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1 Introduction

In the last few years there has been a renewed interest in the study of the superconformal
index of 4d N = 1 superconformal field theories (SCFTs) and, in particular, N = 4 super
Yang-Mills (SYM). The index in question is the supersymmetric partition function of
the SCFT on S3 × S1 which receives contributions from BPS states that preserve two
supercharges (Q,Q). In the large-N limit, the expectation from AdS/CFT is that the
index should account for the entropy of the BPS black holes (BH) that preserve the same
two supercharges in the dual supergravity on AdS5. This question was introduced in [1–3],
and the work of the last few years has shown that the index indeed captures the BH entropy
in different asymptotic limits [4–24].

The focus of the present paper is the Cardy-like limit in which the BH entropy becomes
very large. In the canonical ensemble, this translates to the study of the exponential
growth of the index as τ → 0, where the parameter τ is the chemical potential dual to
the charge. As pointed out in [13], the τ → 0 limit is in fact one of an infinite number
of inequivalent Cardy-like limits in which the index is expected to grow exponentially.
These limits correspond to τ approaching a rational number or, equivalently, q = e2πiτ
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approaching a root of unity. In this paper we analyze the 4d superconformal index near
a general root of unity, and find interesting relations to three-dimensional Chern-Simons
(CS) theory. The main statement is that the asymptotics of the index near a rational
point −n/m is equal (to all orders in perturbation theory in deviations τ̃ = mτ + n from
the rational point) to the partition function of a certain 3d N = 2 gauge theory with
Chern-Simons couplings that involve background as well as dynamical fields on an S3/Zm
orbifold. The background couplings give rise to singular terms at O(1/τ̃2) and O(1/τ̃) that
govern the growth of the index, while the constant O(1) term receives contributions from
both background fields and the dynamical Chern-Simons theory.

We demonstrate this statement from two points of view — by direct asymptotic analy-
sis of the index near rational points, and from an analysis of the reduced three-dimensional
theory and calculating the various couplings using high-temperature effective-field theory
(EFT) techniques. The latter method, based on [25, 26], relates the high-temperature
asymptotics of the index to a low-energy effective field theory, in the spirit of the Cardy
formula.1

The four-dimensional superconformal index and its asymptotic growth. In this
paper we studyN = 1 gauge theories with a Lagrangian description and a U(1)R symmetry,
with a focus on N = 4 SYM which we use to illustrate some statements in detail. The
symmetry algebra of N = 1 SCFT on S1 × S3 is SU(2, 2|1), which includes the energy E
which generates translations around S1, the angular momenta J1, J2 on S3, and the U(1)
R-charge Q. One can pick a complex supercharge obeying the following algebra,{

Q,Q
}

= E − J1 − J2 − 3
2 Q . (1.1)

The most general index built out of the N = 1 superconformal algebra is an extension of
the Witten index of Q and is defined as the following trace over the physical Hilbert space,

I(σ, τ) = TrH (−1)F e−γ{Q,Q}+2πiσ(J1+ 1
2Q)+2πiτ(J2+ 1

2Q) . (1.2)

The trace (1.2) only receives contributions from states annihilated by the supercharges ( 1
4 -

BPS states) so that the right-hand side of (1.1) vanishes for these states. This index I(σ, τ)
can be calculated from either Hamiltonian or functional integral methods and reduces to
a unitary matrix integral [3, 32–34], which can be written as an integral over the space of
gauge holonomies around the S1 of certain infinite products, as written in equation (2.1).

Our focus in this paper is the analog, in the present context, of the high-temperature
Cardy limit of 2d CFT. This means fixing the rank and taking the charges (Ji, Q) to be
larger than any other scale in the theory. In the canonical ensemble this translates to

1In the high-temperature picture the (Euclidean) time direction is taken along the S1, while in the
low-energy picture time is a fiber inside the S3. Relating the two pictures involves swapping time and
space as in the derivation of the 2d Cardy formula [27]. Unlike in the two-dimensional context where one
uses SL(2,Z) automorphy to relate the swapped problem to the original one, here we do not have an a
priori understanding of the automorphic properties of the 4d index I(τ). Aspects of this question are being
addressed in [28]. See also [29, 30] for related work on modular-type transformation properties relating
different indices, and [31] for a discussion of the automorphic behavior of a different index in N = 2 SCFTs.
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taking Imσ, Im τ → 0 at fixed rank. In order to calculate the asymptotic growth of states
along a certain direction in the charge lattice, one needs to fix the relation between σ and τ .
We study2 the slice σ = τ −n0 with n0 an integer, as in [12, 13, 19]. Setting 2J = J1 + J2,
the resulting canonical index I is given by

I (τ ;n0) = TrH (−1)F e−γ{Q,Q}−2πin0(J1+ 1
2Q)+2πiτ(2J+Q) . (1.3)

The large-charge asymptotics then implies Im τ → 0, while Re τ is not fixed a priori by
the limit. We consider asymptotic limits as τ approaches a rational number τ → −n/m
with gcd(m,n) = 1, introduced in the present context as new Cardy-like limits in [13]. The
index I clearly depends on the gauge group G. We generally suppress it in our notation,
but sometimes use the notation IN to emphasize the dependence on N for U(N) or SU(N)
N = 4 SYM theory (which should be clear from the context).

Our motivation to consider these rational points comes from the study of the in-
dex IN (τ) of N = 4 SYM in the large-N limit.3 In this limit one considers charges
scaling as N2 as N → ∞, which translates to N → ∞ at fixed τ in the canonical ensem-
ble [20]. In this large-N limit one expects the field theory index IN (τ) to be written as
a sum over saddles. This picture has been partially realized in the last few years using
two different approaches — the Bethe-ansatz-like approach developed in [7, 35, 36], and
the direct study of large-N saddle points using an elliptic extension of the action [13, 19].
In particular, the large-N approach in [13] found a class of saddles labelled by rational
numbers −n/m, where the perturbation expansion around each saddle is given by the
asymptotic limit τ → −n/m.4 Setting n0 = −1, we have

log IN (τ) ∼ −Seff(m,n; τ) , τ → −n/m , (1.4)

where the effective action at each saddle is given by

Seff (m,n; τ) = N2πi
27m

(2τ̃ + χ1 (m+ n))3

τ̃2 , τ̃ := mτ + n . (1.5)

where χ1(n) is the Dirichlet character equal to 0,±1 when n ≡ 0,±1 (mod 3), respectively.
There was one caveat in the above result, which was stressed in [13, 19], namely that
the pure-imaginary τ̃ -independent term could not be fixed by the methods used in those
papers. The constant term in the effective action (1.4), therefore, was a convenient choice
made using inputs coming from outside the field-theory analysis.

Although we do not have a rigorous notion of the sum over saddles yet, it should be
clear that if the effective action of the (m,n) saddle has negative real part it dominates

2Our methods can be generalized to study the case where σ and τ are linearly dependent over the
rationals, but we shall not develop this in the present paper.

3Another motivation comes from the mathematical literature on q-series, where it is also natural to
consider expansions around roots of unity. We thank D. Zagier for emphasizing this point to us.

4These saddles map to residues of the Bethe-ansatz type approach — see [22] for a recent discussion of
the connections between the two approaches. A larger set of saddles have been classified in [19], but the
full set of important/contributing saddles is not understood in either approach. In particular, interesting
continuum configurations of the Bethe-ansatz equations have been recently discovered in [37–39] whose role
in the large-N limit is not fully understood.
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over the others as mτ + n → 0. It is also clear from (1.5) that the fastest growth among
these saddles comes from (m,n) = (1, 0). The (1, 0) saddle in the SYM theory is identified
as a fully deconfined phase whose entropy scales as N2, while the other (m,n) saddles
have entropies that are suppressed by a factor of m. For this reason they can be called
partially deconfined saddles (in the sense of asymptotic growth, but not in the sense of
center symmetry breaking — cf. [37]). On the gravitational side, the action Seff(1, 0; τ)
agrees precisely with the canonical on-shell action of the black hole solution in the dual
AdS5 supergravity [5], which leads to the identification of the AdS5 BH as the saddle (1, 0).
The (m,n) solutions have been identified with orbifolds of the Euclidean AdS5 BH [40].

Because of the dominance of the (1, 0) saddle near τ → 0, one can capture it directly in
an asymptotic expansion — even for finite N . In this calculation, one writes the index (1.3)
as an integral over gauge holonomies ui (see (2.1) below), estimates the integrand in the
Cardy-like limit τ → 0, and then performs the integrals. The initial studies [8–12] success-
fully reproduced the singular parts of the action as τ → 0, i.e. the 1/τ2 and the 1/τ terms
with the correct coefficients. More recently, the complete action (1.5) for (m,n) = (1, 0)
was obtained in [41] by a direct method, involving a careful analysis of all perturbative
terms in the Cardy-like limit. (See [42, 43] for more recent related work.)

Our first goal in this paper is to obtain the complete perturbative action at all the (m,n)
saddles by a direct asymptotic analysis of the index as τ → −n/m. This analysis is de-
scribed in section 2, the result of which is a perfect agreement with the action (1.5), up
to the constant terms as mentioned above. The asymptotic analysis requires developing
the asymptotics of the elliptic gamma function [44, 45] near rational points. The τ → 0
asymptotic estimates were available in previous literature [46]. Here we develop the anal-
ysis for τ approaching rational numbers. The analysis is presented in appendix A. (See
also [47] for related work motivated by integrable-systems considerations.)

Furthermore, we note that for given m,n, depending on the sign of argτ̃ − π/2 the
action in (1.5) can have negative or positive real part, which yields, respectively, a growing
or decaying contribution to the index. Therefore in essentially half of the parameter space
the saddles in (1.5) do not capture any growth in the index. As demonstrated in section 2.3,
when the (m,n) saddle in (1.5) gives a decaying contribution to the index as τ̃ → 0, a “2-
center saddle” takes over which yields exponential growth again. In other words, in half of
the parameter space the growth of the index IN (τ) is captured by 2-center saddles.5

Chern-Simons theory from the asymptotics of the 4d index. The second goal of
the paper is partly inspired by an interesting pattern appearing in the asymptotic calcu-
lations. As emphasized in the context of SU(N) N = 4 SYM in [41], in the part of the
parameter space where the index is dominated by isolated, 1-center saddles, the complete
asymptotic expansion in τ terminates at O(τ) — i.e. the perturbation theory only con-

5We use the terminology of [37]: in a 1-center saddle all the gauge holonomies condense at a single point
on the circle, while in a 2-center saddle half of the gauge holonomies condense at one point and the other
half condense at the opposite point on the circle. The 2-center saddles turn out to be partially deconfined
saddles both in the sense of asymptotic growth and in the sense of center symmetry breaking [37]. See
also [48].
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tains 1/τ2, 1/τ , τ0 and τ up to exponentially suppressed corrections. (This is, in fact,
more generally true when the index is dominated by isolated saddles, and not true when
there are flat directions; see [49].) Interestingly, it was found in [41] that the constant term
in the expansion contains the partition function of SU(N) pure Chern-Simons theory on S3

at level ±N .
In this paper we find that the same structure persists at all rational points. We see

that the constant term in the expansion as τ → −n/m involves Chern-Simons theory whose
action is 1/m times the action as τ → 0. We present evidence that this corresponds to
CS theory on an orbifold space S3/Zm (with the action of Zm depending on n such that
the orbifold coincides with the lens space L(m,−1) when n = 1) at level ±N [50, 51]. In
other words, the 4d SYM index appears to play the role of a master index which governs
the partition function of three-dimensional CS theory on an infinite family of S3 orbifolds.

The appearance of 3d Chern-Simons theory from the 4d superconformal index is in-
triguing, and gives rise to two related questions:

(a) is there a direct three-dimensional physics explanation of the appearance of Chern-
Simons theory?

(b) can we also understand the singular terms in the asymptotic expansions around
rational points as being related to 3d Chern-Simons theory?

The answers to both these questions are positive, as we now explain.

The asymptotics of the 4d index from supersymmetric Chern-Simons theory.
The natural idea is that the reduction of the four-dimensional theory on S1 gives rise
to a three-dimensional theory on S3 in a “high-temperature” expansion in powers of the
circumference β of the shrinking circle. If we calculate the functional integral of the three-
dimensional theory, we should recover the four-dimensional functional integral as β →
0. The three-dimensional effective field theory is known to have a derivative expansion,
where the most relevant terms are Chern-Simons terms [52, 53]. This EFT approach
was developed in the supersymmetric context in [25, 26] who presented supersymmetrized
CS actions involving the dynamical as well as background fields, which are necessary for
preserving supersymmetry on S3 × S1. In particular, the 1/β2 and 1/β effective actions
derived this way in [26] reproduced the asymptotics of the index as found in [49] for n0 = 0
and arg(τ) = π/2. (Note that when the metric on S3 × S1 has a direct product form with
S3 the unit round three-sphere, a real value of β determines a purely imaginary τ = iβ

2π .)
The coefficient of the leading 1/β2 term in these works is pure imaginary, and also does
not grow as N2 (it is in fact zero for non-chiral theories), therefore the exponential growth
of states corresponding to the BH is not captured there.

One of the motivations for the current paper is to explain the exponential growth
associated to the bulk black holes from the three-dimensional point of view, which requires
arg(τ) 6= π/2 and n0 6= 0.6 (Note, in particular, that the (m,n) = (1, 0) saddle in (1.5)

6The leading order 1/τ2 behavior was found from similar considerations in [6] for N = 4 SYM with
flavor chemical potentials, and in [11] for more general gauge theories in a setting similar to ours. In this
paper we follow a systematic, manifestly supersymmetric approach developed in [25, 26], which allows us
to obtain all-order results for general gauge theories around generic rational points.
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given for n0 = −1, would have its leading piece a pure phase if arg(τ) = π/2.) For this
purpose we consider, as in [5], a background geometry of the form S3×ΩS

1, with S3 the unit
round three-sphere, γ the circumference of the circle, and Ω a twist parameter7 controlling
the deviation of the metric from a direct product form (equation (3.1)). The imaginary
part of the twist parameter determines a non-zero real part of τ via (equation (3.4))

τ = iγ
2π (1− Ω) . (1.6)

As shown in [5], the integer n0 in (1.3) controls the periodicity of the fermions in this
background, and n0 = ±1 (which is naturally dual to the BH) corresponds to anti-periodic
fermions, i.e., as in a Scherck-Schwarz reduction. In the present context we insist on su-
persymmetry being preserved — and that necessitates the turning on of other background
fields under which the fermions are charged. In the three-dimensional background super-
gravity, we have a non-zero graviphoton from the fibration as well as non-zero auxiliary
background gauge and scalar fields. As we explain in section 3, the resulting configuration
is effectively described by a circle of radius R, which in the limit γ → 0, Ω → ∞ with τ
fixed obeys R→ τ .

