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ABSTRACT: We construct the most general theory of 2D Einstein-dilaton gravity coupled
with U(1) gauge fields that contains all the 2-derivative and the 4-derivative interactions
allowed by the diffeomorphism invariance. We renormalise the 2D action and obtain the
vacuum solution as well as the black hole solution. The vacuum solution in the UV is
dominated by Lifshitze with dynamical exponent (z = %) while on the other hand, the
spacetime curvature diverges as we move towards the deep IR limit. We calculate the
holographic stress tensor and the central charge for the boundary theory. Our analysis
shows that the central charge goes as the inverse power of the coupling associated to 4-
derivative interactions. We also compute the Wald entropy for 2D black holes and interpret
its near horizon divergence in terms of the density of states. We compare the Wald entropy
with the Cardy formula and obtain the eigen value of Virasoro operator (Lg) for our model.
Finally, we explore the near horizon structure of 2D black holes and calculate the central
charge corresponding to the CFT near horizon. We further show that the near horizon
CFT may be recast as a 2D Liouville theory with higher derivative corrections. We study
the Weyl invariance of this generalised Liouville theory and identify the Weyl anomaly
associated to it. We also comment on the classical vacuum structure of the theory.
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1 Introduction

It has been more than two decades now since the discovery of the celebrated AdS/CFT
correspondence [1]-[3]. The AdS4y1/CFTy correspondence (also known as gauge/gravity
duality) claims an equivalence between the partition functions of strongly coupled gauge
theories in d-dimensions and the classical gravitational counterpart living in d+1 dimen-
sions. In other words, the duality offers a suitable platform to examine the strongly coupled
systems using weakly coupled dual gravitational descriptions.

In principle, this duality holds for any d dimensional space-time. However, the study
of this duality in d = 1 dimension provides a remarkable insight about models of quantum
gravity living in two dimensions [4]-[9].

Following the spirit of the above discussions, the present paper focuses on a particular
model of classical gravity in two dimensions known as the Jackiw-Teitelboim (JT) grav-
ity [10, 11]. Tt is the 2D version of Einstein’s gravity (with negative cosmological constant)
coupled to a dilatonic field.

The holographic dual of JT gravity is conjectured to be the Sachdev-Ye-Kitaev (SYK)
model [12]-[34] which describes the quartic interactions among the Majorana fermions.
The striking feature of the SYK model is that it is exactly solvable in the limit of strong
coupling and in the large N limit.

In literature, the duality between the SYK model and JT gravity has been explored
in the presence of U(1) gauge fields [35]-[38] as well as the SU(2) Yang-Mills fields [39]. In
particular, the authors in [37] consider the JT gravity model minimally coupled to the U(1)
gauge fields and study the holographic stress tensor and the central charge [6, 7, 37, 40]—[44]
for the boundary theory.

The purpose of the present article is to look for a further generalisation on the gravita-
tional side of the correspondence by incorporating higher derivative (quartic) interactions
in the same spirit as that of its cousins living in higher dimensions! [45]-[53].

In the present paper, we start with the most generic higher derivative theories of
gravity in five dimensions [56] and search for its imprints in the lower dimensional models
in the context of SYK/JT gravity correspondence. We follow the standard procedure of
dimensional reduction [38] which results in the most generic higher derivative theories of
gravity (including quartic interactions) in 2D.

Following the standard AdS/CFT prescription, we compute various physical observ-
ables associated with the dual quantum mechanical model in 1D and explore upon the
effects of incorporating the higher derivative corrections on the dual field theory observ-
ables. In particular, we compute the holographic stress energy tensor and estimate the
central charge associated with the 1D boundary theory.

We also construct the corresponding 2D black hole solutions and obtain the central
charge using Cardy formula [7, 57]-[59]. Finally, we show that the model of JT gravity with

Tt was observed in [54] that the 4-derivative interactions are crucial to obtain the finite result of average
stress tensor of quantum fields coupled with classical gravity. Higher derivative corrections are also found
to be useful in cosmology in order to describe the inflationary models, see [55]-for a recent review.



quartic coupling can be recast as a “generalised” 2D Liouville theory [60]-[66] of quantum
gravity with some complicated potential function.
The organisation and the summary of results of the paper is as follows:

e In section 2, following the standard procedure of dimensional reduction, we construct
the most general theory of 2D Einstein-dilaton gravity coupled with U(1) gauge fields.
Our theory contains all possible 2-derivative as well as the 4-derivative interaction
terms allowed by the diffeomorphism invariance.

e In section 3, we obtain vacuum solutions of the 2D theory by treating the higher
derivative interactions as “perturbations”. We observe that the scalar curvature cor-
responding to the 2D theory diverges in the deep IR limit due to the presence of
higher derivative interactions. On the other hand, the vacuum solution in the UV
limit is dominated by Lifshitze with dynamical exponent (z = %) On the other hand,
if we switch off the 4-derivative interactions then, the space-time geometry becomes
AdS5 in IR limit and Lifshitz, (with dynamical exponent z = 3) in UV limit which
is consistent with [39] .

o In section 4, we obtain the Gibbons-Hawking-York (GHY) boundary terms [67]-[70]
for the 2D model that is needed for the successful implementation of the variational
principle. Finally, we estimate counter terms which lead to the “renormalised” action.

e In section 5, we use the renormalised action to determine the boundary stress tensor
and the central charge in the Fefferman Graham gauge [71]. We observe that the
central charge associated with the boundary theory goes as the inverse power of the
quartic coupling (k). This further implies that, a smooth x — 0 limit of the central
charge does not exist.

e In section 6, we obtain black hole solution for the 2D theory by treating the higher
derivative interactions as a perturbative corrections over the pure JT gravity solu-
tions.

e In section 7, we explore thermal properties of 2D black holes in our model. In
particular, we discuss the Wald entropy [72]-[74] for 2D black holes and observe that
the Wald entropy diverges near the horizon due to the presence of higher derivative
interactions. We interpret these divergences in terms of the density of states [75]-[77].
Finally we compare the Wald entropy with the Cardy formula for 2D black holes and
estimate the eigen value of the Virasoro operator (Lg) for our model.

e In section 8, we investigate the near horizon structure of 2D black holes in the pres-
ence of quartic interactions. We observe that the trace of the stress tensor vanishes
in the near horizon limit which indicates the presence of a conformal field theory
in the vicinity of the horizon. Finally, we transform the 2D theory into the “gen-
eralised” Liouville theory [60]—[66] using the proper field re-definition and calculate
the associated central charge. We observe that the central charge corresponding to



the generalised Liouville theory diverges due to the presence of higher derivative
interactions.

o In section 9, we discuss the Weyl transformation [64] properties of the generalised
Liouville theory. We observe that the generalised Liouville theory is not invariant
under the Weyl re-scaling. On top of it, the trace of its stress tensor does not vanish
and comes out to be proportional to its central charge. We identify this as the Weyl
(or trace) anomaly for the generalised Liouville theory.

e Finally, in section 10, we draw our conclusion with some future remarks.

2 Construction of the 2D action

The purpose of this section is to discuss the basic methodology that leads to the most
general 2D action for Einstein-dilaton gravity coupled to U(1) gauge fields. We start
with the most general theory of Einstein gravity coupled with U(1) gauge fields in five-
dimensions? [56].

S(5D) = /d5$‘/_g(5) {(12 + R) - %FQ + UQ[RMNOP]Q + 773F4 + 774FSPFPRFRQFQS

+n5 v FMY 9 Foy + MNOFQ (776FMNFOP V" Fro +mFunFor v Fpg
+nsFyunFor Ve Fft + ngAMRNOIJRPQU)} (2.1)
where, n; (i = 1,...,9) are the respective coupling constants. The key feature of this

model is that it contains the 4-derivative interaction terms along with the usual 2-derivative
interactions. These higher derivative terms are the key contents of our model.

