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Abstract: We propose an alternative approach to Lüscher’s formula for extracting two-
body scattering phase shifts from finite volume spectra with no reliance on the partial
wave expansion. We use an effective-field-theory-based Hamiltonian method in the plane
wave basis and decompose the corresponding matrix elements of operators into irreducible
representations of the relevant point groups. The proposed approach allows one to benefit
from the knowledge of the long-range interaction and avoids complications from partial
wave mixing in a finite volume. We consider spin-singlet channels in the two-nucleon
system and pion-pion scattering in the ρ-meson channel in the rest and moving frames
to illustrate the method for non-relativistic and relativistic systems, respectively. For the
two-nucleon system, the long-range interaction due to the one-pion exchange is found to
make the single-channel Lüscher formula unreliable at the physical pion mass. For S-wave
dominated states, the single-channel Lüscher method suffers from significant finite-volume
artifacts for a L = 3 fm box, but it works well for boxes with L > 5 fm. However, for
P-wave dominated states, significant partial wave mixing effects prevent the application of
the single-channel Lüscher formula regardless of the box size (except for the near-threshold
region). Using a toy model to generate synthetic data for finite-volume energies, we show
that our effective-field-theory-based approach in the plane wave basis is capable of a reliable
extraction of the phase shifts. For pion-pion scattering, we employ a phenomenological
model to fit lattice QCD results at the physical pion mass. The extracted P-wave phase
shifts are found to be in a good agreement with the experimental results.
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1 Introduction

Three decades ago, Lüscher proposed a model-independent approach for extracting two-
particle elastic scattering phase shifts from energy levels in a finite box with periodic
boundary conditions [1–3]. This seminal work opened the way for investigating hadronic
scattering observables using lattice QCD simulations. The Lüscher formula has been gen-
eralized to moving systems in finite boxes [4–6], higher partial waves [7], particles with
different masses [8, 9], particles with nonzero spins [10], multichannel scattering [11–14]
and to cases with asymmetric boxes [15], see also [16, 17] for review articles.
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The Lüscher method assumes that the box size L is much larger than the interaction
range R, such that exponentially suppressed corrections ∼ e−L/R are negligible. In cur-
rently feasible lattice simulations, the box size can usually not be chosen very large given
the available computational resources. On the other hand, in certain cases such as e.g. the
two-nucleon system, the long-range interaction is known and appears to play a very promi-
nent role. Another example of a system featuring long-range dynamics is the D̄∗D/D̄D∗

system, in which the one-pion exchange (OPE) potential plays an important role for the
formation of exotic hadrons X(3872) and Zc(3900) [18–20]. The accidental mass relation
mD̄∗ ≈ mD̄ + Mπ makes the exchanged pion in the OPE potential almost on-shell, which
results in the interaction range much larger than 1/Mπ. In such situations, taking into
account the long-range dynamics may allow one to reduce the cost of lattice QCD sim-
ulations by considering smaller volumes. It, however, requires the finite-volume Lüscher
quantization conditions to be generalized by taking into account exponentially suppressed
effects due to the long-range interaction.

In single-channel cases, each energy level in a finite volume (FV) can be related to
the scattering phase shift at this energy using interaction-independent Lüscher’s formula.
On the other hand, one has to deal with coupled-channel effects when taking into account
inelastic channels or partial wave mixing. In the multichannel case, Lüscher’s formula
becomes a determinant equation det[f(T,E)] = 0, which relates the T -matrix and the
FV energy levels. Though this result is still model-independent, there is no one-to-one
correspondences between phase shifts and FV energy levels. It does not allow one to extract
the full T -matrix, i.e. phase shifts for every channel and the corresponding mixing angles.
In practice, the T -matrix can be parameterized within a particular theoretical framework,
and several FV energies can be used as input to determine the parameters in the T -matrix.
This may, however, introduce some model dependence. Another complication is related to
rotational symmetry breaking in finite boxes, which results in the energy levels generally
receiving contributions from multiple partial waves.

In the literature, much effort has been devoted to cure or estimate the two drawbacks
of the Lüscher formula, namely exponentially suppressed corrections and mixing effects in
multichannel scattering. In refs. [21, 22], the authors estimated exponentially suppressed
corrections for ππ and NN scatterings in the FV. It was shown that for realistic pion
masses, simulations in a box of the size L > 5 fm would result in exponential corrections to
the phase shifts less than one degree. In ref. [23], finite volume corrections to the X(3872)
were analyzed in an effective field theory (EFT) with perturbative pions. It was shown that
FV effects are significant for box lengths as large as 20 fm. Unitarized chiral perturbation
theory in a finite volume was employed in refs. [14, 24–26], in which some exponentially
suppressed effects were included by adopting a fully relativistic propagator. Such expo-
nentially suppressed differences with the Lüscher formula for ππ scattering were calculated
explicitly in refs. [27, 28]. In order to deal with coupled-channel effects in a FV, an effective
Hamiltonian approach was developed in refs. [29–32]. Within different approaches, partial
wave mixing effects were estimated in refs. [7, 14, 33, 34]. The sensitivity to the second
lowest partial wave in Lüscher’s quantization conditions was discussed in ref. [35].
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Starting from Lüscher’s seminal work, FV effects were usually investigated using the
partial wave expansion technique. In the infinite volume, partial wave expansion allows one
to simplify the scattering problem thanks to the rotational symmetry. However, in the finite
volume, continuous rotational symmetry is broken and the angular momentum is no longer
a good quantum number. To some extent, introducing the partial wave expansion in a finite
volume complicates the problem. For small boxes and/or systems with coupled channels
as well as in the presence of long-range interactions, the above mentioned drawbacks of
the Lüscher approach get amplified. A natural alternative method is to employ vectors of
discrete momenta. In refs. [7, 34], the authors used the discrete momentum basis to inves-
tigate partial wave mixing effects. Recently, a Fourier basis {cos(2πniri/L), sin(2πniri/L)}
in coordinate space was adopted to diagonalize the Hamiltonian in FV [36].

In this work, we employ a similar approach as that of ref. [36] but in momentum space.
We consider the Lippmann-Schwinger equation (LSE) in the non-relativistic case or a re-
duced Bethe-Salpeter equation (BSE) in the relativistic case using the plane wave basis
with discrete momenta. Next, we reduce the matrix LSE and BSE into the irreducible rep-
resentations (irreps) of the cubic group. With the reduced matrix equation, we compute
the energy levels in the FV corresponding to specific irreps. In such a framework, effects
from mixing with higher partial waves are embedded naturally. We also extend this ap-
proach to systems with nonvanishing total momentum. We consider NN and ππ scattering
as examples of the non-relativistic and relativistic systems, respectively, to illustrate the
calculations and compare our results with those obtained using the single-channel Lüscher
approach. In the case of the NN system, we also study the role played by the long-range
interaction due to the one-pion exchange.

This work is organized as follows. In section 2, we review the discretization conditions
of three-momenta and discuss the relevant symmetry groups for two particles in a cubic box
with periodic boundary conditions. In section 3, we construct the representation spaces
of the corresponding point groups with the plane wave basis and perform their reduction
into irreps using the projection operator technique. In section 4, we introduce a general
approach to obtain the FV energy levels and to fit lattice QCD energy spectra in the
FV. Next, in section 5, we consider spin-singlet NN scattering as an explicit example of
a non-relativistic system to demonstrate our method. In this section, we also discuss in
detail partial wave mixing effects in the FV. In section 6, we consider ππ scattering in the
ρ-meson channel as an example of a relativistic system. Using a phenomenological model
to parameterize the ππ scattering amplitude, we calculate the FV energy levels and fit the
parameters of the model to the lattice QCD spectra. Finally, in section 7, we summarize
the main results of our study and discuss possible generalizations. Some basic information
about the point groups used in this work and Lüscher’s quantization conditions is given in
appendices A and B.

2 Two particles in a finite volume

Discretization of three-momenta of two particles in a cubic box with periodic boundary
conditions is considered e.g. in refs. [4, 9]. In the following, we briefly review the relevant
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findings for the sake of completeness. Throughout this paper, we focus on systems of
two spinless particles of the same mass. It is straightforward to generalize our results to
particles with arbitrary spin and different masses.

2.1 Non-interacting case

In the box frame (BF), the momenta p1 and p2 of two non-interacting particles are discrete,

E =
√
p2

1 +m2
1 +

√
p2

2 +m2
2, (2.1)

p1 + p2 = P , p1 = 2π
L
n, P = 2π

L
d, n,d ∈ Z3, (2.2)

where P and E are the total momentum and energy of the two-particle system, respectively.
For the non-interacting case, each particle is on-shell with Ei =

√
p2
i +m2

i . In the center-
of-mass frame (CMF), the related momenta and energies read

P ∗ = 0, p∗ ≡ 1
2(p∗1 − p∗2) = p∗1 = −p∗2, E∗2 = E2 − P 2, (2.3)

where the quantities in the CMF are labeled by superscript “∗”. In eq. (2.3), the on-shell
relation of each particle is not used. Thus, eq. (2.3) is also valid for interacting systems.
For non-interacting systems, the momentum and energy in the CMF are related to those
in the BF by the Lorentz transformation

p∗1 =
[
(γ − 1)P · p1

P 2 − E1
E∗

]
P + p1, (2.4)

E∗1 = EE1 − P · p1
E∗

, (2.5)

where γ = E
E∗ is the Lorentz factor. Equations (2.4) and (2.5) can be combined and

simplified to
p∗1 = γ−1

(
p1‖ −

1
2AP

)
+ p1⊥, (2.6)

where

A ≡ 1 + m2
1 −m2

2
E∗2

. (2.7)

For a given vector u, u‖ and u⊥ are defined via u‖ = (u·P )P
P 2 and u⊥ = u− u‖.

