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1 Introduction

This paper is about a surreptitious kind of local symmetry breaking in a lower dimen-

sional effective field theory developed from an initial variational principle formulation of a

gauge-invariant theory in a higher dimension. Surreptitious, because the symmetry break-

ing waits two orders in an expansion of the action in fields before it reveals itself. This

phenomenon derives from a ground-state solution with nontrivial dependence on the space-

time coordinates transverse to the lower dimensions, unprotected by Killing symmetries.

Given the hidden onset of such breaking at higher order in an expansion, we choose to call

this ‘covert’ symmetry breaking.

The analysis of theories with local gauge symmetries via the constraints required for

consistent coupling to conserved currents has a long history in classical and quantum field

theory. This has been a persistent topic in the study of gravitational theories when stud-

ied from the viewpoint of local gauge theories, with frequent comparison to the structure

of Yang-Mills theories and gauge-theory couplings to symmetric matter systems. View-

ing gravity as a self-coupled spin-two gauge theory with an expansion in powers of the
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square root of Newton’s constant dates back at least to the classic ADM papers [1], Feyn-

man’s 1962–63 lectures on gravitation [2] and Weinberg’s 1965 paper [3]. The complete full

derivation was given by Deser [4]. This approach has also been central to the derivation

of supergravity theories [5, 6]. The general lesson that one might wish to draw from such

investigations is that once a massless field of spin one or higher is coupled consistently

to symmetry currents formed from other fields, or from itself, the coupling process must

thereafter continue on in lock-step fashion order-by-order in an expansion in the corre-

sponding coupling constant. Of course, exceptions to this general pattern can certainly

exist if one includes also higher-order or higher-derivative seeds of new invariants such as

tr(Fρσ∇µ∇µF ρσ) in Yang-Mills theory, and so on.

A related question is the nature of the effective theory obtained in a lower dimension

in a Kaluza-Klein reduction scenario, in which modes of a higher-dimensional theory are

expanded into modes of a lower dimensional theory, forming mode-towers of increasing

masses. In an expansion permitting a consistent truncation, the field equations of the

higher modes may be satisfied when those modes are set to zero, yielding a dimensionally

reduced theory of the lowest “zero-level” modes alone. However, consistent-truncation

reductions involve very particular structures — e.g. based upon truncation to the invariant

sector under some symmetry, or more general structures such as the S7 reduction of D = 11

supergravity [7]. Indeed, the S7 reduction of D = 11 supergravity falls into a somewhat

different category, since retention of the full zero-level N = 8, D = 4 gauged supergravity

supermultiplet involves a reduction ansatz in which some dependence on the transverse-

space coordinates is retained (angular coordinates on S7 in that case). The question of

consistency of that reduction has an involved history [8–12], but one important aspect of

it is the existence of SO(8) Killing vectors in the reduction space, coupled with unbroken

gauged N = 8 supersymmetry.

Some reductions which do not correspond to consistent truncations to lower dimen-

sional theories are of considerable physical importance, notably reductions on compact

Calabi-Yau spaces, which have no Killing symmetries. Such reductions are still in a

sense “trivial”, however, in that they involve reductions in which all dependence on the

transverse-space coordinates is suppressed. Nonetheless, such Kaluza-Klein reductions are

in fact technically inconsistent: the equations of motion of the non-zero-level modes can be

sourced by the zero-level modes, leading to an inconsistency in setting those higher modes

to zero. A proper procedure in such cases is to integrate out the higher modes instead of

truncating them, and to incorporate the resulting corrections into the lower dimensional

effective theory of zero-level modes. An intermediate level of consistency in some such effec-

tive theory derivations can be identified, however: one where the effects of integrating out

the heavy non-zero-level modes produce only higher-derivative corrections to the effective

theory of the zero-level modes. In such a case, the structure of the effective theory when

approximated by retaining only a maximum of two spacetime derivatives (with higher-

derivative terms suppressed by appropriate powers of the compactification-space volume)

can in some cases prove to remain unchanged with respect to a standard Kaluza-Klein

reduction which simply suppresses the transverse-space coordinate dependence. Examples

of such intermediate consistency to at most second-order in derivatives are the Calabi-Yau

reductions of N = 2, D = 10 supergravity theories [13].
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In this paper, we consider a situation without any of the above handholds of full or

second-order-in-derivatives consistency. The question we address here is motivated by an

observation that one can make in the massless effective theory of supergravity localised on

a braneworld submanifold in D = 11 supergravity [14], where the transverse space has an

H(2, 2) hyperbolic noncompact structure [15]. This hyperbolic transverse-space structure

can be used for dimensional reduction in a standard Kaluza-Klein fashion with fields inde-

pendent of the transverse coordinates, but, owing to the noncompact transverse structure,

the resulting lower dimensional Newton constant vanishes. There is, however, an alternate

zero-eigenvalue normalisable transverse wavefunction which can be used successfully to lo-

calise the theory in the lower dimension. Localisation to the lower dimension in that case

arises because there is a mass gap between the zero-level massless fields and the massive

fields which, owing to the transverse space’s noncompactness, form a continuum in mass

starting at the edge of the gap. The transverse-space structure of Reference [14] has the

additional advantage that the corresponding Sturm-Liouville problem is integrable when

considered as a Schrödinger equation, with a potential of Pöschl-Teller type. This opens

the way to analysis of the lower-dimensional effective braneworld theory’s field equations

beyond linearised order, since integrals over products of the zero-mode transverse wave-

function can be done explicitly. At the quadratic order in the action, such integrals give

finite normalisation factors. At the trilinear order they give a value to the effective theory’s

expansion constant (i.e. the square root of Newton’s constant) — finite in that case owing

to convergence of the relevant integrals.

The kind of puzzle which we wish to explore here arises at the very next order: cubic

in the field equations, or quartic in the action. At this order, the interaction coefficient

expected from the two preceding orders turns out not to have the value expected from

the square of the trilinear-order expansion constant, although it is explicitly calculable

and finite. This poses our key question: what happened to the gauge and diffeomorphism

symmetries expected from the linearised theory’s massless character and the anticipated

lock-step nature of the expansion? Such problems have not heretofore been widely studied,

perhaps owing to the general technical inconsistency of the reduction problem.1

In order to confront this phenomenon in a simpler case than the hyperbolic transverse-

space braneworld supergravity setting, we work here with a simpler setup: just Maxwell

theory coupled to a complex scalar field and a one-dimensional transverse space which is

a z ∈ I = [0, 1] line element. In order to provoke a covert symmetry-breaking structure

in the effective theory one dimension lower, we impose, however, a non-standard set of

boundary conditions on the fields. For the Maxwell vector field, we pick standard Dirichlet

boundary conditions at the z = 0 end of the interval I, but Robin boundary conditions

(∂z − 1)Aµ = 0 at the z = 1 end. This causes the zero-mode transverse wavefunction to

have non-trivial dependence on the transverse coordinate z, similarly to the dependence of

the braneworld system of Reference [14] on a transverse radial coordinate.

1That the key problem starts at fourth order in expansion of the action and is unlikely to be resolved by

field redefinitions has recently been highlighted in [16]. The integrals of general products of the hyperbolic

transverse-space wavefunction were given in Reference [14], and the unanticipated values of the resulting

effective-theory expansion coefficients starting at fourth order were commented upon in [17].
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The paper is organised as follows. We work in a general higher spacetime of dimension

d+1. In section 2 we accordingly first consider pure Maxwell theory in (d+1)-dimensional

spacetime, but with one ‘transverse’ dimension restricted to an interval with mixed Dirich-

let/Robin boundary conditions at the two ends. When expanded in terms of d-dimensional

fields, these boundary conditions give rise to a zero-level effective theory with a transverse

wavefunction linear in the d+first dimension. In this free theory with linear field equations,

however, the dynamics of the zero-level theory remains identical to that of Maxwell theory,

just with a preselection of Lorenz gauge. In section 3, the discussion is then extended to an

interacting (d+ 1)-dimensional model of scalar QED with the same interval and boundary

conditions. The model allows for explicit evaluation of all the relevant integrals over the

transverse dimension in evaluating the zero-level d-dimensional effective theory. It is here

that we encounter the phenomenon of covert symmetry breaking. At bilinear and trilinear

orders in the action, nothing untoward happens — the trilinear level determines the effec-

tive coupling constant eeff for vector-scalar interactions. The symmetry breaking occurs

at the fourth order, however: the anticipated e2
eff coefficient for vector-scalar interactions

does not occur with the right coefficient. The explanation of this phenomenon lies in the

surreptitious behaviour of a nonlinearly-transforming Stueckelberg field which makes its

first impact only at this level. The paper ends with a Conclusion and Outlook section in

which extensions of the study of this phenomenon are considered. In the appendices, we

present some details of the calculations.

