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1 Introduction

Nowadays entanglement is a central theme in the description of extended quantum systems
such as in field theories and many-body condensed matter. Different communities, both
experimental and theoretical ones, started looking into entanglement for so many different
reasons that it is impossible to give the right credit to all the ideas and concepts that came
to the light in the last two decades or so. Just to quote few examples, entanglement is an
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extremely powerful tool to characterise different phases of matter [1–3], in particular refer-
ence to topological order [4–7]. It is also a fundamental object to understand equilibration
and thermalisation of isolated non-equilibrium quantum systems [8, 9]. It turned out to
have a key role in the black hole information loss paradox [10–13] and confinement in gauge
theories [14–16]. Furthermore in the AdS-CFT correspondence, the Ryu-Takayanagi for-
mula [17–19] opened the route for a deeper understanding of the emergence of space-time
from the entanglement itself [20]. Finally, the recent pioneering experiments measuring the
many-body entanglement in cold-atom and ion-trap settings [8, 21–25] further boosted the
field. A pivotal contribution to all these developments, central to both high energy and
condensed matter, came from two dimensional conformal field theory (CFT) that led to
a pletora of remarkable universal results for many entanglement related quantities [26–40]
(here we mention only some references that will be useful later on), in particular for the
celebrated entanglement entropy defined as S = − tr ρA log ρA, with ρA the reduced density
matrix (RDM) of the subsystem A.

The large majority of these studies concerned the entanglement in a single quantum
state. However, quantum information ideas provide also insightful ideas when considering
two different quantum states. In this respect, the most studied quantity so far is surely
the relative entropy [41, 42]

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ), (1.1)

for two (reduced) density matrices ρ and σ. The relative entropy is often interpreted as
a measure of distinguishability of quantum states. The relative entropy attracted a lot of
interests from the field theory community, see e.g. [33–36, 43–57], also, but not only, for its
relation with the modular Hamiltonian [58, 59] and quantum null energy condition [60].

However, the relative entropy has a major drawback as a measure of distinguishability.
Indeed, a proper measure of the difference between states should be a metric in a mathe-
matical sense, meaning it should be nonnegative, symmetric in its inputs, equal to zero if
and only if its two inputs are the same, and should obey the triangular inequality. Clearly,
the relative entropy does not match these requirements (it is not even symmetric in its
entries). An important family of distances, all satisfying the above rules, is given by the
Schatten distances

Dn(ρ, σ) = 1
21/n ‖ρ− σ‖n, (1.2)

where n ≥ 1 is a generic real parameter. Here || · ||n stands for the n-norm, see below. It
is well known that the trace distance D(ρ, σ) = 1

2‖ρ− σ‖1 (i.e. (1.2) for n = 1) has several
properties that makes it special and more effective compared to the others values of n and
even compared to other distances, see e.g. the examples and discussions in refs. [38, 61–65].
Also the Schatten distances have been studied in field theories [37, 38, 65–69], but not as
much as the relative entropy, most likely because of the more difficult replica approach (see
below) necessary for their determination.

In very recent times, it has been also understood that many genuine quantum features
can be characterised by studying the relation between entanglement and symmetries and in
particular how entanglement is shared between the various symmetry sectors of a theory [23,
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70, 73, 77]. To date there are many results concerning the resolution of the entanglement
in a given state [73, 77–94, 100–103], but none for the distinguishability of two different
states. The goal of this work is to start filling this gap by studying both the relative
entropies and the distances in the various symmetry sectors of a U(1)-symmetric theory.
The main physical reason why we are interested in this issue is to have a finer description
of the similarity between states. To be specific, in several different contexts (e.g. for the
equilibration after a quench [63] and to test lattice Bisognano Wichmann entanglement
Hamiltonians [65]) it is fundamental to study how one reduced density matrix approach
another one in the thermodynamic limit (while the full density matrices are still very
distant). Such asymptotic approach is often investigated by studying the scaling of relative
entropies and distances with the subsystem size `. However, it is very natural to wonder,
whether the distance between the symmetry resolved reduced density matrices can stay
finite for large ` in some sectors while the same distance for the entire RDMs tends to zero.
For this to be possible, the considered sector must have a very little weight (in `) to ensure
that total distance goes to zero; this requirement is not at all odd because, as we shall
see, the probability of the various sectors is Gaussian (with a variance proportional only to
log ` for the states of interest here). As a consequence, if this would happen, an observable
fine tuned on that symmetry sector would have a different value on the two states.

Studying in general the symmetry resolved distinguishability of reduced density ma-
trices is a very ambitious aim. Here, we only consider a much more modest problem and
focus on low-lying excited states of conformal field theories and characterise their relative
entropies and distances. To do so, we have to put together several pieces of a puzzle al-
ready present in the literature, namely: (I) the construction of the RDM in excited states
of CFT [39, 40], (II) replica trick for relative entropies [33–36] and distances [37, 38], (III)
the symmetry resolution of these density matrices via charged moments [73, 77]. This pro-
gram presents a few technical and conceptual obstacles that will be discussed and tackled
in the remaining of the paper

The paper is organised as follows. In section 2, we recap the known tools for the
relative entropies and distances and we provide a precise notion their symmetry resolution.
In section 3, we develop our CFT approach to these symmetry resolved quantities, derive
the OPE of charged twist fields, and show equipartition of both relative entropies and
distances. In section 4, we explicitly compute the universal CFT scaling function quantities
for the field theory of compact boson (aka Luttinger liquid). We eventually exploit the
knowledge of these functions for the explicit determination of symmetry resolved relative
entropies and distances in sections 5 and 6 respectively. Finally, section 7 contains our
conclusions and a few outlooks. Some technical details are relegated to two appendices.

2 Symmetry resolved relative entropies and distances

In this section, we recap the notion of symmetry resolution of entanglement measures and
provide new definitions for the measures of the subsystem distinguishability of two states
within the symmetry sector. Namely we define symmetry resolved relative Rényi entropies
and subsystem Schatten distances.
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Let us consider a quantum theory which admits the following decomposition of the
Hilbert space H

H =
⊕
q

Hq, (2.1)

where q is an index which parametrises the sector Hq (although we will main interested
in decompositions into a direct sum of irreducible representations of a group associated
with the internal symmetries, this is not yet a required assumption; decomposition of non
symmetric states is also a useful idea, see e.g. [91]). Let us denote by Πq the linear projector
onto the sector Hq under consideration. For any density matrix ρ satisfying tr(Πqρ) 6= 0,
we can define a conditioned density matrix ρ(q) as

ρ(q) ≡ ΠqρΠq

tr(ΠqρΠq)
, (2.2)

where the denominator ensures the normalisation tr(ρ(q)) = 1. Whenever [ρ,Πq] = 0, it
holds ΠqρΠq = ρΠq = Πqρ. Hereafter, we focus on symmetric states, i.e. such ρ commutes
with all Πq, so that we can decompose the density matrix in a block diagonal form

ρ =
∑
q

p(q)ρ(q), p(q) = tr(ρΠq), (2.3)

where p(q) is the probability of the q sector. The symmetry resolved Rényi entropies are
then

Sn(q) = 1
1− n logTr[ρ(q)n], (2.4)

that in the limit n → 1 reduce to the von Neumann entropy S(q) ≡ S1(q). The latter
satisfies the important sum rule [23, 61]

S =
∑
q

p(q)S(q)−
∑
q

p(q) log p(q), (2.5)

The two terms in (2.5) are usually referred to as configurational and number entanglement
entropy, respectively [23]. The former represents the (weighted) sum of the entropies in
each charge sector and the latter is the entropy due to the fluctuations of the charge between
the two subsystems. The two terms have their own interest in the literature [104–111], but
will not be discussed here.

Let us now consider two density matrices ρ and σ; we can use the relative entropy (1.1)
for each sector q, i.e.,

S(ρ‖σ)(q) ≡ S(ρ(q)‖σ(q)) = tr(ρ(q) log ρ(q))− tr(ρ(q) log σ(q)), (2.6)

as a measure of distinguishability between the states in that sector, on the same lines of
what normally done for the total density matrix. In terms of the total density matrices
and projectors S(ρ‖σ)(q) may be written as

S(ρ‖σ)(q) ≡ −tr(ρ log σΠq)
tr(ρΠq)

+ tr(ρ log ρΠq)
tr(ρΠq)

− log tr(ρΠq)
tr(σΠq)

. (2.7)
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The symmetry resolved relative entropies satisfy the sum rule

S(ρ‖σ) =
∑
q

pρ(q)S(ρ‖σ)(q) +
∑
q

pρ(q) log p
ρ(q)
pσ(q) , (2.8)

where
pρ(q) ≡ tr(ρΠq), pσ(q) ≡ tr(σΠq). (2.9)

Following refs. [33–36], the relative entropy can be obtained as the replica limit n → 1 of
the n-th Rényi entropy of the sector q

Sn(ρ‖σ)(q) ≡ Sn(ρ(q)‖σ(q)) = 1
1− n log tr(ρ(q)σ(q)n−1)

tr(ρ(q)n)

= 1
1− n log tr(ρσn−1Πq)(tr(ρΠq))n−1

tr(ρnΠq)(tr(σΠq))n−1 . (2.10)

(Actually also other more physical forms of Rényi relative entropies exist, see e.g. [33], but
from a replica perspective they just represent an inessential complication.)

On the same line, we can define the symmetry resolved Schatten n-distance Dn(ρ, σ) as

Dn(ρ, σ)(q) ≡ Dn(ρ(q), σ(q)) = 1
21/n ‖ρ(q)− σ(q)‖n, (2.11)

It is defined in terms of the n-norm of an operator Λ

‖Λ‖n ≡
(∑

i

λni

)1/n

, (2.12)

with λi being the eigenvalues of
√

Λ†Λ. We recall that for infinite dimensional Hilbert
spaces, not all distances are equivalent, and thus one has in general different notions of
indistinguishability of states. Moreover one has to be particularly careful on how the
states are regularised in the continuum limit, otherwise the distance can diverge or going
to zero in an undesired way, see e.g. refs. [37, 38] for practical examples. Unfortunately,
the natural definition (2.11) of distances between sectors is untreatable analytically (and
also very difficult numerically). For this reason, we introduce also another notion of (still
unnormalised) symmetry resolved distance as

D′n(ρ, σ)(q) ≡ 1
21/n ‖Πq(ρ− σ)‖n = 1

21/n (tr (|ρ− σ|nΠq))1/n. (2.13)

As we shall see, D′n is analytically treatable and it is related to the total n-distance by the
following sum rule ∑

q

(D′n(ρ, σ)(q))n = (Dn(ρ, σ))n. (2.14)

2.1 Reduced density matrices and charged moments

Until this point, everything is valid for arbitrary density matrices, independently of their
origin. Here we are interested in entanglement properties and so to the case when the
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density matrices correspond to spatial subsystems of a larger system in a pure state |Ψ〉,
with ρ = |Ψ〉 〈Ψ|. Such spatial bipartition induces the decomposition of the Hilbert space
H = HA ⊗HB so that the reduced density matrix of the subsystem is

ρA ≡ trB(|Ψ〉 〈Ψ|). (2.15)

Now we consider a system having an internal U(1) symmetry, meaning that the state ρ
commutes with a local charge operator Q [73] [ρ,Q] = 0. Taking the partial trace of the
previous relation, one gets

[ρA, QA] = 0, (2.16)

i.e. ρA has a block diagonal form with blocks corresponding to the eigenvalues q of QA. An
effective way to write the projectors Πq, particularly useful for field theory calculations, is
through Fourier transform

Πq =
∫ π

−π

dα

2π e
iαQAe−iαq. (2.17)

The reason why this technique, introduced in ref. [73], is powerful is that it provides
a formalism which connects non local objects, as the symmetry-resolved entanglement
measures, to local quantities, as correlation functions in a replicated theory. For example,
for the entanglement entropy, in field theory it is convenient to start from the computation
of the charged moments [73, 77]

Zn(α) ≡ Tr[ρnAeiαQA ], (2.18)

whose Fourier transform

Zn(q) =
∫ π

−π

dα

2π e
−iqαZn(α) ≡ Tr[Πqρ

n
A], (2.19)

gives the symmetry resolved Rényi entropies (2.4) as

Sn(q) = 1
1− n log

[ Zn(q)
Z1(q)n

]
. (2.20)

The probability p(q) in eq. (2.3) is p(q) = Z1(q). It is worth to mention that charged
moments like (or similar to) those in eq. (2.18) have been independently analysed in the
past [112–118].

In a very similar manner, charged composite moments for the relative entropies and
trace distances can be defined. Let us start from the former, although it is a special case
of the latter. For the relative entropy between two RDMs ρA and σA, we just need to
compute the charged moments

tr(ρAσn−1
A eiαQA) , (2.21)

whose Fourier transform

tr(ρAσn−1
A Πq) =

∫ π

−π

dα

2π e
−iqα tr(ρAσn−1

A eiαQA) (2.22)

readily provides the Rényi relative entropies defined as in eq. (2.10).
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The replica trick for the subsystem Schatten distance is based on the expansion of
tr(ρA − σA)n as

tr(ρA − σA)n =
∑
S

(−)|S| tr
(
ρ1S · · · ρ(n)S

)
, (2.23)

where the summation S is over all the subsets of S0 = {1, · · · , n}, |S| is the cardinality of
S and ρjS = σA if j ∈ S and ρA otherwise. This expression coincides with the Schatten
distance only for n even. All other (real) values of n, including the important n = 1 being
the trace distance, are obtained taking the analytic continuation from the sequence of even
n = ne, as explained in [37, 38] (and using earlier ideas for the evaluation of absolute value
by replicas [119]). Crucially, each term in the sum appearing in the r.h.s. of eq. (2.23) is
related to a partition function on an n-sheeted Riemann surface. In the presence of a flux,
eq. (2.23) is trivially generalised as

tr
[
(ρA − σA)neiαQA

]
=
∑
S

(−)|S| tr
(
ρ1S · · · ρ(n)Se

iαQA
)
, (2.24)

whose Fourier transform is exactly D′n(q) in eq. (2.13) for even n. It should be now clear
why the distance in eq. (2.13) is easily computed by replicas while (2.11) is not.

