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1 Introduction

There is countless experimental evidence showing that Quantum chromodynamics (QCD) is

the correct fundamental theory of strong interactions. However, the perturbative approach

fails in the low-energy region of the hadronic spectrum, i.e. for energies less than 700 MeV

to 1 GeV, where QCD becomes non-perturbative. A possible way is to use at low energies

an effective field theory that would be built upon the relevant degrees of freedom, i.e. the

mesons and the baryons. The situation here is not that simple, though, since such a theory

in the full-energy region is not known from first principles. Nevertheless, in the region of
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energies typically less than Mρ, with Mρ being the mass of the ρ(770) meson, we have

an effective field theory of QCD, Chiral perturbation theory (χPT) [1–4]. Inspired by the

large-Nc limit, we can construct an effective theory for an intermediate energy region that

also satisfies all symmetries of the underlying theory. This effective theory, Resonance chi-

ral theory (RχT), is relevant for energies within the bounds of Mρ ≤ E ≤ 2 GeV [5, 6]. For

higher energies, RχT loses its applicability and cannot be properly used because of the pro-

liferation of the overlapping higher resonances that become significant in hadron dynamics.

The phenomenological Lagrangian approach based on large-Nc and the chiral symme-

try was first introduced in 1989 in [5]. It was further developed and enlarged both for

the even-parity sector and the odd-parity sector [6–16]. Important questions connected

with the renormalization within RχT were recently studied e.g. in [17–23]. RχT increases

the number of degrees of freedom of Chiral perturbation theory by including massive U(3)

multiplets of vector V (1−−), axial-vector A(1++), scalar S(0++) and pseudoscalar P (0−+)

resonances. Interactions within these types of channels can be studied with the help of

the Green functions of the chiral currents that for such reason represent a powerful tool in

order to obtain physical observables of the theory. Comparing the theoretical predictions

with experimental measurements, we can determine the values of the parameters of the

theory and obtain a more comprehensive understanding of the behaviour of the processes

and the theory itself.

The motivation behind this paper is to be able to provide the matching of the QCD

operator product expansion (OPE) with the RχT, which allows us to compare the effective

field theory at the low energies with the description at high energies. However, the matching

itself is not a subject of this work since it will be studied in detail in our future paper [24].

For a very recent application of the short distance constraints see e.g. [25].

Within the OPE framework, all the three-point Green functions are studied in terms

of the QCD condensates with dimension D ≤ 6, In this paper we provide a complete

OPE description of all the three-point correlators to the first nonvanishing order in αs.

It is important to mention that to the best of our knowledge, the OPE has been studied

extensively only for some of the Green functions and mainly only with the emphasis on the

quark condensate (see e.g. [26] and [27]). To this end, we have recalculated some of the

known contributions independently, while the remaining contributions in this paper were

calculated for the first time here.

In our calculations we have employed techniques based on the Fock-Schwinger gauge.

We used it systematically for all contributions (with an exception of pertrurbative con-

tributions) even for cases were some other methods as the plane-wave method might be

more suitable.

This paper is organized as follows. After introducing our notation, we present a short

review of the Green functions, operator product expansion framework and the QCD con-

densates in section 2. In section 3, we briefly remind the reader some basic concepts, such

as the Fock-Schwinger gauge, which is crucial for the calculations of the contributions of

the QCD condensates to the Green functions, and important propagation formulas that are

needed to rewrite the nonlocal condensates into the local ones. Sections 4, 5, 6, 7 and 8 are

devoted to the calculations and the results of the perturbative contribution and the con-
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tributions of the quark, gluon, quark-gluon and four-quark condensates to the three-point

Green functions. These sections are the main outcomes of this paper.

After the Conclusion, an extensive set of appendices follows. Appendix A contains

a review of the important Fourier transforms that are useful for our calculations, while

appendix B provides a pedagogical introduction to Fock-Schwinger gauge. Appendix C is

devoted to a detailed derivation of the propagation formulas that are necessary in order to

obtain the effective contributions for some of the QCD condensates. Appendix D follows,

in which we present the results for the QCD condensate contributions to all the two-point

Green functions. Appendices E and F provide a detailed derivation of the decompositions

of the 〈V V A〉, 〈AAA〉, 〈AAV 〉 and 〈V V V 〉 Green functions, since their tensor structures

is not that trivial as in other cases, and thus deserve special attention.

Symbolic computations have been performed with a use of Mathematica, Feyn-

Calc [28, 29] and Package-X [30, 31]. The Feynman diagrams have been drawn using

JaxoDraw [32].

1.1 Notation

Here, we present the following notation that is used throughout the paper.

• The three-point Green functions are denoted generally as 〈O1O2O3〉, where Oi are

composite local operators (see (2.4) and the introductory paragraph in the next

section for details). By this notation we assume that the operator O1 is evaluated

at the space-time point x and carries momentum p and the flavor index a. If it also

carries the Lorentz index, we assume it to be µ. In other words, the first operator

in the designation of the Green function, O1, is associated with a set of (µ, a, x, p).

Similarly, the operators O2 and O3 are associated with (ν, b, y, q) and (ρ, c, z, r),

respectively.

• We consider all three momenta to be incoming, which gives the momentum conser-

vation

p+ q + r = 0 , (1.1)

that allows us to express the scalar products of p, q and r in terms of squares of

momenta, such as

p ·q =
1

2
(−p2 − q2 + r2) ,

p ·r =
1

2
(−p2 + q2 − r2) ,

q ·r =
1

2
(p2 − q2 − r2) .

• Accordingly to the fact that all momenta are considered as incoming, the Fourier

transform is defined to be

F̃ (p) =

∫
d4x e−ip·xF (x) ,

F (x) =

∫
d4p

(2π)4
eip·xF̃ (p) . (1.2)
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Useful Fourier transforms, relevant for this paper, are listed in the appendix A.

• The powers of momenta are denoted as p2n ≡ (p2)n = (pµp
µ)n with n being the

integer.

• Spinor indices are denoted as small Latin letters (i, j, k, l). Color indices are de-

noted as small Greek letters (α, β, γ, δ). Flavor indices corresponding to the fun-

damental representation of the flavor group are denoted as capital Latin letters

(A,B,C,D). SU(3) indices of the adjoint representation are denoted as small Latin

letters (a, b, c, d).

• We use ε0123 = +1.

• A short-hand Veltman’s Schoonschip notation for the contractions of Levi-Civita

tensor with the components of momenta is used, for example εµνα(p) ≡ εµναβpβ or

εµν(p)(q) ≡ εµναβpαqβ . Similarly for the sigma tensor σαβ = i
2 [γα, γβ ] we denote

σ(p)µ ≡ σαµpα and σ(p)(q) ≡ σαβpαqβ .

• SU(3) generators T a are defined as T a = 1
2λ

a, with λa being the Gell-Mann matrices,

a = 1, . . . , 8. Such normalization implies that Tr(T aT b) = 1
2δ
ab.

• Symbols [•, •] and {•, •} stand for the commutator and anticommutator, respectively.

• The covariant derivative in the fundamental representation is taken to be

∇µ = ∂µ + igsAµ , (1.3)

where Aµ = AaµT a is the gluon field.

• The commutator of these derivatives gives the gluon field strength tensor,

[∇µ,∇ν ] = igsGµν , (1.4)

with Gµν = GaµνT
a given as

Gµν = ∂µAν − ∂νAµ + igs[Aµ,Aν ] ,

Gaµν = ∂µAaν − ∂νAaµ − gsfabcAbµAcν , (1.5)

where fabc is the SU(3) structure constant, see eq. (2.8).

• The chiral limit is considered throughout the paper.
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2 Green functions of chiral currents

The Green functions are defined as the vacuum expectation values of the time ordered

products of the composite local operators. The standard definition of the n-point correlator

reads1

ΠO1...On(p1, . . . , pn−1; pn) (2.1)

=

∫
d4x1 . . . d

4xn−1 e
−i(p1·x1+...+pn−1·xn−1)

〈
0
∣∣TO1(x1) . . .On−1(xn−1)On(0)

∣∣0〉 ,
where the object on the left-hand side is the Green function in the momentum represen-

tation, which is obtained by performing Fourier transform on the Green function in the

coordinate representation. Therefore, the mass dimension of ΠO1...On is

[ΠO1...On ] =

n∑
i=1

[Oi]− 4(n− 1) , (2.2)

where [Oi] are the mass dimensions of the operators Oi. In what follows, for all the relevant

composite operators we have [Oi] = 3 and thus [ΠO1...On ] = 4−n. Therefore, the two-point

and the three-point Green functions have the mass dimensions of two and one, respectively.

On the right hand side of (2.1), T stands for the time-ordering and all the indices are

suppressed in (2.1) for simplicity. The translation invariance was used to set the coordi-

nate of the nth operator into the origin. As we will see in subsection 3.6, the translation

invariance of the Green function may not always be apparent, so it is always useful to check

whether such a requirement is satisfied. For this reason, we always take all the operators

to be at nonzero space-time points in the intermediate stages of our calculations.

In our case, denoting q(x) as the triplet of the lightest quarks,

q = (u, d, s)T , (2.3)

we consider the local composite operators in (2.1) to be represented by the octets of the

chiral vector V a
µ (x) = q(x)γµT

aq(x) and axial-vector Aaµ(x) = q(x)γµγ5T
aq(x) currents

and scalar Sa(x) = q(x)T aq(x) and pseudoscalar P a(x) = iq(x)γ5T
aq(x) densities.

These chiral currents and densities can be rewritten generally as2

Oa1(x) = qAi,α(x)(Γ1)ik(T
a)ABqBk,α(x) , (2.4)

where the spin matrix Γ1 denotes the unit and the Dirac matrices, Γ1 ∈ (1, γµ, iγ5, γµγ5).
3

We have also explicitly written out the spinor (i, k), flavor (A, B) and color (α) indices of

the quark fields and the flavor matrix T a. According to the notation presented above, we

1In our case, the symbol |0〉 stands for the nonperturbative QCD vacuum. For clarity, however, we will

omit showing the vacuum state from now on, i.e. we symbolically define 〈0| • |0〉 ≡ 〈•〉.
2In various literature, the operators of the form (2.4) are generally called the Dirac or QCD currents.

Here we call these objects currents for Γ = γµ, γµγ5 and densities for Γ = 1, iγ5.
3In our work we do not discuss the correlators involving the tensor current T aµν(x) = q(x)σµνT

aq(x)

since it is not usually considered in χPT and RχT Lagrangians. Note that the inclusion of such currents

would increase the number of Green functions with very complicated tensor decomposition.
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associate the momentum p to the operator (2.4), since it is evaluated at space-time point

x and carries the flavor index a. Similarly, we associate momenta q and r = −(p+ q) with

the operators Ob2(y) and Oc3(z), respectively.

2.1 Classification

Formally, one can arrange 20 different combinations of three composite operators selected

from the currents V and A and the densities S and P . However, the Lorentz covariance

and invariance of QCD with respect to parity and/or time reversal forbid the existence of

some of the combinations. Specifically, the correlators 〈SSP 〉, 〈PPP 〉, 〈V SP 〉, 〈ASS〉 and

〈APP 〉 are not allowed to exist in QCD.4

Considering the relevant 15 Green functions, we introduce a simple division of the

correlators into two sets. Such division will be useful later when it comes to a study of the

respective QCD condensates contributions, since all the correlators of the specific set have,

in the chiral limit, nonvanishing contribution from the same QCD condensates.

The classification is as follows:

• Set 1: The correlators with the perturbative contribution in the chiral limit:

– 〈ASP 〉, 〈V SS〉, 〈V PP 〉, 〈V V A〉, 〈AAA〉, 〈AAV 〉, 〈V V V 〉.

• Set 2: The correlators that are the order parameters of the chiral symmetry breaking

in the chiral limit:

– 〈SSS〉, 〈SPP 〉, 〈V V P 〉, 〈AAP 〉, 〈V AS〉, 〈V V S〉, 〈AAS〉, 〈V AP 〉.

As indicated, the first set consists of the correlators that have the lowest possible con-

tribution to the OPE. On the other hand, the latter set consists of the order parameters

of the chiral symmetry breaking, and their OPE expansion thus starts with the nonpertur-

bative contribution from the quark condensate.

To be precise, appropriate combinations of the correlators of the Set 1 also make up

the order parameters. Specifically, these are as follows: 〈V SS〉 − 〈V PP 〉 and 〈AAV 〉 −
〈V V V 〉. On the other hand, 〈V V A〉 − 〈AAA〉 is not the order parameter. Neither are the

combinations of 〈ASP 〉−〈V SS〉 and 〈ASP 〉−〈V PP 〉, due to the different flavor structures.

Before we advance, let us briefly remind some basic properties of all the relevant

Green functions. In the following subsections, we present a short review of the chiral Ward

identities that allow us to establish the tensor decompositions of the correlators.

2.2 Chiral Ward identities

The Green functions are connected through the chiral Ward identities that reflect the sym-

metry properties of a given theory on the quantum level. The knowledge of the identities

allows us to determine the structure of the Green functions.
4Due to parity the respective decomposition would contain the Levi-Civita tensor. Note also that 〈SSP 〉

and 〈PPP 〉 correlators do not carry any Lorentz indices while 〈V SP 〉, 〈ASS〉 and 〈APP 〉 carry just one.

Therefore, in none of these cases we would be able to obtain the nontrivial Lorentz structure since there

is no way to saturate four indices of the Levi-Civita tensor by contractions with only two independent

momenta. Thus the non-existence of these correlators is valid also beyond the chiral limit.
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Let us take the definition (2.1), restrict ourselves only to the three-point Green func-

tions, i.e. take n = 3, and label the first operator O1(x1) as Oµ1 (x) for now. Then, for

the three-point Green functions in the chiral limit in the x-representation, the chiral Ward

identity can be expressed as5

∂xµ
〈
TOµ1 (x)O2(y)O3(z)

〉
= δ(x0 − y0)

〈
T[O0

1(x),O2(y)]O3(z)
〉

+ δ(x0 − z0)
〈
TO2(y)[O0

1(x),O3(z)]
〉

+ anomaly . (2.5)

To evaluate the chiral Ward identities, it is necessary to know the equal-time commuta-

tion relations among the currents V , A and the densities S, P . Since we are interested only

in the nonsinglet currents and densities in this paper, we omit the contributions from the

singlet ones. We also omit the contributions of the Schwinger terms [34], since we tacitly

assume that the covariant T -product is used instead of the naive one in the definition of

the Green functions [35].6 Then, the commutators of the vector and axial-vector currents

are as follows:

[V a
0 (t,x), V b

µ (t,y)] = [Aa0(t,x), Abµ(t,y)] = iδ3(x− y)fabcV c
µ (t,x) ,

[V a
0 (t,x), Abµ(t,y)] = [Aa0(t,x), V b

µ (t,y)] = iδ3(x− y)fabcAcµ(t,x) , (2.6)

with x, y being the space coordinates. Similarly, the commutators of the vector or axial-

vector currents and the scalar or pseudoscalar densities read

[V a
0 (t,x), Sb(t,y)] = iδ3(x− y)fabcSc(t,x) ,

[V a
0 (t,x), P b(t,y)] = iδ3(x− y)fabcP c(t,x) ,

[Aa0(t,x), Sb(t,y)] = iδ3(x− y)dabcP c(t,x) ,

[Aa0(t,x), P b(t,y)] =− iδ3(x− y)dabcSc(t,x) . (2.7)

In the previous expressions (2.6)–(2.7), fabc is a totally antisymmetric SU(3) structure

constant and dabc is totally symmetric SU(3) group invariant:

fabc =− 2iTr
(
[T a, T b]T c

)
, (2.8)

dabc = 2 Tr
(
{T a, T b}T c

)
.

Using the commutation relations above and performing the Fourier transform of (2.5),

we are able to obtain the respective Ward identities in the momentum representation for

all the Green functions. The results are shortly summarized below.

2.2.1 Green functions of Set 1

As we have seen, the Ward identities of three-point Green functions give us the right-hand

side of these identities in terms of two-point Green functions. For this reason, we refer

the reader to the appendix D, where the definitions and decompositions (D.1a)–(D.2) of

two-point correlators are presented.

5Generally, there should also be another term with a divergence of the Noether current present in (2.5).

However, in the chiral limit, the nonsinglet currents are conserved, i.e. ∂µV aµ = 0 and ∂µAaµ = 0.
6For pedagogical review and further references see also [36, 37]).
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In what follows, we start with the Green functions that belong to the Set 1.

〈ASP 〉, 〈V SS〉 and 〈V PP 〉 Green functions. One immediately finds out that the

right-hand sides of the Ward identities of these correlators are proportional to two-point

Green functions 〈SS〉 and 〈PP 〉. Specifically, we have

pµ
[
ΠASP (p, q; r)

]abc
µ

=
(

ΠPP (r2)−ΠSS(q2)
)
dabc ,

pµ
[
ΠV SS(p, q; r)

]abc
µ

=
(

ΠSS(r2)−ΠSS(q2)
)
fabc ,

pµ
[
ΠV PP (p, q; r)

]abc
µ

=
(

ΠPP (r2)−ΠPP (q2)
)
fabc . (2.9)

〈V V A〉 and 〈AAA〉 Green functions. The correlators 〈V V A〉 and 〈AAA〉 are objects

of utmost importance due to the presence of the anomaly, which is of perturbative nature.

The respective Ward identities for 〈V V A〉 read, due to the violation of conservation

of the chiral axial-vector current on the quantum level,

pµ
[
ΠV V A(p, q; r)

]abc
µνρ

= 0 ,

qν
[
ΠV V A(p, q; r)

]abc
µνρ

= 0 ,

rρ
[
ΠV V A(p, q; r)

]abc
µνρ

=− iNc

8π2
εµν(p)(q)dabc . (2.10)

Similarly, for the 〈AAA〉 we have

pµ
[
ΠAAA(p, q; r)

]abc
µνρ

=− iNc

24π2
ενρ(p)(q)dabc ,

qν
[
ΠAAA(p, q; r)

]abc
µνρ

=
iNc

24π2
εµρ(p)(q)dabc ,

rρ
[
ΠAAA(p, q; r)

]abc
µνρ

=− iNc

24π2
εµν(p)(q)dabc . (2.11)

〈AAV 〉 and 〈V V V 〉 Green functions. The right-hand side of the Ward identities of

the 〈AAV 〉 and 〈V V V 〉 Green functions are proportional to 〈V V 〉 and 〈AA〉 correlators.

The specific forms are as follows:

pµ
[
ΠAAV (p, q; r)

]abc
µνρ

=
([

ΠV V (r)
]
νρ
−
[
ΠAA(q)

]
νρ

)
fabc ,

qν
[
ΠAAV (p, q; r)

]abc
µνρ

=
([

ΠAA(p)
]
µρ
−
[
ΠV V (r)

]
µρ

)
fabc ,

rρ
[
ΠAAV (p, q; r)

]abc
µνρ

=
([

ΠAA(q)
]
µν
−
[
ΠAA(p)

]
µν

)
fabc , (2.12)

and

pµ
[
ΠV V V (p, q; r)

]abc
µνρ

=
([

ΠV V (r)
]
νρ
−
[
ΠV V (q)

]
νρ

)
fabc ,

qν
[
ΠV V V (p, q; r)

]abc
µνρ

=
([

ΠV V (p)
]
µρ
−
[
ΠV V (r)

]
µρ

)
fabc ,

rρ
[
ΠV V V (p, q; r)

]abc
µνρ

=
([

ΠV V (q)
]
µν
−
[
ΠV V (p)

]
µν

)
fabc . (2.13)

– 8 –
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2.2.2 Green functions of Set 2

Let us now focus on the correlators from the Set 2.

〈V V P 〉, 〈AAP 〉 and 〈V AS〉 Green functions. Right-hand sides of the Ward identi-

ties of the 〈V V P 〉, 〈AAP 〉 and 〈V AS〉Green functions vanish due to the forbidden existence

of the 〈V P 〉 and 〈AS〉 correlators. Therefore,7{
pµ, qν

}[
ΠV V P (p, q; r)

]abc
µν

=
{

0, 0
}
,{

pµ, qν
}[

ΠAAP (p, q; r)
]abc
µν

=
{

0, 0
}
,{

pµ, qν
}[

ΠV AS(p, q; r)
]abc
µν

=
{

0, 0
}
. (2.14)

〈V V S〉, 〈AAS〉 and 〈V AP 〉 Green functions. For the 〈V V S〉 Green function, its

Ward identities lead to the combinations of the 〈V S〉 correlators and vanish identically, too.

On the other hand, 〈AAS〉 and 〈V AP 〉 correlators are, within Ward identities, reduced to

the combinations of the 〈AP 〉 Green functions, which contribute nontrivially.

The respective Ward identities can be formally written down, according to (2.6)–(2.7),

as follows. The right-hand sides of the Ward identities for the 〈V V S〉 correlator vanish,{
pµ, qν

}[
ΠV V S(p, q; r)

]abc
µν

=
{

0, 0
}
, (2.15)

while for the 〈AAS〉 and 〈V AP 〉 we have8

pµ
[
ΠAAS(p, q; r)

]abc
µν

=
[
ΠAP (q)

]
ν
dabc = −〈qq〉

3q2
qνd

abc ,

qν
[
ΠAAS(p, q; r)

]abc
µν

=
[
ΠAP (p)

]
µ
dabc = −〈qq〉

3p2
pµd

abc ,

pµ
[
ΠV AP (p, q; r)

]abc
µν

=−
([

ΠAP (r)
]
ν

+
[
ΠAP (q)

]
ν

)
fabc =

〈qq〉
3

(
qν
q2

+
rν
r2

)
fabc ,

qν
[
ΠV AP (p, q; r)

]abc
µν

=
[
ΠAP (r)

]
µ
fabc = −〈qq〉

3r2
rµf

abc . (2.16)

As mentioned above, unlike for any other Green functions above, the Ward identities reduce

the correlators 〈AAS〉 and 〈V AP 〉 to a combination of 〈AP 〉. Since the 〈AP 〉 correlator

is saturated only by the Goldstone boson exchange, we have already substituted it in the

exact form (D.5) (see also (D.2) for notation).

2.3 Tensor decomposition

By knowing the Ward identities of the Green functions, one is able to construct the tensor

structures of such correlators, which helps us to present the results of the OPE in a compact

7Here and in (2.15), the curly brackets do not represent the anticommutator, of course, but a shortened

notation of writing down the Ward identities.
8The Ward identities (2.16) for the 〈AAS〉 and 〈V AP 〉 Green functions differ with the ones presented

in [27] (eq. (4.12), page no. 12) or [38] (eq. (3), page no. 3) either due to the different normalization of

the quark condensate or due to the various normalization or conventional factors in the definitions of the

correlators or the chiral currents/densities. See the end of subsection 5.2 for details.
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form. Generally, one may start writing down a complete basis of relevant tensors and then

separate the tensor structure into a transversal and longitudinal part, which is fixed by the

Ward identities. In our case, the results of the three-point Green functions are thus fixed

by the respective results for the two-point Green functions, presented in appendix D.

2.3.1 Green functions of Set 1

In what follows we present the tensor decomposition of the correlators of the Set 1.

〈ASP 〉, 〈V SS〉 and 〈V PP 〉 Green functions. The Lorentz structure of these Green

functions is easy to reproduce since the only available structure has to be made of momenta

with one Lorentz index. Upon assuming the Ward identities (2.9), it is straightforward to

write down the decompositions in the following forms:[
ΠASP (p, q; r)

]abc
µ

= dabc
[
ΠASP (p, q; r)

]
µ
,[

ΠV SS(p, q; r)
]abc
µ

= fabc
[
ΠV SS(p, q; r)

]
µ
,[

ΠV PP (p, q; r)
]abc
µ

= fabc
[
ΠV PP (p, q; r)

]
µ
, (2.17)

with the Lorentz parts given as[
ΠASP (p, q; r)

]
µ

= FASP (p2, q2, r2)Tµ(p, q; r) +
(

ΠPP (r2)−ΠSS(q2)
)pµ
p2
,[

ΠV SS(p, q; r)
]
µ

= FV SS(p2, q2, r2)Tµ(p, q; r) +
(

ΠSS(r2)−ΠSS(q2)
)pµ
p2
,[

ΠV PP (p, q; r)
]
µ

= FV PP (p2, q2, r2)Tµ(p, q; r) +
(

ΠPP (r2)−ΠPP (q2)
)pµ
p2
, (2.18)

where we have introduced the tensor Tµ,

Tµ(p, q; r) = qµ +
p2 + q2 − r2

2p2
pµ , (2.19)

with the property

pµTµ(p, q; r) = 0 .

The 〈V SS〉 and 〈V PP 〉 Green functions must be symmetric under the interchange of

(q, b)↔ (r, c) due to the Bose symmetry. Since the flavor factor of such correlators is anti-

symmetric, the Lorentz structures in (2.18) must be antisymmetric under such interchange,

too. This, however, leads to the conclusion that the respective invariant functions9 must

be symmetric under exchanging the momenta q and r,

FV SS(p2, q2, r2) = FV SS(p2, r2, q2) ,

FV PP (p2, q2, r2) = FV PP (p2, r2, q2) , (2.20)

due to the antisymmetricity of the tensor (2.19) in the last two arguments,

Tµ(p, q; r) = −Tµ(p, r; q) . (2.21)
9The Lorentz-invariant scalar coefficients, that make up the decompositions of the Green functions, will

be called simply as “invariant functions” from now on throughout the paper.
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〈V V A〉 and 〈AAA〉 Green functions. The 〈V V A〉 and 〈AAA〉 Green functions are re-

markable due to the presence of the chiral anomaly, as mentioned in the previous subsection.

The general form of these correlators can be written down, knowing (2.10) and (2.11), as[
ΠV V A(p, q; r)

]abc
µνρ

= dabc
[
ΠV V A(p, q; r)

]
µνρ

,[
ΠAAA(p, q; r)

]abc
µνρ

= dabc
[
ΠAAA(p, q; r)

]
µνρ

, (2.22)

where the Lorentz structures can be further decomposed into the longitudinal and transver-

sal parts, [
ΠV V A(p, q; r)

]
µνρ

=
[
Π

(L)
V V A(p, q; r)

]
µνρ

+
[
Π

(T )
V V A(p, q; r)

]
µνρ

,[
ΠAAA(p, q; r)

]
µνρ

=
[
Π

(L)
AAA(p, q; r)

]
µνρ

+
[
Π

(T )
AAA(p, q; r)

]
µνρ

, (2.23)

with the longitudinal components being fixed by the anomaly, i.e.[
Π

(L)
V V A(p, q; r)

]
µνρ

=− iNc

8π2r2
εµν(p)(q)rρ ,[

Π
(L)
AAA(p, q; r)

]
µνρ

= − iNc

24π2r2
εµν(p)(q)rρ +

iNc

24π2q2
εµρ(p)(q)qν − iNc

24π2p2
ενρ(p)(q)pµ . (2.24)

The transversal parts, on the other hand, are a bit more complicated. We write them

down as a sum of three terms,[
Π

(T )
V V A(p, q; r)

]
µνρ

= FV V A(p2, q2, r2)T (1)
µνρ(p, q; r) + GV V A(p2, q2, r2)T (2)

µνρ(p, q; r)

+HV V A(p2, q2, r2)T (3)
µνρ(p, q; r) ,[

Π
(T )
AAA(p, q; r)

]
µνρ

= FAAA(p2, q2, r2)T (4)
µνρ(p, q; r) + GAAA(p2, q2, r2)T (5)

µνρ(p, q; r)

+HAAA(p2, q2, r2)T (6)
µνρ(p, q; r) , (2.25)

where the respective tensors are given as10

T (1)
µνρ(p, q; r) = pνεµρ(p)(q) − qµενρ(p)(q) − p2 + q2 − r2

r2

(
εµν(p)(q)rρ − 1

2
r2εµνρ(p−q)

)
,

T (2)
µνρ(p, q; r) = εµν(p)(q)(p− q)ρ +

p2 − q2

r2
εµν(p)(q)rρ ,

T (3)
µνρ(p, q; r) = pνεµρ(p)(q) + qµενρ(p)(q) − p2 + q2 − r2

2
εµνρ(r) ,

T (4)
µνρ(p, q; r) = (p2 + q2 − r2)t(14)µνρ (p, q; r) + t(15)µνρ (p, q; r) ,

T (5)
µνρ(p, q; r) = (p2 − q2)t(13)µνρ (p, q; r)− (p2 + q2 − 2r2)t(14)µνρ (p, q; r) ,

T (6)
µνρ(p, q; r) =

1

3
(p2 + q2 − 2r2)t(13)µνρ (p, q; r) + (p2 − q2)t(14)µνρ (p, q; r) ,

where the tensors on the right hand sides of are defined in (E.21).