In this paper we are interested in systems of two particles with equal masses (and thus
A = 1). With eqs. (2.2) and (2.6), one obtains the discretization relations in the CMF

p∗ = n∗
2π
L
, n∗ ∈ Pd,

Pd =
{
γ−1

(
n‖ −

1
2d
)

+ n⊥
}
, n ∈ Z3. (2.8)

In figure 1, we show a set of discrete momenta with the corresponding meshes in
different frames. The first mesh in each row corresponds to the momenta in the BF. The
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Figure 1. Meshes of the set of discrete momenta for a two-particle system with equal masses in the
BF (left column) and CMF (right column). The second and third meshes in each row illustrate the
shift of the origin by d/2 and the deformation in the direction of d to obtain the mesh in the CMF.

second and third ones illustrate the steps needed to obtain the momenta in the CMF
according to eq. (2.8), namely the shift of the origin by d/2 and the deformation in the
direction of d. In figure 1, we take d = (0, 0, 1) and d = (1, 1, 0) as examples. The meshes
show the symmetries of the system in the FV. In the infinite volume, the momenta are
continuous and satisfy the rotational symmetry described by the SO(3) group. Considering
the conservation of space inversion, the symmetric group becomes O(3) = SO(3)⊗ {E, I},
where E and I are the identity and the space inversion elements, respectively. In the BF
corresponding to d = (0, 0, 0), the symmetry group is the cubic Oh = O ⊗ {E, I} one,
which is a subgroup of the O(3) group. When the two-particle system is moving in the
box, the Oh symmetry is broken by shifting the origin and a deformation in the direction
of d. The symmetric point groups corresponding to different values of d are presented in
table 1. In this work we are only interested in the d2 = 0, 1, 2, 3, 4 cases and, therefore,
consider only the Oh, D4h, D2h and D3d groups and the corresponding subgroups O, D4,
D2 and D3 containing only proper rotations. It should be noticed that the symmetric
groups considered here are only applicable to the case of two particles with equal masses.
For particles with different masses (A 6= 1), the origin of the coordinate system in figure 1
is not in the center of its adjacent points anymore after shifting by 1

2Ad, and the system
is not invariant with respect to space inversions [9]. In appendix A, we list the group
elements, conjugacy classes, and character tables for the relevant point groups.

In the literature, two conventions to denote irreps of D4h, D2h and D3d are used. For
example, theD4h group can be formed either asD4h = D4⊗{E, I} or asD4h = C4v⊗{E, I}.
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d point group nG representation space
(0, 0, 0) Oh 48 {n1, n2, n3}
(0, 0, a) D4h 16 {n1, n2;n3}
(a, a, 0) D2h 8 {n1, n2;n3}
(a, a, a) D3d 12 {n1, n2, n3}

Table 1. The point groups, their orders nG, and representation spaces of the two-particle systems
in finite volume as defined in eqs. (3.3) and (3.4).

Point group Two conventions irreps with even parity irreps with odd parity
Oh O ⊗ {I, E} A+

1 A+
2 E+ T+

1 T+
2 A−1 A−2 E− T−1 T−2

D4h
I D4 ⊗ {I, E} A+

1 A+
2 B+

1 B+
2 E+ A−1 A−2 B−1 B−2 E−

II C4v ⊗ {I, E} A+
1 A+

2 B+
1 B+

2 E+ A−2 A−1 B−2 B−1 E−

D2h
I D2 ⊗ {I, E} A+

1 B+
1 B+

2 B+
3 A−1 B−1 B−2 B−3

II C2v ⊗ {I, E} A+
1 A+

2 B+
1 B+

2 A−2 A−1 B−2 B−1

D3d
I D3 ⊗ {I, E} A+

1 A+
2 E+ A−1 A−2 E−

II C3v ⊗ {I, E} A+
1 A+

2 E+ A−2 A−1 E+

Table 2. Irreps of the relevant point groups using the two conventions as discussed in the text and
their corresponding relations. The convention I is adopted in refs. [4, 37] and in this paper. The
convention II is employed in refs. [6, 38].

The elements ofD4 are all proper rotations. The C4v group contains two improper rotations
and is the symmetry group for systems with particles of unequal masses. In the first
convention, the irreps of D4h are denoted by the irreps of the D4 group with parity [4, 37].
In the second convention, the irreps of D4h are denoted by the irreps of the C4v group with
parity [6, 38]. We list the irreps of the two conventions and their corresponding relations
in table 2. In this work, we adopt the first convention.

For non-relativistic systems, the above discussion can be simplified since the Lorentz
factor becomes γ = 1 and the Lorentz transformation reduces to the Galilean one. Thus,
the second step in figure 1 is unnecessary. One consequence is that the meshes for non-
relativistic systems might be more symmetric than the ones with the same d in a relativistic
theory. For example, in a non-relativistic theory, the mesh for the d = (0, 0, 2) system is
the same as that of the d = (0, 0, 0) system. The shift of origin by d/2 = (0, 0, 1) in figure 1
makes no difference for momentum discretization. Thus, the discrete symmetry group of
a non-relativistic system with d = (0, 0, 2) is Oh. However, the relativistic system with
the same d only possesses the D4h symmetry. In this work, for calculational convenience,
we adopt an unified approach for both non-relativistic and relativistic systems. E.g., for
a given system with d = (0, 0, 2), we classify the energy levels according to the irreps of
D4h. Thus, for non-relativistic systems, we will end up with several degenerate states in
different irreps reflecting the additional degeneracy of the more symmetric group Oh.

– 6 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

2.2 Interacting case

To compute FV energy spectra in the interacting case, we need to perform boost trans-
formations for loop momenta with particles being off shell, i.e. E(∗)2

i 6= m2
i + p(∗)2

i . In the
literature, different schemes have been proposed to define the quantization conditions for
the cases with P 6= 0. The one of ref. [14] starts with the prescription

E∗1,2 =
E∗2 +m2

1,2 −m2
2,1

2E∗ , (2.9)

which is the same as in the non-interacting case and ensures that E∗1 + E∗2 = E∗, and
E∗1 = E∗2 = E∗

2 for m1 = m2. By substituting eq. (2.9) into eqs. (2.4) and (2.5), one
obtains the same quantization conditions as those in eqs. (2.6) and (2.8).

Recently, an alternative scheme was proposed in ref. [32]. Their relation of p∗1 with
p1 reads

p∗1 =
[
(γ − 1)P · p1

P 2 − ω1√
(ω1 + ω2)2 − P 2

]
P + p1, (2.10)

where ωi =
√
m2

1 + p2
i . The Lorentz factor γ is defined as

γ = ω1 + ω2√
(ω1 + ω2)2 − P 2 . (2.11)

In the first scheme, the Lorentz factor γ is defined rigorously, and it only depends on
the total energies of the two-particle system in the BF and CMF. In the second scheme, the
Lorentz factor is taken as an approximation using the expression for the non-interacting
case. Such an approximation makes the transformation independent of the energy, which
simplifies the determination of poles of the T -matrix. It was argued that the difference
between the two schemes is exponentially suppressed [32].

In the infinite volume, the LSE and BSE are usually written in the CMF. We need
to replace the integration over the loop momentum in the LSE or BSE with a summation
over the discrete momentum values. For a general case with P 6= 0, the transformation
reads∫

d3q∗

(2π)3 f(q∗) =
∫
J d3q

(2π)3 f [q∗(q)] FV−−→ 1
L3

∑
n∈Z3

J f [q∗(qn)] = 1
L3

∑
n∈Pd

J f(q∗n), (2.12)

where J is the Jacobi determinant for the momentum transformation from the CMF to
LF. The explicit expressions for J are different for the two schemes in eqs. (2.6) and (2.10),

J =


γ−1 scheme-I
ω1ω2
ω1 + ω2

/
ω∗1ω

∗
2

ω∗1 + ω∗2
scheme-II

. (2.13)

The ambiguities in choosing the transformations in the interacting case are related to
the need to define the interactions in the off-shell kinematics. However, for non-relativistic
systems, the two schemes reduce to the same one, and the Jacobi determinant in eq. (2.12)
becomes J = 1.
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3 Construction of irreducible representations using the plane wave basis

3.1 Representation space

The rotation operator in the Hilbert space is D̂(g(n, θ)) = e−in·Ĵθ, where Ĵ is the angular
momentum operator and g(n, θ) is the rotation around n axis with angle θ. For spin-
less systems in the infinite volume featuring the SO(3) symmetry, the space spanned by
|lm〉,m = −l, . . . , l, forms an irrep. The matrix elements of the rotation operator in the
irrep give rise to the Wigner D-function defined via

〈l′m′|D̂(g)|lm〉 ≡ Dlm′m(g)δll′ , (3.1)

where l and m are the quantum numbers of angular momentum and its third component,
respectively. In the finite volume, the Hilbert space with fixed l also forms a representation
space of O, D4, D2, and D3 groups, but it becomes reducible. The procedure of reducing
the Hilbert space with a fixed l to the irrep ones of the corresponding point group is well
established, see e.g. ref. [39].

In the infinite volume, the Hilbert space spanned by the plane wave basis |p〉 also forms
a representation space of the O(3) group,

D̂(g)|p〉 = |gp〉, 〈p′|D̂(g)|p〉 = δp′,gp. (3.2)

In the finite volume, a natural choice for the representation space of the cubic Oh group is

{n1, n2, n3} ≡ {|n1, n2, n3〉 with permutations of n1, n2, n3 and changing signs}, (3.3)

where ni is a multiple of 2π
L for each component of the momentum. We use the notation

|ni, nj , nk〉 to denote the plane wave basis in a finite cubic box. It is obvious that ni
are integer numbers for the Oh group when d = (0, 0, 0). The dimensions of {n1, n2, n3},
which we refer to as patterns throughout this paper, depend on the number of zeros in
three components and the number of equality relations among them. In table 3, we list
seven different patterns and their dimensions. The group representations in the {n1, n2, n3}
space are reducible. Fortunately, the reduction only depends on the patterns of this space.
For the Oh group, we only need to deal with the reduction for seven patterns as shown in
table 3. Notice that the Ai and Bi irreps are one-dimensional ones, while the E and Ti
representations are two- and three-dimensional irreps, respectively.

For moving systems in a box with d = (a, a, a), the corresponding point group is
D3d and we can choose a similar representation space as in eq. (3.3). In this case, ni are
unlikely to be integer numbers according to the quantization condition in eq. (2.8). In
order to obtain the irreps, we need to deal with at most seven different patterns shown in
figure 3. If a is odd, the patterns with zero components will not appear.