In principle, it is possible to add several other 4-derivative terms to the above ac-
tion (2.1). However, all such terms can be eliminated using a proper redefinition of fields
as demonstrated in appendix B. Therefore, the action (2.1) is the most general theory of
gravity (coupled to U(1) gauge fields) containing both 2-derivative and 4-derivative inter-
action terms.

We are interested in studying the JT gravity model with chemical potential in the
context of AdSy/CFT; correspondence. On that note, we will require to get rid of the
extra dimensions present in the 5D theory (2.1).

Systematically, this can be achieved following a reduction ansatz for the metric as well
as the gauge field [38]

dsé) = ds%z) + o(t, z)g(d$2 +dy? 4+ dz?), AydaM = A,dat, A, = Au(a”) (2.2)

where M is the 5 dimensional index and p stands for the 2 dimensional space-time index.

2See appendix A for a discussion on the Non-abelian sector.



Using the above ansatz (2.2), one arrives at the required Einstein Hilbert action in 2

dimensions?®

Sen = /d2$\/—g(2)¢

+4f3(9200) (va o1 ORI + S0 (a6 (v70) ()6 T

4

(12+R) - %FQ + m[(RMﬁ)Q + Z(w 0%)

367 (7°6)(76){00(v,9) |

4 s 1 —2
+ 2*7(Vu¢)4¢7 - g{8a(vu¢)}{65(vp¢)}gaﬁg“p¢T} +F 4 FWFV)\FMFUM

=T (V2 67 ){08(700) 99" 0 —

+ VP FAVH : (2.3)

Notice that, in order to arrive (2.3), we make a special choice of coupling constants
namely, 71 = £ and 13 = n3 = N4 = 15 = k. Furthermore we treat these coupling constants
to be small enough such that the 2-derivative and 4-derivative interaction terms can be
treated as pertubations over pure JT gravity. On variation of (2.3) one arrives at the
following structure

5SpH = / 2 [~ g [Huwdg™ + Hydp+ HUGA,). (2.4)

Equations of motion for the metric, dilaton and the gauge field in bulk will be given
by equating the individual coefficients \/—gH ., /—gHy and \/—gH,, to zero. Technically
speaking, it will be easy to handle these equations using the static gauge given below

ds? = 2 (—dt? + d2?), A, = (A(2),0). (2.5)

3 Vacuum solutions

Even in the static gauge, it is difficult to solve the bulk equations of motion exactly.
Therefore, we will prefer to solve these equations perturbatively treating & and k as an
expansion parameter.

Systematically, one can expand these fields in terms of the expansion parameters as
shown in equation (3.1)—(3.3)

w = w(o) +Ewy + Aw),
¢ = ¢y +Eba) + KP2),

K K
Ay = At(O) + *At(l) , ‘*‘ < 1. (3.3)
3 3

In the above equation, the subscript (0) in (¢, w) denotes the pure JT gravity fields
whereas subscripts (1) and (2) denote the contributions coming from 2-derivative and 4-
derivative interaction terms in (2.3). Notice that, the expansion of the gauge field (A;)

3See appendix C for a detailed discussion on the general covariance of the action.



is different from ¢ and w because it is absent in pure JT gravity theory. Gauge fields
start appearing in the action as 2-derivative and 4-derivative interaction with coupling
constants £ and k respectively. Therefore, the subscripts (0) and (1) in A; denote the
contributions due to 2-derivative and 4-derivative interaction terms respectively. Finally,
using equation (3.1)—(3.3) we expand the coefficients Hy , H,, and H,, as follows

Hy=HY +ed? + v, H, = HP + gH,g@, H, =HY +¢H? +kHY. (34)

Here, the superscript (0) denotes the contribution due to JT gravity. On the other hand,
the superscripts (2) and (4) denote the contributions due to 2-derivative and 4-derivative
interaction terms.

The action constructed in equation (2.3) exhibits both vacuum solution as well as
black hole solution. In this section, we study vacuum solution in detail. The general plan
is to solve equations (3.4) at different order in perturbation as discussed in the following
subsections.

3.1 Zeroth order solutions

In order to find out the vacuum solutions w(Vg)C and qﬁ‘(’g)c ,weset { =k =0in /—gH,,
v—9Hy4 and /—gH*". This yields the following set of equations

Hoy — wioy¥lo) ~ 640)e™@ =0,
WhoyBlo) — 60 €@ = 0,
12 — 26*2%%25) = 0.

On solving (3.5), (3.6) and (3.7) we get

2w vac 1 Cl
e = L Py = - (3.8)

where C;s are the integration constants. Equation (3.8) stands for the vacuum solutions
of pure JT gravity.
3.2 First order solutions in &

Next, we note down leading order solutions (due to 2-derivative terms) by equating the
coefficient of § in \/—gH,,,, \/—gHy and /—gH" to zero

2(w(0)¢’(1) + wiyBo) + 2w(1)¢/(o)wfo)) — (@) + 2wy d(0) = 0, (3.9)
1

126500y —wiyy + ge 0 (Ayo))* =0, (3.10)

0: [ d(0)e 0 Ay =0, (3.11)



where (3.9) is corresponding to \/—g(Hy + H.). On solving equation (3.9)—(3.11) we find,

vac C
yos = _Fj log z + Cu, (3.12)

C’6 220%(—1+ 3log 2)

vac __ C ~6 3.13
W(l) Z + + 60% ) ( )
—4 1
¢vac _ ng( 3;' 3log Z) 1+ (2052 _ Céj) _ g + Ck, (314)
1

To summarise, (3.12)—(3.14) are the first order corrections to the pure JT gravity solutions
due to 2-derivative interactions present in (2.3).

3.3 First order solutions in &

Next, we note down leading order contributions due to the presence of 4-derivative interac-
tions in (2.3). This can be calculated by equating the coefficients of x in \/=gH ., /—gHy
and /—gH" to zero.

- [— 720 gy Ay p) —24e” %O (Ay0)) o) (3.15)
+2az{e—4w<o>¢(0)(2wgo)At(0)’—At(0)")}} —0,

4 8
24 5552<_Cl>3 40 <_Cl)3_3888220§

2 "
24e™Ow () — 2wyt 5 5 T32 3

— . (3.16)

Cs
o > (108C5+Cy ) =0,
620 (6 3) +4w()9(0)) + (D)2 + Hayelo) + 20 Floywloy) ~ (9 T 202090 (3:17)

1 2
Ci1\3 C1\3
—W[216220f+976z015<—2> +8016<—z> +11664z60§+9z40120309] —0,

|
1823

L z 4
+24z( il>d+162<—?>3{ 133+30< C;l) }+11664 1Gs

5
1
1922 3 7203+091

Notice that, (3.18) contains only single derivative terms which means that it is a

constraint equation. We will use this constraint and equation (3.8) in order to find qZ)E’Qa)C from

equation (3.17). On the other hand, A and wiy can be calculated using equations (3.15)



and (3.16) respectively

43222C%  logz(72C3+Cy)

= %, + 60, +Cho, (3.19)
Wi = Oy 22 +012_6_1‘i§8(—21>4 1;22( 1 4 3log 2)C5 (108Cs + Co)
5(-2)'- B
o = 23013; Cu 27(2 (_ c;)i - % (_ il) 3 {200% 13()( il) } 64§§3C4
+C (22011 - C”) + 92‘1 [2C{108(1-3log2)C3 + (4—3log(:)C)}].  (3.21)

Equations (3.19)—(3.21) are the first order corrections to pure JT gravity due to 4-derivative
interactions in (2.3).

