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ABSTRACT: We develop a method to study coupled dynamics of gauge-invariant vari-
ables, constructed out of metric and gauge field fluctuations on the background of a AdSs
Reissner-Nordstrom black brane. Using this method, we compute the numerical spectrum
of quasinormal modes associated with fluctuations of spin 0, 1 and 2, non-perturbatively in
p/T. We also analytically compute the spectrum of hydrodynamic excitations in the small
chemical potential limit. Then, by studying the spectral curve at complex momenta in ev-
ery spin channel, we numerically find points at which hydrodynamic and non-hydrodynamic
poles collide. We discuss the relation between such collision points and the convergence
radius of the hydrodynamic derivative expansion. Specifically in the spin 0 channel, we
find that within the range 1.1 < p/T < 2, the radius of convergence of the hydrodynamic
sound mode is set by the absolute value of the complex momentum corresponding to the
point at which the sound pole collides with the hydrodynamic diffusion pole. It shows that
in holographic systems at finite chemical potential, the convergence of the hydrodynamic
derivative expansion in the mentioned range is fully controlled by hydrodynamic informa-
tion. As the last result, we explicitly show that the relevant information about quantum
chaos in our system can be extracted from the pole-skipping points of energy density re-
sponse function. We find a threshold value for p/T, lower than which the pole-skipping
points can be computed perturbatively in a derivative expansion.
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1 Introduction

Low energy dynamics of many body systems near thermal equilibrium can be effectively
described in terms of IR variables. These variables themselves are of two types. First
are those corresponding to fast thermalizing excitations. They are in correspondence with
non-conserved quantities and swallowed by thermal vacuum, very soon after being excited.
Second are those corresponding to conserved quantities whose excitations cannot be locally
thermalized. They are relaxed just through the transport in long wavelength compared to
local thermalization time scale.

In fact the first-type degrees of freedom are in local equilibrium defined by the second-
type ones. Hydrodynamics is an effective theory which describes the dynamics of the
second-type modes, namely slow modes, in a many-body system. Hydrodynamic equations
are then the conservation equations of energy-momentum tensor T#” and charge current
J# in the system. The main idea of hydrodynamics is that, in local equilibrium, each of
these quantities are given in a perturbative expansion in terms of the local thermodynamic
variables and their derivatives. Such perturbative expressions are called the hydrodynamic
constitutive relations. Using the symmetry considerations, general form of the constitutive
relations can be fixed up to a set of unknown coefficients, which are referred to as the
transport coefficients. While hydrodynamics is a universal regime in thermal systems, the
associated transport coefficients depend on the underlying microscopic theory by which the
system is described.

Considering hydrodynamics as a classical field theory, one can find simply the response
functions of the conserved quantities (see refs. [1, 2]); the corresponding poles are then the
so-called hydrodynamic modes. Hydrodynamic modes are the longest lived modes around
thermal equilibrium in the system and are gapless, i.e. w(q — 0) = 0. In contrast, the
excitations corresponding to the first-type degrees of freedom, mentioned in the first para-
graph, are short-lived in the sense that w(q — 0) # 0. They are called non-hydrodynamic
modes.

Hydrodynamic modes can be in general found from the linearized hydrodynamic equa-
tions perturbatively, order by order in a derivative expansion (see ref. [1] for a comprehen-
sive review). However, without knowing the microscopic of the system, the result will be
restricted to general perturbative expressions containing unknown transport coefficients.
Moreover, even by having the microscopic theory, computing the transport coefficients in
general is limited to lower orders in the derivative expansion and also to the perturbative
regime of the underlying field theory [3].

When the microscopic theory has a holographic dual [4, 5], however, extracting in-
formation will be relatively straightforward not only in the hydrodynamic limit, but also
beyond that. In fact holography allows to know the microscopic of certain strongly coupled
field theories via studying their gravitational dual in a one-higher-dimensional AdS space
time. In the last two decades, by analyzing perturbations around specific AdS black brane
solutions, significant information about the strongly coupled N/ = 4 SYM plasma has been
found: transport coefficients of the first order hydrodynamics specifically n/s [6], conjec-
turing a lower bound for n/s [7], the shear viscosity of R-charged plasma [8, 9], location



of the sound poles [10], the leading 't Hooft coupling correction to n/s [11], the spectrum
of quasinormal modes [12], the second order transport coefficients [13, 14], the 't Hooft
coupling correction to the second order transport coefficients [15], anomalous transport co-
efficients [16, 17], the third order transport coefficients for linear [18] and full non-linear [19]
hydrodynamics and many other related issues.

At first sight, higher order terms in the hydrodynamic constitutive relations seem just
to improve the accuracy of the derivative expansion. However, as it was found in refs. [20],
large order behavior of the hydrodynamic expansion might have some information about
the non-hydrodynamic modes as well. By numerically computing the energy density for
a holographic boost-invariant flow, up to terms with 240 derivatives, authors of ref. [20]
found the radius of convergence of the hydrodynamic derivative expansion to be zero. Let
us emphasize that this result was associated with an expansion over the inverse proper
time in the position space. Then by using Borel resummation techniques, they found the
frequency corresponding with the leading singularity in Borel-transformed hydrodynamic
stress tensor to be exactly the same as frequency of the lowest-lying non-hydrodynamic
mode, found in refs. [21, 22].!