3 From replicas and charged twist fields to symmetry resolved relative
entropies and distances

In the replica approach, the moments of the RDM, TrρnA, are evaluated for any (1 +
1)-dimensional quantum field theory as partition functions over the n-sheeted Riemann
surface Rn in which the n sheets (replicas) are cyclically joined along the subsystem A [27,
28]. Similarly [73], the charged moments find a geometrical interpretation by inserting an
Aharonov-Bohm flux through such surface, so that the total phase accumulated by the field
upon going through the entire surface is α. Then the partition function on such modified
surface is the charged moments Zn(α) in eq. (2.18).

This partition function can be rewritten in terms of the correlator of twist fields im-
plementing twisted boundary conditions. Assuming, without loss of generality, that the
Aharonov-Bohm flux is inserted between the n-th and first replicas, we can write the action
of the charged twist fields on a charged U(1) bosonic field as [27, 73, 120]

Tn,α(x, τ)φi(x′, τ) =


φi+1(x′, τ)eiαδinTn,α(x, τ), if x < x′,

φi(x′, τ)Tn,α(x, τ), otherwise.
(3.1)

In terms of these composite twist fields, the charged moments for a single interval A = [0, `]
in the ground state (vacuum of the QFT) are

Zn(α) = 〈Tn,α(`, 0)T̃n,α(0, 0)〉, (3.2)

where T̃n,α = T †n,α is known as the anti-twist field. We will refer to Tn,α for α 6= 0 as the
charged (or composite) twist field while to Tn ≡ Tn,0 as the standard twist field.

In the following, we focus on excited states of conformal field theory. To this aim, it
is useful to work out first the OPE of the twist fields as done in the following subsection.
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3.1 Operator product expansion of twist fields

In this subsection, we first review the construction of the OPE of standard twist fields
(following refs. [29, 30] for the generation of the primaries see [121] for the descendants),
and then we generalise these results to charged twist fields.

Let us focus on the holomorphic part of a CFT (for a non-chiral theory the antiholo-
morphic sector is similarly treated) of central charge c. We write a full set of primaries as

{Oa}a. (3.3)

We refer to CFTn as the theory built with n replicas of the original CFT with central
charge is cn. A full set of operators which are primary w.r.t. all n copies of CFTn is

{O1
a1 ⊗ · · · ⊗ O

n
an}, (3.4)

where the upper index is a replica index. This CFTn has a permutation symmetry Zn
which can be promoted to internal symmetry, leading to the construction of the orbifolded
theory CFTn/Zn. The operator content of the latter is different from the one of CFTn and,
in particular, the twist fields appears as local operators (a clear and complete treatment of
the orbifold construction in the context of entanglement can be found in [122]).

Roughly, the twist field Tn(z) is defined such that its insertion in the spacetime of
the orbifolded theory corresponds to an opening of a branch-cut in the time slice [z,∞]
which connects the j-th replica to the j + 1-th [28]. The dimension of Tn is read off from
three-point function 〈Tn(z)T̃n(z′)T (w)〉 with T̃n = T †n and the total stress-energy tensor

T =
n∑
j=1

T j , (3.5)

where T j is a short notation for 1 ⊗ · · · ⊗ T j ⊗ . . . 1 (the stress-energy tensor of the j-th
replica). Through unfolding procedure induced by the transformation ζ(z) = z1/n one
gets [28]

〈Tn(0)T̃n(∞)T (z)〉
〈Tn(0)T̃n(∞)〉

=
〈

n∑
j=1

(
dζ

dz

)2
T (ζe−i

2πj
n ) + cn

12{ζ, z}
〉

= c

24z2

(
n− 1

n

)
, (3.6)

which is equivalent to say that the scaling dimension of the twist field is hTn = c
24(n− 1

n).
Moreover, since T̃n = T †n , the following fusion is present

[Tn]× [T̃n]→ [1], (3.7)

and then all the descendants of the conformal tower of the identity are generated in
the OPE.

Similarly, we conclude that a primary (nonidentity) operator Oja is not present in the
OPE twist fields, because its one-point function 〈Oja(ζ)〉 on the plane is zero. However,
if [Oaj ] × [Oak ] → [1] (implying that Oaj and Oak have the same conformal dimension
haj = hak), the following fusion is present

[Tn]× [T̃n]→ [OjajO
k
ak

], (3.8)
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and the unfolding leads to

〈Tn(0)T̃n(∞)(OjajO
k
ak

)(z = 1)〉
〈Tn(0)T̃n(∞)〉

= 1
nhaj+hak

〈Ojaj (ζ = e−i
2πj
n )Okak(ζ = e−i

2πk
n )〉. (3.9)

Here products of operators at coinciding points are intended as applied on different sheets
on the unfolded theory, see ref. [122] for details. Similarly all the other fusions between the
twist fields and the other primaries of the replicated theory can be obtained from m-point
functions of primaries in the unreplicated theory.

For the charged twist fields, the discussion is almost the same with some additional
caveats. Let us consider a primary operator Vα(z) which acts as a symmetry generator,
i.e. it inserts an additional flux, in the timeslice ∈ [z,+∞). The modified twist field
Tn,α is constructed by fusing together Tn and Vα, which means that it is the lightest
operator appearing in the OPE Tn(z)Vα(0) (see e.g. [94–99]). We use the convention that
the additional flux is inserted between the n-th and the first replica, hence the fusion is
between Tn and 1⊗ · · · ⊗ Vα, so that the symmetry generator is inserted only in the n-th
replica. However, this is only a technical point and any other choice does not affect the
following discussion in any relevant part. Once one unfolds the theory, the charged twist
field generates an additional insertion Vα (instead of the identity operator for standard
twist fields). In order to see this, let us compute the dimension of the modified twist
field [71–73]

〈Tn,α(0)T̃n,α(∞)T (z)〉
〈Tn(0)T̃n(∞)〉

=

〈
Vα(0)V−α(∞)

(∑n
j=1

(
dζ
dz

)2
T (ζe−i

2πj
n ) + cn

12{ζ, z}
)〉

〈Vα(0)V−α(∞)〉

=
hVα
n + hTn
z2 , (3.10)

so
hTn,α = hVα

n
+ hTn . (3.11)

The fusion Tn,α × (Tn,α)† is obtained from (m+ 2)-point function of m primaries Okak and
the two charges Vα(0),Vα(∞). In particular it holds

〈Tn,α(0)T̃n,α(∞)(OjajO
k
ak

)(z = 1)〉
〈Tn(0)T̃n(∞)〉

= 1
nhaj+hak

〈Vα(0)Ojaj (ζ = e−i
2πj
n )Okak(ζ = e−i

2πk
n )V−α(∞)〉, (3.12)

which is the generalization of (3.9) in the presence of a nontrivial flux. We stress explicitly
that, in the fusion Tn,α× (Tn,α)†, as an important difference with the standard twist fields,
the single primary Ojaj appears, as long as the three-point function

〈
Vα(0)V−α(∞)Ojaj (1)

〉
is non-vanishing.

Summing up, the OPE Tn,α × T̃n,α restricted to the conformal tower of the identity is

Tn,α(z)T̃n,α(0) = 〈Tn,α(z)T̃n,α(0)〉
(

1 + z2 2hTn,α
nc

n∑
j=1

T j(0) + . . .

)
, (3.13)

– 9 –
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where 〈Tn,α(z)T̃n,α(0)〉 = 1
z

2hTn,α
is the normalized correlator among twist fields computed

in the vacuum. Similarly, the restriction of the OPE in the space of primaries {Oj}j reads

Tn,α(z)T̃n,α(0) = 〈Tn,α(z)T̃n,α(0)〉
(
zhO

nhO
COVαV−α

n∑
j=1
Oj(0) + . . .

)
, (3.14)

and COVαV−α is the OPE coefficient of the fusion [Vα] × [V−α] → [O] in the unreplicated
theory. In general also the product of two or more non-identity primary operators appears,
with an OPE coefficient depending on the theory, via a correlation function among pri-
maries. We mention that all the other fusions in the corresponding conformal tower can
be obtained in analogy with standard operators.

3.2 Excited states generates by primary fields

In CFT an excited state |Υ〉 is written as the action of a local operator Υ(x, τ) at past
infinite imaginary time as

|Υ〉 ∼ lim
τ→−∞

Υ(x, τ) |0〉 , (3.15)

where |0〉 is the vacuum of the CFT. This mapping is known as state-operator corre-
spondence (see, e.g., the textbooks [123, 124] for details) and applies to any state of the
Hilbert state of the CFT. The corresponding path-integral representation of the density
matrix ρ = |Υ〉〈Υ| presents two insertions of Υ at z = x + iτ = ±i∞. Hence, assuming
periodic boundary conditions, the worldsheet is an infinite cylinder of circumference L. We
focus on the subsystem A = [0, `] (embedded in the system [0, L]) and we introduce the
dimensionless ratio

x ≡ `

L
. (3.16)

Hereafter, we omit explicitly the subscript A for notational convenience, denoting by ρΥ ≡
trB(|Υ〉 〈Υ|) the reduced density matrix associated with the state |Υ〉, referring to the
subsystem A only when strictly necessary.

3.2.1 Moments of the RDM

For an arbitrary operator Υ, tr(ρnΥ) is obtained sewing cyclically along A, n of the cylinders
defining the reduced density matrix ρΥ. Consequently, we arrive at a 2n-point function of
Υ on a n-sheeted Riemann surface Rn. Following ref. [39], it is convenient to introduce
the universal ratio (with ρ1 being the vacuum, i.e. ground-state, RDM)

F
(n)
Υ (x) ≡ tr(ρnΥ)

tr(ρn1) . (3.17)

Keeping track of the correct normalisation of ρΥ, one obtains [39, 40]

F
(n)
Υ (x) =

〈
n∏
k=1

Υ(z−k )Υ†(z+
k )
〉
Rn

〈Υ(z−1 )Υ†(z+
1 )〉nR1

, (3.18)
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where z∓k corresponds to the points at past/future infinite respectively of the k-th copy of
the system (k = 1, . . . , n) in Rn (R1 is just the cylinder). The normalisation factor of the
field Υ does not matter because it cancels out in the ratio (3.18); moreover, F (1)

Υ (x) = 1 as
it should be because of the normalisation of the involved density matrices.

Through the conformal mapping [40]

w(z) = −i log
(
−

sin π(z−u)
L

sin π(z−v)
L

)1/n

, (3.19)

where u and v satisfy x = v−u
L , the Riemann surface Rn is transformed into a single

cylinder. At this point, exploiting the transformation of the field Υ under a conformal
mapping, one relates the ratio (3.18) to the correlation functions of Υ on the plane. When
Υ is primary, this transformation is

Υ(w, w̄) =
(
dz

dw

)h ( dz̄
dw̄

)h̄
Υ(z, z̄), (3.20)

with (h, h̄) the conformal weights of Υ. Hence, for primary operators, one can easily express
F

(n)
Υ (x) in terms of correlation functions over the cylinder. The final result reads [40]

F
(n)
Υ (x) = n−2n(h+h̄) 〈

∏
k Υ(w−k )Υ†(w+

k )〉cyl

〈Υ(w−1 )Υ†(w+
1 )〉ncyl

, (3.21)

where w±k are the points corresponding to z±k through the map w(z), i.e.

w−k = π(1 + x) + 2π(k − 1)
n

, w+
k = π(1− x) + 2π(k − 1)

n
, with k = 1, . . . , n.

(3.22)
We mention that in the literature it is possible to find also some generalisations to descen-
dant states [125–128] and boundary theories [129, 130].

3.2.2 Charged moments

The charged moments of the RDM in primary states of CFTs have been worked out in
ref. [102]. Following this reference, it is useful to introduce a family of generating functions
associated to |Υ〉,

pΥ
n (α) ≡ tr(ρnΥeiαQ)

tr(ρnΥ) (3.23)

and the universal ratio
fΥ
n (α) ≡ pΥ

n (α)
p1n(α) , (3.24)

where in both formulas we drop the x dependence for simplicity. The moments entering
in the definition of fΥ

n (α) above may all be expressed as correlation functions of Υ and
Vα on the n-sheeted Riemann surface. Compared to the correlations defining F (n)

Υ (x) in
eq. (3.18) we only need to insert Vα on an arbitrary sheet at the branch points of the

– 11 –
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Riemann surface. Using the same conventions of eq. (3.18) for the insertions of Υ and Υ†
(located at {z∓k }, i.e. the past/future infinite respectively of the k-th copy), we have

fn(α) =

〈
Vα(u1)V−α(v1)

n∏
k=1

Υ(z−k )Υ†(z+
k )
〉
Rn

〈Vα(u1)V−α(v1)〉Rn

〈
n∏
k=1

Υ(z−k )Υ†(z+
k )
〉
Rn

. (3.25)

Here u1 and v1 are the points where the flux is inserted (coinciding with the branch points),
which are identified with the points 0 and ` of the first replica.

