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1 Introduction

Apparently distinct realms of theoretical physics find themselves connected through super-
symmetric field theories. A certain amount of supersymmetry facilitates both qualitative
and quantitative understanding of these correspondences. If the theory can be embedded
in string/M-theoretic setup then these somewhat obscure relations become more visible
in the form of dualities. Meanwhile, the availability of exact computations of relevant
physical quantities makes the suggested links more tangible, and serves as a verification of
string/M-theory dualities. Certainly, being able to make different branches of physics talk
to each other via any intermediary is a useful ability.

One of such striking relations is between the four-dimensional supersymmetric gauge
theories and (non-supersymmetric) two-dimensional conformal field theories. It was first
observed in the N = 4 case in [1], then more generally in the N = 2 case in [2–4], stated as
the BPS/CFT correspondence in [5, 6]. In [7] the correspondence was given a very large
class of precise (conjectural) examples, with Nekrasov partition functions of A1-type S-class
theories on one side, and conformal blocks of Liouville conformal field theory, on the other
side. The celebrated AGT correspondence was further extended [7–14] to conformal field
theories possessing various infinite-dimensional symmetry algebras. The relevant symmetry
algebras were conjectured to be quantum Drinfeld-Sokolov reductions of affine Lie algebras,
depending on the constituents of the gauge theory counterpart. The realization of the
N = 2 supersymmetric gauge theories as the effective field theory on a stack of fivebranes,
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compactified on a Riemann surface, or a type II string on local Calabi-Yau geometry [15],
provides a physical reason for the emergent relation, by e.g. interpreting the fields originating
from the six dimensional tensor multiplet in the presence of Ω-deformation as the localized
two dimensional chiral fields [2], or by duality arguments [16, 17].

Another related connection, between the supersymmetric gauge theories and integrable
systems, reveals itself in the identification of the geometry of the low-energy states of the
four-dimensional N = 2 supersymmetric field theory with the phase space of an algebraic
integrable systems [18, 19]. In the case of the N = 2∗ case with SU(n) gauge group the
comparison of the construction [19] and [20] suggests a relation to Hitchin systems. Indeed,
for S-class N = 2 theories [16] the associated integrable systems can be argued to be
precisely Hitchin integrable systems [17]. Another vast class of theories, namely the ones
corresponding to the quivers with unitary gauge groups, are demonstrated [21] to be dual to
algebraic integrable systems on the moduli spaces of double-periodic instantons or periodic
monopoles. The classical spin chains are connected through the equivalence of the spectral
curves [22, 23]. The correspondence was uplifted to the quantum spin chains in [24, 25],
in the context of two-dimensional N = (2, 2) gauge theories (with the restriction that the
spin representations are highest-weight). Here, the quantum Hamiltonians of the spin
chain are identified with the twisted chiral ring of the N = (2, 2) gauge theory, while the
common eigenstates are associated to the supersymmetric vacua. Such a connection between
supersymmetric gauge theories and quantum integrable systems is called the Bethe/gauge
correspondence [24–27].

Therefore, it turns out that conformal field theories and spin chain integrable systems
are associated in a nontrivial manner by sharing the same counterpart in the BPS/CFT
correspondence and the Bethe/gauge correspondence. Consequently, it is expected that
analytic properties of the correlation functions of conformal field theories and the spectral
properties of spin chain systems can be explored on the same footing. Of the goals of this
work is to manifestly realize such a framework by studying relevant gauge theory objects.

The ingredients on the gauge theory side are the half-BPS codimension-two (surface)
defects in four-dimensional N = 2 supersymmetric gauge theories transversally intersecting
each other. The surface defects relevant to our study descend from the gauge origami
configuration defined on an orbifold, e.g. intersecting stacks of D3-branes in the IIB string
theory on an orbifold [28–31]. These surface defects are divided into two classes. One is
the regular surface defect [3], also known as the Gukov-Witten monodromy type surface
defect [32, 33] defined by the singular boundary conditions along a surface, which could be
modelled by an orbifold construction [14, 30].1 The other type of surface defect is realized
by adding the folded branes in the gauge origami language [29, 30].2 We consider the
configuration of intersecting surface defects on C2

12, in which an orbifold surface defect
extends along the C1-plane at z2 = 0, while a folded brane surface defect extends along

1In the language of the six-dimensional N = (2, 0) theory, these surface defects are identical to codimension-
two defects [14, 34], which are constructed by introducing M5-branes intersecting the worldvolume of the
original stack of M5-branes with a four-dimensional intersection [17].

2In the language of the six-dimensional N = (2, 0) theory, these surface defects correspond to codimension-
four defects [34] realized by M2-branes ending on a stack of M5-branes along a two-dimensional surface [17].
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the C2-plane at z1 = 0. The partition function of the generic gauge origami configuration
is calculable by supersymmetric localization. The correlation function of the intersecting
surface defects is a special case of the gauge origami partition function. It should be
emphasized that the current setting is similar to, but slightly different from the intersecting
surface defects considered in [35], where both surface defects were of the vortex string type.

The correlators of the gauge origami system obey Dyson-Schwinger relations which
express the compactness of the moduli space of spiked instantons [28, 36], implying nontrivial
equations on the gauge theory correlation functions [31, 35, 37–44], including the chiral
ring relations of the gauge theory [40], both with and without the surface defects in
the Ω-background. Some of these equations are identified with the Belavin-Polyakov-
Zamolodchikov (BPZ) equations [45] and the Knizhnik-Zamolodchikov (KZ) equations [46]
satisfied by the CFT correlation functions, leading to a direct proof of various incarnations
of the BPS/CFT correspondence [31, 38, 40, 43].

In the present work, we find the non-perturbative Dyson-Schwinger equations obeyed
by the correlation function of the intersecting surface defect observables. We identify them
with a set of functional difference equations, which we call the fractional quantum T-Q
equations. With the help of these T-Q equations we clarify the link between the conformal
field theory and the spin chain system. Also, as the additional evidence for the BPS/CFT
correspondence, the fractional quantum T-Q equation is the Fourier transform of the KZ
equations for the 4-point conformal block with additional insertion of a degenerate field. It
is an extension of the statement that the vacuum expectation value of the regular orbifold
surface defect in the SU(N) gauge theory with 2N fundamental hypermultiplets obeys the
KZ equation also obeyed by the 4-point ŝlN conformal block [43]. We show that the insertion
of a vortex-string type surface defect transverse to the regular monodromy defect on the BPS
side amounts to the insertion of the N -dimensional representation of slN on the CFT side.

At the same time, in support of the Bethe/gauge correspondence the fractional quantum
T-Q equation provides a fractionalization of a refinement of the Baxter T-Q equation [47] for
the XXXsl2 spin chain system. In particular, it can be expressed through the action of Lax
operators on the N spin sites. By concatenating the Lax operators we get the monodromy
matrix of the spin chain. We note that the construction generalizes both the setup of [24, 25]
by incorporating unbounded weight representations, the so-called HW-modules [43], and
the setup of [42], by quantization. We also show that the higher-rank qq-characters yield
non-perturbative Dyson-Schwinger equations which express the spin chain transfer matrix
in gauge theory language.

Our results imply, in agreement with Bethe/gauge correspondence, that the NS limit [26]
ε2 → 0 translates, on the CFT side, to the critical level limit of the genus zero KZ
equations for slN , which indeed becomes the spectral problem for the slN Gaudin system,
generalizing [48]. Thus, the nontrivial connection between the KZ equations for slN and
the Lax operators of the XXXsl2 spin chain we found through the four dimensional gauge
theory provides a refinement of the bispectral duality [49, 50]. Its implications will be
presented in a separate work [51].

The paper is organized as follows: we first review the gauge origami construction
which leads to the folded brane surface defect and the qq-characters in section 2. We then
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introduce the monodromy type surface defect via orbifolds in the section 3, along with the
folded brane surface defects. We also discuss the local observables, the qq-characters, in the
presence of the surface defects. The qq-characters are used to derive the (fractional) quantum
T-Q equation in section 4. In section 5, we show that the folded brane surface defect is
related to the surface defect constructed by a vortex string through Fourier transformation.
In section 6, we will give a brief review of the constructions of slN -modules and the KZ
equations for slN , and verify that they are satisfied by the correlation function of intersecting
surface defect observables. In section 7 we turn our focus to the correspondence between
the XXXsl2 spin chain and N = 2 supersymmetric gauge theories. We construct the Lax
operators, the generators of the Yangian Y (sl2) and the monodromy matrix of XXXsl2 spin
chain. It is pleasing to recognize that the trace of the monodromy matrix shares an identical
structure with the higher-rank qq-character in the NS limit, as it becomes a (Yangian
version) of the q-character, in agreement with [52]. We end with the discussion of our results
and future directions in the section 8. The appendices contain various computational details.

Acknowledgments

The authors are grateful to Gregory Moore, Alexander Tsymbaliuk, Fei Yan, and Sasha
Zamolodchikov for discussions. The work of SJ was supported by the US Department of
Energy under grant DE-SC0010008. The work of NL was supported by the Simons Center
for Geometry and Physics.

2 Intersecting branes, Q-observables, and qq-characters

We study special classes of codimension-two (Q-observables) and codimension-four (qq-
characters) defects in four-dimensional N = 2 supersymmetric gauge theories. These defects
are special since they originate from the configuration of intersecting D-branes in string
theory, whose low energy description is the gauge origami of [29]. In this section, we briefly
review the gauge origami and the gauge theory defects it provides. For more details on the
subject, see [6, 28, 29, 36].

• The starting point is a Calabi-Yau fourfold Z. We consider a configuration of intersecting
D3-branes in the type IIB string theory on Z ×Ca. We are being sloppy with the signature
of the metric. In one setup Ca stands for the two dimensional Minkowski space R1,1, so
that the D3-branes are actually the S-branes. In another setup Ca is Euclidean, while
Z = R1,1 × B with a local Calabi-Yau threefold B, so that some of the D3-branes are
the usual physical branes wrapping R1,1 × Σ, with Σ ⊂ B a complex curve, while others
are euclidean D3-branes wrapping complex surfaces inside Z, all of them localized in the
Coulomb Ca-factor.

• Below, the subscripts a ∈ 4 = {1, 2, 3, 4} denote the coordinates za on C4, or, in case we
describe some orbifolds of C4, the coordinates ẑa on the covering space, which we shall also
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denote using a hat, Ĉ4, in order to avoid confusion. We also use

6 = {12, 13, 14, 23, 24, 34}, (2.1)

and, for A = ab ∈ 6, denote by C2
A = Ca×Cb ⊂ Z two corresponding complex two-plane. In

toric origami there can be at most six stacks SA, A ∈ 6, of D3-branes, with the multiplicities
nA ∈ Z≥0 and the worldvolumes C2

A. The union

S ≡
⋃
A

nAC2
A ⊂ Z (2.2)

is the origami worldvolume.

• In this paper we shall be only looking at the cases Z = C4 ≡ C4
1234, the local K3

orbifold Z = C2
12 × C2

34/Γ34, with the cyclic group Γ34 = Zp, and the local CY3 orbifold
Z = C1

1 × C3/Γ24 × Γ34, with another cyclic group Γ24 = Zn. The group Γab acts on the
two-dimensional factor C2

ab via

(za, zb) 7→
(
$za, $−1zb

)
(2.3)

with $ being the corresponding roots of unity. We use the notations

Rω ∈ Γ∨34 , ω = 0, 1, . . . , p− 1 ≡ −1
Rω′ ∈ Γ∨24 , ω′ = 0, 1, . . . , n− 1 ≡ −1

(2.4)

for the irreducible representations of the groups ΓA, A = 24, 34.

• We shall further stick to the case p = 3 to produce the SU(N) theory with 2N fundamental
hypermultiplets on the C2

12-plane.

• Now we study the effective field theory on the origami wolrdvolume S. At each one of
six stacks of branes, the effective theory is locally the N = 2 supersymmetric gauge theory
with the gauge group×p−1

i=0 Υ(nA,i). These gauge theories are interacting with each other
in an intricate manner through the couplings at the intersections of their worldvolumes.
As a whole, the effective theory on the origami worldvolume X defines what is called the
generalized gauge theory. Among the six intersecting worldvolumes, we differentiate C2

12 as
the support of the main affine Γ̂-quiver gauge theory with the gauge group×p−1

i=0 Υ(n12,i).
Then the fields associated to other gauge theories on C2

A, A ∈ 6 \ {12}, can be integrated
out, realizing codimension-two or codimension-four defects in the gauge theory on C2

12,
depending on whether A∩{12} is empty, {1}, or {2}. In the path integral formulation of the
four-dimensional gauge theory, these local and non-local defects would result in observable
insertions, and we are interested in recovering those observables from the partition functions
of the gauge origami.
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• Supersymmetry localizes the path integral for the generalized gauge theory on S onto
the BPS configurations of D(−1)-instantons dissolved into S.3 The point-like BPS objects
in the generalized gauge theory constructed in such a way is called spiked instantons. The
path integral reduces to a finite-dimensional integration over the moduli space MS of
spiked instantons on S, which can be constructed as the Higgs branch of the matrix theory
supported by the collection of D(−1)-instantons.

• The symmetry
H =×

A∈6
×

r∈Γ∨24×Γ∨34

Υ(nA,r)×Υ(1)3
ε (2.5)

of the gauge origami setup, with its maximal torus TH ⊂ H naturally act on the moduli
space MS of spiked instantons, allowing for further equivariant localization of the finite-
dimensional integral. As a result, the partition function is computed to be a rational
function in the equivariant parameters ξ ∈ Lie(TH),

ZS(ξ) =
∫ TH

MS

1. (2.6)

The equivariant localization reduces the partition function ZS to a sum over the fixed
points MTH

S with respect to TH. The fixed points are classified by a set λ = {λA,i}, A ∈ 6,
i = 0, . . . , p−1, of partitions. The partition function becomes that of a statistical mechanical
model defined on λ. The general formula for gauge origami partition function is derived
in [29]. See appendix A for an illustration

Let us briefly explain the notation used in writing the partition function ZS . For more
details, see appendix A. We use the same letters for both the vector spaces themselves and
for their characters. For example,

NA =
p−1∑
i=1

(nA,i∑
α=1

eaA,i,α

)
Ri, (2.7a)

KA =
p−1∑
i=1

nA,i∑
α=1

∑
�∈λA,i

eaA,i,αecA,�

Ri, (2.7b)

where cA,� = (i−1)εa+(j−1)εb for A = ab ∈ 6. The character SA of the universal bundle is

SA = NA − PAKA. (2.8)

The exponentiated Ω-background parameters are

qa = eεa , Pa = 1− qa, PA = PaPb,
4∏

a=1
qa = 1. (2.9)

Given a virtual character X =
∑

a mae
xa we denote by X∗ =

∑
a mae

−xa the dual virtual
character.

3To be precise, we turn on the appropriate B-field to push the D(−1)-instantons dissolved into the
worldvolume S. See [28, 36].
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The pseudo-measure associated to the instanton configuration λ is defined through the
plethystic exponent operator E (also related to Adams operations in K-theory) converting
the additive Chern characters to the multiplicative classes

E
[∑

a
mae

xa

]
=
∏
a

xma
a . (2.10)

The above brane construction of spiked instantons suggests a projection of the moduli
space of spiked instantons to the moduli space of ordinary (noncommutative) instantons on
C2

12, MS −→MC2
12
. Integration along the fibers of this projection casts the gauge origami

partition function in a form of a correlation function of the associated codimension-two and
codimension-four defects in the four-dimensional bulk gauge theory. Schematically,

ZS(ξ) =
∫ TH

MC2
12

∏
A∈6\{12}

OA =
〈 ∏
A∈6\{12}

OA

〉
ZC2

12
, (2.11)

where the bracket denotes the vacuum expectation value in the gauge theory on C2
12.

2.1 Surface defects from folded branes

We consider a specific class of half-BPS surface (codimension-two) defects in the four-
dimensional N = 2 supersymmetric gauge theories. This type of the surface defects can be
constructed by introducing an additional stack of D-branes in the gauge origami construction,
on top of the original stack of D-branes engineering the bulk four-dimensional gauge theory.
The worldvolume of the additional stack of branes has a two-dimensional intersection with
the worldvolume of the bulk gauge theory. Thus, from the point of view of the original bulk
theory observer, one has a codimension two defect.

2.1.1 The bulk gauge theory

The four-dimensional gauge theory that we will mainly consider is the N = 2 supersymmetric
Υ(N) gauge theory with N fundamental and N anti-fundamental hypermultiplets. We
can engineer this particular gauge theory from the simplest gauge origami configuration,
composed of single stack of branes on C2

12 with Γ = A2 = Z3, as follows. We set n12,0 =
n12,1 = n12,2 ≡ N and nA = 0 for A ∈ 6 \ {12}. Also we assign the Z3-charge as

N12 =
N∑
α=1

eaαR0 +
N∑
α=1

em
−
α−ε4R1 +

N∑
α=1

em
+
α−ε3R2. (2.12)

The N = 2 gauge theory on C2
12 constructed in this way is the affine Â2-quiver gauge

theory, with the gauge group×2
i=0 Υ(N)i. The fixed points on the moduli space of spiked

instantons are classified, a priori, by three N -tuples of partitions, λi = λA,i, i = 0, 1, 2.
Throughout this work, our main consideration in the four-dimension side would be

the A1-quiver gauge theory, which can be obtained by freezing two of the gauge nodes in
the above affine Â2-quiver gauge theory, making the corresponding Υ(N)-factors a flavor
symmetry (which can be enhanced to SU(2N)).
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• In what follows we use on several occasions the trick of taking the limit q1 = q2 thereby
killing all instantons in the nodes 1 and 2, λ1 = λ2 = ∅. We call this procedure the freezing
Â2 → A1, or simply freezing, for short. We denote the remaining coupling by q ≡ q0, while
the remaining N -tuples of partitions as λ ≡ λ0. The gauge origami partition function
reduces to

ZS =
∑
λ

q|λ|E
[
−SS∗ +M+S∗ +M−S∗

P ∗12

]
≡ ZC2

12
=
∑
λ

q|λ|E [T12] , (2.13)

where we have defined

N ≡
N∑
α=1

eaα , M± ≡
N∑
α=1

em
±
α , M ≡M+ +M−

S ≡ N − P12K12.

(2.14)

This is the partition function of the rank N A1 theory [21], i.e. Υ(N) gauge theory with
2N fundamentals. We emphasize that the Γ34-orbifold plays an auxiliary role of reducing
the theory with adjoint fields to the theory with fundamental matter. The Γ24 orbifold,
introduced in section 3, is another auxiliary tool, generating the surface defects.

2.1.2 Introducing surface defects from folded branes: the Q-observables

Having engineered the bulk four-dimensional gauge theory of our interest, we move on to a
class of surface defects, called the Q-observables, constructed by the next-to-the simplest
gauge origami configuration. Namely, take now two stacks of branes, one on C2

12 and another
on C2

23, with the Chan-Paton spaces carrying the Γ34 representations, decomposing into
the irreps Rω with the multiplicities n12,0 = n12,1 = n12,2 = N and n23,1 = 1, respectively.
Namely, we assign the Z3-charges in the following way:

N12 =
N∑
α=1

eaαR0 +
N∑
α=1

em
−
α−ε4R1 +

N∑
α=1

em
+
α−ε3R2

N23 = ex+ε2+ε3 R1.

(2.15)

The gauge origami partition function is computed as

ZS =
∑
λ

∏
i=0,1,2

q
|λ12,i|+|λ23,i|
i E

[
−P3S12S

∗
12

P ∗12
− P1S23S

∗
23

P ∗23
+ q3P4

S12S
∗
23

P ∗2

]Z3

(2.16)

In the freezing limit q1 = q2 = 0, only K23 = ∅ gives non-zero contribution. The partition
function reduces to a sum over N -tuples of partitions which we still denote as λ. It is given by

ZS =
∑
λ

q|λ|E
[
−SS∗ +MS∗

P ∗12
− ex(S∗ −M−∗)

P ∗2

]
. (2.17)

Note that the first term gives the usual measure for the A1-quiver gauge theory partition
function. The second term is the contribution obtained by integrating out the fields on the
brane on C2

23. Thus, in the four-dimensional point of view it is interpreted as a surface defect
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on the C2-plane, which we call the Q-observable. By discarding the Γ-function involving the
hypermultiplet mass, which can be absorbed into the 1-loop part of the partition function
ZS , the Q-observable is represented on the partitions λ as

Q(x)[λ] = E
[
−e

xS∗[λ]
P ∗2

]
. (2.18)

It is important to note that Q(x) is in fact regular in x, i.e.,

Q(x)[λ] =
N∏
α=1

 (−ε2)
x−aα
ε2

Γ
(
−x−aα

ε2

) ∏
�∈λ(α)

x− c� − ε1
x− c�



=
N∏
α=1

 (−ε2)
x−aα
ε2

Γ
(
λ

(α)
1 − x−aα

ε2

) λ
(α)
1∏
j=1

j − 1−
x− aα − λ(α)t

j ε1

ε2


 .

(2.19)

Also, it should be noted that the Q-observable is related to the Y-observable by

Q(x)
Q(x− ε2) = E [−exS∗] = Y(x). (2.20)

The gauge origami partition function thus provides the vacuum expectation value of the
Q-observable,

ZS =
〈
Q(x)

〉
ZC2

12
. (2.21)

Similarly, we can construct the Q-observable from intersecting branes on C2
12 and C2

24
instead. Namely, we consider the gauge origami configuration with

N12 =
N∑
α=1

eaαR0 +
N∑
α=1

em
−
α−ε4R1 +

N∑
α=1

em
+
α−ε3R2

N24 = ex+ε2+ε4 R2.

(2.22)

A computation similar to the one above shows

ZS =
∑
λ

∏
i=0,1,2

q
|λi|
i E

[
−P3S12S

∗
12

P ∗12
− P1S24S

∗
24

P ∗24
+ q4P3

S12S
∗
24

P ∗2

]Z3

=
∑
λ

q|λ|E
[
−SS∗ +MS∗

P ∗12
− ex(S∗ −M+∗)

P ∗2

]
.

(2.23)

Hence we obtain the same Q-observable, up to the Γ-function involving the hypermultiplet
mass which can be absorbed into the 1-loop part of the partition function ZS .

In the following discussion, it will be convenient to use a redefined version of the
Q-observable, which is still regular in x but dressed with the Γ-function involving the
hypermultiplet masses:

Q̃(x)[λ] ≡ Q(x)[λ]
N∏
α=1

ε
x−m+

α
ε2

2 Γ
(
1 + x−m+

α
ε2

) (2.24)
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Note that the Γ-function produces a polynomial in hypermultiplet masses by taking the ratio:

Q̃(x)
Q̃(x− ε2)

= Y(x)
P+(x) . (2.25)

2.2 qq-characters from crossed branes

Now we study two transversal stacks of branes. Such a configuration defines local BPS
operators at the intersection of the components of two braneworlds. From the point of view
of either four-dimensional gauge theory, integrating out the degrees of freedom on the other
produces the local observable called the qq-character.

2.2.1 Bulk theory with just one qq-character

Consider the gauge origami with only two orthogonal stacks of branes, one on C2
12 and

another on C2
34. As a minimal modification of rank N A1 theory on C2

12 we start with a
single brane on C2

34. We still have a choice of a Zp representation to assign to that brane.
It turns out the only interesting choice is to assign it a singlet representation. So, we assign
n12,0 = n12,1 = n12,2 = N and n34,0 = 1:

N12 =
N∑
α=1

eaαR0 +
N∑
α=1

em
−
α−ε4R1 +

N∑
α=1

em
+
α−ε3R2

N34 = exR0.

(2.26)

The corresponding gauge origami partition function is computed as

ZS =
∑
λ

q
|K34|
0

∏
i=0,1,2

q
|λi|
i E

[
−P3S12S

∗
12

P ∗12
− P1S34S

∗
34

P ∗34
− q−1

12 S12S
∗
34

]Z3

. (2.27)

Once again, in order to obtain the A1-quiver gauge theory we take the freezing limit
q1 = q2 = 0. Then |K34| = 0 or 1 and (2.27) can be cast as the expectation value of a
surface defect in A1 theory. Therefore, the gauge origami partition function can be split as
the sum of the expectation values of two observables in A1 theory, one with |K34| = 0 and
the another with |K34| = 1:

ZS =
∑
λ

q|λ|E
[−SS∗ +MS∗

P ∗12

] (
E
[
−ex+εS∗

]
+ qE [exS∗ − exM∗]

)
=
∑
λ

q|λ|E [T12]
(
Y(x+ ε) + q

P (x)
Y(x)

)
.

(2.28)

In the language of the four-dimensional gauge theory, this is the vacuum expectation value

ZS =
〈
X(x)

〉
ZC2

12
, (2.29)

of an observable called the fundamental qq-character,

X(x) = Y(x+ ε) + q
P (x)
Y(x) . (2.30)
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2.2.2 Bulk theory with the surface defect Q-observable and the qq-character

Now we are interested in a more complicated example. We want to study the correlation
functions of several local and non-local observables. In our setup these are induced by
simultaneous insertions of additional branes. Specifically, we consider three stacks of branes:
N regular branes wrapping C2

12, one R1-type brane on C2
23, and one R0-brane on C2

34. In
other words, the Γ∨34-multiplicities are: n12,0 = n12,1 = n12,2 = N , n23,1 = 1 and n34,0 = 1.
This assignment translates to the following Chan-Paton characters:

N12 =
∑
α

eaα · R0 +
∑
α

em
−
α−ε4 · R1 +

∑
α

em
+
α−ε3 · R2

N23 = ex
′+ε2+ε3 · R1

N34 = ex · R0

. (2.31)

The gauge origami partition function is then given by the sum of plethystic exponents [29]:

ZS =
∑
~λ

∏
i=0,1,2

q
|λi|
i E

[
−P3S12S

∗
12

P ∗12
− P1S23S

∗
23

P ∗23
− P1S34S

∗
34

P ∗34

−q−1
12 S12S

∗
34 + q3P4

S12S
∗
23

P ∗2
+ q4P1

S23S
∗
34

P ∗3

]Z3

.