For moving systems with d = (0, 0, a) or d = (a, a, 0), it is more convenient to employ
the representation spaces

{n1, n2;n3} ≡ {|n1, n2, n3〉 with permutations of n1and n2 and changing signs}. (3.4)
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{n1, n2, n3}D Oh : {A1, A2, E, T1, T2}+|− D3d : {A1, A2, E}+|−

{0, 0, 0}1 {1,0,0,0,0} {0,0,0,0,0} {1,0,0} {0,0,0}
{0, 0, a}6 {1,0,1,0,0} {0,0,0,1,0} {1,0,1} {0,1,1}
{0, a, a}12 {1,0,1,0,1} {0,0,0,1,1} {2,0,2} {1,1,2}
{0, a, b}24 {1,1,2,1,1} {0,0,0,2,2} {2,2,4} {2,2,4}
{a, a, a}8 {1,0,0,0,1} {0,1,0,1,0} {2,0,1} {0,2,1}
{a, a, b}24 {1,0,1,1,2} {0,1,1,2,1} {3,1,4} {1,3,4}
{a, b, c}48 {1,1,2,3,3} {1,1,2,3,3} {4,4,8} {4,4,8}

Table 3. Different patterns for the representation spaces {n1, n2, n3} and the multiplicity of irreps
in such patterns for the Oh and D3d groups. The subscript D denotes the dimension of the rep-
resentation space, while a, b and c are different non-zero numbers. The numbers in the last four
columns are the multiplicities of the corresponding irreps in different representation spaces.

{n1, n2;n3}D D4h : {A1, A2, B1, B2, E}+|− D2h : {A1, B1, B2, B3}+|−

{0, 0; 0}1 {1,0,0,0,0} {0,0,0,0,0} {1,0,0,0} {0,0,0,0}
{0, 0; c}2 {1,0,0,0,0} {0,1,0,0,0} {1,0,0,0} {0,0,0,1}
{0, a; 0}4 {1,0,1,0,0} {0,0,0,0,1} {1,0,0,1} {0,1,1,0}
{0, a; c}8 {1,0,1,0,1} {0,1,0,1,1} {1,1,1,1} {1,1,1,1}
{a, a; 0}4 {1,0,0,1,0} {0,0,0,0,1} {2,0,0,0} {0,1,1,0}
{a, a; c}8 {1,0,0,1,1} {0,1,1,0,1} {2,1,1,0} {0,1,1,2}
{a, b; 0}8 {1,1,1,1,0} {0,0,0,0,2} {2,0,0,2} {0,2,2,0}
{a, b; c}16 {1,1,1,1,2} {1,1,1,1,2} {2,2,2,2} {2,2,2,2}

Table 4. Different patterns for the representation spaces {n1, n2;n3} and the multiplicity of irreps
in such patterns for the D4h and D2h groups. a, b and c are non-zero numbers with a 6= b. The
numbers in the last four columns are the multiplicities of the corresponding irreps in different
representation spaces.

We use a semicolon to separate the third component from the first two components to
signify permutations of n1 and n2 only. The {n1, n2;n3} representation spaces have eight
different patterns as listed in table 4.

With the representation spaces in eqs. (3.3) and (3.4) we can obtain the representation
matrices for each pattern using eq. (3.2). Next, we are going to reduce the representations
into the direct sums of irreps.

3.2 Reduction of the representations

The procedure of reducing the representations with the help of projection operators is well
established [40]. It has been used to reduce representations in the partial wave basis [39]
and in the Fourier basis [36]. For a related discussion see ref. [41]. We will employ the
same technique to reduce representations in the plane wave basis. The projection operator
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is defined as
P̂Γa
αβ ≡

∑
gi∈G

N(Γa)
nG

RΓa
αβ(gi)∗D̂(gi), (3.5)

where D̂(gi) is the (im)proper rotation operator in the Hilbert space corresponding to the
group element gi as discussed in section 3.1, Γa denotes the corresponding irrep, while
N(Γa) and nG refer to the dimensionality of the irrep and the order of the group, respec-
tively. Further, RΓa is the unitary matrix irrep of Γa. For the point groups relevant for
this study, the unitary irreps can be taken from the literature [6, 38, 39]. We will specify
the procedure of constructing RΓa later. Here, we list some properties of the projection
operator without proof [40],

P̂Γa
αα′P̂

Γb
β′β = δΓaΓb

δα′β′P̂
Γa
αβ , P̂Γa

αβ |Γb, β
′〉 = δΓaΓb

δββ′ |Γa, α〉. (3.6)

When acting on a general state |ψ〉 defined as

|ψ〉 ≡
∑
Γb

∑
β

aΓb
β |Γb, β〉, (3.7)

the projection operator projects the state onto a single component of a fixed irrep,

P̂Γa
αα′ |ψ〉 = aΓa

α′ |Γa, α〉. (3.8)

For the case at hand, we choose |ψ〉 as the basis of the representation space |n1, n2, n3〉, fix
α′ and vary |α〉 to obtain the basis states |Γa, α〉. With the transformation from |n1, n2, n2〉
to |Γa, α〉, we reduce the original representation to a direct sum of irreps.

The unitary matrix irreps RΓa in eq. (3.5) can be constructed with the character
projection operator, which is defined as

P̂Γa ≡
∑
α

P̂Γa
αα =

∑
gi∈G

N(Γa)
nG

χΓa(gi)D̂(gi) , (3.9)

where χΓa(gi) =
∑
αR

Γa
αα(gi) is the character of the irrep Γa. Acting with the character

projection operator on |ψ〉, we obtain

P̂Γa |ψ〉 =
∑
α

aΓa
α |Γa, α〉. (3.10)

One can vary |ψ〉 to obtain a sufficient number of vectors, which span the irrep space after
orthogonalization. In particular, in order to obtain the RΓa , one can start with the faithful
representation. For point groups, |ψ〉 and D̂(gi) are replaced with the vector (x, y, z)
and (im)proper rotation matrices in the Euclidean space, respectively. For point groups,
the character table is unique but the unitary irrep matrices are not. One can choose a
convention to make RΓa real symmetric matrices [6, 39].

In summary, the general procedure to reduce a representation to irreps is as follows:

1. Identify the symmetric group and its elements and character table,

2. Construct the unitary irrep matrices with character projection operation,

3. Reduce the representation to a direct sum of irreps.

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

4 Finite volume energy levels: determination and fitting

In general, FV energy levels can be obtained by finding the poles of the T -matrix in the
box, calculated as described in sections 5 and 6. Using the technique described in section 3,
one ends up with a determinant equation for a specific irrep Γ

det[MΓ(E)] = 0. (4.1)

The specific expressions for the energy-dependent matrix M will be presented for the non-
relativistic and relativistic systems in the next two sections. In general, one can adopt the
root-finding algorithm to search for the roots of eq. (4.1). To this end we define Ω [33]

ΩΓ(E;µ) ≡
∏ λΓ,i(E)√

λΓ,i(E)2 + µ2
, det [MΓ(E)] =

∏
i

λΓ,i(E), (4.2)

where λΓ,i denotes the eigenvalue of the matrix MΓ. The root of eq. (4.1) corresponds to at
least one λΓ,i = 0. Thus, the zeros of ΩΓ(E) are the roots of eq. (4.1). The nonzero µ can be
chosen to optimize the root-finding procedure. The quantity ΩΓ(E;µ) is bounded between
−1 and 1. Introducing ΩΓ(E;µ) thus allows one to avoid the numerical complication when
finding the roots with the determinant in eq. (4.1) becoming very large for large-dimensional
matrices.

Meanwhile, one could use eq. (4.1) to determine the parameters of the interaction
within a given theoretical framework by matching to the FV energy levels from lattice
QCD. To this end, we have two options, the spectrum method and the determinant resid-
ual method [33]. In the spectrum method, one compares the FV energy levels from the
calculation with the lattice QCD spectrum and minimizes the residuals. In the fitting pro-
cedure, the FV energy levels need to be obtained by the root-finding algorithm repeatedly,
which is time-consuming, see also ref. [42] for a discussion of further challenges. Alterna-
tively, in the determinant residual method, the determinant det(MΓ) that becomes zero
when the lattice QCD energy level is the solution of eq. (4.1), is regarded as a residual. As
already pointed out above, it is more practical to employ the quantity ΩΓ(E;µ) defined in
eq. (4.2) as a residual. Then, the χ2-function to be minimized is defined via

χ2 =
∑
Γ,i

ΩΓ(EΓ,i)2

σ[ΩΓ(EΓ,i)]2
, (4.3)

where EΓ,i is the ith lattice QCD energy level in the irrep Γ while σ[ΩΓ(EΓ,i)] is the error
of ΩΓ propagated from the error of EΓ,i. In this exploratory study, we neglect possible
correlations among the different FV energy levels. Here and in what follows, we employ
the determinant residual approach.

5 Application I: spin-singlet two-nucleon scattering

We now consider nucleon-nucleon scattering in spin-singlet channels as an example of a non-
relativistic system. This is a particularly interesting case for several reasons. First, the
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formalism described in sections 2 and 3 for spinless particles of equal masses is well suited
for NN scattering in spin-zero channels assuming the exact isospin symmetry. Secondly,
because of the appearance of the strong long-range interaction due to the OPE, the NN
system is expected to feature severe FV artifacts due to partial wave mixing, which is
one of the central focuses of our study. Last but not least, the quantization conditions
for momenta in section 2 take a particularly simple form for non-relativistic systems with
energy-independent potential and allow one to compute the FV energies by simply solving
the eigenvalue problem.