Now, what is the actual calculation? There are two types of fields in the three-
dimensional functional integral — background fields which take constant values, and dy-
namical modes which fluctuate in the integral. The latter is further made up of light modes
(with zero momentum around S1) and heavy (Kaluza-Klein) modes. The first step is to
integrate out the heavy modes in order to obtain an effective action for the light modes.
The integration over heavy modes also generates corrections to the coefficients of the su-
persymmetric Chern-Simons terms of the non-zero background fields, see e.g. [25, 55]. In
these calculations, we need to include, in addition to the couplings discussed in [26], the
supersymmetrized RR and gravitational CS actions which were discussed in [56]. The ef-
fective actions of the background gauge fields turn out to produce precisely the singular
pieces 1/τ2 and 1/τ in the asymptotic expansion of the index, as well as a constant piece.
The remaining functional integral is described by an N = 2 SYM theory with a certain
one-loop induced CS coupling on S3, whose partition function is known to agree, up to
a sign, with that of pure Chern-Simons theory [57]. This explains the appearance of the
dynamical Chern-Simons theory in the constant term of the asymptotic expansion.

Two technical remarks are in order. Firstly, recall that supersymmetry implies that
the 4d superconformal index should not depend on γ and Ω separately, but only on their
combination τ as in (1.6). In [5] this was shown to be true in 5d gravitational variables, as
well as through a localization computation in 4d field theory. In this paper we verify this
also in 3d effective field theory. Secondly, the order of limits is important to have a smooth
calculational set up. We first send γ → 0 keeping Ω fixed, so that the three-dimensional
geometry is smooth and finite. Then we take Ω → ∞ at fixed τ and express the result in
terms of τ using (1.6). We find there are no singularities generated in the latter step and
thus the limiting procedure is perfectly smooth.

7Similar twists had been described in slightly different contexts in [33, 54].
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Finally, we repeat the same analysis as τ approaches rational points. The dimensional
reduction in this case naturally leads us to considering orbifolds of S3 × S1, which, as far
as we understand, are related to the orbifolds discussed in [40]. The three-dimensional
calculation then leads to the 1/τ̃2 and 1/τ̃ terms as well as a constant piece from the
background fields, and we provide evidence that the remaining dynamical piece is the
partition function of N = 2 SYM with a one-loop induced CS coupling on S3/Zm.

Notation. We have σ, τ ∈ H and z, u ∈ C, and we set p = e2πiσ, q = e2πiτ , ζ = e2πiz.
We use ' to mean an all-order asymptotic equality of the logarithms of the two sides.

2 The 4d superconformal index and its asymptotic expansion

We consider a four-dimensional N = 1 gauge theory which flows to a superconformal fixed
point. The theory has gauge group G (which we take to be semi-simple, and separately
comment on the U(N) case), and a number of chiral multiplets labelled by I with R-charge
rI and in the representation RI of the gauge group. We assume 0 < rI < 2 for all chiral
multiplets. The superconformal index for these theories on S3 × S1 has been calculated
in the Hamiltonian as well as functional integral formalism [3, 32–34], and the answer is
expressed as an integral over the Cartan torus which we parameterize by the vector of
gauge holonomies u = (u1, . . . , urk(G)), with ui ∈ R/Z. The index is given by the following
expression [58–60]

I(σ, τ) =
∫

[Du] Zvec (u;σ, τ) Zchi (u;σ, τ) . (2.1)

Here we have used the measure Du = 1
|W|

∏rk(G)
i=1 dui with |W| the order of the Weyl group

of G. For U(N) we have Du = 1
N !
∏N
i=1 dui, while for SU(N) one can work with u1, . . . , uN

subject to
∑
i ui ∈ Z and Du = 1

N !
∏N−1
i=1 dui. The factors Zvec, Zchi denote the vector

multiplet and chiral multiplet contribution respectively given by

Zvec (u;σ, τ) = (p; p)rk(G) (q; q)rk(G)∏
α+

Γe (α+ · u+ σ + τ ;σ, τ) Γe (−α+ · u+ σ + τ ;σ, τ) ,

Zchi (u;σ, τ) =
∏
I

∏
ρ∈RI

Γe

(
ρ · u+ rI

2 (σ + τ) ;σ, τ
)
.

(2.2)

Here α+ runs over the set of positive roots of the gauge group G, I runs over all the
chiral multiplets of the theory, and ρ is the weight of the gauge representation RI . The
Pochhammer symbol is defined by

(ζ; q) =
∞∏
k=0

(
1− ζ qk

)
, (2.3)

and the elliptic gamma function [44, 61] is defined by the infinite product formula

Γe(z;σ, τ) =
∏
j,k≥0

1− pj+1 qk+1 ζ−1

1− pj qk ζ . (2.4)

– 7 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
7

From now on in this section we set σ = τ−n0, and use the notation Γe(z) = Γe(z; τ, τ).
We have

I (τ ;n0) =
∫

[Du] exp (−Sind(u; τ)) , (2.5)

where the action Sind(u) = Sind(u; τ) is given by

−Sind (u) = 2 rk (G) log (q; q) +
∑
α+

log (Γe (α+ · u+ 2τ) Γe (−α+ · u+ 2τ))

+
∑
I

∑
ρ∈RI

log Γe
(
ρ · u+ rI(τ − 1

2n0)
)
.

(2.6)

Our goal now is to calculate the asymptotics of the function I(τ, n0) as τ approaches a
rational number or, equivalently, q = e2πiτ approaches a root of unity. For N = 4 SYM
we have

−SN=4
ind (u) = 2N log (q; q) + 3N log Γe

(
1
3 (2τ − n0)

)
+
∑
i 6=j

log Γe (uij + 2τ) + 3
∑
i 6=j

log Γe
(
uij + 1

3 (2τ − n0)
) (2.7)

for U(N) and a similar expression for SU(N) with N replaced by N−1. Using the product
expression (2.4) we see that for N = 4 SYM the index IN (τ ;n0) has the symmetry τ 7→
τ + 3 for fixed n0, so that we can restrict our attention to, say, τ ∈ [0, 3]. Relatedly, the
independent values of n0 are 0, ±1. More generally, the periodicity of τ depends on the
quantization of R-charge in the theory.

Before analyzing these asymptotic limits we briefly discuss a slightly independent mo-
tivation to study these new limits and, relatedly, the origin of the number n0 in (2.5), (2.7).
One of the motivations in the recent developments in this subject has been to “find the dual
black hole” in the superconformal index. In terms of the microcanonical Fourier coefficients

IN (τ ;n0) =
∑
n

dN (n;n0) e2πinτ , (2.8)

the problem in the context of the Cardy-like limit is to check if |dN (n;n0)| ∼ N2 s(n/N2)
as n → ∞ [20]. In the canonical setting this is reflected by a corresponding asymptotic
growth of the function I(τ) as τ approaches the real axis or, equivalently, as q = e2πiτ

approaches the unit circle. The leading asymptotics of the growth of microcanonical de-
generacies is governed by the dominant singularity of I. As it turns out, the index IN (τ ; 0)
of N = 4 SYM does not have any exponential growth as τ → 0 (the growth is power-
law [49]). It is the asymptotic growth of log IN (τ ; 0) as τ → ±1 instead that matches
the on-shell action of the AdS5 BH (the two points giving growth of equal magnitude
and opposite phases). From a numerical study of the microcanonical degeneracies one
can deduce that this is, in fact, the leading growth of the index [20]. In this case, not-
ing that IN (τ ± 1;n0) = IN (τ ;n0 ∓ 1), we see that the leading growth can be stated as
coming from the growth of the function IN (τ,∓1) as τ → 0. Actually, one finds that
the growth of states at n0 = ±1 matches the BH growth of states for very large classes
of N = 1 SCFTs [11, 12]. Once we understand that the growth can come from a region

– 8 –
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with Im τ → 0 but Re τ 6= 0, it is perhaps more natural to set n0 = 0 (for which the two re-
gions of leading growth have a symmetric placement around τ = 0). We will, nevertheless,
keep n0 as an explicit parameter in the following to make contact with related literature.

It is clear from the above discussion that one should equally well explore other points
on the unit circle in q.8 As it turns out there is exponential growth near any root of
unity consistent with (1.4), (1.5), i.e. partial deconfinement in the sense of asymptotic
growth [37]. In the following subsections we proceed to analyze the asymptotic behavior
of the index as τ → 0 and then as τ approaches any rational number.

2.1 Asymptotics of the index as τ → 0

In this subsection we perform an all-order asymptotic analysis of the integral (2.5) as τ → 0.
This calculation was done for N = 4 SYM recently in [41] using a saddle-point analysis.
Here we find the asymptotics for the general class of theories discussed in the introduction,
using the rigorous method of [46, 49] (see in particular section 3.1 of [49]). The application
in [49] was restricted to real τ and n0 = 0, but the method is more general and we apply
it to the case of complex τ and general n0.

We first calculate the all-order asymptotic expansion of the integrand. In order to do
this we need the asymptotic behavior of the elements in (2.6), namely the Pocchammer
symbol and the elliptic gamma function, which we review in equations (A.1), (A.2), (A.13).
Using these estimates we find that in the range α+ · u ∈ (−1 + δ, 1− δ) (for fixed small δ)
the integrand of (2.5) can be written, up to exponentially suppressed corrections, as

exp (−Sind (u; τ)) ' 1
(−i τ)rk(G)

∏
α+

4 sinh2
(
πα+ · u
−i τ

)
exp (−2πiτEsusy − V (u)) . (2.9)

The all-order effective potential as τ → 0 is given by

V (u) = 1
τ2V2(u) + 1

τ
V1(u) + V0(u) , (2.10)

with

V2 (u) =
∑
I, ρI

iπ
3 B3

(
ρI · u− 1

2rIn0
)
,

V1 (u) =
∑
I, ρI

iπ (rI − 1) B2
(
ρI · u− 1

2rIn0
)

+
∑
α

iπ
(

(α · u)2 + 1
6

)
,

V0 (u) =
∑
I, ρI

iπ
(

(rI − 1)2 − 1
6

)
B1
(
ρI · u− 1

2rIn0
)
,

(2.11)

where α runs over all the roots of G including the rk(G) zero roots, I runs over all the
chiral multiplets, and ρI runs over all the weights of the representation RI . Note that
in (2.9) we have separated the supersymmetric Casimir energy given by [62]

Esusy = 1
6 TrR3 − 1

12 TrR . (2.12)

8The superconformal index as a function of q is defined on a branched cover of the complex plane and
one should explore the full covering space. For N = 4 SYM one has a three-sheeted cover and the leading
growth occurs on two of the three sheets [11, 12, 37].
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We make a brief comparison to [12] in which the singular pieces were studied. The
potential V2 in (2.11) coincides (up a multiplicative −iπ/6 factor) with the V2 studied
in [12]. At finite u, the sinh2(πα+·u

−iτ ) factors in (2.9) also contribute to O(1/τ). Including
this piece in V1 renormalizes it to V r

1 as9

V1 (u)→ V r
1 (u) =

∑
I, ρI

iπ (rI − 1) B2
(
ρI · u− 1

2rIn0
)

+
∑
α

iπ B2 (α · u) . (2.13)

The potential V r
1 coincides (up to a multiplicative −iπ factor) with the V1 studied in [12].

In our treatment below we keep the sinh2 factors separate and place them in the “dynamical
measure”

Du

(−iτ)rk(G)

∏
α+

4 sinh2
(
πα+ · u
−iτ

)
. (2.14)

Compared to [12], here we also include the O(τ0) piece corresponding to exp(−V0). Finally,
the O(τ) piece of the exponent is determined by the supersymmetric Casimir energy and,
notably, there are no O(τ2) or higher corrections in the perturbative effective potential.

We now investigate the local behavior of the potential near u = 0. The poten-
tials V2, V1, V0 are piecewise polynomials, and using B′j = jBj−1 we obtain their Taylor
expansion near u = 0 as

V2 (u) =
∑
I, ρI

(
iπ
3 B3

(
−1

2rI n0
)

+ iπ B2
(
−1

2rI n0
)
ρI · u+ 2πiB1

(
−1

2rI n0
) (ρI · u)2

2

)

+
∑
I, ρI

2πi (ρI · u)3

3! ,

V1 (u) =
∑
I, ρI

iπ (rI − 1) B2
(
−1

2rI n0
)

+ iπ
6 dimG+

∑
ρI

2πi (rI − 1) B1
(
−1

2rI n0
)
ρI · u

+
∑
I, ρI

2πi (rI − 1) (ρI · u)2

2 +
∑
α

iπ (α · u)2 ,

V0 (u) =
∑
I, ρI

iπ
(

(rI − 1)2 − 1
6

)
B1
(
−1

2rI n0
)

+
∑
I, ρI

iπ
(

(rI − 1)2 − 1
6

)
ρI · u.

(2.15)

Importantly, the second lines of V2, V1, V0 above vanish due to gauge3, U(1)R-gauge2, and
U(1)2

R-gauge and gravity2-gauge anomaly cancellations. Therefore V2 is actually piecewise
quadratic in u, while V1 is piecewise linear and V0 is piecewise constant. This is similar to
section 3.1 of [49].

