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1 Introduction

The search for general principles that identify effective theories that can be consistently
coupled to quantum gravity has recently attracted much attention [1]. These principles have
been formulated in a number of quantum gravity or ‘swampland’ conjectures. A motivation
for this work provides the so-called distance conjecture [2]. It deals with effective theories
with scalar fields and suggests that, if a UV completion with gravity exists, it has to admit
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states with a certain universal behaviour when approaching points in field space that are at
infinite shortest geodesic distance. The profoundness of this conjecture arises from the fact
that it links properties of the field space to the existence of certain states in the underlying
theory near such infinite distance points. Even if one might not know the whole spectrum
of states, at least a subsector has to follow a rather constrained asymptotic behaviour. In
this work, we suggest that this asymptotic structure is dictated by a holographic principle
and the existence of an auxiliary boundary theory living at infinite distance boundaries of
field space.

The physical motivation for the holographic dictionary lies largely in the distance
conjecture combined with the observation that the asymptotic field space metric and the
relevant towers of states follow stringent constraints in all known examples arising from string
compactifications [3–16]. Furthermore, it is intriguing to interpret the distance conjecture
as describing a mechanism of ensuring that exact global symmetries are absent in any
gravity-coupled theory with finitely many states [17, 18]. Adapting the converse perspective,
we claim that at any infinite distance boundary in field space a global symmetry arises
and that we can attach this data to the boundary. Our intuition is then derived from the
expectation that combining the existence of a global symmetry with all possible positivity
constraints, e.g. of the field space metric, will strongly restrict the asymptotic behaviour
of the theory. That this is indeed the case in supersymmetric string compactifications
was recently highlighted in [3, 6, 7, 11, 15, 19]. In fact, in the vector sector of N = 2
string compactifications it is the asymptotic global symmetry and the positivity of the
physical couplings and masses in the asymptotic regime that fixes much of the asymptotic
structure. The underlying mathematical reason for this observation can be described using
asymptotic Hodge theory [20, 21]. This broad and abstract theory will allow us to develop
the holographic dictionary to a significant extend.

The detailed construction that we will present is motivated by an in-depth understanding
of the field spaces that arise in string compactifications on Calabi-Yau manifolds. More
precisely, we start our discussion with a study of the asymptotic behaviour of the moduli
space of geometric deformations that preserve the Calabi-Yau condition and later strip away
the underlying geometric motivation. The geometric settings have been studied intensively
in the past and it is well-known that there are two types of deformations of Calabi-Yau
geometries, the complex structure deformations and the Kähler structure deformations.
Since by mirror symmetry the latter deformations can be realized as a special subset of
the former [22], we will exclusively focus on complex structure deformation space in this
work. It is central to this work that the complex structure moduli space has boundaries.
These correspond to choices of complex structures for which the Calabi-Yau manifold
degenerates. While some of these degeneration points, such as the large complex structure
point, have been studied in much detail in the past, it is important to stress that there are
a plethora of such degenerations and there is no detailed classification of the possibilities
yet (see [23, 24] for recent progress). The crucial point is that at the boundaries of moduli
space the associated manifold is so singular that the usual geometric structures, such as
the Hodge norms determining the kinetic terms of fields, degenerate and can no longer be
applied. Asymptotic Hodge theory shows, however, that there is a more abstract structure
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living on the boundary and we claim that this structure can be thought of as defining
parts of a boundary theory. We will descibe in this work which set of boundary data
determines the behaviour of the couplings in the effective theory and the moduli space close
to boundary. In this geometric picture we thus find that when tuning the Calabi-Yau space
to become singular such that a global symmetry emerges in moduli space, the structure of
the effective theory and the moduli space is largely fixed by global symmetry, positivity, and
holomorphicity. While our findings are compatible with the expectations from the distance
conjecture at boundaries that are at infinite distance, we will see that the constrained
asymptotic behaviour arises more generally.

The existence of a holographic description of the Calabi-Yau moduli space can also be
motivated by noting that the physical metric on moduli space, i.e. the Weil-Petersson metric
which arises in string compactifications, always asymptotes to a metric containing the factors
of Poincaré metric at any infinite distance boundary [25]. In a real two-dimensional setting,
which will be the main focus of this work, this means that the physical metric asymptotes to
the two-dimensional Poincaré metric which is a patch of Euclidean AdS2. This metric has
an sl(2,R) isometry algebra that will non-trivially translate to a global symmetry algebra
sl(2,C) on the boundary. We will see that this boundary sl(2,C) is indeed a result of the
emerging global symmetry and exists more generally even if the boundary is not at infinite
distance. The key quantity relevant to evaluate the asymptotic physical metric is the period
matrix of the Calabi-Yau manifold. It encodes how the Hodge decomposition over the
middle cohomology changes when moving over the complex structure moduli space. A
remarkable result of Schmid [26] states that asymptotically this information is captured by
a so-called nilpotent orbit, which packages the asymptotic behaviour in a seemingly simple
polynomial way. For example, in the large complex structure or large volume boundary
the nilpotent orbit captures this information in the periods remaining after dropping all
exponential corrections.1 The nilpotent orbits will serve as the motivation for the bulk and
boundary theories that we discuss in this work. Eventually, however, the results can be
formulated without any reference to nilpotent orbits. They arise as solutions to the bulk
theory that match the boundary data. We will call such solutions ‘physical’ in the following,
since they appear in actual geometric compacitifactions. Viewed abstractly, however, both
the bulk and boundary data can then be formulated without reference to a geometric string
theory setting.

In order to construct the bulk action we restrict our attention to real two-dimensional
field spaces. In other words, the field space of the effective theory will thus be viewed as a
two-dimensional worldsheet. Ideally we would like to construct a gravity model coupled
to a sigma-model on the worldsheet. The matter sector of this theory will be constrained
by field equations that also arise in asymptotic Hodge theory. It is known from [26, 27]
that nilpotent orbits in one complex dimension provide solutions to Nahm’s equations
that satisfy a certain constraint and match a well-defined set of boundary conditions. An
action principle associated to Nahm’s equations was discussed long ago in [28] and we will

1We stress that the nilpotent orbit exists near every boundary and, in general, indirectly captures
exponential corrections that are needed for the positivity of the Hodge norm in the asymptotic regime.
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generalize it to a sigma model action on the worldsheet. A significant generalization of this
action to the multiple variables tt∗-system of [29] appeared more recently in [30]. We also
comment on the coupling of two-dimensional gravity to the matter sector. This is similar
in spirit to the suggestion by Cecotti [31], who proposes to couple this sigma model to
Einstein gravity for higher-dimensional worldsheets.2 While we will not present a complete
action principle, we will successively build up a set of field equations. These turn out to
admit solutions that are the nilpotent orbits that can arise in Calabi-Yau compactifications,
together with the physical metric on moduli space. Crucially this requires to fix boundary
conditions which we propose stem from a boundary theory.

To motivate the existence of a boundary theory we will again start with a nilpotent
orbit, which we consider as the physical solutions to the bulk theory, and extract the data
on the boundary that fixes such solutions. In order to do that we will use the famous Sl(2)
orbit theorem of Schmid [26] and Cattani, Kaplan, and Schmid [27]. The set of boundary
data will consist of an sl(2,C) symmetry algebra acting on a finite-dimensional Hilbert
space. The latter can be obtained as complexification of the charge or flux lattice relevant
in the effective theory, and corresponds in geometric setting to the middle cohomology
group of the Calabi-Yau manifold. The Hilbert space has a special sl(2,C)-compatible norm
that is induced by an operator Q∞. Geometrically this Q∞ defines a Hodge decomposition
that exists on the boundary of the moduli space despite the fact that the corresponding
compactification geometry is badly singular [26, 27]. The sl(2,C) algebra turns out to be
non-trivially related to the global symmetry in the asymptotic bulk solutions. We describe
that boundary data contains a real nilpotent operator, which we call phase operator, that
encodes how the asymptotic global symmetry is rotated into the boundary sl(2,C) and how
positivity constraints on the bulk solution map to the boundary. The additional information
contained in the phase operator turns out to be central to the whole construction.3 Taken
together this boundary data will suffice for our construction and serves as evidence for
the existence of a boundary theory. Further evidence for the existence of such a boundary
theory is provided by a number of conjectures put forward in [3, 12], and [33, 34], each
discussing aspects of the theories that might emerge at infinite distance boundaries. While
we will leave its full construction to future work, we will sometimes refer to the boundary
data as describing a boundary theory.

Reconstructing the bulk solutions matching the boundary data turns out to be highly
non-trivial and contained in the proof of the Sl(2) orbit theorem [26, 27]. Remarkably, the
aforementioned boundary data specifies the bulk solution uniquely. To see this we will solve
the matter equations of motion with a near boundary expansion and then determine their
properties and eventually their dependence on the boundary operators. The constraints
on the coefficients arise from the sl(2,C) symmetry and will turn out to be central in the
finiteness proof that we discuss in the last part of this work. In showing that there is a
unique reconstruction of the bulk solution from the boundary data, we discuss how the phase
operator becomes of crucial importance. We determine a single matrix equation (5.4) which

2The described perspective has been developed independently.
3In Hodge theory this operator was introduced by Deligne [27, 32] as a unique rotation of any complex

mixed Hodge structure into a mixed Hodge structure split over the real numbers.
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provides the unique match [27]. It then follows that coefficients in any bulk solution matching
to the boundary are universal non-commutative polynomials in the sl(2,C) generators and
the phase operator.

In the final part of this work we will highlight some first non-trivial physical applications
of the holographic perspective by discussing the finiteness of the flux landscape and the
validity of the distance conjecture. In particular, we address in detail the longstanding
question about the finiteness of flux vacua in Type IIB and F-theory flux compactifica-
tions [35, 36]. Formulated in F-theory or M-theory language, such compactifications are
specified by a Calabi-Yau fourfold with a background flux G4. The classical equations
of motion then demand that this flux is self-dual in a general vacuum, while consistency
demands that the flux-square is bounded by a tadpole constraint. While in the bulk of the
moduli space it easy to argue that there are only finitely many fluxes and self-dual loci in
moduli space, these could accumulate near its boundaries [37, 38]. We show that this does
not happen when approaching any co-dimension one boundary [39, 40]. The result derives
from the described bulk-boundary construction and is a consequence of the fact that the
near boundary expansion of the bulk solution is constraint by the boundary data to forbid
infinite tails. To prove finiteness for all boundaries will be the aim of [40]. It is interesting
to point out that in the supersymmetric case in which the G4 fluxes are restricted to be
of (2, 2)-type a famous result [41] provides a general proof of finiteness near any boundary.
The significance of the latter publication arises due to the fact that this result can also be
obtained by assuming the Hodge conjecture. Restricted to the co-dimension one boundaries,
the main tool of [41] is precisely the Sl(2) orbit theorem underlying the correspondence
discussed here. This gives further support to the significance of the described structures
and the power of this formalism.

This article is structured as follows. In section 2 we begin by motivating our construc-
tions by recalling some facts about asymptotic Hodge theory. In particular, we describe how
the Hodge decomposition of the cohomology groups of forms behaves near the boundary of
moduli space and how this behaviour is captured by nilpotent orbits. We then discuss the
asymptotic form of the Weil-Petersson and the Hodge metric on moduli space and show
when they asymptote to the Poincaré metric near the boundaries. In section 3 we turn to
the discussion of the bulk theory on moduli space. We formulate field equations and an
action principle for group-valued matter fields and discuss aspects of coupling this theory
to gravity. Important aspects of the boundary theory are then discussed in section 4, where
it is explained how a set of boundary data is fixed by symmetry and positivity. Technically
most involved is section 5, in which we describe how the boundary data singles out special
sets of bulk solutions and constrains their behaviour. It contains some of the key steps of
the proof of the Sl(2)-orbit theorem reformulated to support the holographic perspective.
In the final section 6 we then apply these finding to address the finiteness of flux vacua
on Calabi-Yau fourfolds. We show the finiteness of self-dual fluxes near co-dimension one
boundaries and comment on the finiteness of (2, 2)-fluxes. We close with some remarks on
applying the holographic perspective to the distance conjecture. The paper contains one
appendix A discussing the computation of the phase operator.
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2 Motivation using asymptotic Hodge theory

In this section we provide the motivation for the construction of the bulk theory and the
bulk-boundary matching by introducing some results from asymptotic Hodge theory. While
many of the described facts are true for general Kähler manifolds, we will restrict our
attention to complex D-dimensional Calabi-Yau manifolds YD. In this cases, the geometry
of the complex structure moduli spaceM of YD can be encoded by the moduli dependence
of the (D, 0)-form Ω. We first introduce the Hodge norm and the Hodge decomposition
in section 2.1 and comment on its relevance in string compactifications. In section 2.2 we
then restrict our attention to the near boundary region inM. We explain how the Hodge
decomposition near the boundary can always be encoded by a expansion that is polynomial
in the moduli and is best described by a so-called nilpotent orbit. In passing we argue that
this expansion nevertheless encodes ‘non-perturbative’ terms in the periods of Ω at most
boundaries. Crucial for developing the bulk theory is the fact that the nilpotent orbits
satisfy a set of differential equations. We introduce these equations in section 2.3, point
out their relation to Nahm’s equations, and discuss an associated action principle. Finally,
in section 2.4, we introduce two metrics on the moduli space M and discuss their near
boundary expansion. The first one is the Weil-Petersson metric and is the physical metric in
string compactifications onM. The second one is the Hodge metric and closely related to
the Hodge norm. We note that the asymptotic form of the Weil-Peterson metrics contains
a Poincaré metric at all infinite distance boundaries, while this fact is more generally true
for the Hodge metric. The isometry group Sl(2,R) of the Poincaré metric will translate to
part of the symmetry group found in the boundary theory in section 4.

2.1 Hodge norm and Hodge decomposition in the bulk

In order to introduce a holographic picture of the moduli space we first have to specify which
quantities we want to keep track of. Let us denote by YD a compact Calabi-Yau manifold of
complex dimension D. For concreteness we will set our focus on the behaviour of the Hodge
norm of a D-form cohomology class of YD. Considering two elements α, β ∈ HD(YD,C),
the Hodge norm arises from the inner product∫

YD

ᾱ ∧ ∗β = 1
D!

∫
YD

d2Dx
√
detg ᾱµ1...µDβ

µ1...µD (2.1)

and will be denoted by
‖α‖2 =

∫
YD

ᾱ ∧ ∗α . (2.2)

Note that the inner product (2.1) is induced by the Hodge norm and therefore it often
suffices to discuss the latter. In addition to the inner product induced by the norm we can
also define the wedge-product4

〈α, β〉 :=
∫
YD

α ∧ β , (2.3)

4Note that in the mathematical literature [26, 27] this inner product is denoted by S(α, β) = 〈β, α〉.
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which is symmetric for D even and skew-symmetric for D odd. It will be important in the
following to consider transformations g preserving 〈·, ·〉. The group of such transformations
over the real numbers will be denoted by GR, while the corresponding algebra is denoted
by gR. Hence, we have

g ∈ GR : 〈gα, β〉 = 〈α, g−1β〉 , L ∈ gR : 〈Lα, β〉 = −〈α,Lβ〉 . (2.4)

As an example, we note that for Calabi-Yau threefolds one has GR = Sp(2h2,1 + 2,R). The
complex version of this group and algebra are henceforth denoted by GC, gC.

When computing the effective actions arising from compactifications of string theory
the Hodge norm (2.2) appears in many instances. As a first example, note that in Type IIB
string theory on a Calabi-Yau threefold the Hodge norm determines the kinetic terms of the
four-dimensional gauge fields, which arise by expanding the R-R four-form C4 into three-
forms H3(Y3,Z). Picking a symplectic basis (αM , βN ) with 〈αM , βN 〉 = δNM of H3(Y3,Z)
we write C4 = AM ∧αM − ÃM ∧βM . The four-dimensional vectors AM and ÃM are electric
and magnetic U(1) gauge fields in the effective theory, respectively. The charged particles
in the effective theory arise from D3-branes wrapped on three-cycles in Y3. The space
H3(Y3,Z) can be identified with the charge lattice of these states under (AM , ÃN ). The
relevance of these states in the distance conjecture will be briefly discussed in the very
last section 6.3. A second example, which will be central to section 6, are F-theory and
M-theory compactifications on Calabi-Yau fourfolds. In these cases the flux scalar potential
induced by a background four-form flux G4 in H4(Y4,Z/2) is determined by the Hodge
norm. The lattice H4(Y4,Z/2) corresponds to the flux lattice.

The goal of the following discussion is to keep track of the dependence of the Hodge
norm on the complex structure deformations of the manifold YD. For Calabi-Yau manifolds
it can be shown that there exists an unobstructed moduli spaceM, the complex structure
deformation space. This space is a Kähler manifold of complex dimension hD−1,1 =
dimHD−1,1(YD). In order to investigate the change of (2.2) along M, we consider the
Hodge decomposition

HD(YD,C) = HD,0 ⊕HD−1,1 ⊕ ...⊕H1,D−1 ⊕H0,D , (2.5)

where Hp,q = Hq,p and p+ q = D. This decomposition has to be determined for the chosen
complex structure on YD and hence varies when moving alongM. Using the Kähler metric
on YD to determine the Hodge star ∗ one shows that

∗ wp,q = ip−qwp,q , wp,q ∈ Hp,q . (2.6)

Furthermore, one has the relation that

〈wp,q, vr,s〉 = 0 , for p 6= s , q 6= r . (2.7)

This implies that one can evaluate the Hodge norm ‖α‖, defined in (2.2), if the (p, q)-
decomposition of α has been determined.
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large complex
structure patch

conifold
patch

boundary point

Figure 1: Schematic depiction of a complex one-dimensional moduli space. Two overlapping
patches are indicated in light green and light blue. These can, for example, contain the
large complex structure point and the conifold point of a Y3.

