily proved by tiling the replicated manifold so that each twist brane is a vertex in the tiling

and using the V − E + F formula for χ.
12We have to maintain the order of limits φ−1

r � n− 1; otherwise one can get wrong results near phase
transitions.
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HRT surface is the degenerate pair in the disconnected history and the UV EE is

SE(u) = min {Sgen(∅), Sgen(disconnected,late)} . (4.12)

In this case with multiple bulk saddles of different topology, the HRT surface is not the QES
of minimal generalised entropy. While we have gone through the logic in detail, it is fairly
common for the dominant HRT surface to be the minimal QES in the dominant bulk saddle
even if there are QESs with lower generalised entropies in subdominant saddles. A simple
example is seen in the entanglement entropy between two CFTs in a thermofield double
state at high temperature; the dominant HRT surface is the black hole horizon, whose
generalised entropy is O1/GN , whereas the empty surface in the subdominant thermal
AdS saddle has generalised entropy O(G0

N ).13

4.1.2 A transition of the bulk dual?

The existence of this alternate history is tantalising, however, and we are led to ask whether
there are any boundary path integrals for which the dominant saddle becomes the connected
history. The norm path integral, on its own, is insufficient. Without any insertions at late
time, the norm path integral is insensitive to the amount of real time evolution, since real
time evolution is unitary. In bulk semiclassical theory, this is realised by the fact that
the on-shell semiclassical action is real on each Lorentzian sheet and so it cancels between
forward and backward time evolution.

Thus, we need to do something at time u, like averaging over time or inserting an
operator. We insert a single primary operator O of dimension ∆ in the central CFT strip,
at the position y = −ȳ = u, and explore the possibility of a transition to the connected
history. Presently, we do not have a complete picture for such a transition, but we will
make preliminary observations.

The unnormalised partition function with the insertion, then, is

Zfull = e−Igrav,discZCFT,disc〈O(u)〉disc + e−Igrav,connZCFT,conn〈O(u)〉conn, (4.13)

where we have summed over both histories. Here, 〈O(u)〉 is the usual one-point function
in the respective history. Because of unitarity, the one-point function is the only factor in
either term that depends on u.

Thus, the dominant bulk dual is the one with the lower value of

I = −S0χ− log〈O(u)〉+ . . . , (4.14)

where χ is the Euler characteristic of the bulk geometry. The . . . terms are u-independent
terms, including the Schwarzian action14 and the CFT partition function, that don’t matter
at leading order since they do not scale with S0. The disconnected history has χ = 2 and
the connected history has χ = 1, leading to the disconnected history being dominant at
early times. We will show that, at late times, the two terms compete with each other.

13We thank the JHEP reviewer for clarifying this point.
14The solutions are real, and so this cancels between the sheets
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Figure 5. On the left, the flat strip is a rectangle in y coordinates. An infinite rectangle given by
u > u0 is squeezed into a small finite volume in Poincare x coordinates. This is the source of the
large conformal factor in (4.19). A similar squeezing occurs in the connected history, except that
we consider global rather than Poincare coordinates.

To calculate the one-point function, we use the rule that

〈O(u)〉g = e−∆ Ω(u)〈O(u)〉ĝ, gµν = e2Ωĝµν . (4.15)

In this section, we choose convenient fiducial metrics in the two histories and show that
the quantity

Ĩ = −S0χ+ ∆ Ω(u) (4.16)

becomes smaller in the connected history than in the disconnected, and then argue that
this implies a change in the dominance of the saddle.

In the disconnected history, we take the fiducial metric to be the flat metric in Poincare
coordinates,

d̂s
2
disc = dxdx̄, x = z + tP . (4.17)

We will justify this choice in section 4.2. Since we are in the central CFT strip, the physical
metric is

ds2 = dydȳ

ε2
= 1
ε2x′(y)x̄′(ȳ)dxdx̄, x(y) = 1

πT1
tanh(πT1y). (4.18)

We have here substituted the future-of-the-shock coordinate transformation in the AdS-
Vaidya geometry derived in appendix A, see (A.15). The conformal factor is, then,

Ω ∼ log 1
εt′P (u) = − log ε+ log cosh2 (πT1u)

≈ 2πT1u (4.19)

The source of this growth is clear when we draw out the y and x coordinate systems, as in
figure 5. So, we have for the reduced action (4.16)

Ĩdisc = −2S0 + 2∆ πT1u. (4.20)

The convenient fiducial metric in the connected history is the flat metric in global
coordinates,

d̂s
2
conn = dsds̄, s = σ + tgl. (4.21)
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Again, we will justify this in section 5. The physical metric is

ds2 = 1
ε2
dydȳ = 1

ε2s′(y)s̄′(ȳ)dsds̄,

s(y) = 2 tan−1 tanh 2πT̃1u√
1 + 2α

, T̃1 = T̃0
√

1 + 2α. (4.22)

The coordinate transformation is derived in appendix A, see (A.14). The conformal factor
we now find to be

Ω = log 1
εt′gl(u) = − log

(
ε2πT̃1

)
+ log cosh 2πT̃1u

≈ 2πT̃1u. (4.23)

So, the reduced action (4.16) in this case is

Ĩconn = −S0 + 2∆ πT̃1u+ · · · . (4.24)

The reduced action (4.16) becomes smaller in the connected history when

Ĩdisc − Ĩconn > 0

⇒ u >
1

2∆ π
(
T1 − T̃1

)S0 ≈
1

∆ πT0
S0. (4.25)

This is sufficient to show that the connected history dominates this path integral only if
we assume that 〈O(u)〉ĝ neither diverges nor vanishes at large u. This is not an innocuous
assumption, since the conformal factors are much the same in the decoupled case; in this
case, 〈O(u)〉ĝ diverges exponentially so as to restore Schwarzchild time-translation symme-
try. Roughly speaking, this divergence is a result of the operator going exponentially close
to the boundary, at z = (x+ x̄)/2 = 0 or σ = (s + s̄)/2 = 0, in the ĝ metric at late times.
However, with the coupling between the black holes, the CFT does not see a boundary
there and so we do not find this divergence. We show this quantitatively in sections 4.2.1
and 5.1 for the disconnected and connected histories respectively. Thus, we find that the
path integral with a single insertion of a primary operator is dominated by the connected
history at late times.

We now make some observations about this transition.

1. It is clear from the answer (4.25) that different operators transition at different times.
This goes back to the fact mentioned in the introduction that the idea of a particular
‘bulk dual’ is somewhat meaningless, and the best we can say is that different saddles
dominate different calculations.

2. In (4.13) and throughout this section, we considered the unnormalised partition func-
tion with an insertion. The one-point function is the ratio of this object with the
partition function sans insertion. However, the normalisation factor does not tran-
sition even when (4.13) does, leading to a somewhat non-standard answer for this
correlation function. In particular, this discrepancy means that the full one-point
function is ∼ e−S0〈O(u)〉conn.
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3. The CFT strip is entirely unimportant here; we could have as well measured a one-
point function of a QM operator dual to a primary operator in the bulk. This is
consistent with its introduction as a regulator.

4. The same effect is not visible in higher-point functions of a set of operators that
have identity in their OPE. The reason is simple: if we place (say) two operators
at an O(1) distance in the y-plane, they end up at an O(e−2πTu) distance in the
x-plane or s-cylinder, so that while the disconnected part dies off the connected part
(i.e. expectation value of the identity term in the OPE) does not because that latter
distance cancels out the conformal factor.

Suppose we try to place the two operators far enough apart so that this cancellation
is avoided, say at y1 + ȳ1 ∼ e2πT̃1u, y2 + ȳ2 = 0. The operator at y1 is deep in the bulk
and needs to be written as an HKLL operator on the boundary. Then, in terms of
boundary operators, this correlation function involves operators separated by a time
∆u ∼ S0, large enough that there might be other saddles, like the baby-universe-
emitting saddle of [81], that dominate the calculation.15

5. The transition is visible in any correlation function of operators that do not have
identity in the OPE.

6. The lack of a transition of Rényi entropies is because they behave like a CFT two-
point function rather than one-point function at late times. On the other hand, it
behaves like a two-point function because of the very same replica wormholes that
give the island rule and the right Page curve; meaning that the same saddles that are
required to reproduce the Page curve prevent the realisation of ER = EPR in this
set-up.

A different transition: projector onto the ground state. Finally, we can also
consider the question of what happens when we act on the product state e−`(HL+HR)|µ〉L⊗
|µ〉R with a projector onto the vacuum state of an interacting Hamiltonian (HL+HR+Hint),
this time without any Lorentzian time evolution. One way to accomplish this is to consider
the state

|ψ(δ)〉 = 1
Z
e−U(HL+HR+Hint)|µ〉L ⊗ |µ〉R, (4.26)

in the limit U → ∞. We take Hint, as above, to be such that it creates transparent
boundary conditions for the bulk 2d CFT across the asymptotic boundaries. Now consider
the bulk calculation of either the norm of |ψ(δ)〉, or some correlation function with a small
number of light operators. It was shown in [102] that this state corresponds to the eternal
traversable wormhole, which is a connected geometry.

More concretely, we could as before consider either the disconnected or the connected
geometry in the bulk. We observe that in the disconnected geometry, the CFT lives on a
background which is conformally equivalent to the half-plane, while in the connected ge-
ometry (which is suppressed by e−S0), the CFT lives on a background which is conformally

15Another problem is that this is deeper than a distance ∼ β log φr in the bulk and so one expects that
the HKLL reconstruction is too oscillatory to be useful, see for example [101].
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equivalent to a cylinder of length proportional to U . In the U → ∞ limit, the connected
geometry therefore receives an enhancement factor of eαcδ coming from the Casimir en-
ergy on the cylinder, where α is an O(1) constant. When U ∼ S0/c, this enhancement
overcomes the suppression from the entropy and the connected geometry dominates the
norm/correlation function. In this way, we see that at sufficiently large U , the connected
geometry dominates in the bulk. This is again a quantum-entanglement-induced phase
transition — the operator e−U(HL+HR+Hint) projects onto a highly entangled state of the
two boundary quantum systems, and this large entanglement causes a Hawking-Page-like
transition in the bulk geometry.

4.2 The disconnected history

Now that we’ve summarised the main story, we present the derivation of the geometry and
the QESs in the disconnected history. In this history, at time −iδ, we have two black holes
of inverse temperature β = 2` + O(µ−1). In the limit µ → ∞, the ETW branes are at
z = µ → ∞. The first step is to calculate the trajectory of the boundary particle after
the joining quench. Then, we study the conformal factor at late time, and also find all the
QESs in this history.

The state of the 2d CFT in each black hole before the quench is the Kruskal vacuum,
i.e., the state at the time-reflection symmetric slice created by the 2d CFT Euclidean path
integral on the “lower half” Euclidean black hole. A useful fact about this state is that it is
also the vacuum in the related flat metric dwdw̄. This can be seen by calculating the confor-
mal anomaly contribution to the non-trace components of the stress tensor from stripping
off the 1/(1 − ww̄)2 conformal factor and finding that it vanishes, see e.g. [15]. Because
Kruskal coordinates and Poincare coordinates are related by an SL(2,R) transformation,

x = 1 + w
1− w

, {ww̄ = 1} 7→ {x+ x̄ = 0}. (4.27)

we find that the state is actually in the vacuum in the metric dxdx̄ as well; we will therefore
refer to it as the Poincare vacuum.

4.2.1 The bulk geometry

The gluing is done in physical time, i.e. by matching the proper times u of the boundary
particles, as shown in the first panel of figure 6. Also shown in the figure is the fact that
the gluing results in the release of energy; our job is to calculate this energy and therefore
the bulk metric. The CFT is in a thermal state in the two AdS spacetimes; we can rewrite
the bulk metrics in Poincare coordinates,

ds2
i = 4dxidx̄i

(xi + x̄i)2 = 4x′i(y)x̄′i(ȳ)dydȳ
[xi(y) + x̄i(ȳ)]2

, i = L,R,

ds2
C = dydȳ

ε2
. (4.28)

With the boundary condition (2.2) the strip can be smoothly glued to the bulks at constant
y + ȳ.
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Figure 6. The conformal transformations for the disconnected history. Red lines, as above, are
ETW branes, green lines are the causal horizons before gluing, and orange lines are positive energy.
All three pictures are in real time. The left-most figure is the y-plane, in which time is the UV time
u. The middle figure is the Poincare plane; it is the only Penrose diagram here. The right-most
picture is the w-plane, which is just half of R2 (w + w̄ ≥ 0); in this plane, the state is the half-line
vacuum for all time.

By stripping off the conformal factors, we get three different conformally related flat
metrics: the y, xL, xR planes (where we have appropriately extended the ranges of these
coordinates to cover both Poincare patches as well as the central strip). We denote the
conformal transformations between the three planes as

xR = xR(y), xL = −xL(y) xR = −xR ◦ x−1
L (xL). (4.29)

The signs take care of the fact that the left bulk is reflected. A crucial simplification follows
from symmetry,

− xL = xR = x. (4.30)

So, we have in fact only two planes, the y and x planes. In the y plane, the CFT in the
ith bulk, spacelike to the joining quench, is in a thermal state; whereas in the xi plane, it
is in the vacuum.