(2.32)

Again, freeze Â2 → A1. Let us address the last term in the plethystic exponent. It comes
from the interaction between the components C2

23 and C2
34 of the origami braneworld.

Thanks to our choice (2.31) of Z3-charges K23 = ∅.

• We now argue, that the perturbative pseudo-measure contribution

q4P1
N23N

∗
34

P ∗3
(2.33)

can be replaced by
E [−q23N34N

∗
23 − q34N23N

∗
34] , (2.34)

without introducing additional poles or zeroes in the x-variable.
Indeed (2.33) can be interpreted as the effect of imposing an infinite sequence of

equations on the ADHM data, cf. [29]:

J23B
k
3I34 = 0 , J34B

k
3I23 = 0 , (2.35a)

k ≥ 0 . (2.35b)

Now we argue that the matrix B3 vanishes in the setup of the eq. (2.31). Firstly, B3I12 = 0
by the standard stability condition of gauge origami. Secondly, the instantons cannot move
onto the C2

23 subspace, K23 = 0, therefore:

B3I23 = 0 . (2.36)

Finally, the would-be vector B3I34(N34) belongs to the R1-component of K34, which is zero
in the frozen limit, so

B3I34 = 0 . (2.37)
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Therefore all the constraints (2.35) are automatically satisfied for all k > 0. The only
remaining constraints imposed to the gauge origami data are

J23I34 = 0, J34I23 = 0, (2.38)

whose combined contributions to the pseudo-measure read exactly

E [−q23N34N
∗
23 − q34N23N

∗
34] . (2.39)

Also, the non-perturbative piece of S34 contributes

E [P14N23K
∗
34] (2.40)

Consequently, the last term of (2.32) is replaced by the sum of the two contributions in the
decoupling limit.

• After these preparations the gauge origami partition function reads as follows:

ZS =
∑
~λ

q|λ|E
[
−P3S12S

∗
12

P ∗12
− P1S23S

∗
23

P ∗23
− P1S34S

∗
34

P ∗34
(2.41)

−q−1
12 S12S

∗
34 + q3P4

S12S
∗
23

P ∗2
− q23N34N

∗
23 − q34N23N

∗
34 + P14N23K

∗
34

]Z3

.

Using the Q-observables and Y-observables that we have studied, we notice that the partition
function can be written as the following

ZS =
∑
λ

q|λ|E [T12]
[
(x′ − x)Q(x′)[λ]Y(x+ ε)[λ] + q(x′ − x− ε1)Q(x′)[λ] P (x)

Y(x)[λ]

]
= −

〈
TN+1(x)Q(x′)

〉
ZC2

12
,

(2.42)

where we have defined the qq-character in the presence of the Q-observable

TN+1(x)Q(x′) = (x− x′)Q(x′)Y(x+ ε) + q(x− x′ + ε1)P (x)Q(x′)
Y(x) . (2.43)

By the compactness of the moduli space of spiked instantons, the vacuum expectation value
of (2.43) has no poles in the variable x. Thus the observable TN+1(x) is a polynomial in x
of degree N + 1.

• This is our main new tool.

3 Intersecting surface defects from branes on orbifold

As reviewed above, the gauge origami construction produces correlators of both local and
non-local defects in the four-dimensional gauge theory. As the field theory effects of these
defects arise from integrating out the elementary degrees of freedom of bi-fundamental strings
connecting distinct components of the worldvolumes, these defects are electric in nature.
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In this section, we introduce another type of half-BPS codimension-two, monodromy
type defect in four-dimensional supersymmetric gauge theory. In a sense, it is magnetic in
nature. This surface defect [3, 32, 33] is defined by prescribing a specific singular behavior
of the fundamental fields along a two-dimensional surface. We shall sometimes call it the
Gukov-Witten type defect.

For practical purposes the monodromy defect can be represented by an orbifold con-
struction [14, 30, 53–55]. The main use of orbifold construction is that it allows for the
straightforward localization computation of its partition function [14, 30, 38]. Below we
show that the correlation function of the Q-observables that we have constructed in the
previous section fractionalize in the presence of the orbifold surface defect, also is computable
explicitly. Since the orbifold can be replaced by a Gukov-Witten type (monodromy) surface
defect, the fractional Q-observables on an orbifold can thus be interpreted as intersecting
the surface defects in the bulk gauge theory. We remark that the current setting of inter-
secting surface defects is related to, although is explicitly different from the one in [35],
cf. also [56, 57]. In those papers the surface defects were introduced in the form of vortex
strings. These can be viewed as a dual description [34, 38] of a Z2-orbifold surface defect,
as opposed to the regular ZN -orbifold considered in [30, 31, 37, 43] and in the present work.

In the limit mf →∞, q→ 0 defining the pure super-Yang-Mills theory the instantons
in the presence of monodromy surface defect can be related to the two dimensional sigma
model instantons valued in the infinite-dimensional Kähler manifold LG/T [3]. Their
enumeration can be then analyzed using intersection homology [58], leading to a degenerate
version of the KZ equation which we discuss in full generality below.

3.1 Orbifold surface defect as the disorder operator

We start by recalling the map [30] of gauge theory on orbifold to gauge theory with a
monodromy type surface defect. We also give the equivariant integral expression for the
surface defect observable from the orbifold projection of the gauge theory measure.

3.1.1 Construction of the surface defect via an orbifold

Let us view the worldvolume of the four-dimensional gauge theory of interest as the one
immersed at the ẑ3 = ẑ4 = 0 locus of the Zn-orbifold Ĉ1 ×

(
Ĉ2/Zn

)
⊂ Ĉ4/Γ24. On the

quotient space the worldvolume can be identified with C2
12 as complex manifolds, via

Ĉ1 ×
(
Ĉ2/Zn

)
−→ C2

12

(ẑ1, ẑ2) 7−→ (z1 = ẑ1, z2 = ẑn2 ).
(3.1)

This map has a branching locus at the plane { z2 = 0 }, which is a copy of the complex line C1.
A more rigorous treatment, e.g. a Kähler quotient construction of the resolution of

singularities ˜C4/(Γ24 × Γ34) adds to that C2
12 a chain of two-spheres. The fractional instanton

charges we are about to discuss below can be interpreted as the fluxes of Chan-Paton bundles
on those spheres.

At any rate, the four-dimensional gauge theory on the orbifold Ĉ1 ×
(
Ĉ2/Zn

)
is

equivalent to gauge theory on the smooth space C2
12 supplemented with specific singular
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boundary conditions imposed on its fields along C1 at z2 = 0. Since the orbifold reduces
the isometries of the spacetime, the supersymmetry preserved by the surface defect is at
least a half of the original supersymmetry.

• To distinguish the orbifold and the ordinary space with the defect, we use the notation
of putting hats above the symbols on the orbifold side, as in Ĉ1 ×

(
Ĉ2/Zn

)
. This rule

will also apply to gauge theory parameters such as Coulomb moduli and the masses of
hypermultiplets.

The singular boundary condition prescribed by the orbifold breaks the global symmetry.
The boundary condition along {ẑ2 = 0} can be written as

Aµdx
µ ∼ diag(α1, α2, · · · , αN )dθ, (3.2)

where (r, θ) are local radial coordinates near the surface {ẑ2 = 0}. Then the singularity
(α1, · · ·αN ) is assumed to have the structure

(α1, · · · , αN ) = (α(0), · · · , α(0)︸ ︷︷ ︸
N0

, α(1), · · ·α(1)︸ ︷︷ ︸
N1

, · · · , α(n−1), · · · , α(n−1)︸ ︷︷ ︸
Nn−1

), (3.3)

explicitly breaking the global gauge symmetry to Υ(N0)× · · · ×Υ(Nn−1) ⊂ Υ(N). This is
a choice that characterizes the surface defect, which can be conveniently encoded in the
coloring function c : [N ] −→ Zn that assigns a representation Rc(α) of Zn to each Coulomb
modulus âα, α = 1, . . . , N .

In the presence of N (anti-)fundamental hypermultiplets, the singular boundary condi-
tion breaks the flavor symmetry in a similar way. The choice of the remnant flavor symmetry
characterizes the surface defect, encoded in additional coloring functions σ± : [N ] → Zn
which assign a representation Rσ±(f) to each (anti-)fundamental hypermultiplet mass m̂±f ,
f = 1, . . . , N .

By localization the path integral of the four-dimensional N = 2 gauge theory on the
orbifold reduces to a finite-dimensional integral over the moduli space Morb

C2
12

of instantons
on the orbifold. There is a natural projection ρ of this moduli space to the moduli space of
instantons on the ordinary C2

12, ρ : Morb
Ĉ2

12
−→MC2

12
, induced by the map (3.1). Accordingly,

the equivariant integration over Morb
Ĉ2

12
can be broken into the integration over the bulk

MC2
12

and the integration over the fiber of the projection. Namely,

ẐĈ2
12

=
∫ TH

Morb
Ĉ2

12

1 =
∫ TH

MC2
12

S =
〈
S
〉
ZC2

12
. (3.4)

Hence the integration over the fiber of the projection gives rise to the surface defect
observable S supported on the z1-plane, so that the path integral of the N = 2 gauge
theory on the orbifold is identified with the vacuum expectation value of the surface defect
observable S.

Having established the concept of the surface defect in interest, we now turn to the
actual computation of the partition function ẐĈ2

12
. The Zn-orbifold used in this construction
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can be embedded into the gauge origami, and a slight generalization of the gauge origami
setup described earlier provides a systematic way to obtain the partition function, as we
explain below.

3.1.2 Vacuum expectation value of the surface defect observable

In the gauge origami setup where our bulk four-dimensional gauge theory is embedded as
the effective field theory on the wolrdvolume of D3-branes on C2

12 ⊂ S ⊂ Z, so that the
4C-dimensional orbifold is Ẑ = Ĉ4

1234/ (Zp × Zn), where the Γ24 × Γ34 action is given by

(ẑ1, ẑ2, ẑ3, ẑ4) 7−→ (ẑ1, ηẑ2, ζẑ3, ζ
−1η−1ẑ4), ηn = ζp = 1. (3.5)

Note that even though the SU(4) symmetry is broken by the presence of the branes and
orbifolds, its maximal torus Υ(1)3

ε ⊂ SU(4) still acts preserving the whole structure. The
gauge origami partition function can still be computed by equivariant localization applied
to the Zp×Zn-invariant locus. Thus the constructions of codimension-two and codimension-
four defects in four-dimensional gauge theory investigated in the previous section generalize
to the current setup with the additional orbifold. Again, we focus on the Υ(N) gauge
theory with N fundamental and N anti-fundamental hypermultiplets, which is obtained
by choosing p = 3 and taking the decoupling limit removing the instantons with nonzero
Z3-charges.

Specifically, we consider a stack of 3N parallel branes extended along Ĉ2
12, with N

branes of every Z3-charge, as above. Furthermore, we assign the Zn charges to colors and
flavors with the help of the functions c : [N ] −→ Zn and σ± : [N ] −→ Zn. Namely, cf. (2.4)

N̂12 =
∑
ω∈Zn

 ∑
α∈c−1(ω)

eâαR0⊗Rω+
∑

f∈(σ−)−1(ω)

em̂
−
f
−ε4R1⊗Rω+

∑
f∈(σ+)−1(ω)

em̂
+
f
−ε3R2⊗Rω

 .
(3.6)

Then the partition function is given by

ẐX;c,σ± =
∑
λ̂

∏
i∈Z3
ω∈Zn

q̂
|λ̂i,ω |
i,ω E

[
− P̂3Ŝ12Ŝ

∗
12

P̂ ∗12

]Z3×Zn
. (3.7)

As above, we take the freezing limit whereby the instantons with nonzero Z3-charges are
eliminated. The remaining couplings account for the instantons with zero Z3-charge. There
are n such couplings, which we denote by (q̂ω)ω∈Zn , to account for the Γ24-charges. In the
language of string theory, the bulk instantons fractionalize into n types by getting onto the
surface of the surface defect. The coupling q̂ω counts the number of fractional instantons of
type ω, so that q̂ω+n ≡ q̂ω. The bulk coupling is recovered from:

q = q̂0q̂1 · · · q̂n−1 . (3.8)

We define useful variables {zω}n−1
ω=0 via

q̂ω = zω+1
zω

, (3.9)
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which we extend to all integers by zω+n = qzω. Thus, upon freezing the partition function
becomes

ẐX;c,σ± =
∑
λ̂

∏
ω∈Zn

q̂|λ̂ω |ω E
[
−ŜŜ∗ + M̂+Ŝ∗ + M̂−Ŝ∗

P̂ ∗12

]Zn
. (3.10)

The projection onto the Zn-invariant piece can be performed in a way that reveals the
structure of ẐS as the vacuum expectation value of the surface defect observable. First,
note that the projection ρ : Morb

C2
12
−→MC2

12
descends to the projection at the level of fixed

points which we still denote as ρ : λ̂ −→ λ. This projection between partitions is given by
ρ(λ̂) = λ, where [30, 38]

λ
(α)
i ≡

⌊
λ̂

(α)
i + c(α)

n

⌋
, 1 ≤ i ≤ l

(
λ̂(α)

)
, α = 1, · · · , N. (3.11)

Next, the two descriptions of the gauge theory, the orbifold defect and Gukov-Witten surface
defect, are connected by the mapping (3.1) accompanied by the appropriate redefinition of
the gauge theory parameters. It is immediate to see that the Ω-background parameters are
related by

nε̂2 ≡ ε2, (3.12)

corresponding to the z2 = ẑn2 mapping (the parameter ε̂2 was denoted by ε̃2 in [43]). We
further define shifted Coulomb moduli and the shifted hypermultiplet masses by

âα − c(α)ε̂2 ≡ aα; m̂±f − σ
±(f)ε̂2 ≡ m±f . (3.13)

(again, âα and m̂±f correspond to ãα and m̃±f of [43], respectively). These shifted moduli
will be the relevant parameters of the gauge theory after the mapping onto the ordinary
C2

12 with the surface defect. Note that these parameters are neutral under the Zn-action
due to the shifts by the right amount of ε̂2.

Keeping the new parameters in mind, we can write out all the relevant characters
decomposed according to the Zn-representations as

N̂ =
N−1∑
ω=0

Nω q̂
ω
2 Rω, Nω =

∑
c(α)=ω

eaα , N ≡
N−1∑
ω=0

Nω; (3.14a)

M̂± =
N−1∑
ω=0

M±ω q̂
ω
2 Rω, M±ω =

∑
σ±(f)=ω

em
±
f , M± ≡

N−1∑
ω=0

M±ω ; (3.14b)

K̂ =
N−1∑
ω=0

Kω q̂
ω
2 Rω, Kω =

∑
α

eaα
∑

(i,j)∈λ̂(α)

c(α)+j−1≡ω mod n

qi1q̂
j
2, K ≡ Kn−1; (3.14c)

Ŝ = N̂ − P1 (1− q̂2R1) K̂ =
∑
ω

ŜωRω =
∑
ω

Sω q̂
ω
2 Rω. (3.14d)
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Note that the ADHM data for the ordinary instantons on C2
12 are realized as linear maps

on the spaces N and K. In particular, we have

K = Kn−1 =
N∑
α=1

eaα
∑

(i,j)∈λ̂(α)

c(α)+j−1≡n−1 mod n

qi1q̂
j
2 =

N∑
α=1

eaα
∑

(i,j)∈λ(α)

qi1q
j
2, (3.15)

where we used ρ(λ̂) = λ in the last equality. This implies that the linear maps defined on the
vector spaces N and K are indeed the ADHM data for the moduli space MC2

12
of instantons

on the ordinary C2
12. In particular, the number of instantons on C2

12 is determined by the
number of instantons on the Zn-orbifold with the Zn-charge n− 1: |λ| = |λ̂n−1|.

We have defined the fractional characters

Sω = Nω − P1Kω + P1Kω−1 , ω = 1, . . . , n− 1; (3.16a)
S0 = N0 − P1K0 + q2P1Kn−1. (3.16b)

Then the character of the universal sheaf S is obtained by summing over the fractional
characters Sω,

S =
N−1∑
ω=0

Sω = N − P1P2K. (3.17)

We define fractional Y-function:

Yω(x) = E [−exS∗ω] (3.18)

so that the bulk Y(x) is a product of all fractional Y(x) by virtue of (3.17):

Y(x) =
∏
ω∈Zn

Yω(x). (3.19)

Finally, using the characters with shifted parameters, the partition function (3.10) can be
reorganized as

ẐX;c,σ± =
∑
λ

q|λ|Zbulk[λ]
∑

λ̂∈ρ−1(λ)

n−1∏
ω=0

zkω−1−kω
ω Zdefect[λ̂]. (3.20)

The bulk and regular surface defect contributions to the grand canonical ensemble are

Zbulk[λ] = E
[−SS∗ +MS∗

P ∗12

]
, (3.21a)

Zdefect[λ̂] = E

 1
P ∗1

∑
0≤ω<ω′≤N−1

(
SωS

∗
ω′ −M+

ω S
∗
ω′ −M−ω S∗ω′

) . (3.21b)

Now, the partition function can be expressed in the following form by treating the defect
contributions as observable:

ẐX;c,σ± =
∑
λ

q|λ| Sc,σ± [λ] Zbulk[λ] =
〈
Sc,σ±

〉
ZC2

12
, (3.22)
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where:

Sc,σ± [λ] =
∑

λ̂∈ρ−1(λ)

n−1∏
ω=0

zkω−1−kω
ω Zdefect[λ̂] (3.23)

The P ∗1 = 1 − q−1
1 in the denominator signifies this contribution is indeed coming from

integrating out the degrees of freedom on the z1-plane. Therefore, the partition function is
interpreted as the vacuum expectation value of the surface defect observable supported on
the z1-plane upon the mapping (3.1).

The expression (3.23) of the surface defect observable in fact suggests a dual description
of the defect: a two-dimensional sigma model coupled to the bulk four-dimensional gauge
theory. Indeed, it can be shown that (3.23) gives the partition function of the two-
dimensional supersymmetric sigma model on a bundle over flag variety in the decoupling
limit q → 0 [30, 38]. The coupling between the two-dimensional sigma model and the
four-dimensional gauge theory produces additional terms at nonzero q.

Although the orbifold construction produces the description of all Gukov-Witten type
defects, our main interest will be the special case referred to as the regular surface defect.
The latter breaks the gauge group down to its maximal torus along the surface of the surface
defect. It is defined by choosing n = N and the coloring functions c(α) and σ±(f) as the
one-to-one functions,

c(α) = α− 1, α = 1, . . . , N ; σ±(f) = f − 1, f = 1, . . . , N, (3.24)

unique up to the S(N)× S(2N) permutations.

3.2 Folded branes on orbifold and fractional Q-observables

Now we turn to the case where we insert additional stacks of branes on top of the stack on
Ĉ2

12 ⊂ Ẑ, and on top of the regular surface defect. Again, the Z3-charges are assigned as
n12,0 = n12,1 = n12,2 = N and n23,1 = 1. The ZN -charges are assigned so as to produce the
regular surface defect, namely,

N̂12 =
∑

ω′′∈ZN

(
eâω′′+1R0 ⊗Rω′′ + e

m̂−
ω′′+1−ε4R1 ⊗Rω′′ + em̂

+
ω′′−ε3R2 ⊗Rω′′

)

=
N−1∑
ω′′=0

(
eaω′′+1 q̂ω

′′
2 R0 ⊗Rω′′ + em

−
ω′′−ε4 q̂ω

′′
2 R1 ⊗Rω′′ + e

m+
ω′′+1−ε3 q̂ω

′′
2 R2 ⊗Rω′′

)
N̂23 = ex+(ω+1)ε̂2+ε̂3R1 ⊗Rω+1 . (3.25)

Here, given a choice of the surface defect data, there are additional N choices of ω ∈ ZN .
The gauge origami partition function is written as

ẐX;ω =
∑
λ̂

∏
i=0,1,2
ω′∈ZN

q̂
|λ̂i,ω′ |
i,ω′ E

[
− P̂3Ŝ12Ŝ

∗
12

P̂ ∗12
− P̂1Ŝ23Ŝ

∗
23

P̂ ∗23
+ q̂3P̂4

Ŝ12Ŝ
∗
23

P̂ ∗2

]Z3×ZN
. (3.26)
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Removing the instantons with R±1 Z3-charge by setting the corresponding fractional
couplings to zero, we get:

ẐX;ω =
∑
λ̂

∏
ω′∈ZN

q̂
|λ̂ω′ |
ω′ E

[
−ŜŜ∗ + M̂+Ŝ∗ + M̂−Ŝ∗

P̂ ∗12
− ex+ωε̂2(Ŝ∗ − M̂−∗)

P̂ ∗2

]ZN
. (3.27)

The first term is precisely the measure that defines the partition function of the gauge theory
on the orbifold, (3.10). The second term can be interpreted as the surface defect observable
supported on the ẑ2-plane, obtained by integrating out the degrees of freedom on Ĉ2

23.

• We define the fractional Q-observables (with the mostly entire convention, to be made
more precise below) by

Qω(x) ≡ E
[
−ex+ωε̂2 Ŝ

∗

P̂ ∗2

]ZN
, ω = 0, · · · , N − 1. (3.28)

= E

− ex

1− q−1
2

∑
ω′≤ω

S∗ω′ −
exq−1

2
1− q−1

2

∑
ω′>ω

S∗ω′


Note that the ratio of fractional Q-observables produces the fractional Y-observables,

Qω(x)
Qω−1(x) = E [−exS∗ω] = Yω(x). (3.29)

It will be convenient to define the Γ-dressed fractional Q-observables:

Q̃ω(x) ≡ ε−ω2 Qω(x)
N−1∏
ω′=0

Γ
(

1 +
x−m+

ω−ω′
ε2

) . (3.30)

Then the ratio of the redefined fractional Q-observables is

Q̃ω(x)
Q̃ω−1(x)

= Yω(x)
x−m+

ω
(3.31)

This identity will be useful in deriving the fractional quantum T-Q equation in section 4.2.
In these notations, the partition function can be expressed as expectation value of an

observable on the colored partitions λ̂ as

ẐX;ω =
〈
Qω(x)

〉
ZN
ẐĈ2

12
, (3.32)

where the subscript ZN is to distinguish from the vacuum expectation value in the bulk
gauge theory without defects.

• Using the map (3.1) the same partition function (3.27) is interpreted as the correlation
function of the intersecting surface defect observables, supported on the z1-plane and the
z2-plane respectively, in the absence of the ZN -orbifold. More pedantically, one could
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distinguish three operators whose correlation function represents (3.27): the two surface
defects and one bi-local operator, inserted at their intersection.

By the redefinition of parameters and the rearrangement of the characters (3.12), (3.13),
(3.14), the partition function becomes

ẐX;ω =
∑
λ

q|λ| Oω(x)[λ]Q(x)[λ] E
[−SS∗ +MS∗

P ∗12

]
=
〈
Oω(x)Q(x)

〉
ZC2

12
, (3.33)

where the Q-observable supported on the z2-plane is still given by

Q(x)[λ] = E
[
−e

xS∗[λ]
P ∗2

]
, (3.34)

and the observable Oω is obtained as

Oω(x)[λ] =
∑

λ̂∈ρ−1(λ)

N−1∏
ω′=0

z
kω′−1−kω′
ω′ Zdefect[λ̂] Ξ(0)

ω (x)[λ̂], (3.35)

where Zdefect is the contribution from the regular surface defect (3.21) and Ξ(0)
ω (x) is the

contribution from interaction between the two defects through the intersection point (the
origin in our setup) given by

Ξ(0)
ω (x)[λ̂] ≡ E

ex ∑
ω<ω′≤N−1

S∗ω′ [λ̂]

 . (3.36)

It should be noted that the interaction term (3.36) vanishes for ω = N − 1. In this case
we simply get

QN−1(x) = Q(x). (3.37)

Namely, the bulk Q-observable is identified with the last component of the fractional
Q-observables. This also agrees with the definition of the fractional Q-observables in (3.28).

