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1 Introduction and summary

A key consequence of supersymmetry is the dramatic improvement it produces in the ultra-

violet behavior of quantum field theories. The importance of anti-commuting variables in

formulating and quantizing supersymmetric field theories is well known. These variables

are, however, not the easiest to work with, especially when it comes to setting up an off-

shell formulation, which often leads to a proliferation of auxiliary variables and unphysical

degrees of freedom (and for the most interesting theories is not believed to exist). The idea

that supersymmetric theories could be formulated without anti-commuting variables, and

thus characterized in a more economical fashion in terms of a purely bosonic functional

measure was first proposed in [1, 2] and further developed in [3–6].1 This approach to

supersymmetric fermion-boson models, referred to as a ‘Nicolai map’, is designed to cancel

out the fermion determinant while simultaneously reducing the boson measure to a free

one (see [7] for a pedagogical introduction). Supersymmetric gauge theories, the focus

1We emphasize that quantization is an essential and indispensable feature of this formulation. An

appropriate (perturbative) regularization of all relevant expressions, and in particular of (2.1) below, can

be obtained by replacing all propagators C(x) by Cκ(x) with a cutoff parameter κ and by introducing

appropriate κ-dependent multiplicative renormalizations for the coupling constant and the gauge field.
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of this paper, can be characterized by the existence of such a functional map Tg — a

transformation of the bosonic fields such that the Jacobi determinant of the transformation

exactly equals the product of the Matthews-Salam-Seiler (MSS) [8, 9] and Faddeev-Popov

(FP) [10, 11] determinants. This was explicitly shown to second order in the coupling

constant in [1]. In this paper, we extend these results and the framework itself to third

order in the coupling constant by presenting an explicit formula for Tg, in equation (2.1).

In addition, we provide a Feynman-like graphical approach using tree diagrams that in

principle allows one to extend this construction to all orders.

This novel approach sidesteps entirely the use of abstractly defined anti-commuting

objects and hence offers a fresh perspective on the quantization of supersymmetric gauge

theories. Given the central role quantum gauge theories play in describing the real world,

a new window into their workings is invaluable. This framework, for example, allows us to

re-derive [12] the classical result [13] that interacting supersymmetric Yang-Mills theories

exist only in space-time dimensions D = 3, 4, 6 and 10 (together with the extended super-

symmetric Yang-Mills theories obtained from these by dimensional reduction). Specifically,

for the N = 4 theory in D = 4, all known results for scalar correlators may also be ob-

tained within this formalism, at least up to the order for which the map had previously been

worked out [14]; the computational efforts involved compare well with the more standard

techniques of perturbative quantum field theory. An understanding of scattering ampli-

tudes in this approach is likely to yield new insights into the symmetries that underlie

these simple structures. A related long-term goal is to move beyond perturbation theory

and establish a link between the map and the integrable properties of the N = 4 model

(see e.g. [15]). There also exists earlier work which focussed primarily on the search for,

and the exploitation of, variables providing a local realization of the map Tg [16–21] (the

precise relation between these older results and the non-local map Tg will be left for future

study), as well as an alternative construction of Tg in [22].

We start by stating the main theorem from [1, 2].

1.1 Main theorem

Supersymmetric gauge theories are characterized by the existence of a non-linear and non-

local transformation Tg of the Yang-Mills fields

Tg : Aaµ(x) 7→ A′ aµ (x, g;A) ,

which is invertible at least in the sense of a formal power series such that

1. The bosonic Yang-Mills action without gauge-fixing terms is mapped to the abelian

action,

S0[A′] = Sg[A] ,

where Sg[A] ≡ 1
4

∫
dxF aµνF

a
µν with non-abelian field strength F aµν ≡ ∂µA

a
ν − ∂νAaµ +

gfabcAbµA
c
ν and with gauge coupling g; S0 denotes the free action (g = 0).

2. The gauge-fixing function Ga(A) is a fixed point of Tg.

– 2 –
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3. Modulo terms proportional to the gauge-fixing function Ga(A), the Jacobi determinant

of Tg is equal to the product of the MSS and FPP determinants2

det

(
δA′ aµ (x, g;A)

δAbν(y)

)
= ∆MSS [A] ∆FP [A] ,

at least order by order in perturbation theory.

A general proof of this theorem is presented in appendix A, and is largely based on

existing work [2–6]. However, the present proof is more general in that it takes into account

recent insights from [12] that the theorem is actually valid for all supersymmetric Yang-

Mills theories in space-time dimensions D = 3, 4, 6, 10. These include the corresponding

extended theories obtained by reduction (like N = 4 Yang-Mills theory from the D =

10 theory). Although the above theorem applies with arbitrary gauge groups we will

for simplicity in the remainder restrict our attention to SU(n), with real antisymmetric

structure constants fabc obeying

fabcfabd = n δcd . (1.1)

Even with the general proof and explicit expressions for A′ aµ (x) at hand it is by no means

obvious that the transformed field A′ aµ (x) satisfies all three statements in the main theorem

above, and at every order in g. Our main goal with this paper is to work out the transfor-

mation at O(g3) and to explain in detail how all the necessary conditions are satisfied. We

hope that the explicit expressions, derived in section 3, illustrate the non-triviality of this

result. With these findings one can now proceed to compute quantum correlators: we have〈〈
Aa1µ1(x1) · · ·Aanµn(xn)

〉〉
g

=
〈
Aa1µ1(x1) · · ·Aanµn(xn)

〉
g
, (1.2)

where for any monomial X[A]3〈〈
X[A]

〉〉
g

:=

∫
DADλDC DC̄ e−Sinv[A,λ]−Sgf[A,C,C̄] X[A] ,

〈
X[A]

〉
g

:=

∫
Dg[A] X[A] ,

(1.3)

and Sinv[A, λ] and Sgf[A,C, C̄] denote the supersymmetric Yang-Mills action and the gauge-

fixing action defined in (A.1) and (A.2), respectively. Furthermore, Dg[A] denotes the (non-

local) bosonic functional measure of the interacting theory obtained after integrating out all

anti-commuting variables (the gauginos λa(x) and the ghosts Ca(x) and C̄a(x)). Observe

that all these expectation values are already properly normalized (that is, 〈〈1〉〉g = 〈1〉g = 1

for all g) by the vanishing of the vacuum energy in supersymmetric theories (this statement

remains true with the properly normalized gauge-fixing action Sgf). The theorem then tells

us that, again modulo terms proportional to the gauge-fixing function,〈
Aa1µ1(x1) · · · Aanµn(xn)

〉
g

=
〈

(T −1
g A)a1µ1(x1) · · · (T −1

g A)anµn(xn)
〉

0
(1.4)

2With the understanding that ∆MSS is really a Pfaffian for Majorana fermions.
3We note that in principle the formalism can also be extended to fermionic correlators by admitting

non-local expressions for X[A].
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Let us also emphasize that, at this point, all the statements in the above theorem are to be

understood in the sense of formal power series. Non-perturbatively, we will have to worry

about zero modes of the relevant determinants [23]: on the mass shell (where δSg/δA = 0)

we have

δ2Sg[A]

δAaµ(x) δAbν(y)
=

∫
dw dz

δA′ cα (w)

δAaµ(x)

(
−� δαβ + ∂α∂β

)
δ(w − z)

δA′ cβ (z)

δAbν(y)
, (1.5)

directly relating the Jacobian of the transformation to the second-order fluctuation op-

erator around a given background solution of the Yang-Mills field equations, such as an

instanton solution (the addition of the second variation of the gauge-fixing action Sgf ren-

ders the integration kernel on the r.h.s. of (1.5) invertible). Since the eigenvalues of the

fluctuation operator are known to be related to the ones of the MSS determinant, matching

zero modes imposes an extra restriction on the theory. As already pointed out in [23] the

match works only for the maximally extended N = 4 theory in D = 4, which is additionally

singled out for this reason.

In the remainder we restrict ourselves to the Landau (or classically: Lorenz) gauge,

that is,

Ga(A) = ∂µAaµ . (1.6)

The second statement of the theorem then means that the longitudinal part of the gauge

field is not affected by the map Tg, and therefore is the same as in the free theory.

Finally, other choices for the gauge function Ga(A), in particular the axial and light-

cone gauges, are possible, but will be discussed elsewhere. The light-cone gauge is of

particular interest, not only because it is the only gauge in which the UV finiteness of

the maximal N = 4 theory is manifest [24, 25], but also because for pure and maximally

supersymmetric Yang-Mills theories the associated Hamiltonians are quadratic forms [26,

27]. This “complete square” structure, highly reminiscent of the map, is likely related to a

light-cone realization of Tg.

1.2 Conventions and notations

The work presented below is in Euclidean space, rendering upper and lower indices equiv-

alent. However, the Euclidean metric is by no means crucial to our discussion, as all of

these results can be derived in spacetimes with a Lorentzian signature as in [3–5]. For the

γ-matrices we thus have the usual Clifford algebra relation {γµ, γν} = 2δµν . In order not to

over-clutter the notation, we will not explicitly distinguish between Majorana, Weyl, and

Majorana-Weyl spinors. This notational shortcut is justified because for our calculations

all we need is the basic Clifford algebra relation and the trace (in the sense of a formal

algebraic prescription)

Tr 1 = r (1.7)

where r counts the number of off-shell fermionic degrees of freedom for the cases of interest.

The extra factor of 1/2 required for the on-shell degrees of freedom is included in our
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perturbative definition of the MSS determinant in (3.15).4 With the admissible space-time

dimensions D = 3, 4, 6 and 10 and the representation dimensions r = 2, 4, 8 and 16 of the

corresponding Clifford algebras, we then have the relation

r = 2(D − 2) . (1.8)

In section 3 and the appendix A.2 we will rederive this relation in a novel manner.