3.2.3 The charged moments for relative entropies and distances

The charged moments necessary for the relative entropies and subsystem distances are in
eqs. (2.21) and (2.24). They can all be written in terms of tr(eiαQρ1 . . . ρn) with properly
chosen ρi. The corresponding correlation functions are then the ones for the neutral mo-
ments reported in [36, 37] with the insertion of two charge operators Vα, as done for the
charged moments for the entanglement entropies in eq. (3.25).

Given some RDMs ρj ≡ trB(|Υj〉 〈Υj |), the charged moments of interest are conve-
niently parametrised as

tr(eiαQρ1 . . . ρn)
tr(eiαQρn1)

tr(ρn1)
tr(ρ1 . . . ρn) =

〈
Vα(0)V−α(∞)

n∏
k=1

Υk(ζ−k )Υ†k(ζ
+
k )
〉

C

〈Vα(0)V−α(∞)〉C
〈

n∏
k=1

Υk(ζ−k )Υ†k(ζ
+
k )
〉

C

=

〈
Vα(−i∞)Vα(i∞)

n∏
k=1

Υk(w−k )Υ†k(w
+
k )
〉

cyl

〈Vα(−i∞)Vα(i∞)〉cyl

〈
n∏
k=1

Υk(w−k )Υ†k(w
+
k )
〉

cyl

. (3.26)

The points ζ∓k , w
∓
k correspond respectively to the infinite past/future points in the k-th

sheet of the Riemann surface (k = 1, . . . , n). Their explicit expression is read off from
eq. (3.22), i.e.

ζ∓k = exp
(
−i2π(k − 1)

n
+ iπ(1± x)

n

)
, w±k = 2π(k − 1)

n
+ π(1± x)

n
, (3.27)

and x = `/L. The locations of these operator insertions in the ζ and w planes are reported
in figure 1.

In the calculation of relative entropies and distances, we are dealing with just two
(primary) fields at a time, says Υ and χ, and we need to work with combinations of the
form ρm1

Υ ρm2
χ ρm3

Υ . . . . Hence, each partition S = (m1, . . . ,mk) of n (m1 + · · ·+mk = n) is
related to a product of RDMs according to the rule

S = (m1, . . . ,mk)→ AS ≡ ρm1
Υ ρm2

χ ρm3
Υ . . . . (3.28)

– 12 –
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Figure 1. Points where the operators are inserted in the correlations
〈
VαV−α

∏n
k=1 ΥkΥ′†k

〉
in

eq. (3.26). We report n = 3 for the two geometries, planar (left) and cylindrical (right).

We define also the following quantities

pΥ,χ
S (α) ≡ tr(ASeiαQ)

tr(AS) , fΥ,χ
S (α) ≡ pΥ,χ

S (α)
p1n(α) . (3.29)

With a slight abuse of notation, we will refer to pS(α) as probability generating function.
Although pS(α) is normalised as pS(α = 0) = 1, it is not guaranteed that AS is hermitian,
nor that it has non-negative spectrum. However, none of these complications is a problems
for our aims and we can safely define

pΥ,χ
S (q) ≡ tr(ASΠq)

tr(AS) =
∫ π

−π

dα

2π p
Υ,χ
S (α)e−iαq, (3.30)

although it does not have a direct interpretation as a probability, like it happens for the
entropy. The function fΥ,χ

S (α) is universal and scale invariant.
After having set up the framework for our calculation, we are already in position

to make a first fundamental observation, without doing any calculation. Indeed, since
by construction, the universal functions fΥ,χ

S (α) are scale invariant (i.e. function only of
x = `/L), they are of order one in L. As a consequence, the only diverging piece in the
generating function pΥ,χ

S (α) in eq. (3.29) comes from the vacuum contribution p1n(α). For
the latter, it is well known that the second derivative w.r.t. α (i,e, the variance of the
distribution) diverges as logL, while all other cumulants are finite [73–76]. Hence pΥ,χ

S (q)
at the leading order in L is always a Gaussian shaped probability with a variance growing
like logL, exactly as it happens for pΥ

n (q) for any Υ [102]. The generalised probabilities
pΥ,χ
S (q) and p1n(q) are different at order L0, with an excess of variance related to the second

derivative w.r.t. α of fΥ
n (α). Hence, we proved that in the large L limit we have

pΥ,χ
S (q)
p1n(q)

L→∞−→ 1. (3.31)
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We can now rewrite the symmetry resolved relative entropies (2.10) in terms of the gener-
alised probabilities as

Sn(ρΥ‖ρχ)(q) = 1
1− n log

tr(ρΥρ
n−1
χ Πq)

tr(ρnΥΠq)
+ log

tr(ρnχΠq)
tr(ρnΥΠq)

= Sn(ρΥ‖ρχ) + 1
1− n log

pΥ,χ
(1,n−1)(q)
pΥ
n (q) + log p

χ
1 (q)
pΥ

1 (q)
. (3.32)

Consequently, whenever (3.31) holds, all the ratio of probabilities go to 1 and

Sn(ρΥ‖ρχ)(q) L→∞−→ Sn(ρΥ‖ρχ). (3.33)

Similarly, we show that
D1(ρΥ, ρχ)(q)
D1(ρΥ, ρχ) → 1, (3.34)

but in this case the argument is slightly more involved. First, let us write

D1(ρΥ, ρχ)(q) = 1
2 tr

(∣∣∣∣∣ ρΥΠq

tr(ρΥΠq)
− ρχΠq

tr(ρχΠq)

∣∣∣∣∣
)
' 1

2 tr(ρ1Πq)
tr (|ρΥ − ρχ|Πq) . (3.35)

Then, we express the second term through an analytical continuation over the even integers

tr (|ρΥ − ρχ|Πq) = lim
ne→1

tr ((ρΥ − ρχ)neΠq) . (3.36)

Doing so, one can expand (ρΥ − ρχ)ne as a sum of products of ρΥ and ρχ; in each term we
approximate trASΠq = (trAS)p1ne(q) so that tr ((ρΥ − ρχ)neΠq) ' tr ((ρΥ − ρχ)ne) p1ne(q)
and then perform the limit ne → 1. As a practical example, we show what happens
explicitly when ne = 2, i.e.

tr
(
(ρΥ − ρχ)2Πq

)
= tr

(
ρ2

ΥΠq

)
− 2 tr(ρΥρχΠq) + tr

(
ρ2
χΠq

)
= tr

(
ρ2

Υ

) tr
(
ρ2

ΥΠq
)

tr
(
ρ2

Υ
) − 2 tr(ρΥρχ)tr (ρΥρχΠq)

tr (ρΥρχ) + tr
(
ρ2
χ

) tr
(
ρ2
χΠq

)
tr
(
ρ2
χ

)
' tr(ρ2

1Πq)
(
tr
(
ρ2

Υ

)
− 2 tr(ρΥρχ) + tr

(
ρ2
χ

))
= tr(ρ2

1Πq) tr
(
(ρΥ − ρχ)2

)
, (3.37)

where in the last line we used eq. (3.31).
Eqs. (3.33) and (3.34) represent a first main result of this paper: exactly like the en-

tanglement of a single state [77], also the subsystem measures of distinguishability (relative
entropies and distance) satisfy equipartition, i.e. do not depend on the symmetry sector q.1

1This is a property of the thermodynamic limit in which q is kept fixed. When L is finite, equipartition
is expected to hold only if q is much smaller than the typical fluctuation scale of order

√
logL.
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4 Correlation functions for the compact boson

In this section, we provide some explicit expressions for the universal functions of the
correlation functions necessary for relative entropies and subsystems distances, generically
given by eq. (3.26), specialising to the massless compact boson. In some cases, for generic
n, we are only able to work out analytically the short distance expansion via the OPE of
composite twist fields. In the following two sections, we are going to explicitly use these
results to give predictions for entanglement measures.

The CFT of the compact boson (or Luttinger liquid) is described by the euclidean
action [123]

S[ϕ] = 1
8πK

∫
d2x(∂µϕ)2, (4.1)

with the additional requirement that the bosonic field is compact

ϕ ∼ ϕ+ 2π. (4.2)

This CFT has central charge c = 1. Left and right modes are decoupled, so one can write
in complex coordinates

ϕ(z, z̄) = φ(z) + φ̄(z̄). (4.3)

This theory admits a topological U(1) symmetry generated by the following vertex operator

Vα(z, z̄) = ei
α
2πφ(z)+i α2π φ̄(z̄). (4.4)

The primaries of this CFT and their conformal weights (h, h̄) are respectivly

(i∂φ)(z) (1, 0), (i∂̄φ̄)(z̄) (0, 1), Vβ,β̄(z, z̄) ≡ eiβφ(z)+iβ̄φ̄(z̄)
(
Kβ2

2 ,
Kβ̄2

2

)
.

(4.5)
Not all the values of (β, β̄) give rise to physical states, but the set of the allowed values is
quantised (see [123]); however, this discussion is not important for our purposes. Without
loss of generality, we will deal only with the holomorphic part of the vertex operator
(β̄ = 0), keeping β as a free parameter. Moreover, in what follows we will fix K = 1
(the results for K 6= 1 can be easily obtained as mentioned in appendix A). This value of
K is related to a free Dirac fermion via bosonization, corresponding to an XX spin chain
which we will use to numerically test the analytic predictions obtained in the following.
In that case the symmetry is the internal U(1) charge of a Dirac fermion i.e number of
fermions minus number of antifermions. The explicit correspondence between microscopic
low energy excitations of the XX chain and the primary operators of the compact boson,
via bosonisation techniques, has been discussed in the work by Alcaraz et al. [39].

Let us briefly recall the OPE among primaries [123], which can be obtained by their
3-point functions, see appendix A. The following fusions are present

[Vβ ]× [V−β ]→ [1] + [i∂φ], [i∂φ]× [i∂φ]→ [1]. (4.6)

The only nontrivial (the others are 1) OPE coefficient is

Ci∂φVβV−β
= β. (4.7)
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We will also use the OPE coefficient associated to the generation of the stress-energy tensor
T = 1

2(i∂φ)2 (T = 1
2K (i∂φ)2 for K 6= 1), fixed by Virasoro algebra (see [123]) as

CTi∂φi∂φ = 2, CTVβV−β = β2. (4.8)

For the charged twist fields, we will focus on the fusion channels2

Tn,α × (Tn,α)† → 1, i∂φ, T. (4.9)

Although the vertex operators are generated in the OPE, their expectation value is zero for
the states we consider (by neutrality condition), and thus they do not contribute to fΥ,χ

S (α).
In the forthcoming subsections, we will characterise fΥ,χ

S (α) for different states, giving
the exact results when possible or the leading order, obtained by OPE expansion, for
x = `

L → 0 in the other cases.

4.1 Universal function for the pair of states Υ = Vβ1 and χ = Vβ2

Let us start from the states being both vertex operators with weight β1 and β2, i.e. Υ = Vβ1

and χ = Vβ2 . We first consider the universal function f
Vβ1 ,Vβ2
S (α) in eq. (3.24) for the

partition S = (m1,m2) given as

f
Vβ1 ,Vβ2
S (α)

=

〈
Vα/2π(−i∞)V−α/2π(i∞)

m1∏
k=1

Vβ1(w−k )V−β1(w+
k )

m2∏
k=m1+1

Vβ2(w−k )V−β2(w+
k )
〉

cyl

〈Vα/2π(−i∞)V−α/2π(i∞)〉cyl

〈
m1∏
k=1

Vβ1(w−k )V−β1(w+
k )

m2∏
k=m1+1

Vβ2(w−k )V−β2(w+
k )
〉

cyl

=
m1∏
k=1

〈
Vα/2π(−i∞)Vβ1(w−k )

〉
cyl

〈
V−α/2π(i∞)Vβ1(w−k )

〉
cyl

×
〈
Vα/2π(−i∞)V−β1(w+

k )
〉

cyl

〈
V−α/2π(i∞)V−β1(w+

k )
〉

cyl

×
m2∏

k=m1+1

〈
Vα/2π(−i∞)Vβ2(w−k )

〉
cyl

〈
V−α/2π(i∞)Vβ2(w−k )

〉
cyl

×
〈
Vα/2π(−i∞)V−β2(w+

k )
〉

cyl

〈
V−α/2π(i∞)V−β2(w+

k )
〉

cyl
. (4.10)

Here we used the correlation function between vertex operators on the cylinder〈∏
j

Vβj (wj)
〉

cyl

=
∏
i<j

(
L

π
sin π(wi − wj)

L

)βiβj
, if

∑
j

βj = 0, (4.11)

while it vanishes if ∑
j βj 6= 0: the requirement ∑j βj = 0 is the neutrality condition.