10To the best of our knowledge, the tensors for the 〈V V A〉 correlator were introduced for the first time

in [39]. The reader, however, should be aware of a different normalization with respect to ours, see eq. (2.1)

and (2.14) in ref. [39].
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The properties of the tensors above with respect to the Bose symmetries are given

in (E.20) and (E.26). As a result, the corresponding invariant functions satisfy the following

relations:

FV V A(p2, q2, r2) = FV V A(q2, p2, r2) ,

GV V A(p2, q2, r2) = −GV V A(q2, p2, r2) ,

HV V A(p2, q2, r2) = −HV V A(q2, p2, r2)

and

FAAA(p2, q2, r2) =−FAAA(q2, p2, r2) =−FAAA(r2, q2, p2) =−FAAA(p2, r2, q2) ,

GAAA(p2, q2, r2) =−GAAA(q2, p2, r2) =−GAAA(r2, q2, p2) =−GAAA(p2, r2, q2) ,

HAAA(p2, q2, r2) = HAAA(q2, p2, r2) = HAAA(r2, q2, p2) = HAAA(p2, r2, q2) . (2.26)

〈AAV 〉 and 〈V V V 〉 Green functions. The 〈AAV 〉 and 〈V V V 〉 Green functions have

a complicated structure made of momenta and the metric tensor and their Ward identities

include the 〈V V 〉 and 〈AA〉 Green functions. After separating the flavor and the Lorentz

structures, the decomposition of these correlators can be written as[
ΠAAV (p, q; r)

]abc
µνρ

= fabc
[
ΠAAV (p, q; r)

]
µνρ

,[
ΠV V V (p, q; r)

]abc
µνρ

= fabc
[
ΠV V V (p, q; r)

]
µνρ

. (2.27)

We once again separate the Lorentz parts into the longitudinal and transversal components

(see appendix F for a detailed derivation),[
ΠAAV (p, q; r)

]
µνρ

=
[
Π

(L)
AAV (p, q; r)

]
µνρ

+
[
Π

(T )
AAV (p, q; r)

]
µνρ

,[
ΠV V V (p, q; r)

]
µνρ

=
[
Π

(L)
V V V (p, q; r)

]
µνρ

+
[
Π

(T )
V V V (p, q; r)

]
µνρ

,

where the respective parts read[
Π

(L)
AAV (p, q; r)

]
µνρ

= ΠAA(p2)T (7)
µνρ(p, q; r)−ΠAA(q2)T (7)

νµρ(q, p; r)

−ΠV V (r2)T (7)
ρνµ(r, q; p) ,[

Π
(L)
V V V (p, q; r)

]
µνρ

= ΠV V (p2)T (7)
µνρ(p, q; r)−ΠV V (q2)T (7)

νµρ(q, p; r)

−ΠV V (r2)T (7)
ρνµ(r, q; p) ,

and[
Π

(T )
AAV (p, q; r)

]
µνρ

= FAAV (p2, q2, r2)T (8)
µνρ(p, q; r) + GAAV (p2, q2, r2)T (9)

µνρ(p, q; r)

+HAAV (p2, q2, r2)T (8)
νρµ(q, r; p)−HAAV (q2, p2, r2)T (8)

µρν(p, r; q) ,[
Π

(T )
V V V (p, q; r)

]
µνρ

= FV V V (p2, q2, r2)T (8)
µνρ(p, q; r) + FV V V (r2, p2, q2)T (8)

ρµν(r, p; q)

+ FV V V (q2, r2, p2)T (8)
νρµ(q, r; p) + GV V V (p2, q2, r2)T (9)

µνρ(p, q; r) ,
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with the tensors defined as

T (7)
µνρ(p, q; r) = −pνgµρ + pρgµν +

qρ
[
(p ·q)gµν − qµpν

]
− rν

[
(p ·r)gµρ − rµpρ

]
q ·r

,

T (8)
µνρ(p, q; r) = −

[
(p ·q)gµν − qµpν

][
(q ·r)pρ − (p ·r)qρ

]
(p ·r)(q ·r)

,

T (9)
µνρ(p, q; r) = −qµ

[
(p ·r)gνρ − rνpρ

]
+ gµν

[
(p ·r)qρ − (q ·r)pρ

]
+ rµ

[
(p ·q)gνρ − pνqρ

]
+ gµρ

[
(q ·r)pν − (p ·q)rν

]
.

We note that the invariant functions have the following symmetry properties:

FAAV (p2, q2, r2) = FAAV (q2, p2, r2) ,

GAAV (p2, q2, r2) = GAAV (q2, p2, r2) ,

FV V V (p2, q2, r2) = FV V V (q2, p2, r2) , (2.28)

while GV V V is fully symmetric in all of its arguments.

Since the decompositions (2.27) are given by the contributions (D.1a)–(D.1b) of the

two-point correlators, the 〈AAV 〉 Green function is entirely determined by three indepen-

dent invariant functions, while the 〈V V V 〉 is given only by two.

2.3.2 Green functions of Set 2

Now, we focus on the correlators that are the order parameters of the chiral symmetry

breaking in the chiral limit, i.e. on those that belong to the Set 2. Before we advance, let

us mention that some of these correlators have been studied in the past in various contexts,

see for example [27, 38, 40–44].

〈SSS〉 and 〈SPP 〉 Green functions. The first two Green functions, 〈SSS〉 and 〈SPP 〉
are zero-rank tensors with trivial Lorentz structure that can be written down in a simple

form [
ΠSSS(p, q; r)

]abc
= dabcFSSS(p2, q2, r2) ,[

ΠSPP (p, q; r)
]abc

= dabcFSPP (p2, q2, r2) . (2.29)

〈V V P 〉, 〈AAP 〉 and 〈V AS〉 Green functions. These three correlators belong to the

odd-intrinsic parity sector of QCD. Their Lorentz structure is thus given by the Levi-Civita

tensor with two indices contracted with external momenta. Similarly as above, these Green

functions can be written down as[
ΠV V P (p, q; r)

]abc
µν

= dabcFV V P (p2, q2, r2)εµν(p)(q) ,[
ΠAAP (p, q; r)

]abc
µν

= dabcFAAP (p2, q2, r2)εµν(p)(q) ,[
ΠV AS(p, q; r)

]abc
µν

= fabcFV AS(p2, q2, r2)εµν(p)(q) . (2.30)
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〈V V S〉, 〈AAS〉 and 〈V AP 〉 Green functions. Unlike in the previous case, these

Green functions belong to the even sector of QCD. Their structure is a little bit more

complicated and can be written down as[
ΠV V S(p, q; r)

]abc
µν

= dabc
[
ΠV V S(p, q; r)

]
µν
,[

ΠAAS(p, q; r)
]abc
µν

= dabc
[
ΠAAS(p, q; r)

]
µν
,[

ΠV AP (p, q; r)
]abc
µν

= fabc
[
ΠV AP (p, q; r)

]
µν
,

with[
ΠV V S(p, q; r)

]
µν

= FV V S(p2, q2, r2)T (1)
µν (p, q; r) + GV V S(p2, q2, r2)T (2)

µν (p, q; r) ,[
ΠAAS(p, q; r)

]
µν

= FAAS(p2, q2, r2)T (1)
µν (p, q; r) + GAAS(p2, q2, r2)T (2)

µν (p, q; r)

− 〈qq〉 pµqν
3p2q2

,[
ΠV AP (p, q; r)

]
µν

= FV AP (p2, q2, r2)T (1)
µν (p, q; r) + GV AP (p2, q2, r2)T (2)

µν (p, q; r)

+
〈qq〉
3r2

(
(pµ + 2qµ)qν

q2
− gµν

)
, (2.31)

where the respective tensors T (1)
µν and T (2)

µν ,

T (1)
µν (p, q; r) = qµpν +

1

2
(p2 + q2 − r2)gµν ,

T (2)
µν (p, q; r) = p2qµqν + q2pµpν +

1

2
(p2 + q2 − r2)pµqν − p2q2gµν , (2.32)

are transversal,

pµT (1)
µν (p, q; r) = pµT (2)

µν (p, q; r) = 0 ,

qνT (1)
µν (p, q; r) = qνT (2)

µν (p, q; r) = 0 ,

and symmetrical upon exchanging (p, µ)↔ (q, ν),

T (1)
µν (p, q; r) = T (1)

νµ (q, p; r) ,

T (2)
µν (p, q; r) = T (2)

νµ (q, p; r) . (2.33)

The symmetricity (2.33) of the tensors (2.32) directly implies that the respective in-

variant functions of the 〈V V S〉 and 〈AAS〉 correlators are symmetrical in the first two

arguments,

FV V S(p2, q2, r2) = FV V S(q2, p2, r2) ,

GV V S(p2, q2, r2) = GV V S(q2, p2, r2) , (2.34)

and similarly for 〈AAS〉

FAAS(p2, q2, r2) = FAAS(q2, p2, r2) ,

GAAS(p2, q2, r2) = GAAS(q2, p2, r2) . (2.35)

– 14 –



J
H
E
P
1
0
(
2
0
2
0
)
1
4
2

As we have already mentioned, the terms proportional to the quark condensate in

〈AAS〉 and 〈V AP 〉 (2.31) are present there due to the requirement of satisfying the Ward

identities (2.16) that are fixed by the contribution of the 〈AP 〉 correlator. See appendix D.2

for details.

3 Operator product expansion and QCD condensates

Regarding the study of the correlators above, there are two regimes where the QCD dy-

namics of the current correlators is well understood. The first one is that of low external

momenta where the dynamics is governed by means of χPT. The second one corresponds

to the high energies where the asymptotic freedom allows us to use the perturbative ap-

proach in terms of the strong coupling constant αs and the asymptotics of the correlators

for large euclidean momenta is given by the operator product expansion [45].

3.1 Operator product expansion

Within the framework of the operator product expansion (OPE), short-distance behaviour

of the Green functions can be studied. Since we are interested in the three-point correlators,

let us consider a product of three gauge-invariant composite operators, Oa1(x)Ob2(y)Oc3(z).

Then, if the coordinates of these operators are close to each other, the OPE allows us to

rewrite such a product as a (possibly infinite) sum of gauge-invariant local operators, made

of quark and gluon fields, with c-number Wilson coefficients. The vacuum averages of

these local operators are purely nonperturbative parameters, called the QCD condensates.

Their numerical values cannot be calculated directly from first principles. They need to be

obtained by other means, such as using calculations in the lattice QCD or extracting them

from experimental measurements.

3.2 QCD condensates

If we consider an OPE of the Green functions in terms of the QCD condensates up to

and including dimension 6 without derivative terms, an arbitrary three-point correlator in

massless theory can be written down as follows:

ΠOa1Ob2Oc3
(λp, λq;λr)

λ→∞−−−→ λC1
Oa1Ob2Oc3

(p, q; r) (3.1a)

+
1

λ2
C
〈qq〉
Oa1Ob2Oc3

(p, q; r)〈qq〉 (3.1b)

+
1

λ3
C
〈G2〉
Oa1Ob2Oc3

(p, q; r)〈GaµνGµν,a〉 (3.1c)

+
1

λ4
C
〈qσ·Gq〉
Oa1Ob2Oc3

(p, q; r)〈qσµνGµνq〉 (3.1d)

+
1

λ5
C
〈qq〉2
Oa1Ob2Oc3

(p, q; r)〈(qXq)(qXq)〉+ . . . , (3.1e)

where the first term corresponds to the perturbative contribution (D = 0) and the subse-

quent ones stand for the contributions of the quark (D = 3), gluon (D = 4), quark-gluon

(D = 5) and four-quark (D = 6) condensates, with the respective canonical dimension
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shown in the bracket. We do not consider contributions of higher-dimensional (D > 6)

condensates in this work.

Similarly to the four-quark condensate, there is also another QCD condensate with

D = 6, the three-gluon condensate 〈Ga,νµ Gb,σν Gc,µσ 〉fabc. For simplicity, we intentionally

omit this contribution in this paper because we will cover this topic in detail in our future

work. Moreover, it is assumed that such contribution vanishes in the chiral limit for any

two-point Green function of quark-bilinear currents [46, 47].

The Wilson coefficients, denoted as CIOa1Ob2Oc3
(p, q; r) in (3.1a)–(3.1e), contain all the

information about short-distance physics, i.e. the dynamics above some scale µ, and are

calculable in perturbative QCD by means of the technique of Feynman diagrams. They

are labeled by the upper index I = 1, 〈qq〉, . . . , symbolizing which QCD condensate con-

tribution they belong to.

In (3.1e), X stands for any combination of the basis of 4×4 matrices (1,γµ, γ5, γµγ5, σµν)

with the basis of 3 × 3 matrices (1, T a), that preserves the Lorentz invariance of the four-

quark condensate.

The four-quark condensate is of particular interest for us, and not only based on the

fact that evaluation of its contribution to the Green functions is the most complicated of

all the cases. It is a vacuum averaged value of a dimension-six operator, constructed of

four quark fields, which can be written down in the schematic form

〈(qXq)(qXq)〉 . (3.2)

According to (3.2), there are several types of four-quark condensates that differ in

the present matrix structure. However, within the approximation scheme, based on the

assumption of the dominance of intermediate vacuum states in the large Nc limit, the matrix

elements (3.2) can be further simplified in terms of squares of the quark condensate. In

detail, having explicitly written down the spinor, color and flavor indices of the quark fields,

the factorization hypothesis says that at large-Nc limit, a general four-quark condensate

can be rewritten as [48]〈
qAi,αq

B
j,βq

C
k,γq

D
l,δ

〉
=
〈qq〉2

24 · 34
(
δijδklδαβδγδδ

ABδCD − δilδjkδαδδβγδADδBC
)
, (3.3)

which follows from the normalization of the quark condensate (see (3.9a) or (5.1)).

Assuming the special case of X in (3.2) being the combination of the 4 × 4 matrices,

Γ ∈ (1, γµ, γ5, γµγ5, σµν), and the Gell-Mann matrices T a, the formula (3.3) above allows

us to write down the general four-quark condensate (3.2) simply as〈
(q ΓT aq)(q ΓT aq)

〉
= − 〈qq〉

2

22 · 33
Tr
[
Γ2
]
, (3.4)

which we can illustratively evaluate for various matrices Γ as

〈
(q ΓT aq)(q ΓT aq)

〉
= − 〈qq〉

2

22 · 33
×



22 for Γ = 1 , (3.5a)

24 for Γ = γµ , (3.5b)

22 for Γ = γ5 , (3.5c)

−24 for Γ = γµγ5 , (3.5d)

24 · 3 for Γ = σµν , (3.5e)
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however, in our case, only the relation (3.5b) will be needed in further calculations, i.e.

〈
(qγµT

aq)(qγµT aq)
〉

= −22

33
〈qq〉2 . (3.6)

We note that a similar formula to ours (3.4) can be also found in ref. [48] (see eq. (6.15),

page no. 432) or in ref. [49] (see eq. (1.7), page no. 708). However, notice that the authors

of [49] use a different normalization since they assume the SU(3) symmetry to be broken

and, therefore, do not consider the flavor indices.

That said, any of our results (3.5a)–(3.5e) for the four-quark condensates are smaller

by a factor of three with respect to the results found in any literature, which considers the

quark field to be single flavor. For example, compare (3.5a), (3.5b), (3.5c) and (3.5e) with

eq. (4.8), page no. 715; eq. (4.4a), page no. 712; eq. (5.2), page no. 719 and eq. (4.4b), page

no. 712 in ref. [49], respectively. See also [50].

3.3 Fock-Schwinger gauge

In the paragraphs above, we have mentioned that QCD condensates are, among other

properties, the vacuum expectation values of local operators. However, while calculating

the contributions of the condensates by the means of the corresponding Feynman diagrams,

one does not necessarily obtain the local condensate immediately since the quark or gluon

fields are, generally, in different space-time points.

Thus, one is obligated to expand the quark or gluon fields into the Taylor series around

the origin, project out the Lorentz structure and form the local condensate, where all the

fields forming the condensate are already in the same space-time point. To this end,

a suitable framework for such manipulations with quark and gluon fields is the Fock-

Schwinger gauge [51, 52].

By denoting Aaµ(x) as the gluon field,11 the Fock-Schwinger gauge corresponds to the

choice

(x− x0)µAaµ(x) = 0 , (3.7)

where x0 is an arbitrary fixed space-time point. Therefore the Fock-Schwinger gauge (3.7)

violates the translation invariance. Since any gauge-invariant quantity must be independent

of x0, cancellation of x0-dependent terms and the restoration of translation invariance,

serves as a validity check of the calculations. However, due to algebraical difficulties, it is

often considered the special case of the four-vector x0 having all the components zero, i.e.

x0 = 0, which we will employ throughout the paper, too. Using the Fock-Schwinger gauge

with such a choice, it is possible to obtain the following expressions for the expansion of

the quark and gluon fields, given in terms evaluated at the origin (cf. appendix B):

q(x) = q(0) + xµ∇µq(0) +
1

2
xµxν∇µ∇νq(0) +

1

6
xµxνxρ∇µ∇ν∇ρq(0) + . . . ,

Aµ(x) =
1

2
xνGνµ(0) +

1

3
xρxνDρGνµ(0) +

1

8
xρxσxνDρDσGνµ(0) + . . . , (3.8)

11We alert the reader not to mix up the gluon field Aaµ(x) with the axial-vector current Aaµ(x).
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where the covariant derivatives in the fundamental and in the adjoint representations are

defined as (1.3) and (C.3), respectively. In (3.8) we have intentionally suppressed all the

relevant spinor, color and flavor indices.

3.4 Propagation of nonlocal condensates

Using the Fock-Schwinger gauge, one can thus obtain expressions that convert the nonlocal

condensates into local ones. For the case of the topic studied in this paper, we have

derived the following propagation formulas for the nonlocal quark, gluon and quark-gluon

condensates, that are necessary to obtain the contributions of the local QCD condensates

up to dimension six and up to O(αs) in the chiral limit:12

〈
qAi,α(x)qBk,β(y)

〉
=

(
〈qq〉

22 · 32
δik −

gs〈qσ ·Gq〉
25 · 32

[
F 〈qq〉(x, y)

]
ki

+
iπαs〈qq〉2

23 · 37
[
G〈qq〉(x, y)

]
ki

+ . . .

)
δαβδ

AB , (3.9a)

αs
〈
Aaµ(x)Abν(y)

〉
=
αs〈G2〉
27 · 3

H〈G
2〉

µν (x, y)δab + . . . , (3.9b)

gs
〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉
=

(
gs〈qσ ·Gq〉

27 · 32
[
F 〈qAq〉µ (x, u, y)

]
ki

+
παs〈qq〉2

23 · 35
[
G〈qAq〉µ (x, u, y)

]
ki

+ . . .

)
(T a)βαδ

AB . (3.9c)

In these formulas the normal ordering of the operator products is tacitly assumed, for

details see [53, 55].13 We have also assumed the validity of the dominance of an interme-

diate vacuum states in the large Nc limit (3.3) when evaluating the propagation formulas

proportional to the four-quark condensate.

As can be seen from above, the nonlocal quark condensates propagates itself as the

local quark, quark-gluon and four-quark condensates and the respective functions in (3.9a),

that collect the coordinate dependence, read

F 〈qq〉(x, y) =
1

2
(x− y)2 +

i

3
σ(x)(y) , (3.10a)

G〈qq〉(x, y) = 4(x · y)(/x− /y)− (x2 − y2)(/x+ /y) . (3.10b)

The propagation of the nonlocal gluon condensate is straightforward since the only

relevant term is the local gluon condensate, with the corresponding function H
〈G2〉
µν (x, y)

in (3.9b) in the form

H〈G
2〉

µν (x, y) = (x ·y)gµν − yµxν . (3.11)

12A note about the terminology is in order here. We call the origin of the local QCD condensates on the

right-hand side of (3.9a)–(3.9c) as the “propagation of the nonlocal condensates”, similarly as in [53]. In

some literature, these formulas are also called “multiple expansion” or simply “projection” [54].
13Since our calculations are restricted to the tree-level, the normal ordering is sufficient for renormalization

of the operator products.
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= + + +
. . .

Figure 1. A graphical illustration of the propagation formula (3.9a). The black line stands for

the quark line and the bold dot on its end represents the quark field that goes between the vacuum

states. The curly line stands for the gluon field, if such line has a bold dot on its end, it represents the

gluon field that goes between the vacuum states. The symbol ⊗ stands for insertion of the current

and the grey blob means any possible couplings to other currents or the quark-gluon vertices. On

the left-hand side, the brackets around the quark fields mean averaging over them according to

the formula (3.9a), while on the right-hand side, the oval over the respective quark or gluon fields

means a creation of the local condensates.

= + +
. . .

Figure 2. A graphical illustration of the propagation formula (3.9c). The notation corresponds to

the one already explained in figure 1.

Finally, the nonlocal quark-gluon condensate propagates as the local quark-gluon and

four-quark condensates, with the functions in (3.9c) given as

F 〈qAq〉µ (x,u,y) =σ(u)µ , (3.12a)

G〈qAq〉µ (x,u,y) =
1

6
γµ
[
3u·(x+y)−4u2

]
+

1

6
/u
[
4uµ−3(x+y)µ

]
− i

2
εµ(x−y)(u)αγαγ5 . (3.12b)

The propagation formulas (3.9a)–(3.9c) are graphically illustrated at figure 1 and

figure 2.

3.5 Comparison with literature

In the literature, the formulas (3.9a)–(3.9c) are often presented with one of the coordinates

set into the origin. Recovering the general structure for all coordinates to be nonzero is not

trivial, since the Fock-Schwinger gauge prevents us from simply shifting the coordinates.

Also, some of the sources in the literature present formulas, equivalent to (3.9a)–(3.9c),

with several typos. Here we try to list such misprints for readers’ convenience.

Of course, due to the loss of information when setting one of the coordinates to zero,

one is not able to sufficiently check the validity of our formulas, however, one may at least

try to verify whether the numerical factors are in agreement.
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First of all, we explicitly write out the flavor indices when expanding the quark fields.

The propagation formulas (3.9a)–(3.9c) contain two quark fields between the vacuum states,

so the flavor factor present in such expressions is 1
3δ
AB. On the other hand, most of the

literature does not consider these indices explicitly. Thus, when comparing our formulas

to the literature, one should be careful whether it is necessary to multiply the relevant

propagation formulas with a factor of 3 and scratch the δAB. Then, the comparison can

be made quite easily.

Since the comparison with the known results is of utmost importance, due to the

frequent typos or inconsistencies found in the literature, we pay special care to it in the

following paragraphs. Let us emphasize that the comparison of our formulas with the

literature is provided upon consideration that all the results have been rewritten into such

forms that the respective indices and coordinates are the same as ours. Only then the

comparison is performed.

Propagation formula (3.9a). Let us start with the propagation of the nonlocal quark

condensate, specifically with the first term of such propagation,〈
qAi,α(x)qBk,β(y)

〉
3 1

22 · 32
〈qq〉δikδαβδAB . (3.13)

Since the derivation of the local quark condensate is straightforward, we only stress

that omitting the flavor indices leads to the difference in the normalization, since the factor

becomes greater by the factor of three. This fact further propagates itself, especially into

the evaluation of the four-quark condensate within the factorization approximation. As

an example of literature where the flavor indices are omitted, we mention [54] (eq. (A5),

page no. 1596), [56] (eq. (2), page no. 3537) or [57] (eq. (10), page no. 186). Also, see [58]

(eq. (6.227), page no. 255) and [53] (eq. (28.15), page no. 301).

The part of (3.9a) proportional to the quark-gluon condensate reads

〈
qAi,α(x)qBk,β(y)

〉
3 −gs〈qσ ·Gq〉

25 · 32

[
1

2
(x− y)2 +

i

3
σ(x)(y)

]
ki

δαβδ
AB , (3.14)

which is in an agreement with ref. [54] (eq. (A45), page no. 1600), [56] (eq. (2), page

no. 3537) and [57] (eq. (10), page no. 186), where the authors consider both coordinates of

the quark fields to be nonzero.14 However, the authors use a different sign convention for

the covariant derivative in the fundamental representation, which makes for a difference in

an overall sign.

On the other hand, one-coordinate version of the formula above, for y = 0, coincides

with the one given by Ioffe et al. in [58] (eq. (6.227), page no. 255) but differs by a factor

of igs with the expression presented by Narison in [53] (eq. (28.15), page no. 301).

The one-coordinate version of (3.9a) for the propagation of the four-quark condensate,

〈
qAi,α(x)qBk,β(0)

〉
3 −iπαs〈qq〉

2

23 · 37
x2
(
/x
)
ki
δαβδ

AB , (3.15)

14Notice that eq. (2) at page no. 3537 in [56] lacks a factor of 1
3

in comparison with eq. (A45), page

no. 1600 in [54], where the authors suppress the factor of 1
3
δαβ intentionally.
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differs from the expression presented by Ioffe et al. in ref. [58] (eq. (6.227), page no. 255)

by a factor of four. However, we are in an agreement with the formula given by Narison

in ref. [53] (eq. (28.15), page no. 301). Once again, we remind the reader that also the

difference in the normalization of the four-quark condensate (3.6) has been taken into

account while comparing this part.

Propagation formula (3.9b). The formula (3.9b) for converting the vacuum value of

two gluon fields into the gluon condensate is trivial, can be easily derived and has been

presented in the literature many times already. See for example [59], eq. (65) at page

no. 165, or [53], eq. (28.12), page no. 300.

Propagation formula (3.9c). The propagation formula (3.9c) for the nonlocal quark-

gluon condensate reads

gs
〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉
3 gs〈qσ ·Gq〉

27 · 32
(
σ(u)µ

)
ki

(T a)βαδ
AB , (3.16)

which is in an agreement with [54], eq. (A75) at page no. 1603, and also with Narison [53]

(eq. (28.16) at page no. 301), after contracting the formula with the color part.