The leading asymptotic behavior of V as τ → 0 is determined by V2. In order to
obtain a local minimum of Re(V ) at u = 0, we want (i) the linear term in V2 to vanish,

9Instead of using (A.13) for vector multiplet gammas and then simplifying the sinh term for finite u as
above, we could alternatively use (A.2) for vector multiplet gammas (assuming α+ · u /∈ Z) and get V r1
directly as in [12].
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and (ii) the quadratic term to be on the negative (respectively positive) imaginary axis
for arg(τ) − π

2 > 0 (respectively arg(τ) − π
2 < 0). As found in [12], we can achieve both

of these requirements in any theory in which 0 < rI < 2 by specializing to n0 = ±1.
Explicitly, for n0 = ±1 we can use the fact that for |x| < 1 we have B2(x) = x2 − |x| + 1

6
to deduce that the linear term in V2 is equal to∑

I, ρI

iπ
4

(
(rI − 1)2 − 1

3

)
ρI · u , (2.16)

which vanishes thanks to the U(1)2
R-gauge and gravity2-gauge anomaly cancellations. Sim-

ilarly we can use the fact that for 0 < |x| < 1 we have B1(x) = x− sign(x)
2 to deduce that

the quadratic term in V2 is equal to

− iπn0
∑
I, ρI

(rI − 1) (ρI · u)2

2 = iπn0
∑
α

(α · u)2

2 , (2.17)

where the equality follows from U(1)R-gauge2 anomaly cancellation, and we have used
that sign(n0) = n0 for n0 = ±1. This quadratic piece is on the positive (respectively
negative) imaginary axis for n0 = +1 (respectively n0 = −1). In this manner we see
that u = 0 is a local minimum of Re(V ). Therefore in the rest of this subsection we focus
on n0 = ±1, and take arg(τ)− π

2 to have the opposite sign to n0, i.e. n0 (arg(τ)− π
2 ) < 0.

Using the explicit expressions of B1,2,3(x) in the range 0 < |x| < 1, and using the
anomaly cancellation conditions, the potentials V2, V1, V0 simplify, for n0 = ±1, to

V2 (u) = − iπn0
24

(
TrR3 − TrR

)
+ iπn0

∑
α

(α · u)2

2 ,

V1 (u) = iπ
12
(
3TrR3 − TrR

)
,

V0 (u) =
∑
I, ρI

iπ
(
rI − 1

6 − (rI − 1)3
)
n0
2 .

(2.18)

Note that, as a bonus, V1 also becomes independent of u for n0 = ±1 and small enough u.10

We now consider a small neighborhood hεcl around u = 0, defined by the cutoff |uj | < ε,
whose contribution to the index is

I (τ ;n0)|uj |<ε ' e−2πiτEsusy
∫
hε
cl

Du

(−iτ)rk(G)

∏
α+

4 sinh2
(
πα+ · u
−iτ

)
exp (−V (u)) . (2.19)

From the above discussion we have that

I (τ ;n0 = ±1)|uj |<ε ' e−2πiτEsusy Zbgnd (τ ;n0) Zdyn
ε (τ ;n0) , (2.20)

10We will shortly interpret the quadratic term in V2 as inducing a Chern-Simons type coupling in the
integrand. If the linear term in V1 were present, it would similarly induce an FI parameter in the integrand.
While this is impossible for semi-simple gauge theories near u = 0 which we are focussing on in this section,
there are cases of semi-simple gauge theories in which one must expand around u 6= 0 and as a result one
finds the measure of an abelian gauge theory in the integrand, where such induced FI parameters do arise.
See section 3.3.1 of [49] where the ISS model displaying an SU(2)→ U(1) breaking pattern with an induced
FI parameter in the τ → 0 limit is discussed, and see appendix A of [63] where that induced FI parameter
is given an effective field theory explanation.
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where the background piece is

Zbgnd (τ ;n0)

= exp
(

iπn0
24τ2

(
TrR3−TrR

)
− iπ

12τ
(
3TrR3−TrR

)
+
∑
ρI

iπn0
2

(
(rI−1)3− 1

6 (rI−1)
))
(2.21)

and the dynamical piece is

Zdyn
ε (τ ;n0) =

∫
hε
cl

Du

(−i τ)rk(G)

∏
α+

4 sinh2
(
πα+ · u
−i τ

)
exp

(
iπn0

2
∑
α

(
α · u
−i τ

)2
)
. (2.22)

Here we suppress the dependence of these functions on the gauge group and the matter
content.

To simplify Zdyn
ε further, we first define xj = uj

−iτ , so that the integral becomes along
straight contours from xj = − ε

−iτ to xj = + ε
−iτ . With our choice of n0 and arg(τ), the

integrand is locally exponentially suppressed away from u = 0, so we can complete the
tails of the contours along straight lines to infinity (i.e. send ε → +∞) introducing only
exponentially small error. The contours make an angle π

2 − arg(τ) with the positive real
axis. However, observing that (i) the integrand is exponentially suppressed as |xj | → ∞,
and (ii) there are no poles between the contour of xj and the real axis, we can deform the
contours back to the real axis. We thus obtain, with x = (x1, . . . , xn)

Zdyn
ε (τ ;n0) '

∫ ∞
−∞

Dx
∏
α+

4 sinh2 (πα+ · x) exp
(

iπn0
2

∑
α

(α · x)2
)

=: Zdyn(n0) . (2.23)

As noted in [41] for N = 4 SYM, and in [42, 43] for more general groups, Zdyn is related
to the partition function of pure Chern-Simons theory [64] on S3 as

Zdyn(n0) = (−1)(dimG−rkG)/2 ZCS(kij) , (2.24)

with the gauge group implicit and the same on both sides, and with Chern-Simons coupling
given by

kij = −n0
2
∑
α

αi αj . (2.25)

Notice that Zdyn(n0) is independent of τ . The tails completion (i.e. sending ε → ∞) and
contour deformation mentioned above removed the τ -dependence of Zdyn

ε at the cost of an
exponentially small error.

The considerations of three-dimensional effective field theory in the next section show
that Zdyn arises naturally in fact as the partition function of three-dimensional N = 2
gauge theory on S3 with the same gauge group and the same CS coupling. (The latter is
well-known to be related to ZCS exactly as in (2.24).)

The above analysis was local around u = 0. We now focus on SU(N) N = 4 SYM for
which we know that u = 0 is a global minimum of the leading potential V2/τ

2 for n0 = ±1
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and n0(arg(τ) − π
2 ) < 0.11 However, this is not the only global minimum — there are N

isolated global mimima labelled by k = 1, . . . , N which are related to uj = 0 by center
symmetry, namely the points uj = (k−1)/N , k = 1, . . . , N [10]. Upon summing over these
minima we obtain

IN (τ ;n0) ' Ne−2πiτEsusy Zbgnd(τ ;n0)Zdyn(n0) . (2.26)

The factor of N arises from the sum over N minima as explained above. The other three
factors can be calculated by specializing our general discussion to this case:

Esusy = 4
27
(
N2−1

)
, (2.27)

Zbgnd (τ ;n0) = exp
(
− iπ
τ2

(
N2−1

)((−n0+2τ
3

)3
+ 5n0τ

2

12

)
+2πiτ · 4

27
(
N2−1

))
, (2.28)

Zdyn (n0) =
∫ ∞
−∞

Dx
∏
i<j

4sinh2 (πxij) exp

iπn0N
N∑
j=1

x2
j

 . (2.29)

In this case the matrix of Chern-Simons couplings reduces to a single level (kij = kδij),
and we have

Zdyn(n0) = (−1)N(N−1)/2 ZCS(k) , k = −n0N . (2.30)

For n0 = ±1 the SU(N) Chern-Simons partition was found in [41] to simplify to

ZCS(−n0N) = (−1)N(N−1)/2 exp
(
5iπ n0 (N2 − 1)/12

)
. (2.31)

Upon combining this equation with (2.30) and (2.26), we obtain12

IN (τ ;n0) ' N exp
(
− iπ
τ2 (N2 − 1)

(−n0 + 2τ
3

)3)
. (2.32)

The analogous result for the case with U(N) gauge group is obtained by adding the con-
tribution of a decoupled U(1) N = 4 multiplet to that of the SU(N) theory:

IU(N)(τ ;n0) ' N 1
−iτ exp

(
− iπ
τ2 N

2
(−n0 + 2τ

3
)3
− 5πin0

12

)
. (2.33)

This finishes the discussion of our methods illustrated in the special case τ → 0. Before
moving on to the more general case of rational points, we make a few technical remarks.

Firstly, since we are analyzing the index by estimating its integrand, we need uniform
estimates. For n0 = ±1, the estimate (A.2) when applied to the chiral multiplet gamma
functions gives uniformly valid asymptotics near u = 0, because the −n0 rI/2 shift in the
argument takes us safely into the domain of validity of (A.2). For the vector multiplet

11This was shown in [11, 12] where experimental evidence that this is true for a large class of theories
was also discussed.

12For comparison with [16], we set ξthere
a = −nhere

0 /3. The result in that paper contains the number
η ∈ {−1,+1}. This is related to our n0 as η = 6B1(−n0

3 ). For n0 = ±1, a simple calculation shows
that η = n0.

– 13 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
7

gamma functions, however, there is no finite shift in the argument, so (A.2) does not apply
uniformly around u = 0. We had to use instead (A.13) to obtain uniform asymptotics
near u = 0 for the vector multiplet gammas.

Secondly, we emphasize that our asymptotic analysis is essentially real-analytic (as
in [46, 49]). We only appeal to complex-analytic tools (specifically, contour deformation),
after having done the asymptotic analysis, to simplify the final answer for Zdyn

ε in (2.22)
to the more familiar form (2.23).

Thirdly, we note that when actually doing the saddle-point analysis, one finds that
the dominant holonomy configurations spread into the complex plane, as in the analysis
of [7, 13, 41]. Upon taking the τ → 0 limit the spreading shrinks, and the answers from
those approaches indeed agree with our results.

2.2 Asymptotics of the index as τ → Q

We now study the index (2.5) in the limit

τ̃ ≡ mτ + n→ 0 , (2.34)

with m,n relatively prime, keeping arg(τ̃) away from integer multiples of π/2.
As in the previous subsection we first calculate the all-order asymptotics of the inte-

grand. The required small-τ̃ estimates for the Pocchammer symbol and the elliptic gamma
function are given in equations (A.17), (A.23), (A.26). Using these estimates we find that
in the range α+ · u ∈ (− 1

m + δ, 1
m − δ), for some fixed small δ, the integrand of (2.5) can

be written up to exponentially suppressed corrections as

exp(−Sind (u;τ))' 1
(−i τ̃)rk(G)

∏
α+

4sinh2
(
πα+ ·u
−i τ̃

)
exp

(
−2πi τ̃ Esusy

m
− Ṽ (u)

m

)
. (2.35)

The all-order effective potential as τ̃ → 0 is given by

Ṽ (u) = 1
τ̃2 Ṽ2(u) + 1

τ̃
Ṽ1(u) + Ṽ0(u) , (2.36)

with

Ṽ2 (u) =
∑
I, ρI

iπ
3 B3 (mρI · u+mξI) ,

Ṽ1 (u) =
∑
I, ρI

iπ (rI − 1) B2 (mρI · u+mξI) +
∑
α

iπ
(

(mα · u)2 + 1
6

)
,

Ṽ0 (u) = −2πi · dim (G) s (n,m) +
∑
I, ρI

2πiC
(
m,n, ρI · u−

n0
2 rI , rI

)
,

(2.37)

where α runs over all the roots of G including the rk(G) zero roots, I runs over all the
chiral multiplets, and ρI runs over all the weights of the representation RI . Here s(n,m)
is the Dedekind sum defined in (A.18) and the function C(m,n, r, z) is defined in (A.24).
We have defined

ξI := −rI2

(
n0 + 2n

m

)
, (2.38)
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to emphasize an analogy with the analysis in [10, 37] of the index with flavor chemical
potential ξ, although we do not have flavor fugacities in our problem. Note also that we
have separated the supersymmetric Casimir energy in (2.35) as in the τ → 0 case.

Next, as in the previous subsection we expand the potentials near u = 0. Anomaly
cancellations again lead to simplifications, but here we further assume the theory is non-
chiral (i.e. that ρI come in pairs of opposite sign) so that the answer takes a particularly
simple form. Analogously to (2.18) we obtain

Ṽ2 (u) =
∑
I, ρI

(
iπ
3 B3 (mξI) + 2πiB1 (mξI)

(mρI · u)2

2

)
,

Ṽ1 (u) =
∑
I, ρI

iπ (rI − 1) B2 (mξI) + iπ
6 dim (G) ,

Ṽ0 (u) = Ṽ0 (0) = −2πi dim (G) s (n,m) +
∑
I, ρI

2πiC
(
m,n,−n0

2 rI , rI
)
.

(2.39)

Next we focus on a small neighborhood hεcl around u = 0, defined by the cutoff |uj | < ε,
whose contribution to the index as τ̃ → 0 is

I (τ ;n0)|uj |<ε' e−2πiτ̃ Esusy
m

∫
hε
cl

Du

(−iτ̃)rk(G)

∏
α+

4sinh2
(
πα+ ·u
−iτ̃

)
exp

(
− Ṽ (u)

m

)
. (2.40)

Upon putting the above discussion together we obtain

I(τ ;n0)|uj |<ε ' e−2πiτ̃ Esusy
m Zbgnd(τ ;m,n, n0) Zdyn

ε (τ ;m,n, n0) , (2.41)

where the background piece is

Zbgnd (τ ;m,n, n0)

= exp

− 1
mτ̃2

∑
I, ρI

iπ
3 B3 (mξI)−

1
mτ̃

∑
I, ρI

iπ (rI − 1) B2 (mξI) + iπ
6 dim (G) + Ṽ0 (0)

 ,

(2.42)

and the dynamical piece is

Zdyn
ε (τ ;m,n,n0) =

∫
hε
cl

Du

(−iτ̃)rk(G)

∏
α+

4sinh2
(
πα+ ·u
−iτ̃

)
exp

+iπ
m

∑
I,ρI

B1 (mξI)
(
mρI ·u
−iτ

)2
 .

(2.43)
Upon defining the rescaled variable xj = uj

−iτ̃ , we recognize Zdyn
ε (τ ;m,n, n0) as the CS

partition function on S3 with gauge group G and level kij = − 1
m

∑
I,ρI

B1
(
mξI

)
ρiIρ

j
I . We

will see momentarily that it is more natural to define the rescaled variable as xj = muj
−iτ̃ .