The dependence of (2.2) on the coordinates zI of the moduli space M can thus be
understood by following the (p, q)-decomposition alongM. It is actually better to study
how the spaces

F p =
⊕
r≥p

Hr,D−r (2.8)

change when moving alongM. These spaces vary, at least locally, holomorphically in the
complex coordinates zI ofM [21]. The original decomposition (2.5) is then recovered by
Hp,q = F p ∩ F̄ q. The moduli dependence of the F p is, in general, given by complicated
transcendental functions that solve partial differential equations known as the Picard-Fuchs
equations. Generically the solutions have only a finite radius of convergence and, in order
to cover the whole moduli spaceM one has to work in patches, leading to a picture as in
figure 1.

It is crucial for our considerations to note that the moduli spaceM is, at first, neither
smooth nor compact. This is due to the fact that, when changing the complex structure,
the Calabi-Yau manifold can become so singular that a Hodge decomposition as in (2.5) no
longer exists. Such singular loci constitute the boundaries of the moduli space. It was shown
in [42, 43] that one can modify the boundary loci, by blowing up possible singularities, such
that the boundary ofM can be written as

∂M =
⋃
k

∆k , (2.9)

where ∆k are complex manifolds of complex dimension hD−1,1 − 1 intersecting at normal
instance. In the following sections, we will describe how an extended structure generalizing
the decomposition (2.5) can be defined on the boundaries ∪k∆k. Before doing this, we
study in more detail the near-boundary behaviour of the decomposition (2.5).

2.2 Near-bounday expansions and nilpotent orbits

In this subsection we discuss behaviour of the decomposition (2.5) near any boundary
component ∂M of the moduli spaceM. Recalling that the boundary splits into multiple
∆k, as discussed around (2.9), we want to consider a local patch containing a co-dimension

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
1
5
3

(a.1)

z → 0

N−
N−

z → 0

y →∞

N−

(a.2)

(b)

Figure 2: Schematic depiction of the asymptotic region in a complex one-dimensional
moduli space. Figures (a.1) and (a.2) show the punctured disc parametrized by the complex
coordinate z. The boundary of interest is the puncture at z = 0. Figure (b) shows the
universal cover of the punctured disc, the upper half plane parametrized by t = x + iy.
The boundary of interest is now located at y =∞. We also indicate that there can be a
log-monodromy matrix N− appearing in (2.12) when encircling the puncture or shifting in
the upper-half plane.

n boundary. We thus introduce local coordinates zj ≡ e2πitj , j = 1, ..., n, and ζκ, such that
the boundary component is approached in the limit

zj → 0 or tj = xj + iyj → xj0 + i∞ . (2.10)

Suppressing the ζκ coordinate directions, the considered configuration can be depicted as
in figure 2.

We next recall the first major result of asymptotic Hodge theory, which states how
the Hodge decomposition behaves for sufficiently large yj � 1. As stated after (2.8) it is
convenient to study the vector spaces F p, since they vary holomorphically over the moduli
space. This means that the F p are locally only depending on the coordinates zj or tj
introduced in (2.10), but are independent of z̄j , t̄j . This statement extends to the complex
coordinates ζκ, which we will suppress in the following expressions. A main insight of
Schmid [26] was that near a boundary Im tj = yj →∞ the F p always take the form

F p(t) ≈ F ppol(t) , (2.11)
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where F ppol is varying, up to possibly an overall rescaling in any direction, as a polynomial
in t. This ‘polynomial part’ is given by

F ppol(t) = et
jNjF p0 , (2.12)

where Nj are constant nilpotent matrices and the F p0 is independent of tj , but can still
depend holomorphically on ζκ. The compatibility between the Ni and the spaces F p0 can
be stated as the condition that NiF

p
0 ⊂ F p−1

0 . The polynomial piece is known as the
nilpotent orbit. Note that (2.11) is a relation between vector spaces and it is a non-trivial
statement that the polynomial part alone has dimF p = dimF ppol. Fixing a direction in the
vector spaces there are generically exponentially suppressed corrections O(e2πitj ) to the
identification (2.11). These are strongly suppressed in the near-boundary regime Im tj � 1.

One can now show that (2.12) also defines a (p, q)-decomposition and an associated
norm using the analog of (2.6). Concretely, we introduce the decomposition by

HD(YD,C) = HD,0
pol ⊕H

D−1,1
pol ⊕ ...⊕H0,D

pol , (2.13)

by setting Hp,q
pol = F ppol ∩ F̄

q
pol. A norm ‖ · ‖pol is then defined as

‖ω‖2pol := 〈ω̄, Cpolω〉 , Cpolω
p,q = ip−qωp,q , (2.14)

where now ωp,q ∈ Hp,q
pol. We also introduce the associated inner product

〈ω|ν〉pol := 〈ω̄, Cpolν〉 , (2.15)

where we will use bra-ket notation when convenient. Note that it is non-trivial that the Hp,q
pol

obtained from the polynomial F ppol suffice to span the whole space HD(YD,C). In contrast,
it is not true in general that F p0 can be used similarly to define a (p, q)-decomposition with
a well-defined norm.

At first it seems natural to view F ppol as only capturing ‘perturbative terms’, while
the dropped corrections O(e2πitj ) in (2.11) correspond to the non-perturbative corrections.
While this interpretation can indeed be made more precise in the special limit known as
the large complex structure limit,5 we will discuss in the following that this is not generally
the case at other limits in moduli space. In fact, in most other situations, certain crucial
non-perturbative corrections are captured by F ppol(t). To simplify the discussion let us
assume that M is one-dimensional, i.e. we only use the coodinate t to parametrize the
Hodge decomposition. In order to see which information is captured by F ppol, we give an
explicit expansion of the (D, 0)-form Ω spanning FD = HD,0, which is a one-dimensional
complex vector space for a Calabi-Yau manifold. Applying (2.11) with (2.12) to FD, we find

Ω = etN
−
a0 + e2πitã1 + e4πitã2 + . . . , (2.16)

5Mirror symmetry states that complex structure deformations are exchanged with Kähler structure
deformations of a dual Calabi-Yau geometry [22]. In this dual picture the strings wrapping cycles in the
dual space do induce perturbative and non-perturbative corrections with the above split.
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where we have fixed the overall normalization of Ω such that a0 is independent of t. The
derivative ∂tΩ spans, together with Ω itself the space FD−1 and takes the form

∂tΩ = etN
−
N−a0 + e2πit(2πiã1 + ∂tã1

)
+ . . . . (2.17)

Applying now (2.11) with (2.12) to FD−1, we see that, as long as N−a0 6= 0, the first term
in (2.17) takes again the form of a nilpotent orbit. However, if one considers a boundary
with N−a0 = 0 then the exponential correction in (2.16) is actually needed, such that the
whole space HD(YD,C) can be obtained from the nilpotent orbit F ppol. In this case ∂tΩ is
proportional to e2πit, but this overall factor can be removed by a rescaling since (2.12) is
an equality between vector spaces. In other words, the existence of a nilpotent orbit (2.12)
that gives a splitting (2.13), implies that Ω should be expanded as

Ω = etN
−(
a0 + e2πita1 + e4πita2 + . . .

)
, (2.18)

with the ai, i > 0 relevant as soon as the vectors (N−)na0 do not suffice to span HD(YD,C).
This implies that at many boundaries exponential corrections in Ω are implied by the
existence of a nilpotent orbit with the above properties. This matches nicely the recent
proposal put forward in [44] and will be discussed in more generality in [45]. We also note
that the generic presence of exponential corrections has recently been shown in [30] by
using other results from Hodge theory.

2.3 Differential equations and constraints from nilpotent orbits

With the motivation to develop a holographic perspective, it is desirable to formulate the
behaviour of (2.5), and hence the norm (2.2), by introducing a set of fields that live on the
moduli space M and admit equations of motions that are inspired by Hodge theory. In
the following we will motivate such equations of motion by the conditions obeyed by the
nilpotent orbit F ppol introduced in section 2.2. This implies that we restrict our attention to
the near boundary region. Eventually, the resulting equations can be considered without
reference to an underlying nilpotent orbit.

To motivate the equations of motion let us again consider a one-dimensional limit (2.10),
i.e. study the nilpotent orbit

F ppol(t) = etN
−
F p0 , (2.19)

depending on one variable t. We want to study the moduli dependence of (2.19) with
respect to a fixed Hodge decomposition Hp,q

ref . This decomposition could be picked by
simply evaluating F ppoly(t) at a fixed t0. However, we will make a more educated choice that
prepares us for the discussion of the bulk-boundary correspondence that will follow below.
In fact, we will consider a reference Hodge decomposition Hp,q

ref induced by

F pref = eiN
−
e−iδ F p0 . (2.20)

This choice corresponds to evaluating (2.19) at t = i and multiply the result by a phase
matrix e−iδ, here δ is a real matrix in gR satisfying [δ,N−] = 0. The matrix δ can be
uniquely associated to a given N−, F p0 and we will call δ the phase operator in the following.
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We will describe in appendix A how δ can be constructed starting from N−, F p0 . The
reason why we extract a phase in (2.20) will become clear below. In a nutshell, we will find
that asymptotically the moduli space metric admits an isometry group sl(2,R), discussed
after (2.44). The phase operator is extracted in such a way that one can find a real slice
HD(YD,R) in HD(YD,C) on which sl(2,R) acts faithfully. We also introduce the inner
product 〈w|v〉ref associated to Hp,q

ref in analogy to (2.14), (2.15).
Starting from the reference splitting Hp,q

ref = F pref ∩ F̄
q
ref induced by (2.20), we will first

restrict our attention to the imaginary part Im t = y that is taken to be large in (2.10) and
set x = 0. We introduce a GR-valued function h(y) that captures the change in t = iy of
Hp,q

pol with respect to Hp,q
0 by setting

Hp,q
pol(iy) = h(y)Hp,q

ref , h(y) ∈ GR , (2.21)

or
F ppol(iy) = eiyN

−
F p0 = h(y)F pref . (2.22)

Recall that GR is the real group keeping the inner product (2.3) invariant. Since exN− is
also an element of GR one can complete (2.21) to

Hp,q
pol
(
t, t̄
)

= exN
−
h(y)Hp,q

ref ≡ ĥ(x, y)Hp,q
ref , (2.23)

where we have defined ĥ(x, y) := exN
−
h(y) ∈ GR. We therefore get an explicit expression

for the (p, q)-forms in the asymptotic regime, in terms of a reference splitting. While the
dependence on x is rather simple, the dependence on y via h(y) is generally involved. We
therefore focus mostly on the y-dependence in the following, keeping in mind that the
x-dependence can be restored rather easily.

We can also choose to encode the splitting H = ⊕
pH

p,D−p
ref by using an operator Q,

which is independent of t. Such an operator is known as grading element Q ∈ gC, see
e.g. [46, 47], and we will call it charge operator in the following. It is defined by6

Q|w〉ref = 1
2(2p−D)|w〉ref for |w〉ref ∈ Hp,D−p

ref , (2.24)

where we are using a bra-ket notation for states in H. Since Hp,q
ref = Hq,p

ref we conclude that

Q̄ = −Q , Q ∈ igR . (2.25)

Recalling that the inner product 〈w|v〉ref is induced by a real Weil operator Cref as
in (2.13), (2.14), we can use Q to write

〈w|v〉ref = 〈w,Crefv〉 , Cref = i2Q . (2.26)
6As a side remark, we note that the action of Q on operators as in (2.30) can also be formulated

more mathematically by using the decomposition of the algebra gC, defined after (2.3), induced by Hp,q
ref .

Explicitly one splits gC =
⊕

p∈Z gp,−pref with gp,−pref =
{
T ∈ gC : THa,b

ref = Ha+p,b−p
ref

}
, where gp,−pref = g−p,pref

and [gp,−pref , gq,−qref ] ⊂ g
p+q,−(p+q)
ref . The notation gp,−pref indicates that one is dealing with a Hodge structure

of weight p − p = 0. The action the charge operator Q is then induced by the split as [Q,T ] = p T for
T ∈ gp,−pref .
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The charge operator Q will play a central role in the construction, since it encodes the
Hodge decomposition. The fact that it is not a real operator implies that its eigenstates
with real eigenvalues are complex.

The function h(y) satisfies a set of equations that will constitute the base of the bulk
theory discussed in section 3. We will formulate these equations in the algebra gR associated
to GR and thus define N 0(y) ,N−(y) ∈ gR by setting

N 0(y) := −2h−1∂yh , N−(y) := h−1N−h , N+(y) := (N−(y))† , (2.27)

where we abbreviate ∂y = d
dy and denote by † the operation to adjoin an operator with

respect to the inner product 〈w|v〉ref . Note that the adjoint O† to O ∈ gC is given by

O† = −C−1
ref ŌCref , (2.28)

as can be seen from (2.15) and (2.4). Given these definitions one shows [26]7 that any
N 0(y) ,N±(y) coming from a nilpotent orbit (2.19) obeys the differential equations

∂yN± = ±1
2

[
N±,N 0

]
, ∂yN 0 = −

[
N+,N−

]
, (2.29)

as well as the algebraic relations8

[
Q,N 0

]
= i

(
N+ +N−

)
,

[
Q,N±

]
= − i

2N
0 . (2.30)

Note that from (2.26) and (2.30) we infer

Q† = Q ,
(
N 0
)†

= N 0 , N+ =
(
N−

)†
, (2.31)

where we have chosen the last equality as definition of N+ in (2.27). Note that the
equations (2.29), (2.30) are both constraints on the function h(y) and make no reference
anymore to the nilpotent orbit.

It is not hard to check that the differential equations (2.29) are equivalent to Nahm’s
equations ∂yTi = −[Tj , Tk], for every cyclic permutation of i, j, k. We can then use that
in [28] it was argued that Nahm’s equations (2.29) can be analyzed by using an action
principle for the fields h(y). The one-dimensional action reads

SNahm (h) = 1
2

∫ (
Tr
∣∣ (h−1∂yh

)†
+ h−1∂yh

∣∣2 + 2Tr
∣∣h−1N−h

∣∣2) dy , (2.32)

= 1
2

∫ (1
4Tr|

(
N 0
)†

+N 0|2 + 2Tr|N−|2
)
dy ,

where |A|2 = A†A, with the dagger and the trace is evaluated in the norm 〈v|w〉ref . To see
this, we check that the two equations to the left in (2.29) are automatically satisfied with

7This is shown in Lemma 9.8.
8It might be useful to point out that [27] displays these conditions in a different form: N− −N+ has

charge q = 0 under adQ, while N 0 has a q = 1 and q = −1 component under adQ. Furthermore, they
require N− +N+ = i−QN 0iQ, and N+ = −i−2QN−i2Q. These conditions are equivalent to the conditions
stated here.
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the Ansatz (2.27), while the last one is obtained from (2.32). The latter statement follows if
we vary the action by using δN− = −[h−1δh,N−] and δN 0 = −[h−1δh,N 0]− 2 d

dy (h−1δh).
Note that we can equivalently formulate the conditions (2.29), (2.30) and the action (2.32)
as constraints on ĥ(x, y). We will see in section 3 that the construction naturally generalizes
to an action for ĥ(x, y) that can be coupled to two-dimensional gravity.

Before turning to the discussion of moduli space metric, let us close with a number of
remarks. It is useful to note that the equations (2.29) can be rewritten in many different
forms that highlight certain aspects of the construction. Firstly, we can use (2.30) to obtain
a differential equation in Lax form,

∂yN− = −i
[
N−,

[
Q,N−

]]
, (2.33)

which highlights the fact that there is an underlying integrable structure. Secondly, we can
define the complex operators

L±1 (y) := 1
2

(
N+ +N− ∓ iN 0

)
, L0 (y) := i

(
N− −N+

)
, (2.34)

which satisfy L†0 = L0 and L†1 = L−1. The index α = (−1, 0, 1) indicates the charge of these
operators,

[Q,Lα] = αLα . (2.35)

The equations (2.29) can then be written in the form of the tt∗ equations [29]. Setting
D ≡ ∂t − i

4L0 and C ≡ 1
2L−1, the conditions (2.29) and (2.30) are then equivalent to

[D,C] = [D, C̄] = 0 , [D, D̄] = −[C, C̄] , (2.36)
[Q,C] = −C, [Q, C̄] = C̄ , [D,Q] = [D̄,Q] = 0 .

It is long known that these equations emerge from the variations of Hodge structures [29].
This connection also provides the link between our work and the recent papers [30, 31].

