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Abstract: Gauge invariance plays an important role in forming topological defects. In
this work, from the AdS/CFT correspondence, we realize the clusters of equal-sign vortices
during the course of critical dynamics of a strongly coupled superconductor. This is the first
time to achieve the equal-sign vortex clusters in strongly coupled systems. The appearance
of clusters of equal-sign vortices is a typical character of flux trapping mechanism, distinct
from Kibble-Zurek mechanism which merely presents vortex-antivortex pair distributions
resulting from global symmetry breaking. Numerical results of spatial correlations and
net fluxes of the equal-sign vortex clusters quantitatively support the positive correlations
between vortices. The linear dependence between the vortex number and the amplitude of
magnetic field at the ‘trapping’ time demonstrates the flux trapping mechanism very well.
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Formation of topological defects due to global symmetry breaking in a phase transition is
generically described by the Kibble-Zurek mechanism (KZM) [1, 2]. It states that during
a continuous phase transition, global symmetry breaking will occur inside some causally
uncorrelated regions (freeze-out regions) because of the critical slowing down of the order
parameter near the critical point. Topological defects may form with some probabilities
between those adjacent regions [3, 4]. Therefore, the number density of defects can be
estimated from the critical dynamics of the theory. KZM has been tested in many numerical
simulations and experiments, such as in superfluids [5, 6], liquid crystals [3, 7, 8] and
quantum optics [9] (for reviews, see [10, 11]).

While most of previous research focused on systems with global symmetry, it is useful
to explore the systems with local gauge symmetry [12, 13]. In this case, the defects forma-
tion are distinct from KZM since the local phase gradients can be removed by the gauge
transformations. This would lead to new phenomenology, in which the underlying physics
is dubbed “flux trapping mechanism” (FTM) [14]. Consequently, the resulting defects num-
ber will be proportional to the relevant magnetic fluxes at the ‘trapping’ time. In the past
two decades, FTM has been studied in superconducting films [15, 16] and cosmology [17].

The key difference from KZM and FTM is the spatial distribution of the defects stem-
ming from distinct correlations between them [12, 13]. In KZM, random choices of order
parameter phases in the freeze-out regions lead to negative correlations between defects, i.e,
they are distributed in defect-antidefect pairs at short range. However, in FTM the defects
are positively correlated. In other words, those defects should be formed in clusters of equal
sign. Numerical simulations of these clusters have been realized already in [13, 16, 17] for
weakly coupled systems.

However, the equal-sign vortex clusters have not been studied in strongly coupled
field theory. We will investigate it by virtue of AdS/CFT correspondence. AdS/CFT
correspondence, which is a “first-principle” route to solving strongly coupled physics, comes
to rescue [18, 19]. In this letter, we investigate the defects formation with local gauge
symmetry breaking by utilizing the AdS/CFT technique. We add a plane-wave magnetic
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field in the initial state, as in [20]. Quenching the system linearly through the critical
point, order parameter vortices and the related quantized magnetic fluxes (fluxoids) are
spontaneously generated. Since this is a type-II superconductor [21, 27], order parameter
vortices are confined into the fluxoids. Clusters of equal-sign vortices turn out with positive
(negative) vortices packing together in the regions of initial positive (negative) magnetic
fields. The corresponding spatial correlation function has a positive maximum, indicating a
positive correlation between vortices. Net flux of vortices inside a closed area quantitatively
supports the conclusions of positive correlations above. Numerically, we find a linear
dependence between the vortex number and the amplitude of the magnetic field at the
‘trapping’ time, verifying the FTM very well. Previous work on holographic topological
defects can be found in [21–26].

1 Basic setup

Background of gravity. The gravity background is the AdS4 black brane in Eddington-
Finkelstein coordinates,

ds2 = L2

z2 (−f(z)dt2 − 2dtdz + dx2 + dy2), (1.1)

where f(z) = 1−(z/zh)3, with {L, z, zh} representing the AdS radius, AdS radial coordinate
and the location of horizon respectively. The AdS infinite boundary is at z = 0 where the
field theory lives. Lagrangian of the model we adopt is the usual Abelian-Higgs model for
holographic superconductors [27],

L = −1
4FµνF

µν − |DΨ|2 −m2|Ψ|2. (1.2)

where Ψ is the complex scalar field and D = ∇− iA is the covariant derivative with A the
U(1) gauge field (we have imposed the electric coupling constant e ≡ 1). We work in the
probe limit, then the equations of motion read,

DµD
µΨ−m2Ψ = 0,∇µFµν = i (Ψ∗DνΨ−Ψ(DνΨ)∗) . (1.3)

The ansatz we will take is Ψ = Ψ(t, z, x, y), At,x,y = At,x,y(t, z, x, y) and Az = 0.