2 Maxwell on an interval

In this section, we shall study dimensional reduction of Maxwell theory on an interval,

where the worldvolume components of the gauge field have a non-constant zero mode. Such

a system arises from choosing non-standard boundary conditions. For these conditions to be

incorporated into Maxwell theory consistently, the usual action needs to be augmented by a

boundary term to render the variational problem well-posed. Interestingly, the variational

problem only requires boundary information on the worldvolume components of the gauge

field. This leads to a bifurcation of the behaviour of the worldvolume and transverse

components of the gauge field on the boundary.

To obtain a lower-dimensional theory on the Minkowski worldvolume, we substitute

the generalised Fourier expansions for the components of the gauge field into both the

higher-dimensional equations of motion and the higher-dimensional action. For standard

S1 reductions, it is known that both procedures yield the same theory. In our case, we

find the same happens, but the commutativity of these procedures depends, crucially, on

the addition of the boundary term in the higher-dimensional action. In other words, given

that the higher-dimensional action principle is well-posed, we obtain the commutativity

diagram for higher and lower dimensional presentations shown in figure 1.

Since Maxwell theory is a free theory, the truncation of the lower-dimensional theory

to the zero mode sector is consistent. Going back to the standard S1 reductions, we recall

that the zero mode sector of Maxwell theory describes a free, massless gauge field together

with a massless scalar which is decoupled from the gauge field, whereas the higher modes
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Figure 1. Commuting square diagram for the reduction of dimensional presentations.

describe massive gauge fields with masses arising from coupling to corresponding Stueck-

elberg scalars. In our case, we find that the theory describing the higher modes agrees

with the usual S1 results, but that the zero-level sector is markedly different. We will show

that this sector describes a massless gauge field with an accompanying Stueckelberg scalar,

which does not, however, give rise to a mass, as well as with another scalar that acts as

a Lagrange multiplier imposing a Lorenz gauge condition. On-shell, this noninteracting

lower-dimensional theory describes a massless photon, but it possesses one propagating

degree of freedom fewer than the zero-level sector of a standard S1-reduced Maxwell the-

ory: neither the Stueckelberg scalar nor the second scalar contribute a physical degree

of freedom. The appearance of the Stueckelberg field in the zero-level sector is a direct

consequence of the non-constant transverse space zero mode chosen for the worldvolume

components of the gauge field. Its presence also indicates that the U(1) symmetry associ-

ated to the zero-level sector of the theory has become non-linearly realised.

2.1 Higher-dimensional equations and boundary conditions

Consider Maxwell theory on a background Md+1 = M1,d−1 × I, where I = [0, 1]. The

metric on Md+1 will be taken to be

ds2(Md+1) = ηµνdx
µdxν + dz2 , (2.1)

where xµ are the coordinates on M1,d−1, and z is the coordinate on the interval I. Consider

the following modification of the usual Maxwell theory given by the action

S[Aµ, Az] = SMax[Aµ, Az] + SBT[Aµ, Az]

=

∫
ddx

∫ 1

0
dz

(
−1

4
FµνF

µν − 1

2
FµzF

µz

)
+

1

2

∫
ddxFµzF

µz
∣∣∣
z=1

, (2.2)

where Fµν = ∂µAν − ∂νAµ, and Fµz = ∂µAz − ∂zAµ. This action is invariant under the

standard U(1) gauge transformations

Aµ 7→ Aµ + ∂µΛ , Az 7→ Az + ∂zΛ , (2.3)

for any Λ = Λ(x, z).
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The variation of (2.2) after integrating by parts on the Minkowski boundary at infinity,

where the fields Aµ and Az and their associated derivatives are assumed to vanish, is

given by

δS[Aµ,Az] =

∫
ddx

∫ 1

0
dz
((
∂µF

µν+∂zF
zν
)
δAν+

(
∂µF

µz
)
δAz

)
+

∫
ddxFµzδAµ

∣∣∣
z=0

+

∫
ddx

(
Fµz

(
δAµ−∂zδAµ

)
−
(
∂µF

µz
)
δAz

)∣∣∣
z=1

. (2.4)

From this, we see that the action is extremised given imposition of the Maxwell equations

of motion

Aµ :
(
�d + ∂2

z

)
Aµ − ∂µ∂νAν − ∂µ∂zAz = 0 , (2.5)

Az : �dAz − ∂z∂µAµ = 0 , (2.6)

subject to the Dirichlet/Robin boundary conditions on Aµ

Aµ(x, 0) = 0 , (∂z − 1)Aµ(x, 1) = 0 , (2.7)

where �d = ∂µ∂
µ. It is precisely due to the boundary term in (2.2) that the Robin

condition for the field Aµ can be incorporated into a well-posed variational problem. Gauge

invariance of this system requires the boundary conditions on Aµ to be gauge invariant.

This requirement leads to the following restrictions on the form of valid gauge parameters:

Λ(x, 0) = c1 , (∂z − 1)Λ(x, 1) = c2 , (2.8)

where c1 and c2 are constants. Our main interest will lie in the case where c1 = c2 = 0.

Considering only field configurations Aµ that obey the Dirichlet/Robin boundary con-

ditions (2.7), the action (2.2) is also invariant under the following transformation

Aµ 7→ Aµ + ∂µΓ , Az 7→ Az , (2.9)

where �dΓ = 0 and ∂2
zΓ = 0. This is separate from the U(1) transformations, and will be

called the harmonic symmetry. The boundary conditions on Aµ are only invariant under

this transformation if

Γ(x, 0) = c3 , (∂z − 1)Γ(x, 1) = c4 . (2.10)

Again, we will mostly be interested in the case c3 = c4 = 0.

Given that Aµ satisfies the Dirichlet/Robin boundary conditions, it can be expressed

as a linear combination of a complete set of functions satisfying the same boundary condi-

tions. Such a set of functions can be obtained by solving a Sturm-Liouville (SL) eigenvalue

problem. From (2.5), the natural choice for the self-adjoint SL operator is ∂2
z , and the

corresponding SL eigenvalue problem is

ξ′′i (z) = −ω2
i ξi(z) , ξi(0) = 0 , ξ′i(1)− ξi(1) = 0 , (2.11)

where the primes indicate z derivatives. The solutions to this are

ξ0(z) =
√

3z , ξi(z) = ni sin(ωiz) , i ∈ {1, 2, . . . } (2.12)

– 6 –
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where tanωi = ωi for ωi > 0, and ni =
√

2 cscωi are normalisation factors. These eigen-

functions are orthonormal with respect to the L2(I) inner product.

With these eigenfunctions, we can write

Aµ(x, z) =
∞∑
i=0

a(i)
µ (x)ξi(z) . (2.13)

Unlike Aµ, the behaviour of Az on the boundaries must be learned from the equations of

motion, as the only term containing δAz on the boundary in the variation of the action van-

ishes when the equations of motion are satisfied. By substituting (2.13) into (2.5), we have

∞∑
i=0

((
�d − ω2

i

)
a(i)
µ − ∂µ∂νa(i)

ν

)
ξi(z)− ∂µ∂zAz = 0 , (2.14)

where ω0 = 0. This suggests that ∂zAz lies within the span of {ξi(z)}, so

∂zAz(x, z) =

∞∑
i=0

b(i)(x)ξi(z) (2.15)

for some coefficient functions b(i)(x). Integrating this expression, and noting that for i > 0

the antiderivative of ξi(z) is proportional to its derivative, we have

Az(x, z) = h(x)ζ(z) +
∞∑
i=0

g(i)(x)ξ′i(z) , (2.16)

where ζ(z) =
√

3z2/2 is such that ζ ′(z) = ξ0(z), and g(0)(x) takes the role of an integration

constant for the transverse wave equation.