2.4 Metric on the moduli space and its near boundary expansion

There are at least two natural metrics, denoted by gWP and gH, that can be defined on the
moduli spaceM. In Calabi-Yau compactifications the physically most relevant metric is
the so-called Weil-Petersson metric gWP. It determines the kinetic terms of the complex
coordinates zK , when interpreting them as scalar fields in the low energy effective action.
In the study of the distance conjecture in Calabi-Yau compactifications gWP is therefore
relevant to distinguish finite and infinite distance geodesics. As was shown in [25] and
exploited in [3, 6], infinite distances only can occur when approaching a boundary with an
associated non-vanishing N− that satisfies N−a0 6= 0, with a0 appearing in (2.16). We will
see that the Weil-Petersson metric near such points takes a characteristic asymptotic form.
In fact, we will argue that at each such limit an sl(2,R) isometry algebra emerges. This
feature turns out to be generally true for N− 6= 0 if one considers the Hodge metric gH on
moduli space, which we will introduce below. Later on, in section 4, we will see that this
sl(2,R) is key in determining the symmetry of the boundary theory.
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To begin with, we recall that the Weil-Petersson metric is a Kähler metric and can be
derived via gWP

IJ̄
= ∂zI∂z̄JK from a Kähler potential

K = − log iD
∫
YD

Ω ∧ Ω̄ = − log ‖Ω(z)‖2 , (2.37)

where Ω(z) is the (D, 0)-form on YD spanning HD,0 and varies holomorphically in the
zI . This metric can be explicitly evaluated by introducing a basis of (D − 1, 1)-forms as
derivatives of Ω. These are defined by evaluating ∂zIΩ and projecting the result to the
(D − 1, 1) part,

[
∂zIΩ

](D−1,1) ≡ ∇iΩ. We have denoted by ∇iΩ the resulting (D − 1, 1)-
forms.9 Taking derivatives of (2.37) one thus derives the Weil-Petersson metric

gWP
IJ̄

=
∫
YD
∇IΩ ∧∇JΩ∫
YD

Ω ∧ Ω̄
. (2.38)

Let us now give a first, rough, evaluation of this metric near the boundary of the moduli
space by using the expansions introduced in section 2.2. For simplicity we will only focus
on a single coordinate t = x+ iy in the regime y � 1 and drop all ζκ-dependence labelling
the position on the boundary. Inserting (2.18) into the Kähler potential (2.37) we compute
the line element

ds2
WP = 1

y2

(
d̂+ γ (y)

) (
dy2 + dx2

)
, (2.39)

where γ(y) vanishes as y → ∞. The integer d̂ ∈ {0, ..., D} is the highest power of N−
that does not annihilate a0 introduced in (2.18), i.e. (N−)d̂a0 6= 0 while (N−)d̂+1a0 = 0.
Therefore, as long as d̂ > 0, i.e. N−a0 6= 0 the metric asymptotes to the Poincaré metric,
which is also describing a patch of Euclidian Anti-de Sitter space. Being motivated to
establish a holographic perspective one might thus want to either treat the case d̂ = 0
separately, or consider a more suitable metric. In fact, the case d̂ = 0 describes precisely
the situation in which the boundary is at finite distance, i.e. that there exists a path to the
boundary of finite length in the Weil-Petersson metric. In light of the distance conjecture [2],
which discusses infinite distance boundaries, we thus indeed expect that the finite distance
case d̂ = 0 is special. The details on how the distinction of the cases d̂ = 0 and d̂ > 0
plays out in studying the states relevant to the distance conjecture was explained in detail
in [3, 6, 7]. From the perspective of the underlying structure, however, the case d̂ = 0 is
not particularly special as we will see by looking at another well-known metric, the Hodge
metric onM, in which this distinction disappears.

While the Weil-Petersson metric is directly physically relevant in Calabi-Yau compacti-
fications, the the so-called Hodge metric gH is central in Hodge theory. Its properties have
been studied in numerous mathematical works (see e.g. [48–54]). In fact, it was also used
in the physical study of Calabi-Yau compactifications with background fluxes in [52, 53].
Crucially, it turns out to have ‘nicer’ properties when considering its curvature tensors,
which is mainly due to its universal asymptotic behaviour. The Hodge metric is defined by

gH
IJ̄

=
D∑
p=0
Gαpβ̄p

∫
YD

∇Iχαp ∧ ∗∇Jχβp , (2.40)

9It can be checked that ∇i is the Kähler-covariant derivative in this case.
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where χαp is a basis of (D − p, p)-forms and ∇Iχαp is the derivative ∂zIχαp projected onto
the (D − p− 1, p+ 1)-component. The matrix Gαpᾱp is the inverse of the metric

Gαpᾱp =
∫
YD

χαp ∧ ∗χαp . (2.41)

Note that the sum defining gH
IJ̄

contains terms that are equal to gWP
IJ̄

. In fact, one immediately
sees that the summand p = 0 in (2.40) is exactly the Weil Peterson metric (2.38), since the
only (D, 0) is Ω and the metric (2.41) yields a single term proportional to

∫
Ω ∧ Ω̄ in this

direction. In addition, the metric gWP
IJ̄

also appears from the summand p = D, since in this
case one finds only the (0, D)-form Ω̄. This leads us to conclude that gH

IJ̄
= 2gWP

IJ̄
+ . . .,

with the omitted terms being positive definite expressions in the curvature tensors of gWP
IJ̄

.
A direct computation reveals that one can explicitly relate the Weil-Petersson and Hodge
metric for Calabi-Yau manifolds of arbitrary dimension D. For example, it was found
in [50, 55, 56] that

D = 3 : gH
IJ̄

=
(
h2,1 + 3

)
gWP
IJ̄

+RWP
IJ̄

(2.42)

D = 4 : gH
IJ̄

= 2
(
h3,1 + 2

)
gWP
IJ̄

+ 2RWP
IJ̄

,

where RWP
IJ̄

is the Ricci tensor computed in the Weil-Peterson metric. A key observation is
that the metric gH

IJ̄
has a nice asymptotic behaviour. In fact, we will see that its asymptotic

form always splits off a part that is a Poincaré metric as long as one has N−i 6= 0, for at
least one Ni.

Near the boundary of the moduli space we can use the nilpotent orbit to derive
the metric gIJ̄ . Let us, as above, denote by χαp a basis of (D − p, p)-forms, which are
now in the decomposition (2.13), and denote by ∇Iχαp the zI -derivative projected to the
(D − p− 1, p+ 1)-piece. We now use the notation (2.15) to write the metric (2.40) as

gIJ̄ =
D∑
p=0
〈χαp |χβp〉−1

pol〈∇Iχαp |∇Jχβp〉pol , (2.43)

where we have used the notation established in (2.15).
To give a first study the asymptotic behaviour of the Hodge metric gH

IJ̄
we again focus

on a single coordinate t = x + iy in the regime y � 1 and drop all ζκ-dependence. To
evaluate the leading metric we use (2.18) and its successive derivatives with respect to t.
The line element for the metric gtt̄ now takes the form

ds2
H = 1

y2

(
c(0) + γ̂ (y)

) (
dy2 + dx2

)
, (2.44)

where now c(0) = 1
12
∑
i di(di + 1)(di + 2) with a sum over the irreducible sl(2,R)-representa-

tions with highest weight di in the boundary theory introduced in section 4, see [57] for
details. Crucially, we realize that as long as N− 6= 0 we have c(0) > 0. Note that this implies
that the metric indeed becomes the Poincaré metric c(0)

y2 (dy2 + dx2) in the limit y � 1. It is
not hard to check that this metric admits an Sl(2,R) isometry group. Furthermore, recall
that Sl(2,R) ∼= SO(2, 1) is the global conformal group in one dimension. It might therefore
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be tempting to associate a conformal quantum mechanical system to this setting. In fact,
we will see in section 4 that there is indeed a type of ‘boundary theory’ associated to each
asymptotic limit. In fact, we will see that the asymptotic metric (2.44) admits an expansion

ds2
H = 1

y2

(
c(0) + c(1)

y
+ c(2)

y2 + . . .

)(
dy2 + dx2

)
, (2.45)

and find that the coefficients c(i) are determined non-trivially by a set of boundary data.
This strategy can also be applied to obtain the expansion of the Weil-Petersson metric.
In the case of having an infinite distance boundary the ‘boundary theory’ fixes the the
asymptotic expansion in powers of 1/y at y → ∞. Note, however, that in contrast to
standard AdS2 holography, we are not considering the conformal boundary at y → 0.

3 The bulk theory on the moduli space

In this section we discuss aspects of the classical bulk theory living on the moduli space. The
aim is to find field equations and an action principle for a metric and a matrix-valued field,
such that the classical solutions include the ‘physical’ nilpotent orbits (2.12). In other words,
we use the statements of Hodge theory reviewed in section 2 and the existence of a nilpotent
orbit as a motivation for a bulk theory. It will then become clear that the field equations of
this theory only yield back a nilpotent orbit, if certain boundary conditions are imposed.
These are provided by the boundary theory introduced in section 4. One of the goals of our
construction is to capture the information about the asymptotic geometry of moduli spaces
without reference to Hodge theory. As noted before, there is a natural action principle
associated to one-parameter nilpotent orbits [28]. Recently, a significant generalization
has been discussed in [30]. Cecotti also suggested in [31] that an Einstein-Hilbert term
with negative cosmological constant can be coupled. Since such a coupling is trivial in
two-dimensions, i.e. in the settings most relevant to this work, we suggest in section 3.2 to
deviate from [30]. It should be stressed, however, that many aspects of the argument in
section 3.1 and 3.2 are similar to [30, 31] and have been observed independently as part
of this project. The fact that there is a bulk gravity action on moduli space fits rather
naturally to the holographic perspective suggested here.

3.1 Bulk action for matter fields

In order to construct a bulk theory compatible with the Hodge theory analysis of section 2,
we first discuss the relevant field equations without reference to a nilpotent orbit. We then
aim to find an action on the moduli space encoding these equations. We will focus on
a real two-dimensional moduli space and later comment on possible higher-dimensional
generalizations.

Instead of fixingM to be the moduli space of a Calabi-Yau manifold, we considerM
abstractly as being the real two-dimensional world-sheet of a bulk sigma model. We denote
the local world-sheet coordinates by σ1, σ2. This sigma-model has matter fields ĥ(σ) that
take values in the group GR, which is the target space of the bulk sigma model. The group
GR acts on a finite-dimensional complex Hilbert space H and preserves some bilinear form
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〈v, w〉. We denote the fixed inner product on H by 〈v|w〉ref . A non-trivial requirement
is that the inner product can be written using a grading element Q ∈ igR, which we call
the charge operator. By definition, this operator is a semisimple algebra element which
splits gC into eigenspaces with integer eigenvalues and obeys Q̄ = −Q. Given any operator
O ∈ gC, we can then make a decomposition O = ∑

lOl such that

[Q,Ol] = lOl , l = −D, ...,D . (3.1)

This grading element gives an essentially equivalent way to formulate a Hodge decomposition
and their infinitesimal variations.10 Motivated by the Hodge theory construction we now
require as in section 2 that

〈v|w〉ref = 〈v, i2Qw〉 . (3.2)

Note that we infer by using (2.4) that Q† = Q, with the adjoint taken with respect
to 〈v|w〉ref .

Given this structure we can now discuss the field equations for the matter fields ĥ. Let
us first restate the second equation in (2.29) using ĥ, which amount to writing

2∂y
(
ĥ−1∂yĥ

)
=
[(
ĥ−1∂xĥ

)†
, ĥ−1∂xĥ

]
. (3.3)

Furthermore, we recall that the equations (2.30) can be rewritten using ĥ and take the form

− 2
[
Q, ĥ−1∂yĥ

]
= i

((
ĥ−1∂xĥ

)†
+ ĥ−1∂xĥ

)
,

[
Q, ĥ−1∂xĥ

]
= iĥ−1∂yĥ . (3.4)

We note that this equation implies(
ĥ−1∂yĥ

)†
= ĥ−1∂yĥ . (3.5)

Clearly, the equations (3.3), (3.4) are not democratic in x, y, which is due to the fact that
in the nilpotent orbit solutions the coordinate x appears only through the exponential exN−

as seen in (2.23). This simple dependence yields the conditions

∂x
(
ĥ−1∂yĥ

)
= ∂x

(
ĥ−1∂xĥ

)
= 0 . (3.6)

We can also realize these constraints by requiring the existence of a continuous symmetry

ĥ(x+ c, y) = ecN
−
ĥ(x, y) , (3.7)

where c is any real constant and N− is some real matrix in gR. To obtain an unconstrained
set of equations of motion democratic in σ1 ≡ x, σ2 ≡ y we can combine (3.6) with (3.3)
and (3.5) to obtain

∑
α

∂σα

(
ĥ−1∂σα ĥ+

(
ĥ−1∂σα ĥ

)†)
−
[(
ĥ−1∂σα ĥ

)†
, ĥ−1∂σα ĥ

]
= 0 . (3.8)

10See [46, 47] for the mathematical details.
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In the following we will view these equations as equations of motion for ĥ. That this is
plausible can be further motivated in various ways. Firstly, we could have considered in
section 2 the full variation of Hodge structure as done in [30]. Secondly, we can obtain the
equations of motion (3.8) from an action that arises as natural generalization of (2.32) as
we will see in the following.

To obtain a bulk matter action principle, we start with the one-dimensional action (2.32).
To obtain a two-dimensional action for the matter fields ĥ(σ), we first replace h−1∂yh =
ĥ−1∂yĥ and h−1N−h = ĥ−1∂xĥ by temporarily assuming the simple x-dependence ĥ =
exN

−
h. Integrating over σ1 ≡ x the action (2.32) then generalizes to an action S(ĥ) as

S
(
ĥ
)

= 1
2

∫
d2σ

(
Tr|

(
ĥ−1∂σ2 ĥ

)†
+ ĥ−1∂σ2 ĥ|2 + 2Tr|ĥ−1∂σ1 ĥ|2

)
, (3.9)

where |A|2 = A†A and d2σ = dσ1dσ2. We can check that adding the terms Tr(ĥ−1∂σ1 ĥ)2

and Tr((ĥ−1∂σ1 ĥ)†)2 to the action does not change the equations of motion. This allows us
to write

Smat
(
ĥ
)

= 1
2

∫
d2σ

∑
α

Tr|
(
ĥ−1∂σα ĥ

)†
+ ĥ−1∂σα ĥ|2 . (3.10)

That the equations of motion resulting from this action are indeed given by (3.8) can be
checked by using

δ
(
ĥ−1∂σα ĥ

)
= −

[
ĥ−1δĥ, ĥ−1∂σα ĥ

]
+ d

dσα

(
ĥ−1δĥ

)
. (3.11)

Let us note that the action (3.10) agrees with the one found in [30], which was shown
to yield the tt∗ equations. We also see that the generalization to higher-dimensional
field spaces of (3.10) and (3.4) appears to be straightforward. This is partly deceiving,
since further constraints arise from imposing commutativity of certain derivatives ĥ−1∂σα ĥ.
When looking at near boundary solutions a very non-trivial structure emerges [27] that we
will not further analyze in this work. Our study of solutions to (3.8) and (3.4) near the
boundary does apply, however, to higher-dimensional moduli spaces where ĥ depends on
two coordinates σ1, σ2 near the boundary and a number of directions that remain in the
bulk and are suppressed in the notation.

It is important to note that the action (3.10) has to be supplemented by (3.4). From
the above discussion it should be clear that the existence of Q and the constraint (3.4)
is central to the construction and it would be desirable to find an action principle that
also yields the latter constraint. In the bulk-boundary matching of section 5, however, we
will only need the field equations (3.3) and (3.4) and therefore leave the construction of
a complete action principle to future work. Furthermore, it is crucial to impose a set of
boundary conditions to obtain solutions to these field equations that correspond to nilpotent
orbits as we will see in section 5. Firstly, one has to require the symmetry (3.7) which
constrains the x-dependence of ĥ. Secondly, note that a solution to (3.3) with (3.4) gives
also a solution to Nahm’s equations (2.29) when setting

N 0 := −2ĥ−1∂yĥ , N− := ĥ−1∂xĥ , N+ :=
(
N− (y)

)†
. (3.12)
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The solutions to Nahm’s equations give rise at the poles of N 0,N± to a special triples of
operators that commute as generators of sl(2,R) ∼= su(2) [58]. In the situation at hand,
we are interested in solutions near y = ∞ and we will consider general bulk solutions of
the form

N 0 = Ñ0

y
+O

(
y−

3
2
)
, N± = Ñ±

y
+O

(
y−

3
2
)
. (3.13)

The coefficients of the slowest decreasing term of N 0,N± are triples (Ñ0, Ñ±), which are
generators of an algebra sl(2,R) as we will discuss below. One can think of the (Ñ0, Ñ±) as
setting part of the boundary conditions for the solution N 0,N±. Furthermore, to implement
the positivity of the norms over the moduli space, we also need to make sure that there is a
well-defined reference structure |v〉ref , which we will argue should exist on the boundary.
Therefore, to single out solutions that correspond to physical situations, i.e. to a valid
F ppol, we will then turn this into a requirement for a specification of the physical boundary
conditions. In the next section 4 we suggest that these boundary conditions arise from a
certain ‘boundary theory’.

3.2 On the coupling to gravity

In the following we would like to briefly comment on the possibility to couple the matter
action of section 3.1 to gravity. As before, we will mostly focus on a one-dimensional moduli
space, but later comment on possible generalizations. Several aspects of the following
discussion have recently also appeared in [31]. We will make contact with the results given
there and highlight where our construction differs.

From a holographic perspective it would be natural if there is actually a gravity theory
on the moduli space with a dynamical metric gαβ . For a real two-dimensionalM, however,
we recall that Einstein gravity is non-dynamical and the Einstein-Hilbert term reduces to a
constant. In fact, we can think of (3.10) as a two-dimensional string world-sheet action
gauge-fixed to the trivial metric δαβ. The coupling to a general metric gαβ yields then
the action

Smat(g, ĥ) =
∫
M
d2σ
√
g Lmat , (3.14)

with

Lmat = 1
2g

αβ Tr
[(
ĥ−1∂σα ĥ

)†
+ ĥ−1∂σα ĥ]

] [(
ĥ−1∂σβ ĥ

)†
+ ĥ−1∂σβ ĥ]

]
. (3.15)

There are now two sets of equations of motion: (1) the equations of motion of ĥ, and (2)
the equations of motion for gαβ. The latter simply correspond to the statement that the
energy-momentum tensor vanishes,

Tmat
αβ = 0 . (3.16)

Let us now compute Tmat
αβ and check when it vanishes on-shell for a nilpotent orbit solution ĥ.