In the past decades, nuclear forces have been extensively studied in the framework
of chiral EFT. See refs. [43–45] for review articles. State-of-the-art NN interactions at
fifth order (N4LO) in chiral EFT have been shown to provide an excellent description
of the available neutron-proton and proton-proton scattering data up to pion production
threshold [46–48]. For the purpose of this proof-of-principle study, we restrict ourselves to
next-to-next-to-leading order (NNLO) and employ the nonlocally regularized potentials of
ref. [49]. The NNLO potential reads

V = V
(0)

cont + V
(0)

1π + V
(2)

cont + V
(2)

2π + V
(2)

1π + V
(3)

2π , (5.1)

where V (0)
cont and V

(2)
cont are the leading-order (LO) and next-to-leading order (NLO) contact

interactions, respectively. V (0)
1π and V (2)

1π denote the LO one-pion exchange interaction and
its correction at NLO. The NLO correction to the OPE is included by taking a larger value
of the (effective) nucleon axial vector coupling gA = 1.29 to account for the Goldberger-
Treiman discrepancy [50, 51]. The two-pion-exchange interactions start contributing at
NLO. For spin-singlet NN channels, we can replace the spin operators in the potentials in
refs. [49, 52] as

σi1σ
j
2 → −δ

ij , σi1 + σi2 → 0. (5.2)

For example, the OPE potential V (0)
1π reads

V
(0)

1π (p,p′) = −
(
gA

2Fπ

)2 (σ1 · q)(σ2 · q)
q2 +M2

π

τ1 · τ2, (5.3)

where q = p′ − p. For spin-singlet channels, it simplifies to

V
(0)

1π (p,p′)→
(
gA

2Fπ

)2 q2

q2 +M2
π

τ1 · τ2. (5.4)

At NLO, the contact interactions read

V
(0)

cont(p,p′) = CS , V
(2)

cont(p,p′) = C1q
2 + C2k

2, (5.5)

where k = (p + p′)/2, while CS , C1 and C2 are low energy constants (LECs). Here, the
general expression for the contact interactions including spin operators and consisting of
9 independent terms has been reduced using eq. (5.2). The LECs CS , C1 and C2 are thus
linear combinations of the original LECs appearing in the chiral NN potential. We take
the specific values of the LECs in table 4 of ref. [49] and employ the same numerical values
for all the other parameters. The expressions for the two-pion-exchange interactions can

– 12 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

●●●
●

●

●
●

●

●

0.00 0.05 0.10 0.15 0.20

-20

0

20

40

60
●
●
●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20
-30

-25

-20

-15

-10

-5

0

●●●
●

●

●

●

●

0.00 0.05 0.10 0.15 0.20
0

2

4

6

8

10

12

Figure 2. Spin-singlet NN phase shifts as functions of the laboratory energy. The results of
Nijmegen PWA are shown by filled circles [53]. Solid lines correspond to the NNLO chiral EFT
results [49, 52].

be found e.g. in ref. [49]. Following the standard procedure, we introduce the regulator by
the replacement,

V (p,p′)→ V (p,p′)e−
p6+p′6

Λ6 , (5.6)

where the cutoff is taken as Λ = 0.55GeV.
To calculate phase shifts in the infinite volume, we solve the LSE in the CMF

T (p′,p;E) = V (p′,p;E) +
∫

d3q

(2π)3
V (p′, q;E) T (q,p;E)

E − q2

mN
+ iε

, (5.7)

where E is the energy of two nucleons and mN is the nucleon mass. Clearly, for infinite-
volume calculations, it is more convenient to use the standard partial wave basis instead
of solving the equation in real space. In figure 2, we compare the resulting neutron-proton
phase shifts at NNLO with the ones from the Nijmegen partial wave analysis (PWA) [53].
This comparison clearly demonstrates that the NNLO potential already captures the most
important features of the nuclear force.

Below, we will regard the chiral EFT potential introduced above as the underlying
NN interaction to generate the corresponding FV energy spectra. We then compare our
approach to reconstruct phase shifts from the FV energies with the single-channel Lüscher
formula and explore FV effects due to partial wave mixing.

5.1 Lippmann-Schwinger equation in a finite volume

To solve the LSE in a finite volume, we employ the plane wave basis with quantized
momenta instead of expanding it in partial waves. In the non-relativistic limit, eq. (2.8)
reduces to

PNR
d =

{
n− 1

2d
}
, n ∈ Z3. (5.8)

We define the matrices T and G according to

Tn′,n = T

(2π
L
n′,

2π
L
n;E

)
, Gn,n′ = J 1

L3
1

E − q2
n

mN

δn′,n, n,n′ ∈ PNR
d , (5.9)
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where qn = 2πn/L. Similarly, we define Vn′,n. The integration has been replaced with the
summation according to eq. (2.12). We introduce a truncation of the discretized momentum
qn < qmax. For a non-relativistic theory, the Jacobi determinant is J = 1 and the LSE
turns to a matrix equation

T = V + VGT. (5.10)

The poles of the T -matrix are obtained by solving equation

det
(
G−1 − V

)
= 0. (5.11)

If the potential is energy-dependent, the root-finding algorithm should be adopted. For
energy-independent potentials, eq. (5.11) becomes an eigenvalue problem,

det (H−EI) = 0, with Hm,n = 1
L3Vm,n + q2

n

mN
δm,n, (5.12)

where I is the identity matrix. We see that the equation becomes a Hamiltonian equa-
tion. We, however, want to stress that this Hamiltonian equation is different from the one
emerging in the approach of refs. [29–32]. In that case, partial wave expansion was made
prior to discretizing the magnitudes of the momenta. In our calculation, we discretize the
momenta as three-vectors with no reliance on the partial wave expansion. For a related
approach see ref. [54].

Using the projection operator technique described in section 3, we reduce the matrices
in eq. (5.10) to block diagonal ones. Therefore, equation (5.12) turns into a set of matrix
equations according to different irreps. The FV energy levels for a given irrep Γ are then
obtained by solving the eigenvalue problem for this irrep

det (HΓ − EΓI) = 0, (5.13)

where HΓ belongs to the block of H corresponding to the irrep Γ.

5.2 The single-channel Lüscher method

We consider boxes of three different lengths: L = 3, 5, 8 fm. In our calculations, we truncate
the momentum at

q2
max = 100

(2π
L

)2
, (5.14)

leading to qmax ≈ 4.1, 2.5, 1.5GeV for L = 3, 5, 8 fm, respectively. These momenta are
much larger than the cutoff parameter in the employed NN potential so that the solution
of the LSE is well converged. We have verified that the error due to the truncation is
negligibly small.

5.2.1 Benchmark calculation using contact interactions

To confirm the robustness of our approach, we first calculate the FV energy levels in pion-
less EFT. Specifically, we include the LO and NLO contact interactions, which contribute
to the 1S0 and 1P1 channels. The coefficients in front of the contact interactions have been
chosen the same as those in chiral EFT to the NNLO in ref. [49]. The regulators and
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Figure 3. Upper (lower) row: various symbols show the 1S0 (1P1) phase shifts calculated from the
FV energy spectra using the single-channel Lüscher formula for the case of pionless EFT at NLO.
Only those energy levels were used which belong to the irreps with the 1S0 or 1P1 components.
Solid lines are the corresponding phase shifts calculated in the infinite volume. Left, middle and
right graphs show the results obtained in the FV boxes with L = 3, 5 and 8 fm, in order.

cutoff parameters are introduced in eq. (5.6). The corresponding phase shifts, calculated
by solving the LSE in the infinite volume and shown by solid lines in figure 3, feature a
qualitatively similar behavior to the empirical ones in NN scattering. We then compute
the FV energy levels by solving the LSE in the discretized plane wave basis as described
in sections 3, 4. We regard the calculated energy spectra as synthetic data and apply the
single-channel Lüscher formula to extract the phase shifts at these energies. The Lüscher
quantization conditions are outlined in appendix B. The full quantization conditions are
determinant equations involving all partial waves. In this study, we will refer to the ap-
proximation involving only a leading partial wave, which sets one-to-one relations between
FV energy levels and phase shifts, as the single-channel Lüscher approach. In figure 3,
the extracted 1S0 and 1P1 phase shifts in the boxes with L = 3, 5, 8 fm are compared
with the infinite-volume results. For the positive parity states, we only list the A+

1 states,
since the other irreps have no 1S0 components. With increased box sizes, the unit mo-
mentum (2π/L) becomes smaller leading to denser energy spectra. In the infinite-volume
limit, these discrete energy levels turn to the continuum spectrum. Meanwhile, one can
see many energy levels corresponding to vanishing phase shifts (i.e. to the non-interacting
case). In the FV, partial wave states with the same parity mix with each other due the
violation of rotational symmetry. For example, the 1S0 states mix with the 1D2, 1G4, etc.,
ones. Thus, in general, energy levels with positive parity receive contributions from the
interaction in the 1S0, 1D2 and even higher partial waves. Contact interactions at NLO,
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regularized with an angle-independent regulator, do, however, not contribute to D- and
higher partial waves. Thus, the states in figure 3 with vanishing phase shifts correspond
to the non-interacting 1D2, 1F3 and higher partial wave states. Apart from these points,
the phase shifts calculated using the single-channel Lüscher formula are very close to the
ones obtained in the infinite volume calculation. As expected, the single-channel Lüscher
approach is found to work accurately for this case without partial wave mixing. Notice
that since for the case at hand the range of the interaction is given by the inverse cutoff,
the exponentially suppressed corrections to the Lüscher formula are negligible even for the
smallest considered box size.

5.2.2 Chiral EFT at NNLO

We now turn to the realistic case and repeat the analysis outlined in the previous section for
the chiral EFT NN interaction at NNLO. The results of our FV calculations are compared
with those in the infinite volume in figure 4. Notice that for positive parity states, we only
show the results using the A+

1 irrep. We use the single-channel Lüscher formula suitable
for the 1S0 partial wave in the case of the positive parity states and for the 1P1 partial
wave in the case of the negative parity states. Obviously, for the realistic NN interaction at
the physical pion mass, the single-channel Lüscher formula leads to significant deviations
from the infinite volume calculations.

For positive-parity states shown in the upper row of figure 4, the deviation of single-
channel Lüscher’s results from the exact ones is significant for the smallest considered box
with L = 3 fm. When the box size is increased to 5 fm, the Lüscher single-channel formula
performs reasonably well. Apart from the S-wave dominated states, one can identify several
D-wave dominated states in figure 4 leading to smaller-in-magnitude phase shifts. Though
we employ the Lüscher formula for the S-wave, its leading part w00 is the same as that
for the D-wave, see appendix B. Therefore, we obtain in figure 4 an approximation of the
D-wave phase shift from D-wave-dominated states using the S-wave Lüscher formula.

The states with negative parity in the lower row of figure 4 are more interesting. Even
for the largest considered box with L = 8 fm, one observes large deviations from the infinite-
volume results when using the single-channel Lüscher formula. One identifies two regions
where the points are concentrated, namely well above the solid line (region-I) and below
the solid line (region-II). One may expect the points in the region-I to emerge from states
dominated by the F-wave (and possibly by even higher partial wave) interactions. The
points in the region-II are found to gradually deviate from the exact result with increasing
energies. Only in the very near-threshold region, the phase shifts for several energy levels
are close to those from the infinite volume calculation. Notice that further increasing the
box size1 is found to yield no improvement for the negative-parity phase shifts.