We shall employ the generator R of the inverse transformation T −1
g (see below). A key

role in the R operator is played by the fermionic propagator Sab(x, y;A) in a gauge-field

dependent background characterized by Aaµ(x), with

γµ (DµS)ab (x, y;A) ≡ γµ
[
δac∂µ + gfadcAdµ(x)

]
Scb(x, y;A) = δabδ(x−y) . (1.9)

The limit g = 0 gives us the free fermionic propagator Sab0 (x) which obeys

γµ∂µS
ab
0 (x) = δabδ(x) ⇒ Sab0 (x) = −δabγµ∂µC(x) . (1.10)

Here C(x) is the free scalar propagator (with the Laplacian ∂µ∂
µ ≡ �)

C(x) =

∫
dk

(2π)D
eikx

k2
=

1

(D−2)DπD/2
Γ

(
D

2
+ 1

)
(x2)1−D

2 . (1.11)

It satisfies �C(x) = −δ(x). We use the convention that the derivative always acts on the

first argument, i.e. ∂ρC(x−y) ≡ (∂/∂xρ)C(x−y) ≡ ∂xρC(x−y). Thus, we need to be careful

with sign flips when using ∂xρC(x−y) = −∂yρC(x−y) = ∂xρC(y−x) = −∂yρC(y−x).

Finally, we require the implementation of the ghost propagator Gab(x, y;A), obeying

∂µ(DµG)ab(x, y;A) ≡
[
δac� + gfadc

∂

∂xµ
Adµ(x)

]
Gcb(x, y;A) = δabδ(x−y) (1.12)

where the differential operator acts on everything to its right. Hence, the free ghost prop-

agator satisfies

�Gab0 (x) = δabδ(x) ⇒ Gab0 (x) = −δabC(x) , (1.13)

and the full ghost propagator expands as

Gab(x, y) = Gab0 (x, y) − g

∫
dz Gac0 (x, z)f cde∂µz

(
Adµ(z)Geb0 (z, y)

)
+ · · · . (1.14)

It is important to note that not only Gab(x, y;A) depends on g and the background field

Aaµ(x) but that (DµG)ab(x, y;A) does so as well, viz.5

− (DµG)ab(x, y;A) = δab∂µC(x−y) + gfacb
∫

dz Πµν(x−z)Acν(z)C(z−y) + O(g2) ,

(1.15)

4Because we use only the Clifford algebra and the normalization (1.7) we also need not worry about

issues with the existence or non-existence of Euclidean Majorana spinors. Following [28], the Euclidean

supersymmetric theory here by definition is the one whose correlators coincide with the analytic continuation

of Lorentzian correlators to imaginary time, in accordance with the Osterwalder-Schrader reconstruction

theorem [29].
5We note that the corresponding formula (1.18) in [12] is incomplete in that it missed out on the g-

dependence of (DµG)ab. However, this correction kicks in only at O(g3) and beyond, hence does not affect

the results up to second order in [1, 12].
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with the abelian transversal projector

Πµν(x−z) ≡
(
δµν −

∂µ∂ν
�

)
δ(x− z) ' δµνδ(x−z) + ∂µC(x−z) ∂zν , (1.16)

where ' means equality in the sense of a distribution. We will later see that the terms of

O(g) in (1.15) become relevant for the map Tg from order g3 onwards.

1.3 The R operator

To determine the map Tg one first constructs its inverse T −1
g via its infinitesimal generator

R, a non-local and non-linear functional differential operator first introduced for the N =

1, D = 4 theory in [3–5]. In general, the R operator works for any choice of gauge, but

we will here derive the relevant expressions only for the Landau gauge (1.6). The image

(TgA)aµ(x) of the map is then obtained order by order in g by formally inverting the power

series

(T −1
g A)aµ(x) =

∞∑
n=0

gn

n!

(
RnA

)a
µ
(x)
∣∣∣
g=0

, (1.17)

where R is the infinitesimal generator of the inverse map. Details of the construction of the

R operator are provided in appendix A.1, thus generalizing the original proof given in [3]

for D = 4. We use the background-field dependent propagators defined in (1.9) and (1.12).

In appendix A we will also use the notation

λa(x) λ̄b(y) ≡ Sab(x, y;A) and Ca(x) C̄b(y) ≡ Gab(x, y;A) (1.18)

to rewrite (A.20). Here λa(x) are the gaugino fields (prior to their elimination via the

MSS determinant), and Ca(x) and C̄a(x) denote the ghost and anti-ghost fields.6 For

the Landau gauge function (1.6) the R operator is then represented by the functional

differential operator

R =
d

dg
− 1

2r

∫
dx dy Tr

(
γµS

ab(x, y;A) γρλ
)
f bcdAcρ(y)Adλ(y)

δ

δAaµ(x)
(1.19)

− 1

2r

∫
dx dz dy (DµG)ae(x, z;A) ∂ν Tr

(
γνSeb(z, y;A) γρλ

)
f bcdAcρ(y)Adλ(y)

δ

δAaµ(x)

=
d

dg
− 1

2r

∫
dx dz dy P aeµν(x, z) Tr

(
γνSeb(z, y;A) γρλ

)
f bcdAcρ(y)Adλ(y)

δ

δAaµ(x)
,

Notice that the first part of the R operator (first line on the r.h.s. of (1.19)) is gauge

independent, whereas the second line does depend on the choice of the gauge-fixing function

via the ghost propagator (see appendix A for an explanation of the origin of this term).

Furthermore, we have introduced the ‘covariant’ (or ‘non-abelian’) transversal projector

P abµν(x, z;A) = δabδµνδ(x−z)− (DµG)ab(x, z;A) ∂ν (1.20)

=

∫
dw Πµσ(x−w)

[
δabδσνδ(w−z) + gfacbAcσ(w)C(w−z) ∂ν +O(g2)

]
6Not to be confused with the propagator C(x), which carries no indices.
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obeying P ∗P = P and ∂µP abµν = 0. This definition (which, for all we know, has not appeared

in the literature) differs from the abelian one (1.16) in that there appears a gauge-covariant

derivative and a non-linear dependence on A on the r.h.s. of (1.20). It allows for a non-

standard (non-linear) separation between transversal and longitudinal degrees of freedom,

with

A⊥aµ (x) :=

∫
dy P abµν(x, y;A)Abν(y) and A||aµ (x) :=

∫
dy (DµG)ab(x, y;A) ∂νAbν(y) ,

(1.21)

such that the more standard abelian (linear) split of Aaµ(x) into transversal and longitudinal

parts is recovered by setting g = 0.

Equation (1.19) means that the R operation acts only on the ‘covariantly transversal’

part of its argument. Consequently, the map Tg and its inverse T −1
g affect only the trans-

verse degrees of freedom of the gauge field, whereas they do not change its longitudinal

component, which is therefore effectively the same as in the free theory.

Since the bosonic background field Aaµ(x) does not depend on g, the first application

of R to Aaµ(x) is straightforward. For all higher orders we also need

dSab(x, y)

dg
= −

∫
dz Sac(x, z) f cmdAmµ (z) γµSdb(z, y) (1.22)

and
δSab(z, y)

δAmµ (x)
= −g Sac(z, x) f cmdγµSdb(x, y) (1.23)

as well as
dGab(x, y)

dg
=

∫
dz Gac(x, z) f cmd

←−
∂µz A

m
µ (z)Gdb(z, y) (1.24)

and
δGab(z, y)

δAmµ (x)
= g Gac(z, x) f cmd

←−
∂µx G

db(x, y) . (1.25)

These equations are obtained from (1.9) and (1.12). After iteratively computing Rn for

any desired n, we set g = 0, which in particular maps Sab(x, y) to the free propagator

Sab0 (x−y) and Gab(x, y) to the free propagator Gab0 (x−y), and finally obtain (T −1
g A)aµ(x)

at O(gn). We shall present (T −1
g A)aµ(x)

∣∣
O(g3)

in appendix B.

The actual map Tg is then obtained by power series inversion. Let

TgA =
∞∑
n=0

gn

n!
TnA . (1.26)

Expanding T −1
g Tg = 1 in powers of g and matching coefficients we readily obtain

T0A = A ,

T1A = −RT0A
∣∣
g=0

,

T2A = −R2T0A
∣∣
g=0
− 2RT1A

∣∣
g=0

,

T3A = −R3T0A
∣∣
g=0
− 3R2T1A

∣∣
g=0
− 3RT2A

∣∣
g=0

.

(1.27)

The explicit expression for (TgA)aµ(x) up to O(g3) is provided in the following section.

– 7 –
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2 Result and discussion

We now present the main new result which is the explicit formula for Tg to cubic order

O(g3)7

(TgA)aµ(x) = Aaµ(x) + g fabc
∫

dy ∂ρC(x− y)Abµ(y)Acρ(y)

+
3g2

2
fabcf bde

∫
dy dz ∂ρC(x− y)Acλ(y)∂[ρC(y − z)Adµ(z)Aeλ](z)

+
g3

2
fabcf bdef cmn

∫
dy dz dw ∂ρC(x− y)

× ∂λC(y − z)Adλ(z)Aeσ(z)∂[ρC(y − w)Amµ (w)Anσ](w)

+ g3fabcf bdefdmn
∫

dy dz dw ∂ρC(x− y)Acλ(y)

×
{

+ 2 ∂[ρC(y − z)Aeσ](z)∂[λC(z − w)Amµ (w)Anσ](w)

− 2 ∂[λC(y − z)Aeσ](z)∂[ρC(z − w)Amµ (w)Anσ](w) (2.1)

− ∂σC(y − z)Aeσ(z)∂[ρC(z − w)Amµ (w)Anλ](w)

− 2 ∂[σC(y − z)Aeµ](z)∂[ρC(z − w)Amλ (w)Anσ](w)

+ ∂[ρC(y − z)Aeµ(z)∂|σ|C(z − w)Amλ](w)Anσ(w)

}
+
g3

3
fabcf bdefdmn

∫
dy dz dw

×
{

+ 2 ∂ρC(x− y)Ac[ρ(y)∂µ]C(y − z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

− ∂µC(x− y) ∂ρ
(
Acρ(y)C(y − z)

)
Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

}
− g3

3
fabcf bdefdmn

∫
dy dz Acµ(x)C(x− y)Aeρ(y)∂λC(y − z)Amρ (z)Anλ(z)

+ O(g4) .