In evaluating the energy momentum tensor Tmat
αβ we use the important observation

that in complex coordinates t = σ1 + iσ2 one finds that the integrand in (3.10) can be
expressed by using the Hodge metric (2.43) when evaluated on a solution ĥ corresponding to
a nilpotent orbit. To see this, we use a basis of (D− p, p)-forms ĥ|v〉ref in the expression for
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the Hodge metric (2.43). If ĥ|v〉ref is of type (D− p, p) then also |v〉ref is of type (D− p, p),
but now in the reference Hodge decomposition (2.23). Since L−1 obeys (2.35) we conclude
that L−1|v〉ref is a (D − p− 1, p+ 1)-form as can be checked by recalling (2.24). Hence, we
realize that L−1 acts as ∇t appearing in the Hodge metric (2.43) and allows us to rewrite
the line element of gH. Concretely, using Tr(L2

−1) = −Tr([Q,L−1]L−1) = 0, the line element
of the Hodge metric can be written as

gH
tt̄

(
ĥ
)
dtdt̄ = Tr|L−1dt|2 = 1

2Tr|N
+ +N−|2

(
dσ1

)2
+ 1

2Tr|N
0|2
(
dσ2

)2
(3.17)

= 1
2
∑
α

Tr|
(
ĥ−1∂σα ĥ

)†
+ ĥ−1∂σα ĥ|2 (dσα)2 ,

where we have used (2.34) in the second equality and (2.31), (3.12) in the third. Therefore,
the Lagrangian density Lmat and the energy momentum tensor Tmat

αβ can be evaluated on a
nilpotent orbit solution as

Lmat = 1
2g

αβgH
αβ , Tmat

αβ = gH
αβ −

1
2gαβ g

γδgH
γδ , (3.18)

where we have expressed gH
αβ in real coordinates, keeping in mind that this metric is Kähler

and hence obeys gH
tt = gH

t̄t̄
= 0. It is now easy to see that Tmat

αβ = 0 for any choice of
metric gαβ onM that satisfies gtt = gt̄t̄ = 0. In particular, we can consider gαβ to be the
Kähler metrics gαβ = gWP

αβ or gαβ = gH
αβ and satisfy the complete set of equations of motion

of (3.14). The latter fact was also shown in general dimension in [30, 31].
While this result is encouraging it appears that one should look for a more sophisticated

two-dimensional gravity theory. Ideally one would like to construct a two-dimensional
theory, such that gWP

tt̄
with the expansion (2.39) is a solution at infinite distance points.

Starting again with the nilpotent orbit solutions for the matter theory and imposing (3.16),
we realize from the above discussion that there is only a single real function, namely gtt̄, in
the metric gαβ to be fixed. This can be done by imposing one real equation relating the
matter part of the theory to the pure gravity part. In particular, we will now check that
imposing

R− 2Λ = 2κ2Lmat (3.19)

does indeed ensure that gtt̄ = gWP
tt̄

, if we fix Λ and κ appropriately. Considering Lmat on a
nilpotent orbit solution ĥ, we use (3.18) to show that (3.19) can be written as

gαβ (Rαβ − 4Λgαβ) = κ2gαβgH
αβ . (3.20)

The real equation fixes gtt̄ in case we impose Tmat
αβ = 0. To ensure the match with gtt̄ = gWP

tt̄
,

we now fix κ,Λ by assuming gαβ = gWP
αβ and exploiting the relation of the Hodge metric

gH
αβ with gWP

αβ . Recall the that we have given the explicit relations in (2.42) for Calabi-Yau
threefolds (D = 3) and Calabi-Yau fourfolds (D = 4) and refer to [53] for the general
discussion. For these two cases one finds

D = 3 : Λ = −1 , κ2 = 1 , D = 4 : Λ = −3
4 , κ

2 = 1
2 . (3.21)
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It would be desirable to formulate an action principle imposing the field equa-
tions (3.4), (3.8), (3.16), (3.19) on ĥ and gαβ . A natural choice appears to be the coupling
of (3.14) to the Jackiw-Teitelboim gravity action [59, 60]. Introducing an auxiliary field
Φ(σ) the full action then reads

S
(
ĥ, g,Φ

)
= − 1

2κ2

∫
M
d2σ
√
gΦ(R− 2Λ) +

∫
M
d2σ
√
gΦLmat . (3.22)

The field Φ acts as a Lagrange multiplier and enforces the condition (3.19). We stress,
however, that this theory is likely not complete and deserves further study. In particular,
we find that the coupling to Φ also modifies the matter equations of motion and we recall
that we need to impose the constraint (3.4) on the matter fields. Furthermore, we have
not discussed possible boundary terms in the action (3.22). It would be desirable to
identify the correct gravity model, if it exists at all, from the plethora of two-dimensional
possibilities [61, 62].

Let us close by noting that for higher-dimensional moduli spaces a coupling to gravity
with a Einstein-Hilbert action with a cosmological constant is possible [31]. Also in these
cases one can determine κ and Λ depending on D and the dimensionality ofM, such that
the ‘physical’ metric gWP

αβ is a solution to the Einstein equations. In light of the above
observations and with a focus on a holographic perspective it would be nice to see if this is
indeed the correct coupling to gravity. In the remainder of the paper we will mostly restrict
to the two-dimensional situation and, since we are only talking about classical aspects of
the theory, it will suffice to work with the field equations (3.8) and (3.4) directly.

4 The Sl(2,C) boundary theory

In this section we discuss the structure that arises at the boundary ∂M of the moduli space
M with a focus on a dimM− 1 dimensional component. Recalling that the boundary splits
into multiple such components ∆k, as discussed around (2.9), we thus want to describe
the boundary theory for a fixed component, say ∆0, and describe how in a local patch
around it the Hodge norm and the Hodge decomposition can be determined in the bulk.
We introduce local coordinates z ≡ e2πit and ζκ, such that the boundary component is
approached in the limit

z → 0 or t = x+ iy → x0 + i∞ . (4.1)

Suppressing the ζκ coordinate directions, the considered configuration can be depicted as
in figure 2. The cases of higher co-dimension is significantly more involved and goes beyond
the scope of this work.

Let us begin by briefly motivating how the relevant data on the boundary is extracted.
As for the bulk theory the motivation comes from Hodge theory, or more precisely the
existence of a nilpotent orbit introduced in section 2.2. The non-trivial task is then to
extract the relevant data in the limit y → ∞. Roughly stated, one performs a clever
expansion of F ppol in t around the point y = ∞ and analyses the information carried by
the various terms near the boundary of M. One then finds that an intriguing algebraic
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structure with sl(2,C) symmetry emerges and we propose that this should be the symmetry
algebra of a boundary theory. To understand how the nilpotent orbit defines the boundary
data the reader may later consult section 5 where we match the bulk and boundary theories.
Given a nilpotent orbit the boundary data can always be extracted as we will describe in
section 5.3.

In this section we describe the for us relevant structures of the boundary theory
abstractly without describing how the data is derived from Hodge theory. More precisely,
we will discuss the following boundary data in detail:

(1) Hilbert space: H and g-invariant 〈v, w〉 ,
(2) boundary charge decomposition: Q∞ with 〈v|w〉∞ = 〈v̄, eπiQ∞w〉 , (4.2)
(3) sl(2,C)-algebra in g: (L−1, L0, L+1) ,
(4) phase operator in g: δ̂ .

Our discussion will make very little reference to the underlying Hodge theory and will be
formulated using operators rather than (p, q)-splittings.11 It is important to stress that we
will not attempt to construct the full boundary theory, but rather note that the data (4.2) is
sufficient for the purposes of this work. We will will sometimes refer loosely to the data (4.2)
as being the ‘boundary theory’.

As an aside, let us not that an actual boundary theory could be obtained by using
the data (4.2) to define a conformal quantum mechanics model. To introduce a time
dependence, we could consider the boundary to still depend on a coordinate τ = 1

2πi log x0
that is unaffected when taking the limit (4.1) and view τ as Euclidean time. On the quotient
space with coordinates z, we have τ ∼= τ + 1. One might want to visualize this cutting
out the singularity of the disk (a.2) in figure 2. Working on the disk we can build local
operators O[d]

q (τ) of charge q and weight d by setting

O[d]
q (τ) =

d∑
l=−d

e2πilτO(d,l)
q , (4.3)

where q, l, d are the eigenvalues under Q∞, L0, and the sl(2,C)-Casimir, respectively. This
decomposition of operators will be discussed in detail in section 4.3 below. As for the
quantum mechanical model with sl(2,R)-symmetry suggested in [63], it is not immediate
how to interpret this theory as a CFT1. There is no distinguished vacuum state and
the formulation of a state-operator-map is obscured. Interestingly, both issues have been
addressed in [64] for the model of [63]. The proposed solutions appear to be equally
important in our setting. Despite these similarities we believe that the actual boundary
theory should be more involved and we hope to address a detailed formulation in the future.

4.1 Boundary charge operator and sl(2, C)-algebra

To start with we note that this boundary theory consists of a finite dimensional Hilbert
space of states H. This Hilbert space is obtained by the complexification of a lattice L

11In the mathematics literature such an approach was given by Robles [46].
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as H = C ⊗ L. Note that as a vector space H is isomorphic to the space introduced in
section 3. We will also consider its real version HR = R⊗ L. In geometric settings, such
as in Calabi-Yau compactifications, we identify L = HD(YD,Z), H = HD(YD,C), and
HR = HD(YD,R).12 We require that the norm of H is induced by a charge operator Q∞
and that it is compatible with an sl(2,C)-algebra. We will introduce these objects in the
following.

The charge operator Q∞ and inner product. The charge operator Q∞ can be viewed
as defining a boundary Hodge decomposition

H = HD,0
∞ ⊕HD−1,1

∞ ⊕ ...⊕H0,D
∞ , (4.4)

where Hq,p
∞ = Hp,q

∞ and p+ q = D.13 The decomposition (4.4) can equally be encoded by
specifying a charge operator Q∞ ∈ gC acting as

Q∞|w〉 = 1
2(2p−D)|w〉 for |w〉 ∈ Hp,D−p

∞ , (4.5)

where we are using a bra-ket notation for states. Note that one infers from the properties
of (4.4) that

Q̄∞ = −Q∞ . (4.6)

We also require that the decomposition (4.4) allows us to define a boundary Hodge operator
C∞ by setting

C∞|w〉 = i2p−D|w〉 for |w〉 ∈ Hp,D−p
∞ , (4.7)

which defines a norm ‖ · ‖∞. Formally one can thus relate C∞ = i2Q∞ = eπiQ∞ , with Q∞
acting as in (4.5). Concretely, we define the inner product and the norm by

〈v|w〉∞ := 〈v̄, C∞w〉 , ‖v‖2∞ = 〈v|v〉 . (4.8)

It is a non-trivial fact that such a charge operator Q∞ with associated non-degenerate
norm exists on every boundary component of a complex structure moduli space [27]. To
come to this conclusion the reader can consult section 5 and read the explanation with the
assumption that an underlying nilpotent orbit exists.

The boundary algebra sl(2, R). We next introduce an operator algebra representing
sl(2,R) on H. This can be motivated by the fact that the Hodge metric introduced in
section 2.4 always asymptotes to the Poincaré metric, which has an sl(2,R) isometry algebra.
We thus define real generators N0, N± ∈ gR that satisfy the angular momentum algebra14

[
N0, N±

]
= ±2N± ,

[
N+, N−

]
= N0 . (4.9)

12More precisely, we would actually have to consider the primitive parts of HD(YD).
13This decomposition can still vary with the change in the coordinates ζκ not taken to a limit, but is, of

course, independent of t.
14Note that, interpreting sl(2,R) as the global conformal group in one dimensions, one can identify

H = 1
2N

0 as the global Hamiltonian, K = N− as the special conformal transformations, and P = −N+ as
translations. Below in (4.11) we will see that that with respect to the inner product (4.8) we have P † = −K.
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We want to ensure that this algebra is compatible with the split (4.4) and hence introduce
commutation relations with the charge operator Q∞. This operator is imaginary and hence
we are naturally lead to formulate compatibility conditions over the complex numbers. We
thus require [

Q∞, N
0
]

= i
(
N+ +N−

)
,

[
Q∞, N

±] = − i
2N

0 . (4.10)

Since C∞ = i2Q∞ these compatibility conditions imply that(
N0
)†

= N0 ,
(
N+

)†
= N− (4.11)

where O† = −C−1
∞ ŌC∞ is the adjoint operator to O with respect to the inner product

〈v|w〉∞ introduced in (4.8). It is interesting to stress that there are at least two major
differences to the conformal quantum mechanics model discussed, for example, in [63, 64].
Firstly, we are considering finite-dimensional representations of sl(2,R) which are thus not
unitary. Secondly, the central importance of the operator Q∞ naturally leads us to consider
a complex operator algebra. In fact, we will see next that the boundary symmetry is better
described by the algebra sl(2,C) rather than sl(2,R).

The boundary algebra sl(2, C). Due to the fact that the split (4.4) is over the complex
numbers, we are lead to introduce the generators Lα ∈ gC representing an sl(2,C) action
on H. These are defined in terms of the N0, N± as

L±1 := 1
2

(
N+ +N− ∓ iN0

)
, L0 := i

(
N− −N+

)
. (4.12)

Using (4.9) we see that the Lα satisfy the commutation relations

[L0, L±1] = ±2L±1 , [L1, L−1] = L0 . (4.13)

Furthermore, we have that
L̄0 = −L0 , L̄1 = L−1 . (4.14)

In addition, we note from (4.10) that the compatibility with the split (4.4) amounts to the
commutation relations with Q∞ given by

[Q∞, Lα] = αLα , (4.15)

which clarifies the meaning of the subscript on Lα.15 Note that (4.14) together with (4.15)
implies that16

L†α = L−α , (4.16)

where L†α is the adjoint operator with respect to the inner product 〈v|w〉∞.
The conditions on Lα ensure the compatibility of the sl(2,C) representation with the

boundary decomposition (4.4). The statement can rephrased by noting the sl(2,C) itself
15In mathematics a triple with L0 having even charge and L±1 having odd charge while satisfying (4.13)

and (4.14) is also known as Ðoković-Konstant-Sekiguchi (DKS) triple and plays an important role in the
DKS correspondence.

16Recall that gC is the algebra of elements preserving 〈·, ·〉 given in (2.3), e.g. one has 〈Lα, β〉 = −〈α,Lβ〉.
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has a natural charge split with eigenspaces sl(2,C)0, sl(2,C)1 , sl(2,C)−1 of charge −1, 0, 1,
respectively. These charge eigenspaces are the one-dimensional complex spaces spanned by
l0 = i

(
n− − n+), and l±1 = 1

2
(
n+ + n− ∓ inz

)
, respectively. Here one is using the standard

sl(2,R) generators

n− =
(

0 1
0 0

)
, n+ =

(
0 0
1 0

)
, nz =

(
−1 0
0 1

)
. (4.17)

The equation (4.15) then corresponds to the requirement that this split of sl(2,C) is
represented in the split of g induced by Q∞. In fact, it requires that there exists a map
ϕ : Sl(2,C) → GC such that ϕ∗lα = Lα. In mathematical terms such a representation is
known as a horizontal Sl(2) with respect to the splitting (4.4).

4.2 Boundary eigenstates

With the existence of the sl(2,C) algebra on the boundary, we can define another canonical
splitting of H. This splitting can be performed over the real numbers or complex numbers,
i.e. by considering HR or H.

The real boundary splitting. For the real space HD(YD,R) we introduce an eigenbasis
labelled by two quantum numbers (l, d) for the su(2)-algebra (4.9). The label l ∈ {−d, ..., d}
corresponds to the eigenvalue of N0, while d ∈ {0, ..., D} is related to the eigenvalues d(d+2)
of the Casimir operator

N2 = 2N+N− + 2N−N+ +
(
N0
)2

. (4.18)

Denoting the eigenstates by |d, l〉 we thus have

N2|d, l〉 = d(d+ 2)|d, l〉 , d = 0, ..., D ,

N0|d, l〉 = l|d, l〉 , l = −d, ..., d , (4.19)

and note that there can be many states with the same labels, but we will not distinguish
them with an extra index. The set of highest weight states is then given by

highest weight states |d, d〉: N+|d, d〉 = 0 , (4.20)

with all other states being generated by acting with N−. We thus have the split

HR =
⊕
d

⊕
l∈{−d,...,d}

V d
l ≡

⊕
`∈E

V` , (4.21)

where V d
l are the real vector spaces spanned by the eigenstates |d, l〉 introduced in (4.19).

We have also introduced the set E of all possible values ` = (d, l) in order to simplify the
expressions.

The splitting is orthogonal in the boundary inner product introduced in (4.8). Consider
|d, l〉 ∈ V d

l and |d′, l′〉 ∈ V d′
l′ . Then one has the identities

〈d, l|d′, l′〉 = 0 for d 6= d′, l 6= l′ , (4.22)
〈d, l|d, l〉 > 0 . (4.23)
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Note that in general one has several states |d, l〉 with the same labels. The positivity
expression (4.23) then should be read as the statement that the matrix formed from these
states is positive definite. This is compatible with the statement that ‖ · ‖∞ introduced
in (4.8) is actually a norm. The properties (4.22) and (4.23) are non-trivial and important
in many applications. A consequence of (4.8) is that the operators N2, N0 are self-adjoint
with respect to the inner product (4.8).

The complex boundary splitting. Given the decomposition (4.21) one can also deter-
mine a decomposition of the complex vector space HD(YD,C) into L2, L0-eigenspaces, where
L2 = 2L1L−1 + 2L−1L1 + (L0)2 is the Casimir operator. Let us denote the eigenvectors by
|d, l〉〉, i.e. we require

L0 |d, l〉〉 = l |d, l〉〉 , L2 |d, l〉〉 = d |d, l〉〉 . (4.24)

The important observation that we want to use in the following is the fact that there exists
a transformation ρ, defined as

ρ = exp iπ4
(
N+ +N−

)
= exp iπ4 (L1 + L−1) , (4.25)

which relates the real and complex versions of sl(2) as

L0 = ρN0 ρ−1 , L±1 = ρN± ρ−1 . (4.26)

This can be checked by using (4.9), (4.12), and the fact that the adjoint representations
satisfy AdeX = eadX . Therefore, we can relate the eigenstates of N2, N0 introduced in (4.19)
to the eigenstates |d, l〉〉 via

|d, l〉〉 = ρ|d, l〉 , (4.27)

where we recall that there can be several basis elements with the same (d, l), but we have
suppressed the further index labelling them. Hence we find that the complex cohomology
admits a decomposition

H =
⊕
d

⊕
l∈{−d,...,d}

Vdl . (4.28)

where Vdl is the complex vector space spanned by the |d, l〉〉.