Finally, setting y = 0, the part of (3.9c), relevant for the propagation of the four-quark

condensate, is

gs
〈
qAi,α(x)Aaµ(u)qBk,β(0)

〉
3 παs〈qq〉2

23 ·35

×
(

1

6
γµ(3u·x−4u2)+

1

6
/u(4uµ−3xµ)− i

2
εµ(x)(u)αγαγ5

)
ki

(T a)βαδ
AB , (3.17)

which differs from Narison [53] (eq. (28.16), page no. 301) by an overall sign and a factor

in front of the Levi-Civita tensor, provided we take into account (3.6).

3.6 Translation invariance

As we have already stressed out in the subsection 3.3, although the Fock-Schwinger gauge

violates translation invariance, the final result of any calculation, obtained within this

gauge, must be translation invariant. One thus has to make sure and verify that the whole

contribution is indeed translation invariant after all the possible contributing diagrams (and

their respective permutations) are accounted for. If this is the case, translation invariance

allows us to make a shift by, say, the z-coordinate in all arguments, which finally allows us

to set z = 0, i.e.

ΠOa1Ob2Oc3
(x, y, z) = ΠOa1Ob2Oc3

(x− z, y − z, 0)
(z=0)
≡ ΠOa1Ob2Oc3

(x, y) . (3.18)

As outlined in the formula above, the translation invariance simplifies the Fourier transform

because one thus integrates over only two coordinates, instead of three. This also allows

us to overcome various difficulties related to derivatives of the delta function.

In our case, the Fock-Schwinger gauge is used to obtain the contributions of the gluon,

quark-gluon and four-quark condensates. The translation invariance of the respective final

results, i.e. the validity of (3.18), was carefully checked using a computer brute force for

such contributions throughout the paper and for all the Green functions, i.e. for all the

relevant combinations of the Dirac matrices. For details, see sections 6, 7 and 8.
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Figure 3. Feynman diagram of the perturbative contribution to the three-point Green functions

at the leading order. The addition of the Bose-symmetrized diagram is tacitly assumed. Bose-

symmetrized contribution can be obtained by reverting the direction of the fermionic flow while

keeping the position of the inserted currents unchanged.

4 Perturbative contribution

4.1 General remarks

The perturbative contribution is the lowest possible contribution to the OPE, denoted

as (3.1a). Formally, one could assign the unit operator as the respective QCD condensate

to this contribution. Then, in the case of three-point Green functions, such contribution is

given by a triangle diagram, with all the quark fields contracted.

The relevant contribution to the three-point Green functions in the leading order O(1),

depicted at figure 3, can be written down as15

Π1
Oa1Ob2Oc3

(p, q; r) = −Nc Tr[T aT bT c]

∫
d4`

(2π)4
Tr
[
Γ1S0(`)Γ2S0(`− q)Γ3S0(`+ p)

]
+
[
(Γ1, a, p)↔ (Γ2, b, q)

]
, (4.1)

where the minus sign in front of the integral sign is present there because of the closed

fermion loop and

S0(`) =
i

/̀
(4.2)

denotes the free massless fermion propagator.16

Before we present the results, let us briefly comment on integral evaluation in (4.1).

As it is common, we work in dimensional regularisation and perform the integration in

d = 4 − 2ε. As will be mentioned in particular cases later, this procedure often leads to

divergent terms. Specifically in our case, which corresponds to the MS scheme applied at

15For clarity, we will omit the specific designation of the unit operator 1 of the perturbative contribution

in (4.1) and in the subsequent results in subsection 4.2, however, we keep the symbol of this contribution

in the upper indices of the respective invariant functions, as shown in (3.1a).
16Including all the relevant indices, the massless quark propagator (4.2) reads

[
S0(`)

]AB
ik,αβ

=

(
i

/̀

)
ik

δαβδ
AB ≡

[
S0(`)

]
ik
δαβδ

AB ,

since the free propagator does not change the flavor nor the color of the propagating quark.
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one-loop level, it is useful to define the divergent term 1/ε̂ in the form17

1

ε̂
=

1

ε
− γE + ln(4π) , (4.3)

where γE = 0.577 . . . is the Euler-Mascheroni constant.

We also define the following quantities. The Passarino-Veltman function for a scalar

one-loop triangle integral with massless internal lines, C0(p
2, q2, r2; 0, 0, 0), is defined to be∫

d4`

(2π)4
1

(`− q)2`2(`+ p)2
=

i

(4π)2
C0(p

2, q2, r2; 0, 0, 0) , (4.4)

where the explicit form of the C0-function reads [60]

C0(p
2, q2, r2; 0, 0, 0) =

1

λ
1/2
K

[
Li2

(
p2 + q2 − r2 + λ

1/2
K

p2 + q2 − r2 − λ1/2K

)
− Li2

(
p2 + q2 − r2 − λ1/2K

p2 + q2 − r2 + λ
1/2
K

)

+Li2

(
p2 − q2 − r2 − λ1/2K

p2 − q2 − r2 + λ
1/2
K

)
− Li2

(
p2 − q2 − r2 + λ

1/2
K

p2 − q2 − r2 − λ1/2K

)

+Li2

(
p2 − q2 + r2 + λ

1/2
K

p2 − q2 + r2 − λ1/2K

)
− Li2

(
p2 − q2 + r2 − λ1/2K

p2 − q2 + r2 + λ
1/2
K

)]
,

with

λK ≡ λK(p2, q2, r2) = p4 + q4 + r4 − 2p2q2 − 2p2r2 − 2q2r2 (4.5)

being the fully symmetric Källén (triangle) function and Li2(x) the dilogarithm (also known

as Spence’s function), defined usually in the form

Li2(x) = −
∫ x

0

ln(1− u)

u
du . (4.6)

Treatment of the Dirac γ5 matrix plays an important role in the calculations of loop

integrals. Since we evaluated all the integrals shown below using the Mathematica tool

Package-X, we refer the reader for a detailed description to the refs. [30, 31]. Here we

only mention that we consider the naive implementation of the dimensional regularization,

where γ5 anticommutes with other Dirac matrices.

4.2 Results

In what follows, we present all the obtained results divided into three parts, based on the

similarity of the respective results. We introduce the following notation especially for this

subsection. We split the perturbative results, given in terms of the respective invariant

functions, into several parts,

P1(p2, q2, r2) = P1,(f)(p2, q2, r2) + P1,(C0)(p2, q2, r2)C0(p
2, q2, r2; 0, 0, 0)

+ P1,(p)(p2, q2, r2) log

(
p2

r2

)
+ P1,(q)(p2, q2, r2) log

(
q2

r2

)
+ P1,(µ)(p2, q2, r2)

[
1

ε̂
+ log

(
− µ2

r2

)]
, (4.7)

with P being symbolically the general invariant functions F , G or H of all the correlators.

17Beyond the one-loop level, it is useful to redefine the renormalization scale as µ2 → µ2 e
γE

4π
.
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In (4.7), the upper index (f) denotes the finite part while the indices (C0), (p) and (q)

stand for the terms proportional to the respective (di)logarithms. Finally, the index (µ)

represents the coefficient that is, at one-loop level, equal both to the local divergence 1/ε̂

and the µ-dependent logarithm log(−µ2/r2).

〈ASP 〉, 〈V SS〉 and 〈V PP 〉 Green functions. Although the correlators 〈ASP 〉,
〈V PP 〉 and 〈V SS〉 differ in the flavor structure, i.e. in the presence of the dabc and fabc

symbols, one can notice that in the naive implementation of the dimensional regularization,

due to the anticommuting γ5, the Lorentz structure of (4.1) is the same for all of these

correlators. In other words,[
Π1
ASP (p, q; r)

]
µ

=
[
Π1
V SS(p, q; r)

]
µ

=
[
Π1
V PP (p, q; r)

]
µ
. (4.8)

Since the two-point perturbative contributions of 〈SS〉 and 〈PP 〉 are the same,

see (D.14b), the respective invariant functions of the 〈ASP 〉, 〈V PP 〉 and 〈V SS〉 Green

functions in (2.18) are also the same, i.e.

F1
ASP (p2, q2, r2) = F1

V PP (p2, q2, r2) = F1
V SS(p2, q2, r2) , (4.9)

with the explicit result for the 〈ASP 〉 correlator in the form

F1,(f)
ASP (p2, q2, r2) =− iNc

4π2
,

F1,(C0)
ASP (p2, q2, r2) =− iNc

4π2λK
p2q2r2 ,

F1,(p)
ASP (p2, q2, r2) =

iNc

8π2λK
p2(p2 − q2 − r2) ,

F1,(q)
ASP (p2, q2, r2) =− iNc

8π2λK
q2(p2 − q2 + r2) ,

F1,(µ)
ASP (p2, q2, r2) =− iNc

8π2
. (4.10)

〈V V A〉 and 〈AAA〉 Green functions. The 〈V V A〉 triangle has been an object of

interest and utmost importance for decades. The reason is the presence of the axial anomaly

that has been studied for the first time in 1969 by seminal papers of Adler [61] and Bell

and Jackiw [62].

Having the perturbative contribution to the 〈V V A〉 calculated, one can evaluate the

〈AAA〉 in the similar way. One possible approach [63] consists of taking the cyclic permu-

tation of the Dirac matrices in (4.1) into account, which leads to the contribution given as

[
Π1
AAA(p, q; r)

]abc
µνρ

=
1

3

([
Π1
V V A(p, q; r)

]abc
µνρ

+
[
Π1
V V A(r, q; p)

]cba
ρνµ

+
[
Π1
V V A(p, r; q)

]acb
µρν

)
.

(4.11)

This parametrization ensures satisfaction of the Bose symmetry of the 〈AAA〉 triangle in

all the arguments and preserves the axial-vector Ward identities.
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Then, the perturbative contributions for the 〈V V A〉 Green function can be written

down as18

F1,(f)
V V A(p2, q2, r2) =

iNc

8π2λK
r2 ,

F1,(C0)
V V A (p2, q2, r2) =

iNc

8π2λ2K
r2

×
[
(p2 + q2)

(
r4 + (p2 − q2)2

)
− 2r2(p4 + q4 − p2q2)

]
,

F1,(p)
V V A(p2, q2, r2) =− iNc

16π2λ2K
(p2 − q2 − r2)(λK + 6p2r2) ,

F1,(q)
V V A(p2, q2, r2) =

iNc

16π2λ2K
(p2 − q2 + r2)(λK + 6q2r2) ,

F1,(µ)
V V A(p2, q2, r2) = 0 , (4.12)

G1,(f)
V V A(p2, q2, r2) =

iNc

8π2λK
(p2 − q2) ,

G1,(C0)
V V A (p2, q2, r2) =

iNc

8π2λ2K
(p2 − q2)r2(λK + 6p2q2) ,

G1,(p)
V V A(p2, q2, r2) =− iNc

16π2λ2K

×
(
r6 − r4(7p2 + q2) + r2(12p2q2 + 5p4 − q4) + (p2 − q2)2(p2 + q2)

)
,

G1,(q)
V V A(p2, q2, r2) =

iNc

16π2λ2K

×
(
r6 − r4(p2 + 7q2) + r2(12p2q2 − p4 + 5q4) + (p2 − q2)2(p2 + q2)

)
,

G1,(µ)
V V A(p2, q2, r2) = 0 , (4.13)

H1,(f)
V V A(p2, q2, r2) =− iNc

8π2λK
(p2 − q2) ,

H1,(C0)
V V A (p2, q2, r2) =− iNc

8π2λ2K
(p2 − q2)r2(λK + 6p2q2) ,

H1,(p)
V V A(p2, q2, r2) =

iNc

16π2λ2K

×
(
r6 − r4(7p2 + q2) + r2(12p2q2 + 5p4 − q4) + (p2 − q2)2(p2 + q2)

)
,

H1,(q)
V V A(p2, q2, r2) =− iNc

16π2λ2K

×
(
r6 − r4(p2 + 7q2) + r2(12p2q2 − p4 + 5q4) + (p2 − q2)2(p2 + q2)

)
,

H1,(µ)
V V A(p2, q2, r2) = 0 , (4.14)

18In the ref. [64], the perturbative contribution to the 〈V V A〉 Green function in the massless limit is

shown explicitly, and is in the form similar to ours. Although the authors do not consider a presence of

the SU(3) generators and use a different normalization, we agree on the results for the respective invariant

functions up to one term, which is, however, most likely a typo. See the third line in eq. (50) at page no. 15

in ref. [64].
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while for the 〈AAA〉 correlator we have

F1,(f)
AAA(p2, q2, r2) = F1,(C0)

AAA (p2, q2, r2) = F1,(p)
AAA(p2, q2, r2)

= F1,(q)
AAA(p2, q2, r2) = F1,(µ)

AAA (p2, q2, r2) = 0 (4.15)

and

G1,(f)
AAA(p2, q2, r2) =− iNc

16π2λK

(p2 − q2)(p2 − r2)(q2 − r2)
λK + p2(q2 + r2) + q2r2

,

G1,(C0)
AAA (p2, q2, r2) =− 3iNc

8π2λ2K

p2q2r2(p2 − q2)(p2 − r2)(q2 − r2)
λK + p2(q2 + r2) + q2r2

,

G1,(p)
AAA(p2, q2, r2) =

iNc

32π2λ2K

p2(q2 − r2)
λK + p2(q2 + r2) + q2r2

×
(
r6 − r4(p2 + 7q2)− r2(p4 − 24p2q2 + 7q4) + (p2 − q2)2(p2 + q2)

)
,

G1,(q)
AAA(p2, q2, r2) =− iNc

32π2λ2K

q2(p2 − r2)
λK + p2(q2 + r2) + q2r2

×
(
p6 − p4(q2 + 7r2)− p2(q4 − 24q2r2 + 7r4) + (q2 − r2)2(q2 + r2)

)
,

G1,(µ)
AAA(p2, q2, r2) = 0 , (4.16)

H1,(f)
AAA(p2, q2, r2) =

iNc

16π2λK

1

λK + p2(q2 + r2) + q2r2

×
[
p6 − (q2 + r2)

(
p4 − (q2 − r2)2

)
− p2(−3q2r2 + q4 + r4)

]
,

H1,(C0)
AAA (p2, q2, r2) =

3iNc

8π2λ2K

p2q2r2

λK + p2(q2 + r2) + q2r2

×
[
p6 − (q2 + r2)

(
p4 − (q2 − r2)2

)
− p2(−3q2r2 + q4 + r4)

]
,

H1,(p)
AAA(p2, q2, r2) =− 3iNc

32π2λ2K

p2

λK + p2(q2 + r2) + q2r2

×
[
− r8 + r6(3p2 − 4q2) + r4(−5p2q2 − 3p4 + 10q4)

+ (p2 − q2)
(
r2(9p2q2 + p4 + 4q4) + q2(p2 − q2)2

)]
,

H1,(q)
AAA(p2, q2, r2) =− 3iNc

32π2λ2K

q2

λK + p2(q2 + r2) + q2r2

×
[
− p8 + p6(3q2 − 4r2) + p4(−5q2r2 − 3q4 + 10r4)

+ (q2 − r2)
(
p2(9q2r2 + q4 + 4r4) + r2(q2 − r2)2

)]
,

H1,(µ)
AAA(p2, q2, r2) = 0 . (4.17)

〈AAV 〉 and 〈V V V 〉 Green functions. Since the 〈V V V 〉 Green function does not

contain any γ5 matrices, the integration over the loop momenta goes along familiar lines.

On the other hand, the 〈AAV 〉 triangle contains two γ5 matrices, however, these can

be eliminated without a change of the overall sign in the naive implementation of the
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dimensional regularization. Therefore, this triangle is thus simply reduced to the one of

the 〈V V V 〉 correlator, i.e.[
Π1
V V V (p, q; r)

]
µνρ

=
[
Π1
AAV (p, q; r)

]
µνρ

. (4.18)

Since the perturbative contribution to the two-point Green functions 〈V V 〉 and 〈AA〉
is the same, see (D.4a), the longitudinal parts of the 〈AAV 〉 and 〈V V V 〉 correlators (2.27)

are equal to each other, too. Then, obviously, (4.18) implies the equality of the respective

transversal parts of these three-point correlators. This fact, however, leads to a trivial

property of the 〈V V V 〉 invariant functions for the perturbative contribution, since they can

be expressed in the terms of the ones of the 〈AAV 〉. In detail, we find the following relations:

F1
V V V (p2, q2, r2) = F1

AAV (p2, q2, r2) ,

G1
V V V (p2, q2, r2) = G1

AAV (p2, q2, r2) . (4.19)

To present the perturbative results in a compact form, we once again employ here the

notation (4.7) and write down only the results for the 〈AAV 〉 correlator, due to (4.19).

The results are as follows:

F1,(f)
AAV (p2, q2, r2) =− iNc

72π2λ2K

×
(
−23r6(p2+q2)−17r2(p2+q2)(p2−q2)2

+5r4(3p2+q2)(p2+3q2)+11(p2−q2)4+14r8
)
,

F1,(C0)
AAV (p2, q2, r2) =− iNc

8π2λ3K
r2(p2−q2−r2)(p2−q2+r2)

×
(
−p4(6q4−3r4−q2r2)+p6(2q2−3r2)

+p2(q2−r2)(q2+r2)(2q2+r2)+p8+q2(q2−r2)3
)
,

F1,(p)
AAV (p2, q2, r2) =

iNc

48π2λ3K

×
(
−r12+6r2(p2−q2)3(7p2q2+2p4+q4)+(p2−q2)5(3p2+q2)

−2r10(8p2+3q2)+3r8(−2p2q2+11p4+11q4)

−r4(p2−q2)(−41p4q2+37p2q4+35p6+33q6)

+4r6(−14p4q2+10p2q4+p6−13q6)
)
,

F1,(q)
AAV (p2, q2, r2) =− iNc

48π2λ3K

×
(
−r4(p2−q2)(37p4q2−41p2q4+33p6+35q6)

+6r2(p2−q2)3(7p2q2+p4+2q4)+(p2−q2)5(p2+3q2)+r12

+4r6(−10p4q2+14p2q4+13p6−q6)

−3r8(−2p2q2+11p4+11q4)+2r10(3p2+8q2)
)
,

F1,(µ)
AAV (p2, q2, r2) =− iNc

24π2
, (4.20)
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G1,(f)
AAV (p2, q2, r2) =

5iNc

24π2λ2K
(p2−q2−r2)(p2+q2−r2)(p2−q2+r2) ,

G1,(C0)
AAV (p2, q2, r2) =

iNc

4π2λ3K

×
(
−4p8(q4+r4)+p10(q2+r2)+p6(q2+r2)(−7q2r2+6q4+6r4)

−p4(q2−r2)2(9q2r2+4q4+4r4)+p2(−q6r4−q4r6+q10+r10)

+q2r2(q2−r2)4
)
,

G1,(p)
AAV (p2, q2, r2) =− iNc

24π2λ3K

×
(
−5p8(q2+r2)−2p6(−20q2r2+9q4+9r4)+24p4(q2−r2)2(q2+r2)

−4p2(q2−r2)2(7q2r2+q4+r4)+6p10−3(q2−r2)4(q2+r2)
)
,

G1,(q)
AAV (p2, q2, r2) =

iNc

24π2λ3K

×
(
−(q2−r2)3(13q2r2+6q4+3r4)+6p4(4q4r2−8q2r4+3q6+r6)

+p2(q2−r2)(−35q4r2−11q2r4+5q6+9r6)+3p10

+2p6(−12q4+3r4+10q2r2)+p8(4q2−9r2)
)
,

G1,(µ)
AAV (p2, q2, r2) = 0 , (4.21)

H1,(f)
AAV (p2, q2, r2) =− iNc

72π2λ2K

×
(
−23p6(q2+r2)+5p4(3q2+r2)(q2+3r2)+14p8

−17p2(q2−r2)2(q2+r2)+11(q2−r2)4
)
,

H1,(C0)
AAV (p2, q2, r2) =− iNc

8π2λ3K
p2(p2+q2−r2)(p2−q2+r2)

×
(
−r4(p2q2+3p4−6q4)+r2(p2−q2)(p2+q2)(p2+2q2)

+r6(3p2−2q2)+q2(p2−q2)3−r8
)
,

H1,(p)
AAV (p2, q2, r2) =

iNc

24π2λ3K
p2(p2+q2−r2)(p2−q2+r2)

×
(

5p4(q2+r2)−4p2(−5q2r2+4q4+4r4)+2p6+9(q2−r2)2(q2+r2)
)
,

H1,(q)
AAV (p2, q2, r2) =− iNc

48π2λ3K
(p2+q2−r2)

×
(
−p2(q2−r2)2(44q2r2+9q4+7r4)−(q2−r2)4(3q2+r2)+p10

−2p6(−7q2r2+24q4+13r4)+p8(15q2+7r2)

+p4(−6q4r2+44q6+26r6)
)
,

H1,(µ)
AAV (p2, q2, r2) =− iNc

24π2
. (4.22)
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Figure 4. Feynman diagram of the quark condensate contribution to the three-point Green func-

tions at the leading order O(1).

5 Quark condensate

5.1 General remarks

The quark condensate, 〈qq〉, plays a crucial role since its presence is responsible for the

breakdown of the chiral symmetry in QCD. Moreover, within the context of the Fock-

Schwinger gauge, the nonlocal quark condensate propagates not only as a local quark

condensate, but also generates higher QCD condensates.

In this section, however, only the first term of (3.9a) is relevant. Therefore, the formula

for a conversion of the nonlocal quark condensate into the local one reads〈
qAi,α(x)qBk,β(y)

〉
3 〈qq〉

22 · 32
δikδαβδ

AB . (5.1)

Apparently, the expansion of the nonlocal quark condensate to the local one is independent

of coordinates in the chiral limit, which simplifies the calculations significantly, because one

can evaluate the contributing diagrams directly in the momentum representation.

The leading order contribution of the quark condensate is given by the set of tree-level

Feynman graphs depicted symbolically at figure 4, formed by two contractions between the

three corresponding currents or densities. Altogether, there are six contributing diagrams

and the calculations can be performed in the momentum representation, according to (5.1).

Then, the contribution of the quark condensate at the leading order is given as

Π
〈qq〉
Oa1Ob2Oc3

(p, q; r) =
〈qq〉
22 · 3

Tr
[
T aT bT c

]
Tr
[
Γ1S0(r + q)Γ2S0(r)Γ3

]
+ (5 terms) . (5.2)

As the next-to-leading order O(αs) correction to the quark condensate contribution,

one is obligated to consider the corrections to the diagrams at figure 4 either by means of

the gluon or the quark loops. Although the latter does not contribute at O(αs) due to the

conservation of color in QCD, the former represents a very important contribution.

A motivation behind studying the contribution of the gluonic corrections to the quark

condensate at O(αs) is an opportunity to explore the renormalization dependence of such

condensate in full QCD, i.e. the dependence on the renormalization scale µ.

Since we have not studied the gluonic corrections and the renormalization of the quark

condensate explicitly, we refer the reader to the original work [27] for a comprehensive

description. Therein, the authors studied both the two-point and the three-point Green

functions.
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5.2 Results

Here we present the results for the leading order contribution of the quark condensate to

the Green functions, obtained from the formula (5.2). We have

F 〈qq〉SSS(p2, q2, r2) =
〈qq〉

12p2q2r2
λK , (5.3a)

F 〈qq〉SPP (p2, q2, r2) =− 〈qq〉
12p2q2r2

[
p4 − (q2 − r2)2

]
, (5.3b)

F 〈qq〉V V P (p2, q2, r2) =
〈qq〉

6p2q2r2
(p2 + q2 + r2) , (5.3c)

F 〈qq〉AAP (p2, q2, r2) =
〈qq〉

6p2q2r2
(p2 + q2 − r2) , (5.3d)

F 〈qq〉V AS(p2, q2, r2) =
〈qq〉

6p2q2r2
(p2 − q2 − r2) , (5.3e)

F 〈qq〉V V S(p2, q2, r2) =− 〈qq〉
6p2q2r2

(p2 + q2 + r2) ,

G〈qq〉V V S(p2, q2, r2) =− 〈qq〉
3p2q2r2

, (5.3f)

F 〈qq〉AAS(p2, q2, r2) =− 〈qq〉
6p2q2r2

(p2 + q2 − r2) ,

G〈qq〉AAS(p2, q2, r2) =− 〈qq〉
3p2q2r2

, (5.3g)

F 〈qq〉V AP (p2, q2, r2) =
〈qq〉

6p2q2r2
(p2 − q2 − r2) ,

G〈qq〉V AP (p2, q2, r2) =− 〈qq〉
3p2q2r2

. (5.3h)

The results above deserve a detailed discussion. We remind the reader that we under-

stand the quark field q to be the flavor triplet, as defined by (2.3). Therefore, the quark

condensate 〈qq〉 is thus a sum over all flavor-diagonal quark condensates,

〈qq〉 =
∑

ψ=u,d,s

〈ψψ〉 = 〈uu〉+ 〈dd〉+ 〈ss〉 , (5.4)

where, in the chiral limit, all the values of the condensates on the right-hand side of (5.4)

are equaled to each other, i.e.

〈qq〉 = 3〈ψψ〉 . (5.5)

As we have mentioned, several authors have studied the role of the quark condensate

contribution to the OPE of Green functions already. However, as it seems, most of them

have taken the quark condensate to be a condensate of quarks of the single flavor. In

such a case, despite differences in notation, their quark condensates would be denoted as

〈ψψ〉 in our designation. Therefore, our results differ by the factor of three with respect

to the results of such authors. These include the authors of ref. [27] or [38]. These cases

are discussed below in detail. However, in what follows, we already take into account the
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difference in the factor of three and discuss only whether an agreement between our results

and other authors has been achieved.

Let us start with ref. [27]. Apart from the normalization of the quark condensate,

the authors use a different normalization of the scalar and pseudoscalar density. For every

occurrence of any of these densities, a factor of two must be taken into account. Also, the

authors have a factor of i2 in the definition of the three-point Green function. Therefore,

for the 〈SSS〉 and 〈SPP 〉 correlators, a factor of −24 must be considered. Then, we are

in agreement with their results, see eq. (4.7) at page no. 11. For the 〈V V P 〉, 〈AAP 〉
and 〈V AS〉 Green functions, a factor of −6 must be taken into account. Their result is

different by an overall sign, see eq. (4.11) at page no. 12, which might be due to the different

convention for the Levi-Civita tensor.

The results for the 〈V V S〉, 〈AAS〉 and 〈V AP 〉 Green functions are not given in terms

of the respective invariant functions in ref. [27] but in the form of suitable contractions

so that rational scalar functions are built. For this reason, we present our results of such

contractions below:

gµν
[
Π
〈qq〉
V V S(p, q; r)

]
µν

=− 〈qq〉
6p2q2r2

[
(p2 − q2)2 + (p2 + q2)r2 − 2r4

]
,

qµpν
[
Π
〈qq〉
V V S(p, q; r)

]
µν

=
〈qq〉

12p2q2
λK ,

gµν
[
Π
〈qq〉
AAS(p, q; r)

]
µν

=− 〈qq〉
6p2q2r2

[
(p2 − q2)2 − 3(p2 + q2)r2 + 2r4

]
,

qµpν
[
Π
〈qq〉
AAS(p, q; r)

]
µν

=− 〈qq〉
12p2q2

(λK + 4p2q2) ,

gµν
[
Π
〈qq〉
V AP (p, q; r)

]
µν

=
〈qq〉

6p2q2r2
(p2 − q2 − 2r2)(p2 + q2 − r2) ,

qµpν
[
Π
〈qq〉
V AP (p, q; r)

]
µν

=
〈qq〉

12p2q2r2
[
r2λK + 2p2q2(p2 − q2 + r2)

]
. (5.6)

All of these are in an agreement with the results in [27], see eq. (4.18) at page no. 14, upon

the conversion factor of −6 is taken into account.