All the correlation functions appearing in the first line of eq. (4.10) satisfy the neutrality
condition and so the previous formula can be safely applied. With a slight abuse of notation,

2To be precise, we are considering the generation of the following operators in the orbifold theory:
1⊗ · · · ⊗ 1, 1⊗ . . . i∂φ · · · ⊗ 1, 1⊗ . . . T · · · ⊗ 1, where i∂φ and T are inserted in any of the n replicas.
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we identify (for notational convenience) the putative two-point correlators in (the r.h.s. of)
eq. (4.10) as 〈

Vβi(wi)Vβj (wj)
〉

cyl
=
(
L

π
sin π(wi − wj)

L

)βiβj
. (4.12)

Eq. (4.10) has to be regularised due to the insertion of the vertex operators at infinity.
One way to do so is through their insertion at ±iΛ and, only at the end, take the limit Λ→
+∞. Doing so, with calculations similar to those in ref. [102], one straightforwardly gets〈

Vα/2π(−i∞)Vβ(w−k )
〉

cyl

〈
V−α/2π(i∞)Vβ(w−k )

〉
cyl

×
〈
Vα/2π(−i∞)V−β(w+

k )
〉

cyl

〈
V−α/2π(i∞)V−β(w+

k )
〉

cyl
= ei

αβx
n . (4.13)

Taking the product over the different k’s we finally obtain the extremely simple form
f
Vβ1 ,Vβ2
S (α) = e

iαx
n

[m1β1+m2β2]. Clearly, because of the factorisation property, if we would
have chosen a different partition S, i.e. a different order of the replicas Vβ1 , Vβ2 we would
have get the same result, i.e.

f
Vβ1 ,Vβ2
S (α) = e

iαx
n

[m1β1+m2β2], ∀S. (4.14)

This striking simple result implies that pVβ1 ,Vβ2
S (q) is simply obtained by a shift of the

average value of the charge, while the other cumulants are not affected by the insertion
of the vertex operators. The same conclusion was already pointed out in [102] for the
symmetry-resolved Rényi entropy of these states.

The O(x) term of fVβ1 ,Vβ2
S (α), i.e.

f
Vβ1 ,Vβ2
S (α) ' 1 + iαx

n
[m1β1 +m2β2] +O(x2), (4.15)

should be also interpreted in terms of the OPE expansion of modified twist fields. To show
that explicitly, let us express fVβ1 ,Vβ2

S (α) as a charged twist field correlation:

f
Vβ1 ,Vβ2
S (α) = 〈Vβ1 , · · · , Vβ2 , · · ·| Tn,α(0)T̃n,α(`) |Vβ1 , · · · , Vβ2 , · · ·〉

〈Vβ1 , · · · , Vβ2 , · · ·| Tn(0)T̃n(`) |Vβ1 , · · · , Vβ2 , · · ·〉

× 〈0, . . . , 0| Tn(0)T̃n(`) |0, · · · , 0〉
〈0, . . . , 0| Tn,α(0)T̃n,α(`) |0, · · · , 0〉

. (4.16)

Restricting our analysis to order O(x) and focusing on the terms of the OPE with non
vanishing expectation value, we can approximate

Tn(0)T̃n(`) '
〈
Tn(0)T̃n(`)

〉
C

(1 + o (`)), (4.17)

T αn (0)T̃ αn (`) '
〈
Tn(0)T̃n(`)

〉
C

(
1 + `

n
Ci∂φVα/2πV−α/2π

∑
j

(i∂φ)j(0) + o(`)
)
. (4.18)

The expectation value of ∑j(i∂φ)j(0) is the sum of the contributions of each single replica,
namely

〈0, . . . , 0|
∑
j

(i∂φ)j(0) |0, . . . , 0〉 = 0, (4.19)

〈Vβ1 , · · · , Vβ2 , · · ·|
∑
j

(i∂φ)j(0) |Vβ1 , · · · , Vβ2 , · · ·〉 = i2π
L

(m1β1 +m2β2) . (4.20)
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Figure 2. Excess of the average charge 〈q〉1,Vβ

(1,1) − 〈q〉
1

2 as a function of x = `/L for different values
of β (β = −2,−1, 1, 2). The universal CFT results, which are linear functions of x, cf. eq. (4.22)
are tested against exact numerical result for the XX chain at half-filling (L = 200).

Putting all the pieces together

〈Vβ1 , · · · , Vβ2 , · · ·| Tn,α(0)T̃n,α(`) |Vβ1 , · · · , Vβ2 , · · ·〉
〈Vβ1 , · · · , Vβ2 , · · ·| Tn(0)T̃n(`) |Vβ1 , · · · , Vβ2 , · · ·〉

〈0, . . . , 0| Tn(0)T̃n(`) |0, · · · , 0〉
〈0, . . . , 0| Tn,α(0)T̃n,α(`) |0, · · · , 0〉

'
(

1 + `

n

α

2π
i2π
L

(m1β1 +m2β2)
)

=
(

1 + i
αx

n
(m1β1 +m2β2)

)
. (4.21)

In figures 2 and 3 we test the CFT prediction (4.14) against numerics for the XX chain
(obtained with the methods of appendix B). We focus on the excess of average charge

〈q〉Vβ1 ,Vβ2
S − 〈q〉1n ≡

1
i

d

dα
f
Vβ1 ,Vβ2
S (α)

∣∣∣
α=0

= m1β1 +m2β2
n

x, (4.22)

and plot it as a functions of x = `/L. As shown in figure 2, for n = 2 and S = (1, 1) the
agreement with numerical data (system size L = 200) is remarkable for different vertex
states and no significant corrections are visible for this relatively small system size. In
figure 3 we consider instead n = 4 considering the partitions S = (2, 2) and S = (1, 1, 1, 1).
We emphasise that now there are evident deviations of the numerics from the CFT pre-
dictions with the numerical data oscillating around the analytical value with an amplitude
of going to zero as the system size increases. This behaviour is expected from the exact
analysis of the symmetry-resolved Rényi entropies of the XX chain performed in [79], where
the deviations from CFT are more severe as the number of replicas n is increased (and it
is a consequence of the presence of well known unusual corrections to the scaling [131]).

4.2 Universal function for the pair of states Υ = i∂φ and χ = 1

Here we consider the insertion of Υ = i∂φ while the other state is the ground state, i.e.
χ = 1. In ref. [102], we showed that f i∂φn (α) can be expressed as a characteristic polynomial
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Figure 3. Excess of average charge 〈q〉1,V1
S − 〈q〉14 for the partitions S = (2, 2) and S = (1, 1, 1, 1)

(left/right panel respectively) as a function of x = `/L. The CFT predictions are tested against
numerical data for the XX chain for different system sizes (L = 100, 200, 400, 800). The order of
insertion of the operator is different in the two cases, indeed V1 is present in the first and second
replica for S = (2, 2) while for S = (1, 1, 1, 1) it is inserted in the second and fourth replica;
nevertheless, the analytical prediction is the same which is a special feature of the vertex states.

of a certain matrix. The argument of [102] was based on the fact that〈
Vα/2π(−i∞)V−α/2π(i∞)

n∏
k=1

(i∂φ)(w−k )(i∂φ)(w+
k )
〉

cyl
〈Vα/2π(−i∞)V−α/2π(i∞)〉cyl

(4.23)

has a certain diagrammatic expansion (see the appendix A) which can be recast in a clever
way. For instance, the order O(α0) is given by the contractions of the derivative operators
among themselves which can be expressed as a determinant using Wick theorem. At order
O(α2) two derivative operators are contracted with V±α/2π, while the remaining 2(n − 1)
ones are contracted among themselves, and so on.

The same argument can be applied to f i∂φ,1S . The only difference is the explicit form
of the resulting matrix for the characteristic polynomial. For instance, for any partition S
where ρi∂φ appears mi∂φ times in the product AS , we construct an antisymmetric matrix
M of dimension 2mi∂φ × 2mi∂φ with elements

Mij ≡


1

2 sin
(
wi−wj

2

) i 6= j,

0 i = j,

(4.24)

with {wi} being the set of points in which i∂φ is inserted in the cylindrical geometry, cf.
eq. (3.27). In terms of M , f i∂φ,1S (α) is expressed as follows

f i∂φ,1S (α) =
det

(
M ± iα

2π

)
det(M) . (4.25)

Eq. (4.25) provides and analytic expression of the function f i∂φ,1S (α) for any integer n and
for any partition S. However, its form becomes more and more cumbersome as more and
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more derivative operators are inserted. As an example, let us see what happens in the
simplest case, namely f i∂φ,1(1,n−1)(α), so that the matrix M is

M =

 0 1
2 sin πx

n

− 1
2 sin πx

n
0

 , ⇒ det
(
M + i

α

2π

)
= 1

4 sin2 πx
n

−
(
α

2π

)2
. (4.26)

Plugging this expression in eq. (4.25), we get

f i∂φ,1(1,n−1)(α) = 1− α2

π2 sin2 πx

n
. (4.27)

Similarly, for f i∂φ,1(2,n−2)(α) the matrix M is

M =



0 1
2 sin(πxn )

1
2 sin(πn)

1
2 sin(πxn +π

n)
− 1

2 sin(πxn ) 0 1
2 sin(πn−πxn )

1
2 sin(πn)

− 1
2 sin(πn) − 1

2 sin(πn−πxn ) 0 1
2 sin(πxn )

− 1
2 sin(πxn +π

n) − 1
2 sin(πn) − 1

2 sin(πxn ) 0


, (4.28)

so

f i∂φ,1(2,n−2)(α) = 1−
2 csc2 (πx

n

)
+ csc2 (πx

n + π
n

)
+ csc2 (π

n −
πx
n

)
+ 2 csc2 (π

n

)
π2 (− csc2 (πx

n

)
− csc

(
π
n −

πx
n

)
csc

(
πx
n + π

n

)
+ csc2 (π

n

))2α2

+ 1
π4 (− csc2 (πx

n

)
− csc

(
π
n −

πx
n

)
csc

(
πx
n + π

n

)
+ csc2 (π

n

))2α4. (4.29)

It is then clear that, for any specific partition S, it is possible to write down f i∂φ,1S (α), but
a closed form is very likely impossible to write. The other extreme that can be analytically
handled is the case S = (n, 0), when f i∂φ,1S = f i∂φn (α) and its explicit expression, analytical
continued to non integer values of n, is known [102] and reads

f i∂φn (α) =
n∏
p=1

(
1−

(
α

π

)2 1
( n

sin(πx) − n− 1 + 2p)2

)

=

Γ(1 + n+ 1
2( n

sin(πx) − n− 1) + α
2π )

Γ(1 + 1
2( n

sin(πx) − n− 1) + α
2π )

 (4.30)

×

Γ(1 + n+ 1
2( n

sin(πx) − n− 1)− α
2π )

Γ(1 + 1
2( n

sin(πx) − n− 1)− α
2π )

 Γ(1 + 1
2( n

sin(πx) − n− 1))
Γ(1 + n+ 1

2( n
sin(πx) − n− 1))

2

.

Instead, the small x behaviour of f i∂φ,1S (α) for a general partition S can be obtained
analytically via OPE. Let us start with the partition S = (mi∂φ, n−mi∂φ). The function
f i∂φ,1S is written in terms of twist fields as

f i∂φ,1S (α) = 〈i∂φ, · · · , 0, · · ·| Tn,α(0)T̃n,α(`) |i∂φ, · · · , 0, · · ·〉
〈i∂φ, · · · , 0, · · ·| Tn(0)T̃n(`) |i∂φ, · · · , 0, · · ·〉

× 〈0, . . . , 0| Tn(0)T̃n(`) |0, · · · , 0〉
〈0, . . . , 0| Tn,α(0)T̃n,α(`) |0, · · · , 0〉

, (4.31)
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where |i∂φ, . . . , 0, . . .〉 stands for the state where i∂φ appearsmi∂φ times in the first replicas.
The non-vanishing terms at order O(x2) come from the expectation value of the stress
energy-tensor. Thus we keep the following terms in the OPE of twist fields

Tn(0)T̃n(`) =
〈
Tn(0)T̃n(`)

〉1 + `2
2hTn,α
n

∑
j

T j(0) + o(`2)

 , (4.32)

where we used that the central charge of this model is c = 1. Putting the pieces together,
we get

f i∂φ,1S (α) ' 1 + `2
2hVα
n2

∑
j

(
〈i∂φ, · · · , 0, · · ·|T j(0) |i∂φ, · · · , 0, · · ·〉

− 〈0, . . . , 0|T j(0) |0, . . . , 0〉
)
. (4.33)

Using

hVα = hVα/2π = 1
2

(
α

2π

)2
(4.34)

and (see e.g. [38])

∑
j

〈i∂φ, · · · , 0, · · ·|T j(0) |i∂φ, · · · , 0, · · ·〉 − 〈0, . . . , 0|T j(0) |0, . . . , 0〉 = −4π2

L2 mi∂φ, (4.35)

one finally obtains the desired result

f i∂φ,1S (α) ' 1− mi∂φ

n2 x2α2. (4.36)

As a consistency check, for mi∂φ = 1, eq. (4.30) reduces to

f i∂φn (α) ' 1− α2x2

n
. (4.37)

This simple result has an interesting physical meaning: in the small x regime, the replicas
appear to be decoupled at order O(x2) the contributions of i∂φ in the various replicas just
sum up (it is a consequence of the additivity of the stress-energy tensor). This is not at all
the case at higher order in x.