3.3 Fractional qq-characters

We top up by another stack of branes on the orbifold Ẑ = Ĉ4
1234/ (Z3 × ZN ). This is the

generalization of the construction of the qq-characters from the crossed instantons that
we have seen in the section 2.2. In the presence of the orbifold, these branes fractionalize
according to the ZN -representations. Accordingly, integrating out the degrees of freedom of
these additional fractional branes produces the fractional qq-characters. Technically this is
done by computing the orbifold version of the gauge origami partition function. It can be
cast in the form of the correlation function of a point-like observable and the intersecting
surface defects.
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3.3.1 qq-character and the regular surface defect

We consider the case where there are two stacks of intersecting branes on Ĉ2
12 and Ĉ2

34. The
corresponding Chan-Paton spaces are the representations of the orbifold group:

N̂12 =
∑

ω′′∈ZN

(
eâω′′+1R0 ⊗Rω′′ + em̂

−
ω′′−ε4R1 ⊗Rω′′ + e

m̂+
ω′′+1−ε3R2 ⊗Rω′′

)

=
N−1∑
ω′′=0

(
eaω′′+1 q̂ω

′′
2 R0 ⊗Rω′′ + em

−
ω′′−ε4 q̂ω

′′
2 R1 ⊗Rω′′ + e

m+
ω′′+1−ε3 q̂ω

′′
2 R2 ⊗Rω′′

)
N̂34 = exq̂ω2 R0 ⊗Rω . (3.38)

Again, taking decoupling limit, the gauge origami partition function reduces to

ẐX;ω =
∑
λ̂

∏
ω′∈Zn

q̂
|λ̂ω′ |
ω′ Zbulk[λ]Zdefect[λ̂]

(
E
[
−ex+ε1S∗ω+1

]
+q̂ωE

[
exS∗ω−exe−m

+
ω

ω −exe−m
−
ω

])
=
∑
λ̂

∏
ω′∈Zn

q̂
|λ̂ω′ |
ω′ Zbulk[λ]Zdefect[λ̂]

(
Yω+1(x+ε1)+q̂ω

Pω(x)
Yω(x)

)

=
〈
Yω+1(x+ε1)+q̂ω

Pω(x)
Yω(x)

〉
ZN
ẐĈ2

12
, (3.39)

where the subscript indicates it is a vacuum expectation value in the gauge theory on
the ZN -orbifold. The point-like observables defined in this way are called the fractional
qq-characters,

Xω(x) ≡ Yω+1(x+ ε1) + q̂ω
Pω(x)
Yω(x) . (3.40)

Using the map (3.1), the partition function (3.39) can also be viewed as the correlation
function of the regular surface defect observable supported on the z1-plane and a point-like
observable at the origin.

3.3.2 With fractional Q-observables

At last, we consider the three stacks of branes on Ĉ2
12, Ĉ2

23, and Ĉ2
34. The orbifold group

representations for the Chan-Paton spaces are:

N̂12 =
∑

ω′′∈ZN

(
eâω′′+1R0 ⊗Rω′′ + em̂

−
ω′′−ε4R1 ⊗Rω′′ + e

m̂+
ω′′+1−ε3R2 ⊗Rω′′

)

=
N−1∑
ω′′=0

(
eaω′′+1 q̂ω

′′
2 R0 ⊗Rω′′ + em

−
ω′′−ε4 q̂ω

′′
2 R1 ⊗Rω′′ + e

m+
ω′′+1−ε3 q̂ω

′′
2 R2 ⊗Rω′′

)
N̂23 = ex

′+ε̂2+ε3 q̂ω
′

2 R1 ⊗Rω′+1

N̂34 = exq̂ω2 R0 ⊗Rω (3.41)
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Here, notice that there are N choices for both ω, ω′ ∈ ZN , of total N2 such configurations.
The gauge origami partition function is written as

ẐX;ω,ω′ =
∑
λ̂

∏
i∈Z3
ω′′∈ZN

q̂
|λ̂i,ω′′ |
i,ω′′ E

[
− P̂3Ŝ12Ŝ

∗
12

P̂ ∗12
− P̂1Ŝ23Ŝ

∗
23

P̂ ∗23
− P̂1Ŝ34Ŝ

∗
34

P̂ ∗34
(3.42)

−q̂−1
12 Ŝ12Ŝ

∗
34 + q̂3P̂4

Ŝ12Ŝ
∗
23

P̂ ∗2
+ q̂4P̂1

Ŝ23Ŝ
∗
34

P̂ ∗3

]Z3×ZN
.

We again take the decoupling limit where the instantons with nonzero Z3-charges are
prohibited. Using the same argument as the case without the ZN -orbifold, we modify the
last term coming from the interaction between Ĉ2

23 and Ĉ2
34 to

E
[
−q̂23N̂34N̂

∗
23 − q̂34N̂23N̂

∗
34 + P̂14N̂23K̂

∗
34

]Z3×ZN (3.43)

With some decent but tedious calculation, we find the gauge origami partition function can
be organized into the following form

ẐX;ω,ω′ = −
∑
λ̂

∏
ω′′∈ZN

q̂
kω′′
ω′′ Zbulk[λ]Zdefect[λ̂]× T̂N+1,ω(x)[λ̂]Qω′(x′)[λ̂]

= −
〈
T̂N+1,ω(x)Qω′(x′)

〉
ZN
ẐĈ2

12
. (3.44)

The fractional qq-character, which is a correlation function of gauge theory observables,
consists of fractional Q and Y-observables:

T̂N+1,ω(x)Qω′(x′) = (x− x′)δωω′Yω+1(x+ ε1)Qω′(x′) + q̂ω(x− x′ + ε1)δωω′ Pω(x)
Yω(x)Qω

′(x′)

(3.45)

Due to the compactness of the moduli space of spiked instantons on orbifold [28, 36], the
vacuum expectation value of the fractional qq-character〈

T̂N+1,ω(x)Qω′(x′)
〉
ZN

= (x− x′)δωω′
〈
Yω+1(x+ ε1)Qω′(x′)

〉
ZN

+ q̂ω(x− x′ + ε1)δωω′Pω(x)
〈
Qω′(x′)
Yω(x)

〉
ZN

(3.46)

is regular in x. In particular, it is a degree 2 polynomial in x when ω = ω′, and a degree 1
polynomial in x when ω 6= ω′.

4 Quantum T-Q equations as Dyson-Schwinger equations

The qq-characters in the N = 2 gauge theory contain nontrivial analytic information on the
gauge theory correlation functions. Their crucial property is, as introduced in the previous
sections, the regularity of their vacuum expectation value [6] following from the compactness
theorem for the moduli space of spiked instantons [28]. The regularity constrains relevant
gauge theory correlation functions by requiring the vanishing conditions for their singular
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parts, yielding nontrivial equations that they have to satisfy. These equations are called
the non-perturbative Dyson-Schwinger equations [6].

Generally, the non-perturbative Dyson-Schwinger equations encode the chiral ring
relations [40]. With the insertion of surface defects, the chiral ring is subject to nontrivial
relations between the observables from the bulk gauge theory and the defect. The Ω-
background uplifts these relations to differential equations in coupling constants obeyed
by the vacuum expectation value of the defect observable. The non-perturbative Dyson-
Schwinger equation can effectively used to exactly derive such differential equations, as
shown in [31, 35, 37–39, 42].

In this section, rather, we focus on a set of difference equations satisfied by the vacuum
expectation values of (fractional) Q-observables that we introduced in section 2.1.2 and
section 3.2. We refer to the associated difference equation as the (fractional) quantum T-Q
equation. We present the relation of these difference equations to the Baxter T-Q equation
for the XXXsl2 spin chain, which explains how these names are coined.

4.1 Quantum T-Q equations

We consider the qq-character in the presence of the Q-observable, without the regular
surface defect. Recall that the qq-character in this case is given by (2.43). Now we set
x = x′ and to x = x′ − ε1 in (2.43), yielding〈

Y(x+ ε2)Q(x)
〉

= 〈Q(x+ ε2)〉 = − 1
ε1

〈
T̂N+1(x− ε1)Q(x)

〉
, (4.1a)

qP (x)
〈
Q(x)
Y(x)

〉
≡ qP (x) 〈Q(x− ε2)〉 = 1

ε1

〈
T̂N+1(x)Q(x)

〉
(4.1b)

Let us define a degree N polynomial TN (x) by,

TN (x) = 1
ε1

(
T̂N+1(x)− T̂N+1(x− ε1)

)
. (4.2)

The TN (x) can be obtained explicitly by expanding (2.43) in large x and taking the
difference at two values. Since the Y-observable is the generating function of the N = 2
chiral observable Trφk, k ∈ Z>0, the coefficients of TN (x) are given by combinations of them.

Then we obtain the following difference equation for the vacuum expectation value of
the Q-observable, called the quantum T-Q equation:〈

Q(x+ ε2)
〉

+ qP (x)
〈
Q(x− ε2)

〉
=
〈
TN (x)Q(x)

〉
. (4.3)

In terms of the redefined Q-observables, the quantum T-Q equation is written as

P+(x+ ε2)
〈
Q̃(x+ ε2)

〉
+ qP−(x)

〈
Q̃(x− ε2)

〉
=
〈
TN (x)Q̃(x)

〉
. (4.4)

Note that the quantum T-Q equation is valid with two non-zero Ω-background parame-
ters ε1 and ε2; and also that the vacuum expectation value of the Q-observable involves
nontrivial ensemble average over partitions. In the limit ε1 → 0, the ensemble average is
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dominated by the evaluation on the limit shape [4]. In particular, the vacuum expectation
value of the Q-observable becomes a regular function in x, which we may call the Baxter
Q-operator [47]. The quantum T-Q equation reduces to the Baxter T-Q equation for
XXXsl2 spin chain satisfied by the Q-operator. The spectra of Hamiltonians, encoded in
the coefficients of the polynomial TN (x), are given by the vacuum expectation values of the
chiral observables Trφk in the NS limit. The Baxter T-Q equation obtained in this way is
identical to the one in [59] arising from the q-characters of the same N = 2 gauge theory.

4.2 Fractional quantum T-Q equations

We consider the qq-characters in the presence of the fractional Q-observable, constructed in
section 3.3.2. Recall that the qq-characters are given by

T̂N+1,ω(x)Qω′(x′) = (x− x′)δωω′Yω+1(x+ ε1)Qω′(x′) + q̂ω(x− x′ + ε1)δωω′ Pω(x)
Yω(x)Qω

′(x′).

(4.5)

The vacuum expectation value is regular in x. Namely,〈
T̂N+1,ω(x)Qω′(x′)

〉
ZN

= (x− x′)δωω′
〈
Yω+1(x+ ε1)Qω′(x′)

〉
ZN

+ q̂ω(x− x′ + ε1)δωω′Pω(x)
〈
Qω′(x′)
Yω(x)

〉
ZN

(4.6)

has no singularities in x. We can compute the left hand side by explicitly expanding the
right hand side in large x. The building block Yω(x) in large x behaves as

Yω(x) = (x− aω) exp
[
ε1
x
νω−1 + ε1

x2D
(1)
ω−1 + · · ·

]
(4.7)

with νω = kω − kω+1 and

D(1)
ω = ε2kω +

∑
�∈Kω

ĉ� −
∑

�∈Kω+1

ĉ� = ε2kω + ĉω − ĉω+1.

T̂N+1,ω(x) is a degree 2 polynomial when ω = ω′

T̂N+1,ω(x) = (x− x′)(x− aω+1 + ε1νω + ε1) + q̂ω(x− x′ + ε1)(x−mω + aω − ε1νω−1)

+ ε1D
(1)
ω − q̂ωε1D

(1)
ω−1 + ε2

1
2 ν

2
ω − ε1aω+1νω

+ q̂ω

(
ε2

1
2 ν

2
ω−1 + (mω − aω)ε1νω−1 + Pω(aω)

)
, (4.8)

where mω :=
∑
±m

±
ω . T̂N+1,ω(x) is a degree 1 polynomial when ω 6= ω′:

T̂N+1,ω(x) = x− aω+1 + ε1 + ε1νω + q̂ω(x−mω + aω − ε1νω−1). (4.9)

– 24 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
0

Now let us repeat the steps deriving the quantum T-Q equation in eq. (4.3): we set
ω = ω′ and take the difference between x = x′ and x′ = x+ ε1 cases in (4.8):

(x−m+
ω+1)

〈
Q̃ω+1(x)

〉
ZN

+q̂ω(x−m−ω )
〈
Q̃ω−1(x)

〉
ZN

(4.10)

=
〈

(x− aω+1 + ε1νω) Q̃ω(x)
〉

ZN

+q̂ω

〈
(x+ aω −mω − ε1νω−1) Q̃ω(x)

〉
ZN

,

By multiplying the perturbative prefactor, we define the full vacuum expectation value of
the regular surface defect observable as

Ψ(q, z) =
N−1∏
ω=0

z
m+
ω−aω
ε1

ω ẐĈ2
12
. (4.11)

Now we can replace the vacuum expectation values of the fractional instanton charges
in (4.10) by differentials in fractional couplings acting on the correlation function of
intersecting surface defects. This leads to the following difference equation for the fractional
Q-observables, which we call the fractional quantum T-Q equation:〈

(x−m+
ω+1)Q̃ω+1(x) + q̂ω(x−m−ω )Q̃ω−1(x)

〉
ZN

Ψ

=
[
x−m+

ω+1 + ε1zω+1∂zω+1 + q̂ω(x−m−ω − ε1zω∂zω)
]〈
Q̃ω(x)

〉
ZN

Ψ.

:=
[
(1 + q̂ω)x+ ρω

]〈
Q̃ω(x)

〉
ZN

Ψ

(4.12)

For notational convenience, we will define

TN,ω(x) := (1 + q̂ω)x+ ρω (4.13)

as a differential operator. The fractional quantum T-Q equation is then simply written as

(x−m+
ω+1)

〈
Q̃ω+1(x)

〉
ZN

Ψ+q̂ω(x−m−ω )
〈
Q̃ω−1(x)

〉
ZN

Ψ =TN,ω(x)
〈
Q̃ω(x)

〉
ZN

Ψ. (4.14)

In section 7, we show that the fractional quantum T-Q equation can be reorganized
into a matrix equation valued in an auxiliary two-dimensional space Vaux. More specifically,
it is translated to sl2-homomorphisms LXXX

ω (x) ∈ End (Vsω ,aω ⊗ Vaux), which are identified
as the Lax operators of the XXXsl2 spin chain with N sites, with particular sl2-modules
(Hsω ,aω)N−1

ω=0 (see section 7 for the definition of Hsω ,aω). By concatenating the Lax operators,
we produce the monodromy matrix of the spin chain, as a 2×2 matrix in End(Vaux) with its
entry valued in End

(⊗N−1
ω=0 Hsω ,aω

)
, represented as differential operators in the fractional

couplings (zω)N−1
ω=0 . The transfer matrix is obtained by taking the trace in Vaux, yielding

a degree N polynomial in x whose coefficients are quantum Hamiltonians represented on⊗N−1
ω=0 Hsω ,aω as differential operators. In this sense, as the name suggests, the fractional
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quantum T-Q equation can indeed be regarded as the fractionalization of the quantum T-Q
equation (4.3).

More interestingly, in section 6 the fractional quantum T-Q equation will be shown to
be the Fourier transform of the degenerate 5-point KZ equation for slN . Accordingly, the
solutions to the KZ equation is given by the Fourier transform of the vacuum expectation
value of the fractional Q-observable. Thus, the fractional quantum T-Q equation plays
a fundamental role in connecting the N = 2 gauge theory to the system of the slN KZ
equation and the system of sl2 spin chain simultaneously, establishing an intricate spectral
relation between the two systems. We will explain the details of this correspondence in a
separate work [51].

5 The vortex string defect

In this section we Fourier transform the folded brane induced observables to define another
surface defect, which is the analogue of the vortex string defect studied in [30, 38], with a
contact term arising at the intersection with the regular surface defect. For a discussion of
contact terms between 2-observables in Donaldson theory and its generalizations, see [60, 61].
Unlike those infrared contact terms, our contact term is an ultraviolet observable, which we
discuss below.

5.1 Fourier transform to vortex string defect

• Let us define the new observable Υ(y) as a Fourier transform of the vector of vacuum
expectation values of fractional Q-observables (3.30):

Υ(y) ≡ Υpert(y)
∑
x∈L

(
〈Q̃ω(x)〉ZNΨ

)N−1

ω=0
y
− x
ε2 = Υpert(y)

∑
x∈L



〈Q̃0(x)〉ZN
〈Q̃1(x)〉ZN

...
〈Q̃ω(x)〉ZN

...
〈Q̃N−1(x)〉ZN


Ψy−

x
ε2 ,

(5.1)

where L = L + Zε2 ⊂ C is a lattice of complex numbers with step ε2 chosen so that the
above expression converges.

• The physical meaning of Υ(y) is that it is essentially a vortex string surface defect [30, 38].
One can interpret it as a partition function of an A-type model (specifically, in a gauged
linear sigma model realization) on the total space of a sum of N copies of O(−1) line bundle
over the projective space PN−1.

The parameter y plays the rôle of the complexified Kähler modulus. Depending on the
domain in which y is, this projective space is either the projectivization P(N) of the color
Chan-Paton space, or the projectivization P(M±) of the half of the flavor spaces. In that
sense the original Q-observable could be thought of as the analytic continuation of a path
integral in the two dimensional theory living on the vortex string to the complex values
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x/ε2 of the instanton charge. It is remarkable that the latter can be identified with the
Coulomb modulus of a theory living on the C2

23-plane in the folded construction.

• The perturbative contribution Υpert(y) is a simple function of y to be determined. Each
individual component of Υ can be referred to as

Υω(y) ≡ Υpert(y)
∑
x∈L
〈Q̃ω(x)〉ZNΨy−

x
ε̃2 , (5.2)

which possesses a twisted periodicity

Υω+N (y) = yΥω(y). (5.3)

• We stress here that the vacuum expectation value above is taken in the gauge theory in
the presence of the ZN -orbifold, which can be converted to the vacuum expectation value
in the ordinary gauge theory with additional insertion of the regular surface defect. As a
result, Υ(y) is the pair correlator of intersecting surface defect observables.

• In defining the Fourier transform Υ(y) (5.1), we should require that the series converges.
The convergence is guaranteed only with appropriate choices of the lattice L, and, moreover,
different choices of the lattice lead to series with different convergence domains. This can
be shown as follows.

From the definition (3.30), we notice that the fractional Q-observable Q̃ω(x) has simple
zeros at x = m+

ω−ω′ − (n+ 1)ε2, ω′ = 0, · · · , N − 1, n ∈ Z≥0. Thus we choose the lattices

Lω ≡ {m+
ω + nε2 | n ∈ Z}, ω = 0, · · · , N − 1. (5.4)

Then the infinite summation in (5.1) terminates to the left due to the zeros of the fractional
Q-observables, giving

Υ(ω′)(y) ≡ Υpert(y)
∑
x∈Lω′

(
〈Q̃ω(x)〉ZNΨ

)N−1

ω=0
y
− x
ε2

= Υpert(y)
∞∑
n=0

(
〈Q̃ω(m+

ω′ + nε2)〉ZNΨ
)N−1

ω=0
y
−
m+
ω′
ε2
−n
.

(5.5)

Then the series converges in the domain 0 < |q| < 1 < |y|. In other words, with the specific
choices for the lattice L above, the solutions to the KZ equations expressed as series (5.5)
are valid only inside the particular domain 0 < |q| < 1 < |y|.

We can continuously vary the parameter y to other convergence domains, where
the solutions have to be properly analytically continued. Such analytic continuations of
correlation functions of surface defect observables was studied in depth in [35, 38]. For
instance, in the domain 0 < |y| < |q| < 1, we can take the Fourier transform similar to (5.1)
to construct the solutions as a series,

Υ′(ω′)(y) ≡ Υ′pert(y)
∑
x∈Lω′

(
〈Q̃ω(x)〉ZNΨ

)N−1

ω=0

(
y

q

) x
ε2
, (5.6)
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for which we can derive the 5-point KZ equations by repeating the same computations.
Note that even though we are seemingly using the same lattices, the convergence domains
are distinct so that we have to redefine m+

α ↔ m−α in the latter solution to properly patch
the two solutions together through analytic continuation. Such analytic continuations across
convergence domains lead to nontrivial connection formulas between these solutions [35, 38].

In the language of the supersymmetric gauged linear sigma model with the target space
being the total space of the vector bundle O(−1)⊗ CN → PN−1 over the projective space,
the analytic continuation corresponds to the flop transition initiated by the variation of the
Kähler modulus y, which roughly exchanges the base and the fiber of the target space [38].

5.2 On the intersection of surface defects

• Consider two A-twisted topological sigma models on Kähler manifolds X1,2 with the
worldsheets Σ1,2, respectively. Let L ⊂ X1 ×X2 be a subvariety (a correspondence), and
p1 ∈ Σ1, p2 ∈ Σ2 be a couple of points. Then one can define a bi-local observable $L

in the combined theory which is a condition for the holomorphic maps φi : Σi → Xi,
i = 1, 2, to agree at pi in the sense of the L-correspondence: (φ1(p1), φ2(p2)) ∈ L. Using
Künneth decomposition, the Poincaré dual δL ∈ H∗(X1×X2) to L (assuming compactness)
decomposes as:

δL =
∑
a,b

Nabe(1)
a ⊗ e

(2)
b (5.7)

where e(i)
a , a = 1, . . . , dimH∗(Xi) are the bases of the respective cohomology groups. Using

this decomposition, the bi-local observable $L can be expanded in the basis of the ordinary
0-observables of respective sigma models (this is similar to the eq. (3.3) in [62]).

• In our case, the surface defects support the sigma models on the (total spaces of certain
equivariant vector bundles) over the complete flag variety F (N) for the regular defect, and
the projective space P(N) for the vortex string. Define the correspondence

Lω ⊂ F (N)× P(N) (5.8)

as the variety of pairs (V0 ⊂ V1 ⊂ . . . ⊂ VN−1 ⊂ VN ≡ N, ` ⊂ N), with dimNi = i, dim` = 1,
such that ` ⊂ Vω+1. It is a nontrivial correspondence for ω = 0, . . . , N − 2.

We expect the local observable defined by the evaluation of the Ξ(0) (3.36) at x ∈ L to
be a localization of the observable $Lω . It would be nice to work this out in detail.

6 Knizhnik-Zamolodchikov equations

In this section, we verify that the correlation function of the intersecting surface defect
observables in the N = 2 supersymmetric gauge theory introduced above satisfies the KZ
equations associated with affine Lie algebra ŝlN .

Let g be a simple Lie algebra over C. The KZ equations were originally derived for
the correlation functions of primaries in the WZNW model, in which an affine Lie algebra
ĝ is the conserved current algebra [46]. The level of the relevant lowest-weight ĝ-modules
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is identified with the level k ∈ Z of the WZNW model, and therefore is constrained to
be an integer. The KZ equations were later reformulated in a representation theoretical
manner [63, 64], where the correlation functions are defined as matrix elements of products
of intertwining operators between lowest-weight ĝ-modules of level k ∈ C and evaluation
ĝ-modules of level 0.

Let us only briefly recall the formulation of Knizhnik-Zamolodchikov equations here,
without going into details of representation theory of affine Lie algebras. We consider lowest-
weight g-modules V0, V∞ and any r+ 1 g-modules (Hi)ri=0. To each lowest-weight g-module
V0 and V∞, we associate the induced lowest-weight ĝ-modules V0,k and V∞,k of level k ∈ C,
considering them to be located at zr+1 = 0 and z−1 =∞, respectively. For the rest of the
g-modules Hi, we construct the evaluation modules Hi(zi) with complex parameters zi ∈ P1.
The intertwining operator is defined as a ĝ-homomorphism between a lowest-weight ĝ-module
and the product of a lowest-weight ĝ-module and an evaluation ĝ-module. By taking a
consecutive product of the intertwining operators, we can construct a ĝ-homomorphism
between V∞,k and

⊗r
i=0 Hi(zi) ⊗ V0,k. The correlation function ψ(z) = ψ(z0, · · · , zr)

is defined as the matrix element of this product of intertwining operators, valued in
V∗∞⊗

⊗r
i=0 Hi⊗V0. Here, V∗∞ is the restricted dual of V∞, i.e., the direct sum of the duals

of weight subspaces of V∞.
Now let us denote the basis of the Lie algebra g by {Tk}. We also denote Tk

i the
representation of {Tk} on the module at zi. Then the KZ equations read(k + h∨) ∂

∂zi
−
r+1∑
j=0
j 6=i

Tk
i ⊗ Tk

j
zi − zj

ψ(z) = 0, i = 0, · · · , r, (6.1)

where h∨ is the dual Coxeter number. As evident from the equations, the space of solutions
is g-invariant. Thus we may restrict our attention to the correlation function valued
in the space of g-invariants, ψ(z) ∈ (V∗∞ ⊗

⊗r
i=0 Hi ⊗ V0)g, at our interest toward the

correspondence with the N = 2 gauge theory.
In connection to the N = 2 gauge theory, the subject of our study, the relevant simple

Lie algebra will be g = slN . Our main example will be the Riemann sphere with five
punctures (r = 2),

z−1 =∞, z0 = y, z1 = 1, z2 = q, z3 = 0, (6.2)

at each of which we attach an slN -module as we just described. In particular, we associate
the lowest-weight Verma modules at 0 and ∞, the Heisenberg-Weyl modules (HW modules)
at q, 1, and finally the standard N -dimensional representation at y. It turns out that, as
we will see below, the N -dimensional representation can be realized as a submodule of the
HW module with specialized weights. From the point of view of the current algebra, this
corresponds to inserting a degenerate primary field at y.

We show that the Fourier transform of the correlation function of the intersecting
surface defect observables that we studied in section 3.2 solves the degenerate 5-point KZ
equations. In the view of the BPS/CFT correspondence, there have been earlier conjectures
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relating the four dimensional gauge theory correlation functions to the analytically continued
WZNW conformal blocks [5, 9, 10, 14]. Our proof of the KZ equations for the gauge theory
correlation function is an explicit confirmation of some of these conjectures.

6.1 Knizhnik-Zamolodchikov equations for slN

We first introduce the construction of relevant slN -modules that compose the degenerate
5-point genus-0 correlation function by flag varieties. Then we will describe how the
degenerate 5-point KZ equations are expressed with these representations.