Our results (5.3h) for the 〈V AP 〉 are in an agreement with the ones in [38], see eq. (8)

at page no. 4 therein.

In calculations within the framework of Chiral perturbation theory and Resonance

chiral theory, the quark condensate is often rewritten in terms of the chiral parameter B0

and the pion decay constant in the chiral limit F0. Specifically, due to (5.5), we have

〈qq〉 = −3B0F
2
0 . (5.7)

Assuming the validity of (5.7), our result (5.3c) for the contribution of the quark

condensate to the 〈V V P 〉 Green function coincides with the one in ref. [26], see eq. (7) at

page no. 4 therein.

The result (5.3c) for the 〈V V P 〉 correlator is in an agreement with the results in

ref. [11], see eq. (31) at page no. 12, upon the different convention for the Levi-Civita tensor

is taken into account. Similarly, we are in an agreement with the result in ref. [65], see
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eq. (8) at page no. 3, upon taking into account that the authors introduce a factor of i2 in the

definition of the 〈V V P 〉 Green function, use a different normalization of the pseudoscalar

density and the quark condensate (see eq. (3) and eq. (4) at page no. 2 and eq. (6) at page

no. 3 therein, respectively) and a different convention for the Levi-Civita tensor.

Similarly, the result (5.3e) for the 〈V AS〉 Green function agrees with the result in [11],

see eq. (82) at page no. 21, due to the same reason as above.

6 Gluon condensate

6.1 General remarks

The next nonperturbative contribution to the OPE of Green functions stems from the

operator with dimension 4, i.e. the gluon condensate 〈GaµνGµν,a〉, which we will denote

simply as 〈G2〉 from now on.

Having three chiral currents or densities, it is obvious that the gluon condensate can be

formed from the triangle graphs by coupling two gluon fields to the quark lines. To evaluate

such diagrams, one would write down the contribution in the coordinate representation and

then use the propagation formula (3.9b). After integrating over the coordinates of the two

gluons, it would be possible to perform the Fourier transform, which would give us the

final result in the momentum representation. However, this procedure is quite lengthy and

time-consuming. Instead, it is much efficient to use the strategy described below.

To calculate the contribution of the gluon condensate to the three-point Green func-

tions, it is easier to use an approach based on the Fock-Schwinger gauge in the coordinate

representation, in which the gluon condensate arises in an obvious way.

Since we work in the chiral limit, the basic ingredient for our calculation represents the

massless quark propagator in external gluon field [66], which is formulated already in terms

of the gluon field strength tensors and, for this reason, is much more suitable in calculating

the contribution of the gluon condensate. This propagator, within the Fock-Schwinger

gauge, reads

S(x, y) = S0(x, y) + Sαβ1 (x, y)Gαβ(0) + S2(x, y)Gαβ(0)Gαβ(0) + . . . , (6.1)

with the coordinate dependence summarized in the following factors:19

S0(x, y) =
i

2π2
/x− /y

(x− y)4
, (6.2a)

Sαβ1 (x, y) = − gs
4π2

(
i(x− y)µ
4(x− y)2

γνγ5ε
µναβ −

/x− /y
(x− y)4

xαyβ
)
, (6.2b)

S2(x, y) = − ig2s
192π2

/x− /y
(x− y)4

[
x2y2 − (x ·y)2

]
. (6.2c)

Since the Fock-Schwinger gauge violates translation invariance, the propagator (6.1) is not

invariant with respect to translation either, see last term in (6.2b). As an illustration, this

propagator can be graphically denoted as in figure 5.

19The first contribution (6.2a) stands for the free massless quark propagator in the coordinate rep-

resentation. Its connection to the propagator in the momentum representation (4.2) reads S0(x, y) =∫
d4`

(2π)4
e−i`(x−y)S0(`).
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+= +S(x, y)

Figure 5. An illustration of the quark propagator in the external gluon field (6.1). On the

right-hand side, the figures stand for (6.2a), (6.2b) and (6.2c), respectively.

(a) (b) (c)

(d) (e) (f)

Figure 6. Feynman diagrams of the contributions of the gluon condensate to the three-point Green

functions. Similarly as in figure 3, the Bose-symmetrized diagrams are tacitly assumed. The dia-

grams 6(a)–6(c) contain two propagators (6.2b) and the diagrams 6(d)–6(f) one propagator (6.2c).

Then, within the Fock-Schwinger gauge, the whole contribution of the gluon condensate

to the three-point Green functions is thus given only by the six diagrams (and the Bose-

symmetrized ones) denoted at figure 6.

Easily, one can then write down the total contribution of the diagrams at figure 6 as

Π
〈G2〉
Oa1Ob2Oc3

(x, y, z) =− Tr
[
T aT bT c

]
Tr
[
Γ1S(x, y)Γ2S(y, z)Γ3S(z, x)

]
〈G2〉

+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
, (6.3)

where the subscript at the end of the first line refers to the fact that, after inserting (6.1)

for the individual propagators, we keep only the terms with two gluon tensors, and the

second line stands for the Bose-symmetrized contributions. To form the gluon condensate,

the following formula is needed:〈
Tr[GαβGγδ]

〉
=

1

24
(gαγgβδ − gαδgβγ)〈G2〉 , (6.4)

which can be easily obtained from applying color matrices to the projection formula for

the composite operator [67],〈
GaαβG

b
γδ〉 =

1

96
δab(gαγgβδ − gαδgβγ)〈G2〉 , (6.5)

and then taking the trace.
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The total contribution of (6.3) thus represents six individual contributions plus the

Bose-symmetrized ones. However, upon making sure that (6.3) is indeed invariant under

translation, one can set the third coordinate z to the origin. This is greatly convenient

because such choice simplifies the calculations significantly by eliminating the second term

in (6.2b) and (6.2c) completely. Then we are left with only four contributing topologies

and four Bose-symmetrized ones. From now on, we are thus allowed to use a notation

of (3.18) with only two coordinates.

The next part consists of converting the previous results from the coordinate repre-

sentation into the momentum one by performing the Fourier transform. This represents a

quite lengthy process to go through. However, after some algebra, one can write down the

total contribution in the form

Π
〈G2〉
Oa1Ob2Oc3

(p, q; r) =

∫
d4x d4y e−i(p·x+q·y)Π

〈G2〉
Oa1Ob2Oc3

(x, y) ,

=
iαs〈G2〉
768π5

Tr
[
T aT bT c

] 4∑
i=1

Π
〈G2〉
i (p, q; r) +

[
(Γ1, a, p)↔ (Γ2, b, q)

]
, (6.6)

where

Π
〈G2〉
1 (p, q; r) = Tr

[
Γ1γ

αγ5Γ2γ
βγ5Γ3γ

γ
][
F̃
〈G2〉
1 (p, q; r)

]
αβγ

,

Π
〈G2〉
2 (p, q; r) = Tr

[
Γ1γ

αγ5Γ2γ
βΓ3γ

γγ5
][
F̃
〈G2〉
2 (p, q; r)

]
αβγ

,

Π
〈G2〉
3 (p, q; r) = Tr

[
Γ1γ

αΓ2γ
βγ5Γ3γ

γγ5
][
F̃
〈G2〉
3 (p, q; r)

]
αβγ

,

Π
〈G2〉
4 (p, q; r) = 2 Tr

[
Γ1γ

αΓ2γ
βΓ3γ

γ
][
F̃
〈G2〉
4 (p, q; r)

]
αβγ

.

The functions F̃
〈G2〉
i are remnants of the Fourier transform, and can be obtained in a

closed form as[
F̃
〈G2〉
1 (p, q; r)

]
αβγ

=− gαβ
∫

d4`

(2π)4
F̃1(`− p)

[
F̃2(`+ r)

]
µ

[
F̃6(`)

]
µγ

−
∫

d4`

(2π)4
[
F̃2(`+ r)

]
α

[
F̃2(`− p)

]
β

[
F̃5(`)

]
γ

+ gαβF̃1(q)
[
F̃5(r)

]
γ
,

[
F̃
〈G2〉
2 (p, q; r)

]
αβγ

=− gαγ
∫

d4`

(2π)4
F̃1(`− p)

[
F̃2(`)

]
µ

[
F̃6(`+ r)

]
µβ

− gαγF̃1(p)
[
F̃5(r)

]
β
−
∫

d4`

(2π)4
[
F̃2(`)

]
α

[
F̃5(`+ r)

]
β

[
F̃2(`− p)

]
γ
,

[
F̃
〈G2〉
3 (p, q; r)

]
αβγ

=−
∫

d4`

(2π)4
[
F̃5(`− p)

]
α

[
F̃2(`)

]
β

[
F̃2(`+ r)

]
γ

+ gβγ

∫
d4`

(2π)4
[
F̃2(`)

]
µ

[
F̃2(`+ r)

]
µ

[
F̃5(`− p)

]
α
,

[
F̃
〈G2〉
4 (p, q; r)

]
αβγ

=−
∫

d4`

(2π)4
[
F̃5(`− p)

]
α

[
F̃7(`+ r)

]
µνβ

[
F̃7(`)

]
µνγ

+

∫
d4`

(2π)4
[
F̃5(`− p)

]
α

[
F̃2(`+ r)

]
β

[
F̃2(`)

]
γ
, (6.7)

where the functions F̃i are defined in the appendix A.
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After performing the contractions and some algebraic manipulations, we arrive at[
F̃
〈G2〉
1 (p, q; r)

]
αβγ

=

∫
d4`

(2π)4
[
I
〈G2〉
1 (`, p, q; r)

]
αβγ

+
8iπ4

q2r2
gαβrγ ,

[
F̃
〈G2〉
2 (p, q; r)

]
αβγ

=

∫
d4`

(2π)4
[
I
〈G2〉
2 (`, p, q; r)

]
αβγ
− 8iπ4

p2r2
gαγrβ ,

[
F̃
〈G2〉
3 (p, q; r)

]
αβγ

=

∫
d4`

(2π)4
[
I
〈G2〉
3 (`, p, q; r)

]
αβγ

,

[
F̃
〈G2〉
4 (p, q; r)

]
αβγ

=

∫
d4`

(2π)4
[
I
〈G2〉
4 (`, p, q; r)

]
αβγ

, (6.8)

with the integrands in the form[
I
〈G2〉
1 (`,p,q;r)

]
αβγ

= 64π6
(

2(`+r)α(`−p)β`γ

`2(`−p)4(`+r)4
−gαβ

`γ
[
r2−(`+r)2

]
+`2rγ

`4(`−p)2(`+r)4

)
,

[
I
〈G2〉
2 (`,p,q;r)

]
αβγ

= 64π6
(
gαγ

rβ(`+r)2+(`2−r2)(`+r)β

`4(`−p)2(`+r)4
+

2`α(`+r)β(`−p)γ

`4(`−p)4(`+r)2

)
,

[
I
〈G2〉
3 (`,p,q;r)

]
αβγ

= 64π6
(

2(`−p)α`β(`+r)γ

`4(`−p)2(`+r)4
−gβγ

(`−p)α
[
(`+r)2+`2−r2

]
`4(`−p)2(`+r)4

)
,

[
I
〈G2〉
4 (`,p,q;r)

]
αβγ

=−128π6
(`−p)α(`+r)β`γ

`4(`−p)2(`+r)4
+

32π6(`−p)α

`6(`−p)2(`+r)6

×
([

(`+r)2+`2−r2
][
`2gβγ(`+r)2−4rβ

(
`γ
[
r2−(`+r)2

]
+`2rγ

)]
+2`β

([
`γ(`2−2r2)−`2rγ

]
(`+r)2−2(`2−r2)(r2`γ+`2rγ)

))
. (6.9)

Some of the individual terms in the above integrands are IR divergent. We have treated

these divergences by dimensional regularization. However, summing up the respective

contributions, the divergences cancel each other and the complete integrals (6.8) are IR-safe.

6.2 Results

Here we present the results obtained by the procedure described above. Since the propa-

gator (6.1) is odd in the number of gamma matrices, one can easily move the γ5 matrices

contained in the currents and densities of the correlators. After easy manipulations, one

can find apparent relations between these correlators such as[
Π
〈G2〉
ASP (p, q; r)

]
µ

=
[
Π
〈G2〉
V SS(p, q; r)

]
µ

=
[
Π
〈G2〉
V PP (p, q; r)

]
µ
, (6.10a)[

Π
〈G2〉
V V A(p, q; r)

]
µνρ

=
[
Π
〈G2〉
AAA(p, q; r)

]
µνρ

, (6.10b)[
Π
〈G2〉
AAV (p, q; r)

]
µνρ

=
[
Π
〈G2〉
V V V (p, q; r)

]
µνρ

, (6.10c)

that are somewhat equivalent to the ones in the case of the perturbative contribution, apart

from (6.10b), which appears here for the first time.

In the context of the relations (6.10b) and (6.10c) we note that the gluon condensate

contributions to the 〈V V A〉 and 〈AAV 〉 thus accidentally have even higher symmetry than

it is necessary since they also satisfy the additional Bose symmetries of the 〈AAA〉 and

〈V V V 〉 correlators, respectively, which they are equal to.
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We also remind the reader that the longitudinal parts (2.24) of the 〈V V A〉 and 〈AAA〉
Green functions are not affected by the gluon condensate contribution and, therefore, the re-

lation (6.10b) thus automatically represents the transversal parts (2.25) of these correlators.

The contribution of the gluon condensate to the 〈SS〉 and 〈PP 〉 Green functions is the

same, see (D.14b). Then, once again we find out that

F 〈G
2〉

ASP (p2, q2, r2) = F 〈G
2〉

V SS (p2, q2, r2) = F 〈G
2〉

V PP (p2, q2, r2) , (6.11)

which is similar to (4.9) for the case of the perturbative contribution.

However, the contribution of the gluon condensate to the 〈V V 〉 and 〈AA〉 correlators is

the same, too. This allows us to express the invariant functions of the 〈AAA〉 and 〈V V V 〉
correlators in terms of the ones of the 〈V V A〉 and 〈AAV 〉, respectively. Specifically, we find

F 〈G
2〉

AAA(p2, q2, r2) =− G〈G
2〉

V V A(p2, q2, r2)−H〈G
2〉

V V A(p2, q2, r2) ,

G〈G
2〉

AAA(p2, q2, r2) =− 1

2
H〈G

2〉
V V A(p2, q2, r2)− 1

4

1

λK + p2(q2 + r2) + q2r2

×
(

(p2 − q2)(p2 + q2 + r2)F 〈G
2〉

V V A(p2, q2, r2)

+ (p2 + q2 − 2r2)(p2 + q2 − r2)G〈G
2〉

V V A(p2, q2, r2)
)
,

H〈G
2〉

AAA(p2, q2, r2) =− 3

4

1

λK + p2(q2 + r2) + q2r2

×
[(
F 〈G

2〉
V V A(p2, q2, r2)− G〈G

2〉
V V A(p2, q2, r2)

)
p2(p2 − r2)

+
(
F 〈G

2〉
V V A(p2, q2, r2) + G〈G

2〉
V V A(p2, q2, r2)

)
q2(q2 − r2)

]
, (6.12)

and

F 〈G
2〉

V V V (p2, q2, r2) = F 〈G
2〉

AAV (p2, q2, r2) ,

G〈G
2〉

V V V (p2, q2, r2) = G〈G
2〉

AAV (p2, q2, r2) . (6.13)

In terms of the invariant functions, the results of the contributions of the gluon con-

densate to the three-point Green functions can be written down as follows:

F 〈G
2〉

ASP (p2, q2, r2) =− iαs〈G2〉
48π

(3p2 − q2 − r2)
p2q2r2

,

F 〈G
2〉

V V A(p2, q2, r2) =− iαs〈G2〉
96π

p2(r2 − 4q2) + p4 + q2(q2 + r2)

p4q4r2
,

G〈G
2〉

V V A(p2, q2, r2) =− iαs〈G2〉
96π

(p2 − q2)(p2 + q2 + r2)

p4q4r2
,

H〈G
2〉

V V A(p2, q2, r2) =
iαs〈G2〉

96π

(p2 − q2)(p2 + q2 + r2)

p4q4r2
,

F 〈G
2〉

AAA(p2, q2, r2) = 0 ,

G〈G
2〉

AAA(p2, q2, r2) = 0 ,
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H〈G
2〉

AAA(p2, q2, r2) =− iαs〈G2〉
32π

1

p2q2r2
,

F 〈G
2〉

AAV (p2, q2, r2) =
iαs〈G2〉

96π

p2 + q2 − r2

p4q4r2
[
λK + r2(p2 + q2 − r2)

]
,

G〈G
2〉

AAV (p2, q2, r2) =− iαs〈G2〉
48π

(q2 + r2)(p4 + q2r2) + p2(q2 − r2)2

p4q4r4
,

H〈G
2〉

AAV (p2, q2, r2) =− iαs〈G2〉
96π

p2 − q2 − r2

p2q4r4
[
λK − p2(p2 − q2 − r2)

]
,

F 〈G
2〉

V V V (p2, q2, r2) =
iαs〈G2〉

96π

p2 + q2 − r2

p4q4r2
[
λK + r2(p2 + q2 − r2)

]
,

G〈G
2〉

V V V (p2, q2, r2) =− iαs〈G2〉
48π

(q2 + r2)(p4 + q2r2) + p2(q2 − r2)2

p4q4r4
. (6.14)

A very important note is in order here. As one can see, in contrast to the perturbative

contribution and O(αs) contribution to the quark condensate, the results for the gluon

condensate do not contain any logarithmic terms though it is also a one-loop calculation.

The Fourier transform of individual terms gives rise to such terms, however, all logarithms

cancel each other completely and we are left with a simple rational result.20

7 Quark-gluon condensate

7.1 General remarks

The only QCD condensate with canonical dimension 5 in the chiral limit is the quark-gluon

condensate, 〈qσµνGµνq〉, which we will denote by suppressing the Lorentz indices simply

as 〈qσ ·Gq〉 from now on.

There are two classes of contributions. The first one consists of propagation of the

nonlocal quark condensate and the second one of propagation of the nonlocal quark-gluon

condensate.

Propagation of nonlocal quark condensate. The first class of contributions of the

quark-gluon condensate to the three-point Green functions is given by the diagrams where

the soft gluon is attached to the quark line that carries zero momentum and as such these

graphs cannot be evaluated with standard perturbative methods. However, within the

Fock-Schwinger gauge, this contribution stems from the propagation of the nonlocal quark

condensate, as given by the formula (3.9a) with the relevant part in the form

〈qAi,α(x)qBk,β(y)〉 3 −gs〈qσ ·Gq〉
25 · 32

[
F 〈qq〉(x, y)

]
ki
δαβδ

AB , (7.1)

with the function F 〈qq〉(x, y) defined in (3.10a).

20A similar fact was also observed in [67], where the authors studied Borel-transformed invariant ampli-

tudes of mesons.
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(a) (b)

Figure 7. Feynman diagrams of the contributions of the quark-gluon condensate to the three-point

Green functions due to the effective propagation of the non-local quark condensate (7.1).

There are six relevant diagrams, see figure 7 and the appendix D.4 for details. The

contribution of the diagrams can be written down in the form

Π
〈qq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(x,y,z) =−gs〈qσ·Gq〉
25 ·3

Tr
[
T cT bT a

]
×Tr

[
F 〈qq〉(z,x)Γ3S0(z,y)Γ2S0(y,x)Γ1

]
+(5permutations) . (7.2)

Propagation of nonlocal quark-gluon condensate. The second class of contributions

of the quark-gluon condensate to the three-point Green functions consists of the diagrams

with the soft gluon line attached to the quark line that carries nonzero momentum. These

are graphs calculable by standard Feynman diagram techniques. The only difference is

that the local quark-gluon condensate is obtained, using the Fock-Schwinger gauge, from

the propagation of the nonlocal quark-gluon condensate. The contribution is given by the

formula (3.9c) with the relevant part

gs〈qAi,α(x)Aaµ(u)qBk,β(y)〉 3 gs〈qσ ·Gq〉
27 · 32

[
F 〈qAq〉µ (x, u, y)

]
ki

(T a)βαδ
AB , (7.3)

with the function F
〈qAq〉
µ (x, u, y) given by (3.12a).

In the case of the three-point Green functions, there are two possibilities of attaching

the soft gluon to the fermion line between two chiral currents, which can be seen in figure 8.

Due to six permutations of ordering these currents, there are 12 different contributing

diagrams to this class.

The contributions of the diagrams can be written down, with a use of (7.3), as

[
Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(x, y, z)
]
(a)

= − igs〈qσ ·Gq〉
25 · 32

Tr
[
T cT bT a

]
×
∫

d4uTr
[
F 〈qAq〉α (z, u, x)Γ3S0(z, y)Γ2S0(y, u)γαS0(u, x)Γ1

]
+ (5 permutations) ,[

Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(x, y, z)
]
(b)

= − igs〈qσ ·Gq〉
25 · 32

Tr
[
T cT bT a

]
×
∫

d4uTr
[
F 〈qAq〉α (z, u, x)Γ3S0(z, u)γαS0(u, y)Γ2S0(y, x)Γ1

]
+ (5 permutations) .
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(a) (b)

Figure 8. Feynman diagrams of the contributions of the quark-gluon condensate to the three-point

Green functions due to the effective propagation of the non-local quark-gluon condensate (7.3).

To perform an integration over the coordinate of the gluon field, we use the following

trick. Although the gluon is soft, such integration can be carried out simply as a standard

Fourier transform also, if a nonzero momentum k is temporarily assigned to the gluon

field. This simplifies the manipulations significantly since it allows us to appropriately

differentiate with respect to k, when needed, provided that we set k = 0 back at the end

of the calculations.21 Then, integrating out over the coordinate u, we obtain the following

results:

[
Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(x, y, z)
]
(a)

=− gs〈qσ ·Gq〉
25 · 32

Tr
[
T cT bT a

]
Tr
[
σανΓ3S0(z, y)Γ2γ

µγνγρΓ1

]
×
(

1

8π2
gαρ
[
F2(x− y)

]
µ
− ixα

[
F8(x− y)

]
µρ

+
[
F9(x− y)

]
αµρ

)
+ (5 permutations) ,[

Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(x, y, z)
]
(b)

=− gs〈qσ ·Gq〉
25 · 32

Tr
[
T cT bT a

]
Tr
[
σανΓ3γ

µγνγρΓ2S0(y, x)Γ1

]
×
(

1

8π2
gαρ
[
F2(y − z)

]
µ
− iyα

[
F8(y − z)

]
µρ

+
[
F9(y − z)

]
αµρ

)
+ (5 permutations) .

Now one can make sure that it is safe to set z = 0. Then, it is a trivial task to perform

the Fourier transform and convert the results to the momentum representation, such as

[
Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(p, q; r)
]
(a)

= −gs〈qσ ·Gq〉
25 · 32

Tr
[
T cT bT a

]
Tr
[
σανΓ3S0(p+ q)Γ2γ

µγνγρΓ1

]
×
(
− 1

8π2
gαµ
[
F̃2(p)

]
ρ
−
[
F̃9(p)

]
αµρ

)
+ (5 permutations) ,

[
Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2Oc3

(p, q; r)
]
(b)

= −gs〈qσ ·Gq〉
25 · 32

Tr
[
T cT bT a

]
Tr
[
σανΓ3γ

µγνγρΓ2S0(p)Γ1

]
×
(

1

8π2
gαµ
[
F̃2(r)

]
ρ

+
[
F9(r)

]
αµρ

)
+ (5 permutations) .

21Similar argument has been used already in the literature. See, for example, pages 386–387 in ref. [67].
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7.2 Results

Here we present all the results obtained for the contribution of the quark-gluon condensate

to the relevant three-point Green functions.

F 〈qσ·Gq〉SSS (p2, q2, r2) =
gs〈qσ·Gq〉
144p4q4r4

×
(
−r4(4p2q2+7p4+7q4)+8r6(p2+q2)+6r2(p2−q2)2(p2+q2)

−3(p2−q2)2(p4+q4)−4r8
)
,

F 〈qσ·Gq〉SPP (p2, q2, r2) =
gs〈qσ·Gq〉
144p4q4r4

×
(
−r4(4p2q2+p4+7q4)+8r6(p2+q2)−6r2(p2−q2)(p4+q4)

+3(p2−q2)3(p2+q2)−4r8
)
,

F 〈qσ·Gq〉V V P (p2, q2, r2) =− gs〈qσ·Gq〉
72p4q4r4

(
r2(p4+q4)+3(p2−q2)2(p2+q2)+4r6

)
,

F 〈qσ·Gq〉AAP (p2, q2, r2) =− gs〈qσ·Gq〉
72p4q4r4

(
r2(p4+q4)+3(p2−q2)2(p2+q2)−4r6

)
,

F 〈qσ·Gq〉V AS (p2, q2, r2) =− gs〈qσ·Gq〉
72p4q4r4

(
r2(p4−q4)+3(p2−q2)(p4+q4)−4r6

)
,

F 〈qσ·Gq〉V V S (p2, q2, r2) =
gs〈qσ·Gq〉

72p4q4r4λ2K

×
(
−(11p12+7p10q2+17p8q4+74p6q6+17p4q8+7p2q10+11q12)r2

−(p2+q2)(17p4−35p2q2+17q4)r8+(25p4+16p2q2+25q4)r10

−16(p2+q2)r12−(2p8+45p6q2+6p4q4+45p2q6+2q8)r6

+(p2+q2)(14p8+29p6q2+70p4q4+29p2q6+14q8)r4

+3(p2−q2)4(p2+q2)(p4+q4)+4r14
)
,

G〈qσ·Gq〉V V S (p2, q2, r2) =
gs〈qσ·Gq〉

12p4q4r4λ2K

×
(
−(p2+q2)(4p4+3p2q2+4q4)r6+(p4+q4)(p2−q2)4+(p4+q4)r8

−(p2+q2)(4p8−5p6q2+14p4q4−5p2q6+4q8)r2

+2(3p8+5p6q2+12p4q4+5p2q6+3q8)r4
)
,

F 〈qσ·Gq〉AAS (p2, q2, r2) =
gs〈qσ·Gq〉

72p4q4r4λ2K

×
(
−(9q2+11r2)p12+(q2−r2)(9q8−8q6r2+91q4r4+37q2r6+23r8)p4

−(3q6+17q4r2−43q2r4+10r6)p8+(9q4−7q2r2+14r4)p10

+(−3q8−74q6r2+99q4r4−13q2r6+15r8)p6

−(q2−r2)3(9q6+34q4r2+32q2r4+16r6)p2

+(q2−r2)5(3q4+4q2r2+4r4)+3p14
)
,
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G〈qσ·Gq〉AAS (p2, q2, r2) =
gs〈qσ·Gq〉

12p4q4r4λ2K

×
(
−(p2+q2)(4p4+3p2q2+4q4)r6+(p4+q4)(p2−q2)4

+(p4+q4)r8+2(3p8+5p6q2+12p4q4+5p2q6+3q8)r4

−(p2+q2)(4p8−5p6q2+14p4q4−5p2q6+4q8)r2
)
,

F 〈qσ·Gq〉V AP (p2, q2, r2) =
gs〈qσ·Gq〉

72p4q4r4λ2K

×
(
−(p2−q2)(14p8+57p6q2+110p4q4+57p2q6+14q8)r4+4r14

+(23p4+16p2q2+25q4)r10−(p2−q2)(15p4+p2q2−17q4)r8

+(p2−q2)(10p6+23p4q2+47p2q4+2q6)r6−16(p2+q2)r12

+(p2−q2)(p2+q2)(11p8+7p6q2+7p2q6+11q8)r2

−3(p2−q2)5(p2+q2)2
)
,

G〈qσ·Gq〉V AP (p2, q2, r2) =− gs〈qσ·Gq〉
12p4q4r4λ2K

(p2−q2)

×
(
−(p2+q2)2(4p4−5p2q2+4q4)r2+2r4(p2+q2)(3p4+5p2q2+3q4)

−(4p4+11p2q2+4q4)r6+(p2+q2)r8+(p2+q2)(p2−q2)4
)
. (7.4)

Since these contributions are given by tree diagrams, all logarithmic terms, that emerge

from the Fourier transform, have to cancel each other out, which serves as a nontrivial check

of consistency of our calculations, besides the fulfillment of the Ward identities. As there

are no contributions of the quark-gluon condensate to the two-point Green functions, the

right-hand side of all the relevant Ward identities of the three-point contributions (7.4)

must vanish. It is easy to verify that this fact is indeed satisfied, which also serves as a

consistency check of the results above.