Weights and charges of states. Having decomposed the states according as eigenstates
of L0, L2, we also can add a label indicating the charge under Q∞. Noting that (4.15)
implies [Q∞, L0] = [Q∞, L2] = 0 it is possible to find simultaneous eigenstates of L0, L

2

and Q∞ that form an orthogonal basis. We denote these by |d, l; q〉〉 with

L2|d, l; q〉〉 = d(d+ 2)|d, l; q〉〉 , d = 0, ..., D ,

L0|d, l; q〉〉 = l|d, l; q〉〉 , l = −d, ..., d , (4.29)

Q∞|d, l; q〉〉 = 1
2(2q −D)|d, l; q〉〉 , q = 0, ..., D ,

with d, l, q being integer valued. In accordance with the CFT language, we call l the
weight of a state, while q is the charge of the state.
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4.3 Boundary operators and the phase operator

In the following we will discuss the operators of the boundary theory acting on the finite-
dimensional Hilbert space H. Analog to the state decomposition of subsection 4.2 we will
then introduce a decomposition of operators. In addition, we will introduce a special operator
δ̂, the phase operator, completing the data that has to be specified for the boundary theory.

Boundary splitting of operators. The operators L2, L0, and Q∞ introduced in the
previous subsections can also be used to split the space of operators on H. Concretely, any
operator O acting on H admits an expansion17

O =
∑

d,l,q∈Z
O(d,l)
q , (4.30)

with

(adL)2O(d,l)
q = d(d+ 2)O(d,l)

q , d = 0, ..., D[
L0,O(d,l)

q

]
= lO(d,l)

q , l = −d, ..., d (4.31)[
Q∞,O(d,l)

q

]
= qO(d,l)

q , q = −D, ...,D .

where we have used the shorthand notation (adL)2 to denote

(adL)2O := 2 [L1, [L−1,O]] + 2 [L−1, [L1,O]] + [L0, [L0,O]] . (4.32)

We will call l the weight of the operator O(d,l)
q that descents from a highest weight d, while q

denotes its charge. Accordingly, from (4.15), (4.13) the operators (L−1, L0, L1) have charges
(−1, 0, 1) and weights (−2, 0, 2) and highest weights (2, 0, 2), respectively. Note that the
adjoint operator O† = −C−1

∞ ŌC∞ with respect to the inner product (4.8) admits also a
decomposition into L2, L0, and Q∞ components. Due to the fact that C∞ = i2Q∞ we
find that (

O†
)(d,l)

q
=
(
O(d,−l)
−q

)†
. (4.33)

It will be convenient to sometimes not perform the L2-decomposition. We then suppress
the index d in (4.30) and write

O(l)
q ≡

∑
d∈Z
O(d,l)
q . (4.34)

The space of operators with charge less than q and weight less than p will be denoted by18

Λ(p)
q = span

{
O(s)
n , n ≤ q , s ≤ p, r = 0, ..., D

}
. (4.35)

Note that these spaces are ‘filtered’ with Λ(p)
q ⊂ Λ(p̃)

q̃ for q ≤ q̃ and p ≤ p̃ and that
[L−1,Λ(p)

q ] ⊂ Λ(p−2)
q−1 as can be checked using (4.13) and (4.15).

17Note that this splitting corresponds to the so-called Deligne splitting of gC and one uses the notation
Or,s, more concretely one has

∑
d
O(d,p+q)
p = Op,q.

18Note that in [27] these spaces were denoted by Lp,q ≡ Λ(p+q)
p .
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The phase operator. The remaining information about the boundary theory is encoded
in a phase operator δ̂. This operator satisfies the commutation relation[

δ̂, L−1
]

= 0 . (4.36)

It is crucial, however, that in general, [δ̂, L1] 6= 0, [δ̂, L0] 6= 0 and [δ̂, Q∞] 6= 0. To specify
the failure of commuting with L0, Q∞ we perform an expansion as in (4.30) with (4.34)
by writing

δ̂ =
∑
l,q∈Z

δ̂(l)
q . (4.37)

δ̂ does not commute with L0, Q∞ if it has components other then δ̂
(0)
0 . To constrain δ̂

further we impose conditions on its components. Firstly, we require that it stems from real
operator δ ∈ gR by the transformation

δ̂ = ρ δ ρ−1 , δ̂ = ρ−2δ̂ρ2 . (4.38)

with ρ given in (4.25). Since ρ is complex, δ̂ is not real. Furthermore, one has to ensure
that δ̂ is only build out of δ̂(p)

q with charge less than −1 and weight less than −2. This
amounts to the statement that δ̂ = ∑

q≤−1, p≤−2 δ
(p)
q or, by using (4.35) that

δ̂ ∈ Λ(−2)
−1 . (4.39)

Note that we will see later in section 5 that δ̂ is related to the δ introduced in (2.20) via
δ̂ = ρ−1δρ, when matching bulk and boundary data. In fact, the properties (4.36), (4.39)
of δ̂ are motivated from the properties of charge operators associated to nilpotent orbits as
described in appendix A.

Let us indicate the importance of the phase operator δ̂. It encodes a deformation of the
inner product which is compatible with all the structures and is required to match a general
bulk solution. In fact, one could also define another norm on the boundary that depends on
δ by replacing C∞ in (4.8). In this case, the operation of taking the adjoint O† is no longer
compatible with the eigendecomposition as in (4.33). Interestingly, this is reminiscent of
the discussion of phases in the principle series representations of Sl(2,R) given in [65].

4.4 Classification of boundary theories

It is interesting to point out that the data that we have just specified can be used to classify
allowed boundary theories. Let us consider a geometric setting with H = HD(YD,C). A
first non-trivial fact that one has to use in such a classification is the identity

dimHp,q = dimHp,q
∞ . (4.40)

This implies, if we restrict ourselves to Calabi-Yau manifolds, that the space HD,0
∞ is

one-dimensional and the dimension of HD−1,1
∞ counts the total number of deformations

spanning the moduli spaceM. The basic idea is to combine the information captured by
the split (4.28) into sl(2,C)-eigenspaces with the (p, q)-decomposition (4.4) on the boundary.
This can be done by using that N−F i∞ ⊂ F i−1

∞ for F i∞ defined analog to (2.8).
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Let us exemplify this first for Calabi-Yau threefolds Y3 [47], which has been used in
physical applications in [3, 6]. In the threefold case the highest power of N− acting on H3,0

∞
can be three, such that we can introduce four principle cases

(N−)d̂H3,0
∞ 6= 0, (N−)d̂+1H3,0

∞ = 0
{
d̂ = 0 d̂ = 1 d̂ = 2 d̂ = 3
I II III IV . (4.41)

This information can be refined further by counting the number n2,1 of elements in H2,1
∞

that are not annihilated by N−. One records this information by a subindex leading to in
total 4h2,1 types [47]

In2,1 , IIn2,1−2 , IIIn2,1−4 , IVn2,1−2 . (4.42)

Using the decomposition (4.28) one can then infer that in the various cases the possible
minimal and maximal value of n2,1 is restricted (see [3, 6, 47] for details). Remarkably, this
classification can be mapped, using mirror symmetry, to a classification of limits in the
Kähler moduli space [6, 7]. This lead recently [66] to the suggestion to classify Calabi-Yau
threefolds into graphs formed by the types (4.42).

For Calabi-Yau fourfolds the classification of boundary theories proceeds in an analogous
way. In this case, however, we are dealing with five principle cases, labelled by I, II, III, IV,
V in [19], since the highest possible power d̂ of N− with a non-trivial action on H4,0

∞ is four.
Furthermore, there are now two sub-indices to each principle case that indicate how many
of the (3, 1)- and (2, 2)-forms degenerate near the boundary. This data was used in [19] to
study asymptotic flux compactifications. Some important subtleties in the classification of
such theories for fourfolds have been pointed out in [47].

It is crucial to stress that the classification does not capture the information in δ̂. While
it would be very interesting to include this information, this has not been done so far.
In fact, it is tempting to conjecture that the boundary theory is, in fact, a theory that
dynamically determines the values of δ̂ and enforces the properties described in section 4.3.

5 Bulk-boundary correspondence

In this section we have a detailed look at the matching of the boundary data introduced in
section 4 with solutions to the bulk theory discussed in section 3. The aim is to determine
general solutions to the bulk equations and describe how the matching with the boundary
data gives a restriction to physically viable nilpotent orbits F ppol. Mathematically this
matching is known as the correspondence between nilpotent orbits and limiting mixed
Hodge structures [26, 27]. The following discussion essentially summarizes some of the
main steps in the proof of the Sl(2)-obrit theorem and thus follow to large extend the
seminal papers of Schmid [26] and Cattani, Kaplan, Schmid [27]. However, we will adapt a
more physical language and combine some of the steps in a somewhat different manner. In
particular, we aim to make the eigenspace decompositions of operators (4.31) manifest in
the complete analysis. From a physics perspective the following approach of determining
asymptotic solutions is a crucial part of the AdS/CFT duality and relevant, for example,
for holographic renormalization [67] and bulk reconstruction [68, 69].
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Let us recall here, for the convenience of the reader, that the bulk theory of section 3
is defined by a Hilbert space H with a reference inner product 〈v|w〉ref = 〈v, i2Qw〉, which
is determined in terms of a reference charge operator Q. The bulk matter fields are given
by a matrix valued function ĥ ∈ gR varying over the field space. In a one-parameter
asymptotic limit t = x + iy, with y → ∞ being the boundary, one generally has a non-
trivial y-dependence, while the x-dependence is fixed by symmetry requirement (3.7) to
be ĥ(t, t̄) = exN

−
h(y). In fact, a crucial information in the boundary data is the nilpotent

matrix N−, which encodes the transformation (3.7) of ĥ under the shift x→ x+ 1. The
y dependence in a bulk solution ĥ(t, t̄) are constrained by the equations of motion of
the action (3.10). We have shown that bulk solutions h(y) can be used to define three
operators N 0(y),N±(y) ∈ gR as in (3.12). These satisfy the bulk differential equations (3.3),
i.e. we have

(C1) : ∂yN± = ±1
2

[
N±,N 0

]
, ∂yN 0 = −

[
N+,N−

]
. (5.1)

To extract a physical h(y) from these operators, we also needed to require that the reference
charge operator Q acts on these solutions of (5.1) as

(C2) :
[
Q,N 0

]
= i

(
N+ +N−

)
,

[
Q,N±

]
= − i

2N
0 , (5.2)

as already given in (3.4). Note that these conditions imply (N+)† = N− and (N 0)† = N 0,
with respect to the inner product 〈v|w〉ref on H that is induced by Q.

In this section we will determine the general form of a solution to the bulk theory near
y =∞ and show how it is uniquely fixed by the boundary data. In particular, we will see
that a general bulk solution takes the form

h (y) = g (∞)
(

1 + g1
y

+ g2
y2 + . . .

)
y−

1
2 Ñ

0
, (5.3)

h (y)−1 = y
1
2 Ñ

0
(

1 + f1
y

+ f2
y2 + . . .

)
g (∞)−1 ,

where Ñ0 ∈ gR, g(∞) ∈ GR, and gk, fk are operators on H. The matrices gk, fk, g(∞)
and Ñ0 are functions of the boundary data and can be determined, at least in principle,
explicitly. The key requirement to fix the bulk data gk, g(∞) and boundary data is given by

eiδ = g (∞)

1 +
∑
k>0

1
k! (−i)k

(
adN−

)k
gk

 , (5.4)

where we recall that δ and N− are part of the boundary information. The matrix Ñ0 is
fixed by the boundary data as

Ñ0 = g(∞)−1N0g(∞) . (5.5)

It is a non-trivial fact that (5.4) together with the field equations (5.1), (5.2) for h(y) fixes
the solution uniquely. This section is intended to explain this in detail.
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Before turning to this detailed discussion, let us note that even without giving an
explicit expression for the gk, fk and g(∞) in terms of the boundary data, we can show
that these coefficients always admit several special properties that allow us to control the
general behaviour of a bulk solution matching to the boundary data. In particular, one
finds that

adk+1
N− gk = adk+1

N− fk = 0 , ĝk, f̂k ∈
⊕

n≤k−1, q
Λ(n)
q , (5.6)

where we have set ĝk = ρg(∞) gk g(∞)−1ρ−1, with ρ introduced in (4.25), and recall the
definition (4.35) of Λ(p)

q . We will also argue that when picking g(∞) to match the boundary
data via (5.4) it can be written as

g (∞) = eζ ,
[
N−, ζ

]
= 0 , ζ̂ ∈ Λ(−2)

−1 , (5.7)

where ζ̂ = ρζρ−1. The properties of ζ resemble those of the phase operator δ given in (4.36)
and (4.39). We will see that ζ̂ can indeed be expressed as a universal non-commutative
polynomial in the components δ̂(p)

q . Taken together (5.3), (5.6), and (5.7) comprise the
statements of the celebrated Sl(2) orbit theorem [26, 27].

5.1 Bulk theory solutions as series expansions

The Nahm equations (5.1) have been studied intensively in the literature. When considering
N 0 ,N± to vary holomorphically in a complex parameter with a simple pole, a solution
to (5.1) has residues that form a representation of su(2). Therefore, solutions to (5.1)
naturally lead to triples, such as N0, N± introduced in section 4. In the situation at hand,
we are interested in solutions in a real parameter y near y =∞. The general ansatz for a
solution then takes the form

N 0 = Ñ0

y
+O

(
y−

3
2
)
, N± = Ñ±

y
+O

(
y−

3
2
)
. (5.8)

Stated differently, we introduce Ñ0, Ñ± satisfying a sl(2,R) algebra[
Ñ0, Ñ±

]
= ±2Ñ± ,

[
Ñ+, Ñ−

]
= Ñ0 , (5.9)

to determine the coefficients of the slowest decreasing term of N 0,N±. Note that the
leading 1/y terms alone also solve (5.1), however, we will need to consider terms sub-leading
in the limit y →∞ to construct a general bulk solution.

The leading coefficients Ñ0, Ñ± will be matched with the boundary sl(2,R) given by
N0, N±. Note that in general the symmetries do not need to directly and we parameterize
this freedom with an element ζ ∈ gR, i.e. we consider the identification

N0 = eζÑ0e−ζ , N+ = eζÑ+e−ζ , N− = eζÑ−e−ζ . (5.10)

Clearly, such rotations preserve the algebra (5.9). Picking different ζ corresponds to picking
different reference inner products 〈v|w〉ref . To determine a bulk solution matching given
boundary data, we choose to use the reference inner product

Q ≡ e−ζQ∞eζ , 〈v|w〉ref ≡ 〈e−ζv|e−ζw〉∞ , (5.11)
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with Q∞ and 〈v|w〉∞ defined on the boundary in (4.5) and (4.8), respectively. Equivalently,
recalling the definition of Q and Q∞, we can write

F pref = e−ζF p∞ . (5.12)

In the following we will describe how the full solution N 0,N± is fixed by the data of the
boundary theory. In particular, we will see that translated back into the bulk fields h(y),
the solutions have the form (5.3). The element ζ ∈ gR appearing in (5.10) and (5.11) sets
the overall transformation g(∞) and we will set g(∞) = eζ later on. Indeed this matches
the fact that h(y) depends on the choice of reference basis |w〉ref as seen in (2.21).

To perform the analysis for this section it will turn out to be convenient to work with
complex operators, analog to the relation between N0, N± and Lα given in (4.26), and also
rotate by the real element ζ as in (5.10), (5.11) to get a direct match with the boundary
data. We thus define

L±(y) := ρ eζN±(y)e−ζ ρ−1 , L0(y) := ρ eζN 0(y)e−ζ ρ−1 , (5.13)

where
ρ = expπi4

(
N+ +N−

)
= expπi4 (L1 + L−1) (5.14)

as already defined in (4.25). With these redefinitions the differential equations (5.1) are
trivially rewritten as(

C1′
)

: ∂yL± = ±1
2

[
L±,L0

]
, ∂yL0 = −

[
L+,L−

]
. (5.15)

Furthermore, we insert (5.11) into the conditions (5.2) and derive that(
C2′

)
:

[
2Q∞ − L0,L0

]
= 2i

(
L+ + L−

)
+ i

[
L1,L0

]
− i

[
L−1,L0

]
,[

2Q∞ − L0,L±
]

= −iL0 + i
[
L1,L±

]
− i

[
L−1,L±

]
, (5.16)

where we have explicitly evaluated ρQ∞ ρ−1 = Q∞ − 1
2L0 − i

2L1 + i
2L−1 by using (4.15).

Consistent with (5.8) these conditions are indeed satisfied when replacing L± with L±1/y

and L0 with L0/y. Finely, using the L0,L±1, we want to make sure that they stem indeed
from a real function. One trivial way to implement this is to impose

(C3′) : L̄± = ρ−2L±ρ2 , L̄0 = ρ−2L0ρ2 . (5.17)

In summary, we realize that the conditions (C1), (C2) for the real N 0,N± are now rewritten
as (C1′), (C2′), (C3′) for the complex L0,L±.

We next have a closer look at the full expansions of L0,L±. We will consider the
expansions of the form

L0(y) =
∑
n≥0

L0
n

y1+n/2 , L±(y) =
∑
n≥0

L±n
y1+n/2 . (5.18)

In accordance with (5.8), (5.10), and (4.26), we fix the slowest decreasing term by the
boundary conditions

L0
0 ≡ L0 , L±0 ≡ L±1 . (5.19)
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The goal will be to study the properties of the coefficients L0
n, L±n . In order to do that we

split them into a eigen-decomposition under the commuting operators L2, L0, and Q∞ as
in (4.30). We thus write

L•n =
∑
q

∑
r>0

∑
−r≤s≤r

(L•n)(r,s)
q , • ∈ {0,+,−} , (5.20)

with r, s, q being the highest weight, the weight, and the charge of (L•n)(s,r)
q as defined in (4.31).

The differential equation (5.15) then lead to the iterative equations

(n−s)
(
L+
n

)(r,s+2)

q+1
=−

[
L1,

(
L0
n

)(r,s)

q

]
+
∑

0<k<n

[(
L0
k

)
,
(
L+
n−k

)](r,s+2)

q+1
,

(n+s)
(
L−n
)(r,s−2)
q−1 =

[
L−1,

(
L0
n

)(r,s)

q

]
+
∑

0<k<n

[(
L0
k

)
,
(
L−n−k

)](r,s−2)

q−1
, (5.21)

(n+2)
(
L0
n

)(r,s)

q
= 2

[
L1,

(
L−n
)(r,s−2)
q−1

]
−2
[
L−1,

(
L+
n

)(r,s+2)

q+1

]
+2

∑
0<k<n

[(
L+
k

)
,
(
L−n−k

)](r,s)
q

.