Boundary conditions & holographic renormalization. The asymptotic behaviors
of fields near z → 0 are Aµ ∼ aµ+bµz+. . . ,Ψ = z

L (Ψ0 + Ψ1z + . . . ). We have set the scalar
field mass square as m2 = −2/L2. In the numerics we have scaled L = 1. From AdS/CFT
correspondence, at, ai (i = x, y) and Ψ0 are interpreted as the chemical potential, gauge
field velocity and source of scalar operators on the boundary, respectively. Their conjugate
variables can be evaluated by varying the renormalized on-shell action Sren with respect
to these source terms. From holographic renormalization [28], the counter term for the
scalar field is Sct =

∫
d3x
√
−hΨ∗Ψ, where h is the reduced metric on the z → 0 boundary.

In order to have dynamical gauge fields in the boundary, we need to impose Neumann
boundary conditions for the gauge fields as z → 0 [29, 30]. Therefore, the surface term
Ssurf =

∫
d3x
√
−hnµFµνAν for the gauge fields should also be added in order to have a
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Figure 1. Typical configurations of matter fields in the bulk at the final equilibrium state (the
average order parameter arrives at a plateau) after quench. Green color is the isosurface of scalar
field while red (blue) color represents positive (negative) magnetic fluxoids. Order parameter vor-
tices are confined in the magnetic fluxoids, indicating a type-II superconductor system.

well-defined variation, where nµ is the normal vector perpendicular to the z → 0 boundary.
Finally, we obtain the finite renormalized on-shell action Sren. Therefore, the expectation
value of the order parameter 〈O〉 = Ψ1, can be obtained by varying Sren with respect to Ψ0.
Expanding the z-component of the Maxwell equations near boundary, we get ∂tbt+∂iJ i = 0.
This is exactly a conservation equation of the charge density and current on the boundary,
since from the variation of Sren one can easily obtain bt = −ρ with ρ the charge density
and J i = −bi − (∂iat − ∂tai) which is the i-direction current respectively.

On the z → 0 boundary, we set Ψ0 = 0 in order to have spontaneous symmetry
breaking, and this gives rise to a non-vanishing order parameter. The Neumann boundary
conditions for the gauge fields are imposed from the above conservation equations. There-
fore, dynamical gauge fields on the boundary can be evaluated and lead to the spontaneous
formation of magnetic fluxoids. Moreover, we impose the periodic boundary conditions for
all the fields along (x, y)-directions. At the horizon we set At(zh) = 0 and the regular finite
boundary conditions for other fields.

Cool the system. From dimension analysis, temperature of the black hole T has mass
dimension one, while the mass dimension of the charge density ρ is two. Therefore, T/√ρ
is dimensionless. From holographic superconductor [27], decreasing the temperature is
equivalent to increasing the charge density. Therefore, in order to linearly decrease the
temperature as T (t)/Tc = 1 − t/τQ near the critical point conventionally [2] (τQ is called
the quench rate), one can indeed quench the charge density ρ as

ρ(t) = ρc (1− t/τQ)−2 (1.4)

where ρc is the critical charge density for the static and homogeneous holographic supercon-
ducting system. A typical configuration of the holographic system is exhibited in figure 1,
which is obtained in the final equilibrium state after quench.1

1In our paper, the ‘equilibrium state’ refers to the state when the average order parameter arrives at a
plateau with vortices, rather than the thermal equilibrium state without any vortices.
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Numerical schemes. The system evolves by using the 4th order Runge-Kutta method
with time step ∆t = 0.1.2 In the radial direction z, we used the Chebyshev pseudo-spectral
method with 21 grid points. Since in the (x, y)-directions all the fields are periodic, we use
the Fourier decomposition along (x, y)-directions with 201 × 201 grid points. Filtering of
the high momentum modes are implemented following the “2/3’s rule” that the uppermost
one third Fourier modes are removed [31].