The set of functions {ζ(z), ξ′i(z)} is linearly independent but not L2(I) orthonormal.

The second claim is easily seen by performing the requisite integrals, and to prove the first,

consider the expression

c ζ(z) +

∞∑
i=0

fiξ
′
i(z) = 0 , (2.17)

for constants c and fi. Taking the ∂z derivative of this, we find that

c ξ0(z)−
∞∑
i=1

ω2
i fiξi(z) = 0 , (2.18)

which by linear independence of {ξi≥0(z)} and the fact that ω2
i 6= 0 for i > 0 implies that

c = 0 and fi = 0 for i > 0. Substituting this back into (2.17) gives f0 = 0.

2.2 Lower-dimensional equations and gauge invariance

To obtain the equations of motion for the component fields a
(i)
µ (x), h(x), and g(i)(x) given

the equations of motion for Aµ and Az, we substitute their previously derived expansions

– 7 –
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into (2.5) and (2.6). This gives

Aµ :
(
�da

(0)
µ −∂µ∂νa(0)

ν −∂µh
)
ξ0(z)+

∞∑
i=1

((
�d−ω2

i

)
a(i)
µ −∂µ∂νa(i)

ν +ω2
i ∂µg

(i)
)
ξi(z) = 0 ,

(2.19)

Az :
(
�dh

)
ζ(z)+

∞∑
i=0

(
�dg

(i)−∂µa(i)
µ

)
ξ′i(z) = 0 . (2.20)

By linear independence of {ξi≥0(z)}, (2.19) implies the following set of lower-dimensional

equations

�da
(0)
µ − ∂µ∂νa(0)

ν − ∂µh = 0 , (2.21)(
�d − ω2

i

)
a(i)
µ − ∂µ∂νa(i)

ν + ω2
i ∂µg

(i) = 0 , i ∈ {1, 2, . . . } , (2.22)

from which we observe that a
(0)
µ (x) is massless, and a

(i)
µ (x) are massive with masses ω2

i

implemented via the Stueckelberg fields g(i) for i > 0. The i > 0 modes then describe

the massive sectors of the theory, whereas the i = 0 modes along with h(x) describe the

massless sector.

Moving on, the linear independence of {ζ(z), ξ′i(z)} in (2.20) gives

�dh = 0 , (2.23)

and

�dg
(i) − ∂µa(i)

µ = 0 , i ∈ {0, 1, . . . } . (2.24)

The lower-dimensional equations are then given by (2.21)–(2.24), and are equations gov-

erning the dynamics2 of our theory (2.2) after dimensionally reducing on the interval I.

So far, we have been working at the level of the equations of motion, but we can ask

whether the same lower-dimensional equations can equivalently be obtained by inserting

the expansions of Aµ and Az directly into the action. Being careful to include both SMax

and SBT, the lower-dimensional action is given by

S[a(i)
µ ,h,g

(i)] =

∫
ddx

(
−1

4
F (0)
µν F

(0)µν+
3

10

(
∂µh

)
∂µh+

(
∂µh

)(
∂µg

(0)−a(0)
µ

))
+
∞∑
i=1

∫
ddx

(
−1

4
F (i)
µν F

(i)µν− 1

2
ω2
i (∂µg

(i)−a(i)
µ

)
(∂µg(i)−a(i)µ

))
, (2.25)

where F
(i)
µν = ∂µa

(i)
ν − ∂νa(i)

µ . This yields the same equations of motion, (2.21)–(2.24), as

those obtained via the higher-dimensional equations of motion, and so the dimensional

reduction square diagram figure 1 commutes. This commutativity depends crucially on

the inclusion of the boundary term in the original action. From the higher-dimensional

perspective, it is this term that ensures that the variational principle is well-posed. From

2Note also that (2.23) and the i > 0 equations in (2.24) can be obtained by taking the divergence

of (2.21) and (2.22) respectively.
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the lower-dimensional perspective, it is this term that ensures the decoupling of the massive

sectors from the massless sector.

At this point, it is useful to consider the gauge transformations of the lower-dimensional

component fields. Recall that the U(1) gauge parameter Λ must obey the same boundary

conditions as Aµ, and so it can be written as a linear combination of {ξi(z)} with

Λ(x, z) =
∞∑
i=0

λ(i)(x)ξi(z) . (2.26)

The harmonic symmetry parameter Γ also obeys the same boundary conditions as Aµ with

the added requirement that ∂2
zΓ = 0, so

Γ(x, z) = γ(0)(x)ξ0(z) , (2.27)

where �dγ
(0) = 0. The U(1) transformations of Aµ and Az in terms of the component

fields are

a(i)
µ (x) 7→ a(i)

µ (x)+∂µλ
(i)(x) , h(x) 7→ h(x) , g(i)(x) 7→ g(i)(x)+λ(i)(x) , i ∈ {0, 1, . . . } .

(2.28)

Similarly, only a
(0)
µ participates in the harmonic symmetry transformation of Aµ, with

a(0)
µ (x) 7→ a(0)

µ (x) + ∂µγ
(0)(x) . (2.29)

From these U(1) transformations, we observe that g(i)(x) is a Stueckelberg field asso-

ciated to a
(i)
µ , whereas h(x) is inert. The appearance of Stueckelberg fields is not new in

dimensional reductions, but what is rather non-standard here is that there is also a Stueck-

elberg field accompanying the massless vector a
(0)
µ . To understand this more, we need to

analyse the lower-dimensional equations of motion. Since the massive sectors decouple

from the massless sector, the analysis will be done in two parts.

1. Massive sectors. The massive sectors are decoupled from each other in the nonin-

teracting theory, and each sector is described by an action

S(i)[a(i)
µ ,g

(i)] =

∫
ddx

(
−1

4
F (i)
µν F

(i)µν− 1

2
ω2
i (∂µg

(i)−a(i)
µ

)
(∂µg(i)−a(i)µ

))
, i∈{1,2, . . .} .

(2.30)

Here, a
(i)
µ is a massive spin-1 field with mass ω2

i , and g(i) is its associated Stueckelberg

field. The number of physical degrees of freedom is d− 1.

2. Massless sector. The zero-level massless sector is described by the action

S[aµ, h, g] =

∫
ddx

(
−1

4
FµνF

µν +
3

10

(
∂µh

)
∂µh+

(
∂µh

)(
∂µg − aµ

))
, (2.31)

where for brevity, the superscript (0) has been removed. To diagonalise the scalar kinetic

terms, consider the field redefinition

ϕ1 = k

(
g +

3− 5
√

5

10
h

)
, ϕ2 = k

(
g +

3 + 5
√

5

10
h

)
, (2.32)
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where k = 5−
1
4 . From (2.28), these transform under U(1) as

ϕ1(x) 7→ ϕ1(x) + kλ(x) , ϕ2(x) 7→ ϕ2(x) + kλ(x) , (2.33)

and in terms of these variables, (2.31) reads

S[aµ,ϕ1,ϕ2] =

∫
ddx

(
−1

4
FµνF

µν− 1

2

(
∂µϕ1

)
∂µϕ1+

1

2

(
∂µϕ2

)
∂µϕ2+k

(
∂µϕ1−∂µϕ2

)
aµ

)
.

(2.34)

The positive sign in the kinetic term of ϕ2 appears to suggests that it is a ghost.