6.1.1 Some representations of slN
As we have briefly mentioned, the relevant slN -modules are the lowest-weight (highest-weight)
Verma modules, the Heisenberg-Weyl (HW) modules, and the standard N -dimensional
representation. For the Verma modules and the HW modules, we shall only review how these
modules are constructed without providing the proofs for their desired properties. For the
details of the proofs, we refer to [43]. Then we construct the N -dimensional representation
as a submodule of a special HW module.

To make the notations concise, we first present the constructions of glN -modules. The
representations of slN are defined on the same spaces by properly redefining the Cartan
generators.

Let W = CN be the complex vector space of dimension N . We choose a basis {ea}Na=1
in W , with the dual basis in W ∗ by {ẽb}Nb=1, so that the Lie algebra glN is represented by
the linear maps

Tb
a = ea ⊗ ẽa ∈ End(W ) (6.3)

with the commutation relations [
Tb

a,Td
c

]
= δb

cTd
a − δd

aTb
c. (6.4)

The Lie algebra slN is spanned by Tb
a with a 6= b, and the Cartan generators

hi ≡ Tii − Ti+1
i+1, i = 1, · · · , N − 1. (6.5)

Verma modules. For the purpose of our study, it is convenient to construct Verma
modules by using flag variety. Let us consider complete flags of W = CN ,

{0} = V0 ⊂ V1 ⊂ · · · ⊂ VN−1 ⊂ VN = W, dim Vi = i, (6.6)

with the embeddings Ui : Vi → Vi+1. The action of G = GL(V1)×GL(V2)× · · · ×GL(VN−1)
on the embeddings is simply given by

g : (Ui)N−1
i=1 7→ (gi+1Uig−1

i )N−1
i=1 , gi ∈ GL(Vi). (6.7)

Then the flag variety is given by the GIT quotient

F (W ) = {(Ui) | Ui : Vi → Vi+1, i = 1, . . . , N − 1}stable/G, (6.8)

where the stability condition requires all the embeddings (Ui)N−1
i=1 to be injective.
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Let us also define the exterior power of the product of embeddings,

πi ≡
∧i

(UN−1 · · · Ui) :
∧i

Vi −→
∧i

W. (6.9)

Now we choose a basis (ea)Na=1 of W , and denote its dual basis by (ẽa)Na=1 with ẽa(eb) = δa
b .

We consider an open patch F (W )◦ ⊂ F (W ) associated to the chosen basis, defined by

F (W )◦ = {(Ui)| π̃i◦(πi) 6= 0, ∀i} ⊂ F (W ), (6.10)

where we defined the poly-covector π̃i◦ ≡ ẽ1 ∧ · · · ∧ ẽi ∈
∧iW ∗.

We construct a lowest-weight Verma module as follows. Let ζ = (ζ1, · · · ζN−1) ∈ CN−1

be given. Let us define Ωζ ≡
∏N−1
i=1

(
π̃i◦(πi)

)ζi , and freely generate the space Vζ = Ωζ C[u(i)
β ]

as a space of polynomial in

u
(i)
β ≡

π̃i+1
◦ (eβ ∧ πi)
π̃i◦(πi)

,
i = 1, · · · , N − 1
β = 1, · · · , i

. (6.11)

We will only work in the patch F (W )◦, so that the space is well-defined. Then the generators
of glN are represented on Vζ by

Tb
a|Vζ
≡ Jb

a = −
N−1∑
m=1

(UN−1)b
m

∂

∂ (UN−1)a
m
. (6.12)

We can show that Vζ is a lowest-weight Verma module with the lowest-weight vector Ωζ :

Jb
a Ωζ = 0, a > b,

hi|Vζ
Ωζ = −ζiΩζ , i = 1, · · ·N − 1.

(6.13)

See [43] for the details of the proof.
A highest-weight Verma module can be constructed in a similar manner. We consider

complete flags of the dual space

{0} = Ṽ0 ⊂ Ṽ1 ⊂ · · · ⊂ ṼN−1 ⊂ ṼN = W ∗, dim Ṽi = i, (6.14)

with the forgetful maps Ũi : Ṽi+1 → Ṽi. The action of G̃ = GL(Ṽ1)× · · ·GL(ṼN−1) on these
maps is simply

g : (Ũi)N−1
i=1 7→ (giŨig−1

i+1)N−1
i=1 , gi ∈ GL(Ṽi). (6.15)

Then the flag variety is given by

F̃ (W ∗) = {(Ũi) | Ũi : Ṽi+1 → Ṽi, i = 1, . . . , N − 1}stable/G̃, (6.16)

where the stability condition requires all the forgetful maps (Ũ)N−1
i=1 are surjective.

We define the exterior power of the product of duals of the forgetful maps,

π̃i ≡
∧i

(Ũ∗N−1 · · · Ũ∗i ) :
∧i

Ṽ ∗i −→
∧i

W ∗. (6.17)
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Also, with the chosen basis of W , we define the polyvector π◦i ≡ e1 ∧ · · · ∧ ei ∈
∧iW . The

associated open patch is

F̃ (W ∗)◦ = {(Ũi)| π̃i(π◦i ) 6= 0, ∀i} ⊂ F̃ (W ∗). (6.18)

Then, for a given ζ̃ ∈ CN−1, we define a vector Ω̃ζ̃ =
∏N−1
i=1

(
π̃i(π◦i )

)ζ̃i . We construct the
space Ṽζ̃ = Ω̃ζ̃ C[ũβ(i)] as the space of polynomials in

ũβ(i) ≡
ẽβ ∧ π̃i(π◦i+1)

π̃i(π◦i )
,

i = 1, · · · , N − 1
β = 1, · · · , i.

(6.19)

We will only work on the patch F̃ (W ∗)◦ so that the space is well-defined. The generators
of glN are represented on Ṽζ̃ by

Tb
a|Ṽζ̃
≡ J̃b

a =
N−1∑
m=1

(ŨN−1)m
a

∂

∂ (ŨN−1)m
b
. (6.20)

It can be shown that Ṽζ̃ thus defined is a highest-weight Verma module with the highest-
weight vector Ω̃ζ̃ :

J̃b
a Ω̃ζ̃ = 0, a < b,

hi|Ṽζ̃
Ω̃ζ̃ = ζ̃iΩ̃ζ̃ , i = 1, · · · , N − 1.

(6.21)

Details can be found in [43].

Heisenberg-Weyl modules. The Heisenberg-Weyl module (HW module) is constructed
from the projective space PN−1. Consider an abstract one-dimensional space L = C1 and
the space of linear maps z : L → W . The symmetry group C× of L acts on the space of
such maps by

z 7−→ t−1z, t ∈ C×. (6.22)

The space of injective embeddings up to the C×-equivalence is the projective space PN−1.
Let us trivialize the sections of the line bundle L → PN−1 on the open patch near

(z1, · · · , zN ) = (1, · · · , 1). Let us be given with µ ∈ C and τ ∈ CN−1. Then we construct the
space Hτ

µ as a space of degree-zero Laurent polynomials (with a multiplicative prefactor):

Hτ
µ ≡

N∏
a=1

(za)βa C
[
(z1)±, · · · (zN )±

]C×
, (6.23)

where β = (β1, · · · , βN ) ∈ CN is determined by

µ =
N∑

a=1
βa, τi = βi − βi+1, i = 1, · · · , N − 1. (6.24)
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We will only work in the patch near (z1, · · · , zN ) = (1, · · · , 1) so that za 6= 0 for all
a = 1, · · · , N . Now the generators of glN are represented on Hτ

µ by

Tb
a|Hτ

µ
= −zb ∂

∂za . (6.25)

Note that the slN weights of the vectors in Hτ
µ form a lattice including −τ , and each

weight subspace is one-dimensional. For instance, hi|Hτ
µ

(∏N
a=1 (za)βa

)
= −τi

(∏N
a=1 (za)βa

)
,

i = 1, · · · , N − 1.
We call Hτ

µ the (twisted) Heisenberg-Weyl module. It is the space of degree-zero
Laurent polynomials in (za)Na=1, multiplied by the prefactor determining the weight τ and µ.

The same module can be presented in a slightly different way. Let us again consider
one-dimensional space L̃ = C1 with the symmetry group C̃×. Then the space of the forgetful
maps

z̃ : W −→ L̃, (6.26)

up to the C̃× action,

z̃ 7−→ t̃̃z, t̃ ∈ C̃×, (6.27)

defines the projective space PN−1. Then, for given µ̃ ∈ C and τ̃ ∈ CN−1, we define the
space H̃τ̃

µ̃ by degree-zero Laurent polynomials multiplied by a prefactor,

H̃τ̃
µ̃ =

N∏
a=1

(z̃a)β̃aC[̃z±1 , · · · , z̃
±
N ]C× , (6.28)

with µ̃ =
∑N

a=1 β̃a and τ̃i = β̃i − β̃i+1, i = 1, · · · , N − 1. The generators of glN are
represented by

Tb
a|H̃τ̃

µ̃
= z̃a

∂

∂z̃b
. (6.29)

An important feature of the HW module Hτ
µ is that all the Casimirs depend only on µ

(µ̃ for H̃τ̃
µ̃). Also, the HW module is neither highest-weight nor lowest-weight generically.

Moreover, for generic µ and τ the HW module Hτ
µ is irreducible. At special values of µ

and τ , however, it is reducible into highest-weight and lowest-weight submodules.

N-dimensional representation. The standard N -dimensional representation of slN is
simply given by the N -dimensional vector space CN , on which the generators of glN act by
the single-entry GL(N,C) matrices,

Tb
a|CN = Eb

a . (6.30)

Note that the N -dimensional representation can also be obtained as a finite-dimensional
submodule of the Heisenberg-Weyl module with the specialized β̃ = (0, 0, · · · , 0, 1), or
equivalently µ̃ = 1 and τ̃ = (0, · · · , 0,−1). Namely, it is the N -dimensional submodule of
H̃

(0,··· ,0,−1)
1 = ũN C[ũ±1 , · · · , ũ

±
N ]C× , spanned by {ũ1, · · · , ũN} ⊂ H̃

(0,··· ,0,−1)
1 . The correla-

tion function with an insertion of the N -dimensional representation is said to be degenerate
in this sense.
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6.1.2 4-point correlation function

Before proceeding to the 5-point KZ equations, let us consider the 4-point KZ equation for
slN where the N -dimensional representation at y is not present (namely, r = 1). It was
verified in [43] that the vacuum expectation value of the regular surface defect observable in
the Υ(N) gauge theory with N fundamentals and N antifundamentals provides solutions
to the 4-point KZ equation. We will give a brief review here; details can be found in
appendix C.2.

For the 4-point KZ equation for slN , we consider the four punctures on the Riemann
sphere located at

z−1 =∞, z0 = 1, z1 = q, z2 = 0. (6.31)

As we described earlier, we assign the lowest-weight Verma modules V0(≡ Vζ) and V∞ to
the points 0 and ∞. We assign the HW-modules Hτ−ζ

µ(4) and H̃
τ−ζ̃
µ̃ to q and 1, respectively.

In this paper we only study the generic weights modules, so that they are irreducible.
In particular, since the lowest-weight Verma module V∞ is irreducible, its restricted dual
V∗∞ is a highest-weight Verma module. Thus, we can just replace V∗∞ by a highest-weight
Verma module that we will denote by Ṽζ̃ .

The 4-point correlation function Ψ(q) is valued in

Ψ(q) ∈
(
Vζ ⊗H

τ−ζ
µ(4) ⊗ H̃

τ−ζ̃
µ̃ ⊗ Ṽζ̃

)slN
. (6.32)

• Let G = G× G̃×C×× C̃×. Using the constructions of the slN -modules from flag varieties,
we can present the correlation function as a product of the Lie(G)-equivariant piece Ψ0, and
a G-invariant factor χ:

Ψ(q) = Ψ0 · χ(v1, · · · , vN−1; q), (6.33)

where χ(v1, · · · , vN−1; q) is a Laurent polynomial in

va =
(
z̃ ∧ π̃a−1) (πa) · π̃a (z ∧ πa−1)
z̃(z) · π̃a−1(πa−1) · π̃a(πa) , a = 1, · · · , N. (6.34)

It can be shown that
∑N

a=1 va = 1, making only N − 1 variables independent. Also,

Ψ0 =
N∏

a=1

(
(z̃ ∧ π̃a−1)(πa)

)β̃a
(π̃a(z ∧ πa−1))βa ·

N−1∏
i=1

(
π̃i(πi)

)αi
. (6.35)

Note that all the slN indices in (va)Na=1 and Ψ0 are contracted, so that Ψ(q) is invariant
under slN . The Lie(G)-equivariance of Ψ0 reads as:

Ψ0[gi+1Uig−1
i , g̃iŨig̃−1

i+1, tza, t̃
−1z̃a]×

N−1∏
i=1

(det gi)ζi(det g̃i)−ζ̃i × tµt̃−µ̃ = Ψ0[Ui, Ũi, za, z̃a],

(6.36)
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with gi = exp(h ξi), etc. and h nilpotent. The 3N − 1 undetermined variables (βa, β̃a, αi) in
the exponents of Ψ0 are determined by the 3N − 1 weight parameters (ζi, ζ̃i, τi, µ, µ̃(4)) by

β̃i + βi+1 + αi = ζi,

β̃i+1 + βi + αi = ζ̃i,

τi − ζi = βi − βi+1,

τi − ζ̃i = β̃i − β̃i+1

i = 1, . . . , N − 1,

∑
b
βb = µ,∑

b
β̃b = µ̃(4).

(6.37)

Note that among the first four equations only three of them are mutually independent.
Hence we have 3N − 1 equations in total, which completely determine 3N − 1 undetermined
variables (βa, β̃a, αi) in terms of 3N − 1 weight parameters (ζi, ζ̃i, τi, µ, µ̃(4)).

The 4-point correlation function (6.33) constructed from flag varieties provides a
particular representation of the 4-point KZ equation as a differential operator. The 4-point
KZ equation reads [

−(k +N) ∂
∂q

+ Ĥ(4)
0
q

+ Ĥ(4)
1

q− 1

]
Ψ(q) = 0. (6.38)

Here, we recall that the generator Tk of slN is represented on the respective modules
by (6.12), (6.20), (6.25), and (6.29), yielding

Ĥ(4)
0 = −

N∑
a,b=1

Ja
b z

b ∂

∂za , Ĥ(4)
1 = −z̃(z)

N∑
a=1

∂2

∂za∂z̃a
, (6.39)

where the superscript was used to distinguish from the 5-point case that will appear later.
Using the definition (6.34) of the variables (vi)N−1

i=0 , these differential operators can be
rewritten as differential operators in (vi)N−1

i=0 . See appendix C.1 for the details of the
computation.

On the other hand, in the gauge theory side we have the non-perturbative Dyson-
Schwinger equation for the vacuum expectation value of the regular surface defect, which fol-
lows from the regularity of the vacuum expectation value of the fractional qq-characters (3.40),

[x−I ]
〈
Xω(x)

〉
ZN

= 0,
ω ∈ ZN
I ∈ Z>0

. (6.40)

The Dyson-Schwinger equations can be organized into differential equations in the gauge
coupling q and the fractional couplings (zω)N−1

ω=0 [31]. As proven in [43], these differential
equations induce the 4-point KZ equation (6.38) that we have discussed so far, when
accompanied with a proper matching of the parameters on two sides. See appendix C.2 for
the review on the derivation. This correspondence can be regarded as an explicit verification
of the equivalence of the gauge theory correlation function and the WZNW correlation
function [9, 10, 14], for the case at hand.
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6.1.3 Degenerate 5-point correlation function
Let us now consider slN -modules associated to five points

z−1 =∞, z0 = y, z1 = 1, z2 = q, z3 = 0 (6.41)

on the Riemann sphere; lowest-weight Verma modules V0(= Vζ) and V∞ at 0 and
∞, Heisenberg-Weyl modules Hτ−ζ

µ and H̃
τ−ζ̃+(0,··· ,0,1)
µ̃ at q and 1, and finally an N -

dimensional representation CN at y. Note the HW module with the shifted slN -weights
can be written in N equivalent ways: H̃

τ−ζ̃+δN−1
µ̃ = H̃

τ−ζ̃+δa−1−δa
µ̃ , a = 1, · · · , N , where

δa ≡ (δi,a)N−1
i=1 ∈ ZN−1.

The standard N -dimensional representation CN is an N -dimensional submodule of a
special HW module H̃

−δN−1
1 = ũNC[ũ±1 , . . . , ũ

±
N ]C× , which is spanned by {ũ1, · · · , ũN} ⊂

H̃
−δN−1
1 . The generators of glN , which act as single-entry GL(N,C) matrices Eb

a , can be
represented by differentials:

Tb
a|CN = Eb

a = ũa
∂

∂ũb
. (6.42)

Again, we choose all the weights to be generic, so that all the modules are irreducible.
In particular, we can replace the restricted dual V∗∞ by a highest-weight Verma module Ṽζ̃ .

The corresponding degenerate 5-point correlation function Υ(q, y) is valued in

Υ(q, y) ∈
(
Vζ ⊗Hτ−ζ

µ ⊗ H̃
τ−ζ̃+δN−1
µ̃ ⊗ CN ⊗ Ṽζ̃

)slN

. (6.43)

Note that we have the following decomposition for the last tensor product,

Ṽζ̃ ⊗ CN '
N⊕

a=1
Ṽζ̃−δa−1+δa

, (6.44)

which follows from the identification of the N -dimensional representation as a submodule
of a HW module, CN ⊂ H̃

−δN−1
1 = H̃

−δa−1+δa
1 . Thus the 5-point correlation function

Υ(q, y) can be expressed as an N -tuple of 4-point correlation functions that we have studied
earlier. Note that the shift in the weights of the HW module H̃

τ−ζ̃+δN−1
µ̃ = H̃

τ−ζ̃+δa−1−δa
µ̃

is introduced precisely to account for the shift in the weights of the Verma modules after
the decomposition (6.44), making the space (6.43) nonempty.

The 5-point KZ equations satisfied by Υ(q, y) are[
−(k +N) ∂

∂q
+ Ĥ0

q
+ Ĥ1

q− 1 + Ĥy

q− y

]
Υ = 0 (6.45a)[

−(k +N) ∂
∂y

+ Â0
y

+ Â1
y − 1 + Âq

y − q

]
Υ = 0 (6.45b)

The operators in the numerators in the expression are the symmetric product of generators
{Tk} of slN represented on the respective modules,(

Ĥ0
)

=−
N∑

a,b=1
zbJa

b
∂

∂za ,
(
Ĥ1
)

=−z̃(z)
N∑

a=1

∂2

∂za∂z̃a
,
(
Ĥy

)
ab

=−Eb
az

a ∂

∂zb , (6.46a)

(
Â0
)

ab
=−Eb

aJ
a
b ,

(
Â1
)

ab
=−Eb

a z̃b
∂

∂z̃a
,

(
Âq

)
ab

=−
(
Ĥy

)
ab

=Eb
az

a ∂

∂zb . (6.46b)
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The degenerate 5-point correlation function Υ(q, y) is a vector in CN , which can be
constructed by

Υ(q, y) =
N∑

a=1
Υ(a)

0 · (ũ ∧ π̃a−1)(πa) · χa(v1, . . . , vN−1; q, y) , (6.47)

where χa(v1, · · · , vN−1; q, y) is a Laurent polynomial in (vi)N−1
i=1 defined in (6.34), and Υ(a)

0
takes a similar form with Ψ0 of the 4-point case (6.35), only that the exponents are now
dependent on the index a = 1, · · · , N :

Υ(a)
0 =

N∏
b=1

((z̃ ∧ π̃b−1)(πb))β̃
(a),∗
b (π̃b(z ∧ πb−1))β

(a),∗
b

N−1∏
i=1

(π̃i(πi))α
∗
i . (6.48)

As in the 4-point case, the variables (va)Na=1 and Υ(a)
0 are defined to be slN -invariant. For

each a = 1, · · · , N , there are 3N − 1 undetermined variables (β(a),∗
b , β̃

(a),∗
b , α∗i ). In a way

similar to the 4-point case (6.37), we have:

β̃
(a),∗
i + β

(a),∗
i+1 + α∗i + δi,a = ζi

β̃
(a),∗
i1+1 + β

(a),∗
i + α∗i + δi+1,a = ζ̃i

τi − ζi = β
(a),∗
i − β(a),∗

i+1

τi − ζ̃i + δa,i+1 − δa,i = β̃
(a),∗
i − β̃(a),∗

i+1

i = 1, . . . , N − 1

∑
b
β

(a),∗
b = µ

∑
b
β̃

(a),∗
b = µ̃.

(6.49)

Compared to the 4-point case, there are simple shifts by δi,a and δi+1,α in the first four
equations, among which only three of them are mutually independent. Also the parameter
µ̃ of the HW module H̃

τ−β+δN−1
µ̃ is shifted from its 4-point counterpart (6.37) by

µ̃ = µ̃(4) − 1. (6.50)

Such shifts in parameters reflect the effect of the additional N -dimensional representation
insertion. See [35, 38] for instance.

Just as in the 4-point case, we have 3N − 1 independent equations that determine
3N − 1 undetermined variables (β(a),∗

b , β̃
(a),∗
b , α∗i ) in terms of 3N − 1 weight parameters

(ζi, ζ̃i, τi, µ, µ̃). In particular, given a set of {βa, βa, αi}, a = 1, . . . , N , i = 1, . . . , N − 1, that
solves the matching in the 4-point case (6.37), the solutions to (6.49) are given by

β
(a),∗
b = βb, β̃

(a),∗
b = β̃b − δab, α∗i = αi. (6.51)

For the comparison with the equations on the gauge theory side, it is convenient to
reorganize the KZ equations into differential equations acting on the Laurent polynomial
part χa(v1, . . . , vN−1; q, y), by commuting the differential operators through the prefactors
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Υ(a)
0 . Let us denote χ(v1, . . . , vN−1; q, y) =

∑N
a=1 ũ

aχa(v1, . . . , vN−1; q, y) as a vector in CN .
Then the KZ equations (6.45) becomes[

−(k +N) ∂
∂q

+ Ĥ0
q

+ Ĥ1
q− 1 + Ĥy

q− y

]
χ = 0, (6.52a)[

−(k +N) ∂
∂y

+ Â0
y

+ Â1
y − 1 + Ây

y − q

]
χ = 0. (6.52b)

With some decent calculation, the residues Ĥ0,1,y in the q-component of the KZ equation
are found as(

Ĥ0
)

ab
= Ĥ

(4)
0 δab −

va+1 + · · ·+ vN−1
va

(∇z
a + βa)δab + zaz̃a

zbz̃b
(∇z

b + βb)θa>b (6.53a)(
Ĥ1
)

ab
= Ĥ

(4)
1 δab + 1

va
(∇z

a + βa)δab, (6.53b)(
Ĥy

)
ab

= −zaz̃a

zbz̃b
(∇z

b + βb), (6.53c)

where variables {va}Na=1 are

va = zaz̃a

z1z̃1 + · · ·+ zN−1z̃N−1
. (6.54)

Ĥ
(4)

0,1 are the coefficients in the KZ equation satisfied by the Laurent polynomial part χ of
the 4-point correlation function (C.7), whose exact forms can be found in (C.13).

The residues of the y-component of the KZ equation Â0,1,q, as differential operators
acting on χ(v1, . . . , vN−1; q, y), are found by(

Â0
)

ab
= vaθb>a

∂

∂va
− vb

za

zb
z̃a

z̃b
θb>a

∂

∂vb
− βb

za

zb
z̃a

z̃b
θb>a + β̃aθb>a − δabξa, (6.55a)(

Â1
)

ab
= −(∇z̃

a + β̃a − δab), (6.55b)(
Âq

)
ab

= zaz̃a

zbz̃b
(∇z

b + βb). (6.55c)

We use a short hand notation

ξa = δa
b + δa

b

N∑
i=1

β
(b),∗
i θi>a + β̃

(b),∗
i θi≥a + δa

b

N−1∑
i=1

α∗i θi≥a = ζa + · · ·+ ζN−1. (6.56)

The detailed derivation of the differential operators (6.53) and (6.55) can be found in
appendix D.1.

6.2 Knizhnik-Zamolodchikov equations from the T-Q equations

Now we shall verify that the correlation function of intersecting surface defect observables
in the N = 2 gauge theory satisfies the degenerate 5-point KZ equations discussed so far.
In fact, the KZ equations are shown to be the Fourier transform of the fractional quantum
T-Q equation obeyed by the fractional Q-observables, which we derived in section 4.2.
Correspondingly, the Fourier transform Υ(q, y) of the correlation function of intersecting
surface defects provides the solutions to the KZ equation, and thereby gets identified with
the genus 0 degenerate 5-point conformal block of the ŝlN current algebra.
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6.2.1 The y-component

First we show that the correlation function Υ(q, y) of intersecting surface defects (5.1)
satisfies the y-component of the 5-point KZ equation. This follows from performing Fourier
transformation to the fractional quantum T-Q equations (4.14).

• The N fractional quantum T-Q equations (4.14) can be expressed into a single N ×N
matrix equation:[

(U+qU−1−IN−q)
(
ε2y

∂

∂y
−ε2y

∂ logΥpert(y)
∂y

)
+
(
UM++qM−U−1−ρ

)]
Υ(y) = 0

(6.57)

Let us explain the matrices notations appearing above, U is given by:

U :=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
... . . . ...

0 0 0 · · · 0 1
y 0 0 · · · 0 0


, U−1 =



0 0 0 · · · 0 1
y

1 0 0 · · · 0 0
0 1 0 · · · 0 0
... . . . ...

