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1 Introduction: why interfaces?

We study boundaries and defects in conformal field theory (CFT) because they have broad

applications and because they are fundamental to our understanding of CFT and quan-

tum field theory more generally. Boundaries and defects are generally present in most

experimental realizations of critical systems, and they bring with them the potential for a

wide variety of experimentally verifiable consequences, for example surface critical expo-

nents. Beyond that, however, there are fundamental questions about the classification and

“space” of quantum field theories that can be answered through a careful study of defects.

While it is often stated that a conformal field theory is defined — through operator product

expansion — by its local operator spectrum and set of three-point correlation functions, in

fact there are often extended operators, such as Wilson lines, which must be included for

a proper definition of the CFT (see e.g. [1]). These extended operators carry with them

an additional defect interpretation.

The complete classification of conformal defects or, equivalently, universality classes

of critical behavior at the interfaces of CFTs remains a challenging open problem. While

earlier studies mostly focused on d = 2 critical systems [2–5],1 there has been much recent

interest in understanding d > 2 CFTs with boundaries or defects.2

For CFTs without a boundary, the trace anomaly coefficients — which we call central

charges — provide a useful classification [15]. To organize CFTs in the presence of general

defects, it is thus natural to look for similar central charges. In this note, we consider a

1See, however, earlier discussions about d = 4 N = 4 super Yang-Mills theory with an interface [6–8].
2For examples, see recent works on chiral anomalies and index theorem for the interfaces [9, 10], a related

work on the η invariants [11], a study on ’t Hooft anomalies with boundaries [12], as well as some physical

effects induced by boundary anomalies [13]. For a recent review, see [14].
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particularly simple example of a defect: a “symmetric interface”. A symmetric interface,

for us, is a codimension one surface on either side of which we find the same quantum field

theory in curved space-time with the same couplings. Moreover, the dynamical quantum

fields are assumed to be continuous across the interface although their normal derivatives

may jump. The metric is taken continuous across the interface, but is allowed to be

otherwise arbitrary and non-smooth. Apart from technical interest, such geometries appear

in various physical models. An example is the brane-world scenario where the normal

derivative of the metric jumps on the brane due to the presence of classical matter. Another

example is graphene with a fabricated singular surface; for example, one could glue a

cylindrical surface to a disc.3

Our restriction to “symmetric interfaces” rules out some important examples. Indeed,

consider a conformally coupled scalar field that is given a large mass on one side of the

interface. In the limit the mass becomes infinite, one recovers a BCFT with Dirichlet

boundary conditions for the scalar. Even though the scalar is continuous at the interface,

the condition to have equal couplings is violated. Indeed, more generally it is possible to

treat a BCFT as an interface that joins a nontrivial CFT on one side to a trivial one on

the other, but such an example is not “symmetric”. Our restriction also eliminates Janus

theories, where a marginal coupling changes discontinuously at the interface.

We will largely focus on d = 4 free CFT and also present results in d = 2, 3. Our main

results will be the trace anomalies of d = 4 free interface CFT (ICFT). The computation

relies on the heat kernel technique performed in curved spacetime; see [16] for a review. We

focus on identical free CFTs with spin zero, one half, and one on both sides of the interface.

These results generalize the anomaly computation in boundary CFT (BCFT) [17–19],

which can be recovered via the folding trick. (Even though a BCFT cannot be thought

of directly as a symmetric interface, the folding trick involves a nonlocal redefinition of

the fields that, for a symmetric choice of metric, maps the right side of the interface onto

the left one.) It would of course be nice to compute interface and surface charges for

non-free theories. The only other techniques we are aware of are holography [20] and

supersymmetric localization [21], both of which apply to restricted classes of theories.

One might expect that the anomaly structure of ICFT can be fixed by that of BCFT

through the folding trick. However, the moral of the present work is that the general

interface story can be richer. An interesting observation is that we find two interface

invariants that are consistent with all the requirements to be a part of the anomaly but

that have zero coefficient in d = 4 free ICFT. We do not have a simple argument for this

vanishing. We conjecture this vanishing remains true for general symmetric interfaces, but

it is possible that interactions could generate new non-zero charges.

3One may consider even more singular geometries, for instance, the electromagnetic fields near the inter-

face of two dielectrics with different permittivities. The effective metric seen by the photons is discontinuous.