The first two lines above correspond to the result obtained in [1] and extended to dimensions

D 6= 4 in [12]. The last two lines are the new terms arising from the g-dependence of

(DµG)ab in (1.12); they are crucial for the fulfillment of the conditions in the main theorem.

While the result up to O(g2) was originally obtained by trial and error in [1], this becomes

tricky at higher orders because the number of terms is significantly larger at O(g3) than

below. In addition, from the last term we see that new structures appear. In the following

section we will verify that this result indeed satisfies all three statements of the main

theorem (subsection 1.1) simultaneously, providing a highly non-trivial test.

7As usual, all anti-symmetrizations are with strength one, such that e.g. [ab] = 1
2
(ab− ba).
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3 Tests

A general proof that the statements in the main theorem in subsection 1.1 are true at any

order of g is given in appendix A. Since a detailed explanation of how this works up to

O(g2) can be found in [1, 12] we will skip the details of these lower order calculations here,

and only present the details relevant to the third order in g.

3.1 Gauge condition

We first verify that ∂µA
′ a
µ (x) = ∂µA

a
µ(x) + O(g4). Applying ∂µ to the terms of order g3

in (2.1) and removing all terms that are manifestly anti-symmetric under the exchange of

indices µ and ρ yields

∂µA
′a
µ (x)

∣∣
O(g3)

= g3fabcf bdefdmn
∫

dy dz dw ∂µ∂ρC(x−y)Acλ(y)

×
{

+2∂[ρC(y−z)Aeσ](z)∂[λC(z−w)Amµ (w)Anσ](w)

−2∂[σC(y−z)Aeµ](z)∂[ρC(z−w)Amλ (w)Anσ](w)

}
− g

3

3
fabcf bdefdmn

∫
dy dz dw

×�C(x−y)∂ρ
(
Acρ(y)C(y−z)

)
Aeλ(z)∂σC(z−w)Amλ (w)Anσ(w)

− g
3

3
fabcf bdefdmn

∫
dy dz

×∂µ
(
Acµ(x)C(x−y)

)
Aeρ(y)∂λC(y−z)Amρ (z)Anλ(z) .

(3.1)

The first two terms cancel each other. In the third term we use �C(x − y) = −δ(x − y).

It is then easy to see that

∂µA
′ a
µ (x)

∣∣
O(g3)

=
g3

3
fabcf bdefdmn

∫
dy dz

×
{

+ ∂ρ
(
Acρ(x)C(x− y)

)
Aeλ(y)∂σC(y − z)Amλ (z)Anσ(z)

− ∂µ
(
Acµ(x)C(x− y)

)
Aeρ(y)∂λC(y − z)Amρ (z)Anλ(z)

}
= 0 .

(3.2)

3.2 Free action

By the first statement in the main theorem the transformed gauge field must satisfy

1

2

∫
dx A′ aµ (x) (−� δµν + ∂µ∂ν)A′ aν (x) =

1

4

∫
dx F aµν(x)F aµν(x) + O(g4) . (3.3)

We stress that, unlike the matching of determinants, the fulfillment of this condition will

turn out not to depend on the dimension D. Because of the invariance of the Landau gauge

function, we can ignore the second term on the l.h.s. and the corresponding term on the
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r.h.s. of this equation. The calculation, up to O(g2), is presented in detail in [12]. At third

order, (3.3) has two contributions which must cancel each other:

0
!

=

∫
dx

(
A′ aµ (x)

∣∣
O(g3)

�A′ aµ (x)
∣∣
O(g0)

+A′ aµ (x)
∣∣
O(g2)

�A′ aµ (x)
∣∣
O(g1)

)
. (3.4)

To check this we collect all the terms to obtain

∫
dx

(
A′aµ (x)

∣∣
O(g3)

�A′aµ (x)
∣∣
O(g0)

+A′aµ (x)
∣∣
O(g2)

�A′aµ (x)
∣∣
O(g1)

)
=− g

3

2
fabcf bdef cmn

∫
dx dy dz dw ∂ρC(x−y)

×∂λC(y−z)Adλ(z)Aeσ(z)∂[ρC(y−w)Amµ (w)Anσ](w)�Aaµ(x)

+ g3fabcf bdefdmn
∫

dx dy dz dw ∂ρC(x−y)Acλ(y)

×
{

+2∂[ρC(y−z)Aeσ](z)∂[λC(z−w)Amµ (w)Anσ](w)�Aaµ(x)

−2∂[λC(y−z)Aeσ](z)∂[ρC(z−w)Amµ (w)Anσ](w)�Aaµ(x)

−∂σC(y−z)Aeσ(z)∂[ρC(z−w)Amµ (w)Anλ](w)�Aaµ(x)

−2∂[σC(y−z)Aeµ](z)∂[ρC(z−w)Amλ (w)Anσ](w)�Aaµ(x) (3.5)

+∂[ρC(y−z)Aeµ(z)∂|σ|C(z−w)Amλ](w)Anσ(w)�Aaµ(x)

}
+
g3

3
fabcf bdefdmn

∫
dx dy dz dw

×
{

+2∂ρC(x−y)Ac[ρ(y)∂µ]C(y−z)Aeλ(z)∂σC(z−w)Amλ (w)Anσ(w)�Aaµ(x)

−∂µC(x−y)∂ρ
(
Acρ(y)C(y−z)

)
Aeλ(z)∂σC(z−w)Amλ (w)Anσ(w)�Aaµ(x)

}
− g3

3
fabcf bdefdmn

∫
dx dy dz

×Acµ(x)C(x−y)Aeρ(y)∂λC(y−z)Amρ (z)Anλ(z)�Aaµ(x)

+
3g3

2
fabcf bde

∫
dx dy dz dw ∂ρC(x−y)Acλ(y)∂[µC(y−z)Adλ(z)Aeρ](z)

×�
(
famn∂σC(x−w)Amµ (w)Anσ(w)

)
.

The general procedure to simplify this expression is rather straightforward. However, there

are a few terms which require additional attention. The first step is to integrate each term

by parts such that the Laplacian acts on the C(x−y), which then simplifies to a δ-function

– 10 –
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and we obtain

∫
dx

(
A′ aµ (x)

∣∣
O(g3)

�A′ aµ (x)
∣∣
O(g0)

+A′ aµ (x)
∣∣
O(g2)

�A′ aµ (x)
∣∣
O(g1)

)
= −g

3

2
fabcf bdef cmn

∫
dx dz dw ∂ρA

a
µ(x)

× ∂λC(x− z)Adλ(z)Aeσ(z)∂[ρC(x− w)Amµ (w)Anσ](w)

+ g3fabcf bdefdmn
∫

dx dz dw ∂ρA
a
µ(x)Acλ(x)

×
{

+ 2 ∂[ρC(x− z)Aeσ](z)∂[λC(z − w)Amµ (w)Anσ](w)

− 2 ∂[λC(x− z)Aeσ](z)∂[ρC(z − w)Amµ (w)Anσ](w)

− ∂σC(x− z)Aeσ(z)∂[ρC(z − w)Amµ (w)Anλ](w)

− 2 ∂[σC(x− z)Aeµ](z)∂[ρC(z − w)Amλ (w)Anσ](w)

+ ∂[ρC(x− z)Aeµ(z)∂|σ|C(z − w)Amλ](w)Anσ(w)

}
+
g3

3
fabcf bdefdmn

∫
dx dz dw

×
{

+ 2 ∂ρA
a
µ(x)Ac[ρ(x)∂µ]C(x− z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

− ∂µAaµ(x) ∂ρ
(
Acρ(x)C(x− z)

)
Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

}
− g3

3
fabcf bdefdmn

∫
dx dy dz

×�Aaµ(x)Acµ(x)C(x− y)Aeρ(y)∂λC(y − z)Amρ (z)Anλ(z)

+
3g3

2
fabcf bdefamn

∫
dx dz dw

×Acλ(x)∂[µC(x− z)Adλ(z)Aeρ](z)∂ρ∂σC(x− w)Amµ (w)Anσ(w) .

(3.6)

We notice that we can replace any ∂ρA
a
µ(x)Acλ(x) by 1

2∂ρ
(
Aaµ(x)Acλ(x)

)
if the full expression

is symmetric under simultaneous exchange a ↔ c and µ ↔ λ. This allows us to integrate

the respective terms by parts again. After the integration the index contractions must be

spelled out and most terms cancel. Subsequently, we obtain

∫
dx

(
A′ aµ (x)

∣∣
O(g3)

�A′ aµ (x)
∣∣
O(g0)

+A′ aµ (x)
∣∣
O(g2)

�A′ aµ (x)
∣∣
O(g1)

)
=
g3

2
fabcf bdefdmn

∫
dx dw ∂ρA

a
µ(x)Acλ(x)Aeσ(x)∂[λC(x− w)Amµ (w)Anσ](w)

+
g3

3
fabcf bdefdmn

∫
dx dz dw

– 11 –
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×
{

+ ∂ρA
a
µ(x)Acρ(x)∂µC(x− z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w) (3.7)

− ∂ρAaµ(x)Acµ(x)∂ρC(x− z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

− ∂µAaµ(x) ∂ρ
(
Acρ(x)C(x− z)

)
Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

}
− g3

3
fabcf bdefdmn

∫
dx dy dz �Aaµ(x)Acµ(x)C(x− y)Aeρ(y)∂λC(y − z)Amρ (z)Anλ(z) .