Now, we have a complete set of solutions corresponding to metric, gauge fields and
dilaton up to linear order in £ and . Collecting all these fields at different order, we can
approximate the space-time metric (2.5) for vacuum solution as

ds2,e ~ €20 (1 + 26w + 2kl (—dt? + dz?). (3.22)
Below, we check the behaviour of space-time metric in two different limits -

e Case 1: IR limit i.e. z — o0

e2w

1 —3C2 4+ 9log(2)C2 + 18C2C! C, 2 324z2c4
:2+£{ 3 8( )23 iCs %}4—%{ 2 3G
62 54C7 3 z 501

1
* 507 (108C3 — 32410g(2)C3 + C3Cy — 3l0g(2)C5Cy + 18CC )
1
1
1 O\ 3
! - ) ! 2
+ 45z3< 38801( 2 ) + 5012)}7 (3.23)

e Case 2: UV limit i.e. 2z — 0

2w
€ 4
22 Tzs

T 622
3242204 Lt
5Ct 54C%

we 1 +£{ ~3C3 +910g(2)C3 +18C2C5 Cﬁ} { 2 20%(—Cy)5
54C? 337"

(10803? — 3241og(2)C3 + C3Cy — 3log(2)C3Cy

1
, L
+18C2Cn) + = (138801 < - C;) ¥ 15012> } (3.24)

It is evident from (3.23) and (3.24) that the 2-derivative and 4-derivative interaction
terms present in our model alter the AdSy; geometry of vacuum both in the UV and IR
limits. In the UV limit (3.24), the space-time geometry is dominated by the Lifshitze with



dynamical exponent z = % On the other hand, the space-time metric exhibits a divergence
as we move in the deep IR limit (3.23).

In order to solidify our claim, we further compute the corresponding scalar curvature

of the theory (2.3) which shows a divergence in the deep IR namely,
03 4 4
Al s(er)
where g—? is precisely the coefficient that appears in the near boundary expansion of (3.22).
This clearly reveals the fact that the space-time singularity is caused due to the presence of

4-derivative interactions in the original action (2.3). We identify this as the unique feature
of higher derivative corrections in the theory (2.3).

4 Boundary terms and renormalised action

The boundary of space-time manifold in our theory (2.3) is located at z = 0. Therefore,
one must add suitable boundary terms in action for a successful execution of variational
principle [37].

The boundary term is given by standard Gibbons-Hawking-York term

A (4.1)

n )
V= 9zz

where v is the determinant of induced metric on boundary, K is the trace of extrinsic

B8
Seiy = Di / Aty oK, K =n
0

curvature and f is the inverse temperature [67]. We multiply the boundary term (4.1)
with an overall constant D which will prove to be useful in construction of counter terms.

On substituting equation (3.22) in (4.1), we obtain Sgyy = —f(¢w’). Using this
expression, one can easily write down the on-shell Gibbons-Hawking-York boundary term
as well as the on-shell Einstein-Hilbert action (2.3) as follows

1 2 2
103172;«@%(_ 01)3 24&0%(_ C’1>3 B 18;@0%(_01)3

&
on ——D ~l
Sty 1 Lﬁ T 728 7

z z z
_ 6kC3 N 7¢C3 N 72rlog(2)C5  2¢log(2)CF N 45362°kC3 16C,C
60 C, Ch 5C3 o
250106 507 508 7/60309 2K log(z)C’;gCg 2/4301012
LR 18C, 3C4 —4sC10n + B3
— zkC13 — KS;M] , (4.2)
1 5
Kk | 6096C? Ci\3 576C? C1\3
Son = _% 5231< — Zl) + 7231 (— Zl) + 699842°C + 27log(2)C{Cs
1

x (72C3 + Cy) |, (4.3)

where we have truncated the above expressions (4.2) and (4.3) up to linear order in £ and «.



It should be noted that in the boundary limit i.e. z — 0, both the equations (4.2)
and (4.3) diverge. Therefore, one requires to add counter terms in the action (2.3) to
tame such UV divergences. These counter terms should be some function of the fields at
boundary.

After a careful inspection, we come up with the following counter term

D5 Cs
V= C?

B
Scr = / dt/=7y | D2¢ + C1D3y/=y K> + C3 Dyl /=y Ay Ay + € ol
0

+kK

Ds_Cro ¢3] (4.4)

=c

where ;s and D;s are some constant coefficients.
Equation (4.4) cures all the UV divergences of S§j; + S&}y (up to linear order in &
and k) with a particular choice of coefficients*

Dy = —2.5795, Dy =6.3186, Ds=—0.1394, Dy = —3.5904, Ds = Dg = —0.2788,
Cs = 0.0283Cy, K = 0.0090. (4.5)

Notice that, in the process of renormalization we also fixed the value of 4-derivative
coupling constant, x. With all these preliminaries, the complete renormalised action can
be schematically expressed as

Sap = Spn + Scuy + Scr- (4.6)
The variation of the full action (4.6) is given by

0S52p = /dt\/ —’Y[Gab(S’Yab +Gydo + GaéAa] + bulk terms (4.7)

where (a,b) are the boundary indices.
The bulk part of (4.7) is already discussed in sections 2 and 3. On the other hand, the
variation of boundary action yields

Gy =

el L T )

ttAt
G' = —EnaF*'¢ — £C3D,4

/—’yttAtAt’
{azv% — a0+ 27%} 4

(4.9)

1
VY9zz

2% + C1 D3

Gtt —

& ¢ {_a,ytt_2,ytt_ ,}/tta\/j,y}

2r

\/Ig{z{ 8t/ = — ttr A, \/7}

) ArA
+CsDy=> VAL A — ——— ). 4.10
3 42 v VAL A ,77” A, ( )

4See appendix D for a detailed derivation of the coefficients.

ot
V=

~10 -



In arriving at equation (4.10), we have used (4.1) and the dominating terms in the
expansion of v near boundary. It is important to note that the above variation (4.7)
makes sense only when the individual variations of the metric (4), dilaton (d¢) and the
gauge (0A,) field vanishes at the boundary.

In order to check this explicitly we expand the variation of all fields near boundary
which yield

66 = —— [+{3(36K — 4€ + 3(~36r + ) log(=))C3 + k(4 — 3log(=))C5Cy

9C,
H18C(ECs + wC1)}| + O, (4.11)
C3k 324 C3
§A; = 43207%22:2 +0[2*, = H?C—%f + O[] (4.12)

From equations (4.11) and (4.12), it is quite evident that the individual variation of
fields d¢, Ay and 47y vanishes in the boundary limit z — 0. Therefore, the results derived
above are all reliable and we will use them in deriving the boundary stress tensor in the
next section.

5 Stress tensor and central charge

Having done the required background work, we now proceed towards computing the stress
tensor as well as the central charge for the boundary theory. Boundary stress tensor is
defined as the variation of the action (4.6) with respect to the induced metric (vgp)

v = 57ab

where G is given by equation (4.10).

= 2G, (5.1)

So far, our computations have been performed in the light cone gauge (2.5). However,
it is not convenient to identify the central charge in this gauge. Therefore, we switch to so
called Fefferman Graham gauge [71] in which it is quite straightforward to figure out the
central charge.

5.1 The Fefferman-Graham gauge

In this section, we will demonstrate how to write down the background fields in the
Fefferman-Graham gauge. In order to do that, we first make a coordinate transforma-
tion that takes us into the Fefferman-Graham gauge from the light cone gauge. This can
be done as follows.