Due to technical difficulties, we shall not consider such configurations in this work.
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2 Interface setup

Let Σ be an interface hypersurface where two manifolds or two parts of the same manifold

are glued together along their common boundary. The bulk manifold will be denoted byM,

dimM = d. We assume that the metric is continuous across Σ, but not necessarily smooth.

Let us mark in an arbitrary way two sides of Σ by + and −. Let n+ and n− be unit normals

to the boundary pointing to + and − sides, respectively. Let xµ be local coordinates on

M. The coordinates on Σ will be denoted by xj , j = 1, . . . , n− 1. The induced metric on

Σ will be denoted by hij . The extrinsic curvatures of Σ defined from two sides of Σ

K±ij = Γn±
ij (2.1)

do not need to agree.

There are two particular cases of the interface geometry which are going to play impor-

tant roles in this work. The first one is a smooth geometry with the metric and all normal

derivatives are continuous across the interface. Since n+ = −n−, this implies K+
ij = −K−ij ,

in particular. We do not put on the interface any fields which interact with the bulk fields.

Thus, in the case of a smooth geometry the interface effectively disappears, and so do all

surface contributions to the conformal anomaly. The second case corresponds to reflection

invariant interfaces obtained by gluing two identical copies of a manifold with boundary. On

can think of a spherical cap as an example. In this case, K+
ij = K−ij . As we shall see below,

the spectral problem with symmetric interfaces can be reduced to a sum of two boundary

value problems — the folding trick. Again, this is true only if there are no interacting fields

at the interface, or if the interaction with such fields have reflection symmetry.

Let V be some vector bundle over M. Consider an operator L of Laplace type that

acts on smooth sections of this bundle. L can be written as

L = −(∇2 + E) , (2.2)

where E is a smooth endomorphism (a matrix valued function), and ∇µ = ∂µ + ωµ is a

covariant derivative. We shall also need a bundle curvature

Ωµν = ∂µων − ∂νωµ + [ωµ, ων ] . (2.3)

We do not assume any continuity conditions for E, ω and Ω on Σ. To have a well defined

spectral problem, one has to impose on sections φ of V some matching conditions on Σ. A

natural choice is to request that φ is continuous, but the normal derivative jumps,

φ+ = φ− , (∇n+φ)+ + (∇n−φ)− = Uφ . (2.4)

The superscripts ± denote the limiting values that various quantities take when they ap-

proach Σ from different sides.4 We also define a gauge/diffeomorphism vector

Bj := ω+
j − ω

−
j (2.5)

as the difference between two connections on Σ.

Our next step is to define conformal matching conditions for various spins. It is instruc-

tive to compare them with conformal boundary conditions adopted in, for instance, [18].

4One can in principle impose more general linear relations between φ± and its normal derivatives [5, 22].
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2.1 Scalars

For a conformally coupled scalar field ϕ, the operator L reads

L = −∆ + ξR , ξ =
d− 2

4(d− 1)
. (2.6)

Thus, E = −ξR while ω, Ω and B vanish. Under the Weyl rescaling gµν → ḡµν = e−2σgµν

the operator L and the field ϕ transform as

L→ L̄ = e−
d+2
2
σLe

d−2
2
σ , ϕ→ ϕ̄ = e−

d−2
2
σϕ . (2.7)

Also,

n̄µ = e−σnµ, K̄ij = eσ(Kij − gij∂nσ) , K̄ = e−σ(K − (d− 1)∂nσ) . (2.8)

It is easy to check that the conditions (2.4) with

U =
d− 2

2(d− 1)
(K+ +K−) (2.9)

are Weyl invariant. The Euclidean action with an interface is

I =
1

2

∫
M/Σ

ddx
√
g

(
(∂φ)2 +

d− 2

4(d− 1)
Rφ2

)
+

1

2

∫
Σ
dd−1x

√
hUφ2 . (2.10)

The interface contribution is introduced to make the variational problem self-consistent.

2.2 Spinors

The massless Dirac operator reads

/D = iγµ(∂µ + ω[s]
µ ) , ω[s]

µ =
1

4
wABµ γAγB . (2.11)

Here A,B, . . . are flat indices. Further, {A,B, . . . } = {a, b, . . . , n} so that enj = 0 and

enn+ = 1 on the + side of Σ and enn− = −1 on the − side. This implies γn = γn
+

= −γn−
.