0 0 0 · · · 1 0


, UN = yIN . (6.58)

We also have 4 diagonal matrices built up by fundamental matter masses, fractional
couplings, and zeros of TN,ω:

M± = diag(m±0 , . . . ,m
±
N−1), q = diag(q0, . . . , qN−1), ρ = diag(ρ0, . . . , ρN−1). (6.59)

For direct comparison with the KZ equations in the form written in the previous section,
we have to express the matrix equation (6.57) in a different basis. Let us consider the
following change of basis,

Π = (U− IN )Υ. (6.60)

It will be justified in a moment. In terms of Π, the matrix equation (6.57) becomes

0 =
[
ε2
ε1

∂

∂y
− ε2
ε1

∂ logΥpert(y)
∂y

+ 1
ε1

(1
y

(
IN−qU−1

)−1(
UM++qM−U−1−ρ

)
(U−IN )−1

)]
Π

:=
[
ε2
ε1

∂

∂y
+ Â0
y

+ Â1
y−1 + Âq

y−q

]
Π. (6.61)

Note that this equation is in the form of the y-component of the KZ equation, with the
level determined by

k +N = −ε2
ε1
. (6.62)

We shall show now that the coefficients Â0,q,1 are indeed identical to the ones appearing
in the y-component of the 5-point KZ equation (6.55), with certain identification of the
parameters on two sides.
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By an explicit computation, the residues Â0,1,q can be determined as

(
Â0
)

ab
= za

zb

[
m+

b
ε1

θa<b −
m−b
ε1

θa≤b

]
+ za

(
∂

∂za
− ∂

∂zb

)
θa<b −

ε2
ε1
δabResy=0

∂ log Υpert(y)
∂y

,

(6.63a)(
Â1
)

ab
= −za

∂

∂za
− ε2
ε1
δabResy=1

∂ log Υpert(y)
∂y

, (6.63b)

(
Âq

)
ab

= za

zb

[
zb

∂

∂zb
+ m−b −m+

b
ε1

]
− ε2
ε1
δabResy=q

∂ log Υpert(y)
∂y

, (6.63c)

where a, b = 1, . . . , N . Here, we have defined the Boolean function θ:

θS =

1 if S is true
0 otherwise

. (6.64)

See appendix D.2.1 for details of the calculations. To determine Υpert(y), we consider the
traces of the coefficients:

TrÂ0 =
N∑

b=1
−m

−
b
ε1
−Nε2

ε1
Res
y=0

∂ logΥpert(y)
∂y

(6.65a)

TrÂ1 =
N∑

b=1
−∇zb−

N

ε1
Resy=1

∂ logΥpert(y)
∂y

=
N−1∑
ω=0
−∇zω−

Nε2
ε1

Res
y=1

∂ logΥpert(y)
∂y

(6.65b)

TrÂq =
N∑

b=1

m−b −m+
b

ε1
+∇zb−

Nε2
ε1

Res
y=q

∂ logΥpert(y)
∂y

(6.65c)

Dependence of (zω)N−1
ω=0 in Υ comes from the perturbative factor (4.11) and (q̂ω)N−1

ω=0 in
〈Qω〉ZNΨ. For any function f = f(q̂0, . . . , q̂N−1):

N∑
ω=0

zω
∂

∂zω
f(q̂0, . . . , q̂N−1) =

N−1∑
ω=0

(
q̂ω+1

∂

∂q̂ω+1
− q̂ω

∂

∂q̂ω

)
f(q̂0, . . . , q̂N−1) = 0. (6.66)

Hence the only contribution of center of momentum
∑
ω∇zω acting on Υ comes from the

perturbative factor (4.11):

N−1∑
ω=0
∇zωΥ =

(
N−1∑
ω=0

m+
ω − aω
ε1

)
Υ. (6.67)

Then the prefactor Υpert(y) is determined by the condition that Â0,1,q are traceless, i.e.,
requiring (6.65) to vanish,

Υpert(y) = y
−m−
Nε2 (y − q)

m−−a
Nε2 (y − 1)−

m+−a
Nε2 (6.68)

with the short handed notation

m± =
N−1∑
ω=0

m±ω , a =
N−1∑
ω=0

aω. (6.69)
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We recall that there is perturbative factor (4.11) in the expectation value of 〈Qω(x)〉ZNΨ.
We hence modify derivatives terms

∇zb 7→ ∇zb + m+
b − ab

ε1
(6.70)

when the operators Â0,q,1 act solely on the non-perturbative terms in Π. As a result, we see
that the coefficients in the equation are identical to the ones appearing in the y-component
of the 5-point KZ equation (6.55):

Â0 = Â0, Â1 = Â1, Âq = Âq (6.71)

with the following identification of parameters on two sides. Namely, the parameters β and
β̃ of the 4-point KZ equation are identified by the Coulomb moduli and hypermultiplet
masses:

βa = m+
a − aa

ε1
, β̃a = m−a − aa

ε1
, a = 1, · · ·N. (6.72)

Relations between 5-point parameters (β(a),∗
b , β̃

(a),∗
b )Na,b=1 and Coulomb moduli and hyper-

multiplet masses can be obtained through (6.51):

β
(a),∗
b = m+

b − ab

ε1
, β̃

(a),∗
b = m−b − ab

ε1
− δab, a, b = 1, . . . , N. (6.73)

Correspondingly, the weights of the slN -modules are determined by the Coulomb moduli
and the hypermultiplet masses:

ζi =
m−i+1 −m

−
i

ε1
, ζ̃i =

m+
i+1 −m

+
i

ε1
, i = 1, . . . , N − 1;

µ =
N∑

a=1

m−a − aa

ε1
, µ̃ = −1 +

N∑
a=1

m+
a − aa

ε1
.

(6.74)

Also, the fractional couplings q̂ω = zω+1
zω

are identified with the components of the maps z
and z̃ by

za = z̃az
a. (6.75)

It should be noted that the N − 1 degrees of freedom τ ∈ CN−1 for the correlation
function Υ(q, y), which determine the slN -weights of the HW modules, precisely correspond
to the N − 1 Coulomb moduli

(
aa − 1

N a
)N

a=1
of the N = 2 gauge theory through the

matching (6.74).
The solutions to the KZ equation also give the equivalence

Π(z, q, y) =
N−1∏
ω=0

z
m+
ω−aω
ε1

ω χ(v; q, y), (6.76)

with (6.74) and (6.75) understood.
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6.2.2 The q-component

Next, we show that the correlation function Υ(q, y) satisfies the q-component of the 5-point
KZ equation. So far, we have only used the ω = ω′ part of the qq-character. Let us consider
the non-perturbative Dyson-Schwinger equation〈

[x−I ]T̂N+1,ω(x)Qω′(x′)
〉
ZN

= 0, I = 1, 2, . . . , (6.77)

for any combination of ω, ω′ = 0, . . . , N − 1. Using Qω defined in (3.28), we consider the
following linear combination〈

[x−1]
∑
ω 6=ω′

uωT̂N+1,ω(x)Qω′(x′)
〉

ZN

+
〈
uω′ T̂N+1,ω′(x)Qω′(x′)

〉
ZN

(6.78)

= uω′(x− x′)
〈
P+
ω′+1(x)Qω′(x′)

〉
ZN

+ q̂ω′uω′(x− x′ + ε1)
〈
P−ω′(x)Qω′−1(x′)

〉
ZN

.

Coefficients uω are chosen as

uω = 1 + qω+1 + qω+1qω+2 + · · ·+ qω+1 · · · qω+N

=⇒ uω − qω+1uω+1 = 1− q, ∀ω = 0, 1, . . . , N − 1. (6.79)

The Fourier transform (5.2) of (6.78) with x = x′ and x′ = x+ ε1 yields:

(1−q)ε1ε2

(
q
∂

∂q
−q∂ logΥpert(y)

∂q

)
Υω′+ĤΥω′

=−ε1uω′

(
−ε2y

∂

∂y
−m+

ω′+1

)
Υω′+1+ε1uω′

(
−ε2y

∂

∂y
−m+

ω′+1+ε1∇zω′+1

)
Υω′ , (6.80a)

(1−q)ε1ε2

(
q
∂

∂q
−q∂ logΥpert(y)

∂q

)
Υω′+ĤΥω′

= ε1q̂ω′uω′

(
−ε2y

∂

∂y
−m−ω′

)
Υω′−1−ε1q̂ω′uω′

(
−ε2y

∂

∂y
−m−ω′−ε1∇zω′

)
Υω′ . (6.80b)

The operator Ĥ is defined by

Ĥ :=
∑
ω

1− q

2
(
ε1∇zω −m+

ω

)2
+ q̂ωuω(ε1∇zω)(ε1∇zω −m+

ω +m−ω ). (6.81)

See appendix D.2.2 for details of the computations.
The y-derivative terms can be canceled with a proper linear combination of the two.

By denoting u = diag(u0, u1, . . . , uN−1), and G = diag(G0, . . . , GN−1) with

Gω = uω + q− 1
uω

= qω+1uω+1
uω

,

the N differential equations can be rewritten as one matrix equation:

(1− q)ε1ε2 (G−U)
(
q
∂

∂q
− q

∂ log Υpert(y)
∂q

)
Υ− (G−U) ĤΥ

= ε1Gu
[
U(M+ −M−)U−1 −∇

]
(U− IN )Υ (6.82)
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with matrix U defined in (6.58). Let us again consider a change of basis Π defined in (6.60).
In terms of Π, the matrix equation becomes

0 =
[
ε2
ε1

∂

∂q
+ 1

(1− q)q
1
ε2

1
Ĥ− ε2

ε1

∂ log Υpert(y)
∂q

− 1
ε1(1− q)q(U− IN )(G−U)−1Gu

(
U(M+ −M−)U−1 −∇

) ]
Π

:=
[
ε2
ε1

∂

∂q
+ Â0

q
+ Â1

q− 1 + Ây
q− y

]
Π = 0. (6.83)

Note that this is precisely in the form of the q-component of the 5-point KZ equation,
with k +N = − ε2

ε1
. We shall show the coefficients Â0,1,y are indeed identical to the ones

appearing in the q-component of the 5-point KZ equation (6.53), with the identification of
the parameters given by (6.74) and (6.75).

With some decent computation, we find each individual Â0,1,y as:

(
Â0
)

ab
= 1
ε2

1
Ĥ|q=0δab −

za+1 + · · ·+ zN−1
za

(
∇za + m−a −m+

a
ε1

)
δab

+ za

zb

(
∇zb + m−b −m+

b
ε1

)
θa>b, (6.84a)

(
Â1
)

ab
= − 1

ε2
1
Ĥ|q=1δab + z0 + · · ·+ zN−1

za

(
m+

a −m−a
ε1

−∇za

)
δab, (6.84b)

(
Ây
)

ab
= za

zb

(
∇zb + m−b −m+

b
ε1

)
− δab

N

m− − a
ε1

, (6.84c)

where a, b = 1, . . . , N . See appendix D.2.2 for details of the calculations. We again
find (6.84) agrees with the coefficients appearing in the q-component of the 5-point KZ
equation (6.53):

Â0 = Ĥ0, Â1 = Ĥ1, Ây = Ĥy, (6.85)

after taking care the perturbative factor in (4.11):

∇zb 7→ ∇zb + m+
b − ab

ε1
, (6.86)

provided that the variables on two sides are related by (6.74) and (6.75).
Therefore, we arrive at our conclusion: the vector Π, which is the Fourier transformation

of the correlation function of intersecting surface defects, solves the degenerate 5-point KZ
equations (6.45) for slN at the level k +N = − ε2

ε1
. Namely,

Π(z; q, y) =
N−1∏
ω=0

z
m+
ω−aω
ε1

ω χ(v; q, y) (6.87)

provided that the parameters on two sides are identified by (6.74) and (6.75).
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7 XXXsl2 spin chain

The connection between spin chain systems and supersymmetric gauge theories is one of
the most well-known examples of the Bethe/gauge correspondence. It was firstly observed
in [22, 23] that the spectral curves of the classical spin chains are identical to the Seiberg-
Witten curves of four-dimensional N = 2 gauge theories. The correspondence was uplifted
to the quantum level in [24, 25]. The corresponding gauge theories were, however, two-
dimensional N = (2, 2) gauged linear sigma models instead of being four-dimensional. Also,
the comparison was made within the context of the algebraic Bethe ansatz, restricting the
spin representations to be highest-weight (or lowest-weight). With the same restriction on
the spin representations, the IR duality discovered in [27] between four-dimensional N = 2
theories and two-dimensional N = (2, 2) theories gave a four-dimensional account for the
quantum spin chains. Finally, it was shown in [42] that the classical XXXsl2 spin chain
arises in the Seiberg-Witten geometry of the four-dimensional N = 2 theory [21, 59], as well
as a relation between the XXXsl2 spin chain coordinate systems and the defect gauge theory
parameters, with more general sl2-representations which are neither highest-weight nor
lowest-weight. The extension to the supergroup gauge theories is also discussed in [65–67].

In this section, we generalize these constructions and explain how four-dimensional
N = 2 gauge theories give rise to the quantum XXXsl2 spin chain systems with non-height-
weight infinite-dimensional sl2-modules, by the fractional quantum T-Q equations and the
higher-rank qq-characters.

Let us briefly review the quantum XXXsl2 spin magnet and its Lax operators and
monodromy matrix. Let x ∈ C be a complex number. Also we consider a two-dimensional
auxiliary space Vaux = C2. The Lax operators are defined as a 2× 2 matrix in End(Vaux)
with operator-valued entries:

LXXX
ω (x) = x− θω + ~Lω, ω = 0, 1, . . . , N − 1 (7.1)

where Lω = s0
ωσ0 + s+

ωσ+ + s−ωσ− are sl2 matrices. The N complex numbers θω ∈ C are
called the inhomogeneities. The generators of sl2 obey the standard commutation relation:

[s0
ω, s±ω′ ] = ±s±ω δωω′ , [s+

ω , s−ω′ ] = 2s0
ωδωω′ . (7.2)

For each ω = 0, · · · , N − 1, we construct an sl2-module Hsω ,aω from the space of Laurent
polynomials in a complex variable γω, namely,

Hsω ,aω = γaωω C[γω, γ−1
ω ], (7.3)

where aω is a complex number that characterizes the module. Note that aω is defined up to
integer shifts, i.e.,

Hsω ,aω ' Hsω ,aω+n, n ∈ Z.

The generators of sl2 are represented by differential operators on this space:

s0
ω = γω

∂

∂γω
− sω, s−ω = ∂

∂γω
, s+

ω = 2sωγω − γ2
ω

∂

∂γω
. (7.4)
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The space Hsω ,aω , called the local Hilbert space, constructed in this way is an infinite dimen-
sional module of sl2 Lie algebra which are neither highest nor lowest-weight representation.4

Such representation is characterized by generic complex numbers sω and aω, for which
s0
ω+sω−aω ∈ Z. Then, the Lax operator LXXX

ω (x) assigned to the (ω+1)-th site of XXXsl2

spin chain lattice is regarded as a sl2-homomorphism, LXXX
ω (x) ∈ End (Hsω ,aω ⊗ Vaux). The

full Hilbert space is the tensor product of all the local Hilbert spaces

H = Hs0,a0 ⊗Hs1,a1 ⊗ · · · ⊗HsN−1,aN−1 . (7.5)

For generic values of s and a, these modules are irreducible. However, for special,
quantized values of a and s these modules contain sl2-invariant submodules, allowing to take
quotients. For example, we have Verma modules in V−s ⊂ Hs,0 and V+

s ⊂ Hs,2s; moreover,
for integer 2s ∈ Z>0, we have Hs,0 ≈ Hs,2s so that taking quotients leads to the familiar
finite dimensional representations.

The monodromy matrix is an ordered product of Lax operators

TSC(x) = K(q)LXXX
N−1(x) · · ·LXXX

0 (x) ∈ End
(
N−1⊗
ω=0

Hsω ,aω ⊗ Vaux

)
. (7.6)

The twist matrix K(q) is a constant matrix in End(Vaux). K(q) satisfies

Tr K(q) = 1 + q, detK(q) = q. (7.7)

7.1 Construction of Lax operators

We will demonstrate how one may recognize (7.6) in N = 2 supersymmetric gauge theory
in 4-dimension. We start with the fractional T-Q equation (4.14):

P+
ω+1(x)〈Q̃ω+1(x)〉ZNΨ + q̂ωP

−
ω (x)〈Q̃ω−1(x)〉ZNΨ = T̂N,ω(x)〈Q̃ω(x)〉ZNΨ. (7.8)

Let us define 2× 1 vector

Ξω(x) =
(
〈Q̃ω(x)〉ZN
〈Q̃ω−1(x)〉ZN

)
Ψ (7.9)

to translate fractional TQ equation to degree one matrix equation:

Ξω+1(x) = 1
P+
ω+1(x)

(
T̂N,ω(x) −q̂ωP−ω (x)
P+
ω+1(x) 0

)
Ξω(x) = 1

P+
ω+1(x)

L̃ω(x)Ξω(x). (7.10)

Matrix L̃ω is of the form:

L̃ω(x) =(x−m+
ω+1)

(
1 + q̂ω −q̂ω

1 0

)
+
(

(1 + q̂ω)(ρω +m+
ω+1) q̂ω(m−ω −m+

ω+1)
0 0

)
. (7.11)

4It should be noted that the method of algebraic Bethe ansatz does not generally apply for the spin chain
with non-height-weight representations such as the ones considered here. There are other methods such as
functional Bethe ansatz to solve the spin chain with generic representations. See [68] for instance.
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We take gauge transformation Θω(x) = gωΞω(x) satisfying

gω+1

(
1 + q̂ω −q̂ω

1 0

)
g−1
ω =

(
1 0
0 1

)
. (7.12)

The twisted matrix K defined based on the gauge transformation

g−1
N = g−1

0 K. (7.13)

When q 6= 1, we choose gauge g0 by picking the twisted matrix K to have the following form

K =
(
q 0
0 1

)
=⇒ g0 = 1

γ0−γ−1

(
1 −1
−γ−1 γ0

)
=⇒ gω = 1

γω−γω−1

(
1 −1

−γω−1 γω.

)
(7.14)

We define a new set of parameters {γω}:

γω = zω+1 + zω+2 + · · ·+ zω+N
q− 1 , γω − γω−1 = zω, γω+N = qγω. (7.15)

In terms of Θω(x), (7.10) becomes

Θω+1(x) = 1
P+
ω+1(x)

(
x−m+

ω+1 + Lω
)

Θω(x) = 1
P+
ω+1(x)

LXXX
ω (x),Θω(x), (7.16)

where gauge transformed Lω is given by

Lω =
(

−ε1
∂
∂γω

γω + (m+
ω+1 −m−ω ) −ε1

∂
∂γω

−γω(−ε1
∂
∂γω

γω + (m+
ω+1 −m−ω )) γωε1

∂
∂γω

)
. (7.17)

The trace of the Lax operator Lω is

TrLω = −ε1
∂

∂γω
γω +m+

ω+1 −m
−
ω + γωε1

∂

∂γω
= m+

ω+1 −m
−
ω − ε1 = 2sωε1, (7.18)

where we identified the spin sω of the sl2-representations and the inhomogeneity θω with
hypermultiplet masses by

sω =
m+
ω+1 −m−ω − ε1

2ε1
, θω =

m+
ω+1 +m−ω + ε1

2
(7.19)

We may now denote the individual Lax operator as

LXXX
ω (x) = x− θω − ε1

(
γω

∂
∂γω
− sω ∂

∂γω

2γωsω − γ2
ω

∂
∂γω
−γω ∂

∂γω
+ sω

)
= x− θω − ε1Lω. (7.20)

We see that the Ω-background parameter is identified with the Planck constant,

ε1 = −~. (7.21)
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Let us specify the sl2-modules that comprise the spin chain. Each of the two entries of
Θω(x), on which the Lax operator LXXX

ω (x) acts, is a Laurent polynomials in (zω)N−1
ω=0 =

(γω − γω−1)N−1
ω=0 of degree 0 multiplied by the prefactor (4.11),

N−1∏
ω=0

z
m+
ω−aω
ε1

ω =
N−1∏
ω=0

(γω − γω−1)
m+
ω−aω
ε1 . (7.22)

Depending on the relative norm between |γω| and |γω+1|, this prefactor is expanded differently
as a Laurent series. Note that such expansion always respects the hierarchy of (zω)N−1

ω=0 :

|q̂ω| < 1 =⇒ |zω+1| < |zω|. (7.23)

Thus, we have 2N domains in the CNγ -space, specified by an N -tuple of “spins” t =
(t0, t1, . . . , tN−1) (not to be confused with the actual spins s = (s0, . . . , sN−1)),

tω = 1
2sgn(|γω| − |γω−1|) ∈

{
−1

2 ,
1
2

}
.

Then let us define aω on the domain labeled by t is given by

aω =
(
tω + 1

2

)
× m+

ω − aω
ε1

+
(1

2 − tω+1

)
×
m+
ω+1 − aω+1

ε1
. (7.24)

Then we can identify the slN -module that the Lax operator LXXX
ω (x) acts on as Hsω ,aω .

More precisely, the Θω(x) resides in a particular weight subspace in the completed tensor
product:

Θω(x) ∈
(
Hs0,a0⊗̂Hs1,a1⊗̂ . . . ⊗̂HsN−1,aN−1

) [N−1∑
ω=0

aω

]
⊗ Vaux, (7.25)

where we defined the auxiliary space Vaux = C2.
For an illustration, let us consider the domain of “all spins down” labeled by t =

(−1
2 , . . . ,−

1
2), which corresponds to expanding (7.22) in the domain |γ−1| = |γN−1|

|q| > |γ0| >
|γ1| > · · · > |γN−1|. In this domain Θω is of the form

N−1∏
ω=0

γ

m+
ω+1−aω+1

ε1
ω C[(γ0)±, . . . , (γN−1)±]C× ⊗ C2.

The parameters aω of local Hilbert spaces Hsω ,aω are identified as:

aω =
m+
ω+1 − aω+1

ε1
, ω = 0, . . . , N − 1. (7.26)

The spin chain monodromy matrix is defined as a ordered product over the Lax operators

TSC(x) = K(q)LXXX
N−1(x) · · ·LXXX

0 (x). (7.27)

When acting on the first state Π0(x), the monodromy transforms

1
P+(x)TSC(x)Θ0(x) = ΘN (x) = Θ0(x+ ε2) (7.28)
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Hence, the monodromy matrix TSC(x) is an operator on the completed tensor product with
of all the local Hilbert spaces Hsω ,aω and the auxiliary space Vaux

TSC(x) ∈ End
(
Hs0,a0⊗̂Hs1,a1⊗̂ . . . ⊗̂HsN−1,aN−1 ⊗ Vaux

)
. (7.29)

The spin chain constructed is quantum integrable by the fact that local Lax operators
LXXX
ω satisfy the RLL-relation (train track relation) (B.5). The R-matrix, defined in

Vaux ⊗ Vaux = C2 ⊗ C2 space, is given in (B.6). See appendix B for details.
We remark that there exists a curious slN -action on the Hilbert space defined by

Jab = γa−1
∂

∂γb−1
− cδba , a, b = 1, . . . , N (7.30)

with c = 1
N

∑
ω aω. The relation of this slN -action to the one in section 6 is not obvious.

Remark. We emphasize again that the sl2-modules at the N spin sites are generically
neither highest-weight nor lowest-weight. At the special values of (aω)N−1

ω=0 , however, these
modules contain highest-weight or lowest-weight submodules. For example, we may simply
set a ∈ Z or a− 2s ∈ Z. Then it is straightforward that V−s ⊂ Hs,0 and V+

s ⊂ Hs,2s where
V −s = C[γ] and V +

s = γ2sC[γ−1] are a lowest-weight and a highest-weight Verma module,
respectively.

Note that the condition aω = m+
ω−aω
ε1

∈ Z (or aω = m+
ω+1−aω+1

ε1
∈ Z if tω = 0), which

gives rise to Hsω ,0 containing the lowest-weight Verma module V −sω ⊂ Hsω ,0 in all domain
of expansion of (γω)N−1

ω=0 , is precisely the restriction considered in [27, 69], as a particular
example of the quantization condition [26]. It is convenient to adopt the type IIA D-brane
picture [70] to illustrate what happens physically under this condition. We can realize
the Υ(N) gauge theory with N fundamental and N anti-fundamental hypermultiplets by
three stack of N D4-branes, stretched between two NS5-branes, stretched from the left
NS5-brane to the infinity, and finally stretched from the right NS5-brane to the infinity. Now
upon imposing the above condition, the two D4-branes across one of the NS5-brane meet
each other. When all the N D4-branes meet in such a way, the NS5 brane can be pulled
out transversally to trigger Hanany-Witten brane transition, creating aω ∈ Z D2-branes
stretched between the NS5-brane and the (ω + 1)-th D4-branes.