We now test how the CFT results in this subsection match with the numerical data
for the XX chain. We start from f i∂φ,1(1,n−1)(α) in eq. (4.27). In figure 4 we plot the CFT
result of excess of variance〈

∆q2
〉i∂φ,1

(1,1)
−
〈

∆q2
〉i∂φ,1

2
= 1

(i)2
d2

dα2 log f i∂φ,1(1,1) (α)
∣∣∣
α=0

= 2
π2 sin2 πx

2 , (4.38)

as a function of x = `/L against the numerics for different sizes (L = 100, 200, 400, 800).
The O(x2) approximation is indistinguishable from the full result up to x ∼ 0.3. Clearly, the
numerical data approach the prediction when x is kept fixed and L gets larger. The finite-
size corrections are small for x close to 0, but they explode in the opposite regime x→ 1.

In figure 5 we plot f i∂φ,1(1,n−1)(α) for n = 2, 3 (left/right panel respectively) as functions of
α with fixed x and compare it with numerical data. We consider system sizes large enough
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Figure 4. Excess of variance associated to the partition S = (1, 1) of the operators (Υ, χ) =
(i∂φ,1). The universal CFT results are compared to the XX chain at half-filling. The numerical
data for different sizes (L = 100, 200, 400, 800) are compared with both the full CFT result (solid
line) and the small x expansion at order O(x2) (dashed line).

so that the finite size-corrections of the excess of variance are negligible; in particular as
n increases a larger L is required to satisfy the latter requirement (as expected from the
ground state results [79]). The numerical data give a function f i∂φ,1(1,n−1)(α) which is always
smooth and periodic under α→ α+ 2π. Although we expect a singularity at α = ±π from
the analytical predictions of f i∂φ,1(1,n−1)(α), the convergence of the numerics to this singularity
is slow. This is the reason why in the neighbourhood of α = ±π numerics and CFT do
not yet match well and much larger system sizes are required to generate the singularity.
A full and detailed explanation of this phenomena is given in ref. [88]. We just notice that
as x gets larger the phenomenon is amplified as also clear at the level of the variance in
figure 4.

4.3 Universal function for the pair of states Υ = Vβ and χ = i∂φ

Finally we move the most cumbersome combination of vertex and derivative operator. In
this case, we have been able to compute an explicit analytic expression just for the partition
S = (n− 1, 1) with final result

f
Vβ ,i∂φ
S (α) = eiαβx

n−1
n

1
1

4 sin2 xπ
n

+ β2

4
(
n cot(πx)− cot

(
πx
n

))2
×
(

1
4 sin2 xπ

n

+ β2

4

(
n cot(πx)− cot

(
πx

n

))2

− i α2πβ
(
n cot(πx)− cot

(
πx

n

))
−
(
α

2π

)2
)
, (4.39)

which we are going to prove in the following.
The derivation of eq. (4.39) is rather cumbersome and we exploit the diagrammatic

interpretation reported in appendix A. We refer moreover to ref. [36], where similar calcu-
lations appear in the context of relative entropy between the same states, i.e. Vβ and i∂φ.
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Figure 5. The universal functions f i∂φ,1(1,1) (α) and f i∂φ,1(1,2) (α) (left/right panels respectively) as func-
tions of α for different values of x (x = 1/10, 1/4, 1/2). The agreement with numerical data for the
XX chain at half-filling, is good for small α but it worsens as α gets closer to ±π, as discussed in
the text.

Let us start with the following representation of fVβ ,i∂φ(n−1,1)(α)

f
Vβ ,i∂φ

(n−1,1)(α) =

〈
Vα/2π(−i∞)V−α/2π(i∞)(i∂φ)(w−n )(i∂φ)(w+

n )
n−1∏
k=1

Vβ1(w−k )V−β1(w+
k )
〉

cyl

〈Vα/2π(−i∞)V−α/2π(i∞)〉cyl

〈
(i∂φ)(w−n )(i∂φ)(w+

n )
n−1∏
k=1

Vβ1(w−k )V−β1(w+
k )
〉

cyl

.

(4.40)

We now provide a diagrammatic representation of〈
Vα/2π(−i∞)V−α/2π(i∞)(i∂φ)(w−n )(i∂φ)(w+

n )
n−1∏
k=1

Vβ1(w−k )V−β1(w+
k )
〉

cyl
〈Vα/2π(−i∞)V−α/2π(i∞)〉cyl

, (4.41)

whose ratio with its value at α = 0 gives directly fVβ ,i∂φ(n−1,1)(α). The diagrammatic rules are
the following (see again appendix A for all needed definition)

• The contractions between the vertex operators V±β and V±α/2π are present for each di-
agram and their contribution is factorised out. The resulting contribution is eiαβxn−1

n ,
similarly to fVβ1 ,Vβ2

S (α).

• A diagram with the contraction between (i∂φ)(w+
n ) and (i∂φ)(w−n ) always appears.

Its contribution is
(

1
2 sin πx

n

)2
, which is simply the two-point correlation function in a

cylindrical geometry.

• We have a set of diagrams where the derivative operators are contracted with V±β .
Summing all their contributions, we get in the end

−β
2

4

(
n−1∑
k=1

cot π
n

(k + x)
)(

n−1∑
k=1

cot π
n

(k − x)
)
.

– 23 –



J
H
E
P
1
0
(
2
0
2
1
)
1
9
5

• A set of diagrams where one of the two i∂φ is contracted to V±α/2π and the other to
one of the vertex V±β is present. The sum amounts to −i α2πβ

∑n−1
k=1 cot πn(k + x).

• A final set of four diagrams is the one where each of the two derivative operators is
contracted with one of V±α/2π, and it contributes with −

(
α
2π
)2.

Summing up all these contributions, already gives the desired correlation, but a last useful
manipulation is to provide the analytical continuation of ∑n−1

k=1 cot πn(k + x) = − cot πxn +∑n−1
k=0 cot πn(k + x). By looking to the periodicity of ∑n−1

k=0 cot πn(k + x) under x → x + 1
and its poles/zeros structure we can identify

n−1∑
k=0

cot π
n

(k + x) = n cotπx, (4.42)

and so
n−1∑
k=1

cot π
n

(k + x) = n cotπx− cot πx
n
. (4.43)

Taking into account all these contributions, we finally arrive to the form of fVβ ,i∂φ(n−1,1)(α)
reported in eq. (4.39).

In principle one can follow the same diagrammatic rules to express fVβ ,i∂φS (α) for
other partitions S. However, the number of partitions grows rapidly with n and we are not
aware of any systematic treatment, but we have to work them out in a case by case manner.
Consequently, it is impossible to obtain a close form for general n that can be used for the
analytical continuations. For this reason, we are not going to investigate other partitions.

Conversely, with a relatively small effort we can provide the leading term at order O(x)
of fVβ ,i∂φS (α) for an aribitary partition with m insertions of the vertex Vβ . The calculation
closely follows the one for fVβ1 ,Vβ2 (α) and so we just sketch the derivation here. The order
O(x) comes from the generation of i∂φ in the OPE expansion of Tn,αT̃n,α; moreover the
state |i∂φ〉, of the unreplicated theory, is neutral and so it does not contribute to the
expectation value of the charge density i∂φ, while we get a nontrivial contribution from
|Vβ〉. At order O(x2), one has contributions from the stress energy tensor and a double
insertion (in two different replicas) of i∂φ. The starting point is as usual the rewriting of
f
Vβ ,i∂φ
S (α) in terms of twist fields

f
Vβ ,i∂φ
S (α) = 〈Vβ , · · · , i∂φ, · · ·| Tn,α(0)T̃n,α(`) |Vβ , · · · , i∂φ, · · ·〉

〈Vβ , · · · , i∂φ, · · ·| Tn(0)T̃n(`) |Vβ , · · · , i∂φ, · · ·〉

× 〈0, . . . , 0| Tn(0)T̃n(`) |0, · · · , 0〉
〈0, . . . , 0| Tn,α(0)T̃n,α(`) |0, · · · , 0〉

, (4.44)

and then consider the OPE expansion at order O(`2)

Tn,α(0)T̃n,α(`) '
〈
Tn,α(0)T̃n,α(`)

〉(
1 + `a1(α)

∑
j

(i∂φ)j(0)

+ `2
∑
j<j′

ajj′(α)(i∂φ)j(0)(i∂φ)j′(0) + `2a2(α)
∑
j

T j(0)
)
, (4.45)
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where a1(α), a2(α), ajj′(α) are the OPE coefficients

a1(α) = α

2πn, a2(α)− a2(0) = ajj′(α)− ajj′(0) = 1
n2

(
α

2π

)2
. (4.46)

Indeed, a1(α) and a2(α) have already been reported in eq. (4.33), while ajj′(α) is simply
fixed matching the previous exact computation of fVβ ,Vβ′S (α) with he OPE expansion in
terms of twist fields at order O(x2). Expanding fVβ ,i∂φS (α) at the same order, we obtain

f
Vβ ,i∂φ
S (α)
' 1 + `a1(α)

∑
j

〈Vβ , · · · , i∂φ, · · ·| (i∂φ)j(0) |Vβ , · · · , i∂φ, · · ·〉

+ `2
∑
j<j′

(ajj′(α)− ajj′(0)) 〈Vβ , · · · , i∂φ, · · ·| (i∂φ)j(0)(i∂φ)j′(0) |Vβ , · · · , i∂φ, · · ·〉

+ `2(a2(α)− a2(0))
∑
j

(
〈Vβ , · · · , i∂φ, · · ·|T j(0) |Vβ , · · · , i∂φ, · · ·〉

− 〈0, · · · , 0|T j(0) |0, · · · , 0〉
)
.

(4.47)
Evaluating all the expectation values, we finally get the desired result

f
Vβ ,i∂φ

(m,n−m)(α) ' 1 + iαβx
m

n
− 1

2

(
αβx

m

n

)2
− (n−m)2

n2 α2x2. (4.48)

One interesting feature is that, at order O(x2), the insertion of the vertex operators only
shifts the average charge, i.e. the quadratic term in α of log fVβ ,i∂φ(m,n−m)(α) does not depend
on β. Instead, the excess of variance, encoded in the O(α2) term of log fVβ ,i∂φ(m,n−m)(α), is
entirely due to the presence of the derivative operators. Clearly, this observation is no
longer true at higher order in x, where the correlation effects between the different replicas
matter, as can be seen explicitly from the exact result for fVβ ,i∂φ(n−1,1)(α) in eq. (4.39).

We now test the CFT result for fVβ ,i∂φ(n−1,1)(α) given by eq. (4.39) against the numerical
data for the XX chain. We focus again on the excess of charge

〈q〉Vβ ,i∂φ(n−1,1) − 〈q〉
1
n = 1

i

d

dα
f
Vβ ,i∂φ

(n−1,1)(α)
∣∣∣
α=0

= β(n− 1)x
n

−
β
(
n cot(πx)− cot

(
πx
n

))
(2π)

(
1
4β

2 (n cot(πx)− cot
(
πx
n

))2 + 1
4 sin2(πxn )

) , (4.49)

and of variance〈
∆q2

〉Vβ ,i∂φ
(n−1,1)

−
〈

∆q2
〉1
n

= 1
(i)2

d2

dα2 log fVβ ,i∂φ(n−1,1)(α)
∣∣∣
α=0

(4.50)

= −

(
β(n cot(πx)−cot(πxn ))

2π

)2

(
1
4β

2 (n cot(πx)− cot
(
πx
n

))2 + 1
4 sin2(πxn )

)2

+ 2

(
1

2π

)2

1
4β

2 (n cot(πx)− cot
(
πx
n

))2 + 1
4 sin2(πxn )

. (4.51)
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Figure 6. Left: the CFT prediction of the excess of average 〈q〉V1,i∂φ
(1,1) − 〈q〉

1

2 as a function of x is
plotted against the numerical data for the XX chain at different system sizes (L = 100, 200, 400, 800).
The numerics match very well with CFT predictions even for relatively small system sizes (such
as L = 100). Right: 〈q〉Vβ ,i∂φ

(1,1) − 〈q〉12 is plotted for different β (β = −2,−1, 1, 2) as a function of
x = `/L. Numerical data refer to the low energy excitations of the half-filled XX chain for L = 200.
The O(x) predictions from OPE calculation (dashed lines) are clearly working well only for small
values of x, up to x ∼ 0.2.

In figure 6 we plot the excess of average charge 〈q〉Vβ ,i∂φ(n−1,1) − 〈q〉
1
n for n = 2 as a function of

x = `/L and compare it with numerical data. From the figure we see that the discrepancies
of numerics from the analytical predictions are quite negligible also for a system as small
as L = 200.

The numerical data for the excess of variance
〈
∆q2〉Vβ ,i∂φ

(n−1,1) −
〈
∆q2〉1

n are reported in
figure 7. In the left panel we consider n = 2, β = 1 and compare different values of
the system size L. In contrast to the data for the excess of charge at the same size, the
deviations from the CFT predictions are now evident and they become larger as x → 1.
As usual for the variance (see also the previous subsection), the numerical data oscillate
around the CFT result. In the right panel of figure 7 , we fix the system size (L = 1000)
and compare different values of β. A peculiar feature manifest from this plot is that for
β = 2 the numerical data agree quite well with the predictions close to x = 1, which is
definitely not the case for β = 1, 3.

5 Symmetry-resolved relative entropy

In this section, we use the results of the previous one to obtain explicit predictions for
the symmetry-resolved relative n-th relative entropy, defined by eq. (2.10) specialised to
low-lying CFT states ρ = ρΥ and σ = ρχ, generated by two primary operators Υ and χ in
the compact boson theory.