In addition we can also expand the condition (5.16) in eigen-components to yield

i (2q − s)
(
L0
n

)(r,s)

q
= −2

(
L+
n

)(r,s)

q
− 2

(
L−n
)(r,s)
q −

[
L1,

(
L0
n

)(r,s−2)

q−1

]
+
[
L−1,

(
L0
n

)(r,s+2)

q+1

]
,

i (2q − s)
(
L±n
)(r,s)
q =

(
L0
n

)(r,s)

q
−
[
L1,

(
L±n
)(r,s−2)
q−1

]
+
[
L−1,

(
L±n
)(r,s+2)
q+1

]
. (5.22)

Note that the weights and charges in the various terms in (5.21) and (5.22) are in accordance
with the fact that L±1 change the weight by ±2 and the charge by ±1. Finally, the
condition (5.17) decomposes as

(L•n)(r,s)
q = ρ−2(L•n)(r,s)

s−q ρ
2 , (5.23)

where we have used that Q̄∞ = −Q∞, L̄0 = −L0, as given in (4.6), (4.14). Furthermore,
we explicitly computed ρ2Q∞ρ

−2 = Q∞ − L0, ρ2L0ρ
−2 = −L0 and applied that L2 is real

and commutes with ρ2. The main challenge is to extract the constraints on the coefficients
(L•n)(s,r)

q imposed by (5.21), (5.22), and (5.23).
Combining the equations (5.21) one then shows that the (Ln)(r,s) satisfy [26, 27]

(L•n)(r,s)
q = 0 unless |s| ≤ r ≤ n, q ≤ n− 1 ,

(L•n)(r,s)
q = 0 unless (r, s, n even) or (r, s, n odd) , (5.24)(

L0
n

)(n,n)

q
=
(
L0
n

)(n,−n)

q
=
(
L±n
)(n,∓n)
q =

(
L±n
)(n,±(2−n))
q = 0 , for n > 0 ,

where one considers either the upper sign or the lower sign in each quantity. Furthermore,
it turns out that all information in the expansions (5.18) satisfying the stated constraints is
in the leading coefficients (L•n)(n,s)

q . Their algebra can be extracted from (5.21) by setting
r = n. It is rather non-trivial to show that the sums over 0 < k < n in (5.21) vanish in this
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case [27].19 One concludes that

1. The leading coefficients (L•n)(n,s)
q satisfy the algebra

(n− s)
(
L+
n

)(n,s+2)

q+1
= −

[
L1,

(
L0
n

)(n,s)

q

]
,

(n+ s)
(
L−n
)(n,s−2)
q−1 =

[
L−1,

(
L0
n

)(n,s)

q

]
, (5.25)

(n+ 2)
(
L0
n

)(n,s)

q
= 2

[
L1, (L−n )(n,s−2)

q−1

]
− 2

[
L−1, (L+

n )(n,s+2)
q+1

]
.

Combining this expression with (5.22) the (L•n)(n,s)
q also obey the constraint

i (2q − s)
(
L0
n

)(n,s)

q
= (n− s)

(
L+
n

)(n,s)

q
+ (n+ s)

(
L−n
)(n,s)
q . (5.26)

2. The leading coefficients (L•n)(n,s)
q determine the solution L0(y),L±1(y) satisfy-

ing (5.15), (5.16), (5.17), uniquely.

The next step is to find a solution of (5.25) fixing the leading coefficients (L•n)(n,s)
q .

Remarkably, such solutions can be found to depend on one operator η̂ = ρηρ−1 with η ∈ gR,
that satisfies

η̂ =
∑

q≥1,n≥2
(L−n )(n,−n)

−q ∈ Λ(−2)
−1 : [L−1, η̂] = 0 . (5.27)

One can check by straightforward computation that the equations (5.25) are satisfied by(
L0
n

)(n,2s−n)

s−q
= 2 an,sq (adL1)s η̂(−n)

−q ,

(
L+
n

)(n,2s−n+2)

s−q+1
= − (n− s)−1 an,sq (adL1)s+1 η̂

(−n)
−q , (5.28)

(
L−n
)(n,2s−n−2)
s−q−1 = (n− s+ 1) an,sq (adL1)s−1 η̂

(−n)
−q ,

where n ≥ 2, s ≥ 1, and 1 ≤ q ≤ n− 1. Note that the complex coefficients an,sq are unfixed
by (5.25), since these coefficients appear in each term with the same s, q, n indices. To fix
an,sq we first use (5.26) which yields the equation

i(n− 2q)an,sq + (n− s)(n− s+ 1)−1an,s−1
q − s(n− s)an,s+1

q = 0 . (5.29)

Furthermore, we also need to impose (5.23) and normalize η(−n)
−q such that (5.27) matches

with (5.28). The former condition equates an,sq with an,sn−q if one uses the fact that η̂ = ρηρ−1

and L1 = ρN+ρ−1 stem from real operators. The normalization condition fixes an,1q . We
thus also have to impose the two constraints

an,sq = an,sn−q , an,1q = 1
n
. (5.30)

19This follows from Proposition 6.17 of [27], which uses yet another presentation of the information
in (5.1), (5.2).
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All together the requirements (5.29), (5.30) are solved by

an,sq = is−1 (n− s)!
n! bs−1

q−1,n−q−1 , (5.31)

with integers bkp,q, k, q, p ≥ 0 defined by (1− x)p(1 + x)q = ∑
k b

k
p,qx

k. We check that indeed
bkp,q = (−1)kbkq,p as required for (5.30).

To summarize, we have found that any bulk solution satisfying (5.15), (5.16), (5.17)
together with the boundary conditions (5.19), is uniquely specified by a single real operator
η or η̂ = ρηρ−1. Conversely, it is easy to extract the operator η for a given solution
via (5.27). As a next step, we will translate the solution for L0,L±1 into a solution for the
bulk fields h(y).

5.2 Asymptotic expansions of the matter fields

Recall that the matter fields of the bulk theory (3.22), (3.10) are the matrix-valued functions
ĥ(x, y), which asymptotically take the form ĥ(x, y) = exN

−
h(y). Note that any solution for

N 0(y),N±(y) satisfying (5.1), (5.2) can be parametrized by an h(y) by considering

N 0(y) = −2h−1∂yh , N−(y) = h−1Ñ−h , (5.32)

where Ñ− is a real matrix that can be fixed using the boundary conditions to be N−.20

We now define a new function g(y) by setting

h(y) ≡ g(y) y−
1
2 Ñ

0
, (5.33)

where Ñ0 is the leading coefficient in the y-expansion of N 0 as seen in (5.8). With this
definition we find that N 0 takes the form

N 0 (y) = −2y
1
2 Ñ

0 [
g−1Dyg

]
y−

1
2 Ñ

0
, (5.34)

where Dy = ∂y − Ñ0

2y .
We are now in the position to make contact to the explicit series expansions of section 5.1.

In order to do that we need to implement the relation (5.13) between N 0 and L0, i.e. we
rotate all quantities by ρ, defined in (5.14), and eζ . From (5.10) and (4.26) we infer that
L0 = ρ eζÑ0e−ζ ρ−1. We thus can write (5.34) as

L0 (y) = −2y
1
2L

0 [
ĝ−1D̂y ĝ

]
y−

1
2L

0
, ĝ (y) = ρ g (y) e−ζ ρ−1 . (5.35)

Let us stress that ĝ is not real due to the factors of ρ. We next use the explicit expansion (5.18)
for L0(y) and determine the expansion for ĝ. Using (5.24) we find that

ĝ−1∂y ĝ =
∑
k≥2

Bk
yk

, (5.36)

with
Bk = −1

2
∑

s≤k−2

∑
r≤2k−2−s

∑
q≤k−2

(
L0

2k−2−s

)(r,s)

q
. (5.37)

20One generally checks that (5.32) satisfies (2.33), which is obtained from (5.1) and (5.2).
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Note that this form of Bk implies that

Bk ∈
⊕

p,q≤k−2
Λ(p)
q , (5.38)

with Λ(p)
q defined in (4.35). It is important to stress that the expansion (5.36) starts with

a y−2 term, so in effect the redefinition (5.33) ensures that the y−1-term is not present in
ĝ−1∂y ĝ and hence not in g−1∂yg. We can put these statements together, combine it with an
argument for convergence [26, 27], and infer that g(y) and g(y)−1 admit Taylor expansions
at y =∞ of the form21

g (y) = g (∞)
(

1 + g1
y

+ g2
y2 + . . .

)
, (5.39)

g (y)−1 =
(

1 + f1
y

+ f2
y2 + . . .

)
g(∞)−1 .

Note that g(∞), which is the value of g(y) in the limit y →∞, drops out from (5.36) and
hence is not fixed in terms of the (L0

n)(r,s)
q . We have already indicated in (5.7) that we

can choose the overall transformation eζ = g(∞), which implies that ĝ, ĝ−1 then has the
expansion

ĝ (y) =
(

1 + ĝ1
y

+ ĝ2
y2 + . . .

)
, ĝ (y)−1 =

(
1 + f̂1

y
+ f̂2
y2 + . . .

)
, (5.40)

with
ĝi = ρg(∞)gig(∞)−1ρ−1 , f̂i = ρg(∞)fig(∞)−1ρ−1 . (5.41)

This choice indeed normalizes the asymptotic expansion, which now depends entirely on
the (L•n)(r,s)

q , which in turn are specified by η̂ as discussed after (5.27).
To gain a deeper understanding of the properties of the coefficients ĝi in (5.40) we note

that one can invert (5.36) to write

ĝk = Pk(B2, ..., Bk+1) , (5.42)

for a set of universal non-commutatitve polynomials Pk. These polynomials Pk(B2, ..., Bk+1)
are iteratively defines by

P0 = 1 , Pk = −1
k

k∑
j=1

Pk−jBj+1 . (5.43)

One checks that using (5.42) with (5.43), the differential equation ∂y ĝ = ĝ ·
∑
n≥2Bny

−n is
satisfied. Let us now recall that the Bn are fixed in terms of the (L0

n)(r,s)
q via (5.37). The

latter are then determined from a η̂ via (5.28) for the highest term and then recursively
via (5.21). Taken these facts together one finds that the ĝk (and the f̂k) are universal
non-commutative polynomials in L+1 and η̂(n)

p . Any appearance of L0, L−1 in the recursive
evaluate can be eliminated by using the fact that adL0 = [L0, ·] acts with integer eigenvalues

21The existence of these Taylor expansions constitute the first part of Schmid’s Sl(2)-orbit theorem.
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on expressions involving η̂(p)
q , L1, and we have [L−1, η̂] = 0. In fact, one shows that the ĝk,

f̂k are homogeneous of degree k in adL+1 = [L+1, ·]. The latter is easy to see for the leading
term (5.28), and can be extend to all terms recursively [27]. It now also follows that

adn+1
L−1

ĝn = 0 , adn+1
L−1

f̂n = 0 . (5.44)

Transformed back to gi we thus gets the condition (5.6), and adn+1
N− fn = 0. Furthermore,

we conclude from (5.38) and (5.42) that

ĝk, f̂k ∈
⊕

p≤k−1, q
Λ(p)
q . (5.45)

The properties (5.44) and (5.45) appear to be abstract, but have significant implications in
concrete applications as we discuss in section 6.

5.3 Uniqueness of the near boundary solution

Having determined the expansions (5.39) we next discuss a prescription how to fix the
solution uniquely. In order to do this we first argue that we can bring any bulk solution
into a form that is reminiscent of the form of a nilpotent orbit. Comparing this expression
with the original nilpotent orbit (2.19) allows us to show that the boundary data and (5.4)
are sufficient to entirely fix the bulk solution. The equation (5.4) relates the boundary data
to the coefficients in the bulk solution and fixes it uniquely.

To begin with we aim to bring the bulk solution ĥ(x, y) in a form reminiscent of a
nilpotent orbit (2.19). Hence, we rewrite the information contained in a solution N 0 =
−2ĥ−1∂yĥ, N− = ĥ−1∂xĥ. We first derive that

h−1eiyÑ
− d

dy

(
e−iyÑ

−
h
)

= −iN− − 1
2N

0 = −1
2L0 − iL1 , (5.46)

where in the second equality we have used the definition (2.34) of Lα. We can now employ
the properties of Lα when acting on the reference structure F pref . The F pref are complex
vector spaces spanned by states with Q-charges being larger or equal to p − 1

2D, i.e. we
have F pref = ⊕

r≥pH
r,D−r
ref with (2.24). Since [Q,Lα] = αLα, we see that L1,L0 preserve or

increase the charge and hence conclude that L0F
p
ref ⊂ F

p
ref and L1F

p
ref ⊂ F

p
ref showing that

L0, L1 preserve the vector spaces F pref . We now read the expression (5.46) as a relation
between a group element e−iyÑ−h and an algebra element 1

2L0 − L1, we conclude that
e−iyÑ

−
h(y) = κf(y), where κ, f(y) ∈ GC with f(y) preserving F pref and κ being constant.

Combining these last two facts we can write

h(y)F pref = eiyÑ
−
F̃ p0 , F̃ p0 = κF pref . (5.47)

Clearly, this expression is exactly of the form (2.22), the equation which served as a
definition of h(y) when starting with a nilpotent orbit. Here we do not make this a priori
assumption on ĥ(x, y) and only demand that it solves the field equations (3.3), (3.4) and
has the symmetry (3.7).
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The question is now to identify the conditions on ĥ(x, y) such that F̃ p ≡ eiyÑ
−
F̃ p0 is

indeed a nilpotent orbit. This requires to enforce that Ñ− is nilpotent with Ñ−F̃ p0 ⊂ F̃
p−1
0

and that the Hodge decomposition H̃p,q = F̃ p ∩ F̃ q satisfies H̃p,q = H̃q,p and induces a
well-defined norm. The properties of H̃p,q are inherited from the properties of F pref and
we will see below how F pref can be matched with the boundary data. While the properties
of Ñ−, such as its nilpotency, are inherited from N− when matched as in (5.10). We
conclude that indeed we can determine a nilpotent orbit from a bulk solution h(y), with
associated Ñ−, F pref .

To complete the discussion we notice from (5.32) that Ñ− = h(y)N−(y)h−1(y). Insert-
ing the explicit expansion of h(y) given by (5.33), (5.39) and the expansion of N− given
in (5.8), we extract the constant term yielding

Ñ− = g(∞)Ñ−g(∞)−1 . (5.48)

Hence we find that [Ñ−, g(∞)] = 0. Compatible with this condition, we now pick

g (∞) = eζ ,
[
ζ,N−

]
= 0 , ζ̂ ∈ Λ(−2)

−1 , (5.49)

which implies that Ñ− = N−. This ensures that, when re-introducing the coordinate x by
completing t = x+ iy, that the nilpotent orbit derived from h(y), F pref transforms with the
symmetry N− associated to the boundary as in (3.7). Indeed, we can then complete (5.47)
to ĥ(x, y)F pref = etN

−
F̃ p0 .

It remains to address how the boundary data fix ζ, which defines g(∞) via (5.49), and
η, which defines gi as discussed in sections 5.1, 5.2. The central statement is that for a given
N−, δ ∈ gR, with [δ,N−] = 0, δ̂ ∈ Λ(−2)

−1 there is a unique choice of ζ, η such that (5.4) is
satisfied. Let us begin by motivating (5.4) by comparing the original nilpotent orbit (2.19)
to the orbit (5.47). The orbit (2.19) was used to introduce a special F pref = eiN

−
e−iδF p0

in (2.20). Requiring F p0 = F̃ p0 in (5.47) we can then find the equality

eiδe−iN
−
F pref = e−iyN

−
h(y)F pref . (5.50)

We next turn this into an equality of vector spaces obtained from F p∞. A key step is to
realize that F p∞ are vector spaces that are preserved by L0, L1, following an argument
analog to the one after (5.46). We can then use the identity

ρ = eiL−1e
i
2L1e

1√
2
L0 , (5.51)

which implies together with (4.26) that on F p∞ we have

F p∞ = eiN
−
ρ−1F p∞ . (5.52)

Furthermore, using the same reasoning, namely that L0 preserves F p∞, we have the identity
F p∞ = y

1
2L0F p∞. Hence, using F pref = e−ζF p∞ given in (5.12) we can thus rewrite (5.50) as

eiδe−ζρ−1F p∞ = e−iyN
−
h(y)e−ζeiN−ρ−1y

1
2L0F p∞

= e−iyN
−
g(y)y−

1
2 Ñ

0
e−ζeiN

−
y−

1
2N

0
ρ−1F p∞ (5.53)

= e−iyN
−
g(y)e−ζy−

1
2N

0
eiN

−
y

1
2N

0
ρ−1F p∞

= e−iyN
−
g(y)eiyN−e−ζρ−1F p∞ .
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In the fourth identity we have used y− 1
2N

0
eiN

−
y

1
2N

0 = eiyN
− and that [ζ,N−] = 0. Inserting

the expansion (5.39) of g(y), with g(∞) = eζ , we can now evaluate

e−iyN
−
g(y)eiyN−e−ζρ−1F p∞ = eζ

∑
k,l≥0

(−i)k
k! yk−l (adN−)kgle−ζρ−1F p∞ , (5.54)

where we have introduced g0 = 1. Due to (5.6) each term in the sum has non-positive
powers and we can thus evaluate (5.54) in the limit y →∞. This leads to the identity

eiδe−ζρ−1F p∞ = eζ
∑
k≥0

(−i)k
k! (adN−)kgke−ζρ−1F p∞ . (5.55)

Comparing coefficients we realize that a sufficient condition for this vector space identity to
be satisfied is

eiδ = eζ
∑
k≥0

(−i)k
k! (adN−)kgk . (5.56)

This is the condition (5.4) announced before and relates the boundary data δ,N− with the
coefficients in a general bulk solution (5.3).