At the level of the effective field theory, this brane transition corresponds to the
Higgsing of the four-dimensional gauge theory. The field configurations are squeezed into
the C1-plane, described by the effective two-dimensional N = (2, 2) theory on the non-
compact part of the worldvolume of the D2-branes. The vacuum equation obtained from the
two-dimensional effective twisted superpotential evaluated at the locus of the quantization
condition m+

ω−aω
ε1

∈ Z is identical to the Bethe equation. In this way, we precisely recover
the Bethe/gauge correspondence of [24, 25], between the two-dimensional N = (2, 2) gauged
linear sigma model and the XXXsl2 spin chain with only lowest-weight sl2-representations.
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7.2 Transfer matrix and higher rank qq-characters

We consider transfer matrix, i.e., the trace of the monodromy matrix TSC over the auxiliary
space Vaux:

TrVauxTSC(x) = TrVaux

(
KLXXX

N−1(x) · · ·LXXX
0 (x)

)
(7.31)

Individual Lax operator Lω is defined on infinite dimensional representation of sl2 algebra.
In such representation, the spin operators are denoted by differential operators as we have
seen earlier. One should consider the action

TrVauxTSC(x)Φ, Φ ∈ Hs0,a0 ⊗ · · · ⊗HsN−1,aN−1 . (7.32)

Alternatively, we may consider

TrVaux

(
KLXXX

N−1(x) · · ·LXXX
0 (x)

)
= TrVaux

(
L̃N−1(x) · · · L̃0(x)

)
. (7.33)

The right hand side is in the context of N = 2 SQCD. More precisely speaking, T̂N,ω(x) in
L̃ω (7.10) is defined through its action on the expectation value of observable 〈Qω(x)〉ZNΨ
through fractional quantum T-Q equation (4.14). The fact that all L̃ having vanishing
lower right component means the trace can be understand as follows: we image on each spin
lattice site there exists two states: empty or occupied. An empty state at site j contributes

T̂N,j(x).

Alternatively when a site j is occupied, it requires its previous site j− 1 also being occupied.
The combined contribution of occupied sites j and j − 1 is

−q̂jPj(x)

The trace of the monodromy matrix is an ensemble over all empty/occupied states on
each site:

TrVauxTSC(x) =
∑

[N ]=J∪K∪K̃

∏
j∈J

T̂N,j(x)
∏
k∈K

(−qkP−k (x)P+
k (x+ δk,0ε2)) (7.34)

where [N ] = {0, 1, . . . , N − 1}. The set K̃ is defined by

K̃ = {k − 1 (mod N) | k ∈ K}.

The structure in (7.34) resembles to rank N qq-character of A1 theory, which also has
structure of an ensemble over N two level states. We only briefly review the subject here,
some details can be found in [6, 31].

The higher rank qq-character is constructed by adding a stack of D3-branes transverse
to the stack of branes supporting the bulk four-dimensional gauge theory of section 2.

Let us study the gauge origami configuration with two orthogonal stacks of branes in
C2

12 abd C2
34. Stacks of D-branes on C2

12 is the familiar n12,0 = n12,1 = n12,2 = N in the
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fundamental case in section 2.2. On the orthogonal C2
34, we insert w stacks of D-branes, all

charged neutral under the Z3-charge assignment with n34,0 = w, on C2
34:

N12 =
N∑
α=1

eaαR0 +
N∑
α=1

em
−
α−ε4R1 +

N∑
α=1

em
+
α−ε3R2

N34 =
w∑
j=1

ex+%jR0

(7.35)

with w-tuples % of complex numbers % = (%1, . . . , %w) ∈ Cw acts as moduli parameters of
gauge theory that resides on C2

34. The corresponding gauge origami partition function is
computed as

ZS =
∑

λ(12),λ(34)

∏
i=0,1,2

q
|λ(12)
i |

i q
|λ(34)|
0 E

[
−P3S12S

∗
12

P ∗12
− P1S34S

∗
34

P ∗34
− q∗12S12S

∗
34

]Z3

(7.36)

Similar to the fundamental qq-character case in section 2.2, we take the decoupling
limit q1 = q2 = 0 to obtain the A1-quiver gauge theory. The decoupling limit restricts the
instanton configurations that enter the ensemble, each D-brane on C2

34 can only have 0 or 1
instanton, with a total 2w allowed configurations. Therefore, the gauge origami partition
function comprises of the usual four dimensional bulk terms and an ensemble over the
instanton configurations on C2

34:

ZS =
∑

λ(12),λ(34)

q|λ
(12)|q|λ

(34)|E
[−SS∗ +MS∗

P12

]
E
[
−P1S34S

∗
34

P ∗34
− q−1

12 S12S
∗
34

]Z3

=
∑
λ(12)

q|λ
(12)|E[T12]Xw,%(x) (7.37)

Rank w qq-character of A1 theory is:

Xw,%(x) =
∑

[w]=J∪K
q|K|

∏
j∈J,k∈K

S(%j − %k)
∏
k∈K

P (x+ %k)
Y(x+ %k)

∏
j∈J

Y(x+ ε+ + %j) (7.38)

where [w] = {1, . . . ,w} and

S = (x+ ε1)(x+ ε2)
x(x+ ε1 + ε2) . (7.39)

The S-factor is not present in the fundamental qq-character. It can be viewed as a
contribution of the D3-D3 open strings ending on the C2

34 (there are w2 of those).
As we integrate out the degrees of freedom in the C2

34 space orthogonal to the physical
C2

34, we obtain a local observable which is called the higher rank qq-character Xw,%(x)
in (7.38). The gauge origami partition function is identified as expectation value of qq-
character:

ZS =
〈
Xw,%(x)

〉
ZC2

12
. (7.40)

The expectation value 〈Xw,%(x)〉 is a degree N2 polynomial in x.
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Eq. (7.38) can be interpreted as a lattice system of length N . On each lattice site j
there are exactly two states: empty j ∈ J or occupied j ∈ K. When a site j is empty, it
contributes

Y(x+ %j + ε+)

to the system. While occupied, it gives:

q
P (x+ %j)
Y(x+ %j)

.

The described system has a long range interaction between the sites with different occupation
status ∏

j∈J,k∈K
S(%j − %k).

Let us again introduce a Zn orbifold Ĉ1×
(
Ĉ2/Zn

)
in the same way as we have done in

section 3.1.1, with the same coloring function c(α) for moduli parameters {aα} and σ(f)±

for (anti-)fundamental matters (3.24). In the orthogonal direction C2
34, we assign coloring

function ς : [w]→ Zn for the orthogonal moduli parameters {%̂i}wi=1.
We are interested in the regular surface defect by choosing Zn = ZN . Furthermore, we

consider w = N and choose the coloring function ς as simple one-to-one functions for %,

ς(x+ %̂j) = j − 1, j = 1, . . . , N. (7.41)

Namely, (7.35) becomes

N̂12 =
∑

ω′′∈ZN

(
eâω′′+1R0 ⊗Rω′′ + em̂

−
ω′′−ε4R1 ⊗Rω′′ + e

m̂+
ω′′+1−ε3R2 ⊗Rω′′

)
(7.42a)

=
∑

ω′′∈ZN

(
eaω′′+1 q̂ω

′′
2 R0 ⊗Rω′′ + em

−
ω′′−ε4 q̂ω

′′
2 R1 ⊗Rω′′ + e

m+
ω′′+1−ε3 q̂ω

′′
2 R2 ⊗Rω′′

)

N̂34 =
N−1∑
ω=0

exe%̂ω R0 ⊗Rω =
N−1∑
ω=0

exe%ω q̂ω2 R0 ⊗Rω. (7.42b)

The shifted moduli for % are defined by

%̂ω+1 = %ω+1 − ωε̂2.

Gauge origami partition is

ẐX;c,σ±,ς =
∑

λ̂12,λ̂34

∏
ω∈Zn

q̂
|λ̂12,ω |+|λ̂34,ω |
ω E

[
− P̂3Ŝ12Ŝ12

P̂ ∗12
− P̂1Ŝ34Ŝ

∗
34

P̂ ∗34
− q̂∗12Ŝ12Ŝ34

]Z3×Zn

=
∑
λ̂12

∏
ω∈Zn

q̂
|λ̂12,ω |
ω Zbulk[λ12]Zdefect[λ̂12]Xdefect(x)

= 〈Xdefect(x)〉ZN ẐĈ2
12
. (7.43)
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The defect rank N qq-character is of the form

Xdefect(x) =
∑

[0,...,N−1]=J∪K

∏
ω∈J,ω′∈K

S−(%̂ω − %̂ω′)δN (ω−ω′+1)

×
∏
ω∈J

Yω+1(x+ ε1 + %ω)
∏
ω′∈K

q̂ω′
Pω′(x+ %ω′)
Yω′(x+ %ω′)

(7.44)

with
S−(x) = 1− ε1

x+ ε1 + ε̂2
= x+ ε̂2
x+ ε1 + ε̂2

.

Defect Xdefect satisfies the non-perturbative Dyson-Schwinger equation. The expectation
value of defect qq-character

〈Xdefect(x)〉ZN (7.45)

is a degree N -polynomial in x.
We mentioned that the higher rank qq-character can be understand as a lattice of N

two-states system. In the absence of orbifold, the described lattice system has long range
interaction between any two lattice with opposite occupation status. In the orbifolded
version of the story (7.44), such interaction becomes local. More precisely speaking, the
system consist only a nearest neighbor interaction.

In particular, if we choose

%̂ω = (ω − 1)ε̂2 =⇒ %ω = 0, ∀ω.

Such choice puts a strong restriction on the set of J and K that give non-vanishing contribu-
tion. More precisely speaking, if ω+1 is not in the same set J or K as ω, it obtains a factor of

S−(−ε̂2) = 0

The defect qq-character is greatly simplified to

Xdefect(x) =
N−1∏
ω=0

Yω+1(x+ ε1) +
N−1∏
ω=0

q̂ω
Pω(x)
Yω(x)

+ ε2
ε1 + ε2

YN (x+ ε1) q̂0P0(x)
Y0(x)

N−2∑
ω=1

ω∏
k=1

q̂kPk(x)
Yk(x)

N−2∏
j=ω+1

Yj+1(x+ ε1), (7.46)

with YN (x) = Y0(x + ε2). The first term represents a full empty state, while the second
term corresponds to a full occupied configuration. The remaining N − 2 terms correspond
to having the first ω site occupied, and the rest empty.

Defect qq-character becomes the bulk fundamental qq-character in ε2 → 0 limit:

Xdefect(x) =
N−1∏
ω=0

Yω+1(x+ ε1) +
N−1∏
ω=0

q̂ω
Pω(x)
Yω(x) = Y(x+ ε1) + q

P (x)
Y(x) (7.47)
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7.2.1 With fractional Q-observables

The building blocks T̂N,j(x) showing in transfer matrix (7.34) is a differential operator
acting on

T̂N,ω(x) 〈QΩ(x)〉ZN Ψ = [(1 + q̂ω)x+ ρω] 〈QΩ(x)〉ZNΨ (7.48)

=
〈[

Yω+1(x) + q̂ωPω(x)
Yω(x)

]
QΩ(x)

〉
ZN

Ψ

That is to say, the proper way to think about the transfer matrix is its action on

TrVauxTSC(x) 〈QΩ(x)〉ZN Ψ (7.49)

with any Ω = 0, . . . , N − 1.
Let us consider the higher rank analogue of (2.43) by taking the following gauge origami

setup similar to the rank one qq-character case (2.31). We introduce one additional D-brane
on C2

23 in (7.35):

N̂12 =
N∑
α=1

eaα · R0 +
N∑
α=1

em
−
α−ε4 · R1 +

N∑
α=1

em
+
α−ε3 · R2; (7.50a)

N̂23 = ex
′+ε2+ε3 · R1; (7.50b)

N̂34 =
N∑
j=1

ex+%j−1 · R0. (7.50c)

We again take the decoupling limit q1 = 0 = q2 and q ≡ q0. For later convenience, we
slightly modify our notation on the N -tuples % = (%0, . . . , %N−1). The gauge origami
instanton partition function is

ZS =
∑
λ(12)

∑
λ(34)

q|λ
(12)|+|λ(34)|E

[
− P̂

∗
3 Ŝ12Ŝ

∗
12

P̂ ∗12
− P̂ ∗1 Ŝ23Ŝ

∗
23

P̂23
− P̂1Ŝ34Ŝ

∗
34

P̂34

−q̂12Ŝ
∗
12Ŝ34 + q̂1P̂4Ŝ23

Ŝ∗12
P̂ ∗2
− (q̂23 + q̂12)N34N

∗
23 + P̂1P̂4N23K

∗
34

]Z3

0
(7.51)

We modified the interaction between C2
23 and C2

34 using the same argument as in arriving
at (2.32). The gauge origami instanton partition function can be written as the following
form:

ZS =
∑
λ(12)

E[T12]XN (x)Q(x′) =
〈
XN (x)Q(x′)

〉
ZC2

12
(7.52)

where the rank N qq-character XN is of the form:

XN (x)Q(x′) =
∑

[0,...,N−1]=J∪K

∏
j∈J,k∈K

S(%j − %k)×
∏
j∈J

(x− x′ + %j)Y(x+ ε+ + %j)

×
∏
k∈K

q(x+ %k − x′ + ε1)P (x+ %k)
Y(x+ %k)

Q(x′) (7.53)

such that the expectation value 〈
XN (x)Q(x′)

〉
is a degree N2 +N polynomial in x.
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We now introduce regular surface defect in the form of ZN -orbifold in the C2
24 direction

in the same way we have done in section 3. The coloring functions c and σ± for moduli
parameters and (anti-)fundamental matters are the same as (3.24). The coloring function
for % are chosen as simple one-to-one function

ς(%̂ω) = ω, ω = 0, . . . , N − 1. (7.54)

The representations for the orbifolding action are assigned as

N̂12 =
∑

ω′′∈ZN

(
eâω′′+1R0 ⊗Rω′′ + em̂

−
ω′′−ε4R1 ⊗Rω′′ + e

m̂+
ω′′+1−ε3R2 ⊗Rω′′

)

=
∑

ω′′∈ZN

(
eaω′′+1 q̂ω

′′
2 R0 ⊗Rω′′ + em

−
ω′′−ε4 q̂ω

′′
2 R1 ⊗Rω′′ + e

m+
ω′′+1−ε3 q̂ω

′′
2 R2 ⊗Rω′′

)
,

N̂23 = ex
′+ε̂2+ε3 q̂Ω

2 R1 ⊗RΩ+1,

N̂34 =
N−1∑
ω=0

exe%̂ω R0 ⊗Rω =
N−1∑
ω=0

exe%ω q̂ω2 R0 ⊗Rω. (7.55a)

With some decent calculation, we find the gauge origami partition function can be organized
as the following form:

ẐX,Ω =
∑
λ̂

∏
ω∈ZN

q̂kωω Zbulk[λ]Zdefect[λ̂]XN,defect(x)QΩ(x′)

=
〈
XN,defect(x)QΩ(x′)

〉
ZN ẐX;c,σ± . (7.56)

The defect qq-character reads

XN,defect(x)QΩ(x′) =
∑

[0,...,N−1]=J∪K

∏
ω∈J,ω′∈K

S−(%̂ω − %̂ω′)δN (ω−ω′+1) (7.57)

×
∏
ω∈J

(x− x′ + %̂ω − Ωε̂2)δN (ω−Ω)Yω+1(x+ ε1 + %ω)

×
∏
ω′∈K

q̂ω′(x+ %̂ω′ − x′ − Ωε̂2 + ε1)δN (ω′−Ω)Pω′(x+ %ω′)
Yω′(x+ %ω′)

×QΩ(x′)

with %ω = %̂ω − ωε̂2. We denote the set [Ω̂] = [0, . . . , N − 1]\Ω by specifying whether site Ω
is empty or occupied:

XN,defect(x)QΩ(x′) (7.58)

=
∑

[Ω̂]=J∪K

∏
ω∈J,ω′∈K

S−(%̂ω−%̂ω′)δN (ω−ω′+1) ∏
ω′∈K

S−(%̂Ω−%̂ω′)δN (Ω−ω′+1)

×
∏
ω∈J

Yω+1(x+ε1+%ω)
∏
ω′∈K

q̂ω′
Pω′(x+%ω′)
Yω′(x+%ω′)

×(x−x′+%Ω)YΩ+1(x+%Ω+ε1)QΩ(x′)

+
∏

ω∈J,ω′∈K
S−(%̂ω−%̂ω′)δN (ω−ω′+1) ∏

ω∈J
S−(%̂ω−%̂Ω)δN (ω−Ω+1)

×
∏
ω∈J

Yω+1(x+ε1+%ω)
∏
ω′∈K

q̂ω′
Pω′(x+%̂ω′)
Yω′(x+%ω′)

×q̂Ω(x−x′+%Ω+ε1)PΩ(x+%Ω)
YΩ(x+%Ω)QΩ(x′)
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such that the expectation value

〈
XN,defect(x)QΩ(x′)

〉
ZN (7.59)

is a degree N + 1 polynomial in x.
Let us take x′ = x+ %Ω and x′ = x+ %Ω + ε1 respectively:

XN,defect(x)QΩ(x+ %Ω)

=
∑

[Ω̂]=J∪K

∏
ω∈J,ω′∈K

S−(%̂ω − %̂ω′)δN (ω−ω′+1) ∏
ω∈J

S−(%̂ω − %̂Ω)δN (ω−Ω+1)

×
∏
ω∈J

Yω+1(x+ ε1 + %ω)
∏
ω′∈K

q̂ω′
Pω(x+ %ω)
Yω(x+ %ω)

× q̂Ωε1PΩ(x+ %Ω)QΩ−1(x+ %Ω), (7.60a)

XN,defect(x− ε1)QΩ(x+ %Ω)

=
∑

[Ω̂]=J∪K

∏
ω∈J,ω′∈K

S−(%̂ω − %̂ω′)δN (ω−ω′+1) ∏
ω′∈K

S−(%̂Ω − %̂ω′)δN (Ω−ω′+1)

×
∏
ω∈J

Yω+1(x+ %ω)
∏
ω′∈K

q̂ω′
Pω(x+ %ω − ε1)
Yω(x+ %ω − ε1)

× (−ε1)QΩ+1(x+ %Ω). (7.60b)

The difference between their expectation value

1
ε1

〈
XN,defect(x)QΩ(x+ %Ω)

〉
ZN

− 1
ε1

〈
XN,defect(x− ε1)QΩ(x+ %Ω)

〉
ZN

(7.61)

=
∑

[Ω̂]=J∪K

〈 ∏
ω∈J,ω′∈K

S−(%̂ω − %̂ω′)δN (ω−ω′+1) ∏
ω′∈K

S−(%̂Ω − %̂ω′)δN (Ω−ω′+1)

×
∏
ω∈J

Yω+1(x+ %ω)
∏
ω′∈K

q̂ω′
Pω(x+ %ω − ε1)
Yω(x+ %ω − ε1) ×QΩ+1(x+ %Ω)

〉
ZN

+
〈 ∏
ω∈J,ω′∈K

S−(%̂ω − %̂ω′)δN (ω−ω′+1) ∏
ω∈J

S−(%̂ω − %̂Ω)δN (ω−Ω+1)

×
∏
ω∈J

Yω+1(x+ ε1 + %ω)
∏
ω′∈K

q̂ω′
Pω(x+ %ω)
Yω(x+ %ω) × q̂ΩPΩ(x+ %Ω)QΩ−1(x+ %Ω)

〉
ZN

is a degree N polynomial in x.
Of our interest, we consider

%̂ω = ωε̂2, =⇒ %ω = 0, ω = 0, . . . , N − 1. (7.62)
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As we have seen previously, such choice of %ω restricts allowed sets of J and K, which leads
to simplification of the qq-character:

1
ε1

〈
XN,defect(x)QΩ(x)

〉
ZN

− 1
ε1

〈
XN,defect(x− ε1)QΩ(x)

〉
ZN

(7.63)

=
〈N−1∏

ω=0
Yω+1(x) + qP (x)∏N−1

ω=0 Yω(x)
+ ε2
ε1 + ε2

N−2∑
ω′=0

QN (x)Q−1(x)
Qω′(x)Qω′+1(x)

ω′∏
k=0

q̂kPk(x)

QΩ(x)
〉

ZN

In the ε2 → 0 limit, it becomes:

1
ε1

〈
XN,defect(x)QΩ(x)

〉
− 1
ε1

〈
XN,defect(x− ε1)QΩ(x)

〉
ZN

(7.64)

=
〈[

Y(x+ ε2) + q
P (x)
Y(x)

]
QΩ(x)

〉
ZN

In particular, in the case of Ω = N − 1, QN−1(x) = Q(x) is identified as bulk Q-observable.

1
ε1

〈
XN,defect(x)QN−1(x)

〉
ZN

− 1
ε1

〈
XN,defect(x− ε1)QN−1(x)

〉
ZN

= 〈Q(x+ ε2)〉+ qP (x) 〈Q(x− ε2)〉ZN
= 〈TN (x)Q(x)〉ZN (7.65)

where TN (x) is a degree N polynomial whose coefficients depend on the bulk instanton
configuration (4.3).

7.2.2 Similarity with the spin chain transfer matrix

The trace of the spin chain monodromy matrix in (7.27) can be seen as an effective quiver
system which bears some resemblance to the one for the construction of the higher rank
qq-character. The higher rank qq-character considers a AN quiver in the auxiliary space C2

34
in the context of gauge origami. Each gauge node has exactly two instanton configurations:
having no instanton (empty) or exactly one instanton (occupied). Adding one instanton to
the gauge node ω (from empty to occupied state) changes the site’s contribution

Yω+1(x) =⇒ q̂ωPω(x)
Yω(x)

in the qq-character along with interaction contribution (the S factor). In the orbifolded
situation, the S bi-fundamental factor is localized to nearest neighbor as a direct consequence
of the δN (ω − ω′ + 1) power as seen in previous section.

On the level of the actual spin sites, trace of the monodromy matrix is

TrVauxTSC(x) =
∑

[N ]=J∪K∪K̃

∏
j∈J

T̂N,j(x)
∏
k∈K

(−qkP−k (x)P+
k (x+ δk,0ε2)) (7.66)
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where [N ] = {0, 1, . . . , N − 1}. The set K̃ is defined by

K̃ = {k − 1 (mod N) | k ∈ K}.

T̂N,j(x) defined in (4.14) is a differential operation:

T̂N,ω(x) 〈QΩ(x)〉ZN Ψ =
〈[

Yω+1(x) + q̂ωPω(x)
Yω(x)

]
QΩ(x)

〉
ZN

Ψ (7.67)

At first glance, it seems that there exists no interaction factor in the transfer matrix as
a lack of S factors. However, when the occupation status of lattice site ω is flipped from
empty to occupied. It is required for one of its nearest neighbor to flip along with it. Hence
there is a nearest neighboring interaction in the structure of transfer matrix. The combined
contribution of empty and occupied states at site ω and ω − 1 gives〈[(

Yω+1(x) + q̂ωPω(x)
Yω(x)

)(
Yω(x) + q̂ω−1Pω−1(x)

Yω−1(x)

)
− q̂ωPω(x)

]
QΩ(x)

〉
ZN

Ψ

=
〈[

Yω+1(x)Yω(x) + q̂ω−1Pω−1(x)Yω+1(x)
Yω−1(x) + q̂ωPω(x)

Yω(x)
q̂ω−1Pω−1(x)

Yω−1(x)

]
QΩ(x)

〉
ZN

Ψ

(7.68)

which can be rewritten in the form similar to the higher rank qq character:〈[
Yω+1(x)Yω(x) + q̂ωPω(x)

Yω(x)
q̂ω−1Pω−1(x)

Yω−1(x) + S−((ω − 1)ε̂2 − ωε̂2)δN (ω−1−ω+1)q̂ωPω(x)

+S−(ωε̂2 − (ω − 1)ε̂2)δN (ω−(ω−1)+1)Ŷω+1(x+ (ω + 1)ε̂2) q̂ω−1Pω−1(x)
Yω−1(x)

]
QΩ(x)

〉
ZN

Ψ

The other S-factor associated to ω can be obtained by considering the combined contribution
of ω and ω + 1.

The action of the transfer matrix on 〈QΩ(x)〉 now can be written as a modified form of the
higher rank qq-character with a special set of complex numbers %̂ω = ωε̂2 in the ε2 → 0 limit:

TrVauxTSC(x) 〈QΩ(x)〉ZN Ψ

=
〈 ∑

[N ]=J∪J̃∪K∪K̃

∏
j∈J

T̂N,j(x)T̂N,j−1(x)
∏
k∈K

(−q̂kPk(x))

QΩ(x)
〉

ZN

Ψ

=
〈 ∑

[N ]=J∪K

∏
j∈J,k∈K

S−(%j − %k)δN (j−k+1) ∏
j∈J

Yj+1(x)
∏
k∈K

q̂kPk(x)
Yk(x)

QΩ(x)
〉

ZN

Ψ

= 1
ε1

〈
X

(2)
N,defect(x)QΩ(x)

〉
ZN

Ψ− 1
ε1

〈
X

(2)
N,defect(x− ε1)QΩ(x)

〉
ZN

Ψ (7.69)

The left hand side is a degree N polynomial

TrVauxTSC(x) = (1 + q)xN + ĥ1(γω, ∂γω)xN−1 + ĥ2(γω, ∂γω)xN−2 + · · ·+ ĥN (γω, ∂γω)
(7.70)
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whose coefficients are functions of the sl2 module coordinates (γω, ∂γω). The right hand
side is a degree N polynomial. The choice of %̂ω = ωε̃2 gives in ε2 → 0 limit

TrVauxTSC(x) 〈QΩ(x)〉ZN Ψ =
〈[

Y(x+ ε2) + q
P (x)
Y(x)

]
QΩ(x)

〉
ZN

Let us take Ω = N − 1, where QN−1(x) = Q(x) is the bulk Q-observable. We obtain

TrVauxTSC(x) 〈Q(x)〉ZN Ψ = 〈Q(x+ ε2)〉ZN Ψ + qP (x) 〈Q(x− ε2)〉ZN Ψ

= 〈TN (x)Q(x)〉ZN Ψ (7.71)

where TN (x) is a degree N polynomial whose coefficients depends on the bulk instanton con-
figuration defined in (4.3). The equivalence of the two equations establishes the Schrödinger
equations for all the conserving Hamiltonians.