5.2.3 The one-pion-exchange potential

The results of the previous two sections suggest that the failure of the single-channel
Lüscher formula for the NNLO chiral EFT potential is caused by partial wave mixing

1We performed calculations using the box size as large as L = 20 fm.
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Figure 4. Upper (lower) row: various symbols show positive-parity (negative-parity) phase shifts
calculated from the FV energy spectra using the S-wave (P-wave) Lüscher formula for the chiral
EFT potential at NNLO. Solid and dashed lines in the upper row (lower row) show the 1S0 and 1D2
(1P1 and 1F3) phase shifts, respectively, calculated in the infinite volume. For remaining notations
see figure 3.

effects. For interactions with a finite non-zero range R, the near-threshold behavior of
the phase shifts δl(pon) with E = p2

on/mN is given by δl(pon) ∼ p2l
on. This asymptotic

expression, however, only applies to on-shell momenta well below the lowest t-channel
singularity, i.e. for pon < R−1. For the NN interaction, this restriction translates into
Elab ∼ 2M2

π/mN ∼ 10MeV. At such low energies, the single-channel Lüscher formula is
expected to be valid since the contributions from higher partial waves are kinematically
suppressed. This expectation is in line with the findings of the previous section for the
largest considered box size. For pon & R−1, higher partial waves are still suppressed due to
the centrifugal barrier, but the convergence of the partial wave expansion becomes slow. For
example, to compute the NN differential cross section at Elab = 300MeV at the 1% accuracy
level, it is necessary to take into account partial waves up to the total orbital momentum
of jmax = 16 [55]. For very long-range interactions such as e.g. the magnetic moment
interaction, the scattering amplitude is not converged even for jmax ∼ 1000 [56]. One,
therefore, may expect partial wave mixing effects in the FV calculations to be dominated
by the longest-range OPE interaction. To get further insights into this issue and to validate
this conjecture, we switch off all shorter-range interactions in the chiral EFT potential and
consider the case of pure OPE.

In the upper row of figures 5 and 6, we show the corresponding positive- and negative-
parity phase shifts extracted from the FV energies using the single-channel Lüscher formula,
along with the results in the infinite volume. The deviations in the obtained phase shifts

– 17 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

○

○

○

□

◇

△

▽

●

●

●

●

●
-40

-30

-20

-10

0

10

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○

○

○

○
○

○

○

○

○

○

○

○

○

○

○

○○
○○

○

○○

○

○

○

○

○

○

○

○

○

○

○

□

◇

△

▽

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20
-40

-30

-20

-10

0

10

○

○

○

○

○

○

○

○

○

○

○

0.00 0.05 0.10 0.15 0.20

○

○

○

○

○

○

○

○

○

○

○

○
○

○

○

○

○

○

○

○○○○

○

○○

○

○

○

○

○

○

○

○

0.00 0.05 0.10 0.15 0.20

Figure 5. Phase shifts in the positive-parity channels extracted from the FV energy spectra using
the S-wave Lüscher formula (various symbols) in comparison with the infinite-volume results for
the OPE potential (upper row) and the S-wave projected OPE potential (lower row). Solid and
dashed lines show the 1S0 and 1D2 phase shifts calculated in the infinite volume, respectively. For
remaining notations see figure 3.

are qualitatively similar to those found in the calculations based on the full NNLO chiral
potential. For S-wave dominated states, the single-channel Lüscher formula gives rise to a
significant deviation for the L = 3 fm box, but it works reasonably well for L ≥ 5 fm. This
is in line with the findings of ref. [22]. For P-wave dominated states, we again observe large
deviations which persist even for the box size of L = 8 fm. Meanwhile, the deviations are
found to increase with energies.

We stress again that increasing the box size does not allow one to improve the results
of the single-channel Lüscher formula at higher energies. For example, focusing on the
energy levels around 0.15GeV in the first row of figure 6, one sees no obvious improvement
of the results using the single-channel Lüscher method with increasing L. If one, however,
considers the trajectory of a single state such as e.g. the ground state of the A−2 irrep in
the d2 = 1 system as a function of the box size, one does observe a significant improvement
when it approaches the threshold region for a sufficiently large L.

To unambiguously identify partial wave mixing effects as the source of failure of the
single-channel Lüscher formula, we consider the S-wave and P-wave projected OPE inter-
action. Specifically, we start with the partial wave expansion of the potential

V (p,p′) =
∑
l

2l + 1
4π Vl(p, p′)Pl(z), (5.15)

where z = cos θ with θ being the angle between the initial and final momenta and
Pl(z) denotes the Legendre polynomial, and define the potentials VS−wave(p,p′) =
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Figure 6. Phase shifts in the negative-parity channels extracted from the FV energy spectra using
the P-wave Lüscher formula (various symbols) in comparison with the infinite-volume results for
the OPE potential (upper row), the P-wave projected OPE potential (middle row) and the P-
and F-wave projected OPE potential. Solid and dashed lines show the 1P1 and 1F3 phase shifts
calculated in the infinite volume. For remaining notations see figure 3.

(4π)−1V0(p, p′)P0(z) and VP−wave(p,p′) = 3(4π)−1V1(p, p′)P1(z). Clearly, the resulting
potentials do not generate any partial wave mixing effects when used to compute the FV
energy spectra, so that the single-channel Lüscher approach is expected to become appli-
cable. This is indeed fully consistent with our results, see the second rows in figures 5
and 6. For S-wave dominated states, the small deviation disappears after switching off the
interaction in higher partial waves. For states with negative parity, the change is more pro-
nounced. After switching off the interaction in higher partial waves, the P-wave phase shift
is reproduced accurately with the single-channel Lüscher formula except for the smallest
box size (presumably due to exponentially suppressed corrections).

Finally, the lower row in figure 6 shows the effect of including the F-wave interaction,
i.e. we consider VP,F−wave(p,p′) = 3(4π)−1V1(p, p′)P1(z) + 7(4π)−1V3(p, p′)P3(z). While
we have not explicitly investigated the impact of even higher partial waves, a comparison
of the upper and lower rows in figure 6 suggests that their mixing effects may also be
significant at higher energies.
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5.3 Phase shifts from FV energies using EFT

In section 5.2, we have shown in detail that partial wave mixing effects can not be neglected
when calculating FV energies of two interacting nucleons at the physical pion masses. Such
large partial wave mixing effects are caused by the long-range (pion-exchange) interaction,
and they are responsible for the failure of the single-channel Lüscher approach to extract
phase shifts from FV energy spectra. This will pose a significant challenge for future lattice
QCD calculations in the NN sector close to the physical point. In the lattice QCD commu-
nity, the issue is addressed by including several partial waves in the Lüscher’s quantization
conditions, see e.g. refs. [57, 58]. When more than one partial wave is included, there is no
longer a one-to-one mapping between energy levels and phase shifts, and one has to choose
a theoretical framework to parameterize the T -matrix. As an alternative to the Lüscher
method, one can benefit from the known model-independent OPE interaction using an
EFT-inspired approach. Specifically, we propose to determine the short-range part of the
NN interaction, parametrized in a systematic way by means of contact interactions, via a
direct matching to lattice QCD FV energy levels. The method is, to some extent, similar
to the low-energy theorems used in refs. [59, 60] to restore the energy dependence of the
NN scattering amplitude at unphysical pion masses.

To illustrate the method, we first define a toy model comprising the OPE and the
heavy-meson-exchange potentials to generate synthetic data for the FV energies. Specifi-
cally, we consider

Vtoy = V1π + V1h = −
(
gA

2Fπ

)2 M2
π

q2 +M2
π

τ1 · τ2 + (ch1 + ch2τ1 · τ2) 1
q2 +m2

h

, (5.16)

where V1π is the OPE potential considered in the previous sections (up to an S-wave contact
interaction). For the various parameters, we choose the numerical values of Mπ = 139MeV,
Fπ = 92.4MeV and gA = 1.26. For the heavy-meson-exchange interaction, we introduce
both the isospin-triplet and isospin-singlet potentials with the same meson mass mh =
0.5GeV. Further, ch1 and ch2 denote the corresponding dimensionless coupling constants.
In order to regularize the UV divergences, we introduce a nonlocal Gaussian cutoff

Vtoy → Vtoy e
− p2+p′2

Λ2 , (5.17)

and choose Λ = 0.45GeV. The couplings ch1 and ch2 are adjusted in such a way that the
toy-model interaction mimics the behavior of the NN 1S0 and 1P1 phase shifts as shown in
figure 7. Using the toy model introduced above, we compute the corresponding FV energy
levels, which are regarded as synthetic lattice data, see the right-most symbols in figures 8
and 9 for a given d2-value, where the results are only shown for the box with L = 5 fm.

Having generated the synthetic data as described before, we are now in the position
to describe our approach for extracting the corresponding phase shifts. To this aim, we
exploit the knowledge of the long-range interaction in the underlying model to construct
the EFT interaction

VEFT = V
(0)

OPE + V
(0)

cont + V
(2)

cont + V
(4)

cont + . . . (5.18)
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Figure 7. S, P , D and F-wave phase shifts for the toy-model potential in eq. (5.15) in comparison
with the corresponding spin-singlet NN phase shifts from the Nijmegen PWA [53].
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Figure 8. Comparisons of the synthetic lattice energy levels with positive parity in the box with
L = 5 fm and those from the EFT determined by fitting. The marker shapes represent the irreps,
which are the same as those in figure 3.

We use the same regulator as in eq. (5.17) and employ the same value for the cutoff
parameter Λ = 0.45GeV. In order to fit the FV energy levels with positive parity, we
introduce the interaction at NLO,

V
(0)

cont = 1
4π C̃1S0 , V

(2)
cont = 1

4πC1S0(p2 + p′2) . (5.19)

where C̃1S0 and C1S0 refer to the corresponding LECs. For the states with negative parity,
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Figure 9. Comparison of the synthetic lattice energy levels with negative parity in the box with
L = 5 fm and those from the EFT determined by fitting. The marker shapes represent the irreps,
which are the same as those in figure 3.

we include the contact interactions up to NNLO,

V
(2)

cont(p, p′, z) = 3
4πC1P1pp

′z, V
(4)

cont(p, p′, z) = 3
4πD1P1pp

′(p2 + p′2)z , (5.20)

where C1P1 and D1P1 are the LECs. Since the contact interactions introduced above
only contribute to the S- and P-wave channels, the FV partial wave mixing effects at the
considered EFT order only arise from the OPE interaction.