In a recent paper [25], a different approach has been proposed to extract information
from the large order behavior of the hydrodynamic derivative expansion. Instead of working
with full non-linear hydrodynamics to study a highly symmetric flow in position space [20],
the choice of ref. [25] is to work with linear hydrodynamics in the complex ¢ plane. The
focus of this reference is to study the dispersion relation of the hydrodynamic shear mode at
large orders in derivative expansion, in a holographic model in 2+ 1 dimensions with finite
chemical potential. Considering the multi-sheet structure of exact wshear(Q), the closest
non-analytic points on the longest-lived sheet are found to be as ¢ = +ig. [25], where
g = |q|. The author of ref. [25] then argues that g. sets a finite radius of convergence for
the hydrodynamic expansion of the shear mode.? As explicitly mentioned in ref. [25], the
physical origin of g, is the collision between a hydrodynamic and non-hydrodynamic mode
on the imaginary ¢ axis.

Much more recently, it was shown that the same result could be found from analytic
structure of spectral curves in classical hydrodynamics.? In ref. [27], the above-mentioned
collision points were found from the associated spectral curves in a holographic neutral
fluid in 341 dimensions, for both sound and shear hydrodynamic modes. In the mentioned
reference, such collision points are called level-crossing points. In fact the theory of refs. [27,
28] is the general theory for studying spectral curves and level-crossing.

Let us denote that in [25], the relation between ¢. and the convergence radius of the
shear mode has been numerically confirmed at a specific fixed value of p/T. To investigate

!The same treatment with large order hydrodynamic gradients in potion space has been applied to
FLRW universe in ref. [23] and to viscoelastic media in ref. [24].

2This result seems to be in contrast to that of [20]. However in a very recent paper [26], it was shown
that hydrodynamic derivative expansion converges in the position space as well, if initial data have support
in momentum space not exceeding a critical value.

3In the present discussion we do not consider hydrodynamic fluctuations. See refs. [1] and [2] for inclusion
of fluctuations in classical hydrodynamics.



how actually ¢, may vary with p/T and also to study the convergence of other modes, in
this paper we follow the issue in a holographic model at finite chemical potential in 3 4 1
dimensions. In the gravity side we consider a AdS5 Reissner-Nordstrom black brane. In the
bulk of AdSs, such black brane is identified with the temperature T' as well as a parameter
Q, both related to N' = 4 SYM boundary theory, where @ is a monotonically increasing
function of u/T.

The main difficulty comes from the fact that in our model parturbations of gravity
and gauge field in the bulk are coupled. One may think of finding master fields and
then deriving decoupled equations governing their dynamics [29].* But we choose to work
with coupled equations! The reason is related to the numerical method that we want to
adopt. We construct the generalized version of Frobenius expansion used in ref. [12] to
find the quasinormal modes associated with coupled differential equations. The advantage
of working with coupled equations then is that it lets each of our results at Q = 0 be
comparable with some counterpart result within refs. [12] or [27]. Let us denote that our
numerical method works very well in the range 0 < @ < 0.88, or equivalently for 0 < & < 4.
However, in our plots we will demonstrate the results within the range 0 < @ < 0.85.

We first construct gauge-invariant variables out of the bulk field perturbations. We
classify them according to their transformation properties under SO(2) group corresponding
to the isotropy of the transverse plane perpendicular to q. This is actually the subject of
section 2. In section 3 we develop a new method to find the quasinormal modes of coupled
differential equations in the bulk. Our method is based on the combination of analytic and
numerical computations. In section 4 we will derive coupled equations governing dynamics
of gauge-invariant variables in each of the spin channels, on the AdSs RN black brane
background. Our equations can be regarded as non-trivial generalizations of decoupled
equations associated with an AdSs Schwarzschild black brane accompanied by a probe
gauge field [12].

Then in each of the spin channels, we use the method developed in section 3 to solve the
(coupled) equations and find the corresponding quasinormal modes. We find the spectrum
of quasinormal modes by considering variations of both q = ¢/(277T) and Q. Spin 0 and
spin 1 spectra, each turns out to be a superposition of two types of poles. In the spin 0
channel, poles are in correspondence with fluctuations of two scalar master operators in the
boundary theory. The latter operators reduce to energy density and charge density in the
vanishing ) limit. The corresponding hydrodynamic modes are the two sounds together
with the diffusion mode. In the spin 1 channel, poles correspond to fluctuations of two
vector master operators in the boundary. In fact these operators become the transverse
momentum density and transverse component of charge current when () vanishes. In this
case, only one hydrodynamic mode does exist which is actually the shear mode. Finally,
from the single dynamical equation of the spin 2 channel, we find poles corresponding to
fluctuations of the transverse master stress tensor. The latter reduces to the transverse
stress tensor at () = 0. As expected, there is no any hydrodynamic mode in this channel.

4The master equations for AdSs RN black brane have been found in [30, 31]. See also [32] for the case
of Einstein-Maxwell-Dilaton black branes.



It should be noted that in our present case with @) # 0, the perturbations of T and
J# on the boundary are coupled; for instance in the spin 0 channel (7'.J) is non-vanishing.
By the master quantities in this channel we then mean T™ and J” with vanishing cross
correlators: (TTJL) = 0.> The latter quantities are sourced by bulk master fields. We
neither explicitly write down the expressions of bulk master field nor need to work with
them.

