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1 Introduction

Any theory can be made scale invariant by coupling it to a dilaton. The scale invariance

can then be softly broken, giving the dilaton a mass and self-interactions, and this becomes

a popular proposal [1–14] for solving the hierarchy problem of the Standard Model (SM).

Such SM plus dilaton theories can either be thought of as fundamental, or as the low-

energy limit of composite theories, where the dilaton becomes the pseudo-Goldstone boson

associated with the spontaneous breaking of scale invariance. It therefore couples to the

SM fields through the trace of the energy-momentum tensor.

The dilaton portal is also an extremely economic way of coupling the SM to a dark

matter particle: a massive dark matter field automatically couples to the dilaton, so that

there is no need to add any additional interactions with the SM. Such models are very
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economical in terms of new parameters: we have effectively just the dilaton mass, dark

matter mass, and the dilaton decay constant/symmetry breaking scale as extra degrees of

freedom relative to the SM.

Models of dilaton portal dark matter have also been well studied in the literature [9, 15–

18]. In this paper, we will study both the fermionic and vector dark matter cases in detail,

pointing out along the way the connection between the dilaton portal and models of vector

dark matter based on effective field theory. We shall consider both the vanilla dilaton

scenario without mixing with the Higgs boson, and also (in section 2.2) two different

formulations of the theory once mixing is included: the theory is not uniquely defined,

and the simplest way to include mixing is not gauge invariant; along the way we also

write a gauge-invariant formulation of the Lagrangian. Our aim is to revisit and update

the constraints on the main parameters of the model, via dark matter constraints, the

latest Higgs-like particle searches for the dilaton itself, collider constraints from direct

searches for the dark matter particle at the LHC, and perturbative unitarity of scattering

amplitudes. We then provide projections for future colliders. In particular, we shall restrict

our attention to a heavy dilaton above about 300 GeV (see ref. [14] for a detailed recent

examination of constraints on the dilaton in the low-mass window) where diboson searches

push the dilaton to large masses and weak couplings. However, a vector dark matter

candidate is produced much more copiously at the LHC than a fermion candidate, and

thus this model is more promising for future searches.

The rest of this paper is organised as follows. In section 2, we introduce our theoretical

framework, discuss the problematics of the Higgs-dilaton mixing and address the issue of

perturbative unitarity. Section 3 is dedicated to the estimation of the constraints on the

Higgs-dilaton mixing and section 4 to the bounds that can be imposed from dark matter

direct detection and LHC searches. Section 5 finally focuses on future collider prospects.

We conclude and summarise our work in section 6. In addition, more extensive details on

perturbative unitarity constraints are presented in the appendix.

2 The dilaton portal to dark matter

2.1 Theoretical framework

We consider an extension of the SM that contains a dark matter candidate, taken to be

a Majorana fermion or a neutral vector boson, without any tree-level interaction with the

Standard Model particles. Assuming spontaneously broken scale invariance at a high scale

f , the particle content of the model includes a light dilaton σ of mass mσ that couples to

all other fields through the trace of the energy-momentum tensor [1–3, 7, 8, 11, 12]. As

pointed out in the introduction, the dark matter candidate couples to the dilaton via its

mass term, and then the dilaton acts as a mediator for dark matter interactions with the

Standard Model particles. The dilaton, its self-interactions and its interactions with the

SM sector arise from a procedure1 that converts a theory into a scale-invariant one. We

briefly summarise this procedure below, in the context of the model studied in this work.

1For a detailed explanation see, for example, the work of ref. [8].
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We consider a generic Lagrangian L0 that we write in terms of operators Oi of classical

scaling dimension di = [Oi] and coefficients gi depending on the renormalisation scale µ,

L0 =
∑
i

gi(µ)Oi(x) . (2.1)

Scale-invariance requires that the above Lagrangian contains only dimensionless, scale-

independent couplings, or equivalently that it is invariant under a scale transformation of

parameter λ,

xµ → eλxµ , Oi(x)→ eλdiOi(eλx) , µ→ e−λµ . (2.2)

However, those rules yield a non-vanishing Lagrangian variation δL equal to the trace of

the energy-momentum tensor Tµν ,

δL =
∑
i

[
(di − 4)Oi − µ

∂gi
∂µ

]
= Tµµ . (2.3)

Scale invariance can then be established by introducing a conformal compensator field

χ(x), which is a scalar field of dimension [χ] = 1, and by enforcing the replacement of the

couplings gi [11, 12]

gi(µ) → gi

(
µ
χ

f

)(
χ

f

)4−di
. (2.4)