Upon tails completion and deforming the integration contour we obtain

Zdyn
ε (τ ;m,n,n0)'m−rk(G)

∫ ∞
−∞

Dx
∏
α+

4sinh2
(
πα+ ·x
m

)
exp

+iπ
m

∑
I,ρI

B1 (mξI)(ρI ·x)2


=:m−rk(G)Zdyn

0 (m,n,n0) .
(2.44)
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Up to the overall m−rk(G) factor, this coincides [51] with the topologically trivial sector of
the S3/Zm partition function of N = 2 SYM with Chern-Simons coupling

kij = −
∑
I,ρI

B1
(
mξI

)
ρiI ρ

j
I . (2.45)

While the explicit expression for the dominant potential Ṽ2 in (2.37) was derived in a
neighborhood (− 1

m + δ, 1
m − δ) of u = 0, it is actually correct more generally, because it

follows from (A.23) which we can use as long as mρI · u+mξI /∈ Z. Moreover, since ρjI are
integers and uj appears in Ṽ2 in the combinationmρI ·u, the 1-periodicity of Ṽ2 implies that
any holonomy configuration with uj a multiple of 1/m gives the same leading asymptotics
as the u = 0 configuration. In the SU(N) case these non-trivial holonomy configurations
correspond to

u = 1
m
m =

(
m1
m

, . . . ,
mN

m

)
, (2.46)

with mj ∈ Z/mZ, and
∑N
j=1mj = 0 (mod m).

For n = 1, we can use the estimate (A.31) for the vector multiplet gamma functions
to compute the contribution of the saddles (2.46). The result is similar to (2.40), with the
same Ṽ2,1 and the same SUSY Casimir piece, but with the dynamical piece modified to
(modulo an overall constant factor)

Zdyn
εm (τ ;m,n,n0)'

∫ ∞
−∞

Dx′
∏
α+

4sinh2
(
πα+ ·(x′+im)

m

)
exp

+iπ
m

∑
I,ρI

B1 (mξI)
(
ρI ·x′

)2
=:Zdyn

m (m,n,n0) ,
(2.47)

where εm indicates that we are considering the contribution from a neighborhood |uj −
mj/m| < ε, and the re-scaled integration variable arises as x′j = m(uj−mj/m)

−iτ̃ . This co-
incides (again up to an overall constant factor) with the topologically non-trivial sector
of the partition function of SU(N) Chern-Simons theory with coupling (2.45) on the lens
space L(m,−1) [51].

We expect that similarly for general n, including the contribution of the non-trivial
saddles (2.46) to the index would complete Zdyn

0 (m,n, n0) to the full S3/Zm partition func-
tion, including all the topologically non-trivial sectors. We motivate this expectation fur-
ther from an EFT perspective in the next section where we also present the (n-dependent)
action of Zm on the S3. The explicit demonstration, which we leave to future work, re-
quires generalizing the estimate (A.31) to arbitrary n, and improving it to include the
overall constant.

The above analysis was local in nature: we considered the contribution to the index
from only a small neighborhood of u = 0. We now study the specific case of SU(N) N = 4
SYM for which we present a global picture of the dominant holonomy configurations.
Note that in the previous subsection rather than performing the global analysis from
scratch we had borrowed the result of [11, 12] that in a certain domain of parameters
(n0(arg(τ) − π/2) < 0) the u = 0 configuration is globally dominant (see section 2.3 for
the complementary domain).
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Figure 1. The catastrophic behavior of V Q(uij), drawn over the range muij ∈ (−1, 1), for argτ̃ >
π
2 . The control parameter mξ determines the M or W type behavior.

The global structure of the leading potential for N = 4 SYM. For SU(N) N = 4
theory the potential Ṽ2 reads

Ṽ2 (u; ξ) = iπ
3 × 3

(N − 1)B3 (mξ) +
∑
i<j

(
B3 (mξ +muij) +B3 (mξ +muji)

) ,

(2.48)

where the factor of 3 comes from the sum over three chiral multiplets, and with

ξ = −1
3
(
n0 + 2n

m

)
. (2.49)

As mentioned below (2.45) the expression (2.48) applies as long as uij + ξI avoid Z
m .

We now have to minimize the real part of Ṽ2(u)/τ̃ 2 as |τ̃ | → 0. Since the uij-
independent piece and the real positive overall multiplicative constants are irrelevant in
finding the dominant holonomy configurations, our problem boils down to minimizing the
potential

V Q (uij ; arg τ̃ , ξ) = −sign
(

arg τ̃ − π

2

) (
B3 (mξ +muij) +B3 (mξ −muij)

)
, (2.50)

which is analogous to the pairwise holonomy potential in [10]. As in that work, we first
consider the qualitative behavior of V Q. We assume arg(τ̃) − π

2 > 0, and comment below
on what happens for the opposite sign. We find that the potential is (see figure 1)

M-shaped for 0 < {mξ} < 1/2 ,
W-shaped for 1/2 < {mξ} < 1 .

We also see from equation (2.49) that we have {mξ} ∈ {0, 1
3 ,

2
3}.

The O(1/τ̃ 2) exponent. Let us now assume m,n are chosen such that {mξ} =
{−mn0−2n

3 } = 1
3 , so we are in the M-region with the dominant holonomy configurations

corresponding to {muij} = 0. Although this is analogous to the 1-center phase in [37],
as mentioned around (2.46) here in fact uij can be any integer multiple of 1

m . All these
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saddles contribute equally to the O(1/τ̃2) exponent though, and hence the preceding anal-
ysis around u = 0 gives the correct leading asymptotics of the index, which up to O(1/τ̃)
corrections in the exponent reads

exp
(
− πi
m τ̃ 2

(
N2 − 1

)
B3 (mξ)

)
= exp

(
− iπ

27m τ̃ 2

(
N2 − 1

))
,

for arg(τ̃) > π

2 , {mξ} =
{−mn0 − 2n

3

}
= 1

3 .
(2.51)

For arg(τ̃) − π
2 < 0, the M- and W-regions switch places. So in order to have uij = 0 as

the dominant saddle we must assume m,n are such that {mξ} = {−mn0−2n
3 } = 2

3 . In this
case we have B3(2/3) = −B3(1/3) = 1/27, which leads to

exp
(
− πi
m τ̃ 2

(
N2 − 1

)
B3 (mξ)

)
= exp

( iπ
27m τ̃ 2

(
N2 − 1

))
,

for arg (τ̃) < π

2 , {mξ} =
{−mn0 − 2n

3

}
= 2

3 .
(2.52)

In the remaining case where {mξ} = {−mn0−2n
3 } = 0, we have Ṽ2(u; ξ) = 0 and hence

no O( 1
τ̃2 ) exponent. As we discuss momentarily there is no O( 1

τ̃
) exponent in this case

either. There are thus rk(G) flat directions in the moduli space, leading to a (1/τ̃)rk(G)

growth for the index, as in the n0 = 0 and τ pure imaginary case studied in [49].

The O(1/τ̃ ) exponent. The O(1/τ̃) exponent comes from Ṽ1/mτ̃ . Although the ex-
pression for Ṽ1 in (2.39) was obtained near u = 0, the O(1/τ̃) exponent is correctly cap-
tured by (A.23), which implies that (2.39) remains correct near the nontrivial saddles
with uij ∈ 1

mZ as well. So we can specialize Ṽ1 in (2.39) to the SU(N) N = 4 theory
and obtain

exp
(
− πi
mτ̃

(
N2 − 1

) (
−B2(mξ) + 1

6

))
. (2.53)

In this case we have that B2(2/3) = +B2(1/3) = −1/18, which leads to

exp
(
−2πi

9
(N2 − 1)
mτ̃

)
, (2.54)

for arg(τ̃) > π
2 as well as arg(τ̃) < π

2 . Note that since B2(0) = 1/6, we see from (2.53) that
there is no O(1/τ̃) exponent for {mξ} = 0, as alluded to above.

The Chern-Simons coupling. Specializing the Chern-Simons coupling (2.45) to SU(N)
N = 4 theory we find

kij = −η̃ N δij , (2.55)

with
η̃ := 6B1 (mξ) = 6B1

(−mn0 − 2n
3

)
. (2.56)

We emphasize that all the topologically nontrivial sectors necessary for agreement with
an S3/Zm partition function are present in our analysis, but we leave the investigation of
their explicit contributions to future work.
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The O(τ̃ ) exponent. The linear (in τ̃) exponent can be read from (2.40) to be
−2πiτ̃Esusy/m. Note again that while (2.40) was derived near u = 0, as the estimate (A.31)
shows the O(τ̃) exponent remains valid near u ∈ Z

m as well (at least for n = 1, and we
expect more generally as well). Since for SU(N) N = 4 theory Esusy = 4

27
(
N2 − 1

)
, we

have the O(τ̃) exponent as in

exp
(
− 8πi

27m(N2 − 1)τ̃
)
. (2.57)

Summary: the small-τ̃ asymptotics for N = 4 SYM. We can summarize the
asymptotics of the SU(N) N = 4 SYM index analyzed above as follows

IN (τ ;n0) ' N C̃N (n0,m, n) exp
(
− iπ
m τ̃2

(
N2 − 1

)(−η̃ + 2τ̃
3

)3)
ZCS
S3/Zm (k) , (2.58)

for τ near any rational point −n/m, with

τ̃ = mτ + n , η̃ = 6B1

(−mn0 − 2n
3

)
= −sign

(
arg (τ̃)− π

2
)
, k = −η̃ N , (2.59)

and with C̃N (n0,m, n) an overall constant. Note that we have used η̃3 = η̃ = ±1 to simplify
the final expression. Also, by completing the cube inside the exponent we have introduced
an O(τ̃0) factor at the cost of redefining C̃N (n0,m, n).

We have only demonstrated that there is a contribution to ZCS
S3/Zm(k) from near u = 0

that coincides with the topologically trivial sector of the S3/Zm partition function of Chern-
Simons theory with coupling k. As mentioned below (2.46) we expect that summing over
the contributions from neighborhoods of the non-trivial configurations uj = mj/m would
lead to the complete orbifold partition function.

We can include the contribution of a decoupled U(1) N = 4 multiplet in a straight-
forward manner. This effectively changes the dimension of the group in the exponent
to N2, introduces a prefactor 1/τ̃ , and change the constant from C̃N (n0,m, n) to a new
constant C̃ ′N (n0,m, n), so that we have

IU(N)(τ ;n0) ' N

iτ̃ C̃
′
N (n0,m, n) exp

(
− iπ
m τ̃2 N

2
(−η̃ + 2τ̃

3
)3)

ZCS
S3/Zm(k) . (2.60)

We see that the background (and the SUSY Casimir) piece in (2.60) matches the effective
action (1.5) and, in addition, we have a dynamical Chern-Simons term. In the following
section we explain both these pieces from the point of view of 3d N = 2 field theory.

2.3 C-center phases

Focussing on SU(N) N = 4 theory, we now move on to studying the τ̃ → 0 limit of
the index in the W region, which as shown in figure 1 for argτ̃ > π/2 corresponds to
1/2 < {mξ} < 1. As before we assume argτ̃ is in compact domains avoiding integer
multiples of π/2 as |τ̃ | → 0.

Recall from (2.49) that only the values {mξ} = 0, 1/3, 2/3 are realized in our problem.
But to highlight the parallels with the analysis of partially-deconfined phases in the W
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regions of the (flavored) 4d N = 4 index in [37], we will study the phase structure for
arbitrary {mξ} ∈ (1

2 , 1) below, and only at the end specialize our result to the single
“physical” point {mξ} = 2/3 in that interval.

Asymptotic analysis of the index for arbitrary {mξ} ∈ (1
2 , 1) is difficult for general N ,

because finding the dominant holonomy configurations is not possible analytically in the
W regions. Analogously to [37] we consider now the large-N limit (on top of the τ̃ → 0
limit), and conjecture that the C-center phases suffice for extremizing the potential in the
W region. Also, similarly to [37] we consider only the leading (here O(1/τ̃2)) exponent of
the index in the W region.

A C-center holonomy configuration consists of C packs of N/C holonomies uniformly
distributed on the circle such that the SU(N) constraint is satisfied. While at finite N it
is possible to have such configurations only for C a divisor of N , in the large-N limit any
integer C ≥ 1 provides an acceptable C-center configuration [37]. For such a distribution
the “on-shell” value of the potential Ṽ2 in (2.48) becomes

Ṽ
(C)

2 = iπ
(

(N−1)B3 (mξ)+N

d

d(d−1)
2 2B3 (mξ)+d2

C−1∑
J=1

J

(
B3

(
mξ+mJ

C

)
+B3

(
mξ−mJ

C

)))
,

(2.61)
where d := N/C. The second term above is the contribution from pairs in the same
pack, and the third term is from pairs with each end on a different pack. To simplify the
above expression further, we use the following identity which can be proven from (A.6)
and (A.21):

C−1∑
J=1

J

(
B3

(
∆ +m

J

C

)
+B3

(
∆−mJ

C

))
= g2B3 (C ′∆)

C ′
− CB3 (∆) , (2.62)

where g := gcd(m,C) and C ′ := C/g. Keeping only the O(N2) terms we hence end up with

Ṽ
(C)

2 = iπN2 B3(C ′mξ)
C ′3

. (2.63)

Since the leading asymptotics of the index is given as exp(−Ṽ2/τ̃
2), we then find the analog

of the main result of [37] (equation (3.19) of that work) for our case to be

IN→∞
τ̃→0−−−→

∞∑
C=1

exp
(
− iπN

2

mτ̃ 2
B3(C ′mξ)

C ′3

)
, (2.64)

with mξ = −mn0+2n
3 as before.

The competition between various terms in (2.64) can be visualized by comparing the
exponents as in figure 2, which shows the range of ∆ := {mξ} for which a given phase
dominates when argτ̃ − π/2 > 0. The figure implies that for the “physical” values {mξ} =
1/3, 2/3, the index is respectively in the 1-center, and 2-center phase when argτ̃ −π/2 > 0,
and vice versa for argτ̃ − π/2 < 0. As mentioned above, for {mξ} = 0 the index is
in a confined phase and does not yield exponential O(N2) growth. Therefore up to an
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Figure 2. The functions C ′−3B3(C ′∆) with C ′ = 1, · · · , 13, for 0 ≤ ∆ ≤ 1. For 0 < ∆ < 1/2
the blue curve corresponding to the fully-deconfined phase takes over. The take-over of the orange
curve signifies the partially-deconfined 2-center phase in the corresponding region (1/2 < ∆ . .72),
and so on.

o(N2/τ̃2) error in the exponents we have the following simplification of (2.64) by restricting
to C ′ = 1, 2:

IN→∞
τ̃→0−−−→ e

− iπN
2

mτ̃2 B3(mξ) + e
− iπN

2

mτ̃2
B3(2mξ)

8 . (2.65)

This is the analog of Conjecture 1 in [37].
Since B3(2/3) = −B3(1/3), we see from (2.65) that the action of the 2-center saddle

has the opposite sign and is smaller in absolute value by a factor of 8 compared to that of
the 1-center saddle.