8 Four-quark condensate

8.1 General remarks

There are three classes of contributing diagrams to the three-point Green functions that

generate the four-quark condensate contribution. The first class is given by the diagrams

calculable by the standard technique of Feynman diagrams in a perturbative regime. The

other two classes contain diagrams with soft gluons attached to the quark lines that carry

zero momentum and cannot be evaluated within the perturbative approach. These graphs

are thus obtained effectively, given by the propagations of the nonlocal quark and quark-

gluon condensates.
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Direct contribution. The first class of contributions of the four-quark condensate to the

three-point Green functions consists of diagrams with two separate fermion lines connected

via a hard gluon line, i.e. via the gluon propagator with nonzero momentum. As such,

these diagrams are evaluated within standard techniques of Feynman diagrams, the only

difference with respect to a conventional perturbative theory is that the averaging over the

uncontracted quark fields is performed according to (3.3).

There are six unique graph topologies, depicted at figure 9, with six individual diagrams

for each topology due to the number of permutations. Therefore, there are 36 contributing

diagrams in total.

Once we take the gluon propagator in the form[
Sg(p)

]ab
µν

= − i

p2
gµνδ

ab ≡ Sg(p)gµνδab , (8.1)

by standard well-known approach, and a use of (3.3), one finds the contributions of the

diagrams 9(a)–9(f) at figure 9 to be of the forms

[
Π

pert.→〈qq〉2
Oa1Ob2Oc3

(p, q; r)
]
(a)

=
παs〈qq〉2

81
Tr
[
T bT aT c

]
Sg(r)

× Tr
[
Γ2S0(p+ r)Γ1S0(r)γ

αΓ3S0(−r)γα
]

+ (5 terms) ,[
Π

pert.→〈qq〉2
Oa1Ob2Oc3

(p, q; r)
]
(b)

=
παs〈qq〉2

81
Tr
[
T bT aT c

]
Sg(r)

× Tr
[
Γ2S0(p+ r)Γ1S0(r)γ

αγαS0(r)Γ3

]
+ (5 terms) ,[

Π
pert.→〈qq〉2
Oa1Ob2Oc3

(p, q; r)
]
(c)

=
παs〈qq〉2

81
Tr
[
T bT aT c

]
Sg(r)

× Tr
[
Γ2S0(p+ r)γαS0(p)Γ1Γ3S0(−r)γα

]
+ (5 terms) ,[

Π
pert.→〈qq〉2
Oa1Ob2Oc3

(p, q; r)
]
(d)

=
παs〈qq〉2

81
Tr
[
T bT aT c

]
Sg(r)

× Tr
[
Γ2S0(p+ r)γαS0(p)Γ1γαS0(r)Γ3

]
+ (5 terms) ,[

Π
pert.→〈qq〉2
Oa1Ob2Oc3

(p, q; r)
]
(e)

=
παs〈qq〉2

81
Tr
[
T bT aT c

]
Sg(r)

× Tr
[
γαS0(p+ q)Γ2S0(p)Γ1Γ3S0(−r)γα

]
+ (5 terms) ,[

Π
pert.→〈qq〉2
Oa1Ob2Oc3

(p, q; r)
]
(f)

=
παs〈qq〉2

81
Tr
[
T bT aT c

]
Sg(r)

× Tr
[
γαS0(p+ q)Γ2S0(p)Γ1γ

αS0(r)Γ3

]
+ (5 terms) . (8.2)

One can notice the fact that the first term in (3.3) does not contribute at all since it leads

to terms with traces of single Gell-Mann matrices that vanish identically.

Propagation of nonlocal quark condensate. The second class of contributions of the

four-quark condensate to the three-point Green functions is given by the diagrams similar

to the ones of the quark condensate with the difference in that the soft gluon is connected

to the quark line with zero momentum. The relevant graphs are depicted at figure 10.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Feynman diagrams of the direct contribution of the four-quark condensate to the three-

point Green functions.

(a) (b)

Figure 10. Feynman diagrams of the contributions of the four-quark condensate to the three-point

Green functions due to the effective propagation of the nonlocal quark condensate (8.3).

As such, this contribution stems from the expansion of the quark condensate (3.9a). The

contributing part is given as

〈
qAi,α(x)qBk,β(y)

〉
3 iπαs〈qq〉

2

23 · 37
δABδαβ

[
G〈qq〉(x, y)

]
ki
, (8.3)

where the function G〈qq〉(x, y) is defined in (3.10b).

The contribution can be written down as

Π
〈qq〉→〈qq〉2
Oa1Ob2Oc3

(x, y, z) =
iπαs〈qq〉2

23 · 36
Tr
[
T cT bT a

]
Tr
[
G〈qq〉(z, x)Γ3S0(z, y)Γ2S0(y, x)Γ1

]
+ (5 permutations) , (8.4)

with the subsequent Fourier transform being of trivial nature.
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(a) (b)

Figure 11. Feynman diagrams of the contributions of the four-quark condensate to the three-point

Green functions due to the effective propagation of the nonlocal quark condensate (8.5).

Propagation of nonlocal quark-gluon condensate. The third class of contributions

of the four-quark condensate to the three-point Green functions is given by the diagrams

also similar to the ones of the quark condensate, however, here the soft gluon is inserted

between the currents, as shown at figure 11. The contribution is then obtained effectively,

using the expansion of the nonlocal quark-gluon condensate (3.9c).

Then, the contribution of the relevant diagrams is given as

gs〈qAi,α(x)Aaµ(y)qBk,β(z)〉 3 παs〈qq〉
2

23 · 35
δAB(T a)βα

[
G〈qAq〉µ (x, u, y)

]
ki
, (8.5)

with G
〈qAq〉
µ (x, u, y) given as (3.12b).

After performing familiar manipulations, the graphs at figure 11 contribute as

[
Π
〈qAq〉→〈qq〉2
Oa1Ob2Oc3

(x, y, z)
]
(a)

=− iπαs〈qq〉2

2 · 35
Tr
[
T cT bT a

]
×
∫

d4uTr
[
G〈qAq〉α (z, u, x)Γ3S0(z, y)Γ2S0(y, u)γαS0(u, x)Γ1

]
+ (5 permutations) ,[

Π
〈qAq〉→〈qq〉2
Oa1Ob2Oc3

(x, y, z)
]
(b)

=− iπαs〈qq〉2

2 · 35
Tr
[
T cT bT a

]
×
∫

d4uTr
[
G〈qAq〉α (z, u, x)Γ3S0(z, u)γαS0(u, y)Γ2S0(y, x)Γ1

]
+ (5 permutations) , (8.6)

where we are required to integrate over the coordinate u of the soft gluon.

Integrating over the soft gluon coordinate is by far the most complex task of all the

evaluations presented in this paper. For a detailed discussion of the calculation itself, see

appendix D.5, where the evaluation is described thoroughly for the case of the two-point

correlators.

Similarly to the previous section, after performing the necessary integration in (8.6),

one can make sure that it is indeed safe to set z = 0, which simplifies the subsequent

Fourier transform.
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8.2 Results

Finally, the results for the invariant functions of the contribution of the four-quark con-

densate to the three-point Green functions are as follows:

F 〈qq〉
2

ASP (p2, q2, r2) =
8iπαs〈qq〉2

729p4q4r4

×
[
4p6 + 12p4(q2 − 2r2)− 9p2q2r2 − (q2 + r2)(7q2r2 + 2q4 + 2r4)

]
,

F 〈qq〉
2

V SS (p2, q2, r2) =
8iπαs〈qq〉2

729p4q4r4

×
[
4p6 − (q2 + r2)(24p4 − 11q2r2 + 2q4 + 2r4) + 9p2q2r2

]
,

F 〈qq〉
2

V PP (p2, q2, r2) =
8iπαs〈qq〉2

729p4q4r4

×
[
4p6 + (q2 + r2)(12p4 + 11q2r2 − 2q4 − 2r4) + 9p2q2r2

]
,

F 〈qq〉
2

V V A(p2, q2, r2) =
4iπαs〈qq〉2

729p6q6r4

×
[
− 9r4(p4 + q4) + (p2 + q2)r2

(
2r4 − 9(p2 − q2)2

)
− 2(2p6q2 + 9p4q4 + 2p2q6 − p8 − q8)

]
,

G〈qq〉
2

V V A(p2, q2, r2) =− 4iπαs〈qq〉2

729p6q6r4

× (p2 − q2)(p2 + q2 + r2)
[
(p2 + q2)(11r2 − 2p2 − 2q2)− 2r4

]
,

H〈qq〉
2

V V A(p2, q2, r2) =
4iπαs〈qq〉2

729p6q6r4

× (p2 − q2)(p2 + q2 + r2)
[
(p2 + q2)(11r2 − 2p2 − 2q2)− 2r4

]
,

F 〈qq〉
2

AAA (p2, q2, r2) = 0 ,

G〈qq〉
2

AAA(p2, q2, r2) =
2iπαs〈qq〉2

243p4q4r4
(p2 − q2)(p2 − r2)(q2 − r2)(p2 + q2 + r2)

λK + p2(q2 + r2) + q2r2
,

H〈qq〉
2

AAA(p2, q2, r2) =
2iπαs〈qq〉2

243p4q4r4
1

λK + p2(q2 + r2) + q2r2

×
[
− 18p4q2r2 + p2(q2 + r2)

(
7(p4 + q4 + r4)− 25q2r2

)
+ 4(p8 + q8 + r8) + 7q2r2(q4 + r4)

]
,

F 〈qq〉
2

AAV (p2, q2, r2) =− 4iπαs〈qq〉2

729p6q6r4

×
[
− 2r4(p2 + q2)

(
13(p4 + q4)− r4 − 14p2q2

)
+ r6(2p2q2 + 11p4 + 11q4)

+ (p2 − q2)2
(
r2(20p2q2 + 11p4 + 11q4) + 2(p6 + q6)

)]
,
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G〈qq〉
2

AAV (p2, q2, r2) =
8iπαs〈qq〉2

729p6q6r6

×
[
− r6(2p2q2 − 9p4 − 9q4) + 2r8(p2 + q2) + 9r4(p6 + q6)

+ 2r2(p2 − q2)2(p2q2 + p4 + q4) + p2q2(p2 + q2)(−11p2q2 + 2p4 + 2q4)
]
,

H〈qq〉
2

AAV (p2, q2, r2) =− 4iπαs〈qq〉2

729p4q6r6

×
[
− p2(2q6r2 + 2q2r6 + 7q8 − 11r8) + 2p8(q2 + r2) + p6(2q2r2 − 7q4 + 11r4)

+ 2p4(q4r2 + q2r4 + 5q6 − 13r6) + 2(q2 − r2)2(q6 + r6)
]
,

F 〈qq〉
2

V V V (p2, q2, r2) =− 4iπαs〈qq〉2

729p6q6r4

×
[
− r2(p2 − q2)2(16p2q2 + 7p4 + 7q4) + r6(2p2q2 − 7p4 − 7q4)

+ 2r4(p2 + q2)(r4 − 4p2q2 + 5p4 + 5q4) + 2(p2 − q2)2(p6 + q6)
]
,

G〈qq〉
2

V V V (p2, q2, r2) =
8iπαs〈qq〉2

729p6q6r6

×
[
− 9p4(q6 + r6) + 2p8(q2 + r2) + 2p2(q2 − r2)2(q2r2 + q4 + r4)

− p6(2q2r2 + 9q4 + 9r4) + q2r2(q2 + r2)(−11q2r2 + 2q4 + 2r4)
]
. (8.7)

9 Summary

In this paper we have presented the complete survey of leading order contributions of the

QCD condensates up to dimension six to all relevant three-point Green functions of the

chiral currents and densities within the framework of the operator product expansion.

We give a detailed derivation of the formulas for an expansion of the nonlocal quark

and quark-gluon condensates in terms of local QCD condensates in a general case, where

all the coordinates of the quark and gluon fields are nonzero (see eq. (3.9a) and (3.9c)

and appendix C). We hope that our complete list of corresponding formulas done in uni-

fied parameterization and convention will bring clarification and unification of equivalent

expressions scattered in the literature.

After a short review of well-known perturbative contributions, which we recalculated

independently, we studied higher-order QCD condensates. We present the results for the

gluon and four-quark condensates contributions to the 〈V V A〉, 〈AAA〉, 〈V V V 〉, 〈ASP 〉,
〈AAV 〉, 〈V SS〉 and 〈V PP 〉 correlators and the results for the contribution of the quark and

quark-gluon condensates to the 〈SSS〉, 〈SPP 〉, 〈V V P 〉, 〈AAP 〉, 〈V AS〉, 〈V V S〉, 〈AAS〉
and 〈V AP 〉 Green functions.

To our knowledge, the complete results for the gluon, quark-gluon and four-quark

condensates have not yet been presented in the literature. We believe that our work can

be useful for further theoretical and phenomenological studies of the Green functions.
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A Fourier transform

In this appendix we present useful formulas for the Fourier transform, that has been used

in our calculations. Let us only remind the reader that we use the convention (1.2). We

have22

F1(x) =
1

x2
←→ F̃1(p) =−4iπ2

p2
, (A.1a)

[
F2(x)

]
µ

=
xµ
x2

←→
[
F̃2(p)

]
µ

=−8π2

p4
pµ , (A.1b)

[
F3(x)

]
µν

=
xµxν
x2

←→
[
F̃3(p)

]
µν

=−8iπ2

p4

(
gµν−

4pµpν
p2

)
, (A.1c)

F4(x) =
1

x4
←→ F̃4(p) = iπ2 log

(
− p

2

µ2

)
, (A.1d)

[
F5(x)

]
µ

=
xµ
x4

←→
[
F̃5(p)

]
µ

=−2π2

p2
pµ , (A.1e)

[
F6(x)

]
µν

=
xµxν
x4

←→
[
F̃6(p)

]
µν

=−2iπ2

p2

(
gµν−

2pµpν
p2

)
, (A.1f)

[
F7(x)

]
µνρ

=
xµxνxρ
x4

←→
[
F̃7(p)

]
µνρ

=−4π2

p4

(
gµνpρ+gµρpν+gνρpµ−

4pµpνpρ
p2

)
. (A.1g)

For evaluation of the contribution of the quark-gluon condensate the following formulas,

apart from (A.1a)–(A.1b), are useful in order to make the manipulations as compact as

possible:

[
F8(x)

]
µν

=− i

4π2

(
xµxν
x4
− gµν

2x2

)
←→

[
F̃8(p)

]
µν

=
pµpν
p4

, (A.2a)

[
F9(x)

]
µνρ

=
1

8π2

(
xµxνxρ
x4

− gµνxρ+gµρxν+gνρxµ
2x2

)
←→

[
F̃9(p)

]
µνρ

=
2pµpνpρ
p6

. (A.2b)

In order to evaluate the contribution of the four-quark condensate, it is necessary

to introduce another Fourier transforms. In detail, the relations below arise due to the

integration over the coordinate of the soft gluon in the case of the effective propagation of

22Polynomials with possibly infinite constants are not shown since they are not relevant in our calculations.
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the non-local quark-gluon condensate. We have:

F10(x) = log(−µ2x2) ←→ F̃10(p) =
16iπ2

p4
, (A.3a)

[
F11(x)

]
µν

=− i

16π2

(
xµxν
x2

+
1

2
gµν log(−µ2x2)

)
←→

[
F̃11(p)

]
µν

=
2pµpν
p6

, (A.3b)[
F12(x)

]
µνρσ

←→
[
F̃12(p)

]
µνρσ

=
8pµpνpρpσ

p8
, (A.3c)

where [
F12(x)

]
µνρσ

=
i

12π2

[
− 8iπ2

(
[F11(x)]µνgρσ + [F11(x)]µρgνσ + [F11(x)]νρgµσ

+ [F11(x)]µσgνρ + [F11(x)]νσgµρ + [F11(x)]ρσgµν

)
+

1

4
F10(x)(gµσgνρ + gµρgνσ + gµνgρσ) +

xµxνxρxσ
x4

]
.

B Note on Fock-Schwinger gauge

Here we provide a discussion upon the origin of the formulas (3.8), that are also important

for the derivation of the propagation formulas in the following appendix C. As we have

mentioned in the subsection 3.3, we take the Fock-Schwinger gauge (3.7) throughout the

paper in the form

xµAaµ(x) = 0 . (B.1)

Let us start with the first relation in (3.8), which is a Taylor expansion of the quark

field q(x) with partial derivatives exchanged with covariant ones. This is a straightforward

consequence of (B.1) which enables us to write

xµ∂µ = xµ∇µ . (B.2)

Now we proceed with the derivation of the second relation in (3.8). As we will see,

another advantage of the Fock-Schwinger gauge is that it allows us to express the gluon

field Aµ(x) in terms of a gauge-invariant quantity, the gluon field strength tensor Gµν(x).

The following trivial identity is a convenient starting point:

Aaµ(x) =
∂

∂xµ

(
xρAaρ(x)

)
− xρ

∂Aaρ(x)

∂xµ
. (B.3)

If we consider (B.1), the previous identity takes the form

Aaµ(x) = −xρ
∂Aaρ(x)

∂xµ
. (B.4)

Upon taking (B.1) into account once again, one obtains

xρGaρµ(x) = xρ
(
∂Aaµ(x)

∂xρ
−
∂Aaρ(x)

∂xµ

)
, (B.5)
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since the term proportional to the fabc symbol in (1.5) vanishes. After comparing (B.4)

and (B.5), one gets the desired expression between the gluon field and gluon field strength

tensor:23

Aaµ(x) + xρ
∂Aaµ(x)

∂xρ
= xρGaρµ(x) . (B.6)

Now, let us rescale the coordinate x→ αx, with α being a real number. We get then

Aaµ(αx) + xρ
∂Aaµ(αx)

∂xρ
= αxρGaρµ(αx) , (B.7)

where it is crucial to notice that the left-hand side of (B.7) is actually a total derivative,

due to which we can rewrite the relation above as

d

dα

(
αAaµ(αx)

)
= αxρGaρµ(αx) . (B.8)

Performing an integration of (B.8) over the parameter α in the interval [0, 1] we get

Aaµ(x) = xρ
∫ 1

0
αGaρµ(αx) dα . (B.9)

Now, we write down the Taylor expansion of the gluon field strength tensor around the

origin, i.e.

Gaρµ(αx) =
∞∑
n=0

αn

n!
xν1 . . . xνn∂ν1 . . . ∂νnG

a
ρµ(0) , (B.10)

which, after inserting this expression into (B.9) and integrating over the parameter α, gives

Aaµ(x) =
∞∑
n=0

1

n!(n+ 2)
xρxν1 . . . xνn∂ν1 . . . ∂νnG

a
ρµ(0) . (B.11)

The property (B.2) allows us to rewrite the expansion (B.11) in terms of the covariant

derivatives of the gluon field strength tensor, by which we finally obtain the relation (3.8).

C Derivation of propagation formulas

In this appendix we present a complete derivation of the propagation formulas (3.9a), (3.9b)

and (3.9c). It is important to note that derivation of some parts of these formulas can be

found in the literature already, however, we present this derivation here with the intent of

having all the procedures explained here in detail at one place, with all formal necessities

and with every aspect belonging to the fact that we take into account the flavor indices.

A detailed comparison of our propagation formulas with the known results presented

already in the literature has been discussed in subsection 3.5. Therefore, in what follows,

we will not point out differences between this work and the work of other authors. However,

we only shortly mention some references, where the derivation of propagation formulas can

be also found.

23A reader should be aware of a typo in the ref. [53], see eq. (28.3) at page no. 299 therein.
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A comprehensive derivation of the propagations giving arise to the quark and the

quark-gluon condensates is presented in [54], where the authors work beyond the chiral

limit. Further, some fragments of the derivation of the propagations of the four-quark

condensate can be found in [67]. Both these issues are also discussed in detail in [55].

Although the authors of [67] do not present the direct derivation of the propagation

formulas, they show the way of how to obtain the contributions of the four-quark condensate

from the respective vacuum expectation values of the relevant operators. In detail, our

derivation of (C.43), (C.58) and (C.67) can be compared with the one of these authors,

see eq. (21) at page no. 386, eq. (24) at page no. 387 and eq. (23) at page no. 386 therein,

respectively.

The same derivation as in [67] is presented also in the book [58].

C.1 Preliminaries

In order to provide as complete derivation of the propagational formulas as possible, we

first recapitulate some basic facts that we will build the procedure upon. Among these pre-

liminary facts we include the equations of motion and minimal Lorentz basis that nonlocal

QCD condensates are made of.

C.1.1 Equations of motion

In the chiral limit, the QCD Lagrangian reads

LQCD = iq /∇q − 1

4
GaµνG

µν,a , (C.1)

with the covariant derivative and the gluon field strength tensor given as (1.3) and (1.5),

respectively. Having the Lagrangian (C.1), the equations of motion can be obtained.

For the gluon field, we have the equation of motion in the form

(DµGµν)a = gsqγνT
aq , (C.2)

where the covariant derivative in the adjoint representation is

(Dµ)ab = ∂µδ
ab + gsf

abcAcµ . (C.3)

On the other hand, the equations of motion for the quark fields are in the form of the

Dirac equations:

/∇q = 0 , (C.4a)

q
←−
/∇ = 0 , (C.4b)

with /∇ acting to the right, as usual, and
←−
/∇ acting to the left, as indicated.

To avoid confusion, we clarify how the covariant derivative in (C.4b) should be under-

stood. Apparently, making q out of q necessarily leads to the Hermitian conjugation of the

covariant derivative, which then acts to the left. To highlight this, we have denoted
←−
∇µ ≡ ∇†µ . (C.5)

Then, the covariant derivative in (C.4b) is taken to be
←−
/∇ ≡ ∇†µγµ . (C.6)
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C.1.2 Minimal Lorentz structure of nonlocal QCD condensates

In the forthcoming sections, we will need to construct structures that carry either two

or three Lorentz indices. These can be made of appropriate combinations of the metric,

Levi-Civita tensor and Dirac matrices, such that the parity is conserved.

The requirement of parity conservation forces us to accompany the Levi-Civita tensor

always with the γ5 matrix, and vice versa. Then, one can write down the following two- and

three-index structures (for now, we do not explicitly write down the respective permutations

of the indices):

• gµν , σµν , γµγν , εµναβγαγβγ
5, εµναβσαβγ

5, . . .

• gµνγρ, σµνγρ, γµγνγρ, εµνραγαγ5, . . . ,

where the ellipsis stand for any other terms such that the already shown structures would

be accompanied by additional tensors or matrices so that the indices would be contracted

properly.

However, as it turns out, not every term of those above is necessary for constructing

the minimal Lorentz structure of the nonlocal QCD condensates. To this end, let us remind

the following property. The basis of all 4× 4 matrices is determined by 16 matrices: 1, γµ,

γ5, γµγ5 and σµν . Therefore, one can decompose any 4 × 4 matrix X easily as

X =
1

4
Tr
[
X
]
+

1

4
Tr
[
Xγµ

]
γµ+

1

4
Tr
[
Xγ5

]
γ5− 1

4
Tr
[
Xγµγ5

]
γµγ

5+
1

8
Tr
[
Xσµν

]
σµν . (C.7)

Taking the decomposition formula (C.7) into account, we are allowed to eliminate some

of the structures shown above,24 which leads us to the conclusion, that only the tensors

(gµν , σµν) (C.8)

and

(gµνγρ , gµργν , gνργµ , εµνραγαγ
5) (C.9)

are needed to build the Lorentz structure with two or three indices, respectively.

C.1.3 Expansion of quark and gluon fields

To be able to provide the propagation of the local QCD condensates through the nonlocal

ones, we need the expansions (3.8) of the quark and gluon fields within the Fock-Schwinger

gauge. Let us rewrite these formulas here, including all the necessary indices, such as the

spinor (i = 1 . . . 4), color (α = 1 . . . 3) and the flavor (A = 1 . . . 3) ones.

The expansion of the quark field (3.8) reads

qAi,α(x) = qAi,α + xµ
(
∇µqAi,α

)
+

1

2
xµxν

(
∇µ∇νqAi,α

)
+

1

6
xµxνxρ

(
∇µ∇ν∇ρqAi,α

)
+ . . . , (C.10)

24To be thorough, we show the results that some of the structures above can be rewritten to. We

have γµγν = gµν − iσµν , εµναβγαγβγ
5 = −2σµν , εµναβgαβγ

5 = 0, εµναβσαβγ
5 = −2iσµν , γµγνγρ =

gνργµ − gµργν + gµνγρ + iεµνραγαγ
5 and σµνγρ = i(gνργµ − gµργν) − εµνραγαγ

5. In obtaining these

relations we have made a use of a formula εµναβερσαβ = −2(gµρ g
ν
σ − gµσgνρ ).
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where we have intentionally omitted the explicit indication of the fact that the expanded

fields on the right-hand side are evaluated at the origin, i.e. qAi,α ≡ qAi,α(0). Moreover, any

field without the designation of the space-time coordinate is considered to be evaluated at

zero from now on.

Similarly, the expansion of the Dirac-conjugated quark field is

qAi,α(x) = qAi,α +
(
xµqAi,α

←−
∇µ

)
+

1

2
xµxν

(
qAi,α
←−
∇µ
←−
∇ν

)
+

1

6
xµxνxρ

(
qAi,α
←−
∇µ
←−
∇ν
←−
∇ρ

)
, (C.11)

where we have used the definition (C.5) of the derivative acting to the left and where we

have changed the order of the indices of such derivatives in the same order as in (C.10),

since the individual terms are symmetrical due to the presence of the coordinates.