Such an introduction of the appropriate powers of the compensator field allows us to retrieve

scale invariance after imposing the scale transformation law of the compensator

χ(x)→ eλχ(eλx) . (2.5)

Along with the additional field χ, the replacement in eq. (2.4) also induces a new parameter,

the cut-off scale f = 〈χ〉. This is an artifact of the breaking of the scale symmetry, i.e.

the vacuum expectation value of χ. Therefore, an appropriate parametrisation involving

the associated Goldstone boson σ, namely the dilaton field, would be based on the field

redefinition [8, 16]

χ(x) = f + σ(x) . (2.6)

Inserting these modifications into the Lagrangian leads to

L =
∑
i

gi

(
µ(1 + σ(x)/f)

) (
1 + σ(x)/f

)4−di
Oi(x)

= L0 +
∑
i

σ(x)

f

[
gi(µ)(4− di)Oi(x) + β(gi)Oi(x)

]
+
σ2(x)

2f2

∑
i

[
(4−di)(3−di)gi(µ)Oi(x)

]
+ . . . ,

(2.7)

where we restricted ourselves to the leading terms in σ/f explicitly, and the ellipsis stands

for any (potentially-relevant) higher-order contributions.
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Considering the broken electroweak phase, the interaction terms of the dilaton with

the SM sector are given, including all the Lagrangian terms of dimension 6 or below, by

Lσ =
σ

f

[
2m2

WW
+
µ W

−µ+m2
ZZµZ

µ−m2
hh

2−
∑
ψ

mψψψ −
m2
h

2v

[
h3 + hG0G0 + 2hG+G−

]
+
gv

2

[
∂µG−W+

µ + ∂µG+W−µ +
1

cW
∂µG0Zµ

]
+ gmWhW

+
µ W

µ− +
g

2cW
mZhZµZ

µ

+ ig′mW

(
G−W+

µ −G+W−µ
)(
cWA

µ − sWZµ
)

+
11αEM

24π
FµνF

µν − 7αs
8π

GaµνG
aµν

]
+

σ2

2f2

[
2m2

WW
+
µ W

−µ+m2
ZZµZ

µ−m2
hh

2
]
,

(2.8)

where the summation over ψ refers to all the SM fermionic mass-eigenstates of mass mψ,

and mh, mW and mZ stand for the Higgs boson, W -boson and Z-boson masses. Moreover,

v denotes the vacuum expectation value of the Standard Model Higgs field, cW and sW the

cosine and sine of the electroweak mixing angle, and g, g′ and gs the weak, hypercharge and

strong coupling constants. In our expressions, we have included the interactions between

the physical Higgs (h) and electroweak (Aµ, Wµ, Zµ) bosons and the three Goldstone

bosons (G0, G±). For the corresponding expression in the unbroken electroweak phase, we

refer to ref. [15] that additionally includes a complete Higgs-dilaton mixing analysis.

The interactions of the dilaton with the two considered dark matter candidates, namely

a Majorana fermion ΨX and a real vector field Xµ, read

LDM
σ =


− σ

2f
mΨΨXΨX (Majorana fermion) ,(

σ

f
+
σ2

2f2

)
m2
VXµX

µ (vector boson) ,

(2.9)

where we denote the mass of the dark matter state by mΨ and mV in the fermion and

vector case respectively. In order to ensure the stability of the dark matter particle, our

setup assumes a Z2 symmetry.

At this level, the only purpose of introducing the dilaton was to make the existing

terms of the Lagrangian scale-invariant. We should however also include a kinetic and a

mass term for the dilaton, as well as its potential self-interaction terms. We rely on a

dilaton potential that is constructed under the assumption that the conformally-invariant

field theory, for which our model represents an effective theory, is explicitly broken due

to the addition of an operator with a scaling dimension ∆O 6= 4. This yields a potential

V (χ) [4, 8],

V (χ) = χ4
∞∑
n=0

cn(∆O)

(
χ

f

)n(∆O−4)

, (2.10)

that we add to the effective Lagrangian. At the minimum of the potential at which 〈χ〉 = f ,

the coefficients cn can be related to the parameters of the underlying conformal field theory.2

2Note that the exact details of the underlying theory is beyond the scope of this paper, and in our

analysis we take an effective theory approach.
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This potential is supposed to be at the origin of the dilaton mass mσ, which translates into

the condition

m2
σ =

d2V (χ)

dχ2

∣∣∣∣
〈χ〉=f

> 0 . (2.11)