Consider the line element in light cone gauge

ds? = 2@ qp? 4 20) g2, (5.2)
Now, consider the following transformation

dn = e*?)dz, (5.3)

- 11 -



which by virtue of (3.1) and (3.8) yields
1
n= / @(1 + éw(l) + Iiw(g))dz. (5.4)

In principle, one can evaluate (5.4) using equation (3.13) and (3.20). This will give us
n as a function of z i.e. n = n(z). One can therefore revert (5.4) to express z as a function
of n and plug it back into equation (5.2). This yields the desired form of the line element
in the Fefferman-Graham gauge

ds® = hy(n)dt* + dn?. (5.5)

In order to simplify our analysis further, we expand equation (5.4) in the boundary
limit (z — 0) and retain only dominating terms in the expansion. Notice that, the boundary
in the Fefferman-Graham gauge is located at n = oo

Upon solving equation (5.4) and expressing z as a function of 7 we get

9 3 ~
316 k8Cy
Z2=——73 73 (5.6)
216 X 78778
where C; = —C}. The above expression (5.6) will be used while converting the light cone

gauge into the Fefferman-Graham gauge and vice-versa.
Using (5.2), (5.6) and (3.1)—(3.3) we finally end up with the following expressions for
the background fields as well as the stress tensor in the Fefferman-Graham gauge

3\
32 x 28 x 71 ><172< 8)
K38
htt(n) = = + ..., (57)
‘THOO 9 x 33\/E012
3
16 x 276 x 78 x §<77§>3
K8
¢(n) = - 1 +.o (5.8)
1n—00 9 x 316 K38
9 3 ~
316ks(Cy ((72/1 — 65)03 + HCg)
A = —lo = +..., 5.9
] g( B e 2)( 6¢Cy (5:9)
735 p3125
T (n) = —3175.934 —294.245 (5.10)
n—00 K1'501 ,{1.12501

where (...) represents all the sub leading terms in an expansion near the boundary.

5.2 Transformation properties of the stress tensor

In the present section, we study the transformation properties of the boundary stress
tensor under diffeomorphism. Under diffeomorphism, z# — z# + e(z) the space time
metric, gauge fields and the dilaton transform as follows

5EgMV = Vv + Vvéy, (511)
6614;1, = ¢’ Vv A,u + AI/ Vi 6V7 (512)
v (5.13)
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Using (5.5), (5.7) and (5.11), one can find an expression for the parameter (e,) of
diffeomorphism which turns out to be

e = aZ/(t), & = bnEE(t) + ganE"(t), (5.14)

where Z(t) is an arbitrary function of time while the constants (a, b) will be fixed latter on.

Recall, that we are working in a gauge in which A, is set to be zero. From equa-

tions (5.12) and (5.14), it is easy to check that d.A, # 0 which means that the differ-

omorphism destroys the gauge condition. Therefore, to retain the gauge condition, we

make another gauge transformation i.e. A, — A, + 0, A, where we choose A such that
(0c + dx)A, = 0, which determines X at leading order as

1 5 77g 5 .
A= — 5 —— |38a| — | k&¥(8+ 15log(2) — 9log(3) + 6log(7)
256 x 28 X 71ns¢ K8
sC
—161og ('i . 1))(51((725 —6£)C3 + kCo)Z"(t)|. (5.15)
ns

Using (5.14) and (5.15), one can finally pin down the variations of the background
fields under the diffeomorphism and the gauge transformation as

3 3 3 2
2 5 2868 X T71a /ns\3 8
Sy = — (27b4+~( ) )E’t + —an=" (1), 5.16
o= gt SR () )0 + g (5.16)
1 0 5 5 1,5
(0 + 00)Ar = (72 — 6£)C3 + kCy) | | 56a| — ) —3 x 65 x Tibni/k
3\3 _ K38
s96n( 25 ) G
K8
316k5C
K ~ 1 ~
xlog( - 313)012>E’(t)—2 x 68 x 74a\/?7\/E012E'”(t)], (5.17)
6 x 75ms
92 x 275 x T8an3=/(t) (0% 3
Sep = — Tar () (5.18)
9 x 316 K8 K38

In order to proceed further, we first convert the stress tensor (see equation (5.1)
and (4.10)) into Fefferman-Graham coordinate and then explore its properties under dif-
feomorphism and gauge transformation. After doing all the calculations, we end up with
the following expression

3

3
U Ul
— 636.04b -
10.375 KO-T5C,

3

—_ n —_
>:’(t) — 6728350 ="(1) (5.19)

(6 + 63) Ty ~ < — 58.928b
where we have retained only the dominant terms in the (boundary) limit n — oc.

After a proper re-scaling, the boundary stress tensor and its variation under diffeo-
morphism and gauge transformation may be defined as,

- |
Ty = WILH;O ?Ttt and (8¢ + 0x)Ty = 77h_)]ngQ ﬁ(de + o)) Ty (5.20)
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With a proper choice of the constant b = —%286_
G205

in a more elegant way. Using (5.10), this finally leads to the transformation of the stress

one can express the equation (5.20)

tensor® as follows
~ . ca _
(56 + 5/\)Ttt == 2Ttt.:/(t) - ?://,(t). (521)
1
(5.21) is the standard form of variation of the boundary stress tensor (5.1) under
the action of both diffeomorphism and gauge transformation. Finally, we have reached
a stage where one can identify the central charge of the boundary theory. The constant
“d" appearing in (5.21) (as the coefficient of Z'/(t)) is the central charge associated to our

boundary theory (4.6) which is given by the following expression

. 672.835

=" 0.22
€=~ o (5.22)

Notice that, (5.22) is a large number as we are working in the small x regime. This
also makes the entity in (5.22) highly non-perturbative in the sense that there does not
exist any smooth £ — 0 limit of (5.22) that connects it to the pure JT gravity theory.
Therefore, these theories are not smoothly connected to their conformal cousins those are
dual to pure JT gravity.

6 Black hole solutions

We now explore black hole solutions of the 2D gravity model (2.3). Like before, these
solutions are expressed perturbatively with the gauge choice as discussed in section 3.
6.1 Zeroth order solution

In order to calculate the zeroth order solution, we solve equations (3.5), (3.6) and (3.7)
simultaneously which yields

5. ) = % coth(2z,/p). (6.1)

The above solutions (6.1) correspond to black hole solutions in pure JT gravity [28].

6.2 First order corrections in &

Leading order corrections to (6.1) can be estimated by using equations (3.9)—(3.11). These
equations will be easy to handle if we change the coordinate as follows

z = 2\1//7 coth™! (\fﬁ) (6.2)

®Since we are working in a static gauge therefore, E(t)a{ftt is trivially zero.
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Using (6.1) and (6.2), we can express the first order solution as

Ay =—2Qlog(p) +di, (6.3)
Wity = " 3{ —2ptanh~! (\;’ﬁ) log(p) +2/(1 +log(p)) — pPolyLog [2, _jﬁ]
+ pPolyLog [2, \Z,J }Q2 +4,u{pd1 — /iy + ptanh ™ (jﬁ)dQ}] , (6.4)
o1y = 4823 3{2u+4\/ﬁp+4\/ﬁplog(p) +tanh ! (\;’ﬁ) {60 ~8y/fip
+4(p— p*)log(p) } — pulog (1 - jﬁ) —8y/plog (1 - \/’%) +6p2log (1 - ;ﬁ)

2
P 2 2 P
—Mlog(1+)+4 uplog(—p+p°)+(n—3p log(l—)
Vi Viplog( )+ ( ) .

2

—(n—p?) <4PolyLog (2, jﬁ) — PolyLog (2, Z)) }Q2 +8up’d; —i—4,u{2\/ﬁp

+2p°tanh ™! (%)+ulog(—\/ﬁ+p)—ulog(\/ﬁ+p)}d2+48u3(d3+pd4) . (6.5)

where @ is the charge of the U(1) gauge theory and d;s are the constants where i takes
the value 1, 2, 3, ...Equations (6.3), (6.4) and (6.5) correspond to first order corrections
to zeroth order (black hole) solutions due to 2-derivative interaction terms in (2.3).