3 Asymptotics of the 4d index from 3d field theory

In this section we consider the dimensional reduction of the four-dimensional N = 1 gauge
theory on a Hopf surface. This surface is topologically S3 × S1 and we reduce along
the S1 fiber. The dimensionally reduced theory describes a three-dimensional dynamical
gauge supermultiplet coupled to background three-dimensional supergravity on S3. The
Wilsonian effective action of the gauge multiplet can be calculated by integrating out the
tower of massive Kaluza-Klein modes, and the resulting theory is described by a functional
integral over the gauge multiplet fields with this effective action. We find that the functional
integral of the three-dimensional theory can be written as a perturbative expansion in τ .
The singular terms in the expansion behave as O(1/τ2) and O(1/τ), and are captured
by three-dimensional effective field theory. In particular, these terms are independent
of the dynamical fields, and are completely accounted by the (supersymmetrized) Chern-
Simons couplings of the background supergravity. The result agrees with the corresponding
singular terms in the microscopic expansion (2.26), (2.28).

The all-order asymptotic formula from the microscopic index includes, in addition to
these singular terms, constant and linear terms in τ . Using a localization argument we
show that the constant term in τ , besides a background part, has a dynamical piece cap-
tured by the integral over the fluctuations of the dynamical fields in three-dimensional path
integral, which is essentially the partition function of N = 2 supersymmetric CS theory at
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level ±N . Finally, the linear term in the microscopic formula is precisely the supersym-
metric Casimir energy which is needed to translate between the microscopic Hamiltonian
index and the macroscopic functional integral.13 In this manner the full asymptotic for-
mula for the four-dimensional index is explained by three-dimensional physics. The fact
that the asymptotic formula does not contain any higher order terms in τ implies a non-
renormalization theorem, namely that there are no corrections to the three-dimensional
effective action at any polynomial order in τ . We leave the explanation of this interesting
point to future work. Finally, we show that corresponding statements also hold near ratio-
nal points when τ → −n/m. Here we present evidence that the relevant three-dimensional
manifold is a Zm orbifold of S3 and the results agree with the microscopic asymptotic
expansion given in (2.58).

We begin by recalling the functional integral definition of the N = 1 superconformal
index on S3×S1. In the Hamiltonian trace definition (1.2) we have two chemical potentials
that couple to linear combinations of the two angular momenta J1, J2 on S3 and the U(1)
R-charge Q. This is equal to the supersymmetric functional integral of the theory on S3×S1

with twisted boundary conditions on the fields as we go around the S1. Equivalently, one
can explicitly introduce a background gauge field (for the R charge) and background off-
diagonal terms in the metric (for the angular momenta) in a manner, so as to preserve
supersymmetry. As explained in [66], such background configurations can be obtained as
solutions to the condition of vanishing gravitino variations of off-shell supergravity (and
then taking a rigid limit so as to decouple the fluctuations of gravity).

The relevant background configuration for the calculation of the 4d superconformal
index for complex τ and nonzero n0 was studied in [5] in the context of 4d new minimal
supergravity [67, 68]. Recall that the bosonic fields of new minimal supergravity are the
metric, a gauge field Anm, and another vector field V nm which is covariantly conserved.
The background configuration [5] preserving the supercharges (Q,Q) is14

ds2
4 = dt2E + dθ2 + sin2 θ

(
dφ1 − i Ω1 dtE

)2 + cos2 θ
(
dφ2 − i Ω2 dtE

)2
,

Anm = i
(

Φ− 3
2

)
dtE , V nm = −i dtE .

(3.1)

Here θ ∈ [0, π/2], the angles φ1, φ2 are 2π-periodic, and the Euclidean time coordinate has
the independent periodicity condition15

tE ∼ tE + γ . (3.2)

13The supersymmetric Casimir energy that appears in our asymptotic formulas is the one given in [62].
Note in particular that (unlike in [5]) this is independent of n0. We can understand this in the path-integral
picture by appealing to the result in section 4 of [10] (based on the regularization method of [65]) which
demonstrated that the supersymmetric Casimir energy is independent of flavor fugacities when they are on
the unit circle, and by noting that e2πi(−n0rI/2) is effectively a flavor fugacity in our problem.

14A real metric corresponds to pure imaginary Ωi. General complex Ωi correspond to analytic continua-
tion in the background metric.

15In [5] the parameter γ was called β.
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This configuration admits the following Killing spinor which is identified with Q,

ε =


ei z tE

0
0

e−i z tE

 , z = πn0
γ

. (3.3)

The twist parameters Ωi, Φ are related to the chemical potentials σ, τ in the index as
follows16

Ωi = 1 + ωi
γ
, Φ = 3

2 + 1
γ

(
ω1 + ω2

2 − πin0

)
, (3.4)

with
ω1 = 2πiσ , ω2 = 2πi τ . (3.5)

In this section for ease of presentation we focus on the case with Ω1 = Ω2 = Ω, which
implies σ = τ = iγ

2π (1 − Ω). The partition function on the above background is related
to the index I(σ − n0, τ), which for σ = τ coincides with the index I(τ ;n0) in (1.3). In
appendix D we comment on the more general case with Ω1 6= Ω2 and hence σ 6= τ .

The four-dimensional supersymmetric partition function of the theory corresponding
to the Hamiltonian index (1.2) can then be expressed as a functional integral of the gauge
theory with 4d N = 1 chiral and vector multiplets on the background (3.1).17 As discussed
in [5], this functional integral localizes to an integral over flat connections of the gauge field
on the KK circle, ∮

Ai = 2π ui . (3.6)

The Wilson loop (3.6) maps to the scalar in the three-dimensional vector multiplet in the
KK reduction. We now proceed to derive an expression for the supersymmetric partition
function of the three-dimensional gauge theory.

3.1 Dimensional reduction to three dimensions

We first consider the reduction of the above four-dimensional background as a configuration
in three-dimensional supergravity. In three dimensions we use the off-shell supergravity
formalism [69–72], and follow the treatment [34, 73–75] for the reduction from four to
three dimensions. The bosonic fields in the off-shell three-dimensional supergravity are the
metric, the KK gauge field (the graviphoton) written as a one-form c, a two-form B, and
the R-symmetry gauge field one-form AR. The equations are often presented in terms of
the dual one-form v = −i ∗ dc and the dual scalar H = i ∗ dB.

We begin by writing the background in (3.1) as a Kaluza-Klein (KK) compactification
to three dimensions, i.e. a circle fibration on a 3-manifold M3. We define the rescaled S1

coordinate
Y =

√
1− Ω2 tE , (3.7)

16Here (Ω∗1,Ω∗2,Φ∗) = (1, 1, 3
2 ) are the values of the potentials on the supersymmetric BH solution.

17More precisely the Hamiltonian index equals the functional integral for the supersymmetric partition
function up to the supersymmetric Casimir energy factor [62, 65].
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which obeys the periodicity condition

Y ∼ Y + 2πR , R = γ

2π
√

1− Ω2 . (3.8)

Writing the metric (3.1) in the KK form,

ds2
4 = ds2

3 + (dY + c)2 , (3.9)

we find that the graviphoton field is

c = cµ dxµ = −i Ω√
1− Ω2

(
sin2 θ dφ1 + cos2 θ dφ2

)
, (3.10)

and the metric on the 3-manifoldM3 is

ds2
3 = gµν dxµ dxν = dθ2 + sin2 θ dφ2

1 + cos2 θ dφ2
2 − c2 . (3.11)

The three-dimensional metric obeys

√
g = sin 2θ

2
√

1− Ω2
. (3.12)

We see that we effectively have a KK reduction on a circle of radius R.
In order to study the effective theory in three dimensions, we consider the limit R →

0. From the relation (3.8) we see that this is implemented by taking the original circle
size γ → 0. Our eventual interest is in the limit τ → 0. The question is how to correlate
these two limits of γ and τ . If we take γ → 0 first, then we see from the relation (3.4)
that Ω→∞ and from (3.12) thatM3 shrinks to zero size. Although the local Lagrangian
involves background fields and terms such as the Ricci scalar which diverge in this limit,
the three-dimensional effective action turns out to be finite. We can understand this in a
cleaner manner as follows. We first scale τ and γ to zero at the same rate keeping Ω finite
and fixed, i.e. take γ = ετ with fixed ε = 2πi/(Ω−1), and only take ε→ 0 at the end of all
calculations. In particular, the three-dimensional calculations are all performed at finite ε,
i.e. on smooth backgrounds. The action turns out to have two pieces, one of which stays
finite and the other vanishing in the limit ε→ 0, and, in particular, there are no diverging
terms in this limit. Thus we can safely take the limit Ω → ∞ at the end of calculations.
In this limit we have that R → τ , so that the effective field theory answers are effectively
written as a perturbative series in τ .

In the treatment of three-dimensional background supergravity we need the Hodge
dual of the graviphoton,

v = vµ dxµ = −i ∗ dc , (3.13)

whose value in the above background is

v = 2 Ω
1− Ω2

(
sin2 θ dφ1 + cos2 θ dφ2

)
, (3.14)

so that vµ = 2 Ω(1, 1, 0). The associated Chern-Simons action is

SCS(c) =
∫
M3

c ∧ dc = i
∫
M3

d3x
√
g vµ cµ . (3.15)
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The identification between the four-dimensional and the three-dimensional gauge fields
is made by comparing the respective Killing spinor equations. As shown in [34, 75],
one has18

1
2vµ = V nm

µ − V nm
Y cµ , H = V nm

Y , ARµ = Anm
µ −Anm

Y cµ + 1
2vµ . (3.16)

The background gauge fields in (3.1) are given by

Anm =
(
− τ
R

+ n0
2R

)
dY , V nm = − i√

1− Ω2
dY , (3.17)

so that the auxiliary fields in the background supergravity multiplet are

vµ = −2V nm
Y cµ , H = V nm

Y , ARµ = −(Anm
Y + V nm

Y ) cµ . (3.18)

(The above equation for vµ is consistent with equations (3.10), (3.13).)
We now discuss the Kaluza-Klein reduction of the dynamical gauge multiplet. The N =

1 gauge multiplet in four dimensions reduces to an N = 2 gauge multiplet in three dimen-
sions, whose bosonic field content is a vector Aµ, a scalar σ, and the auxiliary D field.
These are related to the four-dimensional fields as follows,

σi = AiY , Aiµ = Aiµ −AiY cµ , Di = Di −AiY H , (3.19)

and the three-dimensional fermions are the reduction of the corresponding four-dimensional
fermions. As discussed above, the theory localizes on the BPS configurations given by

Ai = ui
R
dY , Di = 0 , (3.20)

with vanishing values of all other fields in the off-shell gauge and chiral multiplets. In the
three-dimensional theory the non-zero fields on the BPS locus are

σi = ui
R
, Aiµ = −ui

R
cµ , Di = −ui

R
H . (3.21)

3.2 Effective action and functional integral of the three-dimensional theory

We now turn to the calculation of the partition function of the three-dimensional supersym-
metric theory that we just discussed. Our strategy is to first calculate the three-dimensional
Wilsonian effective action of ui, and then use this to calculate the three-dimensional parti-
tion function. The tree-level action (coming from a mode expansion of the four-dimensional
theory) consists of matter-coupled super Yang-Mills theory. The full quantum effective ac-
tion of the three-dimensional theory is obtained by integrating out the tower of massive
KK modes on the circle. In order to calculate this action, we draw from known results in
the effective field theory in three dimensions.

The effective field theory on backgrounds of the typeM3×S1
R was studied in a general

context in [52, 53], and in the special context of supersymmetry in [25, 26]. The resulting
18In [75] it is assumed that V nm

Y = Anm
Y , which is not satisfied in our background. Therefore we follow

more closely the treatment of [34].
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three-dimensional action begins with a term proportional to 1/R2, and continues as a
perturbation expansion as the radius R→ 0. At each order in R one has a combination of
three-dimensional actions of the background and the dynamical fields, which are all related
by supersymmetry to a certain Chern-Simons term. The Chern-Simons terms are of the
form

∫
M3

Ax∧dAy, where Ax and Ay represent the various gauge fields. As discussed in the
previous subsection, these are the dynamical gauge field, the background graviphoton, the
background R-gauge field, and the spin connection. We follow, and review in appendix B,
the treatment of [26] for the supersymmetrized Chern-Simons action of all the background
and the dynamical gauge fields up to O(R0). The full effective action also includes RR and
gravitational supersymmetrized CS terms discussed in [56], which turn out to be crucial
for our purposes.

It follows from the above discussion that the overall coefficient at each order in R

can be fixed by calculating the coefficient of the Chern-Simons terms themselves. These
coefficients, in turn, can be obtained by integrating out all the fermions coupling to the
corresponding gauge fields. The resulting induced Chern-Simons coefficient is one-loop
exact. Thus the strategy is to integrate out the fermions in each KK mode, write the
resulting Chern-Simons action, and sum over all the fermions in the theory. The KK
momenta of the fermions take the values pY = kY /R, with kY = n + n0

2 , n ∈ Z. The
shift n0/2 appears because of the gauge fields in the background (3.1). (Recall, for example,
that the four-dimensional Killing spinor (3.3) has momentum n0/2.)