Finally, we reintroduce the expansion (3.8) of the gluon field as

Aaµ(x) =
1

2
xνGaνµ +

1

3
xρxν

(
DρGνµ

)a
+ . . . , (C.12)

where only these first two terms will be needed.

Having the relations (C.10), (C.11) and (C.12) at our disposal, we can start with

forming the nonlocal QCD condensates and then with the derivation of the individual

propagation formulas.

C.2 Derivation of propagation formula (3.9a)

We start with the propagation formula (3.9a), i.e. with the propagation of the local QCD

condensates through the nonlocal quark condensate. Taking the formulas (C.10) and (C.11)

and performing trivial manipulations, we obtain a series of terms out of which we consider

further only those terms that contain vacuum expectation values of the canonical dimen-

sions 3, 5 and 6. In detail, we obtain the following relevant terms:〈
qAi,α(x)qBk,β(y)

〉
3
〈
qAi,αq

B
k,β

〉
(C.13a)

+
1

2
xµxν

〈(
qAi,α
←−
∇µ
←−
∇ν

)
qBk,β

〉
+xµyν

〈(
qAi,α
←−
∇µ

)(
∇νqBk,β

)〉
+

1

2
yµyν

〈
qAi,α
(
∇µ∇νqBk,β

)〉


(C.13b)

+
1

6
xµxνxρ

〈(
qAi,α
←−
∇µ
←−
∇ν
←−
∇ρ

)
qBk,β

〉
+

1

2
xµxνyρ

〈(
qAi,α
←−
∇µ
←−
∇ν

)(
∇ρqBk,β

)〉
+

1

2
xµyνyρ

〈(
qAi,α
←−
∇µ

)(
∇ν∇ρqBk,β

)〉
+

1

6
yµyνyρ

〈
qAi,α
(
∇µ∇ν∇ρqBk,β

)〉
,


(C.13c)

with (C.13a), (C.13b) and (C.13c) giving arise of the contributions of the local quark,

quark-gluon and four-quark condensates, respectively.
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C.2.1 Propagation of quark condensate

The lowest contribution of the nonlocal quark condensate is the local quark condensate.

Expanding the left-hand sice of (3.9a), according to (C.10)–(C.11), gives the relevant part

in the form of (C.13a). Projecting out the normalization of the spinor, color and flavor

structure gives us〈
qAi,α(x)qBk,β(y)

〉
3
〈
qAi,αq

B
k,β

〉
=

(
1

4
δik

)(
1

3
δαβ

)(
1

3
δAB

)
〈qq〉 .

Therefore, the propagation formula for the quark condensate is simply〈
qAi,α(x)qBk,β(y)

〉
3 1

22 · 32
〈qq〉δikδαβδAB .

C.2.2 Propagation of quark-gluon condensate

The propagation of the quark-gluon condensate through the nonlocal quark condensate

requires to expand the quark field up to terms with two derivatives, which compensates for

the difference in dimensions of the nonlocal quark condensate and the local quark-gluon

condensates. Specifically, the contributing part (C.13b) can be rewritten to

〈
qAi,α(x)qBk,β(y)

〉
3
(

1

2
xµxν − xµyν +

1

2
yµyν

)〈
qAi,α
(
∇µ∇νqBk,β

)〉
. (C.14)

The task is thus simplified into extracting the quark-gluon condensate out of the expecta-

tion value on the right-hand side of (C.14). To do so, let us perform the following steps.

1. According to (C.8), we write down the general structure of the vacuum expectation

value in the form 〈
qAi,α
(
∇µ∇νqBk,β

)〉
= δABδαβ

(
Cgµν +Dσµν

)
ki
, (C.15)

with C and D being the unknown functions that need to be identified.

2. Using an obvious identity γµγν = gµν − iσµν (see the footnote 24), we have

/∇ /∇ = ∇2 − iσµν∇µ∇ν . (C.16)

On the other hand, rewriting ∇µ∇ν into the symmetric and the antisymmetric part

and using (1.4) gives

∇µ∇ν =
1

2
{∇µ,∇ν}+

1

2
igsGµν , (C.17)

which, after substituting back into (C.16), gives

/∇ /∇ = ∇2 +
1

2
gsσ

µνGµν ≡ ∇2 +
1

2
gsσ ·G , (C.18)

where we have introduced a simplified notation of the contraction of the sigma tensor

with the gluon field strength tensor. The relation (C.17) gives us also

σµν∇µ∇ν =
1

2
igsσ ·G . (C.19)
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3. Now we multiply both sides of (C.15) with (gµν)ikδ
ABδαβ . This leads easily to〈

q
(
∇2q

)〉
= 24 ·32 ·C , (C.20)

and after using (C.18) and the Dirac equation (C.4a), we get

C = − gs
25 ·32

〈qσ ·Gq〉 . (C.21)

4. To obtain a constraint for the remaining function D, we now multiply both sides

of (C.15) with (σµν)ikδ
ABδαβ . Similarly to the previous step, we obtain〈

q
(
σµν∇µ∇νq

)〉
= 24 ·33 ·D , (C.22)

which, using (C.19), leads to

D =
igs

25 ·33
〈qσ ·Gq〉 . (C.23)

5. Knowing the relations (C.21) and (C.23) for the functions C and D, we put them

back into (C.14), which gives us the vacuum expectation value in the form

〈
qAi,α
(
∇µ∇νqBk,β

)〉
= −gs〈qσ ·Gq〉

25 · 32
δABδαβ

(
gµν −

i

3
σµν

)
ki

. (C.24)

Substituting (C.24) back into (C.14) gives us the final form for the propagation formula

of the local quark-gluon condensate through the nonlocal quark condensate:

〈
qAi,α(x)qBk,β(y)

〉
3 −gs〈qσ ·Gq〉

25 · 32
δABδαβ

[
1

2
(x− y)2 +

i

3
σ(x)(y)

]
ki

. (C.25)

C.2.3 Propagation of four-quark condensate

To obtain the propagation formula for the local four-quark condensate through the nonlocal

quark condensate, one is required to expand the quark field up to three derivatives. Such

procedure leads to (C.13c), which can be rewritten to

〈
qAi,α(x)qBk,β(y)

〉
3−1

2

[
xµxν

(
1

3
xρ−yρ

)
−
(

1

3
yµ−xµ

)
yνyρ

]〈
qAi,α
(
∇µ∇ν∇ρqBk,β

)〉
. (C.26)

The following steps are needed to be performed to obtain the desired propagation formula.

1. In what follows, we take the general structure of the vacuum expectation value

in (C.26) to be of the form〈
qAi,α
(
∇µ∇ν∇ρqBk,β

)〉
= δABδαβ

(
Egµνγρ+Fgµργν+Ggνργµ+Hεµνραγαγ5

)
ki
. (C.27)

2. The term proportional to εµνραγαγ5 would not contribute to the propagation for-

mula (C.26) due to the contractions with the coordinate part of the formula.
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3. Having the Lorentz structure (C.27), we now multiply both sides of this equation

with (γρ)ik and compare the term proportional to the metic tensor gµν . Then, the

left-hand side vanishes due to the Dirac equation (C.4a) and we obtain the condition

4E + F +G = 0 . (C.28)

4. We now rewrite the left-hand side of (C.27) to make the derivative act to the left:25〈
qAi,α
(
∇µ∇ν∇ρqBk,β

)〉
= −

〈(
qAi,α
←−
∇µ
)(
∇ν∇ρqBk,β

)〉
. (C.29)

Then, we multiply right-hand sides of (C.27) and (C.29) with (γµ)ik. Similarly to

the previous step, due to the Dirac equation (C.4b), we obtain the condition

E + F + 4G = 0 . (C.30)

5. The solution of the system of equations (C.28) and (C.30) is simply

(E,F ) = (G,−5G) , (C.31)

which leaves us only with one parameter, G, i.e〈
qAi,α
(
∇µ∇ν∇ρqBk,β

)〉
= δABδαβG

(
gµνγρ − 5gµργν + gνργµ

)
ki
. (C.32)

6. As a next step, we multiply both sides of (C.32) with (γν)ikgµρδ
ABδαβ , which gives

us the solution for G in the form

G = − 1

25 · 34
〈
q
(
∇µ /∇∇µq

)〉
. (C.33)

7. Let us now rewrite the derivatives in the previous expression a bit. A useful formula

/∇∇µ = ∇µ /∇− [∇µ, /∇] (C.34)

allows us to appropriately modify (C.33), since the first term on the right-hand

side of (C.34) does not contribute due to the Dirac equation, and the commutator

eventually leads to the presence of the gluon-field strength tensor, according to (1.4).

In detail, we have

G =
1

25 · 34
〈
q
(
∇µ[∇µ, /∇]q

)〉
=

igs
25 · 34

〈
qγνT a∇µ

(
Gaµνq

)〉
, (C.35)

which can be further rewritten to

G =
igs

25 · 34
〈(
qγνT aq

)(
DµGµν

)a〉
+

igs
25 · 34

〈
qγνT aGaµν

(
∇µq

)〉
. (C.36)

25Here we use the translation invariance of the ground state, Pµ|0〉 = 0, in the form

〈∂µO(x)〉 = i〈[Pµ,O(x)]〉 = 0

for any local operator O(x). In this particular case we take O = qAi,α
(
∇ν∇ρqBk,β

)
. Analogous manipulations

are undertaken throughout this appendix.
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8. We now get back to (C.33), however, we rewrite it with the derivatives acting to

the left,

G = − 1

25 · 34
〈(
q
←−
∇µ
←−
/∇
)(
∇µq

)〉
, (C.37)

and use a formula equivalent to (C.34), i.e.

←−
∇µ

←−
/∇ =

←−
/∇
←−
∇µ + [

←−
∇µ,
←−
/∇ ] , (C.38)

where the first term on the right-hand side once again vanishes due to the Dirac

equation. Applying (C.38) to (C.37), we obtain

G = − igs
25 · 34

〈
qγνT aGaµν

(
∇µq

)〉
. (C.39)

9. Comparing (C.36) with (C.39), we get〈
qγνT aGaµν

(
∇µq

)〉
= −1

2

〈(
qγνT aq

)(
DµGµν

)a〉
, (C.40)

which can be simplified using the equation of motion (C.2) and (3.6) as〈
qγνT aGaµν

(
∇µq

)〉
= −1

2
gs
〈(
qγνT aq

)(
qγνT

aq
)〉

=
2

33
gs〈qq〉2 . (C.41)

10. Inserting (C.41) into (C.39), we finally get

G = −i g2s
24 · 37

〈qq〉2 , (C.42)

i.e. the relevant part of the vacuum expectation value (C.27) can be written down as

〈
qAi,α
(
∇µ∇ν∇ρqBk,β

)〉
3 −i g2s

24 · 37
〈qq〉2δABδαβ

(
gµνγρ − 5gµργν + gνργµ

)
ki
. (C.43)

Finally, after inserting (C.43) back into (C.26), the propagation formula is thus derived

to be in the form〈
qAi,α(x)qBk,β(y)

〉
3 ig2s

25 · 37
〈qq〉2δABδαβ

[
4(x ·y)(/x− /y)− (x2 − y2)(/x+ /y)

]
ki
. (C.44)

C.3 Derivation of propagation formula (3.9b)

A derivation of the propagation formula (3.9b) is trivial. However, we include the derivation

here to be as thorough in our explanation as possible.

To evaluate (3.9b), it is sufficient to take the first term of the expansion of the gluon

field (C.12) and then use the projection formula (6.5). Specifically, we have

〈
Aaµ(x)Abν(y)

〉
3 1

4
xρyσ

〈
GaµρG

b
νσ

〉
=

(
1

4
xρyσ

)(
1

96
(gµνgρσ − gµσgνρ)〈G2〉δab

)
, (C.45)

i.e.

αs
〈
Aaµ(x)Abν(y)

〉
3 αs〈G

2〉
27 · 3

[
(x ·y)gµν − yµxν

]
δab . (C.46)
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C.4 Derivation of propagation formula (3.9c)

Finally, we evaluate the propagation formula (3.9c), i.e. the propagation of the local quark-

gluon and the four-quark condensates through the nonlocal quark-gluon condensate. Once

again, taking the formulas (C.10)–(C.12), we obtain the following relevant terms of dimen-

sion 5 and 6: 〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉 3 −1

2
uν
〈
qAi,αG

a
µνq

B
k,β

〉
(C.47a)

− 1

2
uνxρ

〈(
qAi,α
←−
∇ρ

)
Gaµνq

B
k,β

〉
− 1

3
uνuρ

〈
qAi,α
(
DρGµν

)a
qBk,β

〉
− 1

2
uνyρ

〈
qAi,αG

a
µν

(
∇ρqBk,β

)〉
.


(C.47b)

C.4.1 Propagation of quark-gluon condensate

According to (C.47a), the relevant term for propagation of the local quark-gluon condensate

from the nonlocal one is〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉
3 −1

2
uν
〈
qAi,αG

a
µνq

B
k,β

〉
. (C.48)

Because the vacuum expectation value on the righ-hand side of (C.48) is antisymmetric

in the Lorentz indices due to the presence of the gluon-field strength tensor, we take its

general form as 〈
qAi,αG

a
µνq

B
k,β

〉
= Iδab(T a)βα(σµν)ki . (C.49)

In this case, it is only needed to contract both sides of (C.49) with (σµν)ikδ
AB(T a)αβ ,

which gives

I =
1

26 ·32
〈qσ ·Gq〉 , (C.50)

i.e. 〈
qAi,αG

a
µνq

B
k,β

〉
=

1

26 ·32
〈qσ ·Gq〉δab(T a)βα

(
σµν
)
ki
. (C.51)

Substituting (C.51) back into (C.48) gives us the final form of the propagation formula

for the local quark-gluon condensate in the form

gs
〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉
3 gs

27 · 32
〈qσ ·Gq〉δAB(T a)βα

(
σ(u)µ

)
ki
. (C.52)

C.4.2 Propagation of four-quark condensate

The three contributing terms in (C.47b) can be rewritten to the following two:〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉
(C.53)

3 1

2
uν(xρ − yρ)

〈
qAi,αG

a
µν

(
∇ρqBk,β

)〉
+ uν

(
1

2
xρ −

1

3
uρ

)〈
qAi,α
(
DρGµν

)a
qBk,β

〉
.

To obtain the propagation formula, we will now carry on in the procedure below. We start

with the first vacuum expectation value on the right-hand side of (C.53).
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1. (a) First of all, the Lorentz structure of such vacuum value must be antisymmetric

in the Lorentz indices µ, ν. Also, unlike in the case of (C.27), we are required

to keep the term proportional to the Levi-Civita tensor. Therefore, we have〈
qAi,αG

a
µν

(
∇ρqBk,β

)〉
= δAB(T a)βα

[
J
(
gνργµ − gµργν

)
+Kεµνραγαγ5

]
ki
. (C.54)

(b) Now we multiply both sides of (C.54) with (γργµγν)ik. Once again, left-hand

side vanishes due to the Dirac equation (C.4a), and we find out that

K = −iJ , (C.55)

i.e. we now have only one unknown function J to obtain, and〈
qAi,αG

a
µν

(
∇ρqBk,β

)〉
= JδAB(T a)βα

[
gνργµ − gµργν − iεµνραγαγ5

]
ki
. (C.56)

(c) In this step, we multiply both sides of (C.56) with (γν)ikgµρδ
AB(T a)αβ , which

gives us

J = − 1

26 · 32
〈
qγνT aGaµν

(
∇µq

)〉
= − gs

25 · 35
〈qq〉2 , (C.57)

where we have used the already known result (C.41).

(d) Substituting the solution for J above back into (C.56) thus leaves us with the

result for the first vacuum expectation value in (C.53) in the form〈
qAi,αG

a
µν

(
∇ρqBk,β

)〉
=
gs〈qq〉2

25 · 35
δAB(T a)βα

[
gµργν−gνργµ+iεµνραγαγ5

]
ki
. (C.58)

2. (a) Similarly as in the previous case, the general Lorentz structure of the second

vacuum expectation value in (C.53) is〈
qAi,α
(
DρGµν

)a
qBk,β

〉
= δAB(T a)βα

[
K(gµργν − gνργµ) + Lεµνραγαγ5

]
ki
, (C.59)

where we have once again omitted the term proportional to gµνγρ since the

structure must be antisymmetric in the Lorentz indices µ, ν. Also, we formally

keep the term proportional to L, although it vanishes, as we will see in the next

step.

(b) Having the derivative acting on the gluon field strength tensor, we exploit the

Bianchi identity

DρGµν +DνGρµ +DµGνρ = 0 , (C.60)

which leads to the constraint on the right-hand side of (C.59) in the form

3Lεµνραγαγ5 = 0 , (C.61)

i.e.

L = 0 , (C.62)

which simplifies (C.59) into the form〈
qAi,α
(
DρGµν

)a
qBk,β

〉
= KδAB(T a)βα

(
gµργν − gνργµ

)
ki
, (C.63)

which is already antisymmetric in the indices µ, ν.
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(c) Now we freely rearrange the left-hand side of (C.63) by moving the second quark

field in front of the derivative term,〈
qAi,α
(
DρGµν

)a
qBk,β

〉
=
〈
qAi,αq

B
k,β

(
DρGµν

)a〉
, (C.64)

which does not qualitatively change anything, and then we multiply right-hand

sides of (C.63) and (C.64) with (γν)ikgµρδ
AB(T a)αβ , which leads to〈(

qγνT aq
)(
DµGµν

)a〉
= 26 ·32 ·K , (C.65)

which, after using the equation of motion (C.2) and (3.6), gives

K = − gs
24 · 35

〈qq〉2 . (C.66)

(d) Finally, we insert (C.66) back into (C.63) and we get

〈
qAi,α
(
DρGµν

)a
qBk,β

〉
=
gs〈qq〉2

24 · 35
δAB(T a)βα

(
gνργµ − gµργν

)
ki
. (C.67)

Finally, after inserting (C.58) and (C.67) back into (C.53), we can get the final form of

the propagation formula for the local quark condensate through the nonlocal quark-gluon

condsensate:

〈
qAi,α(x)Aaµ(u)qBk,β(y)

〉
3 gs〈qq〉

2

25 · 35
δAB(T a)βα

×
(

1

6
γµ
[
3u · (x+ y)− 4u2

]
+

1

6
/u
[
4uµ − 3(x+ y)µ

]
− i

2
εµ(x−y)(u)αγαγ5

)
ki

. (C.68)

D OPE for two-point Green functions

We include this appendix to show a clear connection between the two-point and the three-

point Green functions through the Ward identities. Therefore, the results presented here

are useful to check whether the right-hand side of the Ward identities of the three-point

Green functions are indeed expressed as linear combinations of the two-point correlators

of the respective QCD condensate contributions.

Similarly to section 2, we present the following classification of all the two-point Green

functions, relevant in the chiral limit:

• Set 1: The correlators with the perturbative contribution in the chiral limit:

– 〈V V 〉, 〈AA〉, 〈SS〉, 〈PP 〉.

• Set 2: The correlator that is the order parameter of the chiral symmetry breaking in

the chiral limit:

– 〈AP 〉.
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This classification tells us that the 〈V V 〉, 〈AA〉, 〈SS〉 and 〈PP 〉 Green functions have,

apart from the perturbative contribution, also contributions from the gluon and four-quark

condensates in the chiral limit. On the other hand, the 〈AP 〉 is the order parameter of

the chiral symmetry breaking and has, in the chiral limit, contribution from the quark

condensate only.

We also note that the combinations of the correlators 〈V V 〉 − 〈AA〉 and 〈SS〉 − 〈PP 〉
are order parameters of the chiral symmetry breaking, too.

The decomposition of all the nonvanishing two-point correlators is given as[
ΠV V (p)

]ab
µν

=
[
ΠV V (p)

]
µν
δab = ΠV V (p2)(p2gµν − pµpν)δab , (D.1a)[

ΠAA(p)
]ab
µν

=
[
ΠAA(p)

]
µν
δab = ΠAA(p2)(p2gµν − pµpν)δab , (D.1b)[

ΠSS(p)
]ab

= ΠSS(p2)δab , (D.1c)[
ΠPP (p)

]ab
= ΠPP (p2)δab (D.1d)

and [
ΠAP (p)

]ab
µ

=
[
ΠAP (p)

]
µ
δab = ΠAP (p2)pµδ

ab . (D.2)

D.1 Perturbative contribution

Perturbative contribution is of remarkably simple form in the case of two-point correlators,

for which it can be written down as

Π1
Oa1Ob2

(p) = −Nc

2
δab
∫

d4`

(2π)4
Tr
[
Γ1S0(`)Γ2S0(`+ p)

]
, (D.3)

and, after inserting for the Dirac matrices, one finds the individual contributions to be

Π1
V V (p2) = Π1

AA(p2) =
iNc

72π2

[
3

ε̂
+ 3 log

(
− µ2

p2

)
+ 5

]
, (D.4a)

Π1
SS(p2) = Π1

PP (p2) = − iNcp
2

16π2

[
1

ε̂
+ log

(
− µ2

p2

)
+ 2

]
. (D.4b)

Obviously, the fact that perturbative contributions of 〈V V 〉 and 〈AA〉, or 〈SS〉 and

〈PP 〉, are the same is not surprising since both 〈V V 〉 − 〈AA〉 and 〈SS〉 − 〈PP 〉 are order

parameters of the chiral symmetry breaking.

D.2 Quark condensate

In the chiral limit, Ward identities fix the 〈AP 〉 Green function, to be fully saturated by

the single Goldstone boson exchange. As a consequence, the OPE expansion of the 〈AP 〉
correlator is given exactly:

Π
〈qq〉
AP (p2) = −〈qq〉

3p2
. (D.5)

The fact that the contribution of the quark condensate to the 〈AP 〉 correlator can

be found explicitly in the chiral limit using the Ward identities was formally shown also
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(a) (b)

Figure 12. Feynman diagrams of the perturbative contribution (left) and the contribution of the

quark condensate (right) to the two-point Green functions.

(a) (b) (c)

Figure 13. Feynman diagrams of the contributions of the gluon condensate to the two-point Green

functions. The diagram 13(a) contains two propagators (6.2b) and the diagrams 13(b)–13(c) one

propagator (6.2c).

in ref. [27], see appendix A therein. Needless to say, such an important result has been

known for a long time already and is now a part of standard textbooks. For example, see

eq. (9.94) at page no. 340 in ref. [37].

However, it is useful to point out that the authors of [27] use a different normalizations

of the quark condensate and the pseudoscalar density in their paper. Also, they use a con-

ventional factor of i in the deinition of the two-point correlators with the opposite of the

Fourier transform. This leads to the result that differs in an overall factor of −6i with re-

spect to our result. For details, see eq. (1.2) at page no. 2 and eq. (3.2) at page no. 5 therein.

D.3 Gluon condensate

The contribution of the gluon condensate to the two-point Green functions is due to the

diagrams shown below. Such contribution can be obtained by the means described already

in the section 6 or due to the effective propagation through the nonlocal gluon condensate.

In what follows we shortly comment on these calculations.

The contribution of the gluon condensate to the two-point correlators can be computed

in the coordinate representation using the propagator (6.1). The contribution can be

written down in the form

Π
〈G2〉
Oa1Ob2

(x, y) = −1

2
δabTr

[
Γ1S(x, y)Γ2S(y, x)

]
〈G2〉

, (D.6)

which gives us three possible diagrams, as shown at figure 13.
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The gluon condensate, that arises from the diagram 13(a) at figure 13, is given by

propagation of two individual gluon tensors due to (6.2b). Its contribution reads

[
Π
〈G2〉
Oa1Ob2

(x, y)
]
(a)

=− αs〈G2〉δab

192π3(x− y)4

(
x2y2 − (x ·y)2

(x− y)4
Tr
[
Γ1(/x− /y)Γ2(/x− /y)

]
− 1

4

[
(x− y)2gρσ − (x− y)ρ(x− y)σ

]
Tr
[
Γ1γ

ργ5Γ2γ
σγ5
])

. (D.7)

Although the bottom line of the formula above is invariant with respect to translation,

the upper line is not. This part gets cancelled by the contributions of the diagrams 13(b)

and 13(c). In fact, these graphs contribute equally and their sum reads

[
Π
〈G2〉
Oa1Ob2

(x, y)
]
(b)

+
[
Π
〈G2〉
Oa1Ob2

(x, y)
]
(c)

=
αs〈G2〉δab

192π3
x2y2 − (x ·y)2

(x− y)8
Tr
[
Γ1(/x− /y)Γ2(/x− /y)

]
.

(D.8)

Adding both contributions (D.7)–(D.8) together thus leaves us with the total contribution

in the translation-invariant form

Π
〈G2〉
Oa1Ob2

(x, y) =
αs〈G2〉δab

768π3(x− y)4
[
(x− y)2gρσ − (x− y)ρ(x− y)σ

]
Tr
[
Γ1γ

ργ5Γ2γ
σγ5
]
. (D.9)

Now we are allowed to perform a shift of the coordinations, symbolically enoted as

(x, y) → (x − y, 0) ≡ (x, 0). In other words, we can set y = 0 in (D.9), which effectively

means that contribution of diagrams 13(b) and 13(c) vanishes identically. Then, after

performing the Fourier transform, one finds the result for all the relevant correlators in the

momentum representation as follows:

Π
〈G2〉
Oa1Ob2

(p) = − iαs〈G
2〉δab

384πp2

(
Tr[Γ1γ

αγ5Γ2γαγ5] +
2

p2
Tr[Γ1/pγ5Γ2/pγ5]

)
. (D.10)

Propagation of nonlocal gluon condensate. For a curious reader, let us only empha-

size the complexity of the straightforward evaluation of the gluon condensate contribution

to the two-point Green functions, when the vacuum gluons are treated as an external fields,

which require us to apply the propagation formula (3.9b) and perform the integration over

the coordinates of the two gluon fields.

However, since the diagrams 13(b)–13(c) do not contribute, we present here the calcu-

lation only for the diagram 13(a). We obtain the contribution of the corresponding diagram

in the coordinate representation in the following form:26

[
Π
〈G2〉
Oa1Ob2

(x, y)
]
(a)

=
παs〈G2〉

48
δab

×
∫

d4u d4v H
〈G2〉
αβ (u, v) Tr

[
Γ1S0(x, u)γαS0(u, y)Γ2S0(y, v)γβS0(v, x)

]
, (D.11)

with the function H
〈G2〉
αβ (u, v) given in (3.9b).

26The evaluation based on this approach is of course trivial and has been discussed in the literature many

times. For example, see ref. [68].
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As it turns out, it is much efficient to only perform the integration over the coordinates

u, v of the two gluon fields, leave the expression in the coordinate representation and make

the Fourier transform of the results only after inserting the relevant Dirac matrices.