Of course, even in the x plane it is not in the vacuum after the quench. However, as
noted in [15, 103], the state after the quench is a descendant of the strip vacuum, i.e. there
is a conformal transformation x→ w(x) to a half-plane in which there is no quench.16 On
the slice where Poincare time tP = 0, or x = x̄, we may write the conformal transformation
to the line where w = w̄ as

w = w2
0

w0 − x
θ(−x− ε) + (w0 + x)θ(x− ε) + yθ(ε− x)θ(x+ ε) (4.31)

at leading order in ε. Here, we have used the fact that the Poincare coordinate is cut off
at z = εf ′(u) and f ′(0) = 1. The reason for the asymmetric treatment of the two bulks
is that in a CFT, infinity is a single point and so, if both bulks extended to |w| = ∞ the
quench would have involved joining the two bulks at both ends. Equation (4.31) has the
property that w′ is continuous all the way across, and that it is an SL(2,R) transformation

16In the Euclidean language, the quench geometry corresponds to a plane (labelled by x) with two slits
along the imaginary axis placed in a time-reflection symmetric configuration. This plane can then be
conformally mapped to a half-plane (labelled by w), where the slits get mapped to the boundary of the half
plane.
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within each of the three regions, so that it reproduces the correct stress tensor expectation
values at points spacelike separated from the quench.

Another important point is that we are interested in the limit w0 → 0, since we
need correlation functions on this time-slice to factorise as

〈∏
iOi(x < 0)

∏
j Oj(x > 0)

〉
=〈∏

iOi(x < 0)
〉〈∏

j Oj(x > 0)
〉
. In the limit w0 → 0, operators in the x > 0 region are

much further from operators in the x < 0 region than each other and the boundary, and
so we find the required factorisation [15].17

Since Tww18 vanishes by definition (i.e., the w-plane is chosen such that the CFT is in
the vacuum on it), we find that at ε = 0,

Txx = (w′)2 Tww −
c

24π{w, x}

≈ c

12πw0
δ(x). (4.32)

This and a similar calculation for Tw̄w̄ shows that the joining quench produces two shocks
with no further energy exchange, and thus the backreacted geometry of each black hole is
an AdS-Vaidya spacetime with a single shock.19 The CFT strip which we inserted between
the two black holes to facilitate the coupling only resolves the above shock to two closely-
spaced shocks; to the future of these, this correction is not so important.

As mentioned above, it is thus easy to take into account the backreaction of this energy
distribution. The post-coupling state is just two AdS-Vaidya black holes of temperature
T1 > T0 = 1

2` , and the boundary particle trajectory is

tP (u) = 1
πT0

tanh(πT0u)θ(−u)+ 1
πT1

tanh(πT1u)θ(u), β1 = β0−O(cβ0/φr)<β0. (4.33)

The temperature difference scales with the small parameter cβ0/φr because the black hole
has ADM energy (πT0)2φr, see appendix A, and the shock adds an amount of energy
∼ c/w0 that does not scale with φr; so that we have ∆E/E ∼ ∆β/β ∼ cβ/φr.

A quantity of interest is the conformal factor between the CFT strip and the vacuum
plane:

ds2 = 1
ε2
dydȳ = e2Ω(y)dwdw̄,

e2Ω(y) = 1
ε2

∣∣∣∣x′(w)
x′(y)

∣∣∣∣2
y=−ȳ=u−−−−−→ 1

ε2
cosh4(πT1u)

⇒ Ω(u) u→∞−−−→ 2πT1u. (4.34)

This was the main input in (4.19), which went into determining the bulk dual.
17In [103], the map (4.31) is written slightly differently as w =

(
x+
√
x2 + δ2

)
/2. In the limit δ → 0,

this coincides with (4.31) with the identification w0 = δ/2.
18We are, as always, using the convention that

Txαxβ = 〈Tαβ〉ds2=ηαβdxαdxβ .

19In the non-symmetric case, one has to solve a differential equation, but here the answer is clear.
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The other important input in (4.19) was the choice of the flat metric in Poincare
coordinates as a fiducial metric. Since the state in the w plane is the vacuum, in reality it
is dwdw̄ that should be the fiducial metric. However, the growing part of w′(y) is x′(y),

w′(y) = w′(x)x′(y) ≈ w2
0
x2 x

′(y) y=−ȳ=u→∞−−−−−−−−→ (πT1w0)2x′(y). (4.35)

So we see that (4.19) is the right answer at leading order.
We can also use these results to calculate the one-point function of a primary operator

at y = −ȳ = u.

〈O(u)〉 =
〈
O

(
w = tP (u), w̄ = w2

0
tP (u)

)〉
dwdw̄

e−∆Ω ∝ 1
tP (u)∆ e

−2πT1∆u. (4.36)

This validates the assertion around (4.15) that only the conformal factor competes with
the S0 term.

4.2.2 Entropies

For a point at the center of the strip and arbitrary time y = −ȳ = u, the calculation of
quantum extremal surfaces is the same in most particulars as that in the “thermal equilib-
rium” calculations in [22], in which they couple an AdS black hole to a non-gravitational
bath at temperature T1.

The reason for this agreement between these two seemingly distinct cases can be un-
derstood as follows. Under a Weyl transformation the CFT EE transforms as

Sbulk,g = Sbulk,ĝ + c

6
∑

endpts
Ω, g = e2Ωĝ. (4.37)

We will take d̂s2 = dwdw̄, as above. Sbulk,ĝ is a completely fixed function of the w, w̄
coordinates, the CFT EE on the half-line vacuum; for a region with either one or two
endpoints it is

Sbulk,ĝ,1pt ((w, w̄)) = c

6 log(w + w̄) + log g

Sbulk,ĝ,2pt ((w1, w̄1), (w2, w̄2)) = c

6 log [(w1 − w̄1)(w2 − w̄2)η] + logG(η),

η = (w1 + w̄1)(w2 + w̄2)
(w1 + w̄2)(w2 + w̄1) . (4.38)

G(η) is a theory-dependent function that has a particularly simple form when the 2d CFT
is itself holographic [22]. Taking the simple case of g = 1 in a holographic CFT, the bulk
entropy is

Sbulk,ĝ,2pt ((w1, w̄1), (w2, w̄2)) =


c
6 log [(w1 − w2)(w̄1 − w̄2)] η > 1

2

Sbulk,ĝ,1pt ((w1, w̄1)) + Sbulk,ĝ,1pt ((w2, w̄2)) η < 1
2
.

(4.39)
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This simple form corresponds to an exchange of dominance of HRT surfaces. The details
of the physical situation, then, enter in two ways: in the placement of the end-points in
the w plane, and in the conformal factors.

We are interested in calculating the CFT entropy when one end-point is in the central
strip and any other possible end-points are, say, in the x > 0 bulk region. The map
from the y = −ȳ line to the w plane is clearly given by w(y), and the conformal factor
is ε2w′(y)w̄′(ȳ). For any other points, they are given by w(x) and (x + x̄)2w′(x)w̄′(x)
respectively. w(x) is fixed entirely by the fact that the x > 0 bulk is in the vacuum in
the Poincare conformal frame. The dependence on the actual nature of the bath, then, is
encoded in the function x(y). But x(y) is the map between the conformal frame in which
the gluing happens (the dydȳ frame) and the map in which the x > 0 bulk is in the vacuum
before the quench (the dxdx̄ frame). Since the gluing happens at u > 0, it only cares about
the temperature of the x < 0 region after the quench. Thus, it doesn’t matter whether
the x < 0 region started out at temperature T1 or got there by backreaction of the joining
quench; the actual inputs into the CFT entropy calculation only care that it is in fact at
that temperature after the quench.

One important difference is that [22] considers not a pure state black hole but a ther-
mofield double in the x > 0 region, meaning that they do not have the option of the
empty surface as an entangling surface. Using the transformation (4.31) to do the CFT
calculation, we find that the generalised entropy of the empty surface is

Sgen(∅) = Sbulk(AdSL) = c

6 log sinh2(πT1u)
π2T 2

1 εw0

u→∞−−−→ π

3 cT1u. (4.40)

Another important difference between our set-up and [22] is that our set-up is symmet-
ric, and so non-empty QESs come in degenerate pairs. Refs. [21, 22] find three (pairs of)
candidate QESs in this set-up. Because all the non-empty QESs have entropy at least S0
and the final late-time QES dominates in [22] at time u ∼ φr/(cβ1), only the empty surface
and the late time steady-state extremal surface need be considered for the calculation of
the entanglement. However, the other two are needed for the calculation of the spacetime’s
lunch structure in figure 7.

Since the original bifurcate horizons in each bulk are classical extremal surfaces, there
is always a pair of QESs close to them. This QES is dealt with explicitly in [22] and so we
simply copy the generalised entropy, which at late enough times is

Sgen(disconnected,bifurcate) = S0 + 2πT0φr + π

3 cT1u−O
(√

φr
)
. (4.41)

There is also another QES only slightly to the past of the shock and almost null-
separated from the boundary endpoint. The generalised entropy of a general point in the
right AdS (x + x̄ > 0) to the past of the shock (x̄ > 0) and space-like separated from the
UV end-point x = −x̄ = tP (u) (t < x) is

Sgen,nE(x = tP (u)+ δx, x̄) = 2φr
1 + (πT0)2xx̄

x+ x̄
+ c

6 log
[

2
εw0

tP (u)
t′P (u)

x̄δx

x+ x̄

]
, 0 < δx, x̄� 1.

(4.42)
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Figure 7. All the QESs in the disconnected history. Dashed blue lines denote entanglement DOFs,
and purple lines mark the location of QESs, and they are labelled by the value of 6

cSgen. u� uPage.
The QESs marked with the same generalised entropies aren’t actually degenerate, but our analysis
is insufficient to distinguish them. AdS boundaries are at the far left/right of the figure above. We
have defined the quantity k = c

6πφrT0
.

Here, we’ve used that η ≈ 1 in this regime. Assuming x̄, δx = O(1/φr), we find for the
derivatives of the generalised entropy

6
c
∂xSgen,nE = −12φr

c

1
(x+ x̄)2 + 1

δx
+O

(
φ0
r

)
6
c
∂x̄Sgen,nE = −12φr

c

1− (πT0)2x2

(x+ x̄)2 + 1
x̄

+O
(
φ0
r

)
. (4.43)

Setting both of these to 0, we find that the QES is at

x∗ = tP (u) + c

12φr
tP (u)2 +O

(
φ−2
r

)
,

x̄∗ = c

12φr
tP (u)2

1− (πT0tP (u))2 +O
(
φ−2
r

)
u→∞−−−→ c

24φr
1

1− T0
T1

∼ w2
0. (4.44)

We have used that T1 = T0 + O(c/(φrw2
0)); one can check that, because of the w0 factor,

there is no order of limits issue and this is the position of the QES at arbitrarily late time.
Finally, the generalised entropy at late times is

Sgen(disconnected,at-shock) = S0 + 2πT1φr + c

6 log (c/12φr)2

1− (T0/T1)2 + π

3 cT1u−O
(√

φr
)
.

(4.45)
This QES is more entropic than the one near the bifurcate horizon by an O(1) amount —
but this difference is dominated by the error due to this QES being one of a degenerate pair.

Finally, we can use the results in [22] for the position and generalised entropy of the late-
time surface. In the boundary-adapted y, ȳ coordinates in which the steady-state nature is
manifested as an invariance under u translations, the extremal surface that calculates the
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entropy at time u is

uQES(u) = u

yQES + ȳQES
2 = ±β1

2π log 24πφr
cβ1

+O
(
cβ1
φr

)
. (4.46)

The ± reflects the fact that this is actually a degenerate pair of HRT surfaces. Its gener-
alised entropy, and therefore the late-time EE between the two QM systems, is

Sgen(disconnected,late-time) = S0 + 2π
β1
φr −O

(√
φr
)
. (4.47)

The O(
√
φr) terms above denote corrections to the holographic EE near phase transi-

tions [93–95]. Comparing with (4.40), we see that there is an exchange of dominance
between the empty surface and this late time QES in the disconnected saddle at

uPage = 3
π

S0
cT1

+ 6φr
c
−O

(√
φr
)
. (4.48)

5 Coupling two black holes connected by a wormhole

In this section, we consider a two-sided eternal black hole. We couple the two sides at
some initial time and let them radiate into each other. We will find that, apart from a
pre-scrambling-time transient, the UV EE behaves much like the previous case. Apart
from being an interesting problem in its own right, this calculation is also relevant as the
connected history of section 4. The Lorentzian geometry is shown in figure 4b.

At time −iδ, we take a two-sided black hole of inverse temperature β̃0 coupled to a
holographic 2d CFT. We then do a joining quench, similar to the one in section 4, of the
two ends to couple the two black holes.