The spectrum of quasinormal modes at finite chemical potential have been already
computed in AdSy; RN model [33, 35, 36]. But in holographic models in 3+1 dimensions,
well-known results are just limited to the spin 1 and spin 2 channels [37, 38]. We find the
spectrum of quasinormal modes in all three channels, non-perturbatively in /7. To the
best of our knowledge our study is the first computation of quasinormal modes in the spin
0 channel of AdS5; RN model. In addition, by analytically solving the coupled dynamical
equations in the hydrodynamic limit, we find the spectrum of hydrodynamic modes as well.
Again, this is the first analytic computation of the hydrodynamic modes from AdSs RN
black brane. Although, we will find analytic solutions in the bulk perturbatively in p/T.
We then use fluid/gravity [16, 17] to confirm our results by explicit computation of the
hydrodynamic modes at finite p/T.

In the second part of the paper, in section 5, we study quasinormal modes at complex
momenta. We find radii of convergence of the derivative expansions corresponding to
dispersion relations of all four hydrodynamic modes, separately, within the range 0 < @ <
0.85. To this end, at each value of @ we gradually increase |q| from 0 and look for the first
collision of hydrodynamic poles with the other poles.

For the shear mode and at small values of (), we find the level crossing between hy-
drodynamic and non-hydrodynamic poles associated with the transverse master current
spectrum, namely the poles of (J7.JT), to set the convergence radius of the dispersion rela-
tion. It turns out that the radius of convergence monotonically increases when @) increases
from 0 to a certain threshold. When ) exceeds the latter, the collision between diffusion
pole with a non-hydrodynamic pole which belongs to the transverse master momentum
density spectrum becomes important. The latter in fact is the pole of (T7T7). In this
regime, radius of convergence has a sub-branch decreasing in (). This might be reminiscent
of the analytic formula found in ref. [25] in AdS4; RN model.

Our surprising results are mostly related to the spin 0 channel. We motivate that for
each of the sound and diffusion modes, one has to find the critical points of spectral curve
lying on their own branch of Puiseux series.® Doing so, for the diffusion case we show
that within the whole range of @) that we consider, the level crossing happens between the
diffusion pole and gapped poles associated with the master charge density spectrum. In
other words, all collisions happen among poles of (JJ%). But sound modes are found to
collide with various types of poles, depending on the value of /7. Their first collisions
are actually with either gapped poles of the master energy density spectrum or those of

SHere the superscript “L” denotes the “longitudinal” direction. In the spin 1 channel we use the super-
script “T” as denoting the transverse direction.

SEvery branch of the spectral curve at the vicinity of origin corresponds to a specific hydrodynamic
mode w(q — 0) = 0. The small-q expansion of each mode is given by a Puiseux series.



the master charge density spectrum or even with the diffusion pole! The latter is a novel
aspect of level crossing phenomenon, specific to holographic systems at finite chemical
potential.” It can be regraded as a counterexample for the statement that finite radius of
convergence of hydrodynamic derivative expansion is determined by the interplay between
hydrodynamic and non-hydrodynamic modes. In other words, we find that in a specific
range of u/T, the convergence radius of derivative expansion associated with the sound
mode is fully determined by hydrodynamic information.

In the last part of the paper, in section 6, we study one another aspect of quasinormal
modes. Following recent studies on the relation between hydrodynamics and quantum
chaos in maximally chaotic systems [40-42], we will show that the pole-skipping points of
energy density response function in our system precisely coincide with the chaos points in
the system. This result is found without making any assumption about the value of /7.
Thus it provides a new support for the hydrodynamic origin of quantum chaos [41]. Then
we focus on the spin 0 channel and numerically find the dispersion relation of sound and
diffusion poles at purely imaginary momenta. For a typical value of p/T', we show that the
above-mentioned pole-skipping points lie actually on the sound curve.

In the very last part, we discuss the possibility of finding the chaos point by using
the derivative expansion. Using the spin 0 channel results of section 5, we will find that
the chaos point does not always lie within the domain of convergence of the hydrodynamic
derivative expansion. We find a critical value Q., beyond which the chaos points lie outside
the mentioned domain. It simply means that for this range of @, the pole-skipping point
of energy density response function has to be found non-perturbatively.

Finally in section 7, we briefly review our results and discuss possible follow-up direc-
tions.

2 Gauge invariant variables

The background solution on which we would like to find the quasinormal modes can be

written in general as

ds* = a(r) (—f(r)dt2 + idx?) + b(r)dr?,
=1

A= Gc(r)dt,

(2.1)

where ¢ = qo/ TZ is the electric charge density on the horizon. rj, is the radial location of the
horizon: f(r) = 0. We take the fluctuations of metric and gauge field to be hy,, (r)e ™!tz
and a,,(r)e” 4= respectively, where z = 2P. We focus on p = 3 case. We then find the
specific combinations of perturbations which are invariant under the simultaneous general
diffeomorphism, denoted by &*, and gauge transformations ¢ in the bulk

h,uz/ — h,uzz - v,ugu - vl/&h

(2.2)
ay = a, — Oud — EMVaa, — ayV €0

"In a different context, collision between hydrodynamic sound mode and the hydrodynamic diffusion
mode was already observed in [39].



It is convenient to arrange perturbations h,, and a, according to representations of SO(2)
group associated with the two dimensional plane perpendicular to ¢ (see appendix A). We
now start to find gauge invariant variables associated with different spin channels.