With the assumption that |∆O − 4| � 1, it is possible to expand the potential in |∆O − 4|
such that the explicit ∆O-dependence of the different coefficients cn disappears [8],

V (χ) =
1

16

m2

f2
χ4

[
4 ln

χ

f
− 1

]
+O(|∆O − 4|2) . (2.12)

By applying the parametrisation of eq. (2.6), one obtains, after adding the dilaton kinetic

term [16],

Lself
σ =

1

2
∂µσ∂

µσ−m
2
σ

2
σ2− 5

6

m2
σ

f
σ3− 11

24

m2
σ

f2
σ4 + . . . , (2.13)

where the dots stand for higher-dimensional interactions.

2.2 Higgs-Dilaton mixing

When two physical neutral scalars are present in the theory (the Higgs field h and the

dilaton field σ), they could in principle mix, unless it is forbidden by some symmetry. If

the mixing is allowed, its origins can be found through a UV completion of our effective

setup. This option was first studied in ref. [17], and will be re-investigated in the light of

the most recent experimental data in section 3.

Keeping in mind the effective approach adopted in this work, we will not speculate

about any UV-physics that drives the source, and hence the amount, of mixing. Instead,

we will study the possibility of a non-vanishing Higgs-dilaton mixing by introducing a

mixing angle α as an additional parameter. We will relabel our original flavour states as

h0, σ0 with mass parameters mh,0,mσ,0 and relate them to the new mass eigenstates h, σ

via the rotation (
h

σ

)
=

(
cosα sinα

− sinα cosα

)(
h0

σ0

)
≡

(
cα sα
−sα cα

)(
h0

σ0

)
. (2.14)

We then assume that the (lighter, by assumption) scalar h can be identified as the experi-

mentally confirmed scalar of mass of about 125 GeV, so that it is mostly compatible with

the SM Higgs boson. In contrast, the heavier scalar field σ is mostly dilaton-like.

The impact of the non-zero mixing of the Higgs boson and the dilaton can be in-

ferred from the similarity between the couplings of the h0 and σ0 states with the remaining

particle content in the zero-mixing case. Without mixing and in unitary gauge (i.e. ig-

noring Goldstone bosons), there is a corresponding dilaton coupling for every Higgs boson

coupling. This is not surprising since these dilaton couplings originate from the presence

of a dimensionful coupling in the SM Lagrangian after electroweak symmetry breaking,

where the dimensionful quantity in the coupling constants is actually the Higgs vacuum

expectation value v. In all of these cases, the coupling constants appearing in the dilaton

interaction vertices therefore differ by a factor of rf = v/f for each dilaton participating in
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the interaction, when compared with the corresponding Higgs-boson interaction. In princi-

ple, dilaton couplings involving the Higgs or Goldstone bosons (leaving the unitary gauge)

should be discussed as well, but they cannot be related to any SM counterpart by factors

of v/f . We refer to the discussion below for what concerns those multi-scalar interactions.

For the dilaton and Higgs Yukawa couplings to the SM fermions, this yields the inter-

action Lagrangian Lψσ ,

Lψσ =
∑
ψ

mψ

v

(
h0 + rfσ0

)
ψψ =

∑
ψ

mψ

v

[
(cα + rfsα)h+ (rfcα − sα)σ

]
ψψ . (2.15)

Similarly, the massive gauge boson interactions read, at leading order in the scalar fields,

LVσ =
[
(cα + rfsα)h+ (rfcα − sα)σ

][2m2
W

v
W+
µ W

−µ +
m2
Z

v
ZµZ

µ

]
. (2.16)

TheW - and Z-boson couplings to a pair of scalar fields h and/or σ are obtained analogously.

These couplings are potentially relevant for processes addressing both scalar production

and decays. For example, in scalar production at hadron colliders through gluon fusion,

the leading-order contribution involves triangle diagrams featuring a loop of quarks (the

top quark one being the most relevant by virtue of its largest mass), so that the associated

predictions are affected by the modifications of eq. (2.15). In case of the light scalar, a factor

of (cα + rfsα) is introduced into the amplitude compared to the zero-mixing case. On the

contrary, for the production of the heavy scalar, the extra factor is given by (−sα + rfcα).

This feature is obviously also present for any other production mode at colliders, like

associated production (V h or V σ) or vector-boson fusion, that involve the coupling of the

scalar to the W - and Z-bosons.