Working out the bulk geometry is a harder exercise in this case, and involves a 2d CFT
calculation that has not been dealt with in the previous literature. We deal with this part
of the problem in section 5.1, and use the lessons learnt here to calculate the Page curve
in section 5.2.

5.1 The bulk geometry

The state of the CFT before the quench is in a descendant of the Kruskal vacuum, or
the thermofield double (TFD). It is not quite in the TFD state because of the presence of
the ETW brane; however, in the limit µ → ∞, we can approximate it as the TFD state,
since the ETW brane shrinks to 0 size in this limit, see (2.11) and (2.12). Calling the
Kruskal-Szekeres coordinates w, the boundary of AdS is at ww̄ = 1, which is a hyperbola
in real time. For this reason, despite being natural, these are inconvenient coordinates to
study the joining quench in.

The useful set of conventional AdS coordinates are global coordinates, s ≡ σ + tgl,
related to the Kruskal-Szekeres coordinates by

s = −i log 1− iw
w− i

, {ww̄ = 1} 7→ {sin(s + s̄) = 0}, (5.1)
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Figure 8. The conformal transformations relating the Kruskal and global vacuums. In this figure
the Kruskal-Szekeres coordinate is denoted by w rather than w.

see figure 8. While this is merely a coordinate transformation in AdS2, this is a non-trivial
conformal transformation from the metric dwdw̄ to the metric dsds̄. The stress tensors in
these two flat metrics are

T (w) = 0, T (s) = {s,w}
s′(w)2 = − c

24π
1
2 . (5.2)

The first equation is justified in the beginning of section 4.2. As in the previous section,
the map from w to s is merely a coordinate transformation in AdS2 but a conformal
transformation in flat space; including the contribution from the AdS2 Weyl factor sin2 s+s̄

2
gives 〈T (s)〉AdS = 0, see eg [102].

The metric in the AdS and the gluing strip regions respectively is

ds2
AdS = dsds̄

sin2 s+s̄
2

= s′(y)s̄′(ȳ)dydȳ
sin2 s(y)+s̄(ȳ)

2

ds2
C = dydȳ

ε2
. (5.3)

The gluing, as before, is along the u coordinate. The symmetry between the two QM
systems is here given by y ↔ −ȳ and s ↔ π − s̄. Similarly to the previous section, the
symmetry dictates that the relation between s and y is continous across the gluing and the
effect of the joining quench is just a symmetric pair of shocks. We will now consider the
CFT in the flat metric dsds̄.

To calculate the stress energy and EEs after the quench, we would like to, follow-
ing [103], calculate correlation functions on the Euclidean s ‘cylinder’ in figure 9 and
analytically continue the position of the insertions to real time. This manifold is obtained
by taking one ‘ket’ and one ‘bra’ copy of the state, so that we can calculate correlation
functions on it. We can easily see that this manifold has the topology of a cylinder, i.e.
its Euler characteristic is χ = 0.20 This means that this case is more complicated than
the previous case, since the state after the quench is a descendant not of the S1 vacuum
but of a Cardy state |B〉 corresponding to the boundary conditions at the asymptotic AdS
boundary.

Thus, the simplest state that our state of interest on the s cylinder is conformally
related to is not the vacuum but a U(1)-symmetric excited state of the form e−

τ
2H |B〉.

Adding the bra copy of this state, we get a cylinder of circumference 2π and length τ . The
20This quench has not, to our knowledge, been discussed in the CFT literature, apart from a calculation

of the overlap with the vacuumn [104] that is calculated by a genus 0 manifold.
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Figure 9. The conformal transformation from the U(1) symmetric ζ cylinder to the s cylinder
in which the quench happens. There are two slits in the s cylinder because we need to use this
manifold for expectation values, and so need both a ‘ket’ as well as a ‘bra’ copy of the state. This
figure is in Euclidean space whereas figure 6 in the previous subsection is in Lorentzian space.

Role of coordinate Disconnected History Connected History
Coordinate in which the state w ζ

is spatial-translation-invariant
Conventional AdS coordinate x (Poincare) s (global)
UV coordinate y y

Table 3. A comparison of the roles various coordinates play in section 4.2 and this section.

relevant sequence of conformal transformations that takes this cylinder to the s cylinder is
illustrated in figure 9. The quantity τ is a conformal invariant and will play an important
role below; it is related to the so-called ‘modulus’ of the annulus by

µ = e−τ . (5.4)

As an aid to understanding, we compare the roles of coordinates used in the two histories
in table 3.

The crucial function f(z) in figure 9 is a so-called doubly connected Schwarz-Christoffel
map [105, 106], and it is given by

f(z) = e2δ + C

∫ z

1

Θ
(
µ, µz̃z11

)
Θ
(
µ, µz̃z12

)
Θ
(
µ, z̃

µz01

)
[
Θ
(
µ, z̃

µz02

)]3 dz̃

Θ(µ, z) =
∞∏
j=1

(
1− µ2j−1z

)(
1− µ2j−1

z

)
f(z01) = e2δ, f(z02) =∞, f(z11) = e−2δ, f(z12) = 0. (5.5)

Here, C is an integration constant. By symmetry, the ‘pre-vertices’ zij are at

z01 = −z02 = 1, z11 = −z12 = µ. (5.6)

The modulus µ is hard to calculate analytically in general, but it turns out that in the
limit δ → 0, µ = e−τ increases towards one (i.e. the ζ cylinder gets more ‘squashed’). We
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Figure 10. Phases of the 3d ETW brane in the ζ cylinder.

confirm this by analysing (5.5) in the τ → 0 limit in appendix C, finding

τ ≈ π2

log 4
δ

, C ≈ 4π
τ
e−

π2
2τ + τ

2 . (5.7)

We can check this using the numerical package [107];21 for the smallest value of δ with
which the algorithm converges we find

δ = 5× 10−6, µ ≈ .4838, C ≈ .0278, (5.8)

which matches with (5.7). All code used in this section is available online [108].
The importance of the ζ cylinder is that it provides to us a U(1)-symmetric state that

is related to the post-quench state by a conformal transformation. However, even this
simpler state is complicated in a general CFT. As mentioned previously, the 2d CFT is
holographic, dual at leading order to pure 3d general relativity with negative cosmological
constant. In that case, the boundary condition translates to a 3d ETW brane with a
specified tension T ∈ (−1, 1) [109, 110], and the bulk geometry dual to the ζ cylinder is
one of the two geometries in figure 10, as discussed in detail in [111]. The one in which
the two branes don’t meet has the geometry of vacuum AdS3 in the bulk whereas the one
in which they do has the geometry of a black hole. This will be enough to calculate the
entanglement of the 2d CFT and therefore the positions of the quantum extremal surfaces
in this history.

The first question is which of the two phases in figure 10 dominates. Because the
contribution of the conformal transformation to the CFT partition function (i.e. the 3d
on-shell action) is independent of state, we only need to check which phase dominates on
the ζ cylinder. Using formulas in [111], we find that the black hole phase dominates when
the brane tension T is small enough so that

tanh−1 T <
π2

4τ −
τ

4 . (5.9)

In the limit τ → 0, we find that the black hole phase always dominates. This is the
expected answer physically, since we know that the post-quench 3d geometry has to have

21We thank Chenglie Hu for correspondence.
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an ETW brane falling away from the 2d boundary as in [112]; an easy way to see this is
that correlation functions spacelike to the quench have to take the strip vacuum values
and so the corresponding 3d geodesics have to end on an ETW brane. Since the analytic
continuation to real time happens at a slice of time-reflection symmetry, and the brane
does not pass through this slice in the vacuum phase on the right of figure 10, we conclude
that the correct phase is the black hole phase on the left.

This phase has been studied extensively in [111, 113] and it will be sufficient to use
their formulas without modification. The bulk geometry (dual to the ζ cylinder) in this
phase is given by a 3d BTZ black hole,

ds2
3d = −(r2 − r2

h)dt2 + dr2

r2 − r2
h

+ r2dφ2, ζ = φ+ t, ζ̄ = φ− t. (5.10)

Here, the black hole radius is given by

rh = π

τ
. (5.11)

The trajectory of the ETW brane in real time is

cosh(rht)
√
r2

r2
h

− 1 = T√
1− T2

. (5.12)

For T > 0 the ETW brane is in a second exterior connected by a wormhole, similarly to
the µ > 0 case in section 2.1.

Finally, we will also need the stress tensor on the ζ cylinder, T (ζ). Since we have taken
the limit τ → 0, it is a very thin cylinder. The conformal transformation

ζ̃ = π

τ
iζ (5.13)

is a modular transformation that gives a cylinder of width π and circumference 2π2

τ . In
the limit τ → 0, we find the state at Im ζ̃ = const is the vacuum on a strip of width π.
This gives

T (ζ̃) = − c

24π
1
2 ⇒ T (ζ) = c

24π
π2

2τ2 . (5.14)

Now we try to approximate the conformal transformation ζ(s). First, we notice that
because every manifold in figure 9 has the same time-reflection symmetry, we conclude
that Im s = 0 and Im ζ = 0 map to each other. Then, we notice that we don’t need the
approximation everywhere but only at the moment of time-reflection symmetry, since the
conformal transformation for all real time can then be found from the fact that ∂s̄ζ =
∂sζ̄ = 0. We divide the Im s = 0 circle into two regions:

near-quench (nq) region = {s ∈ (0, δ)}
⋃
{s ∈ (π − δ, π)}

far-from-quench (ffq) region = {s ∈ (δ, π − δ)}. (5.15)

Since correlation functions in the far-from-quench region take the same values as the strip
vacuum and the state at Im ζ = 0 is an excited state on the circle, the map must compress
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Figure 11. How the s ∈ R circle maps to the ζ ∈ R circle in the map (5.5). Left: we see that most
of the s circle gets compressed to a small angular width in ζ, and that the concentration increases
as δ → 0. This plot uses a different range for s, ζ compared to the rest of the paper, to better show
the concentration. Right: comparison of the numerical map and the analytic approximation (5.22)
using parameter values from (5.8). The approximation has been offset so that both graphs are
visible.

the far-from-quench region into a small interval ζ ∈ (π − δζ, π + δζ). This is so because
in the UV all correlation functions flow to their vacuum value. This is similar to the limit
w0 → 0 in (4.31) that ensures factorisation between the two half-lines. A numerical check
with the parameters in (5.8) confirms this intuition, as seen in figure 11.

The stress tensor on the s circle is, by the standard CFT transformation rules,

T (s) = c

24π

[
π2

2τ2 ζ
′(s)2 − {ζ, s}

]
. (5.16)

We will use this equation in two different ways in the two regions: in the near-quench
region we will use it to estimate T (s), whereas in the far-from-quench region we will use
consistency with the global vacuum value of T (s) to approximate ζ(s).

In the far-from-quench region, using the fact that the stress energy is the same as the
global vacuum value

Tffq(s) = − c

24π
1
2 , (5.17)

we find the equation

{ζ, s} − π2

2τ2 (ζ ′)2 − 1
2 = 0. (5.18)

This differential equation can be solved by the observation that it is equivalent to the
quadratic equation{

4π2

τ2 tan2 (s− s0)− 4π2

τ2c2

}
(ζ ′)2 + 4 sec2 (s− s0)

(2π
τc
ζ ′ − 1

)
= 0 (5.19)

c, s0 are integration constants. We use the Z2 symmetry to set s0 = 0. Integrating again
and defining the quantity δζ as the size of the image of the s cylinder on the ζ cylinder,

– 35 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

Figure 12. The map between the Lorentzian ζ and s cylinders. The regions marked I, II are the
far-from-quench regions that will be relevant to us; they map to each other and their coordinate
extents are given in equation (5.23). The regions between the orange lines are the near-quench
regions; as can be seen the near-quench region is the majority of the ζ cylinder.

we find

ζ = π + δζ

2 −
2τ
π

coth−1 cosh πδζ
2τ + tan s

2
sinh πδζ

2τ
, δζ = 2τ

π
sinh−1 c. (5.20)

To fix the integration constant δζ, we impose a second consistency condition, namely that
it reproduce the strip vacuum value for the one-point function of a primary operator at a
point space-like to the quench. We find that it is only reproduced in the limit τ

δζ → 0,22

and so we find
ζ = π + τ

π
log tan s

2 (5.22)

The expression (5.22) for ζ(s) is one of the main results of this section, and will be used
extensively in section 5.2. The same formula is also reproduced directly from the Schwarz-
Christoffel map (5.5) in appendix C.

Because these are cylinders, there is some ambiguity in the choice of coordinate range;
the expression (5.22) is consistent if we make the choices that regions I, II in figure 12 have
coordinate ranges

region I : s = s+ ∈
(

0, π2

)
s̄ = π − s− ∈

(
π

2 , π
)

region II : s = s+ ∈ (0, π) s̄ = −s− ∈
(

0, π2

)
(5.23)

where s± = tgl±σ. The extension to other regions is straightforward, but these two regions
will be relevant below.