We have

(wanj )± = ∓K±aj . (2.12)

In this case,

L = /D
2
, E = −1

4
R , ω = ω[s], Ωµν =

1

4
γAγBRABµν . (2.13)

As /D is a first order operator, the matching condition ψ+ = ψ− implies ( /Dψ)+ = ( /Dψ)−.

The condition (2.4) then yields

U =
1

2
(K+ +K−) . (2.14)

The Weyl invariance of these conditions can be easily checked. We shall need also

Bj =
1

2
(K+

jb +K−jb)γ
nγb . (2.15)

The bulk Dirac action is standard and the interface theory does not require a surface term.
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2.3 U(1) gauge field

The matching conditions for abelian gauge fields and ghosts in the Lorentz gauge are

particular cases of matching conditions for the de Rham complex.5 For the ghosts (0-

forms),

Lgh = −∆ , E = 0 , ω = 0 , U = 0 . (2.16)

Thus, the ghosts are actually smooth across Σ. For 1-forms, the operator L is the Hodge-de

Rham laplacian. We have

E B
A = −R B

A , ωµ = wµ , (Ωµν) B
A = −RBAµν (2.17)

and

(Bj)
n

a = −(K+
ja +K−ja) = −(Bj)

a
n , (2.18)

U b
a = K+

ab +K−ab , U n
n = K+ +K− . (2.19)

Gauge transformed vector fields satisfy matching conditions if the gauge parameter satisfies

the matching condition of ghosts. The gauge invariance of these matching conditions follows

by the construction and may be checked directly. The bulk gauge-field action is standard

and the interface theory does not require a surface term.

3 Heat kernel coefficients and central charges

For any generalized Laplacian L, there is a small-t asymptotic expansion,

Tr
(
fe−tL

)
'
∞∑
k=0

t(k−d)/2ak(f, L) , (3.1)

where f is a smearing function which allows a computation of local heat kernel coefficients:

ak(f, L) =

∫
M
ddx
√
g f(x)ak(x;L) . (3.2)

Note that if there are boundaries or singular surfaces, ak(x, L) contains δ-functions and

derivatives of δ-functions localized on the boundary or on the singular surface. The trace

anomaly is given by

〈Tµµ (x)〉 = η ad(x, L) , (3.3)

where η = 1 for bosons and η = −1 for fermions.

Here we compute the heat kernel coefficients ad(f, L) (d = dimM) by using general

expressions. Covariant derivatives are denoted by a semicolon. By a colon we shall denote

covariant derivatives on Σ containing the Christoffel symbol corresponding to the induced

5See, for instance, [23] for a more general discussion.
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metric hij .
6 The heat kernel coefficients are local. This means that they are given by

integrals of local polynomials. In ad(f, L), the integral over M contains invariants of the

canonical dimension d, while the integral over Σ contains invariants of the dimension d−1.

Before starting actual computations, let us list several consistency conditions [23, 24]

that must be satisfied:

(i) The heat kernel coefficients have to be invariant with respect to exchanging the roles

of the “+” and “−” sides of Σ. The coefficients need to be invariant with respect

to which direction one looks at the system. We expect this invariance to hold for

symmetric interfaces more generally.

(ii) When the metric is smooth, we have K+
ij = −K−ij , R+ = R−, etc. In this case, the

interface effectively disappears and only the bulk structure survives.

(iii) Assume that M is composed of two identical manifolds M+ = M− glued together

along their common boundary Σ. Let x ∈ M+ and x∗ ∈ M− be corresponding

points. By considering

φeven/odd(x) =
1√
2

(φ(x)± φ(x∗)) , (3.4)

one can map the heat kernel onM with an interface Σ to the heat kernel of boundary

value problems on M+. In our case, this mapping implies that the heat kernel

coefficient ak for the conformal scalar on M is a sum of the coefficients ak for a

conformal scalar on M+ with Dirichlet boundary conditions on Σ and for another

scalar with conformal Robin boundary conditions. The heat kernel expansion for a

spinor field onM has interface coefficients which are twice that for conformal spinor

fields on M+. Similarly, the heat kernel for a d = 4 Maxwell field on M is a sum

of the heat kernel for Maxwell fields on M+ satisfying the so-called absolute and

relative boundary conditions.