The result for the complete action obtained by integrating out a fermion f of R-charge rf
and transforming in a representation of weight ρf under the gauge group is given in ap-
pendix B and take the following form,

δSf
1-loop = S̃f

g-g + 2 S̃f
g-R + Sf

R-R + Sf
grav . (3.22)

The terms in (3.22) depend on the real mass mf (related to the central charge appearing in
the three-dimensional algebra). The first two terms depend on the dynamical gauge field.
On the configuration (3.21) they take the following values,

S̃f
g-g = −iπ sgn (mf)

8R2 (ρf · u− kY )2 AM3 ,

2 S̃f
g-R = −iπ sgn (mf)

8R 2 rf (ρf · u− kY ) LM3 ,

(3.23)

where AM3 and LM3 are functions of the three-dimensional background given in (B.11).
The last two terms in (3.22) do not depend on the dynamical gauge field, and given by

Sf
R-R = −iπ sgn (mf)

8

(
r2
f −

1
6

)
RM3 ,

Sf
grav = −iπ sgn (mf)

192 GM3 ,

(3.24)

where RM3 and GM3 are functions of the three-dimensional background given in (B.3).
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In appendix C we calculate the values of these background actions.19 As explained
above, we perform the calculations keeping R, Ω finite so that the three-dimensional physics
is manifestly smooth. The result is that there is a smooth limit as γ → 0 keeping fixed τ .
The limiting values of the actions are as follows,

AM3 = −4 , LM3 = −4
(

1− n0
2R

)
,

RM3 = −4
(

1− n0
2R

)2
, GM3 = −16 + 4RM3 .

(3.25)

Using these values, we obtain the total effective action of the fermion f to be

δSf
1-loop = iπ sgn (mf)

2R2

(
ρf · u− kY − 1

2n0 rf
)2

+ iπ sgn (mf)
R

rf
(
ρf · u− kY − 1

2n0 rf
)

+ iπ sgn (mf)
2 r2

f − iπ sgn (mf)
12 .

(3.26)

Now we turn to the sum over all the fermions in the theory. The value of the real mass
is given in (B.7) to be, as R→ 0,20

mf,n = − 1
R

(
ρf · u− n− 1

2n0 (rf + 1)
)
, (3.27)

In order to obtain the full effective action we now have to sum over all the fermions. For
the chiral multiplets, this implies summing over all the weights in representations ρf ∈ Rf,
as well as over all momenta labelled by n ∈ Z. The summation over KK modes can be
evaluated using ∑

n∈Z
sgn(n+ x)(n+ x)j−1 = −2

j
Bj(x) , (3.28)

with x = ρf · u − 1
2n0 rI , for j = 1, 2, 3 (cf. section 4 of [10]).21 Here we have used the

relation rf = rI−1 between the R-charge of the fermion and that of the bottom component
of the multiplet I to which the fermion belongs.

19We note that there is a subtlety with the gravitational CS term in (B.3), concerning the dependence of
the term on the frame [64]. There should be a choice of frame which is consistent with the supersymmetry
and the 4d to 3d reduction. We do not work out the details of this issue in this paper, and instead rely on
consistency with [56] where this term is obtained indirectly by considering integrating out chiral multiplets.
We thank Cyril Closset for a discussion on this point.

20In fact the first three terms in (3.26) sum up to

iπ2 sgn (mf)
(
ρf · u− n− 1

2n0 rI + (rI − 1)R
R

)2

,

and, using (3.28) with x = ρf ·u−n− 1
2n0 rI + (rI −1)R to perform the sum over the KK modes, we obtain

an effective potential which reproduces the chiral multiplet contributions in (3.32). Essentially the same
comment can be made in the microscopic analysis of section 2.

21Here, the sgn function is interpreted as applying to mf with R a real positive number (which therefore
scales out of the formula so as to give sgn(ρf ·u− 1

2n0 rI)). Note that in the subsequent formulas R is taken
to be complex.
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For the vector multiplet contribution the analysis is quite similar: there is a tower
of massive KK gaugino modes that are integrated out. These generate CS actions whose
supersymmetrization yields the vector multiplet contribution to δS1-loop. In the present
context there is an important difference with the chiral multiplet analysis however. Near
u = 0 there is a single gaugino mode in the tower that has real mass of order α · u/R,
and is therefore considered a “light” mode for small enough |α · u|. Therefore we do not
integrate out this mode and, instead, keep it as a dynamical mode in the path integral of
the three-dimensional theory.

More precisely, recall that the nth KK gaugino mode associated to a root α of the
gauge group has pY = (n+n0)/R and hence a real mass (α · u−n−n0)/R. Therefore the
mode corresponding to n = −n0 is light near α · u = 0. We now describe how removing
this term from the sum over the KK tower modifies the result compared to the chiral
multiplet computation. The vector multiplet contributions is a sum over roots α that
come in pairs ±α+, as a result of which they give vanishing contributions to the quadratic
and constant terms in u in the action of a single KK mode. We therefore focus on the
contribution to the linear term in u , which is proportional to 1/R. The calculation is
similar to the corresponding chiral multiplet calculation. Upon summing over all the KK
modes, we obtain the vector multiplet contribution from a root α to be

− πi
R

∑
n∈Z

′sgn (α · u− n− n0)
(
α · u− n− n0

)
, (3.29)

where the prime indicates that we are not including the light mode corresponding to n =
−n0. Upon adding and subtracting the n = −n0 contribution, we obtain, using (3.28),

iπ
R

(
B2(α · u) + |α · u|

)
. (3.30)

Now, since we are interested in the proximity of u = 0, we use the fact that for |x| < 1 we
have B2(x) = x2 − |x|+ 1

6 , to simplify the result to

iπ
R

(
(α · u)2 + 1

6

)
. (3.31)

Upon putting all the pieces together, we obtain the total one-loop correction to the
Wilsonian action of the three-dimensional theory, which we call Veff(u) (we justify this
name below). We have

Veff (u) =
∑
f

∑
ρf∈Rf

δSf
1-loop

=iπ
∑
I,ρI

(
1

3R2 B3
(
ρf ·u− 1

2n0 rI
)

+ rI−1
R

B2
(
ρf ·u− 1

2n0 rI
)

+ 1
R

∑
α

(
(α·u)2+ 1

6

)
+
(
(rI−1)2− 1

6

)
B1
(
ρf ·u− 1

2n0 rI
))

.

(3.32)

We now localize the path integral of the light gauge multiplet mode that was excluded
from the sum (3.29), using its Wilsonian effective action, which consists of the tree-level
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action coming from the light n = −n0 mode in 4d, as well as the one-loop action δS1-loop
derived above (in the bosonic sector, which is relevant for the localization calculation)
from integrating out the heavy modes. It is useful to keep in mind the different but
related problem of calculating the partition function of superconformal CS theory coupled
to matter onM3 [57, 76]. In that case the theory localizes onto arbitrary constant values
of the scalar σ and is supported by the auxiliary scalar H. The measure including the
one-loop determinant of the localizing action in the non-BPS directions is22∫

Dσ√
−ωthf

1 ωthf
2

∏
α+

4 sinh
(
πα+ · σ
−iωthf

1

)
sinh

(
πα+ · σ
−iωthf

2

)
, (3.33)

with ωthf
1,2 the moduli of the transversely holomorphic foliation (THF) [78] of M3, which

we expect to be

ωthf
1 = ωthf

2 = i
√

1− Ω
1 + Ω . (3.34)

Recalling from (3.21) that σi = ui/R, and adding the contribution from δS1-loop
in (3.32) (which although arises at one-loop in high-temperature EFT, contributes as a
“classical” piece in the localization computation), we obtain the final result for the three-
dimensional partition function

Z (τ) =
∫

Du

(−i τ)rk(G)

∏
α+

4 sinh2
(
πα+ · u
−i τ

)
exp (−Veff(u)) . (3.35)

Noting that the supersymmetric partition function and the Hamiltonian index are related
as [62, 65]

Z(τ) = e2πiτEsusy I(τ) , (3.36)

we see that the result (3.35) agrees precisely with the microscopic result (2.9)–(2.12).
We emphasize that while the above derivation of Veff in (3.32) applies to u near 0,

it can be easily extended to generic finite u by modifying the vector multiplet discussion.
For generic u, the non-Cartan components of the n = −n0 mode of the vector multiplet
are also heavy, and ought to be integrated out. Consequently the sum in (3.29) would no
longer have a prime, and we end up with V r

1 as in (2.13) rather than V1 in (3.32). This is
the EFT derivation of the finite-u potentials V1,2 found microscopically in [12].

On the other hand, when n0 = 0, the small-u discussion leading up to (3.32) needs to
be modified because now the chiral multiplets have light modes (corresponding to n = 0).
As in the discussion around (3.29) the light mode should be removed from the KK sum
and instead be included in the dynamical part (to be localized). Indeed, it is well-known
that for n0 = 0 the constant piece of the small-τ expansion coming from the u = 0 saddle
contains the (localized) S3 partition function of the dimensionally reduced chiral as well
as vector multiplets [49] (see [79–83] for earlier work on the connection between 4d indices
and S3 partition functions).

22Compare with section 5 of [77], noting that for squashed S3 with squashing parameter b one has ωthf
1 =

ib, ωthf
2 = ib−1. We leave the derivation of (3.34) from the metric (3.11) to future work.
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A technical remark is in order regarding our EFT derivation of (3.35). To reproduce
the desired asymptotics, we have sent ε(= γ

τ = 2πi
Ω−1) → 0, and hence Ω → ∞, when

evaluating the CS actions in appendix C. It would be interesting to have a formula of the
type (3.35) for γ → 0 at finite ε, which would imply that Ω and the resulting 3d geometry
would be finite-sized.23

Finally, as discussed in appendix D, we find that the effective potential for τ and σ

not necessarily equal is given by making the replacement

1
R2 →

1
τ σ

,
1
R
→ τ + σ

2τ σ (3.37)

in the effective potential (3.32). The singular pieces are indeed in agreement with the
microscopic calculations reported in [11, 12].

3.3 Rational points

We now turn our attention to the limit of τ approaching a rational point. In the discussion
of the previous subsection we used the fact that the radius of the circle R equals τ which
becomes small in the limit, so that we could use an effective three-dimensional description.
Now we are interested in τ̃ = mτ + n → 0, with n,m ∈ Z (with no common factor) as
in [13]. In terms of the variable τ̃ we have that ω = 2πiτ = 2πi(τ̃ − n)/m so that

Ω = 1 + ω

γ
= 1− 2πin

mγ
+ 2πiτ̃

mγ
, (3.38)

and the four-dimensional metric background (3.1) is now

ds2
4 = dt2E + dθ2 + sin2 θ

(
dφ1 −

2πn
mγ

dtE − i
(

1 + 2πiτ̃
mγ

)
dtE

)2

+ cos2 θ

(
dφ2 −

2πn
mγ

dtE − i
(

1 + 2πiτ̃
mγ

)
dtE

)2
.

(3.39)

In terms of the following new coordinates and new parameters,

γ̃ = mγ , Ω̃ = 1 + 2πiτ̃
γ̃

, φ̃i = φi −
2πn
γ̃
tE , (3.40)

the above metric is

ds2
4 = dt2E + dθ2 + sin2 θ

(
dφ̃1 − i Ω̃ dtE

)2
+ cos2 θ

(
dφ̃2 − i Ω̃ dtE

)2
, (3.41)

with φ̃1, φ̃2 being 2π-periodic as before, and the periodic identification going around the
time circle is (

tE , φ̃1 , φ̃2
)
∼
(
tE + γ̃

m
, φ̃1 −

2πn
m

, φ̃2 −
2πn
m

)
. (3.42)

23The recent work [84] presents such a derivation, although using a background different from ours. The
precise relation between the two backgrounds is not clear to us at the moment.
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The metric configuration (3.41) with the identifications (3.42) is simply a global identifica-
tion, or orbifold, of the configuration considered in the previous subsection with the new
parameters (γ̃, τ̃ , Ω̃) replacing (γ, τ,Ω).24

On the covering space, going around the time circle shifts t̃E → t̃E + γ̃ and φ̃i →
φ̃i+2πn. The latter identification can be trivialized by using the independent 2π-periodicity
of φ̃i, so that we have the identification

(
t̃E , φ̃1 , φ̃2

)
∼
(
t̃E + γ̃ , φ̃1 , φ̃2

)
. On this con-

figuration we can perform the dimensional reduction to three dimensions. The relevant
considerations of the previous subsection go through exactly as before with the replace-
ment (γ, τ,Ω) 7→ (γ̃, τ̃ , Ω̃). Actually, because the gauge holonomies on the cover wrap a
circle m times larger than the original S1, we also get a replacement uj → muj . More-
over, since ξI (which equals −n0rI/2 for (m,n) = (1, 0)) effectively plays the role of a
flavor chemical potential in our problem as mentioned around (2.38), we expect a similar
replacement −n0rI/2→ mξI . We can see this replacement arise more directly as follows.

We multiply the first term in (3.26) by m2

m2 , and the second term by m
m . This amounts

to γ → mγ and uj → muj as mentioned above, but also kY → mkY (which corresponds
to keeping only the singlet modes under the Zm quotient) as well as n0 → mn0. On
the other hand, writing Anm

Y in (3.17) in terms of τ̃ instead of τ amounts to yet another
replacement n0 → n0 + 2n

m . Combining these two effects yields the desired −n0rI/2→ mξI
replacement.

With the preceding substitutions in the results of the previous subsection, we thus
arrive at the potentials Ṽ2,1 in (2.37). We then take the Zm quotient which has two effects
as usual. Firstly it reduces the volume of the three-dimensional space, and secondly it
introduces new topologically non-trivial sectors in the path integral over the gauge-field
configurations. The change in calculations involving local gauge-invariant Lagrangians will
therefore be only a reduction in the action by a factor of m. This explains the reduction
of the effective potential by a factor of m as in (2.35).

Finally we discuss the constant terms (in τ̃) arising from the functional integral over
the dynamical gauge multiplet. There are a few subtleties. Firstly the actions like the
gravitational CS action will depend on the global properties of the orbifold. Then we need
to calculate the partition function of the orbifold space with a background graviphoton.
Assuming as in the previous subsection that the expected THF moduli arise, and that by
re-scaling and contour deformation (as discussed around (2.44)) the THF moduli can be
replaced with those of round S3, the calculation presumably reduces to an S3/Zm partition
function as in [51, 76, 85, 86], with the Zm action following from (3.42) to be

(
φ̃1, φ̃2

)
∼
(
φ̃1 −

2πn
m

, φ̃2 −
2πn
m

)
, (3.43)

which for n = 1 coincides with that of the lens space L(m,−1). Here one has to be
careful about how the measure on the space of constant scalars σi is affected by the four-
dimensional orbifold (3.42). We leave these interesting questions to future work, noting

24We learned about these orbifolds from a talk by O. Aharony at the Stony Brook seminar series in
November 2020 [40].
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that the result of these considerations indeed agrees with the microscopic answer (2.58),
with the O(τ̃) piece explained by the supersymmetric Casimir energy factor as before.