To integrate over the gluon coordinates, we employed once again the trick of assigning

arbitrary momenta to the gluon fields, interchanging the integration for the Fourier trans-

form and setting those momenta to zero at the end of the calculation. After making sure

that the contribution (D.11) above is translation-invariant, it is possible to set y = 0, which

simplifies the expression a bit. After some algebraic manipulations, the contribution reads[
Π
〈G2〉
Oa1Ob2

(x)
]
(a)

= −παs〈G
2〉

48
δabTr

[
Γ1γ

αγβγγΓ2γ
µγνγρ

]
×
[
− 1

8π2
[F2(x)]α

(
gβν [F9(x)]γµρ − gγν [F9(x)]βµρ

)
− gβν [F9(x)]µρσ[F9(x)]αγσ

+
1

8π2
[F2(x)]µ

(
gβρ[F9(x)]αγν − gβν [F9(x)]αγρ

)
+ [F9(x)]βµρ[F9(x)]αγν

− i[F8(x)]µρ

(
xβ [F9(x)]αγν − gβνxσ[F9(x)]αγσ

)
− 1

64π4
[F2(x)]µ[F2(x)]α×

× (gβνgγρ − gβρgγν) +
i

8π2
[F2(x)]α[F8(x)]µρ(xγgβν − xβgγν)

]
, (D.12)

which, after inserting for the respective Dirac matrices and performing necessary algebraical

manipulations, gives[
Π
〈G2〉
V V (x)

]ab
µν

=
[
Π
〈G2〉
AA (x)

]ab
µν

= −αs〈G
2〉

192π3
δab
(
gµν
x2

+
2xµxν
x4

)
,

[
Π
〈G2〉
SS (x)

]ab
=
[
Π
〈G2〉
PP (x)

]ab
= −αs〈G

2〉
64π3

δab
1

x2
, (D.13)

which is now trivial to convert to the momentum representation.

Results. Regardless of approach used, the formulas (D.10) and (D.13) lead to the same

final results in the momentum representation for the individual Green functions as follows:

Π
〈G2〉
V V (p2) = Π

〈G2〉
AA (p2) =

i

24π

αs〈G2〉
p4

, (D.14a)

Π
〈G2〉
SS (p2) = Π

〈G2〉
PP (p2) =

i

16π

αs〈G2〉
p2

. (D.14b)

D.4 Quark-gluon condensate

As stated above, one expects the contribution of the quark-gluon condensate to the 〈AP 〉
correlator to vanish since the only nonperturbative contribution is given by the quark

condensate. Verifying that such contribution vanishes serves as a reliable confirmation

that our propagation formulas are correct.

As we have seen in the section 7, the contribution of the local quark-gluon condensate

is given by effective propagations of the nonlocal quark and quark-gluon condensates. In

what follows we will show that both contributions to the 〈AP 〉 correlator indeed cancel

each other, as expected. On top of that, to verify such cancellation, it will suffice to stay

in the coordinate representation.
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(a) (b)

Figure 14. Feynman diagrams of the contribution of the quark-gluon condensate to the two-point

Green functions due to the effective propagation of the non-local quark condensate.

Propagation of nonlocal quark condensate. Let us start with the contribution to

the two-point Green functions given by the propagation of the nonlocal quark condensate.

The relevant topologies of contributing diagrams are depicted at figure 14. Since the

contribution is effective due to the fact that the soft gluon is attached to the quark lines

wit zero momentum, one should not think of the diagrams at figure 14 as of standard

Feynman graphs.

Therefore, when evaluating the contribution, one should ignore the gluon line and

simply average over the uncontracted quark fields according to the part of the formula (3.9a)

proportional to the function F 〈qq〉(x, y), given by (3.10a).

Using the strategy explained above, one obtains the contribution of the diagrams at

figure 14 to be of the form

Π
〈qq〉→〈qσ·Gq〉
Oa1Ob2

(x, y) =− gs〈qσ ·Gq〉
26 · 3

δabTr
[
F 〈qq〉(y, x)Γ2S0(y, x)Γ1

]
+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
. (D.15)

An inserting all the relevant combinations of the Dirac matrices and performing the

trace leads us to the conclusion, that the only nonvanishing contribution is for the case of

the 〈AP 〉 correlator:

[
Π
〈qq〉→〈qσ·Gq〉
AP (x,y)

]ab
µ

=− gs〈qσ·Gq〉δ
ab

288π2(x−y)4

×
[
xµ

(
2(x−y)2+x2−y2

)
−yµ

(
4(x−y)2+x2−y2

)]
. (D.16)

Propagation of nonlocal quark-gluon condensate. Similarly, using the formula (3.9c)

with the part proportional to F
〈qAq〉
µ (x, y, z), given with (3.12a), one finds the contribution

stemming from the propagation of the nonlocal quark-gluon condensate to be (see the

corresponding Feynman diagram at figure 15)

Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2

(x, y) =− igs〈qσ ·Gq〉
26 · 32

δab
∫

d4uTr
[
F 〈qAq〉α (y, u, x)Γ2S0(y, u)γαS0(u, x)Γ1

]
+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
, (D.17)
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Figure 15. Feynman diagram of the contribution of the quark-gluon condensate to the two-point

Green functions due to the effective propagation of the non-local quark-gluon condensate.

where we need to integrate over the coordinate u of the four-potential of the gluon field.

This integration is easily performed by introducing momentum k, changing the integration

for Fourier transform and setting k = 0 at the end of the calculations, i.e. schematically∫
d4u −→ lim

k→0

∫
d4u e−ik·u . (D.18)

Performing the integration of (D.17) over the coordinate u according to (D.18), we get

Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2

(x, y) = −gs〈qσ ·Gq〉
26 · 32

δabTr
[
σανΓ2γ

µγνγρΓ1

]
×
(

1

8π2
gαρ
[
F2(x− y)

]
µ
− ixα

[
F8(x− y)

]
µρ

+
[
F9(x− y)

]
αµρ

)
+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
. (D.19)

Then, one can substitute for the specific Dirac matrices and finds out that the quark-gluon

condensate contribution to the 〈AP 〉 correlator, given by the propagation of the nonlocal

quark-gluon condensate, is the opposite to (D.16):[
Π
〈qAq〉→〈qσ·Gq〉
AP (x, y)

]ab
µ

= −
[
Π
〈qq〉→〈qσ·Gq〉
AP (x, y)

]ab
µ
. (D.20)

Results. As can be seen from (D.20), both results (D.15) and (D.19), obtained from the

propagation of the nonlocal condensates, cancel each other,

Π
〈qq〉→〈qσ·Gq〉
Oa1Ob2

(x, y) + Π
〈qAq〉→〈qσ·Gq〉
Oa1Ob2

(x, y) = 0 , (D.21)

i.e. also the contribution to the 〈AP 〉 correlator vanishes,

Π
〈qσ·Gq〉
AP (p2) = 0 , (D.22)

as expected.

To conclude, there is no contribution of the quark-gluon condensate to the above Green

functions (D.1a)–(D.2) in the chiral limit.27

27There exists a contribution for the 〈V T 〉 correlator, however, we do not consider the tensor currents in

this paper.
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(a) (b) (c) (d)

Figure 16. Feynman diagrams of the direct contribution of the four-quark condensate to the

two-point Green functions. The averaging over the quark fields is done according to (3.3).

D.5 Four-quark condensate

Since the evaluation of the contribution of the four-quark condensate has been discussed

thoroughly in the main text, we present here only the results. They are as follows:

Direct contribution. Perturbative contribution to the four-quark condensate is of sim-

ple form. The relevant diagrams are shown at figure 16 and their contributions read

[
Π

pert.→〈qq〉2
Oa1Ob2

(p)
]
(a)

=− iπαs〈qq〉2

162p2
δab Tr

[
γαS0(p)Γ1γ

αS0(−p)Γ2

]
,

[
Π

pert.→〈qq〉2
Oa1Ob2

(p)
]
(b)

=− iπαs〈qq〉2

162p2
δab Tr

[
Γ1S0(−p)γαΓ2S0(p)γ

α
]
,

[
Π

pert.→〈qq〉2
Oa1Ob2

(p)
]
(c)

=− 2iπαs〈qq〉2

81p2
δab Tr

[
S0(p)Γ1Γ2S0(p)

]
,

[
Π

pert.→〈qq〉2
Oa1Ob2

(p)
]
(d)

=− 2iπαs〈qq〉2

81p2
δab Tr

[
Γ1S0(−p)S0(−p)Γ2

]
. (D.23)

Summing up all the contributions above, and substituting for the individual Γ-matrices,

leads to the following results:

[
Π

pert.→〈qq〉2
V V (p)

]ab
µν

= −
[
Π

pert.→〈qq〉2
AA (p)

]ab
µν

=
16iπαs〈qq〉2

81p6
(p2gµν − pµpν)δab ,

[
Π

pert.→〈qq〉2
SS (p)

]ab
= −

[
Π

pert.→〈qq〉2
PP (p)

]ab
=

8iπαs〈qq〉2

27p4
δab . (D.24)

We alert the reader to notice the opposite sign between the contributions of the respective

pairs of correlators.

Propagation of nonlocal quark condensate. The contributing topologies are shown

on the figure 17. Due to the same reasons as we have explained in the beginning of the

previous section, we also here understand both graphs to be the same, and, obviously,

contributing equally.
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(a) (b)

Figure 17. Feynman diagrams of the contribution of the four-quark condensate to the two-point

Green functions due to the effective propagation of the nonlocal quark condensate.

The contribution of such propagation is of simple form:

Π
〈qq〉→〈qq〉2
Oa1Ob2

(x, y) =
iπαs〈qq〉2

24 · 36
δabTr

[
G〈qq〉(y, x)Γ2S0(y, x)Γ1

]
+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
, (D.25)

with G〈qq〉(x, y) given by (3.10b). However, after inserting the Dirac matrices and evalu-

ating the trace, we get somewhat lengthy expressions for individual contributions. After

assuring ourselves that these results, together with the results (D.30) of effective propa-

gation of the quark-gluon condensate, are translation-invariant, it allows us to set y = 0,

which gives us

[
Π
〈qq〉→〈qq〉2
V V (x)

]ab
µν

=
[
Π
〈qq〉→〈qq〉2
AA (x)

]ab
µν

=− αs〈qq〉2

2916π
δab
(
gµν − 2xµxν

x2

)
,

[
Π
〈qq〉→〈qq〉2
SS (x)

]ab
=
[
Π
〈qq〉→〈qq〉2
PP (x)

]ab
=

αs〈qq〉2

2916π
δab , (D.26)

and which finally leads to the results in the momentum representation:

[
Π
〈qq〉→〈qq〉2
V V (p)

]ab
µν

=
[
Π
〈qq〉→〈qq〉2
AA (p)

]ab
µν

=− 4iπαs〈qq〉2

729p6
(p2gµν − 4pµpν)δab ,[

Π
〈qq〉→〈qq〉2
SS (p)

]ab
=
[
Π
〈qq〉→〈qq〉2
PP (p)

]ab
= 0 . (D.27)

Propagation of nonlocal quark-gluon condensate. The contribution of the graphs

at figure 18 reads

Π
〈qAq〉→〈qq〉2
Oa1Ob2

(x, y) =− iπαs〈qq〉2

22 · 35
δab
∫

d4uTr
[
G〈qAq〉α (y, u, x)Γ2S0(y, u)γαS0(u, x)Γ1

]
+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
, (D.28)
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where G
〈qAq〉
α (x, u, y) is given by (3.12b). Performing the integration over the gluon field is

quite lengthy in this case, and the result reads

Π
〈qAq〉→〈qq〉2
Oa1Ob2

(x, y) = −παs〈qq〉
2

22 · 35
δab

×
[
− iTr

[
t(2)αν (y, x)Γ2γ

µγνγρΓ1

]
×
(

1

8π2
gαρ
[
F2(x− y)

]
µ
− ixα

[
F8(x− y)

]
µρ

+
[
F9(x− y)

]
αµρ

)
− 2

3
Tr
[
t
(1)
βανΓ2γ

µγνγρΓ1

]
×
(
− i

8π2
(xαgβρ + xβgαρ)

[
F2(x− y)

]
µ
− xαxβ

[
F8(x− y)

]
µρ

+
[
F12(x− y)

]
αβµρ

− ixα
[
F9(x− y)

]
βµρ
− ixβ

[
F9(x− y)

]
αµρ

− gβρ
[
F11(x− y)

]
αµ
− gαρ

[
F11(x− y)

]
βµ
− gαβ

[
F11(x− y)

]
µρ

)]
+
[
(Γ1, a, x)↔ (Γ2, b, y)

]
, (D.29)

where we have denoted the respective tensors as

t
(1)
αβµ = i(gαβγµ − gαµγβ) ,

t
(2)
αβ(x, y) =

i

2

[
(x+ y)αγβ − (x+ y)βγα

]
− 1

2
ε(x−y)αβµγµγ5 .

However, after substituing for the specific Dirac matrices, the previous results simplifies

a lot and we obtain

[
Π
〈qAq〉→〈qq〉2
V V (x)

]ab
µν

=
[
Π
〈qAq〉→〈qq〉2
AA (x)

]ab
µν

= −αs〈qq〉
2

2916π
δab

×
[(

6 log(−µ2x2)− 5
)
gµν −

2xµxν
x2

]
,

[
Π
〈qAq〉→〈qq〉2
SS (x)

]ab
=
[
Π
〈qAq〉→〈qq〉2
PP (x)

]ab
=

αs〈qq〉2

2916π
δab
(

7 + 12 log(−µ2x2)
)
. (D.30)

Performing the Fourier transform is now easy and the result in the momentum repre-

sentation reads

[
Π
〈qAq〉→〈qq〉2
V V (p)

]ab
µν

=
[
Π
〈qAq〉→〈qq〉2
AA (p)

]ab
µν

= −4iπαs〈qq〉2

729p6
(7p2gµν − 4pµpν)δab ,

[
Π
〈qAq〉→〈qq〉2
SS (p)

]ab
=
[
Π
〈qAq〉→〈qq〉2
PP (p)

]ab
=

16iπαs〈qq〉2

243p4
δab . (D.31)

Results. Taking all the individual results (D.24), (D.27) and (D.31) together, we arrive

at the total contribution of the four-quark condensate to the individual two-point Green
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Figure 18. Feynman diagram of the contribution of the four-quark condensate to the two-point

Green functions due to the effective propagation of the nonlocal quark-gluon condensate.

functions:

Π
〈qq〉2
V V (p2) =

112

729

iπαs〈qq〉2

p6
, (D.32a)

Π
〈qq〉2
AA (p2) =− 176

729

iπαs〈qq〉2

p6
, (D.32b)

Π
〈qq〉2
SS (p2) =

88

243

iπαs〈qq〉2

p4
, (D.32c)

Π
〈qq〉2
PP (p2) =− 56

243

iπαs〈qq〉2

p4
. (D.32d)

E On decompositions of the 〈V V A〉 and 〈AAA〉 Green functions

In this appendix, we show the derivation of the decompositions of the transversal Lorentz

parts of the 〈V V A〉 and 〈AAA〉 correlators (2.25).

In order to obtain a decomposition of any correlator, one has to take into account two

requirements: the Bose symmetries and the Ward identities of such correlator. We now

show explicit forms of these requirements for the two Green functions in question.

Bose symmetry. The 〈V V A〉 Green function, as defined in (2.22), has only one Bose

symmetry, which is invariance with respect to the interchange (µ, a, p)↔ (ν, b, q). Due to

the symmetry of the flavor part, the Bose symmetry dictates the following requirement on

the Lorentz part: [
ΠV V A(p, q; r)

]
µνρ
−
[
ΠV V A(q, p; r)

]
νµρ

= 0 . (E.1)

On the other hand, the 〈AAA〉 Green function, as defined in (2.22), is a bit more

complicated since there are three relations due to the Bose symmetry:[
ΠAAA(p, q; r)

]
µνρ
−
[
ΠAAA(q, p; r)

]
νµρ

= 0 , (E.2a)[
ΠAAA(p, q; r)

]
µνρ
−
[
ΠAAA(r, q; p)

]
ρνµ

= 0 , (E.2b)[
ΠAAA(p, q; r)

]
µνρ
−
[
ΠAAA(p, r; q)

]
µρν

= 0 . (E.2c)

The first one is equivalent to (E.1), while (E.2b) and (E.2c) stand for the interchanges of

(µ, a, p)↔ (ρ, c, r) and (ν, b, q)↔ (ρ, c, r), respectively.
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As one can easily see that the longitudinal parts (2.24) of these correlators satisfy the

Bose symmetries instantly. Then, when searching for the complete decompositions (2.23), it

is sufficient to demand the fulfillment of the Bose symmetries only for the transversal parts.

Ward identities. The full Ward identities of the 〈V V A〉 and 〈AAA〉 correlators are (2.10)

and (2.11), respectively. Naturally, the nonzero right-hand sides of these Ward identities

are given by the longitudinal parts (2.24),

{pµ, qν , rρ}
[
Π

(L)
V V A(p, q; r)

]
µνρ

=

{
0, 0,− iNc

8π2
εµν(p)(q)

}
,

{pµ, qν , rρ}
[
Π

(L)
AAA(p, q; r)

]
µνρ

=

{
− iNc

24π2
ενρ(p)(q),

iNc

24π2
εµρ(p)(q),− iNc

24π2
εµν(p)(q)

}
, (E.3)

while the right-hand sides of the Ward identities for the transversal parts must vanish by

definition,

{pµ, qν , rρ}
[
Π

(T )
V V A(p, q; r)

]
µνρ

= {0, 0, 0} , (E.4a)

{pµ, qν , rρ}
[
Π

(T )
AAA(p, q; r)

]
µνρ

= {0, 0, 0} . (E.4b)

Tensor base. The decomposition of these correlators must be built out of momenta

contracted with the Levi-Civita tensor in such way that the structures carry three Lorentz

indices. Taking the conservation of momenta into account, we can reduce the number of

tensors only to eight:

pµενρ(p)(q) , pνεµρ(p)(q) , qµενρ(p)(q) , qνεµρ(p)(q) ,

pρεµν(p)(q) , qρεµν(p)(q) , εµνρ(p) , εµνρ(q) . (E.5)

E.1 〈V V A〉 Green function

Our task now is to find the transversal part of the 〈V V A〉 Green function such that it

satisfies the Bose symmetry (E.1) and the Ward identities in the form (E.4a). We start

with the requirement of the Bose symmetry.28

Bose symmetry. Following introductory remarks in the paragraphs above, we can write

down the transversal part of the 〈V V A〉 Green function in the form of a sum of the eight

tensors shown in (E.5), with respective invariant functions that are functions of squares

of momenta. However, to make the fulfillment of the Bose symmetry more apparent, we

will take suitable combinations of these tensors into account. Therefore, let us define the

28The authors are grateful to Marc Knecht for sharing the manuscript of [69] before its publishing,

where the derivation of the 〈V V A〉 decomposition can be also found. Our derivation is found on the same

principles and follows the same procedure. However, in comparison with ref. [69], we present an approach

with slightly detailed explanations of individual steps. Also, our notation and normalization differs.
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relevant tensors,

t(1)µνρ(p, q; r) = pµενρ(p)(q) + qνεµρ(p)(q) ,

t(2)µνρ(p, q; r) = pµενρ(p)(q) − qνεµρ(p)(q) ,

t(3)µνρ(p, q; r) = pνεµρ(p)(q) + qµενρ(p)(q) ,

t(4)µνρ(p, q; r) = pνεµρ(p)(q) − qµενρ(p)(q) ,

t(5)µνρ(p, q; r) = pρεµν(p)(q) + qρεµν(p)(q) ,

t(6)µνρ(p, q; r) = pρεµν(p)(q) − qρεµν(p)(q) ,

t(7)µνρ(p, q; r) = εµνρ(p) + εµνρ(q) ,

t(8)µνρ(p, q; r) = εµνρ(p) − εµνρ(q) , (E.6)

and write down the transversal part of (2.23) as

[
Π

(T )
V V A(p, q; r)

]
µνρ

=

8∑
i=1

ai(p
2, q2, r2)t(i)µνρ(p, q; r) . (E.7)

The structure (E.7), consisted of eight terms, can be further simplified upon taking

the following Schouten identities into account:

pµενρ(p)(q) − pνεµρ(p)(q) + pρεµν(p)(q) − p2εµνρ(q) + (p ·q)εµνρ(p) = 0 ,

qµενρ(p)(q) − qνεµρ(p)(q) + qρεµν(p)(q) + q2εµνρ(p) − (p ·q)εµνρ(q) = 0 . (E.8)

In fact, we can rewrite two of the eight tensors (E.6) in terms of the remaining six.

We choose to eliminate the following ones:

t(2)µνρ(p, q; r) = t(4)µνρ(p, q; r)− t(5)µνρ(p, q; r) +
1

2
(p2 − q2)t(7)µνρ(p, q; r)

− 1

2
(p+ q)2t(8)µνρ(p, q; r) ,

t(3)µνρ(p, q; r) = t(1)µνρ(p, q; r) + t(6)µνρ(p, q; r)−
1

2
(p− q)2t(7)µνρ(p, q; r)

+
1

2
(p2 − q2)t(8)µνρ(p, q; r) . (E.9)

Then, upon substituting them back into (E.7), we are left with the transversal part of the

〈V V A〉 correlator given by six terms, i.e.[
Π

(T )
V V A(p, q; r)

]
µνρ

= a9(p
2, q2, r2)t(1)µνρ(p, q; r) + a10(p

2, q2, r2)t(4)µνρ(p, q; r)

+ a11(p
2, q2, r2)t(6)µνρ(p, q; r) + a12(p

2, q2, r2)t(5)µνρ(p, q; r)

+ a13(p
2, q2, r2)t(8)µνρ(p, q; r) + a14(p

2, q2, r2)t(7)µνρ(p, q; r) , (E.10)

where the new invariant functions are linear combinations of the previous ones.

An advantage in choosing the transversal part of the 〈V V A〉 correlator in the form

of (E.7) is that the tensor structure t(1), t(3), t(6) are antisymmetric and t(2), t(4), t(5)
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symmetric upon exchanging p, µ↔ q, ν. In other words, the Bose symmetry requires these

conditions to be satisfied:

a9(p
2, q2, r2) + a9(q

2, p2, r2) = 0 ,

a10(p
2, q2, r2)− a10(q2, p2, r2) = 0 ,

a11(p
2, q2, r2) + a11(q

2, p2, r2) = 0 ,

a12(p
2, q2, r2)− a12(q2, p2, r2) = 0 ,

a13(p
2, q2, r2)− a13(q2, p2, r2) = 0 ,

a14(p
2, q2, r2) + a14(q

2, p2, r2) = 0 . (E.11)

Ward identities. Now, having the transversal structure (E.10) of the 〈V V A〉 Green

function with the invariant functions satisfying the conditions (E.11), one can try to fur-

ther simplify the structure with the requirement of the fulfillment of the respective Ward

identities. Indeed, the vanishing vector Ward identities lead to the relations

p2a9(p
2, q2, r2)− (p ·q)a10(p2, q2, r2)− a13(p2, q2, r2) + a14(p

2, q2, r2) = 0 ,

q2a9(p
2, q2, r2) + (p ·q)a10(p2, q2, r2) + a13(p

2, q2, r2) + a14(p
2, q2, r2) = 0 , (E.12)

which can be solved for the a5 and a6 invariant functions as follows:

a13(p
2, q2, r2) =

1

2
(p2 − q2)a9(p2, q2, r2)− (p ·q)a10(p2, q2, r2) ,

a14(p
2, q2, r2) =− 1

2
(p2 + q2)a9(p

2, q2, r2) . (E.13)

Inserting the solutions (E.13) back into (E.10) gives us the transversal structure made

of four terms, [
Π

(T )
V V A(p, q; r)

]
µνρ

=

12∑
i=9

ai(p
2, q2, r2)t(i)µνρ(p, q; r) , (E.14)

with the tensors being

t(9)µνρ(p, q; r) = pµενρ(p)(q) + qνεµρ(p)(q) − p2εµνρ(q) − q2εµνρ(p) ,

t(10)µνρ (p, q; r) = pνεµρ(p)(q) − qµενρ(p)(q) − (p ·q)(εµνρ(p) − εµνρ(q)) ,

t(11)µνρ (p, q; r) = (p− q)ρεµν(p)(q) ,

t(12)µνρ (p, q; r) = (p+ q)ρεµν(p)(q) .

Finally, the axial Ward identity gives us the condition

a12(p
2, q2, r2) =

p2 − q2

r2
[
a9(p

2, q2, r2)− a11(p2, q2, r2)
]
− 2(p ·q)

r2
a10(p

2, q2, r2) , (E.15)

which not only reduces the number of invariant functions, but also introduces kinematical

zeros.
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Result. Substituting the solution (E.15) into (E.14) leads, after some algebraical manip-

ulations, to the final result for the transversal part of the 〈V V A〉 Green function in the form[
Π

(T )
V V A(p,q;r)

]
µνρ

= a9(p
2, q2, r2)

[
t(9)µνρ(p,q;r)+t(11)µνρ (p,q;r)

]
+a10(p

2, q2, r2)

(
t(10)µνρ (p,q;r)− 2(p·q)

r2
t(12)µνρ (p,q;r)

)
(E.16)

+
[
a11(p

2, q2, r2)−a9(p2, q2, r2)
](
t(11)µνρ (p,q;r)− p

2−q2

r2
t(12)µνρ (p,q;r)

)
.

Finally, to obtain the transversal part of the 〈V V A〉 decomposition (2.25), it is now

only necessary to denote

FV V A(p2, q2, r2) ≡ a10(p2, q2, r2) ,
GV V A(p2, q2, r2) ≡ a11(p2, q2, r2)− a9(p2, q2, r2) ,
HV V A(p2, q2, r2) ≡ a9(p2, q2, r2) , (E.17)

and

T (1)
µνρ(p, q; r) ≡ t(10)µνρ (p, q; r)− 2(p ·q)

r2
t(12)µνρ (p, q; r) ,

T (2)
µνρ(p, q; r) ≡ t(11)µνρ (p, q; r)− p2 − q2

r2
t(12)µνρ (p, q; r) ,

T (3)
µνρ(p, q; r) ≡ t(9)µνρ(p, q; r) + t(11)µνρ (p, q; r) . (E.18)

After some manipulations, we indeed arrive at

T (1)
µνρ(p, q; r) = pνεµρ(p)(q) − qµενρ(p)(q) − p2 + q2 − r2

r2

(
εµν(p)(q)rρ − r2

2
εµνρ(p−q)

)
,

T (2)
µνρ(p, q; r) = εµν(p)(q)(p− q)ρ +

p2 − q2

r2
εµν(p)(q)rρ ,

T (3)
µνρ(p, q; r) = pνεµρ(p)(q) + qµενρ(p)(q) − p2 + q2 − r2

2
εµνρ(r) , (E.19)

by which we have finally derived the tensors of (2.25), with the following symmetry prop-

erties:

T (1)
µνρ(p, q; r) = T (1)

νµρ(q, p; r) ,

T (2)
µνρ(p, q; r) =− T (2)

νµρ(q, p; r) ,

T (3)
µνρ(p, q; r) =− T (3)

νµρ(q, p; r) . (E.20)

E.2 〈AAA〉 Green function

Similarly to the previous section, we will now construct the transversal part of the decom-

position of the 〈AAA〉 Green function (2.23) such that the Bose symmetries (E.2a)–(E.2c)

and the Ward identities (E.4b) are satisfied. However, unlike in the case above, we will

proceed with the construction in such a way that we will start with the requirement of the

vanishing Ward identities.
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Ward identities. As a first step let us determine the independent tensor structure. Us-

ing the Schouten identities (E.8), we can get rid off two tensors out of the eight structures

exactly as in the previous case of the 〈V V A〉. The general solution of the transversal-

ity conditions for the transverse part of the 〈AAA〉 correlator can be written as a linear

combination of following three tensors

t(13)µνρ (p, q; r) =− pµενρ(r)(s)

2p2
+
qνεµρ(r)(s)

2q2
+
rρεµν(r)(s)

r2
− εµνρ(s) ,

t(14)µνρ (p, q; r) =− pµενρ(r)(s)

2p2
− qνεµρ(r)(s)

2q2
− εµνρ(r) ,

t(15)µνρ (p, q; r) =
1

2

(
r ·s
r2

rρ − sρ
)
εµν(r)(s) , (E.21)

where we have introduced the momentum s

s ≡ p− q .