Spin 0 channel. In this channel six perturbations G; € {at,a., hy, hizy by, h}, where
h = %(hm + hyy), are coupled to each other. Any first order gauge invariant variable,
denoted by Giyy, is naturally a linear combination of G;’s:

6
Giny = Z a;G;. (23)
i=1

On the other hand, there are in general four diffeomorphism and gauge parameter functions
in this channel: ¢; € {,&,&.,&-}. The task is to find a;’s such that Gi,y to be independent
of ¢;’s. Under the transformations (2.2), G;’s are transformed as

4
Ginv - Ginv + Z BlCu (24)
i=1
with B; being a linear combination of «;’s. Gauge invariance demands §;’s must vanish.
So we find four equations among six parameters «;. As a result, two of the parameters «;
remain free; it simply shows that in the sound channel we deal with two gauge invariant
variables. Let us now find them in details.

From (A.1), the above mentioned two gauge invariant variables can be found either by

e finding an appropriate combination of its first four lines; or by
e finding an appropriate combination of its last three lines.

In the first case, we take h,, + ¢1hy + fohy, + €3h and then demand its diff-gauge
transformed be independent of &, &, and &,.. We find

2

2 2 /
= % by = %, l3 = é (—1 + 4 ngr) + 1 Zgz)’{rgr)> . (2.5)

In the second case, we take a, 4+ eja; + esh combination. Again, demanding its diff-gauge
transformed be independent of &, and & fixes the coefficients e; and es:

~ A
q q gc(r)
T w =~ 7o, : 2.6
“ w’ 2 2w a'(r) (2.6)
In summary, the gauge-invariant variables in the spin 0 channel can be written as
af’  w?
ZO:quHtt+2qutz+m2sz—|—q2f 1+i_T H
a'f a°f @7
/ .

Ezqut+mAz—q<¢i‘fc)H
a cp,

where Ay = ay/cn, Ay = az/ch, Hy = hy/af, Hy, = hiz/a, Hij = hij/a (1,5 # t) and
H = h/(p—1)a. We have defined ¢, = ¢(r,). In the above equations, 0 denotes the spin.



At this point one could continue to work with h,,’s and construct Zy in terms of them.
But as we will see later, H,,, = h';’s behave like scalar field perturbations in the bulk and
asymptote to finite values on the boundary. Let us emphasize that a, fields have already
finite limit at the boundary and the rescaling factor c¢; is nothing but a normalization
constant.

The dynamical equations governing dynamics of Zy and F, on the AdS; RN back-
ground will be given by (4.10).

Spin 1 channel. From (A.2), it is obvious that E, = iwA, (o = x,y) are gauge invariant.
In addition, two another gauge-invariant variables can be constructed by demanding h., +
khio be independent of diff-gauge parameter functions. Therefore there are four gauge
invariant variables in this channel that due to the SO(2) symmetry, we need to work only
with two of them

Zl :msz + thz

2.8
E,=mA, (28)

where A, = aqo/cp and Hyy = hio/a. The dynamical equations governing dynamics of Z;
and FE, on the AdS; RN background will be given by (4.23).

Spin 2 channel. From (A.3) one easily finds that there are two gauge invariant variables
in this channel

Ty = Hyy

(2.9)
Wy = Hyp — Hy,y

We will find that on the AdSs RN background, Zs and W2 obey a common equation
(see (4.29)).

3 Quasinormal modes from coupled differential equations

As we will see later, in each channel except for the spin 2 one, dynamical variables con-
stitute of two gauge invariant quantities whose dynamics is governed by a specific set of
coupled differential equations. In this section we construct a method to find, in general, the
quasinormal modes associated with such coupled equations. Let us take the two gauge in-
variant variables in these channels as Z(z#,u) and E(z", u) (see (4.10) for spin 0 and (4.23)
for spin 1 case). The radial coordinate u is related to r through r ~ 1/4/u with the horizon
located at u = 1. We then make Fourier transformation in the boundary directions

d .
(Z(2h ), E(z",u)) = / (ijd ¢k (Z(u), E(u)). (3.1)

In each channel, upon imposing the ingoing boundary condition at the horizon, the solutions
to Fourier component fields take the following form

Z(u) = (1 - u?)""™G(u),

B(u) = (1 —u?)7™/2Y (u), 32



which are fixed up to two normalization consonants:
G(1) = Cg, Y(1) = Cg. (3.3)

In fact the space of solutions to Z and E corresponds to the two-parameter space defined
by Cz and Cg. When @Q = 0, Z and E decouple from each other. Then for a given point
in the parameter space, i.e. (Cz,Cg), one expects Cz solely to specify G(u) and Cg to do
the same separately with Y'(u). In the language of linear algebra, the functions G(u) and
Y (u) are two vectors directed along the basis vectors in the parameter space, in @ = 0
case.

Now let us investigate how a point (Cz, CEg) in the parameter space specifies Z(u) and
E(u), when @ # 0. In the latter case, Z and E are coupled. The natural expectation is that
the vectors G(u) and Y (u) are no longer parallel to the basis vectors. In other words, Cz
cannot solely specify G(u) as neither can Cyz specify Y (u). Thus both Cz and Cg should
be present in the expressions of G(u) and Y (u). Considering all the above explanations,
we are led to consider the general form of the solutions as following

Z(u) = (1 —u?)"™2(Cz gz(u) + Cryz(u)),
E(u) = (1 —u®)"™?(Cz gp(u) + Cpyp(u)).