It seems odd that the lower-dimensional theory could contain a ghost, since the higher-

dimensional Maxwell theory is ghost-free. However, (2.33) tells us that one of ϕ1 and ϕ2

is pure gauge under the U(1) symmetry, so we can always choose the gauge where ϕ2 = 0,

meaning that the theory is ghost-free. To see this more clearly, consider a further field

redefinition

Ψ1 = ϕ1 − ϕ2 , Ψ2 = ϕ1 + ϕ2 . (2.35)

These transform under U(1) as

Ψ1(x) 7→ Ψ1(x) , Ψ2(x) 7→ Ψ2(x) + 2kλ(x) . (2.36)

Choosing the gauge Ψ2 = 0 and integrating by parts, the action becomes

S[aµ,Ψ1] =

∫
ddx

(
−1

4
FµνF

µν − kΨ1

(
∂µaµ

))
. (2.37)

The scalar Ψ1 is non-dynamical and acts as a Lagrange multiplier imposing the Lorenz

gauge condition ∂µaµ = 0. Although there is no residual U(1) gauge symmetry left after

imposing the Ψ2 = 0 gauge, there is still the harmonic symmetry (2.29) which remains

unbroken. It is interesting to note that the harmonic symmetry acts here exactly like

the radiation-gauge residuum of Lorenz gauge in usual Maxwell theory. The Lorenz gauge

condition along with the harmonic symmetry removes 2 degrees of freedom from aµ, so that

the total number3 of physical degrees of freedom of the massless sector is d−2. Physically,

the zero-level massless sector is identical to Lorenz-gauge Maxwell theory in d dimensions.

2.3 Orthonormality and interactions

Up to this point, our work has been centred around two expansion bases: {ξi(z)} and

{ζ(z), ξ′i(z)}. The first basis is L2(I) orthonormal, as guaranteed by the Sturm-Liouville

theorem, but the second is not. The lack of orthonormality in the second basis did not

present a problem so far because the lower-dimensional equations were obtained from the

higher-dimensional ones via linear independence alone. However, when interactions are

added, the higher-dimensional equations are no longer linear. In this case, we are required

to expand such terms into our chosen bases.

In anticipation of interactions, consider using an L2(I) orthonormal basis {ψα(z)}
instead of {ζ(z), ξ′i(z)} for our noninteracting Maxwell example. For brevity, summations

3A more detailed degrees of freedom count is given in appendix A.
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over the basis labels will be suppressed. The functions ψα(z) can be obtained from ζ(z)

and ξ′i(z) by the Gram-Schmidt procedure, and we can write

ζ(z) = bαψα(z) , ξ′i(z) = ci;αψα(z) , (2.38)

for some constants bα and ci;α. With this, (2.16) becomes

Az(x, z) =
(
bαh(x) + ci;αg

(i)(x)
)
ψα(z) := χα(x)ψα(z) . (2.39)

This shows that from a lower-dimensional perspective, the difference between using

the {ζ(z), ξ′i(z)} basis and the {ψα(z)} basis is a set of algebraic field redefinitions

{h(x), g(i)(x)} ↔ {χα(x)}. It is now crucial that substituting this new expansion into

the higher-dimensional equations of motion and action yields the same lower-dimensional

equations, since algebraic field redefinitions do not change the physics. Since this only

affects the Az sector, we only need to check the Az equation.

At the level of the higher-dimensional equations, substituting (2.39) into (2.6) gives

�dχα − ci;α∂µa(i)
µ = 0 , (2.40)

whilst the higher-dimensional action becomes

S[a(i)
µ ,χα] =

∫
ddx

(
−1

4
F (i)
µν F

(i)µν− 1

2
Dαβ

(
∂µχα−ci;αa(i)

µ

)(
∂µχβ−cj;βa(j)µ

))
, (2.41)

where Dαβ = δαβ − ψα(1)ψβ(1). This must be equal to (2.25), which allows us to derive

the following properties of the coefficients bα and ci;α:

Dαβbαbβ = −3

5
, Dαβbαci;β = −δi0 , Dαβci;αcj;β = δijω

2
i . (2.42)

The equation of motion for χα obtained from this action is

Dαβ

(
�dχβ − ci;β∂µa(i)

µ

)
= 0 , (2.43)

which is equivalent to (2.40) if Dαβ is invertible. To prove invertibility, note that

Dαβ = D(ψα(z), ψβ(z)), where

D(f1(z), f2(z)) =

∫ 1

0
dz f1(z)f2(z)− f1(1)f2(1) , (2.44)

and consider the set of linearly independent functions

X(z; a) = aζ(z) +
5− 3a2

10a
ξ′0(z) , Y (z; a) = aζ(z)− 5 + 3a2

10a
ξ′0(z) , Zi(z) =

1

ω2
i

ξ′i(z) ,

(2.45)

where a ∈ R \ {0}, and i ∈ {1, 2, . . . }. In this basis, D is diagonalised with D =

diag(−1, 1, 1, . . . ), which means that it is invertible, and hence, (2.40) and (2.43) are

equivalent.
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3 Scalar QED on an interval

Having seen how to dimensionally reduce Maxwell theory on an interval with a non-constant

zero mode, the natural progression is to see how this can be done for an interacting gauge

field. As such, we now consider the above (d+1) dimensional Maxwell system coupled to a

complex scalar “matter” field, i.e. scalar QED on M1,d−1× I, with the gauge field obeying

the above boundary conditions (2.7). The boundary conditions on the complex matter

scalar will be chosen to be Dirichlet/Dirichlet, as this is convenient for gauge invariance.

As in the previous section, this requires augmenting the usual scalar QED action by a

boundary term to ensure that the variational problem is well-posed.

Unlike pure Maxwell theory, the interactions in scalar QED will in general couple zero

modes to higher modes, so truncating to the level zero sector is now generally inconsistent.

We find, in our case, that the source of this inconsistency is the non-constant zero mode.

Our interest is in deriving the gauge invariant effective theory describing the zero-level

sector. This is obtained by integrating out all fields whose mass is greater than or equal

to the mass ω1 of the least massive gauge field. A common impression might be that

the integrating-out procedure of such modes leads only to higher-derivative corrections.

However, we will show that this is not the case for our system. The lowest lying mode for

the complex scalar is also massive, but it is lighter than the aforementioned cutoff, so it

still constitutes part of the lowest-level lower-dimensional effective theory.

Our effective theory exhibits two novel features that are not present in standard re-

ductions of scalar QED. In the previous section, we saw that the U(1) gauge symmetry

associated to the zero-mode gauge field is non-linearly realised due to the presence of a

Stueckelberg field. This is also true in the effective theory. Furthermore, we will find that

the näıvely anticipated relation between the coupling constants of the cubic and quartic

interactions between the zero mode gauge field and the complex scalar is not obeyed. We

will show that this seemingly covert symmetry breaking, due to the mismatch between the

cubic and quartic couplings, is explained by the presence of the Stueckelberg field. Conse-

quently, the unusual quartic coupling and the non-linear realisation of the gauge symmetry

go hand-in-hand to create a nonetheless gauge invariant effective theory.

3.1 Interacting higher-dimensional equations and boundary conditions

We now turn to the effect of coupling our Maxwell system (2.2) to matter, which we shall

take to be a complex scalar field Φ charged under the U(1) symmetry. Once again, we shall

consider our theory on M1,d−1× [0, 1], and we shall take the following boundary conditions

for our fields:

Aµ(x, 0) = 0 , (∂z − 1)Aµ(x, 1) = 0 , Φ(x, 0) = Φ(x, 1) = 0 . (3.1)

The action governing the dynamics of our theory is

S[Aµ, Az,Φ,Φ] = SSQED[Aµ, Az,Φ,Φ] + SBT [Aµ, Az]

=

∫
ddx

∫ 1

0
dz

(
−1

4
FµνF

µν − 1

2
FµzF

µz −
(
DMΦ

)
DMΦ

)
+

1

2

∫
ddxFµzF

µz
∣∣∣
z=1

, (3.2)
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where DMΦ = ∂MΦ− ieAMΦ, with e the charge of the complex matter scalar. This action

is invariant under the following gauge transformations:

Aµ 7→ Aµ + ∂µΛ , Az 7→ Az + ∂zΛ , Φ 7→ eieΛΦ . (3.3)

In order for the boundary conditions in (3.1) to be gauge invariant, we require Λ to

obey (2.8).