2 Results

Formation of clusters of equal-sign vortices. Distinct from the settings in [12, 13],
we adopt a simple and instructive form of magnetic field at the initial time, which may
be operated with techniques of magnetic fields in experiments [32]. Specifically, we add a
plane-wave magnetic field along x-direction at the initial time ti as [20],

B(x, y)
∣∣
t=ti

= B0 cos (kx) . (2.1)

where B0 is the initial amplitude of magnetic fields while k is the wave number. Because of
B = ∂xAy − ∂yAx, one can set the initial condition of Ax and Ay as Ax(t = ti) = 0, Ay(t =
ti) = B0

k sin (kx). Obviously this magnetic field is perpendicular to the AdS boundary
z = 0. Without loss of generality, we choose k = 2π/l where l is the length of each side of
the (x, y) boundary and we impose l = 50. We already checked that other choices of k will
also obtain similar results. We quench the system from the initial temperature Ti = Tc to
the final temperature Tf = 0.8Tc, and then maintain the system at Tf until it arrives at
the equilibrium state.3

Figure 2 shows the evolution of the magnetic field (panel (a)) and the average order
parameter (panel (b)) from the starting of quench to the final equilibrium state with quench
rate τQ = 20. Panel (a) shows five snapshots at times t = 0, 115, 125, 135, 150, correspond-
ing to the five colored points in the panel (b), respectively. At the initial time the shape
of the magnetic field is a plane wave as eq. (2.1). As quench initiates, the amplitude of
magnetic field will exponentially decay until the order parameter is relatively large (see
the appendix A for details). When system enters the superconducting phase, magnetic
fields will be forbidden by the Meissner effect. However, because of causality, the magnetic
fields are unable to decay if the phase transition takes place in a finite time. Then, mag-
netic fields survive even after the transition, and the only way they can do is to generate
quantized magnetic fluxoids. At a later time t = 115, the magnetic field is no longer in
the plane-wave shape, while the order parameter gets bigger and is in the ramping stage
from panel (b). As the order parameter climbs to the middle stage of the ramp (t = 125),

2We have also checked that smaller time steps will lead to similar numerical results. For example
performing more than one run with time step ∆t = 0.05 and ∆t = 0.01, the results are similar to ∆t = 0.1.
Therefore, our numerical results with ∆t = 0.1 are reliable. In order to run faster, we set ∆ = 0.1 which
will not ruin the accuracy of the results.

3Previous work [13, 33] already showed that it was viable to start the quench near Tc rather than much
greater than Tc, since they found that the symmetry-breaking actually occurred after crossing the critical
point. Based on their results in weakly coupled systems, we assume that they are also applicable in strongly
coupled systems.
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Figure 2. Time evolution of the magnetic field and the birth of topological defects. (a) Density
plots of the evolving magnetic field at five specific times (t = 0, 115, 125, 135, 150) with τQ = 20
and B0 = 1. One can see how the initial plane-wave magnetic field evolves to the clusters of
equal-sign vortices. The red (blue) localized points in the equilibrium state (t = 150) represent
positive (negative) magnetic fluxoids; (b) The growth of the average order parameter from initial
time to final equilibrium state. Five colored points correspond to the five snapshots in panel (a),
respectively. The order parameter scrambles during the period t ≈ [100, 135]. Related animations
can be found in the movie M1.avi.

numerous lumps occur in the magnetic field in panel (a). This is due to the Meissner effect
in the superconductor. The lumps are actually the concentrate of magnetic fluxes where
the cores of vortices will finally locate (see the appendix B for details). Meissner effect
suppresses the magnetic field surrounding these lumps. As time goes by, when the order
parameter just arrives at the equilibrium state (t = 135), blue (red) islands of lumps finally
form clusters of negative (positive) magnetic fluxoids. These snapshots intuitively show
the FTM of how the clusters of equal-sign vortices form.