The coupling between Z(u) and F(u) has been taken into account by considering functions

(3.4)

yz(u) and gp(u). Then, equations (3.4) are actually giving two vectors with nonzero
components along both two basis directions in the parameter space. Because of (3.3), it
is needed that gz(1) = yr(1) =1 and yz(1) = gg(1) = 0. The latter simply means that
Z and E decouple at the horizon v = 1. Moreover, decoupling at @ = 0 forces yz(u) and
g (u) to vanish at this limit as well.

In order to find associated quasinormal modes, we need to know the near boundary ex-
pansion of bulk fields. Considering the conformal dimensions of Z and E (see appendix C),

one finds
u—0: Z(u)= (cl—i— ) + u2(02+---),
(3.5)
E(u) = (03—1— ) + ules+--+),
where
= Cz92(0)+ Ceyz(0),  c3=Czgp(0)+ Cpyr(0). (3.6)
Using these solutions, the bilinear boundary bulk action takes the following general form:®
. A(u) Bi(u)\ [ Z_k(u)
~ ! /

S 11}2% » <Zk(u) Ek(u)) (Bg(u) D(u) B (u) + contact terms, -
3.7

Niii)r%) . <Zk(U) Ek(U)) (2262;4(53) 21%5;5?) (JEZ?_ZEZD + contact terms.

q

8 At this point we partly adopt the idea of ref. [43] to write the boundary action as the first line of (3.7).
In this reference, a framework for calculating holographic Green’s functions from this bilinear action has
been developed. However, what we are going to do is different from the framework of this reference (see
appendix D for a comparison between the method of ref. [43] and that of us). See also [44] for yet another
treatment with coupled dynamics in the bulk.



We temporarily used the subscript £ = (w,q) for Fourier fields Z and E to distinguish
between k and —k Fourier components. In the following we drop the subscript and continue
to respect the convention made in (3.1). In (3.7), “contact terms” are finite parts of the
boundary counter-term. Needless to say that 2u A(u), 2u Bi(u), Ba(U) and D(u) all go
to finite values when u — 0:

lim 2u A(u) = a, lin%) 2u Bi(u) = b, lim Ba(u) = ¢, lim D(u)= d. (3.8)
u—

u—0 u—0 u—0

By making an appropriate unitary transformation U, the middle matrix in above is simply
diagonalized:

S N/w (Zk<0) Ek(0)> U <C(T;1 G'02> Ut (giESD + contact terms

G, 0 Z_;
N/Mq (Zk 8k> ( 0 G2) <€k> + contact terms

where G'1 and G are some expressions in terms of a, b, ¢ and d together with ¢;;7 = 1,2, 3, 4.

(3.9)

The transformed variables at v = 0 are then given by

2y = U, 24(0) + ULER(0),

! ; (3.10)

At this point the holographic AdS/CFT duality [5] implies that Z and £ couple to specific
operators 07 and Qs in the boundary theory. In other words, Z; and & are the decoupled
master fields in the bulk and G; and Ga are the Green’s functions of the corresponding
boundary master operators.” Using (3.7), (3.8) and (3.9), one finds

IC+(017627C3704) + IC_(Cl,CQ,C3,C4)

<0101>R ~ Gy~ c.t., <0202>R ~ Gog ~ + c.t.
€163 €163
(3.11)
where “c.t.” stands for the contact term contributions [10] and
1
Ki= 3 (a cocg +derey + \/(a cacs3 + dciey)? — deyeacseq(ad — bc)) . (3.12)

By definition, the quasinormal modes of bulk perturbations correspond to the poles of
retarded Green’s functions [45-47]. One simply finds that ¢; = 0 gives the poles of G
while poles of Gg are the roots of ¢35 = 0. Using (3.6), the corresponding roots are then
found from

Cz92(0) + Cryz(0) =0,

(3.13)
Cz9r(0) + Cryr(0) =0.

When @ = 0 and in the spin 0 channel, G; and G2 correspond to Ga(w,q) and IT*(w, q) in ref. [12],
respectively. At the same @ and in the spin 1 channel, G1 and G2 correspond to G1(w,q) and TI” (w, q) in
the mentioned reference.

~10 -



As we will see in next sections, each of gz(0), yz(0), --- is a complicated analytic function
of w and q. In order for (3.13) leads to non-trivial relations between w and q, it is

92(0) yz(0)\ _
det (gE ) s (0)) ~ 0. (3.14)

This is our first result in this paper; the equation from which, we can numerically find

required that

the quasinormal modes of coupled perturbations Z and E. We will also show that in the
hydrodynamic limit, equation (3.14) can be solved analytically.

Let us summarize the method developed in this section. In order to find the quasi-
normal modes of coupled perturbations Z and E in the spin 0 and 1 channels, we first
construct the corresponding coupled differential equations. We should find the (analytic)
solutions to them which are ingoing at the horizon. We do the latter by using the Frobenius
expansion. The corresponding solutions can be formally written in the form of (3.4), up
to two arbitrary normalization constants C'z and Cg. Having specified the functions gz,
9E, Yz and yg, then equation (3.14) determines the spectrum of quasinormal modes in the

associated channel.