The first term vanishes by the Jacobi identity, i.e.

g3

2
fabcf bdefdmn

∫
dx dw ∂ρA

a
µ(x)Acλ(x)Aeσ(x)∂[λC(x− w)Amµ (w)Anσ](w)

=
g3

6

(
fabcf bde + f ebaf bdc + f cbef bda

)
fdmn

∫
dx dw

× ∂ρAaµ(x)Acλ(x)Aeσ(x)∂[λC(x− w)Amµ (w)Anσ](w)

= 0 .

(3.8)

The second, third and fourth term in (3.7) can be integrated by parts and after removing

the terms that are anti-symmetric under the exchange of two indices, we get∫
dx

(
A′ aµ (x)

∣∣
O(g3)

�A′ aµ (x)
∣∣
O(g0)

+A′ aµ (x)
∣∣
O(g2)

�A′ aµ (x)
∣∣
O(g1)

)
= −g

3

3
fabcf bdefdmn

∫
dx dz dw

×
{

+ ∂µ∂ρA
a
µ(x)Acρ(x)C(x− z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

−�Aaµ(x)Acµ(x)C(x− z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w) (3.9)

− ∂µ∂ρAaµ(x)Acρ(x)C(x− z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

}
− g3

3
fabcf bdefdmn

∫
dx dy dz�Aaµ(x)Acµ(x)C(x− y)Aeρ(y)∂λC(y − z)Amρ (z)Anλ(z)

= 0 .

Thus, the condition (3.3) holds up to and including O(g3). It is worthwhile to point out

here that the very existence of a non-local field transformation mapping one local action

to another local action is a remarkable fact in itself, independently of supersymmetry (but

in the absence of supersymmetry, locality would be spoilt by the Jacobian).

3.3 Jacobians, fermion and ghost determinants

Finally, we need to perturbatively show that on the gauge surface the Jacobian determinant

is equal to the product of the MSS and FP determinants. This is done order by order in g by

considering the logarithms of the determinants rather than the determinants themselves;

since the relevant checks up to O(g2) were already performed in [1, 12], we can here

– 12 –
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concentrate on the third order, viz.

log det

(
δA′ aµ (x)

δAbν(y)

) ∣∣∣∣
O(g3)

!
= log

(
∆MSS [A] ∆FP [A]

)∣∣∣∣
O(g3)

. (3.10)

Of the three statements in subsection 1.1 this is the most complicated condition to verify.

Moreover, it is the only condition that depends on the dimension of our field theory and

will impose the constraint (1.8) on the latter.

The ghost determinant is computed from the functional matrix

Xab(x, y;A) = g fabcC(x− y)Acµ(y)∂yµ , (3.11)

using the well-known equation

log det (1−X) = Tr log (1−X) . (3.12)

Up to O(g3) this yields

log det (1−X) =
1

2
n g2

∫
dx dy ∂µC(x− y)Aaν(y)∂νC(y − x)Aaµ(x)

+
1

3
g3 fadmf bemf cde

∫
dx dy dz

× ∂µC(x− y)Abν(y)∂νC(y − z)Acρ(z)∂ρC(z − x)Aaµ(x)

+O(g4) .

(3.13)

Observe that in (3.11) there are no terms containing ∂µAcµ: these do not contribute, as one

may directly verify by integrating by parts and reading (3.13) ‘backwards’. Therefore the

gauge condition (1.6) is not required for the evaluation of the ghost determinant.

The relevant kernel for the MSS determinant is

Yab
αβ(x, y;A) = g fabc∂ρC(x− y)

(
γργλ

)
αβ
Acλ(y) . (3.14)

For the correct counting of physical fermionic degrees of freedom we must include an extra

factor of 1
2 in the expansion (3.12) (technically due to the Majorana or Weyl condition

when performing the Berezin integration) and get

1

2
logdet (1−Y) =

1

4
ng2 Tr(γργλγσγα)

∫
dx dy ∂ρC(x−y)Aaλ(y)∂σC(y−x)Aaα(x)

+
1

6
g3 fadmf bemf cdeTr(γργλγσγαγβγτ )

∫
dx dy dz

×∂ρC(x−y)Abλ(y)∂σC(y−z)Acα(z)∂βC(z−x)Aaτ (x)

+O(g4) .

(3.15)

For both determinants there is no contribution at O(g) and we have simplified the results

at O(g2) by using (1.1). Taking the trace in (3.15) and multiplying the two determinants

– 13 –
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subsequently yields the right hand side of (3.10)

log (∆MSS [A] ∆FP [A])
∣∣
O(g3)

= fadmf bemf cde
∫

dx dy dz

×
{
− r ∂µC(x− y)Abµ(y)∂ρC(y − z)Acλ(z)∂ρC(z − x)Aaλ(x)

+
r + 1

3
∂µC(x− y)Abρ(y)∂ρC(y − z)Acλ(z)∂λC(z − x)Aaµ(x)

+
r

2
∂µC(x− y)Abρ(y)∂ρC(y − z)Acµ(z)∂λC(z − x)Aaλ(x)

− r

6
∂µC(x− y)Abρ(y)∂λC(y − z)Acµ(z)∂ρC(z − x)Aaλ(x)

+
r

2
∂µC(x− y)Abρ(y)∂λC(y − z)Acµ(z)∂λC(z − x)Aaρ(x)

}
.

(3.16)

We thus end up with a total of five independent structures; we use color coding to help us

identify the corresponding terms in the Jacobian determinant.

At O(g3) the logarithm of the Jacobian determinant schematically consists of three

terms

log det

(
δA′ aµ (x)

δAbν(y)

) ∣∣∣∣
O(g3)

= Tr

[
δA′

δA

∣∣∣∣
O(g3)

]
−
(

2 · 1

2

)
Tr

[
δA′

δA

∣∣∣∣
O(g2)

δA′

δA

∣∣∣∣
O(g1)

]

+
1

3
Tr

[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
.

(3.17)

and the final trace is done by setting µ = ν, a = b, x = y and integrating over x. The

computation is straightforward and we find

1

3
Tr

[
δA′ aµ (x)

δAbν(y)

∣∣∣∣
O(g1)

δA′ aµ (x)

δAbν(y)

∣∣∣∣
O(g1)

δA′ aµ (x)

δAbν(y)

∣∣∣∣
O(g1)

]

= fadmf bemf cde
∫

dx dy dz

×
{
− 3−D

3
∂µC(x− y)Abρ(y)∂ρC(y − z)Acλ(z)∂λC(z − x)Aaµ(x)

+ ∂µC(x− y)Abρ(y)∂ρC(y − z)Acµ(z)∂λC(z − x)Aaλ(x)

− 1

3
∂µC(x− y)Abρ(y)∂λC(y − z)Acµ(z)∂ρC(z − x)Aaλ(x)

}
.

(3.18)

The second term gives

−
(

2 · 1

2

)
Tr

[
δA′ aµ (x)

δAbν(y)

∣∣∣∣
O(g2)

δA′ aµ (x)

δAbν(y)

∣∣∣∣
O(g1)

]

= fadmf bemf cde
∫

dx dy dz

×
{

+
1−D

2
∂µC(x− y)Abµ(y)∂ρC(y − z)Acλ(z)∂ρC(z − x)Aaλ(x) (3.19)
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+
1

2
∂µC(x− y)Abρ(y)∂ρC(y − z)Acλ(z)∂λC(z − x)Aaµ(x)

− 3−D
2

∂µC(x− y)Abρ(y)∂ρC(y − z)Acµ(z)∂λC(z − x)Aaλ(x)

+
1

2
∂µC(x− y)Abρ(y)∂λC(y − z)Acµ(z)∂λC(z − x)Aaρ(x)

}
.

Finally, the first term gives

Tr

[
δA′ aµ (x)

δAbν(y)

∣∣∣∣
O(g3)

]

= fadmf bemf cde
∫

dx dy dz

×
{

+
7− 3D

2
∂µC(x− y)Abµ(y)∂ρC(y − z)Acλ(z)∂ρC(z − x)Aaλ(x)

− 3− 2D

6
∂µC(x− y)Abρ(y)∂ρC(y − z)Acλ(z)∂λC(z − x)Aaµ(x)

− 3−D
2

∂µC(x− y)Abρ(y)∂ρC(y − z)Acµ(z)∂λC(z − x)Aaλ(x)

+
3−D

3
∂µC(x− y)Abρ(y)∂λC(y − z)Acµ(z)∂ρC(z − x)Aaλ(x)

− 5− 2D

2
∂µC(x− y)Abρ(y)∂λC(y − z)Acµ(z)∂λC(z − x)Aaρ(x)

}
− 2

3
faemf bdef cdm

∫
dx dy Abµ(x)Acρ(x)C(x− y)∂ρC(x− y)Aaµ(y)

+
1

3
fadmf bcefdem

∫
dx dy dz Aaµ(x) (∂ρC(x− y))2 ∂λC(y − z)Abλ(z)Acµ(z)

− 1

3
fadmf bcefdem

∫
dx dy C(0)Aaµ(x)∂ρC(x− y)Abρ(y)Acµ(y) .

(3.20)

There are two special features about this part of the Jacobian determinant. First, we

have to use the gauge condition Ga(A) ≡ ∂µAaµ = 0 to eliminate two terms. Secondly,

we find terms which do not match any of the five structures from the fermion and ghost

determinants and hence must cancel among themselves. However, before addressing those

terms, let us first analyze the color coded terms. Imposing the equality (3.10) yields the

following conditions

−r =
1−D

2
+

7− 3D

2
= 4− 2D

r + 1

3
= −3−D

3
+

1

2
− 3− 2D

6
=

2D − 3

3
r

2
= 1− 3−D

2
− 3−D

2
= D − 2

−r
6

= −1

3
+

3−D
3

=
2−D

3
r

2
=

1

2
− 5− 2D

2
= D − 2 .