We use eq. (3.32) for the relative entropy in terms of the generalised probability, that
we also rewrite here

Sn(ρΥ‖ρχ)(q) = Sn(ρΥ‖ρχ) + 1
1− n log

pΥ,χ
(1,n−1)(q)
pΥ
n (q) + log p

χ
1 (q)
pΥ

1 (q)
. (5.1)

As we have discussed already, in the thermodynamic limit L→∞ (x = `/L fixed), the ratio
of probabilities tends to 1 (cf. eq. (3.31)) leading relative entropy equipartition (3.33), i.e.
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Figure 7. Left: the CFT prediction of the excess of variance
〈
∆q2〉V1,i∂φ

(1,1) −
〈
∆q2〉1

2 as a
function of x is plotted against the numerical data for the XX chain for different system sizes
(L = 100, 200, 400, 800). Right:

〈
∆q2〉Vβ ,i∂φ

(1,1) −
〈
∆q2〉1

2 is plotted for different values of β (β = 1, 2, 3)
as a function of x = `/L. Numerical data refer to the low energy excitations of the half-filled XX
chain for L = 1000. As known from OPE arguments, the excess of variance at order O(x2) does
not depend on β, but this is no longer true for larger x.

Sn(ρΥ‖ρχ)(q) ' Sn(ρΥ‖ρχ). Starting from eq. (5.1), we can systematically characterise the
corrections to this asymptotic behaviour and identify the terms breaking the equipartition.
The leading and physically most important corrections to equipartition comes from the
orders O(α) and O(α2) of fΥ,χ

(1,n−1)(α). At this order, the generalised probabilities appearing
in eq. (5.1) are still Gaussian,3 but with renormalised values of average charge and variance
compared to the vacuum, explicitly computed, also numerically, in the previous section.

Let us now use this Gaussian behaviour to compute at the first subleading order the
symmetry resolved relative entropies Sn(ρΥ‖ρχ)(q). We need the Fourier transform of
pΥ,χ
S (α) = p1n(α)fΥ,χ

S (α), for the partitions S = (1, n − 1) of interest, and pΥ/χ(α) =
p1n(α)fΥ/χ(α). At the leasing order, we write p1n(q) as (we adopt the convention 〈q〉1n = 1)

p1n(α) ' exp
(
−α

2

2
〈

∆q2
〉1
n

)
, p1n(q) ' 1√

2π 〈∆q2〉1n
exp

(
− q2

2 〈∆q2〉n

)
. (5.2)

We recall that 〈
∆q2

〉1
n

= 1
π2n

log
[
L

π
sin
(
π
`

L

)]
+ κn + o(1) , (5.3)

where the additive constant κn is not universal (and it is known [79] in the XX chain used
for the numerics). Also pΥ,χ

S (q) is Gaussian and we write

pΥ,χ
S (α) ' exp

(
iα 〈q〉Υ,χS − α2

2
〈

∆q2
〉Υ,χ

S

)
,

pΥ,χ
S (q) ' 1√

2π 〈∆q2〉Υ,χS
exp

(
−(q − 〈q〉Υ,χS )2

2 〈∆q2〉Υ,χS

)
. (5.4)

3This leading Gaussian behaviour is a consequence of the α-dependence of the scaling dimension of the
modified twist fields, which leads to a diverging variance in the continuum limit. The other non-universal
but finite cumulants of the ground-state probability distribution come instead from the α-dependent pro-
portionality constant appearing in the relation tr

(
ρn1e

iαQ
)
∼
〈
Tn,α(0)T̃n,α(`)

〉
.
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The average charge and variance of these distributions are read directly from the expansion
of the universal functions fΥ,χ

S (α)

log fΥ,χ
S (α) = iαaΥ,χ

S − α2

2 bΥ,χS +O(α4), (5.5)

and so
〈q〉Υ,χS = aΥ,χ

S ,
〈

∆q2
〉Υ,χ

S
=
〈

∆q2
〉1
n

+ bΥ,χS . (5.6)

Obviously, the very same formulas remain valid if there is the insertion of a single operator
in pΥ

n (q) (which indeed correspond to S = (n, 0).
Plugging these Gaussian approximations for all the probabilities into eq. (5.1), awe

easily get a completely general result for the relative entropy with the first subleading
order that reads

Sn(ρΥ‖ρχ)(q) =Sn(ρΥ‖ρχ) + 1
1− n

(
−

(q − 〈q〉Υ,χ(1,n−1))
2

2 〈∆q2〉Υ,χ(1,n−1)
+ (q − 〈q〉Υn )2

2 〈∆q2〉Υn

)

+
(

(q − 〈q〉Υ1 )2

2 〈∆q2〉Υ1
− (q − 〈q〉χ1 )2

2 〈∆q2〉χ1

)
+ . . . . (5.7)

Now we are going to use that the variances can be written as in eq. (4.22) the sum of the
diverging piece from the vacuum, plus an O(1) term, obtaining

Sn(ρΥ‖ρχ)(q) =Sn(ρΥ‖ρχ) + 1
2(1− n) 〈∆q2〉1n

(
− (q − aΥ,χ

(1,n−1))
2
(

1−
bΥ,χ(1,n−1)

〈∆q2〉1n

)

+ (q − aΥ
n )2

(
1− bΥn
〈∆q2〉1n

))
(5.8)

+ 1
2 〈∆q2〉11

(
(q − aΥ

1 )2
(

1− bΥ1
〈∆q2〉11

)
− (q − aχ1 )2

(
1− bχ1
〈∆q2〉11

))
+ . . . . (5.9)

This shows that quite generally equipartition is broken at order (logL)−1 (unless some
cancellations take place). It is also clear that in order to compute the relative entropies,
all we have to do is just to extract the coefficients aΥ,χ

S and bΥ,χS from the CFT universal
functions and plug into eq. (5.9).

In the next subsection, we will carefully analyse the symmetry resolved relative en-
tropies for specific pairs of states case by case. Before doing so, we briefly review some
useful results for short ` expansion of the standard relative entropies [35] and mention the
main difference with the charged counterpart. For two primary states Υ, χ the relative
entropy S1(ρΥ‖ρχ) at leading order scales as

S1(ρΥ‖ρχ) ∝
(
〈Ψ〉Υ − 〈Ψ〉χ

)2
(`)2∆Ψ + o

((
`

L

)2∆Ψ)
, (5.10)

where Ψ is the lightest quasi-primary for which 〈Ψ〉Υ − 〈Ψ〉χ 6= 0. The prefactor has been
worked out explicitly in ref. [35] for the case in which Ψ is a primary operator or the
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stress-energy tensor T . A simple argument to understand this behaviour is that, for any
primary operator O the fusion channel

Tn × T̃n → O⊗ 1⊗ · · · ⊗ 1 (5.11)

is never there, since the expectation value of O is zero. Moreover, although the fusion chan-
nel

Tn × T̃n → T ⊗ 1⊗ · · · ⊗ 1 (5.12)

provides a non-vanishing contribution for any integer n > 1, when the analytical contin-
uation n → 1 is performed this fusion effectively disappears and T behaves almost like a
primary operators [30, 121, 133] (we will return on this point later on).

Conversely, in the presence of a flux,

1
1− n log

tr
(
ρΥρ

n−1
χ eiαQ

)
tr (ρnΥeiαQ) (5.13)

is in general of order
(
`
L

)∆Ψ , also in the limit n→ 1 beacuse, as we discussed in section 3.1,
the fusion channel

Tn,α × T̃n,α → Ψ⊗ 1⊗ · · · ⊗ 1 (5.14)

has a non-vanishing contribution even for n = 1, and for Ψ being a primary a field the cor-
respondent OPE coefficient is directly related to the 3-point function 〈Vα(0)Ψ(z)V−α(∞)〉.

5.1 Vertex-vertex symmetry resolved relative entropies

The universal function fVβ ,Vβ′S (α) necessary for this calculation has been computed for all
partitions S, and the final result is given by eq. (4.14). For the two possible relative entropy,
we only need the partition S = (1, n − 1) and S = (n− 1, 1). We start from the relative
entropy between a vertex state and the vacuum, for which eq. (4.14) simplifies to

f
1,Vβ
(1,n−1)(α) = eiαβx

n−1
n , f

Vβ ,1

(1,n−1)(α) = eiαβx/n, f
Vβ
n (α) = eiαβx. (5.15)

In this cases then, the variances are always the same as in the ground states and there
are only shifts of the average charges, encoded in the factors aΥ,χ

S in eq. (5.5) that in our
cases read a

1,Vβ
(1,n−1) = βxn−1

n , aVβ ,1(1,n−1) = βx/n, and a
Vβ
n (α) = βx. For completeness it is

also worth to report the explicit values of the generalised probabilities

p
1,Vβ
(1,n−1)(q) '

1√
2π 〈∆q2〉1n

exp

−
(
q − βx(n−1)

n

)2

2 〈∆q2〉1n

, (5.16)

p
Vβ ,1

(1,n−1)(q) '
1√

2π 〈∆q2〉1n
exp

−
(
q − βx

n

)2

2 〈∆q2〉1n

, (5.17)

p
Vβ
n (q) ' 1√

2π 〈∆q2〉1n
exp

(
−(q − βx)2

2 〈∆q2〉1n

)
. (5.18)
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In order to use eq. (5.9), we also need the symmetry-resolved n-th Rényi relative
entropy. An explicit expression for Sn(ρ1‖ρVβ ) = Sn(ρVβ‖ρ1) has been provided in [36]
and reads

Sn(ρ1‖ρVβ ) = Sn(ρVβ‖ρ1) = β2

1− n log
(

sin πx
n sin πx

n

)
. (5.19)

Plugging eqs. (5.16), (5.17) and (5.18) into eq. (5.1), or (5.9), for Sn(ρ1‖ρVβ )(q) and
Sn(ρVβ‖ρ1)(q), one obtains

Sn(ρ1‖ρVβ )(q) =Sn(ρ1‖ρVβ ) + 1
1− n log

p
1,Vβ
(1,n−1)(q)
p1n(q) − log p11 (q)

p
Vβ
1 (q)

' β2

1− n log
(

sin πx
n sin πx

n

)
− 1
〈∆q2〉1n

(
βx

n
q + 1− n

n2
β2x2

2

)

+ 1
〈∆q2〉11

(
βxq − β2x2

2

)
, (5.20)

and

Sn(ρVβ‖ρ1)(q) =Sn(ρVβ‖ρ1) + 1
1− n log

p
Vβ ,1

(1,n−1)(q)

p
Vβ
n (q)

− log p
Vβ
1 (q)
p11 (q)

' β2

1− n log
(

sin πx
n sin πx

n

)
+ 1
〈∆q2〉1n

(
βx

n
q − 1 + n

n2
β2x2

2

)

+ 1
〈∆q2〉11

(
−βxq + β2x2

2

)
. (5.21)

A remarkable feature of these results is that

Sn(ρVβ‖ρ1)(q) 6= Sn(ρ1‖ρVβ )(q), (5.22)

while Sn(ρVβ‖ρ1) = Sn(ρ1‖ρVβ ). Furthermore, also the small x behaviour is different in
the two cases. In fact Sn(ρVβ‖ρ1) scales as ∼ x2 for small x, while Sn(ρVβ‖ρ1)(q) behaves
as x. This is understood from OPE expansion, because the fusion

Tn,α × T̃n,α → i∂φ⊗ 1⊗ · · · ⊗ 1 (5.23)

is present in general for α 6= 0, but vanishes whenever α = 0. Taking the Fourier transform,
this O(x) contribution produces the correction seen in eqs. (5.20) and (5.21). Another
important feature concerns the limit n→ 1 when the two relative entropies become equal
and simplify to

S1(ρVβ‖ρ1)(q) = S1(ρ1‖ρVβ )(q) = β2(1− πx cotπx)− β2x2

2 〈∆q2〉11
. (5.24)

Remarkably, at this order there is no q-dependence and so the equipartition may be even-
tually broken at higher order in 1/ log `.
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For two general vertex states the calculation is identical. Indeed from eq. (4.14) we have

f
Vβ1 ,Vβ2
(1,n−1) (α) = e

iαx
n

[β1+(n−1)β2], (5.25)

and hence aVβ1 ,Vβ2
(1,n−1) = x[β1 + (n− 1)β2]/n and bVβ1 ,Vβ2

(1,n−1) = 0. Plugging these expression into
eq. (5.9), we get

Sn(ρVβ1
‖ρVβ2

)(q) =Sn(ρVβ1
‖ρVβ2

)

− 1
〈∆q2〉1n

(
β2 − β1

n
xq + x2

2n2

(
β2

1(1 + n)− 2β1β2 + (1− n)β2
2

))

+ 1
〈∆q2〉11

(
(β2 − β1)xq − x2β

2
2 − β2

1
2

)
, (5.26)

that in the limit n→ 1 simplifies as

S1(ρVβ1
‖ρVβ2

)(q) = (β1 − β2)2(1− πx cotπx)− (β1 − β2)2x2

2 〈∆q2〉11
. (5.27)

Once again, in the replica limit, and at this order the relative entropy becomes symmetric
in its argument and independent of q. Clearly eq. (5.26) for β1 → 0 or β2 → 0 correctly
reproduce eqs. (5.21) and (5.20) respectively.