4 Quasinormal spectrum and hydrodynamic modes in /' = 4 SYM the-
ory at finite chemical potential

Our system of interest is holographically described by dynamics of metric and a U(1) gauge
field in the bulk of AdS. The corresponding action is given by

1 12
S = &’z /=g | R+ 5 — FMNF Shay- 4.1
167TG5/ ‘ g( T MN | 7+ Sbdy (4.1)
where Spqy is the boundary counter term. The equations of motion are given by:
1
G — 69, + 2 (FupF/r]/ + ZFQBFQB g,w> = 0, V., F* = 0. (4.2)

We work in the unite where L = 1. The solution in the Poincare patch is written as it
follows

~V3g

272

ds® = r? (—f(r)dt2 +da? + dy* + d22> + dr?, A= dt, (4.3)

1
r2f(r)
2
with f(r) =1- "3+ Z—’é. Parameters m and ¢ are two constants. It is convenient to re-scale
the quantities with the radius of the outer horizon, R, namely the largest positive root of
f(r) = 0. We may write

m b

M:ﬁ7 Q:ﬁ7

Q*=M —1. (4.4)

In the rescaled coordinates, the outer horizon locates at p = 1 while the boundary is
identified with p — oco. For further requirements, we need to work in a system with finite
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domain of the radial coordinate; for this purpose, we make the change p = 1//u. The
function f then takes the following form

flu) =1—(Q*+ 1)u® + Q%u>. (4.5)

Using this together with (4.4), the Hawking temperature 7' and the chemical potential p
of the boundary theory are found to be

1 R
T=(-2Rfi|,.) = 5 (2-Q%, o
4.6
V3¢ V3
p=Al A = S = QR

From the expressions (4.6), one can derive ) as a function of u/T":

_ V2a(p/T) o = <8> 2 (4.7)
1+ 1+ a2 (/1) 3r2) '

This relation simply shows that there is a one-to-one map between p/T and @. Thus in

the following, we take T" and @) as the two independent thermodynamic variables. Then
the bulk metric and gauge field can be finally written in (¢,x,y, z,u) coordinates as the

following:
1/ 27T \? 1
ds? = = [ ——= ) (—f(w)dt® + da® + dy® + d=?) + ———du®
=3 (1g) (st vaf o)+ e (48)
V3rTQ '

4.1 Spin 0 Channel

We turn on the set of perturbations {hy, hs, hez, b, Ay A, } in the radial gauge. On the
RN background solution (4.8), the gauge invariant variables (2.7) take the following form

2
Zo=¢*fHy + 2qH,, + w?H,, + q° (2 — Q%3 — ‘:2 — f> H, (@9)

E.=qA; + A, +qQH.

Note that on the background solution (4.8), ¢ = Q. To find the coupled dynamical equa-
tions of the above two variables, firstly it is required the perturbations {hy, hiz, hzz, by ar, a.}
in the spin 0 equations (4.2) to be replaced with {afHy,aHy,,aH,,,2aH,cp A, cp AL}
(see (2.7) and explanations given below that). Doing so, we find equations of the lat-
ter “six” perturbations. The difficult task is to eliminate all these perturbations in favor
of the two gauge invariant variables Zy and F,. After long computations, which are not
shown here, we arrive at the two following coupled differential equations

Zy+ a1Zy+ a2 Zo+ b3 E. + by E. = 0,

” , , (4.10)
£ + blEz+ by E, + a3 2y + (I4ZO =0.
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We have put ¢; coefficients in front of Zy and Z|, and have done the same for b; coefficients
with E, and E.. Considering w = w/27T and q = ¢/277T, the coefficients are found to
be as

Q2 ~2)w? D+ £ (a4 (@ —4) + o (2— Q%) + 30" ' (44 2%~ 3) f°
uf(w2—q2f)(D—q>f) ’

ar=

Q=
Q*ur?D+q>f ((Q2u3 —2)(8—42Q%*u+8Q%u3) —4Q%uw?+ (32+ ¢ Q%u+8Q%*u’ — 16 f) f))
4u? f2(D—q*f) ’

e 20Q0Q% —f) - aQ(@ (24 Q%) w0’ —g7f)
uf(D—q?f) ’ (D—q?f)(q? f —10?)
(4.11)
and
b _2q2Q2u2f_m2f/
A2 fw?)
o @' D420 (0P +6Q%2) Q% —2) ' (T2 QP +36Q?)
> 4uf2(D—q2f)(qf —w?)
| U8 Q% —q'QA(Q%® —2) —5(qPQ*+12Q%u?)w?) +4°Q° £
4uf?(D—q2f)(q?f —1?) ’
6q@(<Q2u3—2>m2D+<2q4<c22u3—2)+q2m2<2—Q2u3>+6m4>f+<4q4—6q2m2>f2)
ba— —
s f(@2f—w?) (D—q2f) ’
b, 29Qu(D—a’f)
T (w2—q2f)

(4.12)

We have defined D = (q2(Q?u®—2)+3w2) and Q = Q*>—2. At this point it should be noted
that when @@ = 0, the above equations reduce exactly to the pair of decoupled equations
(4.5b) and (4.35) in ref. [12]. Finding the quasinormal modes as well as hydrodynamic
modes from these equations is the subject of following subsections.