(3.21)

– 15 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
9

Happily, all five equations are satisfied with r = 2(D − 2), so we recover the result (1.8)

D = 3, 4, 6, 10 ⇐⇒ r = 2, 4, 8, 16 , (3.22)

thus extending the result of [12] to cubic order. It remains to be shown that the remaining

(black) terms from (3.20) vanish. Using the Jacobi identity in the first term and fabcfabd =

n δcd in the latter two yields

− n

3
fabc

∫
dx dy Abµ(x)Acρ(x)C(x− y)∂ρC(x− y)Aaµ(y)

+
n

3
fabc

∫
dx dy dz Aaµ(x) (∂ρC(x− y))2 ∂λC(y − z)Abλ(z)Acµ(z)

− n

3
fabc

∫
dx dy C(0)Aaµ(x)∂ρC(x− y)Abρ(y)Acµ(y) .

(3.23)

The second term is rewritten using the identity

�
(
C2(x− y)

)
= −2C(0)δ(x− y) + 2 ∂ρC(x− y)∂ρC(x− y) , (3.24)

with a formally divergent piece C(0) which can be appropriately regulated. This simplifies

the expression above to

− n

3
fabc

∫
dx dy Abµ(x)Acρ(x)C(x− y)∂ρC(x− y)Aaµ(y)

+
n

3
fabc

∫
dx dy dz Aaµ(x)C(0)δ(x− y)∂ρC(y − z)Abρ(z)Acµ(z)

+
n

6
fabc

∫
dx dy dz Aaµ(x)�

(
C2(x− y)

)
∂ρC(y − z)Abρ(z)Acµ(z)

− n

3
fabc

∫
dx dy C(0)Aaµ(x)∂ρC(x− y)Abρ(y)Acµ(y) .

(3.25)

Subsequent integration by parts produces

n

3
fabc

∫
dx dy Abµ(x)Acρ(x)C(x− y)∂ρC(x− y)Aaµ(y)

+
n

3
fabc

∫
dx dy C(0)Aaµ(x)∂ρC(x− y)Abρ(y)Acµ(y)

− n

6
fabc

∫
dx dy dz Aaµ(x)∂ρ

(
C2(x− y)

)
�C(y − z)Abρ(z)Acµ(z)

− n

3
fabc

∫
dx dy C(0)Aaµ(x)∂ρC(x− y)Abρ(y)Acµ(y)

=
n

3
fabc

∫
dx dy Abµ(x)Acρ(x)C(x− y)∂ρC(x− y)Aaµ(y)

+
n

6
fabc

∫
dx dy Aaµ(x)∂ρ

(
C2(x− y)

)
Abρ(y)Acµ(y)

= 0 .

(3.26)

Thus, (3.10) is satisfied. Let us note that, unlike for the O(g2) computation, we had to

make use of the Landau gauge condition (1.6) to achieve this equality. This feature, which

arises only from O(g3) onwards, is entirely due to the g-dependence of the ghost propagator

in (1.12).

– 16 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
9

4 Beyond the third order: graphical representation

It is not difficult to present the full perturbative expansion of the R operator. To streamline

the notation, we suppress the color indices and position variables and integrations, but

understand all objects to be multiplied as color matrices or vectors and by convoluting

integration kernels with A insertions. Concretely, abbreviating

(Aµ)ab(x) = fambAmµ (x) ⇒ /A = γµAµ , ∂·A = ∂µAµ ,

( /A
2
)a(x) = fabcγρλAbρ(x)Acλ(x)

(4.1)

and expanding

S = S0 − g S0 /AS = S0

∞∑
`=0

(
−g /AS0

)`
,

G = G0 − g G0 ∂·AG = G0

∞∑
k=0

(
−g ∂·AG0

)k
,

(4.2)

where derivatives act on everything on their right, we may write

R=

←−
d

dg
− 1

2r

←−−
δ

δAµ
Π σ
µ

{
δσν−gAσG0

∞∑
k=0

(
−g∂·AG0

)k
∂ν

}
×Tr

{
γνS0

∞∑
`=0

(
−g /AS0

)` /A2
}

=

←−
d

dg
− 1

2r

←−−
δ

δAµ
ΠµνTr

{[
γνS0−gAνG0

∞∑
k=0

(
−g∂·AG0

)k] ∞∑
`=0

(
−g /AS0

)` /A2
}

(4.3)

=

←−
d

dg
− 1

2r

←−−
δ

δAµ
Tr

{[
γµν∂

ν + 2g δαβµν ∂αG0∂
νAβ

∞∑
k=0

(
−gG0∂·A

)k]
G0

∞∑
`=0

(
−g /AS0

)` /A2
}
,

where we now let the variation with respect to g and A act to the left in order to conform

with the implicit color and position ordering in these expressions. In the last line, we have

expanded the abelian transversal projector Π and simplified

Πµνγ
νS0 = γµS0 − ∂µG0 ∂νγ

νS0 = γµ/∂G0 − ∂µG0 = (γµγν − δµν)∂νG0 = γµν ∂
νG0 ,

ΠµνA
νG0 = AµG0 − ∂µG0 ∂νA

νG0 = (�G0Aµ − ∂µ∂νG0Aν)G0 = −2δαβµν ∂αG0 ∂
νAβG0 .

(4.4)

The individual terms of the expansion in powers of g allow for a simple representation

in terms of Feynman diagrams, built from free fermion and ghost propagators dressed

with photon insertions. They have the graphical structure of linear trees mostly start-

ing with a modified double ghost line 2δαβµν ∂αG0 ∂
νAβG0 and ending in a “double pho-

ton emission” 1
2
/A

2
. In between, one finds k further ghost lines (k = 0, 1, 2, . . .) followed

by ` fermion lines (` = 0, 1, 2, . . .), separated by the appropriate photon emission inser-

tions. Since the initial A-variation reduces the power of A by one, such a term con-

tributes to O(gk+`+1Ak+`+2). In addition, there are the ghost-free linear trees, which

are rooted in a modified fermion line γµν ∂
νG0, comprise ` additional fermion lines and

also terminate in 1
2
/A

2
. They contribute to O(g`A`+1). For a given order O(gnAn+1)
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then, one encounters n+1 linear trees of length n+1: a single ghost-free one of struc-

ture Sn+1
0 and n mixed ones of structure G2

0S
n−1
0 , G3

0S
n−2
0 , . . . , Gn0S0, G

n+1
0 . The last of

these always vanishes due to Tr /A
2

= 0. The number of gamma matrices in the traces are

2n+4, 2n, 2n−2, 2n−4, . . . , 4, 2, respectively. Below we illustrate the graphical expansion

of R up to O(g4):

R =
←−
d
dg + R1 + g R2 + g2R3 + g3R4 + . . .

=
←−
d
dg + � ��������

+ g � �������� ��������

+ g2 � �������� �������� �������� + g2 � �������� �������� ��������

+ g3 � �������� �������� �������� �������� + g3 � �������� �������� �������� �������� + g3 � �������� �������� �������� ��������

+ O(g4) .

The Feynman-like rules for these graphs are as follows:

�
←−−
δ

δAµ
γµν ∂

νC � �������� −2
←−−
δ

δAµ
δαβµν ∂αC ∂

ν(Aβ C)

S0 = − /∂ C G0 = −C �������� 1
2 γ

ρλAρAλ

�������� − /A
�������� − /A

�������� − ∂νAν

Furthermore, a trace has to be performed in spinor space. Since for each fermion line,

gamma matrices from the free fermion propagators S0 and from the photon insertions /A
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are multiplied along the linear tree, the trace short-circuits the tree in spinor space and

contracts the Lorentz indices of the partial derivatives on C and of the photon emissions A

in every possible fashion.

The perturbative map

(Tg A)aµ(x) = Aaµ(x) +
∞∑
n=1

gn

n!
(TnA)aµ(x) (4.5)

is obtained by iterating the R operation to build (T −1
g A)aµ(x) according to (1.17) and

inverting the power series (see (1.27)). In terms of the power-series components Rn defined

above, the n-th order contribution to Tg A is given by [22]

TnA =
∑
{n}

c{n}RnsRns−1 · · ·Rn2Rn1 A , (4.6)

with the sum running over all multiindices

{n} =
(
n1, n2, . . . , ns) with

s∑
i=1

ni = n and ni ∈ N (4.7)

and with coefficients

c{n} = (−1)s
n!

n1 · (n1+n2) · (n1+n2+n3) · · · (n1+ · · ·+ns)
. (4.8)

To order g4, this expansion reads

Tg A = A − g R1A −
1

2
g2
(
R2 −R2

1

)
A − 1

6
g3
(
2R3 −R1R2 − 2R2R1 +R3

1

)
A

− 1

24
g4
(
6R4 − 2R1R3 − 3R2R2 +R2

1R2 − 6R3R1 + 2R1R2R1 + 3R2R
2
1 −R4

1

)
A

+ O(g5) . (4.9)

The repeated action of R on itself grafts linear trees onto linear trees. This produces binary

trees of all kinds with double leaves /A
2
, where multiple gamma-matrix traces run over all

possible parts of those trees, and any part of a tree may have fermion lines replaced by

ghost lines. Excluded only are length-one ghost lines and ghost lines ending in a double leaf.

After performing the gamma-matrix traces, all lines become scalar propagators C dressed

with a partial derivative, whose Lorentz indices get contracted in almost all possible ways.

However, there appear partial cancellations of gamma-matrix traces between trees of the

same topology. The combinatorial factors and Feynman rules for these trees will be given

elsewhere.