6.3 First order corrections in kK
Let us first estimate corrections to gauge fields due to 4-derivative interactions in (2.3).
These can be estimated by comparing the coefficient of x in equation of motion for A,

— €70 g(g) Ay y) — 24e” O ) (Al ))? + 20: [0 b0 (2w(g) Af o) — Afo))] = do- (6.6)

Notice that the above equation (6.6) is expressed in terms of z and its derivatives.
Upon solving equation (6.6) in terms of p and using equation (6.1) we finally obtain

_ 2
Ay = e 5 P2 log(p)(12Q + ds) + dg. (6.7)

p

Next, we collect the coefficient of k in equation of motion for ¢. After simplifying the

expression we get,

4 1/3

@(u

{ — p2(40 x 613 + p¥/3) — 2up?(116 x 613 +7p*3)  (6.8)

8
3

—pQ)[—5832+6
p

486
+p*(1388 x 613 + 15p4/3)} — 972wy + p4{54(_“ + Q% +1944Q* + 3p*Qds

Ow 0%w
1(9,%@ (2 (2>)} _ 0
+p<pap + (—p+p%) o7 0
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In general, one can solve (6.8) exactly for w(z). However, for the purpose of our present
analysis, we are interested in the near boundary expression of this function. Therefore, we
expand w(g) in the limit p — oo and retain only leading order terms.

After simplification, one can express w(g) in the following form

bh g 4 2
W(g)|p—00 = —0.0072108p3 — 8.48718p3 + F (log(u),log(p))p — 0.0228342p3 — 6, (6.9)

where F'(log(u),log(p)) is given by

2
1 1 \3 5 1 \3
F=3.72651u65 —3.72651 ( — ) 1~+0.0239781 6 40.0239781 ( — ) 7
Vi) VE NG

+ 3':’375 {4log ( \;ﬁ>2 —log(p)?+8log ( \}f) log(p) +4log () log(p)

—8log <— ;ﬁ) —8log(p)log (— jﬁ> +8log (\/pﬁ) +8log(p)log (jﬁ) }Q2
( (

)0t (L)) Ty

—8log < \/1;7) log(p) —41og(1) log(p) +8log(p) log ( \}Og) —8log(p)log (p> }

+j7ﬁ+i)/'fj(—log <;g>d8+10g <\/pﬁ>d8>- (6.10)

With all these expressions at hand, one can approximate the black hole metric (2.5) as

2 d
dsgh = g(p2 — 1) (1 + 2(&1?{3 + mu?g))) < —dt® + ,up2)2>’ (6.11)

where the black hole horizon is located at p = /p.
In order to calculate ¢(y), we compare the coefficient of £ in equations of motion of g
and g,,. On Subtracting g,, from g4 and after some simplification we find

1262900 (913, + Ay0y2)) — <ap 9 {ap <a¢<2>>} RX) {ap (8¢(0)>}> (6.12)

820p 0z \ 9p (2>%ap dz\ 0Jp
+A(p) =0,
where A(p) is given by
2(1—p?) (.1 5 4 2 8 13 14 2 2
A(p):T{GB,u —5832p3 —432x63p3 +180%x 63 p° +63p~ +2u(54 x63p3  (6.13)
29p3

1 1 4Q
—90x63p—63p%) | + F{GQ(LIMQ —6pp? + p* +36(—p+ p))QD) + PP (— i+ p)ds |

Technically speaking, it is very difficult to solve (6.12) exactly. Therefore we will solve
this equation in two different limits.
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Case 1: near boundary analysis (p — oco). Using the near boundary expansion of
w2y and A(p) in equation (6.12) we get

PP 4 8p do(2)

4 2
P ap? dp

— 8z +0.02p3 =0, (6.14)

where we consider p? > p and retain only dominant terms in the above expression. Equa-
tion (6.14) can be easily solved for ¢y

bh 9 d1o
Ay losoe = =750 " +Pdat 3 P (619

Case 2: near horizon analysis (p — /). Converting equation (6.12) in terms of p
and taking the limit p — /i, we arrive at the following equation

poBE)) e e

which can be solved for ¢ () to yield,

1 _ 3
¢Eg’;)|p—>\/ﬁ = N/ (Pdn — V/fudiz + ptanh™! (;ﬁ)dm) + 4M{P<4 log(—+/1+ p)

126290 gy —

— 4log(v/1 + p) + log (1 - jﬁ>2+21°g (1 Bl \/;7) tog Lll (H\;ﬁ)]

—log (1 + \Zj>Z> — 4{\/ﬁ — ptanh™! <\Za> } log(p — p?)
+ 4pPolyLog (2, ; 2\F) }Q2 (6.17)

The above set of solutions (6.7)—(6.17) are the first order corrections to pure JT gravity
black hole solutions due to 4-derivative interaction terms in (2.3).

Now, we have obtained a complete set of black hole as well as vacuum solutions for
generalized JT gravity models with an abelian one form. Our next task would be to
compare these solutions in the near boundary limit. Let us first expand the black hole
solutions (6.1)—(6.17) in the limit z — 0, which reveals the following leading order behaviour
for the background fields and the metric

1 bh
~ i1 A?E )

1

p(®h) ~log(z), "

z—0

On the other hand, for vacuum solutions (3.8)—(3.21), we find the leading order be-
haviour for the background fields as well as the metric
1
z—0 Z%l

Comparing (6.18) and (6.19) we note that the leading order behaviour of both the
black hole and the vacuum solution is identical near the boundary. Hence, the UV central
charge (5.22) for black hole phase will be identical to that with the vacuum solution as
mentioned previously section 5. We will explore more about the central charge in the next

1
~ . (6.19)

z—0 23

(vac) ~ 20 (vac)

Agvac)

~ log(z) ,

)
z—0

section.
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7 Thermodynamics of 2D black holes

In the present section, we investigate the thermal properties of 2D black holes (6.11). In
particular, we discuss the Wald entropy [72] of a black hole and interpret its divergences
near the black hole horizon. Finally, we compute the Cardy formula [57] for 2D black holes
and compare it with the Wald entropy to estimate the charge of the corresponding Virasoro
generator.

To start with, we calculate the Hawking temperature [78] for the 2D black hole (6.11)

1 1
Ty = oy —191‘/'5999(8,0‘qtt)2 = g(l + 6k — K(36d2 + dg)), (7.1)
P/
where /fi is the location of the horizon. Notice that, in arriving at (7.1), we set Q =
%&i), ds = 0 and p < 1 such that hawking temperature reduces to [39] in the limit
Kk — 0.

7.1 'Wald entropy
The Wald entropy [72]-[74] is defined as

oL

Sy = _27ryabcd6ab€cd’ Yabcd — 5 ’
Rabcd

(7.2)
where £ is the Lagrangian density,’ R,j.q is the Riemann curvature tensor and ey, is the
anti-symmetric tensor with the normalisation condition, €®ey, = —2.