Quasinormal modes. The analytic solution to equations (4.10) is unknown; so to find
the associated spectrum of quasinormal modes, To this end, we combine the Frobenius
expansions of Zy and E, in the bulk (see appendix B for more details) with the method
developed in section 3. In what follows, the corresponding results will be given.

In figure 1, the typical arrangement of poles has been demonstrated for two cases in
this channel. In the left panel, we have shown the quasinormal modes associated with
g=1at Q = 0.5. As can be seen, we have splitted them into two sets, denoted by dots
and stars. The idea for such spitting comes from the knowledge about the arrangement
of poles in the sound channel as well as in the diffusion channel on the AdS-Schwarzschild
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Figure 1. Left panel: stars represent poles of the master charge density Green???s function and
dots correspond with poles of the master energy density Green??7s function. As q decreases, all
poles stay at a finite distance from the real axis, except for the one marked with a large star and
the two marked with large dots. Large dots therefore manifest the existence of two sound modes
and the large dot corresponds with the existence of a diffusive U(1) charge mode in the boundary
N =4 SYM theory at finite chemical potential.

background [12].1° In the latter case the R—current fluctuations decouple from the spin
0 fluctuations of energy-momentum tensor; then one can refer to dots (sound channel)
and stars (diffusion channel) as the poles of energy density and the charge density Green’s
functions, respectively. In our present case, however, such distinction is no longer true; all
the correlation functions have poles which correspond to all of the quasinormal modes!!
(see the discussion in the section 2.5 of [1]). To be consistent with @@ = 0 case, we use
the language of master fields. In fact, each of the two sets of poles, namely dots and
stars, correspond to poles of a specific master operator on the boundary. We call the two
corresponding operators associated with spin 0 channel as the master energy and master
charge; we also show them by T* and J”. Thus the sound and diffusion channels correspond
to poles of (T*TT) and (J*JL), respectively. Needless to say, when @ = 0 the latter two
correlates reduce to Ga(w, q) and I1¥(w, ¢) of the ref. [12].

In the right panel of figure 1, we have compared the left panel spectrum with the one
corresponding to the same ) but at a smaller q. One clearly notices that as q decreases,
all complex poles move away from the horizontal axis, but the two large dots and the
large star move towards the origin. This simply shows that the spectral curve of the spin 0
fluctuations includes three branches of Puiseux series passing through the origin of complex
plane. In the next subsection, we explicitly derive the equation of these branches in the
vicinity of origin. These three branches correspond to three hydrodynamic modes: two
sound modes together with one diffusion mode. It should be also noted that the poles
other than these three are all gapped.

Let us give a comment about the lowest purely imaginary gapped pole in figure 1
which has been shown with a small dot on the imaginary axis. The latter indicates that

Throughout this paper we follow the terminology of [12]; we refer to the diffusion of U(1) R—charge
simply as the diffusion and to the that of momentum as the shear.
1YWe thank anonymous referee for pointing this out to us.
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-1
! Figure 2. The eight lowest complex quasi-

normal modes and the lowest purely imagi-
nary one in the spin 0 channel, at ¢ = 1. Ev-
4t ery colorful path-like set of points, starting in

’ ? purple and ending in red, shows the change
—ot . of one specific mode when @ discretely in-
o creases from 0 to 0.8. We have considered 16
-3} regular steps by increments of AQ = 0.05.

this is actually pole of the master energy density Green’s function. To understand why
this is so, one can compare figure 1 with the spectrum of sound or diffusion poles on the
AdSs5-Schwarzschild background. To compare this pole with the similar pole in the AdSs-
Schwarzschild case, we need to keep track of it when () goes from 0 to 0.5. But it turns out
that at small values of ) such pole lies beyond the domain of convergence of our method.
Thus the comparison with the AdSs-Schwarzschild fails to work. At this point we exploit
the results of ref. [36] about the large @ limit of quasinormal modes in the spin 0 channel
in AdS4 RN case. Comparing figure 1 with figure.1 in ref. [36], we may say that one of
the two lowest poles on the imaginary axis is a diffusion pole while the other one should
belong to the spectrum of master energy density, namely to the sound channel. Since the
lowest pole is a diffusion (star) pole, the next one would be a dot pole.

So far we have just talked about the quasinormal modes at a fixed finite value of
Q. In figure 2, we have depicted part of the spectrum of quasinormal modes at the fixed
momentum q = 1 for several values of () within the range 0 < @ < 0.8. One observes that

t,'2 even at a finite fixed value of momentum, e.g.

by approaching towards the extremal limi
at q = 1, the non-hydrodynamic (gapped) poles move away from the origin. As mentioned
in the Introduction, our numerical method works well within the range 0 < @ < 0.88. It
would be interesting to try other numerical methods to find the extrapolation of colorful
paths depicted in figure 2 at larger values of Q, specifically when Q — /2 or equivalently
when T" — 0.

See also appendix. E for some reference numerical data.

Hydrodynamic limit. Although the complete analytic solution to equations (4.10) is
unknown, one can analytically solve them in the hydrodynamics limit. At first sight,
equations (4.10) may seem impossible to become decoupled. But as we will show, at small
p/T limit, namely when @ < 1, they decouple in the hydrodynamic limit. What we are
going to do is to perturbatively solve (4.10) in the hydrodynamic expansion and also in @
expansion.