5.2 Vacuum-current symmetry resolved relative entropies

Here we move to the relative entropy between the current state i∂ϕ and a vertex state,
starting from the special case of the vacuum. Again, we start from eq. (5.9), in which the
various coefficients a and b require the knowledge of f i∂φn (α) and f i∂φ,1(1,n−1)(α) at order α2.
The former is obtained just by expanding eq. (4.30) and obtaining ai∂ϕn = 0 and

bi∂ϕn = 1
2π2

(
ψ

(1
2

(
n

sin(πx) − n− 1
)

+ 1
)
− ψ

(1
2

(
n

sin(πx) − n− 1
)

+ 1 + n

))
,

(5.28)
where ψ(x) is the digamma function. Combining this quadratic form with p1n(α) in eq. (5.2),
we can perform the Fourier transform of pi∂φn (α) = p1n(α)f i∂φn (α), obtaining

pi∂φn (q) ' 1√
2π 〈∆q2〉1n

exp
(
− q2

2 〈∆q2〉1n

)1 + 1
2b

i∂ϕ
n

− 1
〈∆q2〉1n

+ q2(
〈∆q2〉1n

)2


 .
(5.29)

Similarly, expanding at the second order f i∂φ,1(1,n−1) we get 1i∂ϕ,11,n−1 = 0 and bi∂ϕ,11,n−1 is obtained

bi∂ϕ,11,n−1 = 2
π2 sin2

(
πx

n

)
. (5.30)

Taking the Fourier transform of pi∂φ,1(1,n−1)(α) = p1n(α)f i∂φ,1(1,n−1)(α), in the Gaussian approxima-
tion, we get that pi∂φ,1(1,n−1)(q) is the same as eq. (5.29) with the replacement bi∂ϕn → bi∂ϕ,11,n−1.
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Finally, the n-th total relative entropy Sn(ρi∂φ‖ρ1) has been computed for general n in
ref. [36], but its form is rather cumbersome and we report here just its value for n→ 1

S1(ρi∂φ‖ρ1) = 2
(

log (2 sin πx) + 1− πxcotπx+ ψ

(1
2cscπx

)
+ sin πx

)
, (5.31)

with ψ(x) being again the digamma function. Plugging eqs. (5.2) and (5.29) into eq. (5.1)
for Sn(ρi∂φ‖ρ1)(q), we get

Sn(ρi∂φ‖ρ1)(q) =Sn(ρi∂φ‖ρ1) + 1
1− n log

pi∂φ,1(1,n−1)(q)

pi∂φn (q)
− log p

i∂φ
1 (q)
p11 (q)

'Sn(ρi∂φ‖ρ1) + 1
1− n

1
2
(
bi∂ϕ,11,n−1 − b

i∂ϕ
n

)− 1
〈∆q2〉1n

+ q2(
〈∆q2〉1n

)2


− 1

2b
i∂ϕ
1

− 1
〈∆q2〉11

+ q2(
〈∆q2〉11

)2

 . (5.32)

In particular, at small x, the difference bi∂ϕ,11,n−1 − bi∂ϕn can be read from the OPE expan-
sion (4.36):

bi∂ϕ,11,n−1 − b
i∂ϕ
n = 2αx

2

n2 (1− n) + o(x2). (5.33)

Quite interestingly for small x, even for n → 1, Sn(ρi∂φ‖ρ1)(q) − Sn(ρi∂φ‖ρ1) in
eq. (5.32) scales as ∼ x2. The origin of this behaviour is the presence of the fusion channel

Tn,α × T̃n,α → T ⊗ 1 · · · ⊗ 1, (5.34)

also in the limit n→ 1 when α 6= 0.
If we consider instead the other relative entropy Sn(ρ1‖ρi∂φ)(q), the computation can-

not be brought till the end because we do not have a close expression for f1,i∂φ(1,n−1)(α) for
general n. The same is also true for the total relative entropy, for which in ref. [36], it was
not possible to derive the analytic continuation to general n, but only a determinant form
valid for integer n. Eq. (5.9) can always be used. Also in this case there is no shift of the
average charge, i.e. a1,i∂φ(1,n−1) = ai∂ϕn = 0. We do not have a closed form for b1,i∂φ(1,n−1)− b

1
n (ac-

tually, b1n = 0 but we prefer to keep it), but we can still investigate the small x behaviour.
Indeed, from the OPE (4.36) we have

b1,i∂φ(1,n−1) − b
1
n = 2x2(n− 1)

n2 + o(x2), (5.35)

which, at this order, coincides with bi∂φ,1(1,n−1) − b1n, but such equality is does hold at
higher order.

5.3 Vertex-current symmetry resolved relative entropies

For what concerns the pair of states |Vβ〉 , |i∂φ〉 the symmetry resolved relative entropies
are always given by eq. (5.9). The scaling function f

i∂φ,Vβ
(1,n−1)(α) is given in eq. (4.39).
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Expanding at second order, we get ai∂φ,Vβ(1,n−1) and b
i∂φ,Vβ
(1,n−1) which are given by eqs. (4.49)

and (4.51) respectively. Plugging these expression into eq. (5.9) one gets Sn(ρi∂φ‖ρVβ )(q)
that however we do not report here because it is long and not very illuminating. We only
mention that, because of the small x behaviour of ai∂φ,Vβ(1,n−1) in eq. (4.49), Sn(ρi∂φ‖ρVβ )(q)
has a q-dependence at order O(x) when x is small. This is completely analogous to what
already obtained for Sn(ρ1‖ρVβ )(q), whose explicit expression is eq. (5.20).

6 Symmetry-resolved distances

In this section we investigate the symmetry-resolved distance D′n(ρΥ, ρχ)(q), defined by
equation (2.13), considering ρ = ρΥ and σ = ρχ as RDM of low lying-states of the compact
boson CFT generated by primary fields. To do so, we have to characterise the following
quantity

tr((ρΥ − ρχ)neΠq) (6.1)

with ne being an even integer and eventually analytically continue the result to any value
of ne [38, 66]. Such analytic continuation is necessary for tr(|ρΥ − ρχ|nΠq) when n is not
an even integer, in particular for the physical relevant case with n = 1.

In any quantum field theory, in order to deal with finite distances, it is custom to
normaliseDn via the moments of the RDM in the vacuum [38, 66]. Hence, for the symmetry
resolved one, we introduce

D′n(ρΥ, ρχ)(q) ≡ 1
2

tr (Πq|ρΥ − ρχ|n)
tr((ρ1)n) , (6.2)

which differs from D′n(ρΥ, ρχ)(q) for an overall q-independent constant. D′n(ρΥ, ρχ)(q)
satisfies the following sum-rule∑

q

D′n(ρΥ, ρχ)(q) = Dn(ρΥ, ρχ) ≡ 1
2

tr |ρΥ − ρχ|n

tr((ρ1)n) , (6.3)

analogous to eq. (2.14). The reason we do so is that Dn(ρΥ, ρχ) is a cut-off independent
quantity, a feature which is not shared by Dn(ρΥ, ρχ) when n 6= 1, as discussed in [38,
66]. In the limit n → 1, since the RDM is normalised as tr(ρ1) = 1, D′n(ρΥ, ρχ)(q) and
D′n(ρΥ, ρχ)(q) become equal, but for n 6= 1 this is not the case.

As discussed in ref. [38] it is extremely difficult to characterise tr((ρΥ − ρχ)n) ana-
lytically for generic x = `/L, even for the primary states discussed so far. Consequently,
our main focus here is the small x behaviour, which can be extracted through the OPE
expansion adapting the techniques employed in [38] for the total distances. We recall the
main result of [38]

tr((ρΥ − ρχ)n)
tr((ρ1)n) =

∑
Ψ1,...,Ψn

bΨ1,...,Ψn`
∆Ψ1+···+∆Ψn (〈Ψ1〉Υ−〈Ψ1〉χ) . . . (〈Ψn〉Υ−〈Ψn〉χ). (6.4)

Here, the sum is over the set of orthogonal quasiprimaries (Ψ1, . . . ,Ψn) of the CFT and
bΨ1...Ψn are the universal OPE coefficients of the fusion

Tn × T̃n → Ψ1 ⊗ · · · ⊗Ψn. (6.5)
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Eq. (6.4) is straightforwardly generalised to the charged moments as

tr((ρΥ − ρχ)neiαQ)
tr((ρ1)n eiαQ) (6.6)

=
∑

Ψ1,...,Ψn
bΨ1,...,Ψn(α)`∆Ψ1+···+∆Ψn (〈Ψ1〉Υ − 〈Ψ1〉χ) . . . (〈Ψn〉Υ − 〈Ψn〉χ),

with bΨ1...Ψn(α) being the OPE coefficient of

Tn,α × T̃n,α → Ψ1 ⊗ · · · ⊗Ψn. (6.7)

From eq. (6.6) we have that the leading term in the expansion of tr((ρΥ − ρχ)neiαQ) for
small `/L is due to the most relevant quasiprimary Ψ (with the smallest scaling dimension
∆Ψ) satisfying

〈Ψ〉Υ − 〈Ψ〉χ 6= 0. (6.8)

Thus, at leading order, we have

tr((ρΥ − ρχ)neiαQ)
tr((ρ1)n eiαQ) = bΨ···Ψ(α)`n∆Ψ(〈Ψ〉Υ − 〈Ψ〉χ)n ∝

(
`

L

)n∆Ψ

. (6.9)

The proportionality constant in eq. (6.9) is universal and depends on α and the states
under consideration. Although its explicit determination can be difficult (see [38] for vertex
operators in absence of the flux), eq. (6.9) still represents an important result providing in
full generality the scaling in x of the charged moment, once the quasiprimary Ψ has been
identified. From the knowledge of tr((ρΥ − ρχ)neiαQ) one easily gets tr((ρΥ − ρχ)nΠq) via
Fourier transform, which is the key ingredient to compute D′n(ρΥ, ρχ)(q) from eq. (6.2).

6.1 The case n = 2

The CFT computation of the l.h.s. of eq. (6.6) for general n is made difficult by the many
charged moments that needs to be calculated after expanding the n-th power. It is then
rather instructive to look at what happens for the case n = 2 that can be simply handled
without requiring `/L small. On top of the pedagogical character, the calculation has a
per-se interest because n = 2 gives a genuine distance (admittedly not the most relevant
one). Let us define, with a small abuse of notation,

D′n(ρΥ, ρχ)(α) ≡ 1
2

tr
(
eiαQ(ρΥ − ρχ)n

)
tr (ρn1) (6.10)

as the Fourier transform of D′n(ρΥ, ρχ)(q) appearing in eq. (6.2). For n = 2, we can recast
D′2(ρΥ, ρχ)(α) as follows

D′2(ρΥ, ρχ)(α) = 1
2

tr(ρ2
1e
iαQ)

tr(ρ2
1)

tr
(
ρ2

Υe
iαQ
)

tr
(
ρ2
1e
iαQ
) +

tr
(
ρ2
χe
iαQ
)

tr
(
ρ2
1e
iαQ
) − 2

tr
(
ρΥρχe

iαQ
)

tr
(
ρ2
1e
iαQ
)
 . (6.11)

All the terms inside the parenthesis of eq. (6.11) are universal. Indeed, the first term gives

tr
(
ρ2

Υe
iαQ
)

tr
(
ρ2
1e
iαQ
) = tr(ρ2

Υ)
tr(ρ2

1)

tr
(
ρ2

Υe
iαQ
)

tr
(
ρ2

Υ
) tr(ρ2

1)
tr(ρ2

1e
iαQ)

 , (6.12)
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and we recognize tr(ρ2
Υ)

tr(ρ2
1) as a universal ratio directly related to the excess of 2-nd Rényi

entropy (see [39]) while
(

tr(ρ2
Υe

iαQ)
tr(ρ2

Υ)
tr(ρ2

1)
tr(ρ2

1e
iαQ)

)
is fΥ

n=2(α) defined by eq. (3.24) and discussed
explicitly in the work [102]. Similarly, the last piece appearing in eq. (6.11) can be written as

tr
(
ρΥρχe

iαQ
)

tr
(
ρ2
1e
iαQ
) = tr(ρΥρχ)

tr(ρ2
1)

(
tr(ρΥρχe

iαQ)
tr(ρΥρχ)

tr(ρ2
1)

tr(ρ2
1e
iαQ)

)
. (6.13)

The quantity tr(ρΥρχ)
tr(ρ2

1) has been studied in the context of n-distances in [38], while(
tr(ρΥρχe

iαQ)
tr(ρΥρχ)

tr(ρ2
1)

tr(ρ2
1e
iαQ)

)
is related to fΥ,χ

(1,1)(α) defined by eq. (3.29), which has been obtained
explicitly for the low-lying state of the Luttinger liquid in section 4.