8 Discussion

In this paper, we derived novel difference equations from non-perturbative Dyson-Schwinger
equations for the correlation function of the intersecting surface defects in the four-
dimensional N = 2 supersymmetric gauge theory. The difference equations, called the
fractional quantum T-Q equations, are satisfied by the correlation function of the inter-
secting surface defect observables, one of which is constructed out of the ZN -orbifold and
the other is constructed out of folded branes. We showed that the Fourier transform of
the non-perturbative Dyson-Schwinger equations induce the 5-point KZ for slN , where one
of the slN -modules is the N -dimensional representation, with a proper matching of the
parameters on two sides. We also constructed the quantum XXXsl2 spin chain from the
fractional quantum T-Q equations, achieving the Lax operators, the monodromy matrix,
and the sl2-representations at N spin sites in gauge theoretical terms. The trace of the
monodromy matrix is found to be identical to the fractional qq-character of rank N in the
NS limit ε2 → 0.

We provide a few remarks on further developments of our study:

8.1 Isomonodromic deformations of higher-rank Fuchsian systems

It was conjectured in [71] that the isomonodromic tau function of the sl2 Fuchsian system
can be expressed as an infinite sum of the SU(2) gauge theory partition functions in the
self-dual limit ε1 + ε2 → 0 of the Ω-background. On the other hand, the isomonodromic tau
function is a quasiclassical object, corresponding to the ε1 → 0 or ε2 → 0. In [35, 41], the
two approaches to the isomonodromic problem are reconciled by placing the gauge theory in
the presence of the surface defect on the blowup Ĉ2 and studying novel blowup formula [72]
for the vacuum expectation value of the surface defect observable [35, 41]. Moreover, the
horizontal section of the Fuchsian system was constructed from the correlation function of
intersecting surface defects, allowing computation of the monodromy data of the Fuchsian
system in gauge theoretical terms [35]. Our work completes this circle of ideas by explicitly
constructing the meromorphic connection (with special residues at q and 1) for the general
N rank case, thereby giving an explicit limit ε1 → 0 to the isomonodromic problem.
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Specifically, the ε1 → 0 asymptotics of the correlation function constructed in section 6.2
has the form

Π(z; q, y) = e
S(q,z)
ε1 (π(z; q, y) +O(ε1)) , (8.1)

corresponding to the geometry of the regular surface defect extended in the C1-plane
while the vortex string defect is extended along the C2-plane. Accordingly, the S(q, z)
function in the exponential, being the effective twisted superpotential of the theory on the
regular surface defect coupled to bulk gauge theory, is independent of the coupling y of the
transverse surface defect, the latter creating only a local disturbance. This is consistent
with the limit of the q-component of the 5-point KZ equation (6.83) giving

0 = ∂S(q, z)
∂q

+H(z, p; q), (8.2)

where the Hamiltonian H(z, p; q) is obtained in terms of A0,1 ≡ limε1→0
ε1
ε2
Â0,1. Here,

we have the conjugate momenta pω ≡ ∂S(q,z)
∂zω

appearing in H(z, p; q). This equation is
none other than the Hamilton-Jacobi equation for the isomonodromic deformations of slN
Fuchsian system, with the Hamilton-Jacobi potential S(q, z). Moreover, the y-component
of the 5-point KZ equation (6.61) becomes

0 =
[
∂

∂y
+ A0

y
+ Aq

y − q
+ A1
y − 1

]
π(z; q, y), (8.3)

where A0,q,y ≡ limε1→0
ε1
ε2
Â0,q,y. Hence the regular part π(z; q, y) of the correlation function

of the intersecting defects is precisely the horizontal section of the slN Fuchsian system.
It would be nice to verify that the ε1 → 0 limit of the blowup formula for the expectation

value of the regular surface defect yields the isomonodromic tau function for higher-rank
slN Fuchsian systems, expressed as an infinite sum of the gauge theory partition functions,
generalizing [35, 41]. It is also expected that the monodromy data of the higher-rank
slN Fuchsian systems can be computed in gauge theoretical terms, following [35]. Just as
in [35, 38], in the Darboux coordinates (α,β) of the SL(N) monodromy space constructed
in [38] (higher-rank analogues of NRS coordinates [73]; see also [74]) the monodromy data
would be computed as

βω = ∂S

∂αω
, ω = 0, · · · , N − 1, (8.4)

where the half of the coordinates (αω)N−1
ω=0 are identified with the Coulomb moduli, so that

the potential S(q, z) is the generating function of the Riemann-Hilbert map between the
moduli space of slN Fuchsian systems and the SL(N) monodromy space, (z, p)↔ (α,β).

The higher-rank isomonodromic deformations are in fact not fully accounted by (8.2).
It is more natural to introduce N − 1 higher times, as opposed to the original time q, along
which further monodromy preserving deformations of the Fuchsian system are generated
by higher Hamiltonians. In the gauge theory side, the higher times can be introduced by
explicit coupling terms with the higher Casimirs [75, 76]. The higher-rank isomonodromic
deformations of such kinds are not very well-known, at least to our best knowledge.
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8.2 Separation of variables and KZ/BPZ correspondence

The separation of variables of the quantum integrable system is deeply involved with our
study. It was indeed shown in [42] that, in the limit ε2 → 0, the vacuum expectation value
Ψ(q, z) (4.11) of the regular surface defect admits a Mellin-Barnes integral representation.
This integral transform led to the expression of the eigenfunction in separated variables for
the XXXsl2 spin chain. We expect that it would be possible to establish such an integral
transform formula without the unrefinement of ε2 → 0, both for the vacuum expectation
value of the regular surface defect and the correlation function of the intersecting surface
defects. In the view of the BPS/CFT correspondence, it would be equivalent to the
KZ/BPZ correspondence, in which the solutions to the KZ equation and the BPZ equation
are transformed to each other.

In the rank 1 case, it has been known that the coordinate transformation connecting the
two sides of the KZ/BPZ correspondence is the separation of variable transformation [77, 78].
Physically, the integral transformation was interpreted as a consequence of the Hanany-
Witten type M-brane transitions which interchange codimension-two defects (M5-branes)
and codimension-four defects (M2-branes) [34]. See also [79]. The integral transform we
are looking for would be its higher-rank analogues.

8.3 Quantization conditions

The four-dimensional gauge theory construction of the XXXsl2 spin chain suggests an
application of the quantization scheme of [26]. Indeed, in section 7.1, we have shown
that a specific quantization condition is equivalent to the vacuum equation of the dual
two-dimensional gauged linear sigma model, leading to the quantization by algebraic Bethe
ansatz [27, 69].

The quantization conditions in [26] can be viewed as the boundary condition of the effec-
tive two-dimensional gauge theory on a cylinder, obtained by reducing the four-dimensional
gauge theory subject to the half Ω-background [80]. It would be nice to exactly characterize
the spectral problems induced by different choices of boundary conditions.

8.4 Representation theory aspects

We have shown that the correlation functions of intersecting surface defects give rise to
certain slN -representations and sl2-representations simultaneously. It would be interesting to
further investigate the algebraic meaning of this relation. In particular, a natural conjecture
is that the proper surface defect arrangement in the quiver gauge theory based on a quiver of
ADE or Â, D̂, Ê-type, the sl2 spin chain would be replaced by the corresponding spin chain
based on the Yangian of the corresponding Lie algebra. In the quasiclassical limit this is
supported by the identification [21] of Seiberg-Witten geometries of these theories with the
moduli spaces of ADE monopoles on R2 × S1 or instantons on R2 × T 2. The deformation
quantization of these spaces produces the corresponding Yangian algebras [59, 81].

The relation of the action in (7.30) to the Heisenberg-Weyl representation of slN is
obscured at this moment. It may provide deeper insight for the connection between XXXsl2

spin chain and representations of slN .
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In the algebraic engineering of N = 2 gauge theories [82], the gauge theory correlation
functions are expressed as correlation functions of intertwining operators of representations of
quantum toroidal algebra of gl1. The regular orbifold surface defects can be incorporated by a
lift to quantum toroidal algebra of glN [83]. It would be nice if we can account for the duality
between the KZ equations and the spin chains in this quantum toroidal algebra context.

Another subtle point concerns the precise definition of the tensor products ((6.32), (6.43))
etc. Since our computations involve infinite power series in various fugacities, the generating
functions we obtain belong to certain completions of the tensor products. A good handle on
the required topology comes from the study of the q→ 0 limit. On the KZ theory side this
limit corresponds to diagonalizing a pair Casimir Ĥ0, meaning decomposing the product of
a lowest-weight Verma module and the HW module into irreducibles. On gauge theory side
we would be computing the J-function of a flag variety valued sigma model, similarly to
the computations done in [42]. It would be nice to make the precise match.

8.5 Categorification of conformal blocks

The results of our paper provide a non-trivial check of the BPS/CFT correspondence. As
in [43], it is interesting to recast our statement the language of [80], as well as in view
of [84, 85]. Namely, the higher dimensional perspective on the conformal blocks of current
algebra reveals a connection to the mysterious (0, 2)-theory in six dimensions. The theory
relevant to present considerations is of the AN−1-type. As the 4-point block studied in
detail in [43], the 5-point block, for the integral level k and the dominant levels of Verma
and HW modules admitting integrable quotients, has an interpretation as a wavefunction
of a state in three dimensional Chern-Simons theory on a three-ball B3 with the action

k

4π

∫
B3

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

(8.5)

with the gauge fields having a curvature singularity along an embedded graph Γ, as in the
figure 1. Our paper provides an analytic continuation to the case of complex levels and
weights. The paper [84] offers such a continuation for the Chern-Simons level. As explained
in [43] it does not seem to be possible to analytically continue the graph observable as line
operators in the analytically continued Chern-Simons theory, as in [84]. In the present case
one leg l of the graph Γ corresponds to the N -dimensional representation, for which the
matrix elements of the holonomy TCN P exp

∫
lA are well-defined. Thus, we might expect

the analytically continued observable to be a junction of a surface defect in the topologically
twisted N = 4 theory on a four dimensional manifold with corners, which locally looks like
B3 × I, and a line operator.

On the other hand, the surface defect in four dimensions can be related [80] to boundary
conditions in the two dimensional sigma model valued in the moduli space of vacua of the
theory, compactified on a circle, which in the present case is believed to be the moduli
spaceMN

(
S2\4 pts ;~ν,m, m̃, ~̃ν

)
of SU(N) Higgs pairs on a 4-punctured sphere with the

regular punctures at 0 and ∞, and the minimal punctures at q and 1, see the figure 2. The
homotopy between these two representatives of a cohomology class of an intrinsic operator
in the six dimensional theory proceeds by viewing the two dimensional sigma model, with
the worldsheet C as a long distance limit of the four dimensional N = 2 Ω-deformed
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Figure 1. Wilson graph corresponding to the 5-point conformal block.
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Figure 2. Four dimensional gauge theory in two dimensional presentation.

theory compactified on a two-torus T 2 as in [80], which, in turn, is a limit of the AN−1
(0, 2)-theory compactified on

(
S2\{0, q, 1,∞}

)
× T 2, which, finally, can be reinterpreted, as

the N = 4 theory on C ×
(
S2\{0, q, 1,∞}

)
with the canonical parameter [86] identified [80]

with the ratio ε2/ε1. With C having the topology of the corner R2
+, as in figure 2, the

suitably twisted N = 4 theory looks very much like a gradient flow theory of the analytically
continued Chern-Simons theory on R+ × S2, with certain boundary conditions. Of special
interest is the brane (in the sigma model sense) located at the z1 = 0 component of the
boundary on the figure 2. In the setup of [43] that brane could be identified [80] with the
space-filling canonical coisotropic brane [86, 87]. Adding the light surface defect generating
the Q-observable seems to endow this brane with a rank N Chan-Paton bundle. It is
tempting to identify this bundle with the universal Higgs bundle [80] evaluated at the point
y ∈ S2\{0, q, 1,∞}.
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A Partition functions of N = 2 supersymmetric gauge theories

We consider N = 2 A1 quiver gauge theory in four dimensions, with gauge group SU(N)
and 2N fundamental hypermultiplets. The Lagrangian is parametrized by the complex
coupling

τ = 4πi
g2 + θ

2π , q = exp 2πiτ (A.1)

and by the choice of 2N fundamental matter masses m, which we splits into N fundamental
m+ = (m+

1 , . . . ,m
+
N ) and N anti-fundamental m− = (m−1 , . . . ,m

−
N ). The choice of the

vacuum is characterized by the N Coulomb moduli parameters = (a1, . . . , aN ) obeying

N∑
α=1

aα = 0. (A.2)

The localization of Ω-deformed theory [4, 6] produces the statistical model whose
configuration space is PN . Each instanton configuration is labeled by N -tuples of Young
diagrams λ = (λ(1), . . . , λ(N)). Each individual Young diagram λ(α), α = 1, . . . , N , is a
collection λ(α) = (λ(α)

1 , λ
(α)
2 , . . . ) of non-negative integers satisfying

λ
(α)
i ≥ λ(α)

i+1, i = 1, 2, . . . (A.3)

where each λ(α)
i labels the number of squares in the i-th row of Young diagram λ(α).

The pseudo-measure associated to the instanton configuration λ is defined through
plethystic exponent E operator, which converts the additive Chern characters to the multi-
plicative classes

E
[∑
a

maexa

]
=
∏
a

x−ma
a (A.4)

where ma ∈ Z is the multiplicity of the Chern root xa. For λ the associated pseudo-measure
is computed by:

Z(a,m±,~ε)[λ] = E
[
− ŜŜ

∗

P ∗12
+ M̂Ŝ∗

P ∗12

]
(A.5)

where

N̂ =
N∑
α=1

eaα , K̂ =
N∑
α=1

∑
�∈λ(α)

ec� , Ŝ = N̂ − P12K̂, M̂ =
N∑
f=1

em
+
f + em

−
f . (A.6)

We use a short hand notation c� = aα + (i− 1)ε1 + (j− 1)ε2. qi = eεi are the exponentiated
complex Ω-deformation parameters ε1, ε2 ∈ C [2, 4, 88], and

Pi = 1− qi, P12 = (1− q1)(1− q2). (A.7)

Given a virtual character X̂ =
∑
a maexa we denote by X̂∗ =

∑
a mae−xa the dual virtual

character.
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Let us define the Y-observable

Y(x)[λ] = E
[
−exŜ∗[λ]

]
=

N∏
α=1

(x− aα)
∏

�∈λ(α)

(x− c� − ε1)(x− c� − ε2)
(x− c�)(x− c� − ε1 − ε2)

on the instanton configuration λ.
In the A1-type theory, Y-observable can be expressed as ratio of analytic Q-observable

with a shifted argument:

Y(x) = Q(x)
Q(x− ε2) . (A.8)

The zeros of Q are located at

aα + ε2(j− 1) + ε1λ
(α),t
j , α = 1, . . . , N, j = 1, 2, . . . (A.9)

where λt is the transpose of λ.

B Integrability of XXXsl2 spin chain

Consider one-dimensional quantum periodic spin chain with N sites. Each spin site is
associated with a local spin operator ~sn = (s+

n , s−n , s0
n) of general spin. The spin variables

act on the Hilbert space h. The full Hilbert space is the tensor product of all local Hilbert
spaces

H = h0 ⊗ h1 ⊗ · · · ⊗ hN . (B.1)

We shall use the permutation operator

P = 1
2(I ⊗ I + ~σ ⊗ ~σ). (B.2)

The Lax operator Ln,a is defined on the local space hn ⊗ Vaux. In our example the
auxiliary Vaux = C2 but it can be chosen otherwise. The Lax operator is given by

Ln,a(x) = λ(Ihn ⊗ Iaux) + ~(~σn ⊗ ~σaux) (B.3)

= x+ ~
(

s0
n s−n

s+
n −s0

n

)
= xI + ~Ln (B.4)

The commutation relation of the matrix elements in 2× 2 matrix Ln,a is governed by
the RLL-relation (train track relation):

Ra1,a2(x− x′)Ln,a1(x)Ln,a2(x′) = Ln,a2(x)Ln,a1(x′)Ra1,a2(x− x′). (B.5)

This is an equation acting on the space Va1 ⊗ Va2 ⊗ hn. The indices a1 and a2 and variables
x and x′ are associated to the auxiliary spaces Va1 and Va2 . The Ra1,a2 governing the
commutation is given by

Ra1,a2(x) = 1
x+ ~

(xIa1,a2 + ~Pa1,a2) (B.6)
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In particular, by choosing Va1 = Va2 = C2, Ra1,a2 is a 4× 4 matrix

Ra1,a2(z) = 1
x+ ~


x+ ~ 0 0 0

0 x ~ 0
0 ~ x 0
0 0 0 x+ ~

 (B.7)

with

Ln,a1(x) =x(I⊗Ia1⊗Ia2)+~(sxn⊗σx⊗Ia2 +syn⊗σy⊗Ia2 +szn⊗σz⊗Ia2)
≡xI+~L1, (B.8a)

Ln,a2(x′) =x′(I⊗Ia1⊗Ia2)+~(sxn⊗Ia1⊗σx+syn⊗Ia1⊗σy+szn⊗Ia1⊗σz)
≡x′I+~L2. (B.8b)

The validity of (B.5) can be computed via direct calculation

Ra1,a2La1La2−La2La1Ra1,a2 =x~2(PL2−L2P )+x′~2(PL1−L1P )
+(x−x′)~2(L1L2−L2L1)+~3(PL1L2−L2L1P ) (B.9a)

with each element written as 4× 4 matrix in Va1 ⊗ Va2 spaces,

PL1L2 =


s0s0 s−s0 s0s− s−s−

s0s+ s−s+ −s0s0 −s−s0

s+s0 −s0s0 s+s− −s0s−

s+s+ −s0s+ −s+s0 s0s0

 (B.10a)

L2L1P =


s0s0 s−s0 s0s− s−s−

s0s+ s−s+ −s0s0 −s−s0

s+s0 −s0s0 s+s− −s0s−

s+s+ −s0s+ −s+s0 s0s0

 = PL1L2 (B.10b)

The remaining terms are

(x− x′)(L1L2 − L2L1) = (x− x′)


0 [s−, s0] [s0, s−] 0

[s+, s0] [−s0, s0] [s+, s−] [−s0, s−]
[s0, s+] [s−, s+] [s0,−s0] [s−,−s0]

0 [−s0, s+] [s+,−s0] 0

 (B.11)

and

x′(PL1 − L1P ) + x(PL2 − L2P ) = (x− x′)


0 −s− s− 0
s+ 0 −2s0 −s−

−s+ 2s0 0 s−

0 s+ −s+ 0

 (B.12)

We find (B.5) holds if the spin chain operators satisfies the commutation relation[
s0
j , s±k

]
= ±s±j δjk,

[
s+
j , s
−
k

]
= 2s0

jδjk, (B.13)

for all the representation.
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The monodromy matrix TSC(z) is defined as an ordered product of Lax operators

Ta(x) = Ka(q)LN,a(x)LN−1,a(x) · · ·L1,a(x), (B.14)

where Ka(q) is a twisted matrix introduced to the system. It is obvious that the monodromy
matrix Ta(z) satisfies the train track commutation relations same as Lax operators, namely

Ra1,a2(x− x′)Ta1(x)Ta2(x′) = Ta2(x′)Ta1(x)Ra1,a2(x− x′) (B.15)

in the absence of twist, Kq = Ia. When a twist matrix K(q) is introduced, one extra
condition to check for validity of eq. (B.15) is

Ra1,a2(x− x′)Ka1(q)Ka2(q) = Ka2(q)Ka1(q)Ra1,a2(x− x′). (B.16)

The twist matrix can always be decomposed into

Ka(q) = Ka,1I +Ka,xσx +Ka,yσy +Ka,zσz. (B.17)

Eq. (B.16) can be verified via direct calculation. We conclude that eq. (B.15) holds for
monodromy matrix with general twisted matrix.

C Some computational details for 4-point KZ equation

C.1 Representation side

Given the parameters (ζ, ζ̃, τ , µ, µ̃), We solve for (βa)Na=1 satisfying (6.37) in terms of
(ζ, ζ̃, τ , µ, µ̃):

βN = µ

N
+
N−1∑
j=1

j

N
(τj − ζ̃j).

βi = βN − (βN − βN−1 + βN−1 − βN−2 + · · ·+ βi+1 − βi)

= µ

N
+
N−1∑
j=1

j

N
(τj − ζ̃j) +

N−1∑
j=i

(τj − ζ̃j), i = 1, . . . , N − 1,

(C.1)

and similarly for (β̃a)Na=1:

β̃N = µ̃

N
+
N−1∑
j=1

j

N
(τj − ζj).

β̃i = β̃N − (β̃N − β̃N−1 + β̃N−1 − β̃N−2 + · · ·+ β̃i+1 − β̃i)

= µ̃

N
+
N−1∑
j=1

j

N
(τj − ζj)−

N−1∑
j=i

(τj − ζ̃j), i = 1, . . . , N − 1.

(C.2)

Finally for (αi)N−1
i=1 :

αi = τi −
µ+ µ̃

N
+
N−1∑
j=1

j

N
(ζj + ζ̃j)−

N−1∑
j=b

(ζj + ζ̃j), i = 1, . . . , N − 1. (C.3)
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C.2 Gauge theory side

For completeness, let us briefly review the identification of the surface defect partition
function with the 4-point conformal block of ŝlN . The Verma and HW weights (ζ, ζ̃, µ, µ̃)
are related to the fundamental matter masses, Ω-deformation parameter ε1 and the Coulomb
moduli of the N = 2 SQCD by

ζi =
m−i+1 −m

−
i

ε1
, ζ̃i =

m+
i+1 −m

+
i

ε1
, i = 1, . . . , N − 1;

µ =
N∑

a=1

m−a − aa

ε1
, µ̃ =

N∑
a=1

m+
a − aa

ε1
.

(C.4)

The 4-point conformal block Ψ(q) obeys the KZ equation[
−(k +N) d

dq
+ Ĥ(4)

0
q

+ Ĥ(4)
1

q− 1

]
Ψ(q) = 0 (C.5)

with the residues of the meromorphic KZ connection given by

Ĥ(4)
0 = −

N∑
a,b=1

zbJa
b
∂

∂za , Ĥ(4)
1 = −z̃(z)

N∑
a=1

∂2

∂za∂z̃a
(C.6)

with Jb
aπi = −ea ∧ ẽbπi. We focus on the G-invariant part χ(v1, . . . , vN−1; q) in the 4-point

correlation function Ψ(q), which satisfies[
−(k +N) d

dq
+ Ĥ

(4)
0
q

+ Ĥ
(4)

1
q− 1

]
χ(v1, . . . , vN−1; q) = 0. (C.7)

The operators Ĥ
(4)

0,1 are obtained by commuting the Lie(G)-equivariant Ψ0 (6.35)
through operators Ĥ(4)

0,1:

Ĥ(4)
0,1Ψ(q) = Ψ0Ĥ

(4)
0,1 χ(v1, . . . , vN−1; q). (C.8)

We may choose, by SL(N)-transformation, πi = π◦i and π̃i = π̃i◦. We consider action of Ja
b :

(z̃ ∧ π̃i−1)(Ja
bπi) = −

[
(z̃1ẽ1 + · · ·+ z̃N ẽ

N ) ∧ (ẽ1 ∧ · · · ∧ ẽi−1)
]

(eb ∧ ẽa(e1 ∧ · · · ∧ ei))

=

−z̃bδ
a
i θb≥i, a 6= b

−z̃iθi≥a, a = b

= −z̃bδ
a
i θb>i − z̃iθi≥aδ

a
b (C.9a)

π̃i(z ∧ Ja
bπi−1) = −(ẽ1 ∧ · · · ẽi)[(z1e1 + · · ·+ zNeN ) ∧ eb ∧ ẽa(e1 ∧ · · · ∧ ei−1)]

=

zaδibθi−1≥a, a 6= b

−ziθi−1≥a, a = b

= zaδibθi−1≥a − ziθi−1≥aδ
a
b (C.9b)

π̃i(Ja
bπi) = −(ẽ1 ∧ · · · ∧ ẽi)(eb ∧ ẽa(e1 ∧ · · · ∧ ei))

= −δa
bθa≤i (C.9c)
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This gives

Ja
b Ψ0 = Ψ0

[
βb

za

zb θb>a − β̃a
z̃b

z̃a
θb>a − δa

b

N∑
i=1

βiθi−1≥a − β̃iθi≥a − δa
b

N−1∑
i=1

αiθi≥a

]

= Ψ0

[
βb

za

zb θb>a − β̃a
z̃b

z̃a
θb>a − δa

bξa

]
(C.10)

with a short handed notation for convenience

ξa =
N∑
i=1

βiθi−1≥a + β̃iθi≥a +
N−1∑
i=1

αiθi≥a.