In the near-quench region, ζ ′ ∼ δ−1 since it maps the O(δ) angular width in s to an
O(1) angular width in ζ. So, we expect the first term to dominate (5.16) and find, since

22Take the bulk tension T = 0. In the strip vacuum, the length of a geodesic from s = s̄ = σ to the
brane is log(2 sin σ) up to a regularisation constant. Using equations (5.10) and (5.12) along with conformal
transformation factors from (5.20), we find this length to be

log
[

2
1 + cosh πδζ

2τ sinσ
sinh πδζ

2τ

]
τ
δζ
→0

−−−−→ log(2 sin σ). (5.21)
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Figure 13. The numerical result for T (s) with δ = 5 ∗ 10−6, see [108] for the code. We use the
expression for the Schwarzian in [105]. The result corroborates the expectation (5.24) that the
stress-energy in the near-quench region is positive and large. The result in the far-from-quench
region is not trustworthy, because τ ≈ .7 in this case and the relevant limit is τ → 0.

T > 0 in the black hole phase,
Tnq(s) ∝ + c

δ2 . (5.24)

This result is further corroborated by numerics [108], see figure 13, as well as an analysis
of the Schwarz-Christoffel map, see equation (C.24) where the constant of proportionality
is found to be 1

16π .
This means that, similarly to the disconnected history, the joining quench throws out

a shock of large positive energy and then the two sides stay in equilibrium. The bulk
geometry is thus AdS-Vaidya and the boundary particle trajectory is given by

tgl(u) = 2 tan−1 tanh
(
πT̃0u

)
θ(−u) + 2 tan−1

tanh
(
πT̃1u

)
√

1 + 2α

 θ(u),

α ≡ 1
2
T̃ 2

1 − T̃ 2
0

T̃ 2
0

= O
(
cβ̃0
φr

)
. (5.25)

See appendix A for a derivation. Despite the fact that α � 1, we will defer expanding in
α to final expressions, since e−2πT̃1u � α for large enough u.

We use (5.22) and (5.25) to calculate the conformal factor between the physical metric
and the ζ cylinder.

ds2 = 1
ε2
dydȳ = e2Ω(u)dζdζ̄

eΩ = 1
εt′gl(u)|ζ ′| =

tanh
(
πT̃1u

)
επT̃1

cosh2(πT̃1u)

⇒ Ω u→∞−−−→ 2πT̃1u. (5.26)

Note that it is important to be cognizant of the order of limits to get the right behaviour
here. Again, we see that the dominant contribution comes from t′gl(u), justifying the choice
in (4.22), and verifying the main calculation in section 4.1.2.
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We again can calculate a one-point function of a primary operator of dimension ∆ at
y = ȳ = u. This point is in region I of figure 12 and so we have s = tgl(u), s̄ = π − tgl(u).
The one-point function is

〈O(u)〉 = e−∆Ω
〈
O

ζ = 2π − ζ̄ = π + τ

π
log

tanh
(
πT̃1u

)
√

1 + 2α

〉
dζdζ̄

u→∞−−−→
〈
O
(
ζ = 2π − ζ̄ = π − τα

)〉
dζdζ̄

e−2πT̃1∆u. (5.27)

The first factor here is neither too large nor too small, as can be shown by using the
holographic description of the ζ cylinder. Thus, we find that this one-point function decays
exponentially with time.

5.2 Entropies

To calculate the CFT entropies, we need to calculate the entanglement entropies on the
ζ cylinder. Again, we use the doubly holographic description for this. The single interval
bulk entropy in the 2d CFT can be calculated using the HRT formula [111],

Sbulk(ζ1, ζ2) = c

6 log

 4
r2
h

min

sinh2 rhR

2 ,
1 + T
1− T

∏
i=1,2

cosh(rhti)


R2 ≡ (ζ1 − ζ2)(ζ̄1 − ζ̄2), ti ≡

ζi − ζ̄i
2 . (5.28)

We remind the reader of our notation in table 1. The first possiblity is when the 3d HRT
surface misses the ETW brane, whereas the second possibility is when the 3d HRT surface
goes from each end-point to the brane. We have thrown away a divergent constant, since
we are only interested in generalised entropies — in which case the constant only serves to
renormalise φr. While [111] only does the calculation for the case where the two end-points
are on the same time slice, the formula applies for points also at different times. This is
clear in the case where the HRT surface hits the brane since the answer is factorised; in
the other case, this was argued to be the case in [114].

An important point to note is that, in writing the expression for R in (5.28), we have
assumed that both points are in region I or II of figure 12 and that we are using the
labelling for ζ, ζ̄ laid out implicitly in (5.23) and (5.22). To see why this is important,
consider placing one point at ζ = ζ̄ = 0 and one point at ζ = ζ̄ = 3π

2 (not in regions I, II).
A naive application of (5.28) gives R = 3π

2 whereas a moment’s thought tells us that the
true distance is only π

2 .
To calculate entanglement entropy in AdS2, we need to introduce factors for the con-

formal transformation from ζ to s and also a factor for the Weyl transformation from
flat space to AdS2. We take one end-point to be in the flat space strip between the QM
systems, meaning that instead of that from the Weyl transformation to AdS2 we have to
include a factor from the conformal transformation to y coordinates. Thus, the full CFT
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entanglement entropy is

Sbulk (u, (s, s̄)) = Sbulk (ζ(tgl(u)), ζ(s))− c

6 log
(
εt′gl(u)

√
ζ ′(tgl(u))ζ̄ ′(π − tgl(u))

)
− c

6 log
(√

ζ ′(s)ζ̄ ′(s̄) sin s + s̄

2

)
. (5.29)

Using (A.3), (A.7) and (A.13), we find that the dilaton in this geometry is

φ =

2πT̃0φr
cos tgl
sinσ to the past of the shocks

2πT̃0φr
[ cos tgl

sinσ + α
sin tgl−cosσ

sinσ

]
to the future of the shocks

. (5.30)

To calculate the entanglement between the two QM systems, we need to find the extrema of

Sgen,nE(u, (s, s̄)) = S0 + φ+ Sbulk(u, (s, s̄)). (5.31)

The first step in the calculation is to figure out when each of the two 3d HRT surfaces
dominates in (5.28). We will place one point in region I and the other in either region I
or II. Since one point is in region I, the HRT surface that hits the brane has length
∼ log cosh rhπ � 1. Meanwhile the HRT surface that misses the brane has length ∼ τ but
the combination rhR ∼ τ0. So this latter HRT surface always dominates in the cases of
interest. Thus, we find that

Sbulk(u, (s, s̄)) = c

6 log

 4
εt′gl(u) sin s+s̄

2

π2/τ2

ζ ′(tgl(u))
√
ζ ′(s)ζ̄ ′(s)

sinh2 πR

2τ

 . (5.32)

A surprising thing about this formula is that all τ factors cancel, and so there is no
dependence on δ at all, meaning that the shocks don’t seem to carry any entanglement.

Another implication of the dominance of this brane-missing HRT surface after the
quench (tgl > δ) is that the original bifurcation surface s = s̄ = π

2 immediately stops
being a QES. This is because the distance R is not extremal here for u 6= 0, whereas the
dilaton and the other factors in (5.32) are extremal. However, since the bulk entropy is
a subleading term in the generalised entropy, we can look for the early-time QES close to
the bifurcation surface. This expansion is organised in powers of

k ≡ cβ̃0
12πφr

. (5.33)

There are two things to keep in mind while doing this expansion,

α ∼ k

δ
and when T̃1u > log k, e−πT̃1u � k, α. (5.34)

The transition between the α � e−2πT̃1u and α � e−2πT̃1u happens at around u =
β̃1 log k−1, which is the scrambling time.
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Figure 14. The position of all behind-shock QESs. The zeroes of both equations are plotted in
the region behind the shock and spacelike to the boundary point s = π − s̄ = 2 tan−1 ζu. They
intersect at the symmetric surface σ = π/2, and also at a point that is right behind the shock and
nearly null-separated from the boundary point. The parameters have the values k = .1, ζu = .78.

With these caveats in mind, we find by plugging (5.32) into (5.31) for the extremal
surface equations

0 = 6
c
∂sSgen,nE

= − 1
2k

cos s̄
sin2 σ

− 1
2 cotσ + 1

2 cot s + 1
2 sin s

√√√√√ log cot s̄
2

ζu

log tan s
2

ζu

coth

1
2

√
log

tan s
2

ζu
log

cot s̄
2

ζu


0 = 6

c
∂s̄Sgen,nE

= − 1
2k

cos s
sin2 σ

− 1
2 cotσ + 1

2 cot s̄− 1
2 sin s̄

√√√√√ log tan s
2

ζu

log cot s̄
2

ζu

coth

1
2

√
log

tan s
2

ζu
log

cot s̄
2

ζu

 .
(5.35)

Here, we have defined

ζu ≡
tanh πT̃1u√

1 + 2α
, ζ(tgl(u)) = π + τ

π
log ζu, ζ̄(tgl(u)) = π − τ

π
log ζu. (5.36)

There is always a QES behind the shock at the Z2-symmetric surface s + s̄ = π, as
can be seen by the fact that the sum of the two QES equations with s + s̄ = π vanishes
identically. An important thing to note is that because of the symmetry there are two
3d HRT surfaces that go between the two points; this means that, because of the results
of [93–95], the HRT formula is expected to have an O(

√
c) error. We use a numeric plot

to look for any other QESs behind the shock, see figure 14, and find that there is also one
right behind the shock. In this case, there is another degenerate QES just behind the other
shock as well; and the HRT formula is expected to have an O(

√
φr) error.

We first deal with the QES on the symmetric surface σ = π/2 or s + s̄ = π. Here, the
equations simplify to

cos s
2k + cot s + 1

sin s

tan s
2 + ζu

tan s
2 − ζu

= 0. (5.37)
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Figure 15. A simple quasiparticle explanation for the early-time decrease in the generalised
entropy. The regions bounded by solid green lines are the quantum extremal wedges at the two
times. The arrows are mirror quasi-particles that are entangled in the eternal black hole; as time
goes on, more and more entangled pairs end up on the same side and the entanglement decreases.
The turn-around at scrambling time is not so easily visualised.

It is easy to solve for tan s
2 , but the exact expression is too long to reproduce here. In a

small k expansion, we find

s∗ −
π

2 =


1+ζu
1−ζuk +O(k2) πT̃1u� logα−1
√

2k +
(
1− 1−ζu

2k

)
k +O(k3/2) πT̃1u� logα−1 . (5.38)

The generalised entropy at this surface is

Sgen(connected, symmetric) = S0 + c

6


1
k πT̃1u� logα−1

1
k − 2 πT̃1u� logα−1


+ c

6 log
[

(1 + α− tanh πT̃1u)2

επT̃1
cosh2 πT̃1u

]
−O

(√
c
)

u�φr/c−−−−−→ S0 + c

6k −
c

3 + c

6 log α2

επT̃1
+ c

3πT̃1u−O
(√
c
)
.

(5.39)

It decreases till the scrambling time and then increases linearly after. The early time
decrease can be easily seen in a quasiparticle picture, as shown in figure 15; the linear
increase after scrambling time isn’t as clear.

The QES right behind the shock can be found by taking the ansatz

s = 2 tan−1 ζu + δs, δs = O(k2), s̄ = O(k). (5.40)

With this scaling, the leading order QES equations become

6
c
∂s̄Sgen,nE ≈ −

1
2k

1− ζ2
u

ζu
+ 1

2s̄

6
c
∂sSgen,nE ≈

1 + ζ2
u

2ζu

−1
k

+

√√√√√ log 2
s̄

2
(
ζu + 1

ζu

)
δs

 (5.41)
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The solutions are

s̄∗ = 2ζ2
u

1− ζ2
u

k

s∗ = 2 tan−1 ζu − ζ2
u

log 1−ζ2
u

ζ2
uk

2
(
ζu + 1

ζu

)k2 (5.42)

and the generalised entropy is

Sgen(connected, at-shock) = S0 + c

6

( 1
ζuk

+ 2
)

+ c

6 log
{
k2 tanh7/2 πT̃1u

2ε

√
k

1−ζ2
u

(
log 1−ζu

kζu

)2
cosh2 πT̃1u

}
−O

(√
φr
)

u�φr/c−−−−−→ S0 + c

6k + c

3πT̃1u−O
(√

φr
)
. (5.43)

where the last term appears because there is a degenerate QES behind the other shock.
At later times, u ∼ φr/c there is a new QES that develops and dominates in region I

of the geometry. It turns out that it is outside the horizon, as in the disconnected history.
Expanding the expression at large u, we find that the expression for the bulk entropy for
a general point in the exterior of the black hole and in region I is remarkably simple in
terms of the y, ȳ coordinates,

Sbulk(u, y, ȳ) = c

6 log

 2
επT̃1

sinh
[
πT̃1(y − u)

]
sinh

[
πT̃1(ȳ + u)

]
sinh

[
πT̃1(y + ȳ)

]
 . (5.44)

The dilaton takes the usual AdS-Vaidya value,23

φ = 2πφrT̃1 coth
[
2πT̃1(y + ȳ)

]
. (5.45)

Since the dilaton is independent of y− ȳ and the bulk entropy has a time-reflection invari-
ance about y − ȳ = 2u, it is clear that the QES is at y − ȳ = 2u. Extremising the spatial
coordinate, we find

uQES = u,
yQES + ȳQES

2 = 1
2πT̃1

sinh−1
√

1 + 2α
k

. (5.46)

This is logarithmically close to the horizon, similar to [16, 22]. Finally, we find that the
late time generalised entropy takes its equilibrium value

Sgen(connect,late-time) = S0 + 2πT̃1φr

√
1 + k2

1 + 2α + c

6 log tanh
sinh−1

√
1+2α
k

2 −O
(√
φr
)

≈ S0 + 2πT̃1φr −O
(√

φr
)
. (5.47)

23This follows from the fact that in Schwarzchild coordinates the exterior of the shock is identical to a
black hole of temperature T̃1.
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Figure 16. All the QESs. Dashed blue lines denote entanglement DOFs, and purple lines mark
the location of QESs, and they are labelled by the value of 6

cSgen. u � uPage. The QESs marked
with the same generalised entropies aren’t actually degenerate, but our analysis is insufficient to
distinguish them. AdS boundaries are as before at the far left/right of the figure above. We have
defined the quantity k = c

12πφrT̃0
.