Bose symmetry. Having the transversal tensors introduced above, let us make them

subject to the simultaneous interchanges of the momenta and Lorentz indices in order to

find out their behavior with respect to the Bose symmetries (E.2a)–(E.2c). After some

algebraic manipulations, we find out the following transformation properties. For (p, µ)↔
(q, ν) we have

t(13)νµρ (q, p; r) = t(13)µνρ (p, q; r) ,

t(14)νµρ (q, p; r) =− t(14)µνρ (p, q; r) ,

t(15)νµρ (q, p; r) =− t(15)µνρ (p, q; r) , (E.22)

for (p, µ)↔ (r, ρ) we find

t(13)ρνµ (r, q; p) =− 1

2
t(13)µνρ (p, q; r)− 3

2
t(14)µνρ (p, q; r) ,

t(14)ρνµ (r, q; p) =− 1

2
t(13)µνρ (p, q; r) +

1

2
t(14)µνρ (p, q; r) ,

t(15)ρνµ (r, q; p) =− t(15)µνρ (p, q; r)− 1

2
(p2 − q2 − r2)t(13)µνρ (p, q; r)

− 1

2
(p2 + 3q2 − r2)t(14)µνρ (p, q; r) (E.23)

and finally for (q, ν)↔ (r, ρ) we obtain

t(13)µρν (p, r; q) =− 1

2
t(13)µνρ (p, q; r) +

3

2
t(14)µνρ (p, q; r) ,

t(14)µρν (p, r; q) =
1

2
t(13)µνρ (p, q; r) +

1

2
t(14)µνρ (p, q; r) ,

t(15)µρν (p, r; q) =− t(15)µνρ (p, q; r)− 1

2
(p2 − q2 + r2)t(13)µνρ (p, q; r)

− 1

2
(3p2 + q2 − r2)t(14)µνρ (p, q; r) . (E.24)
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Based on the behavior (E.22)–(E.24) of the tensor structures (E.21), we construct the

following combinations of such tensors:

T (4)
µνρ(p, q; r) ≡ (p2 + q2 − r2)t(14)µνρ (p, q; r) + t(15)µνρ (p, q; r) , (E.25a)

T (5)
µνρ(p, q; r) ≡ (p2 − q2)t(13)µνρ (p, q; r)− (p2 + q2 − 2r2)t(14)µνρ (p, q; r) , (E.25b)

T (6)
µνρ(p, q; r) ≡

1

3
(p2 + q2 − 2r2)t(13)µνρ (p, q; r) + (p2 − q2)t(14)µνρ (p, q; r) . (E.25c)

These are not only fully transversal but have also convenient symmetry properties. In

detail, the tensors (E.25a)–(E.25b) are antisymmetric upon the Bose symmetries, while

the tensor (E.25c) is symmetric. Symbolically,

T (4)
µνρ(p, q; r) = −T (4)

νµρ(q, p; r) = −T (4)
ρνµ(r, q; p) = −T (4)

µρν(p, r; q) ,

T (5)
µνρ(p, q; r) = −T (5)

νµρ(q, p; r) = −T (5)
ρνµ(r, q; p) = −T (5)

µρν(p, r; q) ,

T (6)
µνρ(p, q; r) = T (6)

νµρ(q, p; r) = T (6)
ρνµ(r, q; p) = T (6)

µρν(p, r; q) . (E.26)

Result. Then we simply construct the transversal part of the 〈AAA〉 Green function as[
Π

(T )
AAA(p, q; r)

]
µνρ

= FAAA(p2, q2, r2)T (4)
µνρ(p, q; r) + GAAA(p2, q2, r2)T (5)

µνρ(p, q; r)

+HAAA(p2, q2, r2)T (6)
µνρ(p, q; r) . (E.27)

Due to the behavior (E.26) of the tensors (E.25a)–(E.25c) under the Bose symmetries, the

first two invariant functions are antisymmetric under the Bose symmetries, while the third

one is symmetric. See (2.26) for details.

F On decompositions of the 〈AAV 〉 and 〈V V V 〉 Green functions

In this appendix, we get back to the 〈AAV 〉 and 〈V V V 〉 Green functions and present the

derivation of their decompositions (2.27).

Bose symmetry. Similarly as in the previous section, we start with the Bose symmetries

of the Green functions in question. The 〈AAV 〉 Green function, as defined in (2.27), is

invariant with respect to the interchange (µ, a, p) ↔ (ν, b, q). Due to the antisymmetry of

the flavor part, the Bose symmetry dictates:[
ΠAAV (p, q; r)

]
µνρ

+
[
ΠAAV (q, p; r)

]
νµρ

= 0 . (F.1)

Similarly for the 〈V V V 〉 Green function, as defined in (2.27), we have[
ΠV V V (p, q; r)

]
µνρ

+
[
ΠV V V (q, p; r)

]
νµρ

= 0 , (F.2a)[
ΠV V V (p, q; r)

]
µνρ

+
[
ΠV V V (r, q; p)

]
ρνµ

= 0 , (F.2b)[
ΠV V V (p, q; r)

]
µνρ

+
[
ΠV V V (p, r; q)

]
µρν

= 0 . (F.2c)
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Ward identities. The Ward identities of the 〈AAV 〉 and 〈V V V 〉 Green functions have

been presented in the main text, see (2.12) and (2.13), respectively. After discarding the

flavor part, we have for the Lorentz part of the 〈AAV 〉 correlator the following Ward

identities.

pµ
[
ΠAAV (p, q; r)

]
µνρ

= −ΠAA(q2)
[
q2gνρ + (p+ r)νqρ

]
+ ΠV V (r2)

[
r2gνρ + rν(p+ q)ρ

]
, (F.3a)

qν
[
ΠAAV (p, q; r)

]
µνρ

= −ΠV V (r2)
[
r2gµρ + rµ(pρ + qρ)

]
+ ΠAA(p2)

[
p2gµρ + (qµ + rµ)pρ

]
, (F.3b)

rρ
[
ΠAAV (p, q; r)

]
µνρ

= −ΠAA(p2)
[
p2gµν + (qµ + rµ)pν

]
+ ΠAA(q2)

[
q2gµν + qµ(pν + rν)

]
, (F.3c)

written in this form anticipating the choice of the tensor basis below. Similarly, for the

Lorentz part of the 〈V V V 〉:

pµ
[
ΠV V V (p, q; r)

]
µνρ

= −ΠV V (q2)
[
q2gνρ + (pν + rν)qρ

]
+ ΠV V (r2)

[
r2gνρ + rν(pρ + qρ)

]
, (F.4a)

qν
[
ΠV V V (p, q; r)

]
µνρ

= −ΠV V (r2)
[
r2gµρ + rµ(pρ + qρ)

]
+ ΠV V (p2)

[
p2gµρ + (qµ + rµ)pρ

]
, (F.4b)

rρ
[
ΠV V V (p, q; r)

]
µνρ

= −ΠV V (p2)
[
p2gµν + (qµ + rµ)pν

]
+ ΠV V (q2)

[
q2gµν + qµ(pν + rν)

]
. (F.4c)

F.1 〈AAV 〉 Green function

Upon assuming the momentum conservation and using the trick of rewriting pµ, qν and rρ
as −(q + r)µ, −(p+ r)ν and −(p+ q)ρ, respectively, the Lorentz part of the 〈AAV 〉 Green

function (2.27) can be written down as a linear combination of 14 tensors, i.e.

[
ΠAAV (p, q; r)

]
µνρ

= c1(p
2, q2, r2) qµpνpρ + c2(p

2, q2, r2) qµpνqρ + c3(p
2, q2, r2) qµrνpρ

+ c4(p
2, q2, r2) qµrνqρ + c5(p

2, q2, r2) rµpνpρ + c6(p
2, q2, r2) rµpνqρ

+ c7(p
2, q2, r2) rµrνpρ + c8(p

2, q2, r2) rµrνqρ + c9(p
2, q2, r2) pνgµρ

+ c10(p
2, q2, r2) pρgµν + c11(p

2, q2, r2) qµgνρ + c12(p
2, q2, r2) qρgµν

+ c13(p
2, q2, r2) rµgνρ + c14(p

2, q2, r2) rνgµρ , (F.5)

to which we now apply the constraints that follow from the fundamental properties of the

correlator, i.e. the Bose symmetry and Ward identities. We start with the former.
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Bose symmetry. The respective Bose symmetry (F.1) allows us to reduce the number

of the invariant functions from 14 to 7, since it leads to the following conditions:

c2(p
2, q2, r2) = −c1(q2, p2, r2) ,

c5(p
2, q2, r2) = −c4(q2, p2, r2) ,

c6(p
2, q2, r2) = −c3(q2, p2, r2) ,

c8(p
2, q2, r2) = −c7(q2, p2, r2) ,

c11(p
2, q2, r2) = −c9(q2, p2, r2) ,

c12(p
2, q2, r2) = −c10(q2, p2, r2) ,

c14(p
2, q2, r2) = −c13(q2, p2, r2) . (F.6)

We are thus allowed to rewrite the Lorentz structure (F.5) in a more compact form

[
ΠAAV (p, q; r)

]
µνρ

= c1(p
2, q2, r2)qµpνpρ − c1(q2, p2, r2)qµpνqρ + c3(p

2, q2, r2)qµrνpρ

− c3(q2, p2, r2)rµpνqρ + c4(p
2, q2, r2)qµrνqρ − c4(q2, p2, r2)rµpνpρ

+ c7(p
2, q2, r2)rµrνpρ − c7(q2, p2, r2)rµrνqρ + c9(p

2, q2, r2)pνgµρ

− c9(q2, p2, r2)qµgνρ + c10(p
2, q2, r2)pρgµν − c10(q2, p2, r2)qρgµν

+ c13(p
2, q2, r2)rµgνρ − c13(q2, p2, r2)rνgµρ , (F.7)

which is now Bose symmetrical. Now we need to make this structure satisfy the Ward

identities.

Ward identities. Contracting the Lorentz structure (F.7) with the respective momenta

leads to

pµ
[
ΠAAV (p, q; r)

]
µνρ

=
[
(p ·q)c1(p2, q2, r2)− (p ·r)c4(q2, p2, r2) + c9(p

2, q2, r2) + c10(p
2, q2, r2)

]
pνpρ

+
[
(p ·q)c3(p2, q2, r2) + (p ·r)c7(p2, q2, r2)− c13(q2, p2, r2)

]
rνpρ

−
[
(p ·q)c1(q2, p2, r2) + (p ·r)c3(q2, p2, r2) + c10(q

2, p2, r2)
]
pνqρ

+
[
(p ·q)c4(p2, q2, r2)− (p ·r)c7(q2, p2, r2)

]
rνqρ

−
[
(p ·q)c9(q2, p2, r2)− (p ·r)c13(p2, q2, r2)

]
gνρ , (F.8a)

qν
[
ΠAAV (p, q; r)

]
µνρ

=−
[
(p ·q)c1(q2, p2, r2)− (q ·r)c4(p2, q2, r2) + c9(q

2, p2, r2) + c10(q
2, p2, r2)

]
qµqρ

+
[
(p ·q)c1(p2, q2, r2) + (q ·r)c3(p2, q2, r2) + c10(p

2, q2, r2)
]
qµpρ

−
[
(p ·q)c3(q2, p2, r2) + (q ·r)c7(q2, p2, r2)− c13(p2, q2, r2)

]
rµqρ

−
[
(p ·q)c4(q2, p2, r2)− (q ·r)c7(p2, q2, r2)

]
rµpρ

+
[
(p ·q)c9(p2, q2, r2)− (q ·r)c13(q2, p2, r2)

]
gµρ , (F.8b)
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rρ
[
ΠAAV (p, q; r)

]
µνρ

=
[
(p ·r)c7(p2, q2, r2)− (q ·r)c7(q2, p2, r2) + c13(p

2, q2, r2)− c13(q2, p2, r2)
]
rµrν

−
[
(q ·r)c3(q2, p2, r2) + (p ·r)c4(q2, p2, r2)− c9(p2, q2, r2)

]
rµpν

+
[
(p ·r)c3(p2, q2, r2) + (q ·r)c4(p2, q2, r2)− c9(q2, p2, r2)

]
qµrν

+
[
(p ·r)c1(p2, q2, r2)− (q ·r)c1(q2, p2, r2)

]
qµpν

+
[
(p ·r)c10(p2, q2, r2)− (q ·r)c10(q2, p2, r2)

]
gµν , (F.8c)

which gives us a system of three equations, to be compared with (F.3a)–(F.3c).

Instead of solving the system all at once, it is easier to start with comparison of the

two different forms of the first Ward identity. Then, upon comparing the scalar functions

with the same tensors in (F.3a) and (F.8a), we arrive at the following system of equations:

(p ·q)c1(p2, q2, r2)− (p ·r)c4(q2, p2, r2) + c9(p
2, q2, r2) + c10(p

2, q2, r2) = 0 ,

(p ·q)c1(q2, p2, r2) + (p ·r)c3(q2, p2, r2) + c10(q
2, p2, r2)−ΠAA(q2) = 0 ,

(p ·q)c3(p2, q2, r2) + (p ·r)c7(p2, q2, r2)− c13(q2, p2, r2)−ΠV V (r2) = 0 ,

(p ·q)c9(q2, p2, r2)− (p ·r)c13(p2, q2, r2)− q2ΠAA(q2) + r2ΠV V (r2) = 0 ,

(p ·q)c4(p2, q2, r2)− (p ·r)c7(q2, p2, r2) + ΠAA(q2)−ΠV V (r2) = 0 . (F.9)

The solution of this system can be found in such form that we are allowed to express

the invariant functions c9, c10 and c13 in terms of c1, c3, c4 and c7. Specifically, we have

c9(p
2, q2, r2) =−ΠAA(p2) + (q ·r)c3(p2, q2, r2) + (p ·r)c4(q2, p2, r2) ,

c10(p
2, q2, r2) = ΠAA(p2)− (p ·q)c1(p2, q2, r2)− (q ·r)c3(p2, q2, r2) ,

c13(p
2, q2, r2) =−ΠV V (r2) + (p ·q)c3(q2, p2, r2) + (q ·r)c7(q2, p2, r2) , (F.10)

at the cost of having one additional condition for the invariant functions c4 and c7,

(p ·q)c4(p2, q2, r2)− (p ·r)c7(q2, p2, r2) + ΠAA(q2)−ΠV V (r2) = 0 , (F.11)

which guarantees the fulfillment of the first Ward identity.

The solutions (F.10) can now be inserted into the second Ward identity (F.8b), which

is hereby solved identically, too, upon taking into account (F.11).

Finally, the previous solutions applied to the third Ward identity (F.8c) give us the

requirement of the symmetry of the c3 invariant function in the first two arguments, i.e.

c3(p
2, q2, r2) = c3(q

2, p2, r2) , (F.12)

and the condition

(p ·r)c1(p2, q2, r2)− (q ·r)c1(q2, p2, r2) + ΠAA(p2)−ΠAA(q2) = 0 . (F.13)

Now, the solutions (F.10) and (F.12) could be inserted into the Lorentz structure (F.7),

which would give us the final result for the decomposition of the 〈AAV 〉 correlator. How-

ever, keeping the additional constraints (F.11) and (F.13) would be unaesthetic. One may
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thus try to solve these contraints by carefully choosing the solution for the respective in-

variant functions in such a way that these contraints are reduced into much easier relations,

for example in the form of properties of the invariant functions under the Bose symmetry.

Therefore, let us write down the general solution of the constraints (F.11) and (F.13)

in the form

c1(p
2, q2, r2) =

1

(p ·r)

[
ΠAA(q2) + e1(p

2, q2, r2)
]
,

c4(p
2, q2, r2) =

1

(p ·q)

[
ΠV V (r2) + e4(p

2, q2, r2)
]
,

c7(p
2, q2, r2) =

1

(q ·r)

[
ΠAA(p2) + e7(p

2, q2, r2)
]
, (F.14)

where the newly introduced invariant functions ei satisfy

e1(p
2, q2, r2) = e1(q

2, p2, r2) , (F.15a)

e7(p
2, q2, r2) = e4(q

2, p2, r2) . (F.15b)

As one can see, the constraints (F.11) and (F.13) are thus reduced into simple rela-

tions (F.15a)–(F.15b).

Result. Applying the found solutions to the original Lorentz structure (F.7) allows us to

write down its final form as[
ΠAAV (p, q; r)

]
µνρ

= e1(p
2, q2, r2)τ (1)µνρ(p, q; r) + c3(p

2, q2, r2)τ (2)µνρ(p, q; r)

+ e4(p
2, q2, r2)τ (1)νρµ(q, r; p)− e4(q2, p2, r2)τ (1)µρν(p, r; q)

+ ΠAA(p2)τ (3)µνρ(p, q; r)−ΠAA(q2)τ (3)νµρ(q, p; r)

−ΠV V (r2)τ (3)ρνµ(r, q; p) , (F.16)

where we have used the following tensors:

τ (1)µνρ(p, q; r) =−
[
(p ·q)gµν − qµpν

][
(q ·r)pρ − (p ·r)qρ

]
(p ·r)(q ·r)

,

τ (2)µνρ(p, q; r) =− qµ
[
(p ·r)gνρ − rνpρ

]
+ gµν

[
(p ·r)qρ − (q ·r)pρ

]
+ rµ

[
(p ·q)gνρ − pνqρ

]
+ gµρ

[
(q ·r)pν − (p ·q)rν

]
,

τ (3)µνρ(p, q; r) =− 1

q ·r

(
rν
[
(p ·r)gµρ − rµpρ

]
− qρ

[
(p ·q)gµν − qµpν

])
− pνgµρ + pρgµν . (F.17)

We remind the reader that the decomposition (F.16) possesses the symmetry con-

straints of its invariant functions in the forms of (F.12) and (F.15a).

Finally, we note that to obtain the 〈AAV 〉 decomposition (2.27), it is sufficient to

redefine the tensors and invariant functions as follows:

T (7)
µνρ(p, q; r) = τ (3)µνρ(p, q; r) ,

T (8)
µνρ(p, q; r) = τ (1)µνρ(p, q; r) ,

T (9)
µνρ(p, q; r) = τ (2)µνρ(p, q; r) , (F.18)
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and

FAAV (p2, q2, r2) ≡ e1(p2, q2, r2) ,
GAAV (p2, q2, r2) ≡ c3(p2, q2, r2) ,
HAAV (p2, q2, r2) ≡ e4(p2, q2, r2) . (F.19)

F.2 〈V V V 〉 Green function

Since the first Bose symmetry (F.2a) is equivalent to the one of the 〈AAV 〉 correlator, we

can start with the result (F.7), with the invariant functions ci’s replaced for di’s:[
ΠV V V (p, q; r)

]
µνρ

= d1(p
2, q2, r2)qµpνpρ − d1(q2, p2, r2)qµpνqρ + d3(p

2, q2, r2)qµrνpρ

− d3(q2, p2, r2)rµpνqρ + d4(p
2, q2, r2)qµrνqρ − d4(q2, p2, r2)rµpνpρ

+ d7(p
2, q2, r2)rµrνpρ − d7(q2, p2, r2)rµrνqρ + d9(p

2, q2, r2)pνgµρ

− d9(q2, p2, r2)qµgνρ + d10(p
2, q2, r2)pρgµν − d10(q2, p2, r2)qρgµν

+ d13(p
2, q2, r2)rµgνρ − d13(q2, p2, r2)rνgµρ , (F.20)

which has already the appropriate symmetry with respect to the first two arguments.

Bose symmetry. Using similar manipulations, as in the previous section, applied to

the structure (F.20) in order to satisfy the additional Bose symmetries (F.2b) and (F.2c),

allows us to rewrite the invariant functions d4, d7 in terms of d1 and d10, d13 in terms of

d9. On top of that, it also allows us to reduce the number of d3 invariant functions due to

its symmetries. Specifically, the following properties of the respective invariant functions

can be found:

d1(p
2, q2, r2) = d4(r

2, p2, q2) = d7(q
2, r2, p2) ,

d9(p
2, q2, r2) = −d10(p2, r2, q2) = d13(q

2, r2, p2) ,

d3(p
2, q2, r2) = d3(r

2, p2, q2) = d3(q
2, r2, p2) . (F.21)

Inserting these relations into (F.20) gives us the Lorentz part of the 〈V V V 〉 correlator,[
ΠV V V (p, q; r)

]
µνρ

= d1(p
2, q2, r2)qµpνpρ − d1(p2, r2, q2)rµpνpρ + d1(r

2, p2, q2)rµrνpρ

− d1(q2, p2, r2)qµpνqρ + d1(q
2, r2, p2)qµrνqρ − d1(r2, q2, p2)rµrνqρ

+ d3(p
2, q2, r2)qµrνpρ − d3(q2, p2, r2)rµpνqρ − d9(q2, p2, r2)qµgνρ

+ d9(r
2, p2, q2)rµgνρ + d9(p

2, q2, r2)pνgµρ − d9(r2, q2, p2)rνgµρ
− d9(p2, r2, q2)pρgµν + d9(q

2, r2, p2)qρgµν , (F.22)

which satisfies all three Bose symmetries, upon taking the condition (F.21) into account.
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Ward identities. Now we perform the contractions of (F.22) in order to make this

structure satisfy the Ward identities. We have

pµ
[
ΠV V V (p, q; r)

]
µνρ

=
[
(p ·q)d1(p2, q2, r2)− (p ·r)d1(p2, r2, q2) + d9(p

2, q2, r2)− d9(p2, r2, q2)
]
pνpρ

+
[
(p ·r)d1(r2, p2, q2) + (p ·q)d3(p2, q2, r2)− d9(r2, q2, p2)

]
rνpρ

−
[
(p ·q)d1(q2, p2, r2) + (p ·r)d3(q2, p2, r2)− d9(q2, r2, p2)

]
pνqρ

+
[
(p ·q)d1(q2, r2, p2)− (p ·r)d1(r2, q2, p2)

]
rνqρ

−
[
(p ·q)d9(q2, p2, r2)− (p ·r)d9(r2, p2, q2)

]
gνρ , (F.23a)

qν
[
ΠV V V (p, q; r)

]
µνρ

=−
[
(p ·q)d1(q2, p2, r2)− (q ·r)d1(q2, r2, p2) + d9(q

2, p2, r2)− d9(q2, r2, p2)
]
qµqρ

+
[
(p ·q)d1(p2, q2, r2) + (q ·r)d3(p2, q2, r2)− d9(p2, r2, q2)

]
qµpρ

−
[
(q ·r)d1(r2, q2, p2) + (p ·q)d3(q2, p2, r2)− d9(r2, p2, q2)

]
rµqρ

−
[
(p ·q)d1(p2, r2, q2)− (q ·r)d1(r2, p2, q2)

]
rµpρ

+
[
(p ·q)d9(p2, q2, r2)− (q ·r)d9(r2, q2, p2)

]
gµρ , (F.23b)

rρ
[
ΠV V V (p, q; r)

]
µνρ

=
[
(p ·r)d1(r2, p2, q2)− (q ·r)d1(r2, q2, p2) + d9(r

2, p2, q2)− d9(r2, q2, p2)
]
rµrν

−
[
(p ·r)d1(p2, r2, q2) + (q ·r)d3(q2, p2, r2)− d9(p2, q2, r2)

]
rµpν

+
[
(q ·r)d1(q2, r2, p2) + (p ·r)d3(p2, q2, r2)− d9(q2, p2, r2)

]
qµrν

+
[
(p ·r)d1(p2, q2, r2)− (q ·r)d1(q2, p2, r2)

]
qµpν

−
[
(p ·r)d9(p2, r2, q2)− (q ·r)d9(q2, r2, p2)

]
gµν . (F.23c)

As in the previous case, we start with solving the first Ward identity, i.e. we com-

pare (F.23a) with (F.4a). This leads to the system of five equations:

(p ·q)d1(p2, q2, r2)− (p ·r)d1(p2, r2, q2) + d9(p
2, q2, r2)− d9(p2, r2, q2) = 0 ,

(p ·q)d9(q2, p2, r2)− (p ·r)d9(r2, p2, q2)− q2ΠV V (r2) + r2ΠV V (r2) = 0 ,

(p ·q)d1(q2, p2, r2) + (p ·r)d3(q2, p2, r2)− d9(q2, r2, p2)−ΠV V (q2) = 0 ,

(p ·r)d1(r2, p2, q2) + (p ·q)d3(p2, q2, r2)− d9(r2, q2, p2)−ΠV V (r2) = 0 ,

(p ·q)d1(q2, r2, p2)− (p ·r)d1(r2, q2, p2) + ΠV V (q2)−ΠV V (r2) = 0 . (F.24)

Solving this system leads to the expression for the invariant function d9 in terms of d1
and d3,

d9(p
2, q2, r2) = (p ·r)d1(p2, r2, q2) + (q ·r)d3(p2, r2, q2)−ΠV V (p2) , (F.25)

and to the fact that d3 is completely symmetrical. On the other hand, solving the system

above gives us also the condition

(p ·r)d1(p2, q2, r2)− (q ·r)d1(q2, p2, r2) + ΠV V (p2)−ΠV V (q2) = 0 , (F.26)

which is somewhat equivalent to the condition (F.13) in the case of the 〈AAV 〉 correlator.
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As it turns out, the solution (F.25) and the requirement (F.26), together with the fully

symmetric invariant function d3, solves also the second and the third Ward identity.

A general solution of (F.26) can be written as

d1(p
2, q2, r2) =

1

p ·r

[
ΠV V (q2) + f1(p

2, q2, r2)
]
, (F.27)

where the new invariant function satisfies

f1(p
2, q2, r2) = f1(q

2, p2, r2) . (F.28)

Result. Applying the solutions above into (F.22) gives us the final form of the Lorentz

part of the 〈V V V 〉 correlator as follows:[
ΠV V V (p, q; r)

]
µνρ

= f1(p
2, q2, r2)τ (1)µνρ(p, q; r) + f1(r

2, p2, q2)τ (1)ρµν(r, p; q)

+ f1(q
2, r2, p2)τ (1)νρµ(q, r; p) + d3(p

2, q2, r2)τ (2)µνρ(p, q; r)

+ ΠV V (p2)τ (3)µνρ(p, q; r)−ΠV V (q2)τ (3)νµρ(q, p; r)

−ΠV V (r2)τ (3)ρνµ(r, q; p) , (F.29)

where the individual tensors are given as (F.17). As we have already mentioned, the

invariant function f1 is symmetric with respect to the first two arguments and d3 is totally

symmetric.

To obtain the 〈V V V 〉 decomposition (2.27), it is sufficient to redefine the tensors as

follows:

FV V V (p2, q2, r2) ≡ f1(p2, q2, r2) ,
GV V V (p2, q2, r2) ≡ d3(p2, q2, r2) . (F.30)
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