The action is extremised given the scalar QED equations of motion

Aµ :
(
�d+∂2

z

)
Aµ−∂µ∂νAν−∂µ∂zAz+ie

(
Φ∂µΦ−Φ∂µΦ

)
−2e2ΦΦAµ = 0 , (3.4)

Az : �dAz−∂z∂µAµ+ie
(
Φ∂zΦ−Φ∂zΦ

)
−2e2ΦΦAz = 0 , (3.5)

Φ :
(
�d+∂2

z

)
Φ−ie

(
Φ∂µAµ+Φ∂zAz+2Aµ∂

µΦ+2Az∂zΦ
)
−e2Φ

(
AµA

µ+A2
z

)
= 0 , (3.6)

subject to the boundary conditions (3.1).

3.2 Interacting lower-dimensional theory

As in the previous section, the expansions for Aµ and Az are

Aµ(x, z) =

∞∑
i=0

a(i)
µ (x)ξi(z) , Az(x, z) = h(x)ζ(z) +

∞∑
i=0

g(i)(x)ξ′i(z) . (3.7)

For the complex matter scalar, we introduce another complete set of functions,

{θn(z) =
√

2 sin(mnz)} with n ∈ {1, 2, . . . } and mn = nπ, which satisfy Dirichlet/Dirichlet

boundary conditions. Using these, the scalar field is expanded as

Φ(x, z) =

∞∑
n=1

φ(n)(x)θn(z) . (3.8)

The complex scalars φ(n) transform under the U(1) gauge symmetry non-diagonally with

φ(n) 7→
∞∑
m=1

exp
(
ieλ(i)Ii

)nm
φ(m) , (3.9)

where the matrix Ii is defined as

(Ii)
nm = Inmi =

∫ 1

0
dz ξi(z)θn(z)θm(z) . (3.10)

We can now substitute the expansions of Aµ, Az, and Φ into the higher-dimensional equa-

tions of motion or into the higher-dimensional action to obtain a lower-dimensional theory.

It is a straightforward albeit long calculation to show that both procedures give the same

result, and so the figure 1 dimensional reduction square once again commutes. The route

involving substituting the expansions into the higher-dimensional equations is a bit subtle,

and involves projecting the non-linear interaction terms into the relevant bases. For exam-

ple, in (3.4), we notice that the terms Φ∂µΦ and ΦΦAµ obey Dirichlet/Robin conditions,

and so can be written as linear combinations of the {ξi(z)} basis. In particular, we have

θn(z)θm(z) = Inmi ξi(z) , θn(z)θm(z)ξj(z) = Inmij ξi(z) , (3.11)
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where summations over the index labels are suppressed, and

Inmij =

∫ 1

0
dz ξi(z)ξj(z)θn(z)θm(z) . (3.12)

We will refer the reader to appendix B for a full treatment of the higher-dimensional

equations of motion.

To present the lower-dimensional action in a recognisable form, we define the covariant

derivative operator

Dnm
µ = δnm∂µ − ieInmi a(i)

µ . (3.13)

Using (2.28) and (3.9) we can check that this is a proper covariant derivative with respect

to the U(1) gauge symmetry, as(
Dµφ

)(n) 7→ exp
(
ieλ(i)Ii

)nm(
Dµφ

)(m)
. (3.14)

Then, defining the inner product (u, v) = u(n)v(n) over the space of complex scalars, and

defining the matrices J , K, and Li with components

Jnm =

∫ 1

0
dz θn(z)θ′m(z) , Knm =

∫ 1

0
dz ζ(z)θn(z)θm(z) , Lnmi =

∫ 1

0
dz ξ′i(z)θn(z)θm(z) ,

(3.15)

the lower-dimensional action becomes

S =

∫
ddx

(
− 1

4
F (i)
µν F

(i)µν − 1

2
ω2
i (∂µg

(i) − a(i)
µ

)
(∂µg(i) − a(i)µ

)
+

3

10
∂µh∂

µh

+ ∂µh
(
∂µg

(0) − a(0)
µ

)
−
(
Dµφ,D

µφ
)
−
(
Wφ,Wφ

))
, (3.16)

where ω2
0 = 0, and W = J−iehK−ieg(i)Li. The term Wφ transforms covariantly under the

U(1) transformations given in (2.28) and (3.9) with Wφ 7→ UWφ, where U = exp(ieλ(i)Ii).

This is expected, as it is just the lower-dimensional analogue of the higher-dimensional

DzΦ term, which by definition transforms covariantly under U(1) transformations. We also

note that the lowest-order term in the scalar potential (Wφ,Wφ) is (Jφ, Jφ) = m2
nφ

(n)
φ(n),

which means that the lowest lying scalar φ(1) is massive with mass m1 = π.

3.3 An unusual coefficient

The lower-dimensional action (3.16) containing the modes a
(i)
µ , h, g(i), and φ(n) is simply a

rewriting of the higher-dimensional action (3.2) in a particular choice of bases. Our goal is

now to build a gauge invariant effective theory from the lower-dimensional action containing

only a(0), h, g(0) and φ(1) after integrating out the modes above level zero.4 We shall show

that this effective theory realises gauge invariance in a non-standard manner, notably the

usual relationship between the cubic and quartic coupling constants in scalar QED is not

present. In order to demonstrate this, we need to perform a set of field redefinitions on

φ(n) to obtain a set of fields ϕ(n) that transform canonically under the U(1) symmetries.5

4The cutoff scale is Λ2 = ω2
1 , noting that ω2

1 > m2
1.

5A discussion of the effective theory in the original variables is given in appendix C.
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From the covariant derivative operator (3.13), we observe that the effective coupling

of φ(n) to each a
(i)
µ is eInni , with no sum over n. This motivates the following set of field

redefinitions

ϕ(n) = exp(ieg(i)Inni ) exp(−ieg(i)Ii)
nmφ(m) := Xnmφ(m) . (3.17)

These transform under the U(1) symmetries as

ϕ(n) 7→ exp(ieλ(i)Inni )ϕ(n) . (3.18)

Note that exp
(
ieg(i)Inni

)
is a phase and not a matrix. The matrix Xnm is unitary, so the

mass of ϕ(n) is m2
n. This field redefinition can be interpreted as a two-step process, each of

which relies on the existence of the Stueckelberg fields, especially the zero-mode Stueckel-

berg, g(0). Since the Stueckelberg fields transform inhomogeneously by gauge parameters,

we can use them to nullify or create any gauge transformation. In the case of (3.17), we

first define a set of non-transforming scalars

ψ(n) = exp(−ieg(i)Ii)
nmφ(m) . (3.19)

Then, from this, we use the Stueckelberg fields to write down the canonically transforming

scalars in (3.17).

The stage is now set for us to write down an effective theory of a
(0)
µ , h, g(0), and ϕ(1),

but before that, let’s look at the portion of the theory that contains only the interactions

between a
(0)
µ and ϕ(1). These terms are given by

Lint(a
(0)
µ , ϕ(1)) = −ieI11

0 a(0)
µ

(
ϕ(1)∂µϕ(1) − ϕ(1)∂µϕ(1)

)
− e2I11

00a
(0)
µ a(0)µ|ϕ(1)|2 . (3.20)

As ϕ(1) transforms canonically under the U(1) symmetry associated with a
(0)
µ , we might

expect this to look like a standard scalar QED coupling. However, in scalar QED, the

quartic coupling constant is equal to the square of the cubic coupling constant. This is not

the case here, since I11
00 6= (I11

0 )2. Since the full theory, given in (3.16), is gauge invariant, the

remedy to this unusual coefficient problem clearly lies in the modes that we have neglected.

As such, we might assume that integrating out the massive vectors and heavier scalars will

modify the coupling constants in (3.20) such that the usual scalar QED structure reappears.

However, this is not what happens, as we will see in the next subsection.