From figure 2, we see that keeping the system in the equilibrium until t = 150, most
vortices hardly move except a pair of nearby negative and positive vortices annihilate at the
position (x ≈ 12, y ≈ 49). This phenomenon is reminiscent of the “pinning effect”, which
is a typical phenomenon in type-II superconductor if there exists the magnetic fluxes [34].
In order to illustrate the pinning effect clearly, we demonstrate the dynamical process of
vortices in holographic superfluids and holographic superconductor in the movie M2.avi.
In this movie, the left column is about the holographic superfluids while the right column
is for holographic superconductors. As times goes by, vortices in holographic superfluids
will move closely and then all annihilate eventually. However, most vortices in holographic
superconductors will almost stay in their original places, only very few vortices will move
together and then annihilate. In figure 3, we plot the positions of magnetic fluxoids in
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Figure 3. The positions of magnetic fluxoids at different times (t = 200 and t = 500) with τQ = 20
and B0 = 1 from the attached movie M2.avi. The circles indicate the positions of the magnetic
fluxoids at t = 200, and the crosses indicates the positions of the magnetic fluxoids at t = 500. Red
color represents positive magnetic fluxoids and blue color represents negative magnetic fluxoids.

holographic superconductors at different times (t = 200 and t = 500) excerpted from this
movie M2.avi. We can see clearly that most magnetic fluxoids will almost stay in their
original places during the time scale that the vortices in holographic superfluids will all
annihilate. Only a pair of vortices at locations (x ≈ 11, y ≈ 5.5) and (x ≈ 15, y ≈ 5.5) will
move together and then annihilate. We leave the studies of the details of the pinning effect
as a future work.

Spatial correlations & net vorticity. Spatial vortex correlation functions G(r) and
the net vorticity Nc(r) can be used to quantitatively distinguish the correlation properties
between vortices [12, 35, 36]. G(r) is defined as G(r) ≡ 〈n(r)n(0)〉, with n = +1(−1) at
the location of a positive(negative) vortex, otherwise 0 elsewhere, and G(r) is calculated
averagely over all vortices. In detail, first, we can put one positive vortex at the origin, and
then count the net vorticity at the various circumferences with distance r to this origin;
then, we can choose another positive vortex as the origin, and to compute G(r) with respect
to it again; we do this procedure again and again by putting all the positive vortices as
the origin. This is the procedure we did for one snapshot of the vortices in an independent
run. We then choose another snapshot of the vortices in another independent run, and
do the same procedure as above. And so on. We totally simulated 200 snapshots of the
vortices. Finally, we average all the values of G(r) at each distance r. In short, if there
are p positive vortices and q negative vortices at the circumference, then G(r) = p − q.
Obviously, if G(r) is positive(negative) at short distance, it means the vortices are positively
correlated(negatively correlated). In the panel (a) of figure 4 we exhibit the correlation
functions G(r)/G∗ in the presence of magnetic field (B0 = 1) and without magnetic field
(B0 = 0) for comparison. G∗ are constants to scale the amplitudes of G(r) in order to
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Figure 4. Vortex correlation functions G(r)/G∗ and net vorticity Nc(r) with and without magnetic
fields in the initial state. (a) Vortex correlation functions G(r)/|G∗| for B0 = 0 and B0 = 1, where
G∗ are scaling constants. From the different behaviors of G(r), we can clearly identify the positive
correlations between vortices in the FTM (B0 = 1), while the vortices are negatively correlated in
KZM (B0 = 0); (b) Net vorticity Nc(r) inside a square for B0 = 0 and B0 = 1. Nc(r . 16) > 1
indicates the positive correlations between vortices for B0 = 1, while Nc(r) < 1 indicates negative
correlations for B0 = 0. Quench rate for both panels is τQ = 20 and we have made 200 times of
independent simulations for both panels.

compare the two cases easily. From the definition we can set G(0) = 0. For B0 = 1 we
choose G∗ the maximum value of G(r) while for B0 = 0 we choose the absolute value of the
minimum value of G(r). We need to emphasize that a total scaling of G(r) by dividing G∗
does not change the essence of correlations between vortices. For B0 = 0 in the panel (a) in
figure 4, we clearly see that the vortices are negatively correlated in short range, which is a
typical result from KZM. This is already well studied in previous work [21]. However, for
B0 = 1 we see that in the range r . 16 the correlation function G(r) is positive, indicating
the vortices are positively correlated. This is a typically distinct character of the FTM
from KZM. As r is bigger, G(r) becomes negative which can be easily understood from
figure 2 that at large r there are more vortices with opposite sign.