Finally, one may raise the question of the uniqueness of TgA. As the map is constructed

iteratively from the R operator, a non-uniqueness will originate from an ambiguity in R.

In D=4, such an ambiguity arises from the freedom to add a topological term ∼
∫
F∧F

to the bosonic action, which allows for the modification

/A
2 7−→ /A

2 (
1 + κ γ5

)
(4.10)
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in theR operator and, hence, in the Feynman rules. As a consequence, novel terms carrying

the epsilon tensor appear in the expansion of TgA. This offers, for κ = ±1, the option of

a chiral Nicolai map [2, 6]. The possibility of such a chiral projection may be explored for

the other critical dimensions as well.
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A Proof of the main theorem

In this appendix we firstly construct the R operator from the response of the vacuum

expectation value of an arbitrary product of bosonic operators to changes in the coupling

constant. This generalizes the argument first presented in [3] for the D=4, N=1 theory to

all other pure supersymmetric Yang-Mills theories. Secondly, we prove the distributivity

of the R operation. Thirdly, we recall the argument that R annihilates the gauge-invariant

bosonic Yang-Mills action as well as the gauge-fixing function. These properties imply the

determinant matching and suffice to establish the main theorem.

A.1 Construction of the R operator

In this section we show how to construct the R operator for any pure super Yang-Mills

theory. The action consists of a gauge-invariant part [13]

Sinv =
1

4

∫
dx F aµν(x)F aµν(x) +

1

2

∫
dx λ̄a(x) γµ(Dµλ)a(x) (A.1)

and a gauge-fixing part

Sgf =
1

2ξ

∫
dx Ga(A)Ga(A) +

∫
dx C̄a(x)

∂Ga(A)

∂Abµ(x)
(DµC)b(x) . (A.2)

The full action Sinv + Sgf is invariant under the BRST (or Slavnov) variations

sAaµ = (DµC)a , sλa = −gfabcλbCc , sCa = −g
2
fabcCbCc , sC̄a = −1

ξ
Ga(A) (A.3)

for all positive ξ and an arbitrary gauge-fixing function Ga(A) (which for simplicity we

assume not to depend on g). In the remainder we will specialize to the Landau gauge

function (1.6), i.e. Ga = ∂µAaµ. This is the so-called Rξ gauge; the Landau gauge is

obtained for ξ → 0. For the ghost kinetic term we thus recover the standard form∫
dx C̄a(x)

∂Ga(A)

∂Abµ(x)
(DµC)b(x) =

∫
dx C̄a(x) ∂µ(DµC)a(x) . (A.4)

For an arbitrary product X of bosonic operators the linear response of its vacuum expec-

tation value to a change in the coupling constant is given by

d

dg

〈
X
〉

=
d

dg

〈〈
X
〉〉

=

〈〈
dX

dg

〉〉
−
〈〈

d(Sinv + Sgf)

dg
X

〉〉
=:

〈
R X

〉
. (A.5)
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Here, the vacuum expectation values
〈〈
· · ·
〉〉

and
〈
· · ·
〉

were defined in (1.3), and we have

dropped subscripts g or ξ for simplicity of notation. Making use of supersymmetry, we

want to rewrite the right-hand side in terms of a derivational operator R. To this end we

introduce

∆α = − 1

2r
fabc

∫
dx

(
γρλλa(x)

)
α
Abρ(x)Acλ(x) (A.6)

and use the standard supersymmetry variations (with supersymmetry parameter stripped

off)

δαλ
a
β =

1

2
(γµν)βαF

a
µν and δαA

a
µ = −(λ̄aγµ)α (A.7)

to compute

δα∆α =
1

2
fabc

∫
dx F aµν(x)Abµ(x)Acν(c) +

D − 1

r
fabc

∫
dx
(
γµλa(x)λ̄b(x)

)
αα
Acµ(x)

(A.8)

so that
dSinv

dg
= δα∆α +

(
1

2
− D − 1

r

)
fabc

∫
dx λ̄a(x)γµλb(x)Acµ(x) . (A.9)

Notice that δα anticommutes with other anticommuting operators. With

dSgf

dg
= fabc

∫
dx C̄a(x) ∂µ

(
Abµ(x)Cc(x)

)
(A.10)

we arrive at

d

dg
〈X〉 =

〈〈
dX

dg

〉〉
−
〈〈

(δα∆α)X
〉〉

+

〈〈(
D − 1

r
− 1

2

)
fabc

∫
dx λ̄a(x)γµAcµ(x)λb(x) X

〉〉
−
〈〈
fabc

∫
dx C̄a(x) ∂µ

(
Abµ(x)Cc(x)

)
X

〉〉
.

(A.11)

We want to rewrite 〈〈
(δα∆α)X

〉〉
=
〈〈

∆αδαX
〉〉

+
〈〈
δα(∆αX)

〉〉
(A.12)

using the supersymmetry Ward identity〈〈
δαY

〉〉
=
〈〈

(δαSgf)Y
〉〉
. (A.13)

Employing the Slavnov variations (A.3) one finds that

δαSgf = −s
∫

dx C̄a(x) δα
(
∂µAaµ(x)

)
. (A.14)

Thus, the Ward identity becomes

〈〈
δαY

〉〉
=

〈〈∫
dx C̄a(x) δα

(
∂µAaµ(x)

)
s(Y )

〉〉
. (A.15)
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By (A.12) we need to apply this to Y = ∆αX, and from s(∆αX) = s(∆α)X −∆αs(X) we

also require the Slavnov variation of ∆α. Making use of the Jacobi identity we get

s (∆α) =
1

r
fabc

∫
dx
(
γρλλa(x)

)
α
∂ρC

b(x)Acλ(x) . (A.16)

Subsequently we can put everything back together,

d

dg

〈
X
〉

=

〈
dX

dg

〉
−
〈〈

∆αδαX
〉〉

+

〈〈∫
dx C̄a(x) δα

(
∂µAaµ(x)

)
∆α s(X)

〉〉
+
〈〈
Z X

〉〉
(A.17)

with

Z =−
∫

dy C̄a(y)δα
(
∂µAaµ(y)

) 1

r
f bcd

∫
dx
(
γρλλb(x)

)
α
Acρ(x)∂λC

d(x) (A.18)

+

(
D−1

r
− 1

2

)
fabc

∫
dx λ̄a(x)γµAcµ(x)λb(x) − fabc

∫
dx C̄a(x)∂µ

(
Abµ(x)Cc(x)

)
.

As it stands, and up to this point, the above derivation is valid for all values of the gauge

parameter ξ. We can therefore take the limit ξ → 0, for which all contributions containing

∂µAaµ simply vanish (recall that physical quantities anyway cannot depend on ξ). We will

show in the next subsection that under these conditions the multiplicative contribution

disappears,

lim
ξ→0

〈〈
Z X

〉〉
ξ

= 0 for
D − 1

r
− 1

2
=

1

r
, (A.19)

and thus only in the critical dimensions D = 3, 4, 6 and 10, where r = 2(D−2) indeed.

Therefore, by integrating over all fermionic degrees of freedom we finally obtain

RX =
dX

dg
+ δαX ·∆α +

∫
dx C̄a(x) δα

(
∂µAaµ(x)

)
∆α s(X) , (A.20)

where the contractions signify fermionic (gaugino or ghost) propagators in the gauge-field

background. For N = 1 super Yang-Mills theory this result was first derived in [3], see

also [2].

A.2 Distributivity of the R operation

In this subsection we generalize the argument from [3] in order to prove that (A.19) holds

for any bosonic functional X, subject to the conditions stated above, allowing us to ignore

all terms containing ∂µAcµ. Integrating out the gauginos and ghosts, this amounts to the

relation 〈
Z X

〉
= 0 ∀X ⇔ Z = 0 . (A.21)

Functionally integrating (A.18) over the gaugino and ghost degrees of freedom we derive

Z =
1

r

∫
dy
(
C̄a(y)

)(
∂yρ λ̄

a(y)γρ
)
α
f bcd

∫
dx
(
γµνλb(x)

)
α
Acµ(x) ∂xνC

d(x) (A.22)

+

(
D − 1

r
− 1

2

)
fabc

∫
dx λ̄aα(x)γµαβA

b
µ(x)λcβ(x) − fabc

∫
dx C̄a(x)Abµ(x)∂µxC

c(x) .
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We use the identity γµν = 1
2 (γµγν − γνγµ) = −γνγµ + δµν and reorder the contracted

terms so as to identify any contraction with a fermion or ghost propagator (in the presence

of the gauge-field background) to get

Z = −1

r
f bcd

∫
dx dy Tr

(
∂xνG

da(x, y)γργνγµ∂yρS
ba(x, y)

)
Acµ(x) (A.23)

+
1

r
f bcd

∫
dx dy Tr

(
∂xνG

da(x, y)γρδµν∂yρS
ba(x, y)

)
Acµ(x)

−
(
D − 1

r
− 1

2

)
fabc

∫
dx Tr (Sca(x, x)γµ)Abµ(x) + fabc

∫
dx ∂µxG

ca(x, x)Abµ(x) .

Then we need the following Schwinger-Dyson identities, which follow directly from (4.2)

and the relation γν∂xνG
da
0 (x−y) = Sda0 (x−y), namely

Sba(x, y) = Sba0 (x−y) + gf emn
∫

dz Sbe0 (x−z)Anν (z)γνSma(z, y) ,

γν∂xνG
da(x, y) = Sda0 (x−y) + gf emn

∫
dz Sde0 (x−z)Anν (z)∂νzG

ma(z, y) .