Figure 17. The generalised entropies of the various QESs and the UV EE. We have ignored
uncertainties inherent to the HRT prescription for simplicity.

We have thus found that, apart from a pre-scrambling-time decrease in the entropy,
the Page curve here is substantially similar to the model in section 4. At early times, there
are two pairs of QESs whose generalised entropies are the same up to the uncertainties
inherent in the HRT prescription. Ignoring these uncertainties, we plot the shape of the
Python’s lunch in figure 16 and the Page curve in figure 17.

6 Discussion

We have studied, in three models, the effect of entangling two AdS2 black holes with each
other, with an eye towards understanding whether there is any topology change. We have
calculated the Page curve and found the expected behaviour in all three cases. We find
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that the occurrence of a Hawking-Page-like transition to a connected topology depends on
the model, i.e., on the details of how the black holes are entangled.

In the non-dynamical dPSSY model, there is an unambiguous change of bulk topology
and the relative enhancement occurs because of ‘entanglement loops.’ The mechanism is
not a topology-changing process, i.e. a history in which the topology differs between Cauchy
slices. It is only a Hawking-Page-like transition caused by the relative enhancement of the
contribution of a subleading saddle with a ‘ket-ket’ wormhole between the two boundaries.24

In the dynamical case, in which we allow the two spacetimes to radiate into each other
in real time, the situation is less clear. While the norm path integral itself does not seem
to exhibit any phase transitions, the norm path integral with the insertion of a set of
operators that do not have the identity in their OPE does. Other correlation functions and
the entropy, on the other hand, do not seem to transition. We are unable to offer a clean
and unified explanation of these disparate facts.

The other notable aspect of the dynamical example is that, in the path integral that
transitions, the transition happens not because of a separation of scales but because of
a simple factor of 2 between the temperatures of the black holes in the disconnected vs.
connected histories. The relative enhancement in the dynamical example arises from the
large boosts of the sort common in black hole mechanics, which are encoded in two bulk
dimensions in an exponentially growing conformal factor. The connected history with the
wormhole is a factor of two colder than the disconnected history and so suffers smaller
large boosts. One could have hoped to find an eternal traversable wormhole as in [102],
in which case it would have been a separation of scales, but this is not obtained because
of the energy released by the coupling, and we in fact find a Maldacena-Qi geometry by
explicitly projecting onto the ground state of the interacting Hamiltonian.

Another possibility that we have not explored is that neither the disconnected nor
the connected history is the dominant saddle. One that we should expect to find is a
baby-universe-emitting geometry like the ones in [81] in which the length of the ER bridge
stops growing. Since the growth of this length is related to the growth of the conformal
factor that gives the main contribution in the transition studied above, we might expect
these baby-universe-emitting histories to dominate over the connected history at a time-
scale u = O(poly(S0)), where the polynomial can also be linear. An interesting point is
that the connected geometries we consider can be seen as a baby-universe exchange in the
Euclidean past.

It would also be interesting to get a better understanding of the dynamical case.
Apart from the lack of clarity in the existence of such a transition in this case there is also
the question of the role of entanglement. While the transition in the dPSSY model was
unambiguously driven by entanglement, the role of entanglement in the dynamical case is
somewhat obscure. We have also not explored the possibility of finding a transition by
‘cooling’ down the coupled system by coupling it to a bath [115]. Further, it would be
interesting to understand if there is some unitary operation that causes a phase transition.
It would also be useful to study these questions with SYK techniques [116].

24These ‘ket-ket’ wormholes are always present in the Hartle-Hawking state [84].
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Apart from answering the above questions, it might also be useful to repeat our analysis
for some other set-ups, two of which seem especially notable. The first is that of black holes
formed by collapse, where presumably the saddle is not a ket-ket wormhole but a more
general baby-universe exchange. The second case is that of higher dimensions, especially
odd bulk dimensions. For example, in three dimensions there is no potential analog of
S0, i.e. a topological term giving a controlled sum over topologies. The smallness of the
overlap with the thermofield double is taken care of by a normalisation factor in three
dimensions, but the norm path integral and related quantities are harder to understand.
Further, in higher dimensions there are also additional saddles as compared to the two we
encountered in two bulk dimensions, and it would be interesting to explore the interplay
of these various saddles.

Let us conclude with two interesting observations about our set-up itself. First, this
set-up allows us to put spatial and spacetime wormholes on the same footing; since the
ket-ket wormhole in this story is the same Euclidean geometry as the Euclidean worm-
holes of [72]. This is in a sense not surprising, since both spatial [62, 85, 117] as well as
spacetime [72, 79, 86, 90] wormholes have been settings for framing factorisation puzzles
in gravity. Nevertheless, our analysis brings into focus the intricate relation between the
ER=EPR scenario and Euclidean wormholes.

Secondly, this set-up somehow bridges recent discussions of averag-
ing [72, 80, 86, 90, 92], quantum error correction [56, 89, 118] and ‘third-quantized’
gravity [64, 84, 119–121]. The most obvious connection is with averaging, since the set-up
of two black holes with real-time coupling was the one that was found to give the clearest
demonstration of the averaged nature of semiclassical gravity [86]. The one advantage
of going from bra-ket to ket-ket wormholes is that now the wormhole has a Hamiltonian
interpretation and so is easily related to discussions of quantum error correction.

In the discussions of quantum error correction, it has been argued that the map from
boundary states to bulk states involves a projection (or composition with a conditional
expectation [89]) into the code subspace. The code subspace of states with ER bridges (and
no matter) in JT gravity has the property that the ADM energies of the two boundaries
agree as semi-classical operators. So, one might expect that among the myriad things that
the projection or conditional expectation does, one must be that it implements the above
equality.

The way this equality is manifested in our set-up is shown in figure 18. The path
integral that calculates the connected component in the WdW wavefunction can be broken
into an integral over three intermediate lengths as in [72]. The crucial object in the centre
that ‘sews’ up the boundaries was introduced in [87]; its wavefunction matches a GHZ state
∼
∑
E |E〉

⊗4. This central object is precisely what implements the projection onto equal
energies for the two boundaries. On the other hand, this object (rather, a three-dimensional
analog) was also found to be a generator of non-perturbative diffeomorphisms [64].

In other words, in a particularly sharp setting for showing the averaged nature of
gravity, we find that the non-perturbative diffeomorphism that connects the connected
and disconnected spacetimes is precisely the projector that ensures that the two boundaries
have the same energy!
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Figure 18. The calculation of the connected component of the Wheeler-de Witt function can be
decomposed into an integral over these intermediate lengths.
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A Solutions of semi-classical Lorentzian JT gravity

The basic idea is that the entire information in the JT solution is the trajectory of the
boundary particle and the position of the boundary particle is decided by a Dirichlet
boundary conditions on the dilaton, so the info is in the parameters for the dilaton so-
lution and those parameters are an SL(2,R) charge. Useful references for this formalism
are [68, 122, 123].

We think of AdS2 in embedding space, defined by

Y 2 = Y a · Y a ≡ −(Y −1)2 − (Y 0)2 + (Y 1)2 = −1. (A.1)

The embedding coordinates are related to global and Poincare coordinates by

Y a =
(cos tgl

sin σ ,
sin tgl
sin σ ,− cotσ

)
=
(

1− t2P + z2

z
,
tP
z
,

1 + t2P − z2

z

)
(A.2)

In the absence of matter, the solution for the dilaton can be written as

φ = −Q · Y. (A.3)

Qa is an SL(2,R) charge that measures the charge of the cutout under the three isometries
of AdS2. Because the boundary of the cutout is given by a fixed value of the dilaton,
see (2.2), the trajectory of the boundary satisfies

Q ·X = −φr, X ≡ lim
ε→0

εY, and X2 = 0

Q2 = −4φrM, (A.4)
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where M is the ADM energy. For a Schwarzchild black hole of temperature T , M =
(πT )2φr.

The real power of this formalism is that it is also a way to package the solutions of
semi-classical JT gravity. To bulk matter, we assign a charge

Qam =
∫

(ζa)µnνTµν , (A.5)

where the ζas are the Killing vectors of AdS2. Then, invariance under the SL(2,R) gauge
symmetry means that

(Ql +Qr +Qm)a = 0, (A.6)

where Ql,r are the charges for the left and right boundary particles respectively. The choice
of gauge is the freedom in different ways of solving this equation. So, by calculating Qm
and choosing an appropriate gauge, we can solve for Ql,r, which using (A.4) allows us a
full solution.

For the eternal black hole, we fix gauge so that

Qar = −Qal = −2πφr
β

(1, 0, 0). (A.7)

The calculation of Qm simplifies for point particles of mass m. The trajectory of a
massive particle Y a(s) satisfies

d2
sY +m2Y = 0. (A.8)

Its SL(2,R) charge is also an integral of motion,

Qa = εabcY
bdsY

c, Q · Y = 0 by antisymmetry,
Q2 = m2. (A.9)

Massless particles satisfy the m→ 0 limit of this equation. For a massless particle passing
through the point

Y a = (
√

1 + y2, 0, s1y), y > 0, s1 = ±1, (A.10)

we find in the limit in which the initial position goes towards the boundary,

lim
y→∞

Qas1 = ∆E(s1, 0, 1). (A.11)

Finally, let us use the above equations to calculate a boundary particle trajectory
in AdS-Vaidya. We will do this in global coordinates explicitly, since this is the one in
which the answer is hard to guess. The strategy is to take the relation between global and
embedding coordinates in (A.2) and plug it into (A.4) to find a differential equation for
the trajectory. It is a differential equation because the definition (2.2) of u means that

sin σbd(u) = εt′gl(u) ⇒ X = (cos tgl, sin tgl,−1)
t′gl

, (A.12)

The first equation of (A.4) is a linear equation in X and therefore a differential equation
for tgl(u).
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For a TFD with a shock on the right, we have from (A.7), (A.11) and the SL(2,R)
gauge condition Qr +Ql +Qm = 0,

Qar,V = −µ (1 + α, 0, α) , µ = 2πφr
β

, α = ∆E
µ
. (A.13)

As a check, we can calculate the ADM mass after the shock using (A.4); we get
[πT
√

1 + 2α]2φr, which is a well-known answer. Plugging the value (A.13) of the charge
and the expression (A.12) for X into (A.4) gives for the post-shock solution

tgl(u) = 2 tan−1 tanh
(
πT
√

1 + 2α u
)

√
1 + 2α

. (A.14)

Following a similar procedure in Poincare coordinates gives

tP (u) = 1
πT
√

1 + 2α
tanh

(
πT
√

1 + 2α u
)

(A.15)

after the shock.

B Exact analysis of the microcanonical dPSSY model

In section 3, we focused on replica-symmetric saddle point geometries. But following [72],
we can in fact also perform the full gravitational path integral by summing over geometries
which contribute in the planar limit. In this section only, we will set φr = 2π, and we will
also restrict to the microcanonical ensemble in this section for simplicity.

We start with the state (3.2), that is:

|Ψ〉 = 1√
N

D∑
i,j=1

Mij |`, i〉1 ⊗ |`, j〉∗2, (B.1)

where we have taken `1 = `2 for simplicity, and once more

N = Tr(M †M)Z2
1 + Tr(M)Tr(M †)Z2.