Another way to identify the positive correlations between vortices is to compute the
net vorticity Nc(r) inside the above square.4 Panel (b) of figure 4 shows the different
behaviors of Nc(r) for the case of B0 = 0 and B0 = 1, respectively. B0 = 0 is for the KZM
in which vortices are negatively correlated. Therefore, Nc(r) decreases from Nc(0) = 1 to
zero at large distance. However, for B0 = 1 the magnetic field plays an important role,
the vortices are positively correlated from FTM. Therefore, Nc(r) increases as r becomes
bigger, and then reach a maximum at around r ≈ 16. After the maximum it decreases to
zero at very large distance. The behavior of Nc(r) for B0 = 1 is consistent with G(r) in
the panel (a), and it demonstrates that the vortices are positively correlated at a relatively
long range which is a typical character of the FTM.

4Be aware of the different definitions of G(r) and Nc(r). G(r) is defined by counting the net vorticity
at the circumference of the square, while Nc(r) is defined within the square.
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Figure 5. Linear relation between the vortex number and the magnetic field at the ‘trapping’
time. Red dots are numerical data while blue lines are from the best fit. Error bars denote the
standard deviations. We count the vortex number n as the order parameter saturates equilibrium,
and this relation is averaged over 200 times of independent simulations.

Vortex number & magnetic field. From FTM, vortex number is proportional to the
absolute value of magnetic fluxoids at the time that flux trapping takes place. Let’s denote
this time as ‘trapping’ time t̂, the flux at this moment as Φ̂ and magnetic field as B̂.
Thus, n ∝ |Φ̂|/Φ0, in which Φ0 = 2π is the fundamental magnetic fluxoids quantum. In
our case the magnetic field has the plane-wave form in the initial state, then quenching
induces the overdamping of the magnetic field with the amplitude decaying as B(t) = e−γt

(where γ ≈ k2 ≈ 0.016 [13]) until the order parameter becomes relevant (see appendices
for this exponential decay). From appendices we recognize that during the overdamping
the magnetic field maintains its plane-wave form, i.e. the wave number k does not change,
while only the amplitude decays. The ‘trapping’ time t̂ occurs at the instant that the
amplitude departs away from this exponential decay. Therefore, according to FTM, vortex
number n should be proportional to the amplitude of magnetic field at the ‘trapping’ time,
since n ∝ |Φ̂| =

∫
|B̂ cos(kx)|dxdy ∝ B̂. This linear relation is reflected in figure 5, in

which we quench the system with various initial amplitudes of magnetic field B0 while
fixing the quench rate as τQ = 20. This linear relation between n and B̂ provides a strong
evidence to FTM.

3 Conclusions

By virtue of AdS/CFT correspondence, we achieved the clusters of strongly coupled equal-
sign vortices from the FTM, which was a distinct mechanism compared to KZM in forming
topological defects when local gauge symmetry was important. Quenching the system
into a superconductor phase, clusters of equal-sign fluxoids emerged from the initial plane-
wave magnetic fields. Vortex correlation functions and the net vorticity inside a loop
quantitatively supported our findings. Linear dependence of the vortex number to the
magnetic field at the ‘trapping’ time demonstrated the FTM very well. Although our model
was in two dimensional space, which was not a good approximation for a superconductor
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Figure 6. The exponential decay of magnetic field in the early stage with quench rate τQ = 1000
and initial amplitude of magnetic field B0(t = 0) = 1. (a) Logarithmic plot of the time evolution of
the amplitude of magnetic field. The linear dependence indicates an exponential decay of amplitude
as B0(t) = B0(t = 0)e−γt. The four instants (t = 0, t = 40, t = 100, t = 180) correspond to the
four snapshots in the subsequent panels (b) and (c). Time t = 180 is the ‘trapping’ time that
the amplitude deviates away from the exponential decay; (b) Configurations of the magnetic field
at the four instants from the view parallel to y-axis. At the instants (t = 0, t = 40, t = 100)
the magnetic fields still maintain in a perfect plane-wave form with wave number k = 2π/l where
l = 50. However, at the instant t = 180 the shape of the magnetic field starts to deviate from
the plane-wave from, which can be seen from the inset picture that near the bottom of the curve
(x = l/2) it becomes thicker. This thickness comes from the ripples that the magnetic field will
start to form lumps and finally to shape the vortices; (c) 3D visualizations of the magnetic field at
the four instants. At (t = 0, t = 40, t = 100) the magnetic fields are perfectly in the plane-wave
shapes along x-axis and very smooth along the y-axis. However, at t = 180 ripples turn out in
the magnetic field since the order parameter gets bigger and ruins the exponential decay of the
magnetic field. These ripples will finally form lumps and then vortices of the magnetic field, which
is the core of FTM.