The computations in two and three dimensions are simple. For the conformally coupled

scalar we have

a2 =
1

24π

[∫
M
d2x
√
g fR+

∫
Σ
dx
√
h 2f(K+ +K−)

]
, (3.5)

a3 =
1

1024π

∫
Σ
d2x
√
h
(
−f(K+ +K−)2 + 2f(K+

ij +K−ij )
2

+2(K+ +K−)(f;n+ + f;n−)
)
. (3.6)

6We follow notation in [23]. Note the Riemann tensor in [23] has an overall minus sign as compared to

our notation. The conventions for the Ricci tensor and scalar curvature are identical.
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For the Dirac spinor,

a2 = − 1

24π

[∫
M
d2x
√
g fR+

∫
Σ
dx
√
h 2f(K+ +K−)

]
, (3.7)

a3 =
1

512π

∫
Σ
d2x
√
h
(
f(K+ +K−)2 − 2f(K+

ij +K−ij )
2

− 2(K+ +K−)(f;n+ + f;n−)
)
. (3.8)

The expressions (3.5)–(3.8) could have been obtained by using only the conditions (i),

(ii) and (iii). The d = 2 bulk integral is well known. The anomaly in d = 3 CFT is a

surface term. On Σ, the expressions f(K+−K−) in a2 as well as f(K+−K−)(K+ +K−),

f(K+
ij −K

−
ij )(K

+ij + K−ij), (K+ −K−)(f;n+ + f;n−) and (K+ + K−)(f;n+ − f;n−) in a3

are forbidden since they do not satisfy the condition (i). The expressions

f(K+ −K−)2 , f(K+
ij −K

−
ij )

2 , (K+ −K−)(f;n+ − f;n−) (3.9)

do not vanish on smooth geometries and thus are forbidden by the condition (ii). The re-

maining invariants are exactly the ones which appear in (3.5)–(3.8); they can be determined

by comparing to BCFTs [19], as described in (iii) above.

Let us turn to four dimensions. The bulk contributions are standard. However, here

we write them down explicitly with the total derivatives in 〈Tµµ 〉 which are sometimes

neglected. We have

aM4 |s=0 =
1

360(4π)2

∫
M
d4x
√
g f
(

12(1−5ξ)R µ
;µ +5R2(1−12ξ+36ξ2) (3.10)

−2RµνR
µν +2RµνρσR

µνρσ
)
,

aM4 |s= 1
2

=
1

360(4π)2

∫
M
d4x
√
g f
(
−12R µ

;µ +5R2−8RµνR
µν−7RµνρσR

µνρσ
)
, (3.11)

aM4 |s=1 =
1

360(4π)2

∫
M
d4x
√
g f
(
−36R µ

;µ −50R2 +176RµνR
µν−26RµνρσR

µνρσ
)
. (3.12)

The parameter ξ = 1
6 corresponds to the conformal scalar, and ξ = 0 to the ghost. We

have removed ghost contributions in the electromagnetic field case.

Next, we find the following interface contributions:

aΣ
4 =

1

360(4π)2

∫
Σ
d3x
√
h
∑
i

γiIi (3.13)

– 7 –
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where curvature structures Ii and heat kernel coefficients γi are given by

ghost φ ψ Aµ

I1 : f(K+
ij −K

−
ij )

2(K+ +K−) −1 −1 −4 −2

I2 : f(K+
ij +K−ij )(K

+
ij −K

−
ij )(K

+ −K−) −1 −1 −4 −2

I3 : f(K+
ij −K

−
ij )(K

+
jk −K

−
jk)(K

+
ki +K−ki) 2 2 8 4

I4 : f(K+ +K−)3 40
21

22
63

34
21 −676

21

I5 : f(K+
ij +K−ij )

2(K+ +K−) −4
7 −18

7
26
7

580
7

I6 : f(K+
ij +K−ij )(K

+
jk +K−jk)(K

+
ki +K−ki)

68
21

68
21 −

232
21 −

872
21

I7 : (K+ +K−)(K+ −K−)(f;n+ − f;n−) −5 0 10 20

I8 : (K+
ij −K

−
ij )(K

+
ij +K−ij )(f;n+ − f;n−) −1 −1 −4 −2

I9 : (K+ +K−)2(f;n+ + f;n−) −12
7 −29

21
36
7

60
7

I10 : (K+
ij +K−ij )