3.4 Integrating out

To integrate out the heavy modes in this theory, we will work with the assumption that the

action of a massive propagator (�d −M2)−1 acting on a current J can be approximated

to be (
�d −M2

)−1
J = −M−2J +O(M−4�d) . (3.21)

Since our immediate goal is to investigate whether integrating out the massive vectors and

matter scalars modifies the coefficients in (3.20), it is sufficient to consider only those terms

in their equations of motion containing themselves, the fields a
(0)
µ , and ϕ(1), a maximum
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of one derivative, and contributing to a cubic and a quartic interaction. Taking this into

account, the relevant parts of the theory are

Lrel(a
(i)
µ , ϕ

(n)) = −1

2
ω2
i a

(i)
µ a

(i)µ −m2
n|ϕ(n)|2 − ieInmi a(i)

µ

(
ϕ(n)∂µϕ(m) − ϕ(n)∂µϕ(m)

)
− e2Inmij a(i)

µ a
(j)µϕ(n)ϕ(m) . (3.22)

From this, we find that the heavy fields are given by

a(i)
µ =

ie

ω2
i

I11
i

(
ϕ(1)∂µϕ

(1) − ϕ(1)∂µϕ
(1)
)
− 2e2

ω2
i

I11
i0 a

(0)
µ |ϕ(1)|2 + · · · , (3.23)

ϕ(n) = − ie

m2
n

I
n1
0

(
ϕ(1)∂µa(0)

µ + 2a(0)
µ ∂µϕ(1)

)
− e2

m2
n

I
n1
00 a

(0)
µ a(0)µϕ(1) + · · · , (3.24)

where n ∈ {2, 3, . . . } and i ∈ {1, 2, . . . }, and the ellipses denote terms containing more

than three fields and/or more than one derivative. Substituting (3.23) and (3.24) back

into (3.22), which is allowable as the equations are algebraic, we find that the corrections

are not of the same structure as in (3.20). This means that there is no correction to the

cubic and quartic coupling constants arising from integrating out the massive fields.

In effect, by expanding scalar QED in modes of a lower-dimensional theory, we have

obtained an effective theory of a complex matter scalar coupled to a gauge field where

the presence of Stueckelberg fields at all levels, including level zero, plays a crucial role in

establishing gauge invariance. It is also interesting to note that, contrary to a variety of

examples in the literature, integrating out the massive fields here does not solely produce

higher-derivative corrections, but contributes as well to achieving gauge invariance in the

lower-dimensional effective theory. For instance, the mass terms m2
nϕ

(n)ϕ(n) produces a

sixth-order, zero-derivative correction of the form e4(a
(0)
µ a(0)µ)2|ϕ(1)|2/6.

3.5 The fourth-order, two-derivative effective theory

We now wish to make a full presentation of the lower dimensional effective theory after

putting the heavy modes on-shell. The easiest method for this calculation is to perform the

integrating out procedure in the non-transforming variables given in (3.19), then transform

back into the canonically transforming variables. In the non-transforming variables, the

lower dimensional Lagrangian density takes the form:

L = −1

4
F (i)
µν F

(i)µν − 1

2
ω2
i (∂µg

(i) − a(i)
µ

)
(∂µg(i) − a(i)µ

)
+

3

10
∂µh∂

µh

+ ∂µh
(
∂µg

(0) − a(0)
µ

)
−
(
Dµψ,Dµψ

)
− (Wψ,Wψ) , (3.25)

where Dnmµ = δnm∂µ − ie
(
a

(i)
µ − ∂µg(i)

)
Inmi , and W = W + ieg(i)Li = J − iehK, which is

a gauge invariant quantity.

Putting a(i) and ψ(n) on-shell while gauge fixing the higher-mode Stueckelberg fields

g(i) to zero, we find that the effective Lagrangian density to fourth-order in interactions
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and second-order in derivatives is

Leff = −1

4
FµνF

µν +
3

10
∂µh∂

µh+ ∂µh
(
∂µg − aµ

)
− ∂µψ∂µψ − π2ψψ

− eI11
0 (aµ − ∂µg)

(
ψ∂µψ − ψ∂µψ

)
− e2I11

00 (aµ − ∂µg) (aµ − ∂µg)ψψ

− e2

P 11 −
∞∑
n=2

(
Tn1 − T 1n

π2n2

)2
h2ψψ , (3.26)

where we removed the superscripts (0) and (1). The overlap integrals Pnm and Tnm are

defined in appendix B. The coefficient of the h2ψψ quartic interaction can be calculated

exactly:

X = P 11 −
∞∑
n=2

(
Tn1 − T 1n

π2n2

)2

=
−20
√

3
(
−14ζ(3) + 36− 32 log(2) + π2(log(256)− 5)

)
+ 45− 30π2 + 6π4

40π4

≈ 0.0644771 .

(3.27)

For comparison I11
0 =

√
3

2 , I11
00 = 1 − 3

2π2 , and I = I11
00 − (I11

0 )2 = 1
4 −

3
2π2 . Finally,

transforming back into the canonically transforming variable, we find that the effective

Lagrangian density is

Leff = −1

4
FµνF

µν −
(
Dµϕ

)
Dµϕ− π2ϕϕ+

3

10
∂µh∂

µh+ ∂µh
(
∂µg − aµ

)
− e2

effĨ (aµ − ∂µg) (aµ − ∂µg)ϕϕ− e2
effX̃h

2ϕϕ ,
(3.28)

where eeff = eI11
0 is the effective electric charge, Dµ = ∂µ−ieeffaµ is the canonical covariant

derivative, Ĩ = I/(I11
0 )2, and X̃ = X/(I11

0 )2.

The effective theory is Maxwell, with a standard gauge-fixing term, coupled in the

usual way to an electrically charged scalar ϕ with charge eeff = eI11
0 , out to order e1

eff in the

action. If one only considers this leading behaviour in the effective charge of the theory,

its dynamics is physically indistinguishable from that of the usual dimensional reduction6

case. At e2
eff order, however, we find covert symmetry breaking identical to the symmetry

breaking originating in coupling to the zero-level Stueckelberg field arising in the term

(aµ − ∂µg) (aµ − ∂µg)ϕϕ.

In a usual dimensional reduction, the zero-level lower dimensional theory inherits the

corresponding projection of the higher dimensional symmetries linearly, and this is sufficient

to fix the form of the lower dimensional theory. This is not so in the present case because of

the non-constant transverse wavefunction zero-mode, and its associated Stueckelberg field.

We can write new structures that are invariant under the higher dimensional symmetry

using this nonlinearly transforming Stueckelberg field, which are however physically distinct

from the structure of the linearly realised theory in the lower dimension. Accordingly, the

higher dimensional symmetry becomes nonlinearly realised in the lower dimension. By

6That is, a von Neuman/von Neuman or periodic S1 reduction.
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explicitly calculating the effective theory, however, we find linear symmetry breaking only

appears in a ‘covert’ way, starting at a2|ϕ|2 in the action or |ϕ|6 order in scalar only physical

processes.

4 Conclusion and outlook

In this paper, we have focused on what we considered to be the simplest case in which

covert symmetry breaking reveals itself. This was stimulated by observation of the explicit

structure [14] of an effective lower-dimensional theory of gravity with a noncompact trans-

verse space, but localised in the lower dimension thanks to a mass gap in the spectrum of

the associated Schrödinger problem. Clearly, a return to that system needs to be made

to carry out a similar investigation to that of this paper. Along the way, an analogous

study of pure Yang-Mills theory in d + 1 dimensions with the Dirichlet/Robin boundary

conditions considered here can be done [18].