film, it would provide a tractable and interesting model to examine the importance of
magnetic fluctuations on critical dynamics and defect formations, which may be easily
performed in superconductor experiments.
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A Exponential decay of magnetic field in the early stage

In figure 6 we show the exponential decay of the amplitude of magnetic field in the early
stage and the onset of the flux trapping. Figure 6 shows an example of B0(t = 0) = 1
and τQ = 1000. Other values of parameters are similar as we have checked, which means
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the exponential decay in the early stage are independent of quench rate and the initial
amplitude of the magnetic field. The decay rate in B0(t) = B0(t = 0)e−γt is always
γ ≈ k2 ≈ 0.016 as stated in [13].

The four instants (t = 0, t = 40, t = 100, t = 180) as denoted in panel (a) are corre-
sponding the four snapshots in the subsequent panels (b) and (c). From panels (b) and
(c) we find that at the instants (t = 0, t = 40, t = 100) the magnetic fields are still in
plane-wave form (along x-direction) perfectly. The only difference is that their amplitudes
decrease according to B0(t) = B0(t = 0)e−γt.

However, at instant t = 180 the amplitude of magnetic field will deviate away from
the initial exponential decay (see panel (a)), since in this case the effect of the scalar field
cannot be ignored. The effect of scalar field is complicated which could be only studied by
numerics as we already showed in the main text. From panels (b) and (c) we indeed see
that the magnetic field will start to be away from plane-wave form. Some ripples appear in
the magnetic field at this instant (panel (c)). This is the onset of the flux trapping. Thus,
t = 180 is the ‘trapping’ time as we called. These ripples will finally become lumps in the
magnetic field, and then turn out to be vortices when system goes to the equilibrium state,
as we already showed in the figure 2 in the main text.

B Locations of the magnetic fields and the order parameter vortices in
the far-from-equilibrium state

Theoretically, from the knowledge of type-II superconductor, there is a gauge invariant
term, such as ∇ϕ−A, where ϕ is the phase of the order parameter while A is the spatial
components of the gauge field, in the free energy. Therefore, the magnetic field B = ∇×A
will make frustrations in the phase of order parameter. This leads to the phenomenon that
the locations of the singular points of the order parameter phases will correspond to the
finite values of magnetic fields. This is why the location of magnetic fluxoids and the order
parameter vortices are at the same places.

In the far-from-equilibrium state, the fluxes of magnetic fields are not quantized.
Therefore, we can only see the ‘condensate’ or ‘lumps’ of the magnetic fields in the far-
from-equilibrium state. In figure 7, we numerically show the density plots of the magnetic
fields and the locations of the singular points of the order parameter phases (i.e. the lo-
cations of the centers of the vortices) for time t = 120 and t = 130. Times t = 120 and
t = 130 are in the far-from-equilibrium state, which can be found in the figure 2 or from
the movie M1.avi. From the figure 7, we can find most of the order parameter vortices are
located at places of the condensates or lumps of the magnetic fields. Some minor vortices
are not sitting at the places of the condensates of the magnetic fields at time t = 120. But
it is understandable that they are in the far-from-equilibrium state, as times goes by, these
minor vortices will soon disappear, for instance, at time t = 130.
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Figure 7. Density plots of the magnetic fields and the locations of the singular points of the order
parameter phases (i.e. the locations of the centers of the vortices) at two specific times t = 120 (left)
and t = 130 (right) in the far-from-equilibrium state with τQ = 20 and B0 = 1. Colorful regions
represent the magnitudes of the magnetic fields, while the plus signs and the circles indicate the
positions of the positive and negative vortices, respectively.
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