The reduced density matrix on, say, the first factor is given by

ρ = 1
N

D∑
i,i′=1

D∑
j,j′=1

MijM
∗
i′j′〈`, j′|`, j〉∗2 |`, i〉〈`, i′|1

= 1
N

D∑
i,i′=1

D∑
j,j′=1

MijM
†
j′i′〈`, j|`, j

′〉2 |`, i〉〈`, i′|1. (B.2)

From here, we get

Tr ρn = 1
N n

∑
i1,j1

∑
i′1,j
′
1

· · ·
∑
in,jn

∑
i′n,j
′
n

Mi1j1〈i′2|i1〉M
†
j′2,i
′
2
〈j2|j′2〉Mi3,j2 · · · 〈j1|j′n〉. (B.3)
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To further simplify our analysis, we will now restrict the matrix Mij to be an orthogonal
projection, i.e., we require that M2 = M , and M † = M , with k = TrM . In order to
proceed, we introduce the resolvent following [72]:

R(x) = Tr 1
x2 − ρ

=
∞∑
n=0

1
x2(n+1) Tr ρn. (B.4)

We can equivalently write

R(x) =
∫
dλ D(λ) 1

x2 − λ
|λ〉〈λ| =

∫
dλ

D((λ)
2
√
λ

[ 1
x−
√
λ
− 1
x+
√
λ

]
|λ〉〈λ|. (B.5)

This resolvent will thus have two branch cuts, one along the positive real x axis and one
along the negative real x axis, symmetric under reflection about the imaginary axis. The
eigenvalue density can be obtained from the resolvent as

D(λ) = 2
√
λ

2πi discx=+
√
λR(x). (B.6)

The resolvent defined in this way is closely related to the trace of the resolvent defined
and computed in [72], which we will call R(0)(λ). The main difference is that our resolvent
only involves gravitational amplitudes with an even number of boundaries, and in addition,
the normalization factors are different. But we can restrict the PSSY resolvent to an even
number of boundaries by simply taking its anti-symmetric part in λ. So, we find

R(x) = Tr 1− k
x2 + α

2x
[
R(0)(αx)−R(0)(−αx)

]
, (B.7)

where

α =
(1
k

+ Z2
Z2

1

)1/2
.

We now restrict to the microcanonical ensemble. In this case, the PSSY resolvent is given by

R(0)(λ) = −(%− k)− %kλ
2λ ± %k

2λ

√√√√√
λ− ( 1

√
%
− 1√

k

)2
λ− ( 1

√
%

+ 1√
k

)2
 (B.8)

where

% = eS, α =
(1
k

+ 1
%

)1/2
.

Here S is the microcanonical entropy at chosen energy E and energy window ∆E:

% = eS = eS0ρ(E)∆E, ρ(E) = E

2π2 sinh(2πE), (B.9)

and note that the dependence on the brane tension µ drops out in the microcanonical
ensemble. The PSSY resolvent R(0) only has a branch cut along the positive real axis,
but the combination in equation (B.7) has the right structure to give us branch cuts along
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Figure 19. The first few Rényi entropies as a function of k.

both the positive and negative real axes, as we expected. Using equations (B.7), (B.6)
and (B.8), we thus obtain the eigenvalue density

D(λ) = α%k

4π

√√√√√
√λ− ( 1

√
α%
− 1√

αk

)2
( 1

√
α%

+ 1√
αk

)2

−
√
λ

, (B.10)

for (
1
√
α%
− 1√

αk

)4

≤ λ ≤
(

1
√
α%

+ 1√
αk

)4

.

When k � %, the density is highly peaked around λ = 1
k with a width ∆λ

λ ∼
√

k
% . Thus,

the entropy is approximately given by log k. On the other hand when k � %, the density is
highly peaked around λ = 1

% with a width ∆λ
λ ∼

√
%
k . Finally, we can also obtain the Rényi

entropies by expanding the resolvent in equation (B.7) in x. The first few Rényi entropies
are shown in figure 19.

C Details of the Schwarz-Christoffel map

In this appendix, we want to derive equation (5.22) directly using the doubly-connected
Schwarz-Christoffel (SC) map. Recall from equation (5.5), that the derivative of the rele-
vant SC map is given by

f ′(z) = C
Θ(µ, z)Θ(µ,−z)Θ(µ, zµ)

Θ3(µ,− z
µ) , (C.1)

where C is a constant, and recall that µ = e−τ is the conformal modulus. The theta
functions are

Θ(µ, z) = 1∏∞
k=1(1− µ2k)

∞∑
n=−∞

µ2n(−z)n. (C.2)

This form is related to that in [105, 106] by the so-called Jacobi triple product identity.
In the present case, we can conveniently re-write f ′ in terms of the more standard Jacobi
theta function:

f ′(z) = C
ϑ( 1

2i log(z);µ)ϑ( 1
2i log(−z);µ)ϑ( 1

2i log(−z/µ);µ)
ϑ3( 1

2i log(z/µ);µ)
, (C.3)
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where
ϑ(u; q) =

∞∑
n=−∞

qn
2
e2inu. (C.4)

We are interested in the limit µ→ 1; we will later show that this is indeed the correct limit
by relating µ to the Euclidean cutoff parameter δ. In the µ → 1 limit, it is helpful to use
the following modular transformation property for the elliptic function:

ϑ(u; q = e−τ ) = 1
(τ/π)1/2 exp

(
u2

τ

)ϑ(u′ = πu

iτ
; q′ = e−π

2/τ
)
. (C.5)

Writing z = reiθ, we find that one of the relevant theta function becomes:

ϑ

( 1
2i log (z) ;µ

)
= ϑ

( 1
2i (log (r) + iθ) ;µ

)
= 1

(τ/π)1/2 exp
(
− (log r+iθ)2

4τ

)ϑ(u′ = −π (log r + iθ)
2τ ; q′ = e−π

2/τ
)

=
exp

(
(log r)2−θ2+2iθ log r

4τ

)
(τ/π)1/2

∞∑
n=−∞

e−
π2n2
τ

+nπθ
τ
− iπn

τ
log r

=
exp

(
(log r)2+2iθ log r

4τ

)
(τ/π)1/2

∞∑
n=−∞

e−
π2
τ (n− θ

2π )2− iπn
τ

log r. (C.6)

We will always work in the domain 0 ≤ θ < 2π. Note from above that when θ < π, the
n = 0 term dominates in the sum, when θ = π the n = 0 and n = 1 terms are degenrate,
and when π < θ < 2π, the n = 1 term dominates. So as long as we stick to the domain
0 ≤ θ < 2π, we need only keep the n = 0 and n = 1 terms in our analysis:

ϑ

( 1
2i log

(
z = reiθ

)
;µ
)

=
exp

(
(log z)2

4τ

)
(τ/π)1/2

(
1 + e−

π2
τ
− iπ
τ

log z
)

=
exp

(
(log r)2−θ2+2iθ log r

4τ

)
(τ/π)1/2

(
1 + e−

π(π−θ)
τ
− iπ
τ

log r
)
. (C.7)

In order to further understand the SC map, we will analyse its derivative in the complex
z-plane in two coordinate patches: (i) the far from quench region −ε < (π− θ) < ε, where
τ � ε � 1, and (ii) the near quench region, which is the complement of patch (i). (The
terminology far-from-quench or near-quench will become clear shortly.)

C.1 Far from quench

When z is in patch (i), i.e., the far-from-quench region, we get

ϑ

( 1
2i log

(
z = reiθ

)
;µ
)

=
exp

(
(log r)2−θ2+2iθ log r

4τ

)
(τ/π)1/2

(
1 + e−

π(π−θ)
τ
− iπ
τ

log r +O
(
e−π

2/τ
))

.

(C.8)

– 51 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

The other theta function (with z → −z) relevant for us in this patch is then given by

ϑ

( 1
2i log (−z) ;µ

)
=

exp
(

(log r)2−(π−θ)2−2i(π−θ) log r
4τ

)
(τ/π)1/2

(
1 +O

(
e−π

2/τ
))
. (C.9)

Putting things together, we get

f ′ (z) = −iC e−
π
τ (π2−θ)− iπ log r

τ
−log r−iθ−τ/2

(
1 + e−

π
τ

(π−θ)− iπ log r
τ

)
(
1− e−

π
τ

(π−θ)− iπ log r
τ

)3

= − iCe
π2
2τ −

τ
2

4z
cosh

(
π
2τ (π − θ) + iπ log r

2τ

)
sinh3

(
π
2τ (π − θ) + iπ log r

2τ

) . (C.10)

We can integrate this to obtain

f (z) = A+ C
τe

π2
2τ −

τ
2

4π
1

sinh2
(
π2

2τ + iπ
2τ log z

) , (C.11)

where A and C are both constants. Now, we impose the boundary conditions that
f (z = −µ) = 0, and f

(
z = −√µ

)
= −1. These conditions fix the constants of integration

to be
A = 1, C = 4π

τ
e−

π2
2τ + τ

2 ,

and thus the function becomes

f (z) = 1 + 1
sinh2

(
π2

2τ + iπ
2τ log z

) =
cosh2

(
π2

2τ + iπ
2τ log z

)
sinh2

(
π2

2τ + iπ
2τ log z

) . (C.12)

When r = √µ, then it is a simple matter to check that |f | = 1, i.e., the time-reflection
symmetric slice in the complex z plane maps to the time-reflection symmetric slice in the
f -plane, as expected. Writing z = e−τ/2−iζ and f = e2is, we can now straightforwardly
solve for ζ (s) from the above formula, and we find

ζ = π + τ

π
log tan s

2 , (C.13)

which agrees with equation (5.22) derived in the main text using the Schwarzian method.

C.2 Near quench

Next, we wish to understand the SC map f in the near quench region. Our main goal is to
relate the conformal modulus µ = e−τ to the regulator δ. In order to do so, it is sufficient
to focus on the real axis θ = 0 and µ ≤ r ≤ 1. In this case, the relevant theta functions
are given by

ϑ

( 1
2i log (r) ;µ

)
=

exp
(

(log r)2

4τ

)
(τ/π)1/2

(
1 +O

(
e−

π2
τ

))
, (C.14)

ϑ

( 1
2i log (−r) ;µ

)
=

2 exp
(
−(π2−(log r)2)

4τ

)
(τ/π)1/2

[
cos

(
π

2τ log r
)

+O
(
e−

2π2
τ

)]
. (C.15)
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Putting everything together, we get on the real axis:

f ′ (r) = −2Ce−
π2
2τ −

1
2 (τ+2 log r) sin

(
π

τ
log r

)[
1 +O

(
e−

π2
τ

)]
. (C.16)

Therefore, we get

f (r) = f (r0) +
∫ r

r0
dr′ f ′

(
r′
)

= f (r0) + 2τ
π
Ce−

π2
2τ −

τ
2

[
cos

(
π

τ
log r

)
− cos

(
π

τ
log r0

)]
+ · · · . (C.17)

Now we impose boundary conditions. Taking r0 = µ and f (r0) = e−2δ, we get

f (r) = e−2δ + 4τ
π
Ce−

π2
2τ −

τ
2 cos2

(
π

2τ log r
)

+ · · · . (C.18)

Next, setting f
(√
µ
)

= 1 and f (1) = e2δ gives:

1 = e−2δ + 2τ
π
Ce−

π2
2τ −

τ
2 + · · · (C.19)

e2δ = e−2δ + 4τ
π
Ce−

π2
2τ −

τ
2 + · · · (C.20)

Using the value of C obtained previously, both the above equations are solved if we make
the identification

δ = 4e−
π2
τ + · · · , (C.21)

where the · · · denote terms suppressed by more powers of e−
π2
τ . Note that as τ → 0, we

find δ → 0. This justifies working in the τ → 0 limit.
Finally, we can now also obtain the function f on the time-reflection symmetric slice

in the near quench region. As before, setting f = e2is and z = e−
τ
2−iζ , we find

(1− e2is) = 8e−
π2
τ sin iπζ

τ
, ⇒ ζ(s) = −i τ

π
sin−1

(
1− e2is

8e−
π2
τ

)
. (C.22)

Note that a finite interval around ζ = 0 gets mapped to an infinitesimal neighbourhood of
s = 0, which is the near quench region. We can compute the stress tensor on the s-plane
from here, and we find

T (s) = c

24π

−2e
4π2
τ (e2is − 1)4 − 64e

2π2
τ (5e4is − 4e2is + 2) + 4096

(e
2π2
τ (e2is − 1)2 − 64)2

 . (C.23)

We see that the stress tensor is highly peaked at s = 0, with

T (s = 0) ∼ c

24π
3

2δ2 . (C.24)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 53 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

References

[1] S. Raju, Lessons from the Information Paradox, arXiv:2012.05770 [INSPIRE].

[2] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of
Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].

[3] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021
[hep-th/0106112] [INSPIRE].

[4] S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26
(2009) 224001 [arXiv:0909.1038] [INSPIRE].

[5] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or
Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[6] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls,
JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

[7] L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole
complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

[8] E. Verlinde and H. Verlinde, Black Hole Entanglement and Quantum Error Correction,
JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].

[9] K. Papadodimas and S. Raju, Remarks on the necessity and implications of
state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049
[arXiv:1503.08825] [INSPIRE].

[10] Y. Nomura, J. Varela and S.J. Weinberg, Complementarity Endures: No Firewall for an
Infalling Observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].