More generally, one also needs to consider what is the best way to approach the eval-

uation of an effective gravitational theory in a lower dimension when the transverse space

is noncompact. The key problem in such cases is the vanishing of the effective Newton

constant, as pointed out originally in ref. [19]. There is, however, one known way to get

nontrivial interactions in a number of such cases: restrict attention to pure gravity in the

lower dimension, or, in the case of a supersymmetric theory, restrict attention to pure

supergravity with unbroken supersymmetry. For example, there are lower-dimensional su-

persymmetric braneworld constructions where such pure supergravity on the brane world-

volume exists as a consistent reduction from the higher dimensional theory [20–22]. For

such pure lower-dimensional supergravity solutions, there really is no clearly defined New-

ton constant — for example, any Ricci-flat metric in the lower dimension will continue to

give a solution to the higher dimensional field equations. A related feature of such lower-

dimensional systems is that they retain a ‘trombone’ symmetry of the lower dimensional

field equations, as do all pure supergravity theories. A clear meaning to a gravitational

coupling constant arises only when one couples to fields outside the lower-dimensional

supergravity supermultiplet. An example of such coupling could be to another kind of

braneworld supermultiplet — branewaves arising as Goldstone modes from broken sym-

metries of a background brane solution. In such cases, with an infinite transverse space,

the problem of a vanishing Newton constant is likely to recur: the branewave modes may

couple directly only to the non-zero-level modes of the higher dimensional theory.

The kind of system investigated in this paper and in ref. [14] with a zero-level transverse

wavefunction which has nontrivial dependence on the transverse dimensions can guarantee

a nonvanishing interaction coupling constant. One then also needs to consider what the

physical implications of the resulting covert style of symmetry breaking might be.
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A Maxwellian degrees of freedom and Hamiltonian

Within this appendix our aim is to provide a detailed account of the physical degrees of

freedom and the Hamiltonian for the massless sector of the system that arises in section 2.

To do this we begin by using the gauge symmetry of the ϕi, (2.33), to fix ϕ2 to zero. Within

this gauge, the equations of motion arising from (2.34) are

�dAµ + k∂µϕ = 0 , ∂µAµ = 0 , �dϕ = 0 , (A.1)

where we have relabelled aµ as Aµ, and ϕ1 as ϕ.

If we take a Fourier transform of (A.1), and perform the decomposition

Ãµ(p) = λ̃(p)pµ + ãµ(p) , (A.2)

where Ãµ is the Fourier transform of Aµ and pµ and ãµ are assumed to be linearly inde-

pendent vectors at the momentum-space point pµ, then we obtain the equations

−p2λ̃pµ − p2ãµ − ikpµϕ̃ = 0 , (A.3)

λ̃p2 + ãµp
µ = 0 , (A.4)

p2ϕ̃ = 0 , (A.5)

where ϕ̃ denotes the Fourier transform of ϕ. Note if we shift λ̃ to λ̃+λ̂, in (A.2), then (A.3)–

(A.5) are invariant if supp(λ̂) = {pµ|p2 = 0}.
We begin by noting that the linear independence of pµ and ãµ means that (A.3) implies

p2ãµ = 0 , (A.6)

−p2λ̃− ikϕ̃ = 0 . (A.7)

Using (A.5) and (A.6) it follows that

supp(ãµ) = supp(ϕ̃) = {pµ|p2 = 0} , (A.8)

which, along with (A.3), evaluated when p2 = 0, but where pµ 6= 0, gives

supp(ϕ̃) = {pµ = 0} , (A.9)

hence showing this field doesn’t correspond to a propagating degree of freedom. This can

then be used in (A.7) to show that

supp(λ̃) = {pµ|p2 = 0} , (A.10)

meaning λ̃ only has support on the lightcone.7

7Which is precisely where we can freely shift this function while keeping the equations (A.3)–(A.5)

invariant.
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Owing to (A.2) and the fact that λ̃ only has support on the lightcone, we find that

pµÃµ = pµãµ = 0 , (A.11)

where the first equality follows from (A.4) by using (A.10). Since we can shift λ̃, precisely

on its support set, and leave (A.3)–(A.5) invariant, we can set

λ̃ = − ã0

p0
, (A.12)

on the lightcone, except at pµ = 0. This has the effect of setting Ã0 = 0 on the lightcone,

except at pµ = 0. This results in (A.11) leading to the condition

Ãipi = 0 , (A.13)

which confirms that the system described by (2.34) possesses only d−2 propagating degrees

of freedom. As a result of this analysis, we see that the system is equivalent to standard

Maxwell theory, once we go on shell.

Another way to look at the dynamics of the zero-level system (2.37) including the

Lagrange multiplier field Ψ1 is to consider its Hamiltonian formulation. The inclusion

of this field, which pre-selects the Lorenz gauge for aµ, leads to a modified Hamiltonian

formulation since there is no longer an unrestricted λ(x) gauge symmetry. This gives rise to

a conjugate momentum to a0, i.e. π0 = kΨ1, which is not ordinarily present. The canonical

action becomes

Icanon =

∫
dt

∫
dd−1x (πiȧi + π0ȧ0 − (Ht +Hv)) , i = 1, . . . , d− 1 (A.14)

where

Ht =
1

2
πiπi +

1

4
FijFij (A.15)

Hv = πi∂ia0 + π0∂iai . (A.16)

Here, Ht is the usual positive semidefinite Maxwell Hamiltonian density while Hv is a

separate quantity whose spatial integral Qv =
∫
dd−1xHv is independently conserved in

time by virtue of the field equations for the canonical action (A.14). As usual, Noether’s

theorem relates such a conserved quantity to a global symmetry and here that symmetry is:

δai = ∂ia0ρ δπi = ∂iπ0

δa0 = (∂iai − π0)ρ δπo = ∂iπiρ , (A.17)

where ρ is a spacetime-constant parameter. The conserved quantity Qv is of indefinite sign,

but this does not imply the presence of ghost degrees of freedom; the conserved energy can

be considered to be just E =
∫
dd−1xHt, which is positive semidefinite. It is helpful to

consider what happens to Qv in a standard Maxwell theory presentation without π0: one

finds Qv = 0 using the usual Gauss’s law ∂iπi = ∂iF0i = 0 for noninteracting Maxwell

theory. The symmetry (A.17) is still there (setting π0 → 0), but it is then a symme-

try with a vanishing charge, somewhat reminiscent of the vanishing-charge symmetries of

supersymmetric theories without auxiliary fields.
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B Details of the commuting square diagram for scalar QED

In this appendix, we give details of the equivalence between higher and lower dimensional

presentations of the scalar QED dynamics as represented in figure 1 and needed in subsec-

tions 3.1 and 3.2.

Starting with (3.4), recall that the terms Φ∂µΦ and ΦΦAµ obey Dirichlet/Robin bound-

ary conditions, and so can be written as linear combinations of the {ξi(z)} basis given

in (3.11):

θn(z)θm(z) = Inmi ξi(z) , θn(z)θm(z)ξj(z) = Inmij ξi(z) . (B.1)

With these overlap integrals, we can use linear independence to read off the lower-

dimensional equations coming from (3.4). We have

�da
(0)
µ −∂µ∂νa(0)

ν −∂µh+ieInm0

(
φ(n)∂µφ

(m)−φ(n)
∂µφ

(m)
)
−2e2Inm0i φ

(n)
φ(m)a(i)

µ = 0 , (B.2)

and

(
�d − ω2

i

)
a(i)
µ − ∂µ∂νa(i)

ν + ω2
i ∂µg

(i) + ieInmi
(
φ(n)∂µφ

(m) − φ(n)
∂µφ

(m)
)
− 2e2Inmij φ

(n)
φ(m)a(j)

µ = 0 ,

(B.3)

for i ∈ {1, 2, . . . }.
For (3.6), we define the overlap integrals

Pnm =

∫ 1

0
dz ζ2(z)θn(z)θm(z) , Qnmi =

∫ 1

0
dz ζ(z)ξ′i(z)θn(z)θm(z) ,

Tnm =

∫ 1

0
dz ζ(z)θ′m(z)θn(z) , Unmi =

∫ 1

0
dz ξ′i(z)θ′m(z)θn(z) ,

Rnmij =

∫ 1

0
dz ξ′i(z)ξ′j(z)θn(z)θm(z) . (B.4)

Using these, the lower-dimensional complex scalar equations are(
�dφ

(n)−m2
nφ

(n)
)
−ie

(
Inmi ∂µa(i)

µ +Inm0 h−Inmi ω2
i g

(i)
)
φ(m)−2ieInmi a(i)

µ ∂
µφ(m)

−2ie
(
Tnmh+Unmi g(i)

)
φ(m)−e2

(
Inmij a(i)

µ a
(j)µ+Pnmh2+2Qnmi hg(i)+Rnmij g(i)g(j)

)
φ(m) = 0 .