6.2 Setup for general n

Qualitatively, the same procedure above for n = 2 generalises to any (even integer) n,
but it becomes soon untreatable because of the large numbers of terms appearing when
expanding tr

(
(ρΥ − ρχ)neiαQ

)
. In analogy to eq. (6.11) for n = 2, D′n(ρΥ, ρχ)(α) can be

parametrised as

D′n(ρΥ, ρχ)(α) = p1n(α)
(
Dn(ρΥ, ρχ)− cΥ,χ

n

α2

2 + o(α2)
)
, (6.14)

where cΥ,χ
n is a certain universal constant (in. α, but x dependent) that for finite and

integer n can be computed on a case by case basis. In eq. (6.14) we assume that the first
α-dependent universal contribution appear at order α2. Actually in principle there could
be a linear term in α; however it never appear in any of the states considered and so we
ignore such a term here so to have more compact formulas. We neglect the higher orders in
α because they produce subleading terms by Fourier transform. The probability p1n(α) is
Gaussian with zero mean and variance

〈
∆q2〉1

n diverging logarithmically with L, as given
by eq. (5.2); consequently the Fourier transform of eq. (6.14) is easily performed as

D′n(ρΥ, ρχ)(q) ' 1√
2π 〈∆q2〉1n

exp
(
− q2

2 〈∆q2〉1n

)

×
(
Dn(ρΥ, ρχ) + cΥ,χ

n

2 〈∆q2〉1n

(
−1 + q2

〈∆q2〉1n

))
. (6.15)

This equation manifests the equipartition for large L and shows that it is broken at leading
order by the term in cΥ,χ

n .
In the following subsections we will deal with the low-lying excited states of the compact

boson in the small x = `/L limit, since the general case is always untreatable. In contrast
to the symmetry-resolved relative entropy, also the small x limit is non trivial. In fact, in
section 4 we analysed via OPE expansion fΥ,χ

S , defined by eq. (3.29), only up to O(x2),
but eq. (6.9) shows that higher orders in x are needed in general to describe D′n(ρ, σ)(α)
as n increases.
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6.3 Vertex-vertex distance

The distance of the total density matrices between two vertex states Vβ and Vβ′ was char-
acterised for small x in ref. [38] and we closely follow this reference to work out the gener-
alisation in the presence of a flux.

The most relevant fusion channel in eq. (6.9) is represented by the current operator
i∂ϕ [38]. Consequently, we have

D′n(ρVβ , ρVβ′ )(α) tr(ρn1)
tr(ρn1eiαQ) = 1

2
tr
(
(ρVβ − ρVβ′ )

neiαQ
)

tr(ρn1eiαQ)

' 1
2bi∂φ,...,i∂φ(α)(2πβ − 2πβ′)n

(
`

L

)n
. (6.16)

In absence of flux, bi∂φ,...,i∂φ(α = 0) is related to an n-point function of i∂φ [38] inserted
in the points

ei2πj/n, j = 0, . . . , n− 1 (6.17)
of the complex plane C. The final result, analytically continued for ne → 1, is [38],

lim
ne→1

bi∂φ,...,i∂φ(α = 0) = 1
4F

(n′=1/2) (y = 1/2) , (6.18)

where

F (n′) (y) =
( 2
n′

sin πx
)2n′ Γ2

(
1+n′+n′csc(πy)

2

)
Γ2
(

1−n′+n′csc(πy)
2

) . (6.19)

The adaption of the derivation of ref. [38] to the presence of a flux requires the insertions
of two additional vertex operators V±α/2π at z = 0,∞ in the correlation functions of the
n derivatives at the roots of unity. The computation is identical to that for f i∂φn (α) in
eq. (4.30), reported in subsection 4.2. The resulting correlation is a characteristic polyno-
mial that can be analytically continued. In the end, the generalisation of eq. (6.18) to the
presence of a flux is obtained with the replacement F (n′)(y)→ F (n′)(y, α)

F (n′) (y, α) ≡
( 2
n′

sin πy
)2n′ Γ

(
1+n′+n′csc(πy)+α/π

2

)
Γ
(

1+n′+n′csc(πy)−α/π
2

)
Γ
(

1−n′+n′csc(πy)+α/π
2

)
Γ
(

1−n′+n′csc(πy)−α/π
2

) . (6.20)

This form is just eq. (4.30) with some minor adjustments due to normalisation and number
of insertions. Specialising now it to n′ = 1/2 and y = 1/2, we get

F (n′=1/2) (y = 1/2, α) = 2α
π tan (α/2) , (6.21)

so that
lim
ne→1

bi∂φ,...,i∂φ(α) = α

2π tan (α/2) . (6.22)

Let us also briefly discuss what we can say for the symmetry resolved distances of
vertex states beyond the small `/L approximation. In ref. [38], the following expansion has
been obtained

tr
(
(ρVβ − ρVβ′ )

n
)

tr(ρn1) =
n∑
k=0

(−1)k
∑

0≤j1<···<jk≤n−1
hn({j1, . . . , jk})(β−β′)2

, (6.23)
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where the function h(S = {j1, . . . , jk}) is

hn(S) =
(

sin π`
L

n sin π`
nL

)|S| j1<j2∏
j1,j2∈S

sin2 π(j1−j2)
n

sin π(j1−j2+`/L)
n sin π(j1−j2−`/L)

n

. (6.24)

If the flux is inserted, using our determination of fVβ ,Vβ′S (α) in eq. (4.14), we have

tr
(
(ρVβ − ρVβ′ )

neiαQ
)

tr(ρn1eiαQ) =
n∑
k=0

(−1)keiα
`
L

(βk+(n−k)β′) ∑
0≤j1<···<jk≤n−1

hn({j1, . . . , jk})(β−β′)2
.

(6.25)
For α = 0, it reduces to the distance among vertex states in eq. (6.23). The exponential
term eiα

`
L

(βk+(n−k)β′) is the additional weight due to the presence of k Vβ and of n− k Vβ′
in the partition S, as it follows from the function fVβ ,Vβ′S (α) in eq. (4.14). Eq. (6.25) can
be worked out for any finite (not too large) even n, but the analytic continuation is still
too difficult.

6.4 Current-vertex distances

The distance between the states |Vβ〉 and |i∂φ〉 can be analysed in the small `/L limit with
the same methods of the previous subsection. Whenever β 6= 0, the lightest quasiprimary
Ψ in eq. (6.9) is identified with i∂φ that has a non trivial expectation value for the vertex
states. Hence, similarly to eq. (6.16), we finally get

D′n(ρVβ , ρi∂φ)(α) tr(ρn1)
tr(ρn1eiαQ) = 1

2
tr
(
(ρVβ − ρi∂φ)neiαQ

)
tr(ρn1eiαQ) ' 1

2bi∂φ,...,i∂φ(α)(2πβ)n
(
`

L

)n
.

(6.26)
When β = 0, i.e. ρVβ becomes the vacuum RDM ρ1, the expectation value of ψ = i∂φ

vanishes and the most relevant operator in eq. (6.9) is Ψ = T , the stress-energy tensor. We
can thus write

D′n(ρ1, ρi∂φ)(α) tr(ρn1)
tr(ρn1eiαQ) = 1

2
tr
(
(ρ1 − ρi∂φ)neiαQ

)
tr(ρn1eiαQ)

' 1
2bT ...T (α)(〈T 〉i∂φ − 〈T 〉1)n`2n ∝

(
`

L

)2n
. (6.27)

The OPE coefficient bT ...T (α) is related to an n-point function of the stress energy tensor
with the additional insertion of two vertex operators V±α/2π(see [38] in the absence of
flux). This correlation function can be in principle calculated from the Ward identities, as
explained [123]; however it is difficult and no predictions for generic n are available and so
the analytic continuation is still untreatable.

7 Conclusions

In this manuscript we developed a systematic replica technique for the calculation of sym-
metry resolved relative entropies and subsystem distances. In principle, our approach can
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be applied to a generic one dimensional quantum system and in particular to 2D quantum
field theories. We applied this method to the analytic computation of symmetry resolved
relative entropies and distances between the RDMs of one interval embedded in various
low-lying energy eigenstates of 2D CFT, with particular focus on the free massless compact
boson. We provided analytic expressions for the charged moments corresponding to the
resolution of both relative entropies and distances for general integer n. For the relative
entropies, these formulas are manageable and the analytic continuation to n = 1 can be
worked out in most of the cases. Conversely, for the distances the corresponding charged
moments become soon untreatable as n increases. As a consequence, we have been able
only to perform the analytic continuation for small intervals via OPE of composite twist
fields. This problem does not come unexpectedly since it was already encountered for
the total subsystem distances [38]. We recall that, if needed, one might use known tech-
niques for numerical analytic continuations (see, e.g., refs. [134, 135]) to obtain the relative
entropies and the trace distances from the analytically presented results at finite integer
n. Our CFT results have been compared with exact numerical computations for the XX
spin-chain, with a focus on the universal functions that provide a more accurate test of
the theory.

Our replica framework can be applied to many different physical situations. There
are two specific cases where investigating the symmetry resolution of these measures of
distinguishably could be very useful and insightful. These are (i) the convergence of the
RDM to a thermodynamic one (either thermal or generalised Gibbs depending on the
number of conserved charges of the model) after a quantum quench; (ii) the effectiveness
of approximating the RDM of a microscopic model with a lattice Bisognano-Wichmann
form. In both these cases, the distances between the corresponding RDMs tends to zero
in the appropriate limit, but it is very natural to wonder whether the same is true in all
symmetry sectors.

Note added. After the completion of the calculations in this paper, but before its sub-
mission, the manuscript [132] appeared on the ArXiv that has partial overlap with the
result presented here, in particular with those of section 5. However, the first version
of [132] presents an error that has been corrected here.
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A Correlation functions among primaries in the Luttinger liquid

In this appendix, following ref. [102], we give a graphical representation for the correlation
function

〈Vα1(ζ1) . . . Vαk(ζk)(i∂φ)(z1) . . . (i∂φ)(zn)〉C (A.1)

evaluated in the ground state of a planar geometry.
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Figure 8. This is a graphical representation for 〈Vα1(ζ1)Vα2(ζ2)(i∂φ)(z1)(i∂φ)(z2)〉.

The starting point is the correlation function between vertex operators

〈Vα1(ζ1) . . . Vαk(ζk)〉C =
∏
i<j

(ζi − ζj)Kαiαj , (A.2)

valid for ∑j αj = 0 otherwise it vanishes. Hereafter we suppose that the neutrality con-
dition ∑

j αj = 0 is always satisfied. The derivative operator i∂φ can be represented
as follows

(i∂φ)(z) = lim
ε→0

1
ε

(∂Vε)(z), (A.3)

allowing us to write (A.1) as a number of derivatives of (A.2). The full expression is quite
involved (see [102] for some details), so we introduced some diagrammatic rules to deal
with it.

Diagramatic rules (for the planar geometry C):

• The full correlation function is made by different terms containing different contrac-
tions.

• The contraction between (i∂φ)(z) and Vα(ζ) gives a factor Kα
ζ−z .

• The contraction between Vαi(zi) and Vαj (ζj) gives a factor (ζi − ζj)Kαiαj .

• The contraction between (i∂φ)(zi) and (i∂φ)(zj) gives a factor K
(zi−zj)2 .

• Every (i∂φ)(zj) is contracted to just another operator.

• Every Vα(ζj) is contracted to any other operator, keeping the previous contraint.

Figure 8 reports all possible contractions for 〈Vα1(ζ1)Vα2(ζ2)(i∂φ)(z1)(i∂φ)(z2)〉.
In the case of a cylindrical geometry of circumference L, it is enough to make the

following replacement in eq. (A.2)

ζi − ζj →
L

π
sin
(
π(ζi − ζj)

L

)
. (A.4)

Also the results for K 6= 1 can be obtained starting from K = 1 and replacing

αj →
√
Kαj i∂φ→

√
Ki∂φ, (A.5)

a simple fact that follows directly from eq. (A.2).
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B Numerical methods for the XX chain

We consider the tight-binding 1D chain of free fermions described by the hamiltonian

H = −
∑
j

[
c†jcj+1 + c†j+1cj − 2h

(
c†jcj −

1
2

)]
, (B.1)

where c†j , cj are the creation/annihilation operators of spinless fermions at the site j. One
can study either the Ramond(R) or the Neveu-Schwarz sectors, which correspond to peri-
odic or antiperiodic boundary conditions respectively. By Jordan-Wigner transformation
this fermion model is mapped to the XX spin-chain.

The correlation matrix of a state ρ is

Cij = tr(ρc†icj). (B.2)

The subsystem correlation matrix CA is the restriction of C to a subsystem A; it has
dimension `× ` with ` the number of sites in A. A quadratic hamiltonian like (B.1) admits
a basis of gaussian eigenstates, whose RDM is also gaussian, i.e.

ρA ≡ trB(ρ) ∝ exp
(
−
∑
i,j

εijc
†
icj

)
, (B.3)

for a given `× ` matrix ε. By Wick theorem, ε and CA are related as [136, 137]

CA = 1
eε + 1 . (B.4)

The proportionality constant in (B.3) ensures that tr(ρA) = 1 and it is given by det(CA).
Given two gaussian states ρ1, ρ2 also their product ρ = ρ1ρ2 is gaussian The correlation

matrix for the product ρ is [138, 139]

C = C1 × C2 ≡ C2
1

1− C1 − C2 + 2C1C2
C1. (B.5)

The generating function
p(α) ≡ tr(ρeiαQ). (B.6)

for the statistics of the number of fermions Q ≡∑j c
†
jcj is written in terms of C as [73–76]

p(α) = det
(
Ceiα + (1− C)

)
. (B.7)

Consequently, the average number of particles 〈Q〉 and its variance 〈∆Q2〉 are

〈Q〉 ≡ 1
i

d

dα
log p(α)

∣∣∣
α=0

= tr(C), (B.8)

〈∆Q2〉 ≡ 1
(i)2

d2

dα2 log p(α)
∣∣∣
α=0

= tr(C)− tr(C2). (B.9)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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