Note added. The paper [84], which appeared on the arXiv the same day as the first
version of this paper, has some overlap with our section 3. The paper [87], which appeared
on the arXiv soon after, has some overlap with our section 2.
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A Asymptotic estimates of the special functions

A.1 τ → 0

We first consider the limit τ → 0. More precisely, in the rest of this subsection we as-
sume arg(τ) is in compact domains avoiding integer multiples of π

2 as |τ | → 0.
For the Pochhammer symbol (q; q) the small-τ asymptotics is standard:

(q; q) ' 1√
−i τ

exp
(
− 2πi

24 τ −
2πi τ
24

)
(as |τ | → 0) . (A.1)

Recall that the symbol ' means that logarithms (on appropriate branches) of the two sides
(assumed to be non-zero) are equal to all orders in the small parameter (here in |τ |).

For the chiral multiplet elliptic gamma functions we have the following estimate, valid
for any r ∈ R, uniformly in z over compact subsets of R \ Z (see Proposition 2.11 of [46]
or equation (3.53) of [49]):

Γe (rτ+z)' exp
(
−2πi

(
B3 (z)

6τ2 +(r−1) B2 (z)
2τ +

(r−1)2− 1
6

2 B1 (z)+
(r−1)3− r−1

2
6 τ

))
,

(A.2)

as |τ | → 0. Here Bj(z) are the periodic Bernoulli polynomials defined, for z ∈ R through
their Fourier series expansion,

− (2πi)j

j! Bj(z) =
∑
k∈Z

′ e2πikz

kj
(z ∈ R , j ≥ 1) . (A.3)

The prime in the above formula means that k = 0 has to be omitted, and that in the j = 1
case — where the series is not absolutely convergent — the sum is in the sense of Cauchy
principal value.
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For x ∈ R\Z, we have Bj(x) = Bj({x}) with {·} := ·−b·c the fractional-part function.
When j > 1 this also holds for x ∈ Z (and so Bj(Z) = Bj(0)). When j = 1 on the other
hand B1(Z) = 0, while B1(0) = −1/2.

The Bernoulli polynomials are uniquely characterized by

B0(u) = 1, B′j(u) = jBj−1(u), Bj(0) = Bj(1) for j > 1 , (A.4)

and the first three non-trivial ones are explicitly

B1(x) = x− 1
2 ,

B2(x) = x2 − x+ 1
6 ,

B3(x) = x3 − 3
2x

2 + 1
2x .

(A.5)

The connection between Bj and the Bernoulli polynomials can be verified by first
noting that for j = 1 the left-hand side of (A.3) is essentially the Taylor expansion of the
logarithm function, and then observing that Bj are uniquely characterized by

B0(u) = 1, B′j(u) = jBj−1(u), Bj(0) = Bj(1) for j > 1 .

With the aid of (A.3) one can easily prove relations such as

C−1∑
`=1

B3

(
x+ `

C

)
= B3 (Cx)

C2 −B3 (x) , (Raabe’s formula) (A.6)

and
n−1∑
`=1

(
B2

(
x+m

`

n

)
−B2

(
x−m `

n

))
= 0 ,

n−1∑
`=1

(
B2

(
`

n

)
B2

(
x+m

`

n

)
−B2

(
`

n

)
B2

(
x−m `

n

))
= 0 ,

(A.7)

valid for m,n ∈ Z>0 relatively prime and x ∈ R, by using the Fourier expansion of the
Bernoulli functions, and swapping the sum over Fourier modes with the sum over `.25

The estimate (A.2) is particularly useful for the chiral multiplet gamma functions
in (2.6) when the integral is dominated by the 1-center holonomy configurations with zi −
zj = 0. This is because the complex phase 2πn0/3 shifts the argument of the chiral multiplet
gamma functions safely into the interior of the domain z ∈ R \ Z where the estimate is
uniformly valid. On the other hand, since the vector multiplet gamma functions in (2.6)
lack such phase shifts in their arguments, the estimate (A.2) is not appropriate for them
near the 1-center holonomy configurations when τ → 0.

25Note that similar operations with B1 are not allowed, because its Fourier expansion is not absolutely
convergent. This is the source of sophistication of the Dedekind sum defined below in terms of B1 — or
more specifically the source of the nontrivial dependence of (A.18) on n. (Readers familiar with Eisenstein
series might recall similar “anomalous” behavior from E2 and its associated elliptic functions.) A closely
related fact is that Bj>1 are continuous, but B1 has discontinuities on Z.
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The estimate (A.2) is not uniformly valid, with respect to z, over intervals containing
Z. There is a well-known improvement of it around z = 0 however, which is valid uni-
formly over compact subsets of (−1, 1), and we will use for vector multiplet elliptic gamma
functions in the index. It reads (see Proposition 2.10 of [46] or equation (2.16) of [49])

Γe(rτ + z) ' e2πiR0(rτ+z;τ) Γh(rτ + z; τ, τ), (A.8)

where
R0 (z; τ) = − z3

6τ2 + z2

2τ −
(
1 + 5τ2) z

12τ2 + 1
12τ + τ

12 , (A.9)

and Γh(x;ω1, ω2) is the hyperbolic gamma function.
Using the estimate (A.8) and the “product formula”

1
Γh (x;ω1, ω2) Γh (−x;ω1, ω2) = −4 sin

(
πx

ω1

)
sin
(
πx

ω2

)
, (A.10)

the next estimate follows (cf. equation (2.18) of [49]):

1
Γe (z) Γe (−z) ' e−4πiR+

0 (z;τ) 4 sin
(
πz

τ

)
sin
(
−πz
τ

)
, (A.11)

valid uniformly in z over compact subsets of (−1, 1), with

R+
0 (z; τ) := R0(z; τ) +R0(−z; τ)

2 = z2

2τ + 1
12τ + τ

12 . (A.12)

Note that since Γe(z + 2τ) Γe(−z + 2τ) = 1
Γe(z) Γe(−z) , and sin(ix) = i sinh(x), we can

write (A.13) alternatively as

Γe (z + 2τ) Γe (−z + 2τ) ' e−4πiR+
0 (z;τ) 4 sinh2

(
πz

−iτ

)
. (A.13)

While we have presented two separate estimates (A.2) and (A.13) for the chiral and
vector multiplet gamma functions, both of them can in fact be derived from the “central
estimate” (A.8). Deriving (A.2) from the central estimate requires only an extra step to
simplify the hyperbolic gamma functions arising from (A.8) using Corollary 2.3 of [46], as
explained in Proposition 2.11 there.

A.2 τ → Q

We now consider
τ̃ ≡ mτ + n→ 0 , (A.14)

with m,n relatively prime. More precisely, in the rest of this subsection we assume
that arg(τ̃) is in compact domains avoiding integer multiples of π/2 as |τ̃ | → 0.

To obtain the asymptotics of the Pochhammer symbol we note that for integer a, b, c, d
satisfying ad− bc = 1 with c > 0, we have

η

(
aτ + b

cτ + d

)
= exp

(
2πi

(
a+ d

24c −
1
8 −

s (d, c)
2

))
(cτ + d)1/2 η (τ) , (A.15)
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with s(d, c) the Dedekind sum

s (d, c) =
c−1∑
`=1

`

c
B1

(
d
`

c

)
. (A.16)

Since the gcd(m,n) = 1, there exist integers a, b such that an−bm = 1. Now we use (A.15)
with (c, d) = (m,n). Noting that aτ + b = a(τ̃ − n)/m+ b = aτ̃/m− 1/m, we obtain

(q; q) ' 1√
−iτ̃

exp
(
− 2πi

24mτ̃ −
2πi τ̃
24m + iπs (n,m)

)
, (A.17)

in the limit of our interest. Our Dedekind sum is explicitly

s (n,m) =
m−1∑
`=1

`

m
B1

(
n
`

m

)
. (A.18)

To obtain an estimate for the elliptic gamma function we first note the identity [45]

Γ(ζ; q, q) =
2(m−1)∏
`=0

Γ(ζq`; qm, qm)m−|`−(m−1)| =
2(m−1)∏
`=0

Γ(ζe−2πin `
m q̃

`
m ; q̃, q̃)m−|`−(m−1)|,

(A.19)
with q̃ = e2πiτ̃ .

Using (A.2) on the right-hand side of (A.19) we get
1

2πi logΓe (z)

∼− 1
6τ̃2

(
m−1∑
`=1

`

(
B3

(
z+ n

m
−n `

m

)
+B3

(
z+ n

m
+n `

m

))
+mB3

(
z+ n

m

))

− 1
2τ̃

(
n−1∑
`=1

`

((
`−1
m
−1
)
B2

(
z+ n

m
−n `

m

)
+
(

2m−`−1
m

−1
)
B2

(
z+ n

m
+n `

m

))

+m
(
m−1
m
−1
)
B2

(
z+ n

m

))

− 1
2

(
m−1∑
`=1

`

((
`−1
m
−1
)2
− 1

6

)
B1

(
z+ n

m
−n `

m

)
+
((

2m−`−1
m

−1
)2
− 1

6

)
B1

(
z+ n

m
+n `

m

)

+m
((

m−1
m
−1
)2
− 1

6

)
B1

(
z+ n

m

))

−τ̃

(
m−1∑
`=1

`

(
1
6

(
`−1
m
−1
)3
− 1

12

(
`−1
m
−1
)

+ 1
6

(
2m−`−1

m
−1
)3
− 1

12

(
2m−`−1

m
−1
))

+m
(

1
6

(
m−1
m
−1
)3
− 1

12

(
m−1
m
−1
)))

.

(A.20)

Now using the identity,26 for gcd(m,n)= 1, k > 1,
m−1∑
`=1

`

(
Bk

(
x− n `

m

)
+Bk

(
x+ n

`

m

))
+mBk (x) = 1

mk−2 Bk(mx) , (A.21)

26See equation (4.54) in [13] or equation (3.12) in [37]. A simple proof is possible via (A.3).
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and (A.3), we can simplify (A.20) to

Γe (z) ' exp
(
−2πi
m

(
B3(mz)

6τ̃2 − B2(mz)
2τ̃ + C(m,n, z)− 1

12 τ̃
))

, (A.22)

for mz ∈ R \Z, as τ̃ → 0. Here C(m,n, z) stands for (−m times) the fourth and fifth lines
of the right-hand side of (A.20).

Generalizing the above derivation in a straightforward manner leads to

Γe (z+rτ)' exp
(
−2πi
m

(
B3 (mz−nr)

6τ̃2 +(r−1) B2 (mz−nr)
2τ̃ +C (m,n,z,r)+

(r−1)3− r−1
2

6 τ̃

))
,

(A.23)

for r ∈ R. This is the analog of (A.2) for τ̃ → 0.
The explicit expression for C(m,n, z, r) is

C (m,n, z, r) = −m2

[m−1∑
`=1

`

(((
`+ r − 1

m
− 1

)2
− 1

6

)
B1

(
z + n

m
− n`+ r

m

)

+
((2m− `+ r − 1

m
− 1

)2
− 1

6

)
B1

(
z + n

m
+ n

`− r
m

))

+m

((
m+ r − 1

m
− 1

)2
− 1

6

)
B1

(
z + n

m
− nr

m

)]
.

(A.24)

The estimate (A.23) is important to derive our results for the asymptotic expansion of
the index near the roots of unity. It is valid uniformly over compact subsets of z ∈ R \ Z

m ,
because using (A.2) on the right-hand side of (A.19) is allowed only if z − n l

m /∈ Z for
` = 0, . . . ,m− 1.

We can also use (A.19) for z near 0. More precisely, on the r.h.s. of (A.19), for
fixed z ∈ (− 1

m ,
1
m), we can use (A.13) for the ` = 0,m terms, and use (A.2) for all other `.

With the aid of the “reflection formula”

Γh
(
x+ ω1 + ω2

2 ;ω1, ω2

)
Γh
(
−x+ ω1 + ω2

2 ;ω1, ω2

)
= 1. (A.25)

which gets rid of the hyperbolic gammas arising from ` = m, and using the “product
formula” (A.10) to trade the hyperbolic gammas arising from ` = 0 for hyperbolic sines,
we obtain

1
Γe (z) Γe (−z) ' exp

(
−4πi
m
R̃+

0 (z; τ̃) + 4πis (n,m)
)

4 sinh2
(
πz

−iτ̃

)
, (A.26)

where
R̃+

0 (z; τ̃) := m2z2

2τ̃ + 1
12τ̃ + τ̃

12 . (A.27)

This is the analog of (A.13)–(A.12) for τ̃ → 0, and is similarly useful (i.e. uniformly valid)
in a neighborhood of z = 0.

An estimate similar to (A.26) for z near general nonzero Z
m can be obtained as well. We

focus for simplicity on the n = 1 case (i.e. τ → − 1
m). We write z = `0/m+ z′ and appeal
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to (A.19). We have to use the estimate (A.8) for ` = `0, `0 +m, and the estimate (A.2) for
all other ` in the product (A.19) for Γe(z). Similarly we have to use the estimate (A.8) for
` = −`0 + m,−`0 + 2m, and the estimate (A.2) for all other ` in the product for Γe(−z).
The result is (up to a constant phase that we suppress)

1
Γe(z)Γe(−z) ' exp

(
−2πi

[ 1
6 +m2z′2

mτ̃
− 1

2 + τ̃

6m

])
×[

Γh
(
z′ + `0

m
τ̃, τ̃ , τ̃

)`0+1
Γh
(
−z′ + m− `0

m
τ̃, τ̃ , τ̃

)m−`0+1

Γh
(
z′ + `0 +m

m
τ̃, τ̃ , τ̃

)m−`0−1
Γh
(
−z′ + 2m− `0

m
τ̃, τ̃ , τ̃

)`0−1]−1

.