Ja
b acts on χ through

Ja
bχ(v1, . . . , vN−1) =

N−1∑
k=1

(Ja
bvk) ·

∂χ

∂vk
= va

z̃b

z̃a
θb>a

∂χ

∂va
− vb

za

zb θb>a
∂χ

∂vb
(C.11)

with

Ja
bvk = vk

[
− z̃b

z̃k
δa
kθb>k + za

zk
δkbθk>a

]
. (C.12)

We find Ĥ
(4)

0,1 acting on χ(v1, . . . , vN−1; q) of the following form:

Ĥ
(4)

0 = −1
2

(
N∑

a=1
∇z

a + βa

)2

(C.13a)

+
N∑

a=1

1
2(∇z

a + βa)2 + va+1 + · · ·+ vN−1
va

(∇z
a + βa)(∇z̃

a + β̃a)− ξa(∇z
a + βa)

Ĥ
(4)

1 =
N∑

a=1
− z̃(z)
z̃aza

(
za ∂

∂za + βa

)(
z̃a

∂

∂z̃a
+ β̃a

)
. (C.13b)

Variables (va)Ni=1 are given by

va = (z̃ ∧ π̃a−1)(πa) · π̃a(z ∧ πa−1)
z̃(z) · π̃a−1(πa−1) · π̃i(πa) = z̃az

a

z̃(z) , (C.14)

with

z̃(z) =
N∑

a=1
z̃az

a, =⇒
N∑
i=1

vi = 1.

Differential operators ∇z
a and ∇z̃

a acting on χ in terms of variables {v1, . . . , vN−1} via
chain rules:

za ∂

∂za = za
N−1∑
i=1

∂vi
∂za

∂

∂vi
=

N−1∑
i=1

za
(
δiaz̃a

z̃(z) − vi
z̃a

z̃(z)

)
∂

∂vi
= va

∂

∂va
− vaD, (C.15a)

z̃a
∂

∂z̃a
= z̃a

N−1∑
i=1

∂vi
∂z̃a

∂

∂vi
=

N−1∑
i=1

z̃a

(
δiaz

a

z̃(z) − vi
za

z̃(z)

)
∂

∂vi
= va

∂

∂va
− vaD, (C.15b)

where D =
∑N−1
i=1 vi∂vi .
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Fractional qq-character (3.40) satisfies non-perturbative Dyson-Schwinger equation:〈
[x−I ]Xω(x)

〉
ZN

, ω ∈ ZN , I ∈ Z>0. (C.16)

We take large x expansion of (3.40) with the building block Yω(x)’s behavior in (4.7). The
case of I = 1 gives

0 =
〈
ε1D

(1)
ω −q̂ωε1D

(1)
ω−1+ ε2

1
2 ν

2
ω−ε1aω+1νω+q̂ω

(
ε2

1
2 ν

2
ω−1+(mω−aω)ε1νω−1+Pω(aω)

)〉
Z

(C.17)

We consider linear combination that eliminate the ĉω − ĉω+1 coming from D
(1)
ω . The N = 2

SQCD instanton partition function ẐX;c,σ± then satisfies differential equation[
(1− q)qε1ε2

∂

∂q
+ Ĥ

]
ẐX;c,σ± = 0 (C.18)

with

Ĥ =
N−1∑
ω=0

1−q
2
(
ε2

1(∇zω)2−2aωε1∇zω
)

+ zω+1+· · ·+zω+N
zω

(ε1∇zω−aω+m+
ω )(ε1∇zω−aω+m−ω ).

(C.19)

We rewrite (C.18) into [
ε2
ε1

d

dq
+ Ĥ|q=0

q
+ −Ĥ|q=1

q− 1

]
ẐX;c,σ± = 0 (C.20)

We find eq. (C.7) agreeing with (C.20) with matching between parameters k +N = − ε2
ε1

and variables on the gauge and CFT side:

za = zaz̃a, vi = zi
z0 + z1 + · · ·+ zN−1

. (C.21)

a = 1, . . . , N , i = 1, . . . , N − 1. We identify defect partition function ẐX;c,σ± of four
dimensional gauge theory as CFT 4-point correlation function

χ(v1, . . . , vN−1; q) = ẐX;c,σ±(z0, . . . , zN−1; q) =
N−1∏
ω=0

z
−m

+
ω−aω
ε1

ω Ψ, (C.22)

with Ψ is defined in (4.11).

D Some computational details for 5-point KZ equations

D.1 Representation side

Here we demonstrate how the equations (6.53) and (6.55) are obtained. Let us define χ =∑N
b=1 ũ

bχb(v1, . . . , vN−1; q, y) to study how the KZ equations are expressed as differential
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equations annihilating individual χb(v1, . . . , vN−1; q). The 5-point KZ equations for χ are
denoted as [

−(k +N) ∂
∂q

+ Ĥ0
q

+ Ĥ1
q− 1 + Ĥy

q− y

]
χ = 0 (D.1a)[

−(k +N) ∂
∂y

+ Â0
y

+ Â1
y − 1 + Ây

y − q

]
χ = 0 (D.1b)

First we find Ĥ1:

(
Ĥ1
)

ab
=
[
−

N∑
c=1

z̃(z)
zcz̃c

(
zc ∂

∂zc + βc

)(
z̃c

∂

∂z̃c
+ β̃c − δca

)]
δab (D.2)

= Ĥ
(4)

1 δab + z0 + · · ·+ zN−1
za

(∇za + βa)δab.

The action of Ĥy = −Âq acting on χb can be found by taking

(
Ĥy

)
ab
χb =

(
Υ(a)

0 ũa

)−1 (
Ĥy

)
ab

Υ(b)
0 ũbχb

= −
(
Υ(a)

0 ũa

)−1
Eb

az
a ∂

∂zb Υ(b)
0 ũbχb

= −
(
Υ(a)

0 ũa

)−1
za ∂

∂zb

(
ũa

∂

∂ũb

)
Υ(b)

0 ũbχb

= −Υ(b)
0

Υ(a)
0

za

zb

(
zb ∂

∂zb + β
(b),∗
b

)
χb

= − z̃az
a

z̃bzb

(
zb ∂

∂zb + βb

)
χb

= −za

zb
(∇zb + βb)χb. (D.3)

Similarly the action of Â1 on χb can be found by

(
Â1
)

ab
χb =

(
Υ(a)

0 ũa

)−1 (
Â1
)

ab
Υ(b)

0 ũbχb

=
(
Υ(a)

0 ũa

)−1
(
−z̃b

∂

∂z̃a
ũa

∂

∂ũb

)
Υ(b)

0 ũbχb

= − 1
Υ(a)

0

(
z̃b

∂

∂z̃a

)
Υ(b)

0 χb

= −Υ(b)
0

Υ(a)
0

z̃b

z̃a

(
z̃a

∂

∂z̃a
+ β̃(b),∗

a

)
χb

= −
(
z̃a

∂

∂z̃a
+ β̃a − δab

)
χb

= −
(
∇za + β̃a − δab

)
χb (D.4)
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Action of Â0 on χb is:

(
Â0
)

ab
χb =

(
Υ(a)

0 ũa

)−1
(Â0)ab Υ(b)

0 (ũ ∧ π̃b−1)(πb)χb (D.5)

=
(
Υ(a)

0 ũa

)−1
(Eb

aJ
a
b )ψ(b)

0 (ũ ∧ π̃b−1)(πb)χb

= − 1
Υ(a)

0

∂

∂ũb

[
(Ja

bψ
(b)
0 )ũbχb + ψ

(b)
0 (Ja

b (ũ ∧ π̃b−1)(πb))χb + ψ
(j)
0 ũb(Ja

bχb)
]

= ψ
(b)
0

ψ
(a)
0

[
va

z̃b

z̃a
θb>a

∂

∂va
− vb

za

zb θb>a
∂

∂vb
− β(a),∗

b
za

zb θb>a + β̃(b)∗
a

z̃b

z̃a
θb>a

+δa
b + δa

b

N∑
i=1

β
(b),∗
i θi>a + β̃

(b),∗
i θi≥a + δa

b

N−1∑
i=1

α∗i θi≥a

]
χb

=
[
za

(
∂

∂za
− ∂

∂zb

)
− za

zb
βbθb>a + β̃aθb>a − δa

bξa

]
χb (D.6)

Last but not least is Ĥ0. We consider action of Ĥ0 on Υ(c)
0 ũcχc for some c = 1, . . . , N .

When Ja
b does not act on ũc = (ũ ∧ π̃c−1)(πc), it gives only diagonal element in the N ×N

matrix:

−
(
Υ(c)

0

)−1∑
a,b

zb ∂

∂zaJ
a
b Υ(c)

0 χc (D.7)

=
∑
a,b

zb

za

[
za ∂

∂za +β(c),∗
a

][(
va

z̃b

z̃a

∂

∂va
−vb

za

zb
∂

∂vb
−β(c),∗

b
za

zb +β̃(c),∗
a

z̃b

z̃a

)
θb>a−δa

b (θc≥b+ξa)
]
χc

=
∑
b>a

zb

za

[
za ∂

∂za +βa

][
z̃b

z̃a

(
z̃a

∂

∂z̃a
+vaD

)
− za

zb

(
zb ∂

∂zb +vbD

)
−βb

za

zb +(β̃a−δac) z̃b

z̃a

]
χc

−
N∑

a=1

(
za ∂

∂za +βa

)
(θc≥b+ξa)χc

=
[∑

b>a

zbz̃b

zaz̃a
(∇z

a+βa)∇z̃
a−(∇z

a+βa)∇z
b−βb(∇z

a+βa)+(β̃a−δac)z
bz̃b

zaz̃a
(∇z

a+βa)

−
N∑

a=1
(θc≥b+ξa)(∇z

a+βa)
]
χc

=−1
2

(
N∑

a=1
∇z

a+βa

)2

χc

+
[
N∑

a=1

1
2(∇z

a+βa)2+ va+1+· · ·+vN−1
va

(∇z
a+βa)(∇z̃

a+β̃a)−(θc≥a+ξa)(∇z
a+βa)

]
χc
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Unlike Ĥ1, Ĥ0 may have off-diagonal components when Ja
b acts on the unit vector

(ũ ∧ π̃c−1)(πc): ∑
a,b

zb

za Υ(c)
0

[
za ∂

∂za + βa

]
(Ja

b (ũ ∧ π̃c−1)(πc))χc

=
∑
a,b

zb

za Υ(c)
0 (∇z

a + βa)(ũbδ
a
cθb>c + ũcδ

a
bθc≥a)χc

=
∑

b

zbz̃b

zcz̃c
Υ(b)

0 ũb(∇z
c + βc)θb>cχc + ψ

(c)
0 ũc(∇z

b + βb)θc≥bχc (D.8)

We obtain KZ operator Ĥ0 as an N ×N matrix with the combination of (D.7) and (D.8):

(
Ĥ0
)

ab
=−δab

1
2

(
N∑

c=1
∇z

c+βc

)2

(D.9)

+δab

[
N∑

c=1

1
2(∇z

c+βc)2+ vc+1+· · ·+vN−1
vc

(∇z
c+βc)(∇z̃

c+β̃c−δac)−ξc(∇zc+βc)
]

+ zaz̃a

zbz̃b
(∇z

b+βb)θa>b

= Ĥ
(4)

0 δab−
za+1+· · ·+zN−1

za
(∇za+βa)δab+ za

zb
(∇zb+βb)θa>b

Notice that when acting on χb(v1, . . . , vN−1), the operator sum
N∑

a=1
∇z

aχb =
[(

N−1∑
i=1

vi
∂

∂vi
− viD

)
+ (v1 + · · ·+ vN−1 − 1)D

]
χb = 0. (D.10)

This also applies to
∑
ω∇zωχb =

∑
a∇z̃

aχb = 0.

D.2 Gauge theory side

D.2.1 The y-component of the KZ equation

Here are the details of the computation leading to (6.63). Using U defined in (6.58)

U :=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
... . . . ...

0 0 0 · · · 0 1
y 0 0 · · · 0 0


, U−1 =



0 0 0 · · · 0 1
y

1 0 0 · · · 0 0
0 1 0 · · · 0 0
... . . . ...

0 0 0 · · · 1 0


, UN = yIN , (D.11)

and 4 diagonal matrices defined as in (6.59):

M± = diag(m±0 , . . . ,m
±
N−1), q = diag(q0, . . . , qN−1), ρ = diag(ρ0, . . . , ρN−1), (D.12)

N fractional quantum T-Q equations (4.14) can be rewrite into a single N ×N matrix equa-
tion in Fourier space as Υ is the Fourier transformation of the fractional Q-observables (3.28):[

(U+qU−1−IN−q)
(
ε2y

∂

∂y
−ε2y

∂ logΥpert(y)
∂y

)
+
(
UM++qM−U−1−ρ

)]
Υ(y) = 0

(D.13)
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Let us consider the following change of basis

Π = (U− I)Υ. (D.14)

Vector Π satisfies

0 =
[
ε2
ε1

∂

∂y
− ε2
ε1

∂ logΥpert(y)
∂y

+ 1
ε1

1
y

(
IN−qU−1

)−1(
UM++qM−U−1−ρ

)
(U−IN )−1

]
Π

=
[
ε2
ε1

∂

∂y
− ε2
ε1

∂ logΥpert(y)
∂y

+ A(y)
(y−1)(y−q)

]

:=
[
ε2
ε1

∂

∂y
+ Â0
y

+ Â1
y−1 + Âq

y−q

]
Π. (D.15)

Matrix A is given by

A(y)ab =

− 1
ε1

N−1∑
j=0

(
qU−1

)j (
UM+ +qM−U−1−UM+U−1−qM−+∇−qU−1∇U

)N−1∑
j′=0

Uj′


ab

= (1−y)za

zb

[
m+

b
ε1

(
q

y

)θa<b

−m
−
b
ε1

(
q

y

)θa<b+1
]
−za

N∑
c=1

(
q

y

)θa<c

yθb<c

(
∂

∂zc
− ∂

∂zc−1

)
(D.16)

with a, b = 1, . . . , N . We find trace of matrix A(y):

TrA(y) = (1− y) 1
ε1

TrM+ + y − 1
y

q

ε1
TrM− + (q− 1) 1

ε1
Tr∇. (D.17)

Since the dependence of zω in the non-perturbative part of Υ(y) only comes through the
fractional couplings q̂ω, it is annihilated by Tr∇. Hence the only contribution comes from
the perturbative factor in eq. (4.11), we have

Tr∇Υ = ε1

N−1∑
ω=0

zω∂zωΥ =
N−1∑
ω=0

m+
ω − aω. (D.18)

Let us choose Υpert(y) in (5.1) so that KZ-connection is traceless:

Υpert(y) = y
−m−
Nε2 (y − q)

m−−a
Nε2 (y − 1)−

m+−a
Nε2 (D.19)

with short handed notation

a :=
N−1∑
ω=0

aω, m± :=
N−1∑
ω=0

m±ω . (D.20)

We obtain individual Â0,1,q:(
Â0
)

ab
= za

zb

[
m+

b
ε1

θa<b −
m−b
ε1

θa≤b

]
+ za

(
∂

∂za
− ∂

∂zb

)
θa<b + δab

N

m−

ε1
, (D.21a)

(
Â1
)

ab
=− za

∂

∂za
+ δab

N

m+ − a
ε1

, (D.21b)

(
Âq

)
ab

= za

zb

[
zb

∂

∂zb
+ m−b −m+

b
ε1

]
+ δω,ω′

N

a−m−

ε1
, (D.21c)
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a,b = 1, . . . ,N . We multiplied perturbative factor (4.11) to expectation value of 〈Qω(x)〉ZNΨ.
We may modify derivative terms

∇zb 7→ ∇zb + m+
b − ab

ε1
(D.22)

when operators Â acting in the non-perturbative parts in Π. We find the KZ-connections
appearing in the y-component of 5-point KZ equation agrees with representation theory data:

Â0 = Â0, Â1 = Â1, Âq = Âq. (D.23)

D.2.2 The q-component of the KZ equation

Here we derive the q-component of the KZ equation (6.84) from the non-perturbative
Dyson-Schwinger equation obeyed by the fractional qq-character (4.6)〈[

x−I
]
T̂N+1,ω(x)Qω′(x′)

〉
ZN

= 0, ∀I = 1, 2, . . . (D.24)

By exploiting the large x expansion of the building block Yω(x) (4.7), we can expand
fractional Dyson-Schwinger equation in large x and equates the coefficient of x−1 in (4.6)
to zero. One obtains when ω 6= ω′:

〈[
ε1D

(1)
ω − q̂ωε1D

(1)
ω−1 + ε2

1
2 ν

2
ω − ε1aω+1νω

+q̂ω

(
ε2

1
2 ν

2
ω−1 −

ε2
1
2 νω−1 + (mω − aω)ε1νω−1 + Pω(aω)

)]
Qω′(x′)

〉
ZN

= 0 (D.25)

In the case ω = ω′, we simply take (4.8):

T̂N+1,ω(x) = (x− x′)(x+ aω+1 + ε1νω) + q̂ω(x− x′ + ε1)(x−mω + aω − ε1νω−1)

+ ε1D
(1)
ω − q̂ωε1D

(1)
ω−1 + ε2

1
2 ν

2
ω − ε1aω+1νω

+ q̂ω

(
ε2

1
2 ν

2
ω−1 + (mω − aω)ε1νω−1 + Pω(aω)

)
(D.26)

which gives, when x = x′:

〈q̂ωPω(x)Qω−1(x)〉ZN (D.27)

=
〈[

q̂ωε1(x−mω + aω − ε1νω−1) + ε1D
(1)
ω − q̂ωε1D

(1)
ω−1 + ε2

1
2 ν

2
ω − ε1aω+1νω

+ q̂ω

(
ε2

1
2 ν

2
ω−1 + (mω − aω)ε1νω−1 + Pω(aω)

)]
Qω(x)

〉
ZN

,
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also when x+ ε1 = x′:

− ε1 〈Qω+1(x)〉ZN (D.28)

=
〈[
− ε1(x− aω+1 + ε1νω) + ε1D

(1)
ω − q̂ωε1D

(1)
ω−1 + ε2

1
2 ν

2
ω − ε1aω+1νω

+ q̂ω

(
ε2

1
2 ν

2
ω−1 + (mω − aω)ε1νω−1 + Pω(aω)

)]
Qω(x)

〉
ZN

.

We find that with the linear combination coefficients uω in (6.79) satisfying uω −
qω+1uω+1 = 1− q, the unwanted ĉω − ĉω+1 in D(1)

ω can be canceled, leaving〈
(1− q)

[
ε1ε2kN−1 +

∑
ω

1
2 (ε1νω − aω+1)2 −

a2
ω+1
2

]
(D.29a)

+
[∑
ω

qω+1uω+1(ε1νω − aω+1 +m+
ω+1)(ε1νω − aω+1 +m−ω+1)

]
Qω′(x+ ω′ε̃2)

〉
ZN

= −ε1uω′
〈
P+
ω′+1(x)Qω′+1(x)

〉
ZN

+
〈
uω′ε1(x− aω+1 + ε1νω′)Qω′(x)

〉
ZN〈

(1− q)
[
ε1ε2kN−1 +

∑
ω

1
2 (ε1νω − aω+1)2 −

a2
ω+1
2

]
(D.29b)

+
[∑
ω

qω+1uω+1(ε1νω − aω+1 +m+
ω+1)(ε1νω − aω+1 +m−ω+1)

]
Qω′(x)

〉
ZN

= ε1q̂ω′uω′
〈
P−ω′(x)Qω′−1(x)

〉
ZN
−
〈
q̂ω′uω′ε1(x−mω′ + aω′ − ε1νω′−1)Qω′(x)

〉
ZN

.

with Qω(x) defined in (3.28). Using definition of expectation value 〈Qω′(x)〉ZN Ψ:

〈Qω′(x)〉ZN Ψ =
N−1∏
ω=0

z
m+
ω−aω
ε1

ω

∑
λ̂

N−1∏
ω=0

zνω−1
ω qkN−1Qω′(x)[~λ]Zsurface[λ]Zdefect[λ̂]. (D.30)

We may rewrite〈
(ε1νω − aω+1 +m+

ω+1)Qω′(x)
〉
ZN

Ψ = ε1zω+1
∂

∂zω+1
〈Qω′(x)〉ZN Ψ, ω = 0, 1, . . . , N − 1

and
〈kN−1Qω′(x)〉ZN Ψ = q

∂

∂q
〈Qω′(x)〉ZN Ψ.

The two equations can be rewrite as second order differential in {zω} and first order
differential in q:

(1− q)ε1ε2q
∂

∂q
〈Qω′(x)〉ZNΨ− Ĥ〈Qω′(x)〉ZNΨ (D.31)

= −ε1uω′〈P+
ω′+1(x)Qω′+1(x)〉ZNΨ + ε1uω′〈(x−m+

ω′+1 + ε1νω)Qω′(x)〉ZNΨ
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and x′ = x+ ε1:

(1− q)ε1ε2q
∂

∂q
〈Qω′(x)〉ZNΨ− Ĥ〈Qω′(x)〉ZNΨ (D.32)

= ε1q̂ω′uω′〈P−ω′(x)Qω′−1(x)〉ZNΨ− ε1q̂ω′uω′〈(x−m−ω′ − ε1νω−1)Qω′(x)〉ZNΨ.

Differential operator Ĥ is defined in (6.81):

Ĥ :=
∑
ω

1− q

2
(
ε1∇zω −m+

ω

)2
+ q̂ωuω(ε1∇zω)(ε1∇zω −m+

ω +m−ω ). (D.33)

The Fourier transform (5.2) yields:

(1−q)ε1ε2q

[
∂

∂q
− ∂ logΥpert(y)

∂q

]
Υω′−ĤΥω′

=−ε1uω′

(
−ε2y

∂

∂y
−m+

ω′+1

)
Υω′+1+ε1uω′

(
−ε2y

∂

∂y
−m+

ω′+1+ε1∇zω′+1

)
Υω′ (D.34a)

(1−q)ε1ε2q

[
∂

∂q
− ∂ logΥpert(y)

∂q

]
Υω′−ĤΥω′

= ε1q̂ω′uω′

(
−ε2y

∂

∂y
−m−ω′

)
Υω′−1−ε1q̂ω′uω′

(
−ε2y

∂

∂y
−m−ω′−ε1∇zω′

)
Υω′ (D.34b)

The derivatives w.r.t. y can be eliminated by considering a linear combination:

(1− q)ε1ε2

(
q̂ω′+1uω′+1q

∂

∂q
Υω′ − uω′q

∂

∂q
Υω′+1

)
+
(
uω′Ĥ2Υω′+1 − q̂ω′+1uω′+1ĤΥω′

)
= ε1uω′ q̂ω′+1uω′+1

[
(m+

ω′+1 −m
−
ω′+1 − ε1∇zω′+1)Υω′+1 + (m−ω′+1 −m

+
ω′+1 + ε1∇zω′+1)Υω′

]
(D.35)

We denote two N ×N diagonal matrices u = diag(u0, u1, . . . , uN−1), and G = diag(G0, . . . ,
GN−1) with

Gω = uω + q− 1
uω

= q̂ω+1uω+1
uω

.

The N q-differential equations (D.35) can be written as one N ×N matrix equation:

(1− q)ε1ε2 (G−U)
(
q
∂

∂q
− q

∂

∂q
log Υpert(y)

)
Υ− (G−U) ĤΥ

= ε1Gu
[
U(M+ −M−)U−1 −∇

]
(U− IN )Υ. (D.36)

Matrix U is defined in (6.58), and diagonal matrices in (6.59). We again consider change of
basis Π = (U− IN )Υ. Vector Π obeys KZ equation:

0 =
[
ε2
ε1

∂

∂q
+ 1

(1− q)q
1
ε2

1
Ĥ− ε2

ε1

∂ log Υpert(y)
∂q

(D.37)

− 1
(1− q)q

1
ε1

(U− IN )(G−U)−1Gu
(
U(M+ −M−)U−1 −∇

)]
Π

=
[
ε2
ε1

∂

∂q
+ 1

(1− q)q
1
ε2

1
Ĥ− ε2

ε1

∂ log Υpert(y)
∂q

+ Â(y, q)
(q− 1)(q− y)

]
Π

:=
[
ε2
ε1

∂

∂q
+ Â0

q
+ Â1

q− 1 + Ây
q− y

]
Π (D.38)

– 76 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
0

Elements of matrix Â(y, q) are

Â(y, q)ab = 1
ε1

(U− I)
N−1∑
j=0

(G−1U)ju
(
U(M+ −M−)U−1 −∇

)
ab

= za

zb

(
qaua

(
y

q

)θa+1>b

− ua−1

(
y

q

)θa>b
)(

m+
b −m−b
ε1

−∇zb

)
(D.39)

with a, b = 1, . . . , N . We find individual KZ-operators Â0,1,y as:

(
Â0
)

ab
= 1
ε2

1
Ĥ|q=0δab −

za+1 + · · ·+ zN−1
za

(
∇za + m−a −m+

a
ε1

)
δab

+ za

zb

(
∇zb + m−b −m+

b
ε1

)
θa>b (D.40a)

(
Â1
)

ab
= − 1

ε2
1
Ĥ|q=1δab −

z0 + · · ·+ zN−1
za

(
m+

a −m−a
ε1

−∇za

)
δab (D.40b)

(
Ây
)

ab
= −za

zb

(
∇zb + m−b −m+

b
ε1

)
+ δab

N

m− − a
ε1

(D.40c)

a, b = 1, . . . , N . KZ-operators obtained from supersymmetric gauge theory agree with
representation theory prediction:

Â0 = Ĥ0, Â0 = Ĥ1, Ây = Ĥy, (D.41)

after taking care the perturbative factor Ψ in (4.11):

∇zb 7→ ∇zb + m+
b − ab

ε1
. (D.42)
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