[11] L. Susskind, Black Hole Complementarity and the Harlow-Hayden Conjecture,
arXiv:1301.4505 [INSPIRE].

[12] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61
(2013) 781 [arXiv:1306.0533] [INSPIRE].

[13] M. Van Raamsdonk, Evaporating Firewalls, JHEP 11 (2014) 038 [arXiv:1307.1796]
[INSPIRE].

[14] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09
(2020) 002 [arXiv:1905.08255] [INSPIRE].

[15] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields
and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063
[arXiv:1905.08762] [INSPIRE].

[16] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon,
arXiv:1910.11077 [INSPIRE].

[17] A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions,
SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

[18] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation
from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[19] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes
and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333]
[INSPIRE].

– 54 –

https://arxiv.org/abs/2012.05770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.05770
https://doi.org/10.1103/RevModPhys.93.035002
https://arxiv.org/abs/2006.06872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.06872
https://doi.org/10.1088/1126-6708/2003/04/021
https://arxiv.org/abs/hep-th/0106112
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0106112
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1088/0264-9381/26/22/224001
https://arxiv.org/abs/0909.1038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.1038
https://doi.org/10.1007/JHEP02(2013)062
https://arxiv.org/abs/1207.3123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.3123
https://doi.org/10.1007/JHEP09(2013)018
https://arxiv.org/abs/1304.6483
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.6483
https://doi.org/10.1103/PhysRevD.48.3743
https://arxiv.org/abs/hep-th/9306069
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9306069
https://doi.org/10.1007/JHEP10(2013)107
https://arxiv.org/abs/1211.6913
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.6913
https://doi.org/10.1103/PhysRevD.93.084049
https://arxiv.org/abs/1503.08825
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.08825
https://doi.org/10.1007/JHEP03(2013)059
https://arxiv.org/abs/1207.6626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.6626
https://arxiv.org/abs/1301.4505
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.4505
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1002/prop.201300020
https://arxiv.org/abs/1306.0533
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.0533
https://doi.org/10.1007/JHEP11(2014)038
https://arxiv.org/abs/1307.1796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.1796
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08255
https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08762
https://arxiv.org/abs/1910.11077
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.11077
https://doi.org/10.21468/SciPostPhys.9.1.001
https://arxiv.org/abs/1911.09666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09666
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10996
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12333


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

[20] M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information
radiation in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836]
[INSPIRE].

[21] H.Z. Chen, Z. Fisher, J. Hernandez, R.C. Myers and S.-M. Ruan, Information Flow in
Black Hole Evaporation, JHEP 03 (2020) 152 [arXiv:1911.03402] [INSPIRE].

[22] H.Z. Chen, Z. Fisher, J. Hernandez, R.C. Myers and S.-M. Ruan, Evaporating Black Holes
Coupled to a Thermal Bath, JHEP 01 (2021) 065 [arXiv:2007.11658] [INSPIRE].

[23] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands
Made Easy. Part I. Entanglement on the Brane, JHEP 10 (2020) 166 [arXiv:2006.04851]
[INSPIRE].

[24] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum Extremal Islands
Made Easy. Part II. Black Holes on the Brane, JHEP 12 (2020) 025 [arXiv:2010.00018]
[INSPIRE].

[25] J. Hernandez, R.C. Myers and S.-M. Ruan, Quantum extremal islands made easy. Part III.
Complexity on the brane, JHEP 02 (2021) 173 [arXiv:2010.16398] [INSPIRE].

[26] T.J. Hollowood and S.P. Kumar, Islands and Page Curves for Evaporating Black Holes in
JT Gravity, JHEP 08 (2020) 094 [arXiv:2004.14944] [INSPIRE].

[27] T.J. Hollowood, S. Prem Kumar and A. Legramandi, Hawking radiation correlations of
evaporating black holes in JT gravity, J. Phys. A 53 (2020) 475401 [arXiv:2007.04877]
[INSPIRE].

[28] I. Akal, Y. Kusuki, N. Shiba, T. Takayanagi and Z. Wei, Entanglement Entropy in a
Holographic Moving Mirror and the Page Curve, Phys. Rev. Lett. 126 (2021) 061604
[arXiv:2011.12005] [INSPIRE].

[29] H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438]
[INSPIRE].

[30] V. Balasubramanian, A. Kar, O. Parrikar, G. Sárosi and T. Ugajin, Geometric secret
sharing in a model of Hawking radiation, JHEP 01 (2021) 177 [arXiv:2003.05448]
[INSPIRE].

[31] V. Balasubramanian, A. Kar and T. Ugajin, Entanglement between two disjoint universes,
JHEP 02 (2021) 136 [arXiv:2008.05274] [INSPIRE].

[32] M. Alishahiha, A. Faraji Astaneh and A. Naseh, Island in the presence of higher derivative
terms, JHEP 02 (2021) 035 [arXiv:2005.08715] [INSPIRE].

[33] C. Krishnan, Critical Islands, JHEP 01 (2021) 179 [arXiv:2007.06551] [INSPIRE].

[34] C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat
Space, arXiv:2005.02993 [INSPIRE].

[35] T. Hartman, E. Shaghoulian and A. Strominger, Islands in Asymptotically Flat 2D Gravity,
JHEP 07 (2020) 022 [arXiv:2004.13857] [INSPIRE].

[36] T. Hartman, Y. Jiang and E. Shaghoulian, Islands in cosmology, JHEP 11 (2020) 111
[arXiv:2008.01022] [INSPIRE].

[37] V. Balasubramanian, A. Kar and T. Ugajin, Islands in de Sitter space, JHEP 02 (2021) 072
[arXiv:2008.05275] [INSPIRE].

– 55 –

https://doi.org/10.1007/JHEP05(2020)004
https://arxiv.org/abs/1910.12836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.12836
https://doi.org/10.1007/JHEP03(2020)152
https://arxiv.org/abs/1911.03402
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.03402
https://doi.org/10.1007/JHEP01(2021)065
https://arxiv.org/abs/2007.11658
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.11658
https://doi.org/10.1007/JHEP10(2020)166
https://arxiv.org/abs/2006.04851
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04851
https://doi.org/10.1007/JHEP12(2020)025
https://arxiv.org/abs/2010.00018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00018
https://doi.org/10.1007/JHEP02(2021)173
https://arxiv.org/abs/2010.16398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.16398
https://doi.org/10.1007/JHEP08(2020)094
https://arxiv.org/abs/2004.14944
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.14944
https://doi.org/10.1088/1751-8121/abbc51
https://arxiv.org/abs/2007.04877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.04877
https://doi.org/10.1103/PhysRevLett.126.061604
https://arxiv.org/abs/2011.12005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.12005
https://doi.org/10.1007/JHEP09(2020)121
https://arxiv.org/abs/2006.02438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.02438
https://doi.org/10.1007/JHEP01(2021)177
https://arxiv.org/abs/2003.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.05448
https://doi.org/10.1007/JHEP02(2021)136
https://arxiv.org/abs/2008.05274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05274
https://doi.org/10.1007/JHEP02(2021)035
https://arxiv.org/abs/2005.08715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.08715
https://doi.org/10.1007/JHEP01(2021)179
https://arxiv.org/abs/2007.06551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.06551
https://arxiv.org/abs/2005.02993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.02993
https://doi.org/10.1007/JHEP07(2020)022
https://arxiv.org/abs/2004.13857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13857
https://doi.org/10.1007/JHEP11(2020)111
https://arxiv.org/abs/2008.01022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.01022
https://doi.org/10.1007/JHEP02(2021)072
https://arxiv.org/abs/2008.05275
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05275


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

[38] T. Anegawa and N. Iizuka, Notes on islands in asymptotically flat 2d dilaton black holes,
JHEP 07 (2020) 036 [arXiv:2004.01601] [INSPIRE].

[39] K. Hashimoto, N. Iizuka and Y. Matsuo, Islands in Schwarzschild black holes, JHEP 06
(2020) 085 [arXiv:2004.05863] [INSPIRE].

[40] X. Dong, X.-L. Qi, Z. Shangnan and Z. Yang, Effective entropy of quantum fields coupled
with gravity, JHEP 10 (2020) 052 [arXiv:2007.02987] [INSPIRE].

[41] F.F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, Page Curve for an
Evaporating Black Hole, JHEP 05 (2020) 091 [arXiv:2004.00598] [INSPIRE].

[42] W. Sybesma, Pure de Sitter space and the island moving back in time, Class. Quant. Grav.
38 (2021) 145012 [arXiv:2008.07994] [INSPIRE].

[43] H. Geng, Y. Nomura and H.-Y. Sun, Information paradox and its resolution in de Sitter
holography, Phys. Rev. D 103 (2021) 126004 [arXiv:2103.07477] [INSPIRE].

[44] E. Caceres, A. Kundu, A.K. Patra and S. Shashi, Warped Information and Entanglement
Islands in AdS/WCFT, JHEP 07 (2021) 004 [arXiv:2012.05425] [INSPIRE].

[45] A. Laddha, S.G. Prabhu, S. Raju and P. Shrivastava, The Holographic Nature of Null
Infinity, SciPost Phys. 10 (2021) 041 [arXiv:2002.02448] [INSPIRE].

[46] A. Mousatov and E. Silverstein, Recovering Infalling Information via String Spreading,
arXiv:2002.12377 [INSPIRE].

[47] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[48] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)
045 [hep-th/0605073] [INSPIRE].

[49] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement
entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[50] N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement
entropy beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

[51] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic
entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

[52] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk
relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[53] X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the
Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601
[arXiv:1601.05416] [INSPIRE].

[54] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151
[arXiv:1704.05464] [INSPIRE].

[55] J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement
Wedge Reconstruction via Universal Recovery Channels, Phys. Rev. X 9 (2019) 031011
[arXiv:1704.05839] [INSPIRE].

[56] D. Harlow, The Ryu-Takayanagi Formula from Quantum Error Correction, Commun.
Math. Phys. 354 (2017) 865 [arXiv:1607.03901] [INSPIRE].

– 56 –

https://doi.org/10.1007/JHEP07(2020)036
https://arxiv.org/abs/2004.01601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.01601
https://doi.org/10.1007/JHEP06(2020)085
https://doi.org/10.1007/JHEP06(2020)085
https://arxiv.org/abs/2004.05863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05863
https://doi.org/10.1007/JHEP10(2020)052
https://arxiv.org/abs/2007.02987
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.02987
https://doi.org/10.1007/JHEP05(2020)091
https://arxiv.org/abs/2004.00598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.00598
https://doi.org/10.1088/1361-6382/abff9a
https://doi.org/10.1088/1361-6382/abff9a
https://arxiv.org/abs/2008.07994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.07994
https://doi.org/10.1103/PhysRevD.103.126004
https://arxiv.org/abs/2103.07477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.07477
https://doi.org/10.1007/JHEP07(2021)004
https://arxiv.org/abs/2012.05425
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.05425
https://doi.org/10.21468/SciPostPhys.10.2.041
https://arxiv.org/abs/2002.02448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02448
https://arxiv.org/abs/2002.12377
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12377
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603001
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605073
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0016
https://doi.org/10.1007/JHEP01(2015)073
https://arxiv.org/abs/1408.3203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3203
https://doi.org/10.1007/JHEP12(2014)162
https://arxiv.org/abs/1408.6300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6300
https://doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06431
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.05416
https://doi.org/10.1007/JHEP07(2017)151
https://arxiv.org/abs/1704.05464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05464
https://doi.org/10.1103/PhysRevX.9.031011
https://arxiv.org/abs/1704.05839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05839
https://doi.org/10.1007/s00220-017-2904-z
https://doi.org/10.1007/s00220-017-2904-z
https://arxiv.org/abs/1607.03901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03901


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

[57] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007
[arXiv:0905.1317] [INSPIRE].

[58] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality
from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

[59] N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond Toy Models: Distilling Tensor
Networks in Full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].

[60] P. Caputa, J. Kruthoff and O. Parrikar, Building Tensor Networks for Holographic States,
JHEP 05 (2021) 009 [arXiv:2012.05247] [INSPIRE].

[61] H. Geng et al., Information Transfer with a Gravitating Bath, SciPost Phys. 10 (2021) 103
[arXiv:2012.04671] [INSPIRE].

[62] D. Marolf and A.C. Wall, Eternal Black Holes and Superselection in AdS/CFT, Class.
Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].

[63] K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett.
115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].

[64] D.L. Jafferis, Bulk reconstruction and the Hartle-Hawking wavefunction, arXiv:1703.01519
[INSPIRE].

[65] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

[66] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions,
Phys. Lett. B 126 (1983) 41 [INSPIRE].

[67] A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11
(2015) 014 [arXiv:1402.6334] [INSPIRE].

[68] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]
[INSPIRE].

[69] K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601
[arXiv:1605.06098] [INSPIRE].

[70] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and
holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

[71] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity,
arXiv:1707.02325 [INSPIRE].

[72] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, arXiv:1911.11977 [INSPIRE].