(A.28)

Using the reflection formula (A.25) we can simplify the above product of the hyperbolic
gamma functions to find (up to the neglected constant phase)

1
Γe (z) Γe (−z) ' exp

(
−2πi

[ 1
6 +m2z′2

mτ̃
− 1

2 + τ̃

6m

])
×

[
Γh
(
z′ + `0

m
τ̃, τ̃ , τ̃

)
Γh
(
−z′ + m− `0

m
τ̃, τ̃ , τ̃

)]−2
.

(A.29)

Now we use27

[Γh (x, τ̃ , τ̃) Γh (−x+ τ̃ , τ̃ , τ̃)]−2 = −4 sinh2
(
πx

−i τ̃

)
, (A.30)

to simplify (A.29) to (up to the neglected constant phase)

1
Γe (z) Γe (−z) ' exp

(
−2πi

[ 1
6 +m2z′2

mτ̃
+ τ̃

6m

])
4 sinh2

π
(
z′ + `0

m τ̃
)

−i τ̃

 . (A.31)

B Supersymmetric three-dimensional Chern-Simons actions

In this appendix we present the bosonic part of supersymmetrized three-dimensional Chern-
Simons actions. We work in the context of three-dimensional N = 2 supersymmetric gauge
theory coupled to off-shell three-dimensional supergravity. We first collect all allowed
Chern-Simons terms including background and dynamical gauge fields, and then write the
corresponding supersymmetrizations, following the presentation of appendix A of [26]. We
then evaluate the actions for the field configurations that we consider in section 3.

The CS terms have the form
1
π2

∫
M3
Ax ∧ dAy , (B.1)

where x and y run over all possible gauge fields and with a coupling that we discuss below.
Below we present the bosonic parts of the supersymmetric completions of the various cases

27This relation can be proven using the reflection formula (A.25) together with Γh(x + τ, τ, τ) =
2 sin

(
πx
τ

)
Γh(x, τ, τ).
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x-y, following [26, 56]. Firstly we have the gauge-gauge and gauge-R CS terms,

sijg-g = 1
π2

∫
M3

d3x
√
g
(
εµνρAiµ ∂νAjρ + 2iDi σj

)
,

sig-R = 1
π2

∫
M3

d3x
√
g

(
εµνρAiµ ∂ν

(
A(R)
ρ − 1

2vρ
)

+ iDiH + i σ
i

4
(
R(3) + 2vµvµ + 2H2

))
.

(B.2)
Here i, j are Cartan labels for the gauge group, A is the three-dimensional gauge field,
D is the D-term auxiliary scalar of the three-dimensional N = 2 vector multiplet, σ is
the (Coulomb branch) scalar of the three-dimensional N = 2 vector multiplet, A(R) is the
three-dimensional background gauge field for the R current, vµ = −i εµνρ ∂ν cρ is the Hodge
dual of the graviphoton cµ (the background U(1)KK gauge field), H is the scalar in the
supergravity multiplet, and R(3) is the Ricci scalar ofM3.

Then we have the background R-R CS terms and the gravitational CS term for the
spin connection ω,

RM3 = 1
π2

∫
M3

d3x
√
g

(
εµνρ

(
A(R)
µ − 1

2vµ
)
∂ν
(
A(R)
ρ − 1

2vρ
)

+iH2
(
R(3)+2vµvµ+2H2

))
,

GM3 = 1
π2

∫
M3

d3x
√
g
(
εµνρTr

(
ωµ∂νωρ− 2

3ωµωνωρ
)

+4εµνρ
(
A(R)
µ − 3

2vµ
)
∂ν
(
A(R)
ρ − 3

2vρ
))
.

(B.3)
Finally we have the CS actions involving the graviphoton. These are gauge-KK, R-KK,

and KK-KK, whose bosonic parts read [26]

sig-KK = 1
π2

∫
M3

d3x
√
g
(
εµνρAiµ ∂ν cρ − iDi + iσiH

)
,

sR-KK = 1
π2

∫
M3

d3x
√
g

(
i vµ

(
A(R)
µ − 1

2vµ
))
− i

2 v
µ vµ + i

2 H
2 − i

4 R
(3)
)
,

sKK-KK = 1
π2

∫
M3

d3x
√
g (i vµ cµ − 2 iH) = 1

π2

∫
M3

d3x
√
g (εµνρ cµ ∂ν cρ − 2 iH) .

(B.4)

The equations (B.2), (B.3), (B.4) together make up the complete list of CS terms. As we
explain below, when we have a KK reduction these actions can be combined together into
a succinct expression in a natural manner.

The coefficients of the above actions are obtained by calculating the coefficients of the
CS pieces, which are obtained by integrating out all massive fermions that couple to the
corresponding gauge fields. Integrating out a fermion f with real-mass mf and charges efx, efy
under the gauge fields Ax,Ay generates the term 1

π2
∫
M3
Ax ∧ dAy with coefficient given

by the one-loop exact formula (we follow the conventions of [25])

− iπ
8
∑
f

sgn (mf) efx efy . (B.5)

The contribution of the fermion to the coefficient of the gravitational CS term is given by
(see appendix A of [56])

− iπ
192

∑
f

sgn(mf) . (B.6)
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The full effective action of the theory is the sum of the actions (B.2), (B.3) (B.4) with
coefficients obtained by summing (B.5), (B.6) over all the massive fermions in the theory.
(The actions with x and y different appear twice in the final action — as x-y and y-x —
and therefore need to be multiplied by a factor of two.)

The situation of interest in section 3 is the Kaluza-Klein reduction of a four-dimensional
theory on a circle of radius R. The bosonic fields in the three-dimensional vector multiplet
are written in term of the 4d fields in (3.19), and the three-dimensional fermions are the
reduction of the corresponding 4d fermions. Consider a fermion of R-charge rf transforming
in a representation of weight ρf under the gauge group. The tree-level real-mass of a KK
mode of this fermion is given by (in the convention of [25])

mf = −
(
ρf ·AY − pY − rfAnm

Y −
1
2V

nm
Y

)
, (B.7)

where Anm, V nm are the 4d background R-gauge fields given in (3.1). Note that pY also
enters (B.5) as the charge of the fermion under U(1)KK.28 Since we take R→ 0 at the end
of the calculations, it is enough to keep only the singular pieces in the formula (B.7).

Using these relations we proceed to write the three-dimensional effective action directly
in terms of the dynamical 4d fields. The contribution of the actions coming from (B.2)
and (B.4) to the full effective action can be written as the sum of the following two actions,

S̃ f
g-g = −iπ sgn (mf)

8
(
ρif ρ

j
f s

ij
g-g + 2 pY ρif sig-KK + p2

Y sKK-KK
)

= −iπ sgn (mf)
8

(
(ρf ·AY − pY )2

∫
M3

d3x
√
g (i vµcµ − 2iH)

+ 2 (ρf ·AY − pY )
∫
M3

d3x
√
g (−i vµ (ρf ·Aµ) + i (ρf ·D))

+
∫
M3

d3x
√
g (εµνρ (ρf ·Aµ) ∂ν (ρf ·Aρ)) , (B.8)

2 S̃ f
g-R = −2 iπ sgn (mf)

8 rf
(
ρif s

i
g-R + pY sR-KK

)
= −2 iπ sgn (mf)

8 rf(
(ρf ·AY − pY )

∫
M3

d3x
√
g

(
−i vµ

(
A(R)
µ − 1

2vµ
)

+ i 1
2v

µ vµ − i 1
2H

2 + i 1
4R

(3)
)

+
∫
M3

d3x
√
g

(
εµνρ (ρf ·Aµ) ∂ν

(
A(R)
ρ − 1

2vρ
)

+ i (ρf ·D)H
))

. (B.9)

28In the Euclidean context that we discuss here, the background fields Anm, V nm, and the effective
radius R are complex. The definition (B.7) is thought of as an analytic continuation, and is read off from
the coupling of the fermion to the other fields and parameters in the component of the covariant derivative
along the KK direction Y . The quantity mf appears in the main text in formulas for the one-loop correction
From the expression e.g. (3.26), we see that it appears only as the function sgn(mf). Then the sgn function
needs to be appropriately defined. As discussed below equation (3.28), we can do that by defining it for
real R, and then continuing the formulas to complex R.
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Finally we specialize to the BPS configurations considered in the main text, given
in (3.21). The above two terms take the following value

S̃f
g-g = −iπ sgn(mf)

8R2
(
ρf · u− kY

)2
AM3 ,

2 S̃f
g-R = −iπ sgn(mf)

8R 2 rf
(
ρf · u− kY

)
LM3 ,

(B.10)

where AM3 and LM3 are functions of the three-dimensional background,29

AM3 = 1
π2

∫
M3

d3x
√
g (i vµ cµ − 2 iH) ,

LM3 = 1
π2

∫
M3

d3x
√
g

(
−i vµA(R)

µ + i vµ vµ − i 1
2H

2 + i 1
4R

(3)
)
.

(B.11)

We now turn to the remaining terms in the full action, namely those coming from the
terms in (B.3),

Sf
R-R = −iπ sgn (mf)

8

(
r2
f −

1
6

)
RM3 ,

Sf
grav = −iπ sgn (mf)

192 GM3 .

(B.12)

Note that both RM3 and GM3 contain A(R) ∧ dA(R) terms, and it is the sum of the
corresponding coefficients that is fixed by (B.5). Since the coefficient in Sf

grav is fixed
by (B.6), the shift −1/6 in the coefficient of Sf

R-R serves to cancel the A(R) ∧ dA(R) term
coming from Sf

grav. The final result for the action of the BPS configurations up to O(R0)
obtained by integrating out a fermion f is given by the sum of the actions in (B.10), (B.12).

C Values of supersymmetrized Chern-Simons actions

In this appendix we record the values of various terms in the supersymmetrized actions of
appendix B evaluated on the configurations discussed in section 3. We first recall from sec-
tion 3 the values of the various fields entering the actions. The three-dimensional metric is

ds2
3 = dθ2 + sin2 θ dφ2

1 + cos2 θ dφ2
2 − c2 , (C.1)

the graviphoton and its Hodge dual are

c = −i Ω√
1− Ω2

(
sin2 θ dφ1 + cos2 θ dφ2

)
, v = 2 i√

1− Ω2
c . (C.2)

The auxiliary background supergravity multiplet fields are

H = − i√
1− Ω2

, ARµ =
(
τ

R
− n0

2R + i√
1− Ω2

)
cµ . (C.3)

The four-dimensional gauge fields are

AiY = ui
R
, Di = 0 , (C.4)

29To compare with [26] note that AM3 = −Athere
M3 and LM3 = iLthere

M3 .

– 40 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
7

The Chern-Simons action for c

SCS (c) =
∫
M3

c ∧ dc = i
∫
M3

d3x
√
g vµ cµ , (C.5)

evaluates to
1

4π2 S
CS (c) == Ω2

1− Ω2 = −1 + O (γ) . (C.6)

The other building blocks for the actions of the background fields in the three-dimensional
theory are given below, including their limiting behavior as γ → 0 with τ fixed
(i.e. as Ω→∞),

1
4π2 S

(H) = i
4π2

∫
M3

d3x
√
g H = 1

2(1− Ω2) = O(γ) , (C.7)

1
4π2 S

(v) = 1
4π2

∫
M3

d3x
√
g vµ vµ = Ω2

(1− Ω2)
3
2

= O(γ) , (C.8)

1
4π2 S

(H2) = 1
4π2

∫
M3

d3x
√
g H2 = − 1

2(1− Ω2)
3
2

= O(γ) , (C.9)

1
4π2 S

(R) = 1
4π2

∫
M3

d3x
√
g R(3) = − −6 + 8Ω2

2(1− Ω2)
3
2

= O(γ) . (C.10)

D Dimensional reduction for the case Ω1 6= Ω2

We begin by writing the background configuration in (3.1) as a KK compactification to
three dimensions, i.e. a circle fibration on a 3-manifold M3. We have

ds2
4 = ds2

3 + e2φ (dtE + c̃ )2 , (D.1)

where the metric on M3 is

ds2
3 = g̃µν dxµ dxν = dθ2 + sin2 θ dφ2

1 + cos2 θ dφ2
2 − e2φ c̃ 2 , (D.2)

and the graviphoton and KK scalar are

e2φ = 1− Ω2
1 sin2 θ − Ω2

2 cos2 θ ,

c̃ = c̃µ dxµ = −i e−2φ
(
Ω1 sin2 θ dφ1 + Ω2 cos2 θ dφ2

)
.

(D.3)

For the case Ω1 = Ω2 = Ω, we have that e2φ = 1 − Ω2, so that the graviphoton c defined
in (3.9) is related to c̃ as c = eφ c̃. The magnitude of the volume form in three dimensions is

√
g̃ = 1

2 e−φ sin 2θ . (D.4)

The associated Chern-Simons action

SCS ( c̃) =
∫
M3

c̃∧dc̃= i
∫
M3

d3x
√
g̃ ṽµ c̃µ (D.5)

– 41 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
7

(where ṽ=−i∗dc̃ is the Hodge dual) evaluates to

SCS ( c̃) = 4π2 Ω1 Ω2

∫ π/2

0

sin2θ(
1−Ω2

1 sin2 θ−Ω2
2 cos2 θ

)2 dθ= 4π2 Ω1Ω2(
1−Ω2

1
)(

1−Ω2
2
) . (D.6)

For the identification between the four-dimensional and the three-dimensional fields, we
follow the treatment of [34] applied to the metric (D.1). The result is

1
2 eφ ṽµ = V nm

µ − V nm
tE

c̃µ , H̃ = e−φ VtE , ARµ = Anm
µ −Anm

tE
c̃µ + 1

2 eφ ṽµ . (D.7)

The values of these fields are

eφ ṽµ = −2V nm
Y cµ = 2 i c̃µ , H̃ = −i e−φ , (D.8)

ARµ = i
(1

2 (Ω1+Ω2)−1
)
c̃µ+ 1

2 eφ ṽµ = i
2 (Ω1+Ω2) c̃µ . (D.9)

We can now calculate the various actions as in appendix C, and we find that, in the γ → 0,
Ω→∞ limit we have the effective replacement

1
R2 →

1
τ σ

,
1
R
→ τ + σ

2τ σ (D.10)

in the effective potential (3.32).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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