Let us now show that indeed the condition (5.4) is sufficient to fix the bulk solution
completely when given the set of boundary data specified in section 4. In order to do this
we first transform (5.4) to

eiδ̂e−ζ̂ =
∑
k≥0

(−i)k
k! (adL−1)kĝk , (5.57)

where the δ̂ = ρδρ−1, ζ̂ = ρζρ−1, and ĝi = ρeζgie
−ζρ−1 as above. Recall from (5.42)

that ĝk = Pk(B2, ..., Bk+1) can be expressed as a function of the coefficients Bl appearing
in (5.36) with Pk being specific non-commutative polynomials introduced in (5.43). Using
the Leibniz rule we can rewrite this expression as

eiδ̂e−ζ̂ = 1 +
∑
k≥1

Pk(C2, ..., Ck+1) , (5.58)

where Ck+1 := (−i)k
k! (adL−1)kBk+1. We now aim to find an explicit expression for Ck+1 in

terms of η̂. Using the definition (5.37) of Bk we first show22

(adL−1)k−1Bk = −1
2
∑
l≤k

∑
q≤k−2

(adL−1)k−1(L0
l )(l,2k−2−l)
q , (adL−1)kBk = 0 , (5.59)

where we have set l = 2k − 2− s in (5.37) and used the fact that adL−1 lowers the weight
of an operator by 2. Furthermore, we derive by using (5.28) with (5.31) together with the
sl(2)-algebra that

(adL−1)k(L0
l )

(l,2k−l)
k−q = 2ik−1k! bk−1

q−1,l−q−1 η̂
(−l)
−q . (5.60)

22See Lemma 6.32 of [27].
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We are now in the position to evaluate

Ck+1 = i
∑
l≥k+1

∑
q≥1

bk−1
q−1,l−q−1 η̂

(−l)
−q . (5.61)

The formula (5.58) with (5.61) gives us an explicit expression relating δ̂, ζ̂ and η̂. In fact
we will argue next that it allows to determine ζ̂ and η̂ as a function of δ̂.

To show that (5.58) with (5.61) can be used to fix ζ̂ and η̂ in terms of δ̂, we note that
all three operators actually stem from real counterparts ζ, η, and δ. To use this reality
condition we note that it can be written as

Ō = ρ−2Oρ2 , O(s)
q = ρ−2O(s)

s−qρ
2 , O ∈ {ζ, η, δ} , (5.62)

as we have already noted in (5.17), (5.23) for other operators. Since the identity (5.58)
with (5.61) is a polynomial in the components of ζ̂, η̂, and δ̂ the transformation involving ρ
simply drops on both sides. Hence, we can also replace in (5.58), (5.61):

i→ −i , ζ̂(s)
q → ζ̂

(s)
s−q , η̂(s)

q → η̂
(s)
s−q , δ̂(s)

q → δ̂
(s)
s−q , (5.63)

and find an equally valid equation. Combined with the original expression we can then
either eliminate η̂ or ζ̂ and determine ζ̂, η̂ as a function of the components of δ̂. For example,
the first terms are

ζ̂
(−2)
−1 = ζ̂

(−4)
−2 = 0 , ζ̂

(−3)
−1 = − i2 δ̂

(−3)
−1 , ζ̂

(−4)
−1 = −3i

4 δ̂
(−4)
−1 ,

ζ̂
(−5)
−2 = −3i

8 δ̂
(−5)
−2 −

1
8
[
δ̂

(−2)
−1 , δ̂

(−3)
−1

]
, ζ̂

(−6)
−3 = −1

8
[
δ̂

(−2)
−1 , δ̂

(−4)
−2

]
. (5.64)

These relations suffice to treat the Calabi-Yau threefold case, but one can expand (5.58)
further to determine the relations relevant for any YD. Note that these relations are
abstractly valid and do not make use of the Calabi-Yau condition for YD.

Note that it remains to show that ĝk is also fixed by the boundary data. In fact, we
know from (5.42) with (5.38), (5.28) that its leading coefficients are fixed by η̂, which itself is
fixed by δ̂. The subleading coefficient are then determined by the iterative equations (5.21)
and hence also involve adL1.23 In fact, we stress that in obtaining δ̂ from δ we also need
L1. We have thus argued that we can evaluate

ζ̂ = ζ̂
(
δ̂
)
, ĝk = ĝk

(
δ̂, adL1

)
. (5.65)

Note that in order to evaluate these relations it is crucial to perform the split of the
operators δ̂, ζ̂ into weight and charge eigencomponents, which are determined by the
boundary sl(2,C)-operator L0 and Q∞. Hence, it is possible to evaluate using the described
steps the functional dependence

ζ = ζ (δ, Lα, Q∞) , gk = gk (δ, Lα, Q∞) . (5.66)

We conclude that all information about the boundary theory is needed to fix the bulk
solution (5.3) with g(∞) = eζ and Ñ0 = e−ζρ−1L0ρe

ζ . Conversely, one can use a bulk
solution corresponding to a nilpotent orbit to determine the boundary data.

23The dependence on L0, L−1 can be eliminated using the evaluating L0 on the weight eigencomponents
and [L−1, η̂] = 0.
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6 The finiteness of the flux landscape and the distance conjecture

In this final section we will discuss two interesting applications of the holographic perspective
developed in this work. In preparation of the physics applications we first introduce in
section 6.1a powerful consequence of the detailed understanding of the near boundary
expansion of the matter fields (5.3). More precisely, we will return to the analysis of the
asymptotic form of the Hodge norm (2.2) and argue that the leading growth of any fixed
element F ∈ H is determined by its weight decomposition under the boundary sl(2,R) [26].
This fact will be useful when studying flux compactifications and the distance conjecture.
In section 6.2 we then sketch the main aspects of the proof [39, 40] that there are no
infinite tails of flux vacua in the Type IIB or F-theory landscape near any co-dimension
one boundary. The argument will be formulated for self-dual G4 fluxes on a Calabi-Yau
fourfold. We will also comment on the situation in which the fluxes are of Hodge type (2, 2),
and note that a general proof is know for this more restrictive case. Finally, in section 6.3
we will return to the discussion of the distance conjecture, which was the initial motivation
for this work. We briefly comment on how the sl(2) structure on the boundary might be
viewed as generalizing the original duality motivation [2] for the conjecture.

6.1 Leading behaviour of the Hodge norm

We want to understand how the Hodge norm ‖F‖2 =
∫
F ∧ ∗F behaves as a function of the

moduli as mentioned already in the motivation of our constructions around (2.2). In the
near boundary region of the boundary t = i∞, we can approximate ‖F‖2 by ‖F‖2pol, which
amount to dropping exponentially suppressed correction O(e2πit). This latter norm was
defined in (2.14) and arises from the nilpotent orbit approximation. We have argued in the
proceeding sections that ‖F‖2pol can equally be derived by using the solutions to the bulk
theory that match the boundary data specified in section 4.

The crucial outcome of the analysis of section 5 was the construction of a bulk solution
matching the boundary data. This solution (5.3) relates the decomposition of forms on the
boundary Hp,q

∞ , to the one relevant in the near boundary region. In particular, it provides
us with an explicit expression of the Hodge star near the boundary as we will see in the
following. Recall that we have denoted this near boundary operator by Cpol in (2.14).
Concretely we find

Cpol
(
t, t̄
)

= ĥ e−ζC∞e
ζ ĥ−1 ,

= exN
−
h e−ζC∞e

ζ h−1e−xN
−
, (6.1)

Recall that from (5.3) with (5.5), (5.7) the solution h(y) admits the expansion

h (y) = eζ
(

1 + g1
y

+ g2
y2 + . . .

)
e−ζy−

1
2N

0
eζ . (6.2)

Note that h(y) ∼ y− 1
2N

0
eζ when we consider very large y since all gj

yj
→ 0. Inserted into (6.1)

we thus find that

Cpol
(
t, t̄
)
∼ Cs

(
t, t̄
)
≡ exN−y−

1
2N

0
C∞y

1
2N

0
e−xN

−
. (6.3)
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We denote the norm corresponding to Cs by ‖ · ‖s. Hence, we find that very close to the
boundary y →∞ the Hodge norm is well approximated by [26]24

‖F‖2 ∼ ‖F‖2s ≡
∥∥y 1

2N
0
e−xN

−
F
∥∥2
∞ =

∑
l

yl‖ρl‖2∞ , (6.4)

where in the second equality we have abbreviated ρ(x) ≡ e−xN
−
F and performed an

eigendecomposition with respect to N0 via

ρ(x) =
∑
l

ρl , N0ρl = lρl . (6.5)

Note that after decomposing ρ(x) we can use the orthogonality of the N0 eigenspaces
discussed in section 4, equation (4.22), to get the result (6.4). Considering a bounded x, we
also infer from (6.4) that

‖F‖2 ∼
∑
l

yl‖Fl‖2∞ , N0Fl = lFl , (6.6)

where one uses that N− acts as a lowering operator and can thus only decrease the growth.
Hence, one can not lower the leading growth by tuning the field x. The fact that the
location of F in the boundary splitting of H = HD(YD,C) determine the leading growth of
the Hodge norm is a well-known result of asymptotic Hodge theory [26, 27].

6.2 Proving the finiteness of the flux landscape

It is an important open problem in the study of flux compactifications to show that the
number of ‘well-defined’ flux vacua is finite [35, 36]. Even in the best studied settings,
namely Type IIB compactifications with three-form flux and their F-theory and M-theory
generalizations, finiteness has not been fully established, even though there is compelling
evidence from the analysis of the flux density [37, 38, 52, 53, 70] and individual examples [71].
Concretely, let us consider M-theory or F-theory on a Calabi-Yau fourfold Y4, and switch
on some background flux G4. It is well-known that these fluxes are constrained by the
tadpole condition [72, 73]. Furthermore, one finds that consistency of the vacuum requires,
in the absence of any non-perturbative corrections, that G4 satisfies a self-duality condition.
Together, these two conditions read [74, 75]25

G4 ∈ H4(Y4,Z) : 〈G4, G4〉 < K , G4 = ∗G4 , (6.7)

where K is a positive constant and we recall the definition (2.3). The finiteness of the G4
flux landscape thus requires, as a necessary condition, that the tadpole condition and the
self-duality condition have only finitely many solutions (zvac, G4) for a fixed Y4. Here zIvac

24More exactly, we can show that ‖ · ‖ and ‖ · ‖s are mutually bounded, i.e. there exist positive a1, a2

such that a1‖v‖s ≤ ‖v‖ ≤ a2‖v‖s.
25In principle, one can also allow for half-quantized fluxes [76]. This does, however, not change the

discussion of finiteness. Furthermore, one generally has to include a warp-factor in the dimensional reduction
yielding a corrected effective action [77, 78]. These corrections do not change the arguments made here.
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are choices for the complex structure moduli such that the self-duality condition is satisfied
and we count the connected components inM parametrized by zIvac, since not necessarily
all zI might be fixed for a given G4. The non-trivial part in answering this question lies
entirely in controlling the Hodge star ∗ in (6.7) in the boundary regions of the moduli space,
where it potentially blows up or decays. In the bulk of the moduli spaceM the Hodge norm
‖ · ‖ introduced in (2.2) is bounded and hence there only finitely many solutions to (6.7)
as is apparent from 〈G4, G4〉 = ‖G4‖2 < K and the discreteness of the flux. Hence, the
problem of showing finiteness amounts to controlling infinite tails of flux vacua. Whether or
not such tails exist in certain Type IIA flux compactifications [79–81] is an ongoing debate,
see e.g. [82–84].

Finiteness of supersymmetric vacua and the Hodge conjecture. Let us highlight
the non-triviality of the finiteness statement. In fact, we might ask the slightly less general
question if the number of supersymmetric four-form fluxes are finite. Evaluating the F-term
conditions for the complex structure moduli implies that such G4 fluxes have to be of type
(2, 2) in the Hodge decomposition. Furthermore, demanding that the F-terms for the Kähler
moduli vanish implies the primitivity of G4. Hence, (6.7) reduces to [85]

G4 ∈ H4 (Y4,Z) ∩H2,2
prim(Y4,C) :

∫
Y4
G4 ∧G4 < K , (6.8)

and we can ask for finiteness of pairs (zIvac, G4) satisfying these conditions. In fact, (6.8) is
equivalent to the statement that G4 is a Hodge class with bounded product. It is a famous
result of Cattani, Deligne, and Kaplan [41] that the locus in complex structure moduli
space at which primitive integral forms are of type (p, p) is a countable union of algebraic
varieties. Furthermore, they show that, if one also imposes a bound on the wedge-product
as in (6.8), the number of connected components at which the fluxes are (p, p) is actually
finite. Applied to our situation their statement implies that the supersymmetric locus can
be given by a finite number of complex algebraic equations and hence that there are only
finitely many supersymmetric flux vacua. The theorems of [41] rely crucially on a clever
application of the Sl(2)-orbit theorem of [26, 27], which is also the basis of the bulk-boundary
construction presented in this work. The mathematical significance of the theorems of [41]
becomes eminent, when noting that the same conclusion can be obtained by applying the
Hodge conjecture, which is a famously difficult problem in algebraic geometry [86]. Indeed,
the Hodge conjecture can also be applied to our compactifications, since the introduced
supersymmetric G4 fluxes describe Hodge classes and simple connected Calabi-Yau manifolds
are projective. The result of [41] is widely viewed as one of the strongest evidences for the
Hodge conjecture.

Finiteness of self-dual vacua in one parameter limits. The one-parameter Sl(2)
orbit theorem can equally be applied to show the finiteness statement summarize (6.7) near
any one-parameter limit [39, 40]. In fact, since the bulk-boundary construction presented
here mimics the proof of the Sl(2)-orbit theorem, the finiteness follows from the existence
of a boundary theory with the properties described in section 4. More precisely, in showing
that (6.7) never leads to infinite tails of vacua, one has to control the Hodge star ∗ including
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its subleading coefficients. In the following, we will sketch the proof and highlight how the
results of section 5 are central in the argument. The mathematical details can be found in a
letter by Schnell [39] and an upcoming work [40]. In the following we will consider a series
(zIvac(n), G4(n)) of solutions to (6.8) such that one of the complex structure deformations
among the zIvac(n) approaches the boundary. As before we denote this field by t and index
the series of vacua by n = 1, ...,∞, i.e. we write

tn = xn + iyn , yn →∞ for n→∞ . (6.9)

while we keep xn bounded. We also assume that the remaining zIvac(n) are bounded. These
fields play no role in our discussion and will be suppressed in the following. To justify this
we note that infinite tails of vacua can only be picked up if the Hodge star diverges in a
direction [37] as indicated above. This means that for a one-parameter limit tn → i∞ to a
co-dimension one boundary, vacua can only accumulate in this direction.

The first step in showing this result is to consider the tadpole bound (6.7) and use the
self-duality of G4 to write it using the Hodge norm

K > 〈G4(n), G4(n)〉 = ‖G4(n)‖2 . (6.10)

If we are sufficiently close to the boundary the Hodge star becomes increasingly well approxi-
mated Cs introduced in (6.3). We thus find that (6.10) leads to the bound ‖G4(n)‖2s < K ′ for
some K ′. As above in (6.4) it turns out to be convenient to introduce ρ(n) = e−xnN

−
G4(n)

and to perform the decomposition ρ(n) = ∑
l ρl(n) as in (6.5). The bound then reads

K ′ >
∑
l

yln‖ρl(n)‖2∞ , (6.11)

which is a sum of positive terms and implies that all summands are bounded, i.e. we have

K ′ > ‖R̃l(n)‖2∞ , R̃l(n) = y
l
2
n ρl(n) . (6.12)

Here we have introduced the shorthand notation

R̃(n) =
∑
l

Rl(n) = y
1
2N

0

n ρ(n) , (6.13)

which will be useful later on. Since by assumption also the axions xn are bounded, we
conclude that yln‖Gl(n)‖2∞ is bounded, where Gl are the components of G4 in the N0-
decomposition. We can now apply the fact that the fluxes are on a lattice and hence cannot
become arbitrarily small. Since yn → ∞ for n → ∞ this means that starting at some n′
the Gl(n) with l > 0 have to vanish. In other words we have shown that

n ≥ n′ : G4(n) =
∑
l≤0

Gl(n) , ρ(n) =
∑
l≤0

ρl(n) , R̃(n) =
∑
l≤0

R̃l(n) , (6.14)

where in the last two expressions we have used that N− lowers the N0-eigenvalue. In the
remainder of this subsection we will show that the series ‖ρ(n)‖∞ is bounded by using
the self-duality condition in (6.7). If ‖ρ(n)‖∞ is bounded then we conclude from the
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boundedness of xn that also ‖G4(n)‖∞ is bounded, by using the same reasoning leading
to (6.6). Recall that the norm ‖ · ‖∞ does not degenerate and hence we can make general
statements about the boundedness of G4(n).26 Together with the fact that G4(n) takes
values on a lattice is then enough to ensure that G4(n) can only take on finitely many
values. Recalling that yn was an arbitrary path towards the boundary we conclude that
there are no infinite tails towards any codimension-one boundary as we wanted to show.

Boundedness of G0(n). Let us first check the most straightforward case and show that
the component G0(n) in (6.14) is bounded. This flux has a yn-independent leading term
when evaluating ‖G0(n)‖. We have argued above that all yln‖Gl(n)‖2∞ are bounded and
hence conclude that ‖G0(n)‖∞ is bounded. This highlights again that the crucial point is
to control the degeneration of the Hodge norm ‖ · ‖.