To fix the LECs C̃1S0 , C1S0 , C1P1 and D1P1 , we employ the determinant residual
method. For the considered toy-model example, we neglect the uncertainties of the syn-
thetic data. First, we perform single-parameter fits by including only the dominant contact
interaction in the corresponding parity channel, i.e. at LO (NLO) for positive- (negative-)
parity states. In the second step, we also take into account the corresponding subdominant
contact terms and perform two-parameter fits to the FV energies. As for the synthetic
data, we only include the ground state energy of each irrep as input. Meanwhile, we ignore
the energy levels of the d = (0, 0, 2) systems because they are identical to those of the
d = (0, 0, 0) system in the non-relativistic case. For positive-parity channels, this leaves us
with three and four energy levels for the boxes with L = 3 and 5 fm, respectively, up to the
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maximal energy of 0.23GeV. For the negative-parity case, we have one and eight2 energy
levels for the boxes with L = 3 and 5 fm, respectively. Thus, for the smallest considered
box size, our calculations for the negative-parity states are restricted to NLO in the EFT
expansion due to the lack of input information.

In figures 8 and 9, we show the quality of the reproduction of the FV energy levels. The
results from a single-parameter fit using the dominant contact interactions are shown by
the dotted lines and the leftmost symbols for the considered d2 value, while the dashed lines
with symbols in the middle correspond to two-parameter fits including the contributions
of the subdominant contact terms. As expected, one observes a clear improvement in the
description of the energy levels by including the subdominant short-range interactions. The
largest deviations from the synthetic data are observed for higher-energy states, namely
for the third A+

1 state and the second B−3 state in the d2 = 2 box (which have not been
used in the fits). This pattern is expected and reflects a slower convergence of the EFT at
higher energies.

Having determined the values of the LECs C̃1S0 , C1S0 , C1P1 and D1P1 from the FV
spectra as discussed below, we are now in the position to compute the phase shifts. This
is achieved by solving the partial wave LSE in the infinite volume using the standard
methods. In figure 10, we compare the phase shifts resulting from matching the EFT in
the finite volume with the ones from the underlying model. We also show in this figure the
phase shifts extracted using the single-channel Lüscher formula.3 For the 1S0 channel, the
one-parameter fit at LO only qualitatively captures the behavior of the underlying phase
shift. This can be attributed to the strongly fine-tuned nature of the interaction in this
channel as reflected by the very large absolute value of the scattering length and to the well-
known important role played by the range corrections. The fit results at NLO are strongly
improved, and the underlying phase shifts are correctly reproduced even using the smallest
considered box size of L = 3 fm. For the 1P1 channel, we only have a single data point
for the smallest box at our disposal. Therefore, we can only perform a single-parameter fit
for the L = 3 fm box. Using the single channel Lüscher formula, the resulting phase shift
deviates strongly from the underlying one, thus pointing towards a significant contribution
of higher partial waves to this energy level. Nevertheless, in the approach we propose, the
one-parameter fit to this energy level already allows one to capture the qualitative behavior
of the phase shift in this channel. In the larger box with L = 5 fm, we have more synthetic
data at our disposal. The lower interacting energies as compared with the smaller box size
allow for a more accurate determination of the LEC C1P1 in the NLO fit, which results in
an improved description of the phase shifts at low energies as compared with the one using
the smaller box of L = 3 fm. Including the subdominant contact interactions ∝ C1S0 , D1D2 ,
the description of both the 1S0 and 1P1 phase shifts improves considerably in a wide energy

2This number includes degenerate energy levels due to the non-relativistic nature of the considered
system as explained in section 2.

3As seen in figure 10, the phase shifts obtained using the single-channel Lüscher approach for the
considered toy model show a rather similar behavior to the more realistic case discussed in section 5.2. This
is to be expected since partial wave mixing effects are dominated by the longest-range interaction, which is
the same in all considered cases.
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Figure 10. 1S0 (upper row) and 1P1 (lower row) phase shifts extracted by matching the EFT
to the finite-volume spectra for the toy-model example in comparison with the underlying phase
shifts shown by the solid blue lines. Brown dashed-dotted (red dashed) lines show the results from
single-parameter (two-parameter) fits to the FV energies as visualized in figures 8 and 9. Left and
right panels correspond to the boxes of the size L = 3 fm and L = 5 fm, respectively. Also shown
by various symbols are the phase shifts extracted from the FV energies using the single-channel
Lüscher formula. The lines near δl ∼ 0 show the phase shifts in the next-higher partial wave for
a given parity quantum number (i.e. in the 1D2 and 1F3 channels in the upper and lower row,
respectively). For remaining notations see figure 3.

range. It should be emphasized that our input includes several energy levels dominated
by higher partial wave components such as the ground state in the A−2 irrep with d2 = 3
and the ground state in the B−3 irrep with d2 = 2. Contrary to the single-channel Lüscher
approach, which in these cases leads to large deviations, our method is insensitive to such
FV partial wave mixing artifacts.

6 Application II: P-wave pion-pion scattering

We now turn to our second application and consider ππ scattering as an example of a
relativistic system. In this exploratory example, we employ a simple phenomenological
model for ππ interaction instead of using EFT. For a formulation of chiral perturbation
theory with resonances see e.g. refs. [61, 62].
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6.1 Reduced Bethe-Salpeter equation in the finite volume

The relativistic Bethe-Salpeter equation is a four-dimensional integral equation. One has
to reduce it into three-dimensional one to perform the plane wave expansion. In the
literature, there are various approaches to achieve it [5, 27, 63]. In this work, we choose
the Blankenbecler-Sugar equation as discussed e.g. in ref. [63] as our starting point. One can
analytically perform the integration over the 0-th components of the relativistic two-body
propagator as follows,

G = i

∫
d4q

(2π)4
1

(P − q)2 −M2
π + iε

1
q2 −M2

π + iε
= i

∫
d3q

(2π)3G(q;E), (6.1)

with
G(q, E) = 1

2ω1(q)ω2(q)
ω1(q) + ω2(q)

E2 − [ω1(q) + ω2(q)]2 + iε
, (6.2)

where ωi(q) ≡
√
m2
i + q2 and m1 = m2 = Mπ. The reduced BSE for the ππ scattering

reads

T (p,p′;E) = V (p,p′;E) + i

∫
q<qmax

d3q

(2π)3V (p, q;E)G(q;E)T (q,p′;E). (6.3)

Notice that one can choose different reduced BSEs, but the procedure of performing the
plane wave expansion is the same.

We expand the reduced BSE in the plane wave basis with discrete momenta to obtain
the matrix equation

T(E) = V(E) + V(E)G(E)T(E), (6.4)

where the discretized propagator G is defined as

Gn,n′ = J 1
L3G(qn, E)δn′,n. (6.5)

Further, J is the Jacobi determinant arising from the transformation between the BF and
CMF as shown in eq. (2.12), which is given explicitly in eq. (2.13) for two different schemes.
The FV energy levels are obtained by solving the determinant equation

det
[
G−1(E)− V(E)

]
= 0. (6.6)

The procedure for dealing with relativistic systems is more demanding than that for
non-relativistic ones since the effective interaction V in the three-dimensionally reduced
eq. (6.3) is, in general, energy-dependent. Meanwhile, the Jacobi determinant can intro-
duce additional energy-dependence. Such energy-dependence prevents one from reducing
eq. (6.6) to the eigenvalue problem like in the non-relativistic case. In a special case when
the interaction can be assumed to be energy-independent and the scheme-II is employed to
relate the momenta in the BF and CMF as discussed in section 2.2, leading to the Jacobi
determinant given in the second line of eq. (2.13), equation (6.6) reduces to the eigenvalue
problem. This case is considered e.g. in refs. [29–32].

In this paper we do not make use of the above-mentioned simplifications and keep the
energy dependence of the interaction and the Jacobi determinant. We decompose eq. (6.6)

– 25 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

into decoupled matrix equations corresponding to different irreps. The FV energy levels
are obtained by finding roots of the determinant equations for a given irrep Γ:

det
[
G−1

Γ (E)− VΓ(E)
]

= 0. (6.7)

6.2 FV energy levels using a phenomenological model for P-wave ππ interac-
tion

We employ a phenomenological interaction model for P-wave ππ scattering rather than
chiral perturbation theory. Specifically, we parametrize the interaction via an energy-
dependent potential

V (p,p′;E) = −2p · p′

f2

(
1 + 2G2

V

f2
E2

M2
0 − E2

)
, (6.8)

where f , M0 and GV are free parameters. We introduce the CDD (Castillejo, Dalitz,
Dyson) pole in the interaction [64], which naturally appears in the description of the vec-
tor form factor of the ππ system [65] based on the Lagrangians from refs. [66, 67]. In this
formalism, we neglect possible coupled-channel effects from the KK̄ system. The interac-
tion in eq. (6.8) corresponds to a short-range contact potential. The angular-dependent
term p · p′ ensures that the interaction can only contribute to the P-wave, which switches
off possible partial wave mixing effects in the finite volume. Thus, for such a short-range
potential contributing to the P-wave alone, the single-channel Lüscher formula is perfectly
applicable. The potential in the partial wave basis reads

V l=1(p, p′;E) = −4π2pp′

3f2

(
1 + 2G2

V

f2
E2

M2
0 − E2

)
. (6.9)

Notice that if we would make an on-shell approximation, we would obtain the interaction
of ref. [28] (up to the 4π-factor), which was used to investigate finite volume effects in the
same channel within the chiral unitary approach. In our normalization, the phase shift can
be extracted from the partial wave T -matrix as

T l(E) = −32π2E

p cot δl − ip . (6.10)

Recently, lattice simulations of ππ scattering in the ρ-channel at the physical value
of the pion mass were performed [68]. In our calculation, we choose the same box size of
L = 4.3872 fm and pion mass ofMπ = 132MeV as used in that work. Since the root-finding
algorithm is very time-consuming, we choose a smaller cutoff qmax = 1.5GeV as compared
to the one employed in ref. [28]. The three parameters f , M0 and GV are determined by
fitting the experimental ππ scattering phase shift [69, 70] leading to the values of

f = 0.124 GeV, GV = 0.059 GeV, M0 = 1.110 GeV. (6.11)

In figure 11, we show that the resulting phase shifts from our model provide a very good
description of the experimental ones.
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Figure 11. P-wave ππ phase shifts of the phenomenological model defined in eq. (6.8) (solid line)
in comparison with the experimental data from refs. [69, 70] (open dots).
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Figure 12. P-wave ππ phase shifts of the phenomenological model defined in eq. (6.8) (solid
lines) in comparison with the phase shifts extracted from the FV energies using the single-channel
Lüscher formula (various symbols). Left and right panels correspond to two different schemes for
discretizing the momenta in the moving frames as explained in section 2.2.