(B.5)

for n ∈ {1, 2, . . . }.
For (3.5), it is much more convenient to rewrite the expansion of Az in terms of the

orthonormal basis {ψα(z)}. Defining the overlap integrals

Mnm
α =

∫ 1

0
dz ψα(z)θ′m(z)θn(z) , Nnm

αβ =

∫ 1

0
dz ψα(z)ψβ(z)θm(z)θn(z) , (B.6)

we find the lower-dimensional equations are

�dχα − ci;α∂µa(i)
µ + ieMnm

α

(
φ(n)φ

(m) − φ(n)
φ(m)

)
− 2e2Nnm

αβ φ
(n)
φ(m)χβ = 0 . (B.7)
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To convert this equation into equations for h and g(i), we contract it with operators Dαβbβ
and Dαβci;β , using the relations (2.42). After some manipulation, we arrive at the following

equations of motion:

�dh= ieUnm0

(
φ(n)φ

(m)−φ(n)
φ(m)

)
−2e2

(
Qnm0 h+Rnm0i g

(i)
)
φ(n)φ

(m)
, (B.8)

�dg
(0)−∂µa(0)

µ = ieT̃nm
(
φ(n)φ

(m)−φ(n)
φ(m)

)
−2e2

(
P̃nmh+Q̃nmi g(i)

)
φ(n)φ

(m)
, (B.9)

ω2
i

(
�dg

(i)−∂µa(i)
µ

)
=−ieUnmi

(
φ(n)φ

(m)−φ(n)
φ(m)

)
+2e2

(
Qnmi h+Rnmij g(j)

)
φ(n)φ

(m)
,

(B.10)

where i ∈ {1, 2, . . . } in (B.10), and T̃nm = Tnm − 3
5U

nm
0 , P̃nm = Pnm + 3

5Q
nm
0 , and

Q̃nmi = Qnmi + 3
5R

nm
0i . Equations (B.2)–(B.5) and (B.8)–(B.10) are the lower-dimensional

equations of motion.8

It is a straightforward task to check that (3.16) produces the same lower-dimensional

equations of motion.

C Effective theory in the original variables

At the end of section 3.4 we stated that the system in the original (gauge covariant) higher

dimensional variables retains gauge covariance (or invariance at the level of the action) after

integrating out all of the (more) massive matter scalars. We described in broad strokes the

details of how this occurs, specifically that the action is augmented by new terms at quartic

order and the transformation is augmented at quadratic order and together these define

an unusual but gauge invariant action (or oddly covariant equations of motion). Here we

will show how that invariance works at the level of the action for one term, specifically the

a2φ2 ‘unusual coefficient’ term.9

To show the invariance of just this term it is sufficient to only consider only the leading

(in fields and derivatives) corrections arising from integrating out the level ` > 0 massive

matter scalar fields to both the gauge transformation and action. The relevant approximate

solutions to the level ` > 0 massive matter scalar (n = 2, 3, . . .) equations of motion are

φ(n) =
ie

π2N2

(
(2aµ∂

µφ+ ∂µaµφ) I
1n
0 + hφ

(
Tn1 − T 1n

)
+ 2gφU

n1
0

)
+O

(
Φ3, ∂µ

2
)
. (C.1)

Here Φ indicates all corrections arising from recursively putting fields on-shell in their

own equations of motion and ∂µ indicates arbitrary corrections with more world-volume

derivatives, and all integrals (I, T , and U) are as given in appendix B. The new terms in

the Lagrangian arising from putting these fields on-shell are

e2

π2n2

∣∣∣(2aµ∂µφ+ ∂µaµφ) I
1n
0 + hφ

(
Tn1 − T 1n

)
+ 2gφU

n1
0

∣∣∣2 +O
(
Φ5, ∂µ

2
)
. (C.2)

8It is important to note that these equations are internally consistent, as all Bianchi identities are

satisfied.
9Here again a is the massless vector and φ is the lightest matter scalar.
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Only two of these new terms are relevant to the terms in the gauge transformation of the

action containing one a and two φ:

e22gφ (2aµ∂
µφ+ ∂µaµφ)

I
1n
0 U

n1
0

π2n2
+ c.c. . (C.3)

The relevant terms arising from gauge transforming the above are the terms coming from

the transformation of the Stueckelberg field alone:

2e2λφ (2aµ∂
µφ+ ∂µaµφ)

I
1n
0 U

n1
0

π2n2
+ c.c. . (C.4)

Similarly, we recall from (3.9) that the lightest scalar field transforms under gauge

transformations into scalar fields at all levels, so when we put the heavy fields on-shell we

must also put them on-shell in the lightest field’s gauge transformation,

δφ = ieλφI11
0 + e2λ (2aµ∂

µφ+ ∂µaµφ)
I

1n
0 I

n1
0

π2n2
+O

(
h, g,Φ3, ∂µ

2
)
. (C.5)

The above term quadratic in fields will generate, when substituted into the φ’s mass term,

terms with one gauge parameter, one gauge field, and two matter scalars. Specifically the

correction is

δ
(
−π2 |φ|2

)
= . . .− π2φ

(
e2λ (2aµ∂

µφ+ ∂µaµφ)
I

1n
0 I

n1
0

π2n2

)
+ c.c.+ . . . . (C.6)

Lastly, we remember that the coefficient of the quartic term is “unusual” because it

is not the anticipated square of the cubic term’s coefficient. Taking the transformations of

these two terms together, we collect only the term which contains one gauge parameter,

one gauge field, and two matter scalars:

δ
(
−ieaµ

(
φ∂µφ− φ∂µφ

)
I11

0 − e2aµa
µφφI11

00

)
= . . .− 2e2aµ∂

µλφφ
(
I11

00 − I11
0

2
)

+ . . . .

(C.7)

These are all the terms in the gauge variation of the Lagrangian that are of the ‘∂λaφφ’

variety. If we take all the terms that we’ve detailed above and integrate by parts we find

that they may be written as

− 2e2aµ∂
µλφφ

((
I11

00 − I11
0

2
)
− π2 I

1n
0 I

n1
0

π2n2
+ 2

I
1n
0 U

n1
0

π2n2

)
. (C.8)

For the Lagrangian to be gauge invariant the coefficient of the above term must vanish, or

I =

∫ 1

0
ξ2θ2dz −

(∫ 1

0
ξθ2dz

)2

−
∞∑
N=2

π2

π2N2

∫ 1

0
ξ(s)θ(s)θN (s)ds

∫ 1

0
ξ(z)θ(z)θN (z)dz

+

∞∑
N=2

2

π2N2

∫ 1

0
ξ′(s)θ′(s)θN (s)ds

∫ 1

0
ξ(z)θ(z)θN (z)dz = 0 . (C.9)
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In order for the above Fourier basis, each of these integrals is known.10 The resulting

sums are also doable

I = 1− 3

2π2
−

(√
3

2

)2

− 48

π4

∞∑
N=2

(1 + (−1)2)2

(n2 − 1)4
+

48

π5

∞∑
N=2

(1 + (−1)2)2

(n2 − 1)3
= 0 . (C.10)

To summarise, we have, for the effective theory in the original variables, gauge trans-

formed, then collected all terms including one power of the gauge parameter, one power of

the gauge field, two powers of the scalar, and one world-volume derivative and have shown

that these terms sum to zero. While this only shows the invariance in the action of a single

term, it is torturous enough to calculate this. Furthermore, we know that these variables

are simply a field redefinition away from the more easily manifestly gauge invariant vari-

ables used in section 3.5, so the final action expressed in either set of variables proves to

be invariant.
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