Boundedness in the strict asymptotic limit. It remains to show that also the Gl(n)
with l < 0 in (6.14) are bounded. Before doing this generally, we will first focus on the
situation in which we simply replace Cnil with Cs. This approximation was called strict
asymptotic limit in [19] and the following finiteness result was anticipated in [19]. The
self-duality condition in the leading approximation (6.3) then reads

C∞R̃(n) = R̃(n) , (6.15)

where we have used the notation (6.13). The N0 components of R̃(n) have already be
introduced in (6.12). Using C∞N0 = −N0C∞, which follows from (N0)† = −C−1

∞ N0C∞ =
N0 given in (4.11), we have

R̃−l(n) = R̃l(n) , R̃l(n) ≡ y
1
2 l
n ρl(n) , (6.16)

where the second equality is a consequence of N0ρl = l ρl. This fact can now be combined
with our general statement (6.14) that for n ≥ n′ we have ρl(n) = 0 with l > 0. This implies
that also ρl = 0 with l < 0 if n ≥ n′. Hence, we have shown that all ρl(n), n ≥ n′ vanish
unless l = 0. This implies that ρl(n) is bounded for all values of l and hence that Gl(n) is
bounded for all values of l.

Boundedness for the full expansion. Let us now turn to the general situation in which
the Hodge star near the boundary is given by (6.1) with (6.2), when dropping exponentially
suppressed corrections. We follow the argument of [39]. In this case we have to control the
corrections appearing in the full expansion of h(y) and h(y)−1 in (6.1). As in the strict
asymptotic case we write the self-duality condition as

C∞R(n) = R(n) . (6.17)

26The norm ‖ · ‖∞ can degenerate further if we hit another boundary, i.e. consider a two-parameter limit.
This more general situation will not be considered here.
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We now have to determine R(n) from the full Weil operator Cpol. Using (6.1) with (6.2)
we find

R (n) = y
1
2N

0

n

(
1 + f̃1

yn
+ f̃2
y2
n

+ ...

)
ρ (n) (6.18)

= y
1
2N

0

n

(
1 + f̃1

yn
+ f̃2
y2
n

+ ...

)
y
− 1

2N
0

n R̃ (n) , (6.19)

where we have defined g̃i = eζgie
−ζ and f̃i = eζfie

−ζ and used the definition (6.13) of
R̃(n). Note that now R̃(n) does not have to satisfy (6.15), since this latter condition is
replaced by (6.17).

Now recall from (5.41) that f̂i = ρf̃iρ
−1 and that we have argued in section 5.2,

equation (5.45), that these coefficients have the special property that f̂k ∈
⊕

p≤k−1, q Λ(p)
q .

This implies that when expanding f̂k into L0 eigenvectors with [L0, f̂
(l)
k ] = l f̂

(l)
k the

decomposition reads f̂k = ∑
l≤k−1 f̂

(l)
k . Rotated back to the real basis and recalling that

L0 = ρN0ρ−1, we find that f̃k has an expansion

f̃k =
∑
l≤k−1

f̃
(l)
k ,

[
N0, f̃

(l)
k

]
= l f̃

(l)
k . (6.20)

These conditions come into play when evaluating (6.19). In fact, using (6.20) together with
AdeX = eadX and a simple re-summation, we find

R (n) =

1 +
∑
k≥0

k+1∑
j=1

f̃
(2j−k−2)
j

y
1+ 1

2k
n

 R̃ (n) . (6.21)

Let us now consider a N0-component Rl(n) with l > 0 and use (6.14) to impose that
R̃l(n) = 0, l > 0 for sufficiently large n ≥ n′. Hence, we have

Rl(n) =
∑
k≥l

k+1∑
j=1

f̃
(2j−k−2)
j

y
1+ 1

2k
n

R̃l−(2j−k−2)(n) . (6.22)

Note that we have used here that R̃r(n) = 0, r > 0 can be used to see that it suffices to
consider l − (2j − k − 2) ≤ 0 in the sum, which then sets the lower bound on the first sum.
We can thus extract an overall factor y−1− 1

2 l
n and use the boundedness (6.12) of R̃l(n) to

infer the bound
‖Rl(n)‖∞ ≤ B y

−1− 1
2 l

n , (6.23)
for a sufficiently large B ≥ 0. In order to control the coefficients Rl with l < 0, we use the
self-duality condition (6.17). Using the same argument as for (6.16) we know that Rl = R−l,
and conclude that for all l 6= 0 we have the bound ‖Rl(n)‖∞ ≤ B y

−1− 1
2 |l|

n . This implies that

‖y−
1
2N

0

n R(n)‖∞ ≤ B′ , (6.24)

where all N0-components with l 6= 0 fall of with y−1, while R0(n) can contain a constant
term. With this bound at hand we can use (6.18) to infer that ρ(n) is also bounded. Indeed,
multiplying (6.18) with y

− 1
2N

0

n the left-hand side is bounded, while the right-hand side
contains a factor 1 +∑i f̃i/y

i
n that converges to 1 in the limit n→∞. Hence ρ(n) must be

bounded as was required to established the above finiteness statement.
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6.3 Comments on the distance conjecture

The result (6.4) for the leading asymptotic of ‖F‖ has been used intensively in [3, 6, 7] in
the study of the distance conjecture. Phrased from the holographic perspective, we can
think of F ∈ H as defining a state in the boundary theory, that arises at the limit of the
considered asymptotic region of moduli space. F does not evolve with time, while ρ(x) has
some well-defined ‘time’ dependence. Crucially, one finds that the underlying sl(2)-structure,
in particular the fact H is spanned by complete representations of sl(2), dictates which
states arise at any limit in moduli space. The boundary is at infinite distance, if H contains
a state

Ω∞ = |d̂, d̂;D〉〉 with d̂ > 0 , (6.25)

within the splitting (4.29). To see this we use (4.40) to infer that there is only one boundary
state Ω∞ corresponding to the limit of the (D, 0)-form Ω. This state is the, up to complex
rescalings, unique state with charge D under the charge operator Q∞ as inferred from (4.5).
The integer d̂ is dependent on the limit that is considered and determined by the principle
type I, II, III, IV, ... introduced in section 4.4 when discussing the classification of boundary
theories. The condition d̂ > 0 then ensures that the limit is at infinite distance, as discussed
after (2.39).

Following the arguments of [3, 6] one can now use sl(2)-representation theory, the
growth behaviour (6.4), and the existence of the state (6.25) to identify candidate D-brane
charges relevant to satisfy the distance conjecture. L1, L−1 or N+, N− can be used as
creation and annihilation operators and raise or lower the growth by one, as inferred from
the condition (6.4) and the commutation relations (4.9) and (4.13). In fact, we realize
that for any state having growth yl, with l > 0 there always exists a state with growth
y−l. Intuitively, we can compare this to the fact that in string compactifications on a circle
there always exist momentum and winding states.27 The distance conjecture was motivated
in [2] by the existence of momentum and winding states in circle compactifications. The
constructions of [3, 6] indicate that it is the underlying sl(2) structure that persists in any
string compactification at infinite distance points. The holographic perspective attributes
the asymptotic behaviour of the field space metric and the masses of states to the existence
of a boundary theory with sl(2)-symmetry.

Let us stress that (6.4) does not nearly exploit the complete information about the
solution (6.2) that we gathered in sections 4 and 5. Specifically, we can include the
subleading corrections involving the gi. Inferring their properties (5.6) and explicit form in
terms of the boundary data was central in section 5. It is thus possible to expand F into a
general basis |d, l; q〉〉 introduced in (4.29) and determine the complete behaviour of ‖F‖ in
the near boundary region in terms of the boundary data. Furthermore, we can also give
the complete asymptotic expansion of the near boundary (p, q)-forms, such as (D, 0)-form
Ω. This allows one, for example, to derive general expressions for the central charge and
hence extend the analysis of [19] beyond leading order. It would be interesting to do this in
the future.

27Applying the above construction to Y1 = T 2, this interpretation can be made concrete.
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7 Conclusions and further discussions

Motivated by the recent advances in uncovering quantum gravity constraints on effective
theories, we argued for a holographic approach to study the field spaces and vacua of valid
effective theories. Several of the swampland conjectures, such as the distance conjecture,
are constraining the behaviour of effective theories when moving to the asymptotic regions
in the scalar field space. In string theory compactifications the complex structure moduli
space of Calabi-Yau manifolds provides a very general example of a field space arising in
consistent effective theories. Furthermore, it is known, that string dualities can relate the
asymptotic regions of the complex structure moduli space to other field spaces arising, of
example, at large volumes of the compactification space or at weak string coupling. Our
strategy was therefore to extract the general structures arising in the asymptotic regime
of the complex structure moduli space and view them as universal building blocks that
should be considered abstractly and independently of their geometric realization in string
compactifications. This was further motivated by the fact that asymptotic Hodge theory
provides a universal and rich structure that is independent of specific geometric realizations.

In developing the holographic perspective we have first discussed several aspects of
a candidate bulk theory living on the moduli space. The matter fields on the moduli
space are real, group valued fields ĥ that act on a Hilbert space that is obtained as a
complexificantion of a lattice associated to the effective theory. The latter can be the charge
lattice or lattice of quantized background fluxes when considering a string compactification.
We have determined the dynamics of ĥ as being given by a set of field equations and shown
that they partly arise from an action principle. We have discussed this coupling of ĥ to
gravity on the moduli space with the aim to obtain as solutions to the gravity-matter system
the geometric results arising in Calabi-Yau compactifications. For a real two-dimensional
moduli space, this requires to go beyond Einstein gravity and we have discussed a some of
the relevant field equations for the gravity-coupled matter system. Furthermore, we have
made some first steps in the construction of an action principle. Our construction ensured
that a particular set of solutions to the bulk theory corresponds to the nilpotent orbits
and the Weil-Petersson metric after imposing appropriate boundary conditions. Nilpotent
orbits are known to arise at every boundary in the Calabi-Yau moduli space, while the the
Weil-Petersson metric is known to be the relevant metric in string compactifications on
these spaces.

It was a central task of this work to specify boundary conditions that lead to a the set of
‘physical’ bulk solutions. Again we have motivated these conditions using asymptotic Hodge
theory which ensures that such solutions can arise from actual geometric compactification,
for example, on Calabi-Yau manifolds. The solutions admit a constrained asymptotic
behaviour of the matter fields ĥ and the metric. In particular, the metric has an asymptotic
sl(2,R) isometry, which becomes an sl(2,C) symmetry acting on a boundary Hilbert space.
The boundary Hilbert space splits under this symmetry and admits a compatible norm
induced by a charge operator Q∞. The operator Q∞ induces the analog of a standard
Hodge decomposition. It is non-trivial that such a decomposition can be constructed on the
boundary of moduli space, since in the geometric setting the associated geometry would
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be wildly singular. This boundary data allowed us to specify three complex commuting
operators: L2, L0, from the sl(2,C), and Q∞. We used these to introduce quantum numbers
for all states and operators. In addition we have specified an operator δ̂, which we termed
phase operator, that encodes how the asymptotic isometry group of the metric embeds
into the sl(2,C) on the boundary. This operator is the essential part of the data which is
required to perform a matching of a general bulk solution to the boundary as we discussed in
section 5. It turns out that there is a single matrix condition (5.4) that fixes the bulk solution
uniquely. All coefficients in the near boundary expansion of ĥ are then fixed by universal
non-commutative polynomials in δ̂ and the sl(2,C) generators. The properties of these
coefficients are constrained and we have shown that they are key in several applications.

It should be stressed that the precise information about the near boundary expansion
makes the Sl(2) orbit theorem of [26, 27] so powerful. One of the aims of our presentation
was to present the crucial parts of it proof as being part of a holographic correspondence.
Furthermore, we have suggested to study string compactifications more abstractly, by
extracting formal algebraic structures common to all geometric settings. This adds a new
powerful way to infer general properties of the arising effective theories without the need to
consider specific examples. We stress, however, that there are numerous open questions in
developing the holographic correspondence further. Firstly, it would be desirable to find
a complete action principle for the bulk theory. Secondly, we expect that the discussion
of section 4 is only part of a more involved story about the construction of a boundary
theory. Most striking would be to find a boundary theory dynamically encoding attainable
values for the phase operator. Thirdly, even on the level studied here one might wonder
if the holographic perspective can be generalized to higher-dimensional moduli spaces
with intersecting boundary components. In mathematics this is part of the multi-variable
Sl(2)-orbit theorem which comes with several additional complications. Eventually one
might hope to formulate a theory globally on the boundary. Within such a theory many
aspects of the bulk physics should have boundary counterparts and one might hope for
developing a dictionary for a complete bulk reconstruction in simple examples.

In the final part of this work we have discussed two finiteness results that use the
existence of an Sl(2)-structure on the boundary and the corresponding asymptotic form of
the bulk solutions. Firstly, we have pointed out that a famous theorem of Cattani, Deligne,
and Kaplan [41] implies the finiteness of supersymmetric flux vacua in the intensively
studied F-theory compactifications with G4 fluxes and their Type IIB analogues. The
crucial task achieved in [41] is to show that the tadpole constraint ensures that there
are no infinite tails of vacua near any boundary of any co-dimension. It is well-known
that a similar statement can be shown by using the Hodge conjecture, which makes the
study of the results of [41] into an active field of mathematical research. Secondly, we
have then shown that finiteness persists, at least near co-dimension one boundaries, when
considering fluxes that are self-dual and not necessarily supersymmetric. The argument
uses the properties of the coefficients in the 1/y-expansion of the near boundary solution
in order to constrain the behaviour of the Hodge star. We expect that this proof can be
extended to all co-dimensions [40], hence showing finiteness of self-dual flux vacua in full
generality. It should be clear, however, that several new difficulties have to be overcome,
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as it was done in the general proof of [41], which are connected to a having a much wider
range of possibilities to pick a path towards the boundary.

The discussed finiteness results are of physical importance in judging the predictive
power of string theory. A direct application includes the recent constructions of [87–89],
in which self-dual fluxes inducing an exponentially small superpotential were introduced.
Mathematically, such vacua describe certain extended loci of Hodge classes [90] and such
extended loci were shown to be finite. Our arguments show that this finiteness persists
even further, e.g. when the fluxes are self-dual but their induced superpotential is not
exponentially small. It should be noted that the insights from the poofs of the finiteness
results seem even more useful than the final statement. In particular, one learns new
methods to control certain feature of scalar potentials along all possible paths in field space.
Furthermore, one concretely sees why arbitrary fine-tuning is structurally prohibited. This
might help, for example, to give evidence for the conjectures on moduli stabilization recently
put forward in [91].

Let us close with a further speculation on how the findings of this work might yield
a deeper understanding of the landscape of effective theories consistent with quantum
gravity. It is natural to formulate a swampland criterium that states that every effective
theory containing scalar fields admits a sector that can be described holographically with a
boundary theory based on the described Sl(2)-data. Such a proposal will then imply the
following statements:

• Considering any path towards an infinite distance boundary, a continuous global
symmetry becomes approximately exact that stems from a unipotent monodromy
symmetry and hence can be encoded by a nilpotent N−.

• Associated to each limit there exists a lattice L and a Hilbert space H = C⊗ L with
an action of N− completed into sl(2,R). The definition of H and sl(2,R) are such
that (1) the positivity constraints on the effective couplings can be encoded using the
norm on H, and (2) the growth of the effective couplings in the fields sent to the limit
are dictated by the sl(2,R) weights.

Note that these statements essentially manifest the observation that there are universal
constraints from positivity and the existence of global symmetry. The proposal thus claims
that the structures discussed in this work are universally present. It appears to be consistent
with the recent conjectures put forward in [3, 12, 33, 34] and the observations made in [92].
In particular, refs. [33, 34] view infinite distance limits as RG flows of strings, which seems
nicely compatible with the holographic perspective outlined here. It would be exciting
if one could develop this holographic view on the string theory landscape of effective
theories further and show that many its constraining properties manifest themselves on its
boundaries.
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A Computing the phase operator for a nilpotent orbit

In the following we will describe how to determine the phase operator δ for a given one-
parameter nilpotent orbit F ppol = etN

−
F p0 . In contrast to the rest of the paper we will

introduce in the following also the monodromy weight filtration Wi induced by N−. In fact,
each nilpotent matrix N− acting on HD(YD,R) defines a unique set of real vector spaces
Wk(N−) of weight D with

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2D = HD (YD,R) , (A.1)

such that for all k one has

N−Wk ⊂ Wk−2 , (N−)k : Gr2D+k ∼= Gr2D−k , (A.2)

where Grk = Wk
Wk−1

. The symbol ∼= indicates that Nk is an isomorphism.
The set of vector spaces WC

k = Wk ⊗C together with F p0 can now be used to define the
so-called Deligne splitting by setting

Ip,q = F p0 ∩W
C
p+q ∩

F̄ q0 ∩WC
p+q +

∑
j≥1

F̄ q−j0 ∩WC
p+q−j−1

 . (A.3)

The Ip,q define the unique splitting satisfying

F p0 =
⊕
r≥p

⊕
s

Ir,s , WC
l =

⊕
p+q≤l

Ip,q , Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s . (A.4)

The most crucial point here, is that in general one does not find that Ip,q = Iq,p. We can
now define vector spaces Vl and a semisimple grading operator

V C
l =

⊕
p+q=l

Ip,q , T vl = lvl for vl ∈ V C
l . (A.5)

The operator T should be compared with the operator N0 introduced in section 4. However,
while N̄0 = N0, this is not necessarily the case for T , since in general V̄ C

l 6= V C
l . In other

words, there is in general no real slice in V C
l on which T acts as l and which yields the space

V C
l as complexification. This is in stark contrast to the vector spaces (4.28) introduced on

the boundary. We will now describe that there how to construct the unique rotation of T ,
such that a real split exists.

To being with, let T be the complex conjugate of the grading operator T defined by
T (v) := T (v), for all v ∈ HD(YD,C). One can now show [27] that T and T are related by

T = e−2iδTe2iδ, (A.6)
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where the real operator δ acts on Ip,q by decreasing p, q, i.e.

δ(Ip,q) ⊂
⊕
r<p
s<q

Ir,s , (A.7)

holding for all p, q. Requiring that δ ∈ gR and that [N−, δ] = 0, one shows that there is
a unique operator δ satisfying (A.6) and (A.7) (see Proposition 2.20 of [27] for details).
For any given nilpotent orbit we can thus compute the unique charge operator δ. Simple
example for such a computation can be found e.g. in [6].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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