Using (7.2), one can estimate the Wald entropy for the action (2.3)

_6,0p d (Op [ Ow
—4rd — 1 6wl = )0 22 L )
Sw =4 — 16xmde ™ - i { 5. ( ap)} (7.3)

One can expand the above expression (7.3) explicitly using the equations (6.1), (6.5)
and (6.17) up to leading order in £ and x as

p 9rp 1 > P’
Sw=4r| = — + ,5{3<4p wH2u+ (—3p° +p log(l—
(6 (=2 +u)? 4843 Vi ( ) 1

() s (1) (1 5 o4
+4py/log(p) + tanh ! (jﬁ)wp?—smw(—p%m log(p)) +4py/filog(” — 1)
—(—p*+p) ( PolyLog {2, ’i] +4PolyLog {2, ﬂ ) > Q +8p%udy +4p <2p\/ﬁ
12,7 tanh ™! [\jﬂ} +plog(— i+ p) ~ ploglp + V) ) da-+ 48y (ds-+ pd) |
R R AR AR )

5We have used the notation S = fdzx\/—gﬂ.
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—log (1 + jﬁf —4log(\/ﬁ+p)) —4<\/ﬁ—ptanh_1 <\/pﬁ>) log(—p* 4 1)

+4pPolyLog<2 —\f))cg? dis+ \/ﬁ<d11+tanh { jﬁ } d12) }) (7.4)

It is evident from the above expression (7.4) that the Wald entropy diverges in the
near horizon limit i.e. p — /u. As we explain below, these divergences are due to the short
range correlations between quantum modes across the horizon. A careful inspection, further
reveals that these divergences are sourced due to the presence of the higher derivative
interaction terms in (2.3).

Below, we explain more about this with the help of a toy model calculation.

A toy model calculation. Consider a massive scalar field (®) in the black hole back-
ground (6.11) that satisfies the Klein-Gordan equation

(V2 —m?)® = 0. (7.5)

We demand that ® satisfies the “brick wall” boundary condition i.e. ® =0 at z = z,,
where z, is the location of black hole horizon. This calculation is analogous to the 't Hooft’s
brick wall model as discussed in [75]-[77].

In the black hole background (6.11), equation (7.5) takes the form

L o L 2
One can solve the above equation (7.6) using method of seperation of variables. We
consider ® = ¢'F f(2), and plug it back into (7.6) which yields

(B2 f(2) + 821(2)) — m21(2) = 0. 1)

In order to proceed further, we substitute f(z) = j5(2)e**(?), where j(z) is a slowly vary-
ing function in z and S(z) is the wildly oscillating phase. On plugging f(z) into (7.7), we get
F(z) = pla)e™t | /T, (78)

Now we impose an additional boundary condition” on ® i.e ® = 0 at z = Z such that
the integral in (7.8) become discrete

/Z dzV E? — e?*m? = n(F), (7.9)

where n(FE) is the density of states which measures the total number of states having energy
E.

"This is called the Dirichlet boundary condition and the coordinate Z is located far away from the
horizon [75].
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Using (6.2), we can express the density of states (7.9) in terms of p as

P E2 e2wim2
=/ d - . 7.10
/ﬁ p\/4(u —p?)?  Alp—p?)? (7.10)

In principle, one can use the above expression (7.10), to estimate the corresponding

free energy (F) and entropy (S) for the scalar field (®) as

2
F= / 1_65EdE and S = ﬁaﬂF‘ﬁ o (7.11)

where [ is the inverse temperature and (g is the inverse Hawking temperature.

It is evident from (7.10), that the integrand blows up at lower limit i.e. p = ,/z. This
means that the density of states for ® diverges near the horizon which leads to divergences
in the free energy and entropy (7.11). In order to get rid of such divergences, we shift the
horizon location by an infinitesimal amount d i.e. p — /p+9d, where § < ,/u. On plugging
the shifted horizon back into (7.10), we get a finite answer both for the density of states
as well as for the entropy [76, 77]. This toy model calculation for ® gives us an important
clue about the interpretation of the above divergences in the Wald entropy (7.4).

Recall that, we formulate the action (2.3) by adding matter field content® to the pure
JT gravity model. Addition of matter field content introduces new degrees of freedom
in our theory (2.3), which is analogous to the scalar field (®) in the above calculation.
Therefore, the divergence in the Wald entropy (7.4) (that arises due to the addition of the
matter field content) is analogous to the divergence in the density of states (7.10) for ®
near the horizon. Therefore, following the above discussion, one can get rid of divergences
in the Wald entropy (7.4) by shifting the actual location of the horizon by an infinitesimal
amount namely, p — /it + J, where § < /1.

7.2 Cardy formula for 2D black holes

In literature, there exists an elegant way for counting the number of degrees of freedom
associated with 2D CFT. This goes under the name of the Cardy formula [57] which is
given by

(7.12)

where ¢ is the central charge of the 2D CFT and A is the eigen value of the Virasoro
operator Lg.?

It has been found in [59] that the entropy computed using the Cardy formula (7.12)
matches with the black hole entropy in the bulk. In particular, the author of [59] considers
the three-dimensional theory of gravity coupled with matter fields

- G/d3xr(3+ 12) + S, (7.13)

where S,, contains the matter field.

8By matter field content, we means 2-derivative and 4-derivative interaction terms.
9See appendix E for a brief discussion on the Cardy formula.
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Next, the author computes the central charge for the boundary theory corresponding
to (7.13) and estimates the boundary degrees of freedom using Cardy formula (7.12). Re-
markably, these boundary degrees of freedom precisely match with the Bekenstein- Hawking
entropy of the black holes!® corresponding to (7.13). Finally, the author claims that this
result holds for any consistent theory of quantum gravity.

In the present section, we carry out an analysis that is similar in spirit as mentioned
above. A similar analysis has been performed by authors in [37]. In particular, they
consider the 2D Einstein-dilaton gravity in the presence of U(1) gauge fields and compute
the central charge associated with the corresponding boundary theory. They determine
the boundary degrees of freedom using Cardy formula and show that it precisely matches
with the corresponding Bekenstein- Hawking entropy formula for 2D black holes.

Following similar spirit, our goal is to determine the eigen value of the dilatation
operator Lg. In order to find A, we utilize the fact that the boundary degrees of freedom
for the ground state is equivalent to the black hole entropy. Therefore, we compare the
Wald entropy of a 2D black hole (7.3) with the Cardy formula (7.12), which yields

A = %&.
2 cm?
As our analysis reveals, A receives corrections both due to the presence of 2-derivative

and 4-derivative interaction terms in (2.3). We re-scale A — A = % ( with w = 3.53 x
1073 uk'5) which finally yields the eigen value for the UV CFT as

(7.14)

~ Cc
A=Ay, = g5 + &R+ RE, (7.15)

where F and F5 are the corrections due to 2-derivative and 4-derivative interactions present
in (2.3)

0.75

K 1)
F = { <0.0044587 —0.0029725 log ( — ) + 0.0029725 log(d+/ 1t
. v (5/7)

+0.00148625 log(,u)> Q% + (0.00198166 +0.000990832 log(4)

3log()
4

5
— 0.000990832 log < - \F) - 0.00049541610g(,u)) Q? + 0.01189ud4},
m

P g0-7° { 0.0267525  0.0535049
2 = - -

52 o /i
— 0.0123623 log ( - 5) +0.00891749 log ( = 5)2 — 0.03567 log(2y/2)
. 7)o 7 .

+ ( — 0.00428444 + 0.03567 log(8)
w

— 0.03567 log(—26+/11) + 0.03567 tanh " (1 + jﬁ) log(—26+/11)

b}
+ 0.03567PolyLog [2, _2\FDQ2 +0.01189/pidq; + < —0.01189/1z
u
)
+0.01189,/p tanh~* (1 + ))dlg}. 7.16
VH NG (7.16)

9Tn literature, these black holes are called the BTZ black holes [79].
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Note. In arriving at (7.16), we write the full solution of the gauge field (3.3) and the
dilaton (3.2)
A= Ally + g4l O = ol + colly + nolh

In the near horizon limit, we absorb the integration constant ds in qbl(”f) (6.5) into the
constant dq; in qﬁl(jg) (6.17) without any loss of generality. Similarly, we absorb the additive
constant d; in A%) (6.3) into the constant dg in Ai’ﬁ) (6.7). Furthermore, we write the
constant ds in terms of the charge @ using (7.1).