Using the constructed model, we compute the FV energy levels of the ππ system in two
different schemes to discretize the momenta as discussed in subsection 2.2. We then extract
the phase shifts corresponding to these FV energy levels using the single-channel Lüscher
formula as shown in figure 12. As expected, for the considered short-range interaction
without partial waving mixing, the single-channel Lüscher formula leads to accurate results,
which holds true for both considered discretization schemes. The outlier points with phase
shifts about 180 degrees correspond to the non-interacting higher partial wave components.
Further, in figure 13 we compare our calculated FV energy levels with those from lattice
QCD simulations [68, 71]. The differences of the FV energy levels from two discretization
schemes appear to be tiny. Meanwhile, one can see the clear correspondence between our
calculation and lattice QCD results for the low-lying energy levels in each irrep. For states
below the inelastic threshold 4Mπ, our results are close to the lattice QCD ones.

6.3 P-wave ππ scattering from lattice QCD data for FV energies

We are now in the position to apply our approach for extracting the phase shifts from the
FV spectra by fixing the model parameters f , GV and M0 directly from the lattice QCD
energy levels. To this end, we adopt the determinant residual method [33] and use the six
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Figure 13. Comparison of the FV energy levels from lattice QCD and our calculations using the
two different schemes for discretizing the momenta in the moving frames as explained in section 2.2.
The notation for various symbols is the same as those in figure 12. The uncertainties of the lattice
QCD data are taken from ref. [71].

energy levels below the 4Mπ threshold from the lattice QCD simulations of ref. [68] shown
in figure 13.

We define the χ2-function as in eq. (4.3). To calculate the uncertainties σ[ΩΓ(EΓ,i)], one
should propagate the errors of the energy levels from lattice QCD to the residual function
ΩΓ(EΓ,i), which is a tedious and time-consuming task. In our exploratory calculation
we neglect possible correlations among the lattice data, which will have to be taken into
account for more precise determinations of the phase shifts in future studies, and make an
approximation

σ[ΩΓ(EΓ,i)] ≈
1
2

∣∣∣Ω(Eupper
Γ,i )− Ω(Elower

Γ,i )
∣∣∣ , (6.12)
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Figure 14. P-wave ππ phase shifts extracted by matching the phenomenological model to the FV
energy levels below the first inelastic channel computed in lattice QCD [68]. Experimental data
are taken from refs. [69, 70]. The red line shows the central result of the fit with the shaded area
representing the fit uncertainty. The six lattice QCD energy levels with uncertainties are shown by
various open symbols using the same notation as in figure 12.

where Eupper
Γ,i and Elower

Γ,i are the upper and lower limits of the energy levels from the lattice
data. We use the discretization scheme-I to fit the lattice QCD energy levels. We minimize
the χ2-function using the package MINUIT [72] and obtain

f = 118.6± 8.3 MeV, M0 = 1230.8± 94.0 MeV, GV = 53.3± 5.4 MeV. (6.13)

Having extracted the parameters of the model from the lattice QCD FV energy levels,
we calculate the ππ P-wave phase shifts by solving the reduced BSE for the T -matrix
in the infinite volume. In figure 14, the resulting phase shifts are shown, along with the
uncertainty stemming from the errors in the extracted values of the model parameters in
eq. (6.13). The pole mass and width extracted from our fitting results read,

M = 754+189
−195 MeV, Γ = 247+114

−107 MeV. (6.14)

As a comparison, the mass and width obtained within the inverse amplitude method in
ref. [68] are 786(20) MeV and 180(6) MeV, respectively. Though the uncertainties of the
extracted phase shifts, mass and widths appear to be large, owing to the employed sim-
plistic model and the restriction of the used lattice QCD data to energies below the first
inelastic channel, these results confirm that our method can also be successfully applied to
relativistic systems.

7 Summary and outlook

In this work, we propose an alternative approach to Lüscher’s method for extracting two-
body scattering information from FV energy levels. We employ the plane wave basis
instead of relying on the commonly used partial wave expansion. Using the projection
operator technique, we reduce the discrete plane wave basis into a direct sum of irreducible
representations of the corresponding discrete groups. The FV energy levels are computed
by solving the LSE or BSE for nonrelativistic or relativistic systems, respectively, for a
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given irrep and finding the poles of the resulting amplitude. The formalism is applied
to both static and moving two-particle systems in finite periodic boxes. Since we do not
use the partial wave expansion, all partial wave mixing effects due to rotational symmetry
breaking in a cubic box are naturally embedded.

We have used the above method to study spin-singlet NN scattering below pion pro-
duction threshold as an example of a nonrelativistic system. Specifically, our goal was to
study the impact of the long-range interaction due to the one-pion exchange on the severity
of partial wave mixing effects when using the Lüscher formula to relate scattering phase
shifts and FV energy levels. Throughout this study, we have restricted ourselves to the
physical value of the pion mass. For S-wave dominated states, we found the single-channel
Lüscher formula to lead to significant deviations for the smallest considered box size of
L = 3 fm. For larger boxes with L & 5 fm, the 1S0 phase shift is, however, well reproduced
for energies below Elab . 150MeV, indicating that the contributions of the 1D2 and higher
partial waves to the corresponding FV energy levels are negligible. On the other hand,
we found severe partial wave mixing effects for P-wave dominated states, which originate
from the longest-range interaction due to the OPE and make the single-channel Lüscher
method inapplicable regardless of the considered box size (except for the near-threshold
kinematics). While present-day lattice QCD calculations of the NN system are limited to
unphysically large pion masses, this issue will pose a challenge once the lattice results will
get closer to the physical point.

A natural and efficient solution to this problem can be achieved using the EFT frame-
work, as it allows one to take into account the implications of long-range interactions in a
systematic and model-independent way. To illustrate the method, we have considered a toy
model of the NN interaction comprising the long-range OPE accompanied by the heavy-
meson exchange potentials, which reproduces the qualitative behavior of the 1S0 and 1P1
neutron-proton phase shifts. In the absence of lattice QCD results for the NN system near
the physical point, we used this model to generate synthetic data for FV energy levels. We
then constructed the corresponding EFT featuring the same long-range interaction due to
the OPE and involving contact terms with an increasing number of derivatives. Having
determined the corresponding LECs by fitting them to the synthetic lattice QCD data,
we have succeeded to reproduce the phase shifts of the underlying model using even the
smallest box of L = 3 fm. All FV calculations are carried out using the discretized plane
wave basis. The accuracy of the resulting phase shifts is systematically improvable by
going to higher orders in the EFT expansion, and the method is completely insensitive
to partial wave mixing effects that plague the applications of the Lüscher formula. Our
results suggest that a precise determination of spin-singlet NN phase shifts from lattice
QCD simulations at the physical point should be possible with box sizes no larger than
L ∼ 4 . . . 5 fm. The lower bound on the box size in our approach is set by the requirement
to have a sufficient number of resolved energy levels within the EFT applicability domain
rather than by the interaction range as it is the case for the Lüscher approach.

As a second application, we considered P-wave ππ scattering. Partial wave mixing
effects are not expected to be an issue for the ππ system in the FV, and our main motiva-
tion here was to demonstrate the applicability of our method in a relativistic setting. We
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employed a phenomenological model to parametrize the ππ interaction instead of relying
on EFT. The three adjustable parameters of the model were tuned to reproduce the exper-
imental behavior of the P-wave phase shift. We then computed the FV energy levels using
the plane wave basis and compared them with those from lattice QCD simulations for the
same pion mass and box size, finding a good agreement for the low-lying states in every
irrep. We also applied our method to extract the phase shift by tuning the parameters of
the model directly to the lattice QCD energy levels below the four-pion threshold. Though
the uncertainties in the resulting determination are large, our central results agree well
with the experimental ππ scattering phase shifts.

The considered examples provide a proof-of-principle that our approach can be suc-
cessfully employed to extract the infinite-volume scattering information from FV energy
levels accessible in lattice QCD. The essential ingredients of our method are (i) EFT or,
possibly, phenomenological approaches to parametrize the interaction between the consid-
ered particles in a systematic way, (ii) the plane-wave basis in momentum space to avoid
complications caused by partial wave mixing in the FV and (iii) matching to the FV energy
spectra computable in lattice QCD. Compared with the conventional Lüscher approach,
our method offers the advantage of being insensitive to partial wave mixing artifacts in the
FV energy levels, and it also allows one to considerably reduce the box size by taking into
account exponentially suppressed corrections to the Lüscher formula in the cases where the
long-range interaction is known. Compared to alternative schemes discussed in literature
such as the FV unitarized chiral perturbation theory for Goldstone boson scattering [14, 24]
and the effective Hamiltonian approach of refs. [29–32], our method allows for a clean de-
composition of two-particle states into irreps of the FV symmetry groups and does not
rely on the partial wave expansion known to converge slowly in the presence of long-range
interactions. We have also addressed the complication due to a possible energy dependence
of the effective interactions. In that case, one has to resort to the root-finding algorithm
to obtain the poles of the T -matrix, which is computationally time consuming. We have
explored an alternative technique to speed up the calculations by using the determinant
residual method when tuning the parameters of the interaction to the FV energies.