2(f;n+ + f;n−) 18
7

18
7 −54

7 −6
7

I11 : (K+ +K−)(f;n+n+ + f;n−n−) 12 2 −12 −36

I12 : f(K+ +K−):jj 24 4 −24 −72

I13 : f(R+
ijkj −R

−
ijkj)(K

+
ik −K

−
ik) −2 −2 −8 −4

I14 : f(R+ +R−)(K+ +K−) 10 0 10 −100

I15 : f(R+
in+in+ +R−

in−in−)(K+ +K−) −2 −2 −8 176

I16 : f(R+
in+jn+ +R−

in−jn−)(K+
ij +K−ij ) 6 6 −36 72

I17 : f(R+
ijkj +R−ijkj)(K

+
ik +K−ik) −2 −2 −8 176

I18 : f(R+
;n+ +R−

;n−) 12 2 −12 −36

I19 : (R+ −R−)(f;n+ − f;n−) −5 0 10 20

I20 : (R+
in+in+ −R−in−in−)(f;n+ − f;n−) −2 −2 −8 −4

(3.14)

These surface contributions are computed with the help of the basis considered in [23,

Theorem 7.1] but we remark that [23] uses an overcomplete basis. Using Gauss-Codazzi

equations, we can write

I13 = −1

2
(I1 + I2) + I3 and I20 =

1

2
(I7 − I8 + I19) . (3.15)

3.1 Interface trace anomaly for d = 4 ICFTs

By collecting everything together, we now obtain the trace anomaly

〈T µ
µ 〉 =

1

16π2

[
(cW 2−aEbulk) (3.16)

+ δ(Σ)
(

(−a(E+ +E−)+b1tr(K̂+ +K̂−)3 +b2(W+
njnk+W−njnk)(K̂

jk+ +K̂jk−)
)]
,

– 8 –
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where

Ebulk = R2 − 4RµνR
µν +RµνρσR

µνρσ,

E+ = −8R+
jnjnK

+ − 8R+
ikjkK

+
ij + 4K+R+ +

8

3
K+3 +

16

3
K+
ijK

+
jkK

+
ki − 8K+K+

ijK
+
ij ,

K̂+
ij = K+

ij −
1

3
hijK

+. (3.17)

We have dropped the anomaly �R which will be cancelled by the conformal variation of a

local counterterm; see (3.19) below. The central charges are given in the following table:

spin s 360a 360c 360b1 360b2

s=0 1 3 32
7 12

s=1
2 11 18 180

7 72

s=1 62 36 288
7 144

Via the standard folding trick, one can check that these central charge results are

consistent with BCFT data obtained earlier in [17, 18]. For instance, tr(K̂+ + K̂−)3

becomes 8 trK̂3 after the folding (see the discussion after (2.1)); note this is to be compared

to b1(Dirchlet)+b1(Robin) in BCFT. The relations read

bICFT
1 =

1

4
bBCFT
1 , bICFT

2 =
1

2
bBCFT
2 . (3.18)

Note bICFT
2 = 4c in free ICFTs while bBCFT

2 = 8c in free BCFTs. It was shown in [25] that

such a relation can be violated by boundary marginal interactions in BCFT. While we do

not include interactions here, we expect the interaction will correct the relation bICFT
2 = 4c.

The Wess-Zumino consistency condition implies that the integrated trace anomaly is

locally conformally invariant. In two and four dimensions, this requires that the Euler

densities in the bulk have to be accompanied by corresponding terms on the interface.

Other boundary Weyl invariants we focus on in this paper should be, a priori, independent

of bulk structure since they satisfy the Wess-Zumino consistency condition on their own.7

We have verified that all the derivative of the delta-function terms can be cancelled by the

following local counterterms:

Ict = − 1

(4π)2

∫
M
d4x
√
g α1R

2 − 1

(4π)2

∫
Σ
d3x
√
h
[
α2(R+ +R−)(K+ +K−) (3.19)

+ α3(K+ +K−)3 + α4(K+
ij +K−ij )

2(K+ +K−)
]

where coefficients αi are given by

spin s 360α1 360α2 360α3 360α4

s=0 1
6

1
3 − 44

189
6
7

s=1
2 1 2 −10

21
18
7

s=1 −3 −6 −62
63 −2

7

7A generalized form of the Wess-Zumino condition was used in computations of the heat kernel coeffi-

cients; see Lemma 7.2 in [23].
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Namely, the conformal transformation of (3.19), δσIct, reproduces terms in a4 with deriva-

tives of f after replacing σ with f .