Demanding the solutions be ingoing at the horizon, the near horizon behavior of Z
and E, are fixed as follows:

w1 Zow), Baw) ~ (1 (14 Q2 + Q%) e (4.13)

12The extremal limit is identified with Q = v/2.
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In order to enter the hydrodynamic expansion, we apply the rescaling to — etw and q — €q
to the dynamical equations as well as to (4.13). A quick look at the coefficients (4.11)
and (4.12) reveals that

a,ag ~ O(€0>, bg,b4 ~ O(G), (4.14)
by, by ~ O(e), ag,aq ~ O(e7h). (4.15)

Such scaling simply means that in each of the equations (4.10), the function Zp must be
one order higher in € expansion, than the function E,. Thus the appropriate ansatz for the
functions Zp(u) and E,(u) in the double expansion over € and @ is given by

Zo(’LL) — (1 _ (1 + QQ)’LLQ + Q2u3)*im/2 ka—f—l (Z(I]C,O(u) + QZ(I]C,l(u) + QQZ§’2(U)) :
k=0

—it/2

Bo(w)= (1= (1+ QY2+ Q%) 7 > wh (BE(u) + Q EE (u) + Q' FE2(w))
k=0

(4.16)

Substituting the above expressions into equations (4.10) and expanding over € and @, we
obtain a set of second order ordinary differential equations for the functions Z;""™ and EZ"™.

Starting from the lowest order in € and @, one firstly finds Zg ’O(U) from the first line
in (4.10) up to an unknown coefficient. Regularity at u = 1 together with fixing its value
at the same point, namely Zg’o(l) = (1, picks out a unique regular solution to Zg’o(u).
Using this solution, then the next function that can be found is Eg’o(u); from the second
equation in (4.10). Again, regularity at « = 1 and demanding Eg’o(l) = (Y fix the solution.

In the appendix G, we have listed the corresponding perturbative solutions at higher
orders, according to the ordering we have found them through the perturbation theory. It
should be noted that at every order of perturbation, one of the two boundary conditions
is regularity at v = 1 and the second one is the normalization of the solution at the same
point:

72901 = ¢y, EX(1) = Oy,

4.17
and Z™"(1)=0, E™"(1)=0: m?+n?#0. (4.17)

Let us denote that in what follows, for convenience, we replace C; with (2 — 3y?)C}.
Quasinormal modes are, by definition [45], the modes obtained upon applying the Dirichlet
boundary condition to (4.16). One thus writes

Z6(0)=0,  E.(0)=0. (4.18)

According to our earlier discussions these two equations are coupled. By explicit compu-
tations (appendix G) we find!3

Zp(0) = mi1(w,q; Q) C1 +miz2(,q; Q) Ce =0,

v (4.19)
E.(0)=0: mai (10, q; Q) C1 4+ maa (10, q; Q) Ca = 0,

13These equations are analogue of the formal equations (3.13); however, here are specifically associated
with spin 0 channel and with the hydrodynamic limit as well.
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where C and Cj are the normalization coefficients defined in (4.17). The m;; coefficients,
up to first order in derivatives, are found to be

5—6v2m 8—2v2(log8+1)+3V4(1—3v2)(3—log8)m2 o
3y2 -2 2y?(3y2-2) ’
43 4i(—2+y*(log8—3)) 2>
mig= |\ — o+ Y )
¥ ( : s Q

V3y V3 (—1+y*(log2—1
m21:<_ 4v_ ( y*(log ))m>Q’

mi1 = (1—3v2)m—2im2+(

4y
1 3 1./1 9
Moy = 1-+1 <V2—10g2> m+<2—|—2z <V2—log2> m) Q

where y = 1/q. Obviously, in the limit @ = 0, the two non-diagonal coefficients m;o

(4.20)

and mg; vanish and one is left with two decoupled equations in (4.19); Cymy; = 0 and
Cymao = 0. Requiring C7, Cy # 0, these equations then give the well-known dispersion
relations, namely equations (4.43) and (4.16) in [12], respectively. When @ # 0, however,
equations (4.19) are coupled and have a non-trivial set of solutions if and only if one

det (m“ m”) = 0. (4.21)

demands

ma1 M22

Solving the recent equation to second order in q and @, we find the dispersion of the spin
0 hydrodynamic excitations in a holographic charged fluid as it follows

1 ]

+ 2 2

msound:i%q_6(2_3Q>qa

Wdiffusion = — ¢ (1 - Q2) q27 (422)
1

) 1+ log2
non-hydro = — 1+4Q? 21— —/—22Q7%).

The expression in the first line of (4.22) is the dispersion relation of the two hydrodynamic
sound modes in the charged fluid. The second line is showing the hydrodynamic diffusion
of the U(1) charge. Finally the expression given in the third line does obviously corre-
spond to a gapped mode which lies beyond the regime of hydrodynamics. To the best
of our knowledge, this is the first computation of hydrodynamic modes in the AdS RN
background.

4.2 Spin 1 Channel

We turn on the set of perturbations {hy, h.s, h, A, } in the radial gauge. As mentioned in
section 2, the gauge invariant variables associated with this channel are identified with Z;
and F, given by (2.8). Just like in the spin 0 channel, the difficult part of the computation

141 [31], using the master field method, only the first term of sound mode, namely 1 = 1/+/3q has been
found. Authors of [31] have also computed the first order hydrodynamic transport coef