Finally, we have used the fact that § < /i and retain terms up to leading order in
the couplings £ and k.

8 Near horizon CFT

We now explore the near horizon modes of the theory (2.3). In particular, we look the
evidence of a CFT in the near horizon limit and calculate the central charge associated
with it.

We start by computing the trace of the stress tensor in the near horizon limit

1 0SEH
ng _ v
9T = \/ng Sgi (8.1)
One can schematically express the above expression (8.1) as
9" Ty = To + 11 + kT3, (8.2)

where Tj is the trace of the stress tensor for the pure JT gravity theory. On the other hand,
T7 and Ty are the correction terms due to the presence of 2-derivative and 4-derivative
interactions in (2.3).

The trace of the stress tensor in the JT gravity is given by

Ty = e > (¢ — 12¢9e™), (8.3)

which turns out to be zero by virtue of equations of motion (3.5) and (3.6).
On the other hand, the first order correction in (8.2) due to the presence of 2-derivative
interactions is given by

%o

Ty, = e 20 [ —12(e2° ¢y + 2wy gpe®®) + ¢ + QAQ%O)eQwO} + 2wie” 20 [— g + 12¢0e™°),

(8.4)
which vanishes identically by virtue of (6.1) and (6.5).
Finally, we calculate the correction due to the presence of 4-derivative interactions

Ty = —e=20 [126%0 (g + dpgw) — (B} + 2wz ) + A(2) | +4wpe ™20 | — pff +1260¢** |, (8.5)

which also vanishes identically due to equations (6.1), (6.2) and (6.12).
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Combining (8.3)—(8.5), we conclude that the trace of the stress tensor (8.1) vanishes
identically in the near horizon limit. These calculations suggest that there exists a confor-
mal field theory in the near horizon limit. Our next step would be to compute the central
charge corresponding to this conformal field theory.

In order to simplify our analysis, we switch off 4-derivative interactions'! for the mo-
ment and transform the Einstein-Hilbert action (2.3) into the Liouville theory using the
following field redefinition [60]-[61]

2¢

¢ =% = q®yy and g, — €71 g, (8.6)
where q is a constant and @5 = ®|porizon.
We plug (8.6) into (2.3) which yields
) 1 1 ) g T
S = /d x\/—g [4q<I>H¢R + §(V;ﬂ/’) + 3qPyer®H ) — Eq@;ﬂpe @ [, (8.7)

Next, we integrate out the gauge degrees of freedom in the action (8.7) which by virtue
of the equation of motion (3.11), yields

_ 2
S1= [ @rvg [y ur s Jaeeriv )|, V) =eueFrpr §E

2
S @t b° (8.8)

where V(1) is the potential'® of the “generalised” Liouville theory that contains the 2-
derivative interaction term and b is the integration constant. We discuss more about the
generalised Liouville theory in the section 9.

On varying (8.8) with respect to g,,,, we obtain the equation of motion for the metric as

1 1 ¢® 1
5(8;@)(81/1#) - ng/(vw)z + TH(QWD¢ — Vv ¥) — 59#1/‘/(1/1) =0. (8.9)
We prefer to solve (8.9) in the following static gauge [60]
ds* = — @;)dt%di? (x)—l(a;—x )+ O0(z — 2g)? (8.10)
g g(ﬂ?) ; g BH H H) > .

where the horizon is located at = zg.
In the near horizon limit, it is convenient to carry out an analysis in (¢, z) coordinate,

where z is given by

z= ﬁTHlog[x—xH]. (8.11)
In (¢, z) coordinates, (8.10) reduces to
9 2
ds* = —g(2)dt? + g(2)dz*, g(z) = ﬁ—eﬁH, (8.12)
H

where the horizon is located at z — —oo.

1See appendix F for the correction due to 4-derivative interactions.
?Notice that, we have taken out a common factor % in (8.7) in order to be consistent with [60].

13See appendix F for the properties of the potential V (1).
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Next, we note down the components of the stress tensor (8.1) of (8.8) in the gauge (8.12)

T = [0 + @07 - T 00— o] + eV, 13

Bu
9%n [a A — ﬁHatw]. (8.14)

1
4
1
th - 8t7paz¢

Finally, we define the Virasoro generators [60] in terms of the components of the stress
tensor (8.13)—(8.14) as

L
2

L .
Lo=o- |, dze' T T, (2), (8.15)
)

where, Ty = Ty + T;, and the integration is on the circle of circumference L. At the end
of the calculation, we stretch L upto infinity.
Using (8.13)—(8.14), in the near horizon limit i.e. z = —oo, we obtain

Lo+ a0l (8.16)

BH

T =3[0+ 0u] — T o0, + 00w -

Notice that, the expression of T4 (8.16) does not depend on the form of the potential
V(%) in the near horizon limit.

A straightforward calculation reveals that the Virasoro generators (8.15) along
with (8.16) satisfy the following commutation relation

2

. CH L

Hn Lk = (=) L S0 (1 4 (57 ) )onens (8.17)
where ¢y = 3mg?®% is the central charge associated with the conformal field theory near
the horizon.

Using (6.1) and (6.5), one can further rewrite the central charge as

anh~1 | T0V/E oo |1 — BHvA)?
e = 3mq’ ‘F+£{{ 3t | _log[2]_lg{1 . } . loslv/Al
8Vi 8/ 16,/ 8/ N/
310g{1—5+f){’7 log(5+ VA2 — 1| o (1 i
e NG }Q + {6\/ﬁ+ - JHtanh™ [ o }
+ %\/ﬁlog[(ﬂ VH log[Q\f]} og(u )Q2 + /pdy H (8.18)

where the constant dy is absorbed in dg and d3 in dy; as discussed in (7.16).

Notice that, the expression (8.18) diverges near the horizon which is due to the di-
vergences in the corresponding density of states as we have discussed in the section (7.1).
Therefore, in order to obtain a finite answer, we calculate the central charge in the limit
p — /I + 0, where § < /1.
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9 Generalised Liouville theory and Weyl anomaly

In this section, we study the generalised Liouville theory in 2D that contains the 2-derivative
interaction terms (8.8). In particular, we focus on the Weyl transformation properties of
the generalised Liouville theory and the Weyl anomaly associated with it.

Liouville theory is a conformal field theory in 2D which is dual to the Einstein grav-
ity with negative cosmological constant in three-dimensions [62]-[65]. The action for the
Liouville theory in two-dimensions is given by

2 1 v R m2 B
SL:/dl'v—g 59“ V;N/JVuw‘f‘El/f—ﬁ@ ) (9.1)
where R is the Ricci scalar, 1 is the scalar field and (3, m) are the constants.
It is shown in [65] that one can construct the Liouville theory (9.1) by consistent
dimensional reduction of pure Einstein-Hilbert action in D dimensions. The authors in [65]

start with the following action

Sp = / Pz, [g R, 9.2)

The dimensional reduction ansatz for space-time metric is given by

12
ds® = g\ datda” = gapdadz’ + X‘ﬁ”ﬁ?) s, (9-3)

where (u,v) are D dimensional indices, («, /3) are 2 dimensional indices and A is the param-
eter having dimensions [L]~2. Next, the authors parameterize the dimensions by D = 2 +¢
and plug (9.3) into (9.2) to obtain the action for Liouville theory in the limit € — 0.