(A.24)

Integrating by parts and using γρ∂yρSda0 (x−y) = −δdaδ(x−y) together with Tr 1 = r, this

gives

Z = −1

r
f bca

∫
dx Tr

(
γµSba(x, x)

)
Acµ(x) (A.25)

− g

r
f bcdf emn

∫
dx dy dz Tr

(
Sde0 (x−z)Anν (z)∂νzG

ma(z, y)γµ∂yρS
ba(x, y)γρ

)
Acµ(x)

− facd
∫

dx ∂µxG
da(x, x)Acµ(x)

+
g

r
f bcdf emn

∫
dx dy dz Tr

(
∂µxG

da(x, y)Sbe0 (x−z)γνAnν (z)∂yρS
ma(z, y)γρ

)
Acµ(x)

−
(
D − 1

r
− 1

2

)
fabc

∫
dx Tr (Sca(x, x)γµ)Abµ(x) + fabc

∫
dx ∂µxG

ca(x, x)Abµ(x)

(the formally singular terms with coincident arguments can be appropriately regulated, if

needed). The pure fermion loops (first and fifth term) cancel, provided (1.8) holds with

D = 3, 4, 6 or 10, as advertised. The pure ghost loops (third and sixth term) cancel

independently of dimension. Finally, we use Sbe0 (x−z) = −Sbe0 (z−x) to cancel the two

remaining terms,

Z = −g
r
f bcdf emn

∫
dx dy dz Tr

(
Sde0 (x−z)Anν (z)∂νzG

ma(z, y)γµ∂yρS
ba(x, y)γρ

)
Acµ(x)

+
g

r
f bcdf emn

∫
dx dy dz Tr

(
∂µxG

da(x, y)Sbe0 (x−z)γνAnν (z)∂yρS
ma(z, y)γρ

)
Acµ(x)

= 0 . (A.26)

This concludes the proof.
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A.3 R annihilates the bosonic action and the gauge-fixing function

Statement [3.] in the main theorem, about determinant matching, follows from the other

two parts and from the equality (1.4) relating interacting and free-field correlators. The

latter can be seen to be equivalent [22] to a fixed-point property of Tg under the coupling

constant flow,

R TgA = 0 , (A.27)

from which in fact Tg can be constructed directly [22].

Statement [1.] in the main theorem, Sg[A] = S0[TgA], is equivalent to a property of

the kernel of R, namely,

R Sg[A] = 0 . (A.28)

For completeness, let us recall the proof that R annihilates the bosonic invariant action [2].

Recall the form (1.19) of the R operator with the covariant transversal projector (1.20).

From

dSg
dg

=
1

2
fabc

∫
dx F aµν(x)Abµ(x)Acν(x) and

δ Sg[A]

δAaµ(x)
= −

(
DσF

σµ
)a

(x) (A.29)

we obtain

RSg[A] =
1

2
fabc

∫
dx F aµν(x)Abµ(x)Acν(x) (A.30)

+
1

2r

∫
dx dz dy

(
DσF

σµ
)a

(x)P aeµν(x, z) Tr
(
γνSeb(z, y) γρλ

)
f bcdAcρ(y)Adλ(y) .

We can take advantage of the fact that Sg is gauge invariant: since∫
dx
(
DσF

σµ
)a

(x)
(
DµG

)ae
(x, z) ∂ν = −

∫
dx (DµDσF

σµ
)a

(x)Gae(x, z) ∂ν = 0 ,

(A.31)

the projector Pµν in R can be replaced by the identity. Then the second term in (A.30)

becomes
1

2r

∫
dx dy

(
DσFσν

)a
(x) Tr

(
γνSab(x, y) γρλ

)
f bcdAcρ(y)Adλ(y) . (A.32)

To bring the first term in a similar form, we use the identity

δρλµν δ
ab δ(x−y) = − 1

2r
Tr
(
γµνγ

σ(DσS)ab(x, y) γρλ
)

(A.33)

to blow it up to

1

2

∫
dx F aµν(x) δρλµν δ

ab f bcdAcµ(x)Adν(x)

= − 1

4r

∫
dx dy F aµν(x) Tr

(
γµνγσ(DσS)ab(x, y) γρλ

)
f bcdAcµ(y)Adν(y)

=
1

4r

∫
dx dy (DσFµν)a(x) Tr

(
γµνγσSab(x, y) γρλ

)
f bcdAcµ(y)Adν(y) (A.34)

= − 1

4r

∫
dx dy (DσFµν)a(x) Tr

([
2γνδµσ + γνµσ

]
Sab(x, y) γρλ

)
f bcdAcµ(y)Adν(y)

= − 1

2r

∫
dx dy

(
DσFσν

)a
(x) Tr

(
γνSab(x, y) γρλ

)
f bcdAcρ(y)Adλ(y) ,
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where we partially integrated Dσ, employed γµνγσ = 2γ[µδν]σ + γµνσ and observed the

Bianchi identity γσµνDσFµν = 0. In this form, the first term (A.34) is seen to cancel the

second term (A.32), which proves the assertion.

Statement [2.] in the main theorem is almost trivial, given the form (1.20) of the

transversal projector inside R. The fixed-point feature of the gauge-fixing function,

Ga(TgA) = Ga(A) ⇔ R Ga(A) = 0 , (A.35)

is built into the formalism, since the projector by construction annihilates Ga. For the

Landau gauge,

∂Ga(A)

∂Abµ(x)
P bcµν(x, z) = ∂µx

(
δacδµνδ(x−z)− (DµG)ac(x, z)∂zν

)
= 0 (A.36)

by the definition of the ghost propagator. This is also apparent from the form (A.20) of

the R operator, where for X = Ga(A) the second and third terms cancel each other. In

fact, this consideration generalizes to an arbitrary gauge.8

The main theorem is herewith proved, for the Landau gauge.

B Explicit expression for R3

In this section we give the explicit expression for R3
(
Aaµ(x)

)
. Applying the R-operator

three times and repeatedly using (1.19) as well as (1.22) and (1.23) we arrive at

R3
(
Aaµ(x)

)∣∣∣
g=0

=

{
− 1

4r3
Tr (γµγγτγν) Tr

(
γγγξγβγα

)
Tr
(
γτγλγσγρ

)
+

1

2r2
Tr
(
γµγξγβγαγγγν

)
Tr
(
γγγσγλγρ

)}
fabcf bdef cmn

×
∫

dy dz dw ∂νC(x− y)∂ρC(y − z)Adλ(z)Aeσ(z)∂αC(y − w)Amβ (w)Anξ (w)

− 1

2r2
Tr
(
γξγλγργν

)
Tr
(
γβγαγσγξ

)
fabcf bdef cmn

×
∫

dy dz dw ∂µC(x− y)∂νC(y − z)Adρ(z)Aeλ(z)∂σC(y − w)Amα (w)Anβ(w)

+

{
1

2r3
Tr (γµγργγν) Tr

(
γγγστγλ

)
Tr
(
γτγξγβγα

)
(B.1)

− 1

2r2
Tr
(
γµγλργν

)
Tr
(
γξγβγαγσ

)
− 1

r2
Tr
(
γµγσγγλγργν

)
Tr
(
γγγξγβγα

)
− 1

2r2
Tr (γµγργγν) Tr

(
γγγξγβγαγσγλ

)
+

1

r
Tr
(
γµγξγβγαγσγλγργν

)}
fabcf bdefdmn

8We tacitly assume that dG
dg

= 0. For g-dependent gauges one must reconsider.
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×
∫

dy dz dw ∂νC(x− y)Adρ(y)∂λC(y − z)Aeσ(z)∂αC(z − w)Amβ (w)Anξ (w)

+

{
1

r2
Tr
(
γξγβγαγσ

)
Tr
(
γλξγργν

)
− 1

r
Tr
(
γνγβγαγσγλγρ

)}
fabcf bdefdmn

×
∫

dy dz dw ∂µC(x− y)Adν(y)∂ρC(y − z)Aeλ(z)∂σC(z − w)Amα (w)Anβ(w)

+
1

r
Tr
(
γργλγαγσ

)
fabcf bdefdmn

×
∫

dy dz dw Πµν(x− z)Acν(z)C(z − y)Aeρ(y)∂λC(y − w)Amσ (w)Anα(w) .

To evaluate the γ-traces tµ1···µ2n ≡ Tr γµ1 · · · γµ2n we use (1.7) and the standard recursion

relation

tµ1···µ2n+2 = δµ1µ2tµ3µ4···µ2n+2 − δµ1µ3tµ2µ4···µ2n+2 ± . . . (B.2)

(with 2n+1 terms on the r.h.s., so the full trace has altogether (2n+1)!! terms). Possible

ambiguities related to topological terms mentioned at the end of section 4 and related to

chiral spinors and additional ε-tensors in these traces will be discussed elsewhere.