Interestingly, the requirement of vanishing derivatives of the smearing function f au-

tomatically removes the �R anomaly in free theories (3.10), (3.11), (3.12) via the identity

δσ
∫
MR2 = 12�R. To our knowledge, such a connection to a vanishing �R has not been

mentioned before. Note central charges a, c, b1, b2 do not renormalize while α-terms de-

pend on normalization conditions and thus, in this sense, scheme-dependent. However,

these α-coefficients are still meaningful as long as one stays in the heat-kernel scheme.

An interface theory with the N = 4 super Yang-Mills multiplet has simple relations:

N = 4 SYM :
a

c
= 1 ,

b2
b1

= 3 , α1 = α2 = 0 ,
α4

α3
= −3 . (3.20)

The �R anomaly has zero coefficient with the N = 4 SYM multiplet. More generally, it

would be interesting to search for bounds on these coefficients in interface CFT.

4 Concluding remarks

There are two structures,

J1 = tr
(

(K̂+ − K̂−)2(K̂+ + K̂−)
)
δ(Σ) , (4.1)

J2 = (W+
njnk −W

−
njnk)(K̂

jk+ − K̂jk−) δ(Σ) , (4.2)

which satisfy the conditions (i)–(iii) given at the beginning of the section 3 and give rise to

conformal invariants after integration. However, these invariants never appear in 〈Tµµ 〉 for

the cases we studied here. In particular, they cannot be determined through the folding

trick.

All invariants that appear in (3.16) in the final expression for 〈Tµµ 〉 can be written as

tr (A · B . . . C) with A, B, C tensors. These tensors are irreducible in the sense that they

contain the curvatures in positive powers and cannot be written as products of tensors of a

lower dimension. We observe that, for allowed invariants, all multiplets A, B, etc., are even

with respect to the reflection +↔ −. The invariants J1 and J2 instead contain odd factors.

This observation leads us to conjecture the following new rule for symmetric interfaces:

The allowed interface anomaly must be factorizable in irreducible factors which

are even under the reflection.

This rule would allow one to distinguish the invariants which appear in 〈Tµµ 〉 from the

ones which do not. However, we do not know why it should work generally. Note the

counterterms (3.19) follow a similar pattern.

It will be interesting to test the conjecture by including interactions on the interface

or in the bulk. The boundary trace anomaly of a graphene-like d = 4 interacting BCFT

was recently discussed in [25]. (For supersymmetric generalizations, see [26].) By looking
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at an interface generalization of this theory, one could test the conjecture. While this

graphene-like theory has interactions confined to the boundary, one could also study what

happens with interactions in the bulk, for example by looking at maximally supersymetric

SU(N) Yang-Mills theory in the presence of an interface.

It would further be interesting to understand the implication of these results for dis-

placement operator correlators in d ≥ 2 ICFTs. Recall that, in BCFT, the Ward identities

hold away from the boundary but there are corrections on the boundary:

∂µT
µn = D(x⊥)δ(xn) , (4.3)

where the displacement operator, D, is dual to the position of the boundary and plays a

universal role in BCFT. Similarly, one may define the displacement operator in ICFT as

the difference between the normal-component of the stress tensors:

D ∼ (Tnn+ − Tnn− )|Σ . (4.4)

In the boundary case, it is known that the coefficients of the two- and three-point functions

of the displacement operator are proportional to the b1 and b2 central charges [25, 27]. In

the interface case, how are the boundary invariants related to the displacement operator?

It seems natural to expect that the relation between b1, b2 and the displacement operator

continues to hold. But then it is not clear to what one should relate the coefficients of the

additional invariants (4.1) and (4.2). Perhaps their absence correlates with the absence of

corresponding operators on the interface.

It will be also nice to consider the trace anomalies and boundary/interface central

charges in d = 5, 6 ICFTs to check if the above conjectured rule applies.
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