[73] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space,
Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[74] J.A. Wheeler, On the Nature of quantum geometrodynamics, Annals Phys. 2 (1957) 604
[INSPIRE].

[75] G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of Quantum Coherence
upon a Change in Spatial Topology in Quantum Gravity, JETP Lett. 46 (1987) 167
[INSPIRE].

[76] S.R. Coleman, Black Holes as Red Herrings: Topological Fluctuations and the Loss of
Quantum Coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].

– 57 –

https://doi.org/10.1103/PhysRevD.86.065007
https://arxiv.org/abs/0905.1317
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.1317
https://doi.org/10.1007/JHEP11(2016)009
https://arxiv.org/abs/1601.01694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01694
https://doi.org/10.1007/JHEP11(2019)069
https://arxiv.org/abs/1812.01171
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01171
https://doi.org/10.1007/JHEP05(2021)009
https://arxiv.org/abs/2012.05247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.05247
https://doi.org/10.21468/SciPostPhys.10.5.103
https://arxiv.org/abs/2012.04671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.04671
https://doi.org/10.1088/0264-9381/30/2/025001
https://doi.org/10.1088/0264-9381/30/2/025001
https://arxiv.org/abs/1210.3590
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.3590
https://doi.org/10.1103/PhysRevLett.115.211601
https://doi.org/10.1103/PhysRevLett.115.211601
https://arxiv.org/abs/1502.06692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.06692
https://arxiv.org/abs/1703.01519
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.01519
https://doi.org/10.1016/0550-3213(85)90448-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB252%2C343%22
https://doi.org/10.1016/0370-2693(83)90012-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB126%2C41%22
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.6334
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.01857
https://doi.org/10.1103/PhysRevLett.117.111601
https://arxiv.org/abs/1605.06098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06098
https://doi.org/10.1007/JHEP07(2016)139
https://arxiv.org/abs/1606.03438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.03438
https://arxiv.org/abs/1707.02325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.02325
https://arxiv.org/abs/1911.11977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11977
https://doi.org/10.1007/BF01208266
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C87%2C577%22
https://doi.org/10.1016/0003-4916(57)90050-7
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C2%2C604%22
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C46%2C167%22
https://doi.org/10.1016/0550-3213(88)90110-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB307%2C867%22


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

[77] S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and
String Theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].

[78] A. Adams, X. Liu, J. McGreevy, A. Saltman and E. Silverstein, Things fall apart: Topology
change from winding tachyons, JHEP 10 (2005) 033 [hep-th/0502021] [INSPIRE].

[79] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,
arXiv:1806.06840 [INSPIRE].

[80] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[81] P. Saad, Late Time Correlation Functions, Baby Universes, and ETH in JT Gravity,
arXiv:1910.10311 [INSPIRE].

[82] U. Moitra, S.K. Sake and S.P. Trivedi, Jackiw-Teitelboim Gravity in the Second Order
Formalism, arXiv:2101.00596 [INSPIRE].

[83] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared
states, JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[84] T. Anous, J. Kruthoff and R. Mahajan, Density matrices in quantum gravity, SciPost Phys.
9 (2020) 045 [arXiv:2006.17000] [INSPIRE].

[85] D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, JHEP
02 (2020) 177 [arXiv:1804.01081] [INSPIRE].

[86] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].

[87] Z. Yang, The Quantum Gravity Dynamics of Near Extremal Black Holes, JHEP 05 (2019)
205 [arXiv:1809.08647] [INSPIRE].

[88] V. Balasubramanian, A. Kar and T. Ugajin, Entanglement between two gravitating
universes, arXiv:2104.13383 [INSPIRE].

[89] T. Faulkner, The holographic map as a conditional expectation, arXiv:2008.04810
[INSPIRE].

[90] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes,
Class. Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

[91] N. Engelhardt, S. Fischetti and A. Maloney, Free energy from replica wormholes, Phys. Rev.
D 103 (2021) 046021 [arXiv:2007.07444] [INSPIRE].

[92] A. Altland and J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys.
11 (2021) 034 [arXiv:2008.02271] [INSPIRE].

[93] C. Murthy and M. Srednicki, Structure of chaotic eigenstates and their entanglement
entropy, Phys. Rev. E 100 (2019) 022131 [arXiv:1906.04295] [INSPIRE].

[94] X. Dong and H. Wang, Enhanced corrections near holographic entanglement transitions: a
chaotic case study, JHEP 11 (2020) 007 [arXiv:2006.10051] [INSPIRE].

[95] D. Marolf, S. Wang and Z. Wang, Probing phase transitions of holographic entanglement
entropy with fixed area states, JHEP 12 (2020) 084 [arXiv:2006.10089] [INSPIRE].

[96] P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace
Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

[97] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42
(2009) 504005 [arXiv:0905.4013] [INSPIRE].

– 58 –

https://doi.org/10.1016/0550-3213(88)90446-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB306%2C890%22
https://doi.org/10.1088/1126-6708/2005/10/033
https://arxiv.org/abs/hep-th/0502021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0502021
https://arxiv.org/abs/1806.06840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.06840
https://arxiv.org/abs/1903.11115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.11115
https://arxiv.org/abs/1910.10311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.10311
https://arxiv.org/abs/2101.00596
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.00596
https://doi.org/10.1007/JHEP02(2021)009
https://arxiv.org/abs/2007.16091
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.16091
https://doi.org/10.21468/SciPostPhys.9.4.045
https://doi.org/10.21468/SciPostPhys.9.4.045
https://arxiv.org/abs/2006.17000
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.17000
https://doi.org/10.1007/JHEP02(2020)177
https://doi.org/10.1007/JHEP02(2020)177
https://arxiv.org/abs/1804.01081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01081
https://arxiv.org/abs/2008.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08570
https://doi.org/10.1007/JHEP05(2019)205
https://doi.org/10.1007/JHEP05(2019)205
https://arxiv.org/abs/1809.08647
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.08647
https://arxiv.org/abs/2104.13383
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.13383
https://arxiv.org/abs/2008.04810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.04810
https://doi.org/10.1088/1361-6382/ac1082
https://arxiv.org/abs/2006.05499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.05499
https://doi.org/10.1103/PhysRevD.103.046021
https://doi.org/10.1103/PhysRevD.103.046021
https://arxiv.org/abs/2007.07444
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.07444
https://doi.org/10.21468/SciPostPhys.11.2.034
https://doi.org/10.21468/SciPostPhys.11.2.034
https://arxiv.org/abs/2008.02271
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02271
https://doi.org/10.1103/PhysRevE.100.022131
https://arxiv.org/abs/1906.04295
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.04295
https://doi.org/10.1007/JHEP11(2020)007
https://arxiv.org/abs/2006.10051
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10051
https://doi.org/10.1007/JHEP12(2020)084
https://arxiv.org/abs/2006.10089
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10089
https://doi.org/10.1007/JHEP12(2017)151
https://arxiv.org/abs/1608.05687
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05687
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.4013


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

[98] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090
[arXiv:1304.4926] [INSPIRE].

[99] X. Dong, The Gravity Dual of Renyi Entropy, Nature Commun. 7 (2016) 12472
[arXiv:1601.06788] [INSPIRE].

[100] X. Dong and A. Lewkowycz, Entropy, Extremality, Euclidean Variations, and the Equations
of Motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

[101] S.-J. Rey and V. Rosenhaus, Scanning Tunneling Macroscopy, Black Holes, and AdS/CFT
Bulk Locality, JHEP 07 (2014) 050 [arXiv:1403.3943] [INSPIRE].

[102] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

[103] P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field
theories, J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

[104] J. Dubail and J.-M. Stéphan, Universal behavior of a bipartite fidelity at quantum
criticality, J. Stat. Mech. 2011 (2011) L03002 [arXiv:1010.3716].

[105] T.K. DeLillo, A.R. Elcrat and J.A. Pfaltzgraff, Schwarz-Christoffel mapping of the annulus,
SIAM Rev. 43 (2001) 469.

[106] T.A. Driscoll and L.N. Trefethen, Cambridge Monographs on Applied and Computational
Mathematics. Vol. 8: Schwarz-Christoffel mapping, Cambridge University Press, Cambridge
U.K. (2002).

[107] C. Hu, Algorithm 785: a software package for computing schwarz-christoffel conformal
transformation for doubly connected polygonal regions, ACM Trans. Math. Softw. 24 (1998)
317. Code at http://www.netlib.org/toms-2014-06-10/785.

[108] https://github.com/ronakmsoni/2d-cft-single-strip-joining-quench.

[109] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602
[arXiv:1105.5165] [INSPIRE].

[110] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043
[arXiv:1108.5152] [INSPIRE].

[111] S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black
hole microstate cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601] [INSPIRE].

[112] T. Shimaji, T. Takayanagi and Z. Wei, Holographic Quantum Circuits from
Splitting/Joining Local Quenches, JHEP 03 (2019) 165 [arXiv:1812.01176] [INSPIRE].

[113] A. Almheiri, A. Mousatov and M. Shyani, Escaping the Interiors of Pure Boundary-State
Black Holes, arXiv:1803.04434 [INSPIRE].

[114] A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy
and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].

[115] J. Maldacena and A. Milekhin, SYK wormhole formation in real time, JHEP 04 (2021) 258
[arXiv:1912.03276] [INSPIRE].

[116] Y.D. Lensky and X.-L. Qi, Rescuing a black hole in the large-q coupled SYK model, JHEP
04 (2021) 116 [arXiv:2012.15798] [INSPIRE].

[117] D. Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP
01 (2016) 122 [arXiv:1510.07911] [INSPIRE].

– 59 –

https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4926
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.06788
https://doi.org/10.1007/JHEP01(2018)081
https://arxiv.org/abs/1705.08453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.08453
https://doi.org/10.1007/JHEP07(2014)050
https://arxiv.org/abs/1403.3943
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3943
https://arxiv.org/abs/1804.00491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00491
https://doi.org/10.1088/1742-5468/2016/06/064003
https://arxiv.org/abs/1603.02889
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.02889
https://doi.org/10.1088/1742-5468/2011/03/L03002
https://arxiv.org/abs/1010.3716
https://doi.org/10.1137/S0036144500375280
https://doi.org/10.1017/CBO9780511546808
https://doi.org/10.1145/292395.291204
https://doi.org/10.1145/292395.291204
http://www.netlib.org/toms-2014-06-10/785
https://github.com/ronakmsoni/2d-cft-single-strip-joining-quench
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5165
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.5152
https://doi.org/10.1007/JHEP07(2019)065
https://arxiv.org/abs/1810.10601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.10601
https://doi.org/10.1007/JHEP03(2019)165
https://arxiv.org/abs/1812.01176
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01176
https://arxiv.org/abs/1803.04434
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04434
https://doi.org/10.1007/JHEP07(2014)114
https://arxiv.org/abs/1405.2792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.2792
https://doi.org/10.1007/JHEP04(2021)258
https://arxiv.org/abs/1912.03276
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.03276
https://doi.org/10.1007/JHEP04(2021)116
https://doi.org/10.1007/JHEP04(2021)116
https://arxiv.org/abs/2012.15798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15798
https://doi.org/10.1007/JHEP01(2016)122
https://doi.org/10.1007/JHEP01(2016)122
https://arxiv.org/abs/1510.07911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07911


J
H
E
P
1
0
(
2
0
2
1
)
2
2
6

[118] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in
AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

[119] D. Berenstein and A. Miller, Superposition induced topology changes in quantum gravity,
JHEP 11 (2017) 121 [arXiv:1702.03011] [INSPIRE].

[120] D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime
wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044
[arXiv:2002.08950] [INSPIRE].

[121] D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby
universes, JHEP 04 (2021) 272 [arXiv:2010.06602] [INSPIRE].

[122] J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.
65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

[123] K. Bulycheva, Semiclassical correlators in Jackiw-Teitelboim gravity, JHEP 11 (2019) 023
[arXiv:1905.05692] [INSPIRE].

– 60 –

https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.7041
https://doi.org/10.1007/JHEP11(2017)121
https://arxiv.org/abs/1702.03011
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.03011
https://doi.org/10.1007/JHEP08(2020)044
https://arxiv.org/abs/2002.08950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08950
https://doi.org/10.1007/JHEP04(2021)272
https://arxiv.org/abs/2010.06602
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.06602
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1002/prop.201700034
https://arxiv.org/abs/1704.05333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05333
https://doi.org/10.1007/JHEP11(2019)023
https://arxiv.org/abs/1905.05692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.05692

	Introduction
	JT gravity
	Saddle point geometries with ETW branes

	A doubled PSSY model
	Setup
	ER = EPR: a first look

	Coupling two pure-state black holes
	Overview of results
	The entanglement entropy
	A transition of the bulk dual?

	The disconnected history
	The bulk geometry
	Entropies


	Coupling two black holes connected by a wormhole
	The bulk geometry
	Entropies

	Discussion
	Solutions of semi-classical Lorentzian JT gravity
	Exact analysis of the microcanonical dPSSY model
	Details of the Schwarz-Christoffel map
	Far from quench
	Near quench