The method contains two different ingredients, the EFT as the dynamics framework
and plane wave expansion as the tool for numerical solution of FV energy levels. One
can choose to combine one of them with other frameworks. For example, the plane wave
expansion method in this work can be used to obtain the FV energy levels in the interaction
of refs. [30, 31]. The EFT framework in this work can be used to parameterize the multi-
channel Lüscher quantization conditions. At the cost of more numerical effect, one might
expect similar results to those in this work if the partial wave expansion is truncated
such that the expansion of the amplitudes converges below a given energy. In the partial
wave expansion, one should use the infinite-volume EFT framework to calculate NN phase
shifts in different partial waves and then write down the multi-channel Lüscher equation
containing all these partial waves. Using plane wave expansion, one can write down the
FV quantization conditions directly without considering the scattering in infinite volume,
which saves considerable effort.

As already pointed out above, we expect our method to show largest benefits for lattice
QCD studies of systems featuring long-range interactions such as e.g. nucleon-nucleon
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scattering with the pion mass near or even smaller than the physical value. In the past
few years, chiral EFT for the two-nucleon system has been developed into a precision
tool, see e.g. [47, 51, 73, 74] for recent precision studies. In ref. [51], a full fledged partial
wave analysis of the available neutron-proton and proton-proton scattering data up to the
pion production threshold has, for the first time, been performed within the framework
of chiral EFT, thereby achieving a statistically perfect description of the experimental
data. However, away from the physical quark masses, no experimental data are available,
and one will have to rely on lattice QCD simulations, see [75–80] for examples of lattice
QCD studies in the NN sector and ref. [81] for a recent review article. For heavy pion
masses [77, 82], lattice QCD results have already been matched to pionless EFT [83], see
also refs. [81, 84]. Our study provides a first step towards establishing an efficient and
robust interface between lattice QCD and chiral EFT that will become necessary once the
simulations at lower pion masses will become available. While we have restricted ourselves
to spinless systems of two particles with equal masses in the present work, a generalization
to nonzero spin and to particles with different masses in elongated boxes is straightforward.
Work along these lines is in progress.

A Discrete groups

In this appendix, we briefly describe the elements, conjugacy classes and characters of the
Oh, D4h, D2h and D3d groups needed in our analysis. For more details see textbooks
about point groups, such as e.g. ref. [40]. In table 5 the elements and conjugacy classes of
the point group O are presented. We label the 24 rotation elements as R1, . . . , R24. The
elements of Oh can be obtained by using Oh = O ⊗ {E, I}. The character tables of Oh
and O are presented in tables 6 and 7, respectively. The elements and characters of D4,
D2 and D3 groups are given in tables 8, 9 and 10, respectively. The group elements and
characters of D4h, D2h and D3d can be obtained easily.

B Lüscher quantization conditions

For the spinless systems, the Lüscher quantization conditions read [6],

det
[
M

(Γ,P )
ln,l′n′ − δll′δnn′ cot δl

]
= 0, (B.1)

where, l and l′ are the angular momentum quantum numbers, n and n′ are used to label the
multiple occurrences of Γ in the representation spaces with the angular momentum l and
l′, while M (Γ,P )

ln,l′n′ is the interaction-independent matrix. For two-body systems of particles
with equal masses, we list the matrix elements M (Γ,P )

ln,l′n′ with positive and negative parities
in tables 11 and 12, respectively. In principle, M (Γ,P )

ln,l′n′ is an infinite-dimensional matrix.
We truncate the angular momenta to l ≤ 2. To make the expression concise, we adopt the
short-hand notation,

wlm = 1
π3/2
√

2l + 1
γ−1q−l−1ZPlm(1, q2), (B.2)

where ZPlm(1, q2) are the conventional Lüscher zeta functions, which can be evaluated nu-
merically [9].

– 32 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

Class Ri n ω α β γ |Rip〉
E R1 any 0 0 0 0 |px, py, pz〉

8C3 R2 (1, 1, 1) −2π/3 −π/2 −π/2 0 |py, pz, px〉
R3 (1, 1, 1) 2π/3 0 π/2 π/2 |pz, px, py〉
R4 (−1, 1, 1) −2π/3 0 −π/2 −π/2 | − pz,−px, py〉
R5 (−1, 1, 1) 2π/3 π/2 π/2 0 | − py, pz,−px〉
R6 (−1,−1, 1) −2π/3 −π/2 π/2 0 |py,−pz,−px〉
R7 (−1,−1, 1) 2π/3 0 −π/2 π/2 | − pz, px,−py〉
R8 (1,−1, 1) −2π/3 0 π/2 −π/2 |pz,−px,−py〉
R9 (1,−1, 1) 2π/3 π/2 −π/2 0 | − py,−pz, px〉

6C4 R10 (1, 0, 0) −π/2 −π/2 −π/2 π/2 |px, pz,−py〉
R11 (1, 0, 0) π/2 π/2 −π/2 −π/2 |px,−pz, py〉
R12 (0, 1, 0) −π/2 0 −π/2 0 | − pz, py, px〉
R13 (0, 1, 0) π/2 0 π/2 0 |pz, py,−px〉
R14 (0, 0, 1) −π/2 −π/2 0 0 |py,−px, pz〉
R15 (0, 0, 1) π/2 π/2 0 0 | − py, px, pz〉

6C ′2 R16 (0, 1, 1) −π −π/2 −π/2 −π/2 | − px, pz, py〉
R17 (0,−1, 1) −π −π/2 π/2 −π/2 | − px,−pz,−py〉
R18 (1, 1, 0) −π −π/2 −π 0 |py, px,−pz〉
R19 (1,−1, 0) −π 0 π −π/2 | − py,−px,−pz〉
R20 (1, 0, 1) −π 0 π/2 −π |pz,−py, px〉
R21 (−1, 0, 1) −π 0 −π/2 −π | − pz,−py,−px〉

3C2 = 3C2
4 R22 (1, 0, 0) −π π π 0 |px,−py,−pz〉

R23 (0, 1, 0) −π 0 −π 0 | − px, py,−pz〉
R24 (0, 0, 1) −π 0 0 −π | − px,−py, pz〉

Table 5. Elements and conjugacy classes of the O group. The rotations are parametrized by the
rotation axis n and angle ω or by the Euler angles α, β, γ.

Γ

O group Class
E 8C3 6C4 6C ′2 3C2 = 3C2

4

A1 1 1 1 1 1
A2 1 1 −1 −1 1
E 2 −1 0 0 2
T1 3 0 1 −1 −1
T2 3 0 −1 1 −1

Table 6. Character table for the O group.
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Γ
Oh group Class

E · · · 3C2 I · · · 3IC2

A+
1
... χ(O) χ(O)
T+

2
A−1
... χ(O) −χ(O)
T−2

Table 7. Character table for the Oh group. χ(O) stands for the character table of the O group
given in table 6.

D4 group R1 R24 R14, R15 R22, R23 R18, R19

Γ
Class

E C2 = C2
4 2C4 2C ′2 2C ′′2

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 -2 0 0 0

Table 8. Character table for the D4 group. The group elements Ri are listed in table 5.

D2 group R1 R18 R19 R24

Γ
Class

E C2(ex + ey) C2(ex − ey) C2(ez)

A1 1 1 1 1
B1 1 1 −1 −1
B2 1 −1 1 −1
B3 1 −1 −1 1

Table 9. Character table for the D2 group. The group elements Ri are listed in table 5.

D3 group R1 R2, R3 R17, R19, R21

Γ
Class

E 2C3 3C ′2

A1 1 1 1
A2 1 1 −1
E 2 −1 0

Table 10. Character table for the D3 group. The group elements Ri are listed in table 5.
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d Γ-I Γ-II M (Γi,P ) Partial wave

(0, 0, 0) A+
1 A+

1 [w00] {S}

E+ E+ [
w00 + 18

7 w40
]

{D}

T+
2 T+

2
[
w00 − 12

7 w40
]

{D}

(0, 0, a) A+
1 A+

1

 w00 −
√

5w20

−
√

5w20 w00 + 10
7 w20 + 18

7 w40

 {S,D}

B+
1 B+

1

[
w00 − 10

7 w20 + 3
7w40 + 3

√
70

7 w44

]
{D}

B+
2 B+

2

[
w00 − 10

7 w20 + 3
7w40 − 3

√
70

7 w44

]
{D}

E+ E+ [
w00 + 5

7w20 − 12
7 w40

]
{D}

(a, a, 0)
A+

1 A+
1


w00

√
10w22 −

√
5w20

−
√

10w22 A22 A23

−
√

5w20 −A23 A33

 {S,Da, Db}

A22 = w00 − 10
7 w20 + 3

7w40 − 3
√

70
7 w44

A33 = w00 + 10
7 w20 + 18

7 w40

A23 = − 10
√

2
7 w22 + 3

√
30

7 w42

B+
1 A+

2

[
w00 + 5

7w20 − 12
7 w40 + i 5

√
6

7 w22 + i 6
√

10
7 w42

]
{D}

B+
2 B+

1

[
w00 + 5

7w20 − 12
7 w40 − i 5

√
6

7 w22 − i 6
√

10
7 w42

]
{D}

B+
3 B+

2

[
w00 − 10

7 w20 + 3
7w40 + 3

√
70

4 w44

]
{D}

(a, a, a)
A+

1 A+
1

 w00
√

30w22

−
√

30w22 A22


{S,D}

A22 = w00 − 12
7 w40 − i 10

√
6

7 w22 − i 12
√

10
7 w42

E+ E+

w00 + 18
7 w40 A

−
12

−A+
12 A22


{Da, Db}

A±12 = 5
√

6
7 (1± i)w22 − 9

√
10

14 (1± i)w42

A22 = w00 − 12
7 w40 + i 5

√
6

7 w22 + i 6
√

10
7 w42

Table 11. Lüscher’s quantization conditions for systems with even parity [6]. We label the multiple
occurrences of D-wave in some irreps with Da and Db.

– 35 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

d Γ-I Γ-II M (Γi,P ) Partial wave

(0, 0, 0) T−1 T−1 w0,0 {P}

(0, 0, a) A−2 A−1 w00 + 2w20 {P}

E− E− w00 − w20 {P}

(a, a, 0) B−1 A−1 w00 − w20 − i
√

6w22 {P}

B−2 B−2 w00 − w20 + i
√

6w22 {P}

B−3 B−1 w00 + 2w20 {P}

(a, a, a) A−2 A−1 w00 − i2
√

6w22 {P}

E− E− w00 + i
√

6w22 {P}

Table 12. Lüscher’s quantization conditions for systems with odd parity [6].
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