The stress energy tensor and the equation of motion for the field 1 corresponding to
the Liouville theory (9.1) are given by

T 1 9Sg
/g g
1 1 5 1 5 m* g
= 5 v,u d} Vv 'QZ) - Zg;w(V@ZJ) + B(g;w \V4 ¢ - V,u Vv d}) + Tﬁgguue ) (9'4)
R m?
2, — By
=— — —e"". 9.5
V=g (9-5)
Using (9.5), one can compute the trace of stress tensor (9.4) as
R

which does not vanish in curved space-time. This is what is known as the Weyl anomaly,
where the coefficient é is related to the central charge of the CFT.

Next, we look at the Weyl transformation properties of the Liouville theory (9.1). In
order to proceed, we consider the following field transformations [64]

- 2
gul/ — 62 g/ﬂlv ¢ — ¢ - BU7 (97)

— 95—



where o = o(t, z). Under the above transformation (9.7), the action (9.1) is transformed
(up to boundary terms) as, S;, — St + 651 where the difference is denoted as

2
05, = —ﬁz/de\/—g{Ra%—g‘“’ AV a]. (9.8)
Equation (9.8) suggests that the Liouville theory (9.1) is not invariant under the trans-
formation'® (9.7). However, the difference §Sz, (9.8) does not depend on the field 1. As a
result, the equation of motion for ¢ (9.5) remains invariant under the transformation (9.7).
Notice that, the difference 657, (9.8) can be set equal to zero (up to boundary terms)

if we impose the equation of motion for o

Vu Vo =R (9.9)

One can solve (9.9) for o in the static light cone gauge (2.5) which yields a solution of
the form
o= —2w+ zby + by, (9.10)

where b, and by are the integration constants. Therefore, given the onshell condition (9.9),
the action (9.1) is claimed to be invariant under the Weyl re-scaling (9.7).

The Liouville theory (8.8) that we obtain is different from the standard Liouville the-
ory (9.1) in the sense that (8.8) does not reduce to (9.1) in the limit & — 0. We are
interested to look at the transformation properties of this generalised Liouville theory (8.8)
under the following field redefinition

CH

G — 62"gw,, Y — 1 —¢égo, where ¢y = 3. (9.11)

Under the above transformation (9.11), the action (8.8) is transformed (upto boundary

terms) as
9 _2
- 1 1 20 &b e °H
— d2 — - 2 T ~ z 40
Si= [ dry=g 5,00 + gomiR -+ 3emeln i+ S — L
1. L O 9 5
+§CH¢ v,uv o — ZCHR—chO'eCH s (912)

which is clearly not invariant. On top of that, even the dynamics of the scalar field (v) is
influenced deriving the transformation (9.11).
The stress energy tensor and the equation of motion for ¢ that follows from (8.8) are
given by
1 0S¢
Tyw=————
V=g 09"

1 1 1 1
— 5 V,u @ZJ Vv w - Zg,uu(vy})Q + ZEH(Q;W V2 ¢ - V;L Vv 7/)) - iguuv(¢)v (9'13)

V) = iéHR +V'(¥). (9.14)

4Gee [64] to obtain the Liouville theory in D = 2 dimensions from Weyl invariant theories in D > 2.
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Using (9.14), we compute the trace of stress tensor (9.13), which yields

cy 1
T ~ —R+ O . 9.15
T gt (ﬁ) (919
Equation (9.15) confirms that the theory (8.8) is not Weyl Invariant. This is what we
identify as the Weyl anomaly for the generalised Liouville theory (9.12).
After some algebra, one can express the transformed action (9.12) as

2 1. 0 9 2 2%
S — SL+/d T/ —g QCH¢ Vu Vo — ZCHR—3CHO'€°H
29
£b? e‘éﬂ{ et 1}
4+ — — — 5. 9.16
8 e \(—otn) ¥ (9:16)

Notice that, following our previous arguments, the variation 657 (9.16) can be set
equal to zero if we impose the equation of motion for o

2
1. o . 20 b2 Cn o 1
= Po — 64 R — 3cH0etH + 2— { —}:0. 9.17

Next, we solve the equation of motion for ¢ (9.17) in the static light cone gauge (2.5).
To start with, we perturbatively expand the fields v, w and o treating £ as an expansion

parameter
¥ = 1o + i, (9.18)
w=wp + &w1, (9.19)
o =09+ E&or. (9.20)

The subscript (0) denotes the zeroth order fields and the subscript (1) denotes the first
order correction in the fields due to the presence of 2-derivative interactions.

Using (9.18)—(9.20), one can write the zeroth order equation of motion for g,, (9.13),
¥ (9.14) and o (9.17) as

Y+ e (whbh — vy + 65H62(%+w0)1/)0 =0, (9.21)
VE -+ Egwiy — 65H€2<%+w0)¢0 =0, (9.22)

s %51{%’ - 3%62(%*”) (6H + 21/;0) =0, (9.23)
Yooy + Exr [wg - 662(‘%3+w0)}00 = 0. (9.24)

Notice that, the above equations (9.21)—(9.24) are the coupled non-linear differential
equations and it is difficult to solve them exactly. Therefore, we solve these equations in
the large ¢y limit and ignore all terms of the order O(i)

Using (9.21)—(9.23), one can write the equation for ¢y in the large ¢y limit as

Aoty + by — e = 0. (9.25)
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On solving (9.25) for 1y, we obtain

1

¢0:Z<_5Hi\/801+5H(82+5H)), (9.26)

where ¢ is the integration constant.
Finally, using (9.21)-(9.23) and (9.26) in the equation of motion for o (9.24), we obtain

o6 + f(z)o0 =0, (9.27)
where f(z) is given by
32 16 1
() = . _ 16, 0(6%). (9.28)

C

‘n
~2 (861 4 ~82 +1) (1+ (801 +~8§_'_1)>
H

On solving (9.27) using (9.28) in the large ¢ limit, we obtain

4z 4z
00 = C3 COS <~> + c3sin (~), (9.29)
éx Cr
where ¢y and c3 are the integration constants.
Finally, we note down equations at leading order in £ which yield

Yo [ 2 :
291900 + Ep (W) + Wiy — i’)+262w0[35H626H <5H¢o¢1+w1>+cHe v (9.30)

2o
+6w11/JoéH62 5H‘| = 0,

9 %0 2 1 _oto
20190 + ¢ (wohy +wivp) — 220 [30 e CH( ¢0¢1+¢1>+8¢H€ e (9.31)

2o
+6wlﬁ/}06H625H‘| = 0,

1éHw’l’ —3e @73*“0) laH{z/;; + ;{q/mpg +2w1¢6} +2{w()¢1 +io  (9.32)

2
L~ Whe 2(**+W0) <1+ 1 )_0

Ay © 290 Cm

1+

+~i¢1¢6w0 + 2w1¢6¢0}
H

2
wlo'g—f—woo'lll—i-@[{ [wgal —i—wi’ag] —6cye (‘H tw O) ((71 +2wi00+ 6¢100> (9.33)
H

%o

S e 4]
4 & (Yo—o0CH) o '

Obtaining solutions for (9.30)—(9.33) are quite involved which we therefore do not pursue
here.
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10 Conclusion

To summarise, in the present work we extend the notion of 2D Einstein-Maxwell-Dilaton
gravity by incorporating the most general form of quartic interactions allowed by the dif-
feomorphism invariance. We further explore the effects of adding such quartic interactions
on the dual field theory observables at strong coupling. Below we outline a couple of future

directions along which this work can be further persuaded.

o It is natural to further generalise our results in the presence of SU(2) Yang-Mills
fields and look for its imprints on the holographic stress tensor as well as central
charge associated with the boundary theory. It is noteworthy to mention that the
SU(2) Yang-Mills fields are responsible for first order phase transition in 2D grav-
ity [39]. Therefore, it would be an interesting project to explore phase transition in
the presence of quartic couplings.

o Finally, it would be an interesting project to explore the holog