Computing the traces and collecting all terms produces a total of 45 terms,

R3
(
Aaµ(x)

)∣∣∣
g=0

= −2fabcf bdef cmn
∫

dy dz dw ∂ρC(x− y)

×
{

+ ∂λC(y − z)Adλ(z)Aeσ(z)∂µC(y − w)Amρ (w)Anσ(w)

+ ∂λC(y − z)Adµ(z)Aeρ(z)∂σC(y − w)Amλ (w)Anσ(w)

+ 3 ∂λC(y − z)Adµ(z)Aeλ(z)∂σC(y − w)Amρ (w)Anσ(w)

+ ∂ρC(y − z)Adµ(z)Aeσ(z)∂λC(y − w)Amλ (w)Anσ(w)

}
− 6fabcf bdefdmn

∫
dy dz dw ∂ρC(x− y)Acλ(y)

×
{

+ 2 ∂[ρC(y − z)Aeσ](z)∂[λC(z − w)Amµ (w)Anσ](w)

− 2 ∂[λC(y − z)Aeσ](z)∂[ρC(z − w)Amµ (w)Anσ](w)

− ∂σC(y − z)Aeσ(z)∂[ρC(z − w)Amµ (w)Anλ](w)

− 2 ∂[σC(y − z)Aeµ](z)∂[ρC(z − w)Amλ (w)Anσ](w) (B.3)

+ 4 ∂[ρC(y − z)Aeµ(z)∂|σ|C(z − w)Amλ](w)Anσ(w)

}
+ 3fabcf bdefdmn

∫
dy dz dw ∂ρC(x− y)

×
{

+ 3Acµ(y)∂λC(y − z)Aeσ(z)∂[ρC(z − w)Amλ (w)Anσ](w)

+ 3Acρ(y)∂λC(y − z)Aeσ(z)∂[λC(z − w)Amµ (w)Anσ](w)

− 4Ac[µ(y)∂|σC(y − z)Aeσ(z)∂λC(z − w)Amλ|(w)Anρ](w)

− 4Ac[µ(y)∂|λ|C(y − z)Aeρ](z)∂σC(z − w)Amλ (w)Anσ(w)

}
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− 2fabcf bdefdmn
∫

dy dz dw

×
{

+ 2∂ρC(x− y)Ac[ρ(y)∂µ]C(y − z)Aeλ(z)∂σC(z − w)Amλ (w)Anσ(w)

− ∂µC(x− y) ∂ρ
(
Acρ(y)C(y − w)

)
Amλ (z)Anσ(z)∂λC(z − w)Aeσ(w)

}
+ 2fabcf bdefdmn

∫
dy dz Acµ(x)C(x− y)Aeρ(y)∂λC(y − z)Amρ (z)Anλ(z) .

It is only after inverting the full series that we obtain the somewhat more compact re-

sult (2.1). We also note that, before computing the traces, T3A has new and additional

terms as compared to R3A. Only the factors in (B.1) change so that upon taking the trace

more terms cancel.

Finally we remark that the above expansion for T −1
g A is the one needed for the com-

putation of quantum correlators at O(g3), in order to extend the recent rederivation of

certain N = 4 correlators up to O(g2) in [14].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] H. Nicolai, Supersymmetry and functional integration measures, Nucl. Phys. B 176 (1980)

419 [INSPIRE].

[2] H. Nicolai, Supersymmetric functional integration measures, in Supersymmetry, K. Dietz et

al. eds., Plenum Press, New York, NY, U.S.A. (1984), pg. 393 [INSPIRE].

[3] R. Flume and O. Lechtenfeld, On the stochastic structure of globally supersymmetric field

theories, Phys. Lett. B 135 (1984) 91 [INSPIRE].

[4] K. Dietz and O. Lechtenfeld, Nicolai maps and stochastic observables from a coupling

constant flow, Nucl. Phys. B 255 (1985) 149 [INSPIRE].

[5] K. Dietz and O. Lechtenfeld, Ghost free quantization of non-Abelian gauge theories via the

Nicolai transformation of their supersymmetric extensions, Nucl. Phys. B 259 (1985) 397

[INSPIRE].

[6] O. Lechtenfeld, Construction of the Nicolai mapping in supersymmetric field theories,

doctoral thesis, Bonn University, Bonn, Germany (1984) [INSPIRE].

[7] H. Ezawa and J.R. Klauder, Fermion without fermions: the Nicolai map revisited, Prog.

Theor. Phys. 74 (1985) 904 [INSPIRE].

[8] P.T. Matthews and A. Salam, The Green’s functions of quantized fields, Nuovo Cim. 12

(1954) 563 [INSPIRE].

[9] E. Seiler, Schwinger functions for the Yukawa model in two-dimensions with space-time

cutoff, Commun. Math. Phys. 42 (1975) 163 [INSPIRE].

[10] L.D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25

(1967) 29 [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(80)90460-5
https://doi.org/10.1016/0550-3213(80)90460-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB176%2C419%22
https://inspirehep.net/search?p=find+206244
https://doi.org/10.1016/0370-2693(84)90459-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB135%2C91%22
https://doi.org/10.1016/0550-3213(85)90132-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB255%2C149%22
https://doi.org/10.1016/0550-3213(85)90642-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB259%2C397%22
https://inspirehep.net/search?p=find+R+BONN-IR-84-42
https://doi.org/10.1143/PTP.74.904
https://doi.org/10.1143/PTP.74.904
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C74%2C904%22
https://doi.org/10.1007/BF02781302
https://doi.org/10.1007/BF02781302
https://inspirehep.net/search?p=find+J%20%22Nuovo%20Cim.%2C12%2C563%22
https://doi.org/10.1007/BF01614159
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C42%2C163%22
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/0370-2693(67)90067-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB25%2C29%22


J
H
E
P
1
0
(
2
0
2
0
)
1
9
9

[11] G. ’t Hooft, Renormalization of massless Yang-Mills fields, Nucl. Phys. B 33 (1971) 173

[INSPIRE].

[12] S. Ananth, H. Nicolai, C. Pandey and S. Pant, Supersymmetric Yang-Mills theories: not

quite the usual perspective, J. Phys. A 53 (2020) 17 [arXiv:2001.02768] [INSPIRE].

[13] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B

121 (1977) 77 [INSPIRE].

[14] H. Nicolai and J. Plefka, N = 4 super-Yang-Mills correlators without anticommuting

variables, Phys. Rev. D 101 (2020) 125013 [arXiv:2003.14325] [INSPIRE].

[15] N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012)

3 [arXiv:1012.3982] [INSPIRE].

[16] V. de Alfaro, S. Fubini, G. Furlan and G. Veneziano, Stochastic identities in supersymmetric

theories, Phys. Lett. B 142 (1984) 399 [INSPIRE].

[17] V. de Alfaro, S. Fubini, G. Furlan and G. Veneziano, Stochastic identities in quantum theory,

Nucl. Phys. B 255 (1985) 1 [INSPIRE].

[18] V. de Alfaro, S. Fubini, G. Veneziano and G. Furlan, Nicolai mapping and stochastic

identities in supersymmetric field theories, Phys. Rept. 137 (1986) 55 [INSPIRE].

[19] R. Floreanini, J.P. Leroy, J. Micheli and G.C. Rossi, A perturbative study of the Nicolai

mapping, Phys. Lett. B 158 (1985) 47 [INSPIRE].

[20] V. de Alfaro, S. Fubini and G. Furlan, Stochastic identities in the light cone gauge, Phys.

Lett. B 163 (1985) 176 [INSPIRE].

[21] M. Bochicchio and A. Pilloni, Gauge theories in anti-selfdual variables, JHEP 09 (2013) 039

[arXiv:1304.4949] [INSPIRE].

[22] O. Lechtenfeld, Stochastic variables in ten-dimensions?, Nucl. Phys. B 274 (1986) 633

[INSPIRE].

[23] H. Nicolai, On the functional integration measure of supersymmetric Yang-Mills theories,

Phys. Lett. B 117 (1982) 408 [INSPIRE].

[24] S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model,

Nucl. Phys. B 213 (1983) 149 [INSPIRE].

[25] L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4

Yang-Mills theory, Phys. Lett. B 123 (1983) 323 [INSPIRE].

[26] S. Ananth, L. Brink and M. Mali, Yang-Mills theories and quadratic forms, JHEP 08 (2015)

153 [arXiv:1507.01068] [INSPIRE].

[27] S. Ananth, C. Pandey and S. Pant, Higher spins, quadratic forms and amplitudes, JHEP 07

(2020) 100 [arXiv:2005.10376] [INSPIRE].

[28] H. Nicolai, A possible constructive approach to (super-φ3)4 in four-dimensions. 1. Euclidean

formulation of the model, Nucl. Phys. B 140 (1978) 294 [INSPIRE].

[29] K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Commun. Math.

Phys. 31 (1973) 83 [INSPIRE].

– 28 –

https://doi.org/10.1016/0550-3213(71)90395-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB33%2C173%22
https://doi.org/10.1088/1751-8121/ab7b9d
https://arxiv.org/abs/2001.02768
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.02768
https://doi.org/10.1016/0550-3213(77)90328-5
https://doi.org/10.1016/0550-3213(77)90328-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB121%2C77%22
https://doi.org/10.1103/PhysRevD.101.125013
https://arxiv.org/abs/2003.14325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.14325
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.3982
https://doi.org/10.1016/0370-2693(84)91349-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB142%2C399%22
https://doi.org/10.1016/0550-3213(85)90127-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB255%2C1%22
https://doi.org/10.1016/0370-1573(86)90071-2
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C137%2C55%22
https://doi.org/10.1016/0370-2693(85)90736-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB158%2C47%22
https://doi.org/10.1016/0370-2693(85)90215-1
https://doi.org/10.1016/0370-2693(85)90215-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB163%2C176%22
https://doi.org/10.1007/JHEP09(2013)039
https://arxiv.org/abs/1304.4949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4949
https://doi.org/10.1016/0550-3213(86)90531-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB274%2C633%22
https://doi.org/10.1016/0370-2693(82)90570-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB117%2C408%22
https://doi.org/10.1016/0550-3213(83)90179-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB213%2C149%22
https://doi.org/10.1016/0370-2693(83)91210-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB123%2C323%22
https://doi.org/10.1007/JHEP08(2015)153
https://doi.org/10.1007/JHEP08(2015)153
https://arxiv.org/abs/1507.01068
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.01068
https://doi.org/10.1007/JHEP07(2020)100
https://doi.org/10.1007/JHEP07(2020)100
https://arxiv.org/abs/2005.10376
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.10376
https://doi.org/10.1016/0550-3213(78)90537-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB140%2C294%22
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01645738
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C31%2C83%22

	Introduction and summary
	Main theorem
	Conventions and notations
	The R operator

	Result and discussion
	Tests
	Gauge condition
	Free action
	Jacobians, fermion and ghost determinants

	Beyond the third order: graphical representation
	Proof of the main theorem
	Construction of the R operator
	Distributivity of the R operation
	R annihilates the bosonic action and the gauge-fixing function

	Explicit expression for R**3