On the other hand, the dark matter mass term is at the origin of a dilaton coupling

which obviously does not have an analogue for the Higgs boson due to the absence of

the dark matter in the SM and of a Higgs portal relating the dark and the visible sector.

Depending on the type of dark matter, the Lagrangian in terms of the scalars h and σ gives

LDM
σ = −mΨ

2f
sαhΨXΨX −

mΨ

2f
cασΨXΨX (2.17)

in the Majorana case and

LDM
σ =

m2
V

f
(sαh+ cασ)XµX

µ +
m2
V

2f2
(sαh+ cασ)2XµX

µ (2.18)

in the vector case. In the latter case, the trilinear couplings are the most relevant ones

for Higgs measurements and heavy scalar searches, but the quartic couplings are very

important for dark matter searches when mV � mσ. Consequently, mixing leads to a

coupling of the SM-like Higgs state to the dark-matter candidate that would not exist

without mixing.

The same applies to the tree-level couplings of the dilaton to the massless gauge-

bosons, which are not induced by dimensionful couplings but by the scale-dependence of

– 6 –
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the electromagnetic and the strong coupling. Here the contribution to the Lagrangian in

the mass eigenbasis LV V S reads

LV V S =
11αEM

24πv

(
rfsαh+ rfcασ

)
FµνF

µν − 7αs
8πv

(
rfsαh+ rfcασ

)
GaµνG

µν
a . (2.19)

Without mixing, the dilaton coupling to photons or gluons must take into account both a

tree-level and a one-loop contribution at leading order in the electromagnetic or strong cou-

pling, while the Higgs boson interacts with these bosons only beyond tree-level. Eq. (2.19)

shows that in the mixing case, the tree level contributions enter into the amplitudes for

both the light and the heavy scalar with a factor of sinα or cosα respectively.

Furthermore, there are also couplings which involve some combination of the two

scalars. These result from the Higgs and the dilaton potentials, where couplings between

the two scalars h and σ are only present when the mixing is non-zero. On the other

hand, the dimensionful couplings of the Higgs potential also give rise to interaction terms

involving both the dilaton and the Higgs boson, which are present even in the zero-mixing

case. These trilinear couplings are phenomenologically very important, because they allow

the dilaton to decay into a pair of Higgs bosons. Unfortunately, in our model they are not

uniquely defined. Starting from the Lagrangian introduced in the previous subsection, the

cubic couplings come from the terms

Lφ3 =− 1

2v
m2
h,0h

3
0 − ξ

m2
σ,0

f
σ3

0 −
m2
h0

f
h2

0σ0 . (2.20)

Here ξ is a model-dependent dilaton self-coupling, that we have fixed to 5/6 in eq. (2.13).

The trilinear couplings between the two mass eigenstates are then found by substituting,

in the above equation, the mixing relation of eq. (2.14).

Note that the parameter mh,0 ≡
√

2λSMv2 is not equal to the mass of the lightest

scalar. The physical masses are instead determined by the diagonalisation of the dilaton-

Higgs mass matrix extracted from the bilinear terms of the scalar potential,

Lφ2 = − 1

2
m2
h,0h

2
0 −

1

2
m2
σ,0σ

2
0 −m2

hσh0σ0 (2.21)

where

m2
h,0 = m2

hc
2
α +m2

σs
2
α , m2

σ,0 = m2
hs

2
α +m2

σc
2
α , m2

hσ = −cαsα(m2
σ −m2

h) . (2.22)

Note also that in the work of ref. [17] the parameter m2
hσ is not explicitly discussed.

However, it is clear that if it is present, then the full Lagrangian of the theory cannot be

written in a gauge-invariant way: we will have to give up precision calculations for the

model and it is harder to make a connection with a UV-completion. On the other hand, if

we want to write the lowest-dimension effective operator which can yield such a mass and

preserve the gauge symmetry, then we must write the SM degrees of freedom in terms of

a doublet H ⊃ H0 = 1√
2
[(v + h0) + iG0], and it follows that the physics that generates a

dilaton mass should also generate a new coupling

L ⊃−
m2
hσ

v
σ|H|2 ⊃ −m2

hσh0σ0 −
1

2

m2
hσ

v
h2

0σ0 . (2.23)
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This new trilinear coupling has dramatic consequences for the phenomenology: it allows

for unsuppressed decays of the dilaton into two Higgs bosons. Therefore we will investigate

both scenarios: the “minimal mixing scenario” of eq. (2.21) and the “gauge invariant mixing

scenario” of eq. (2.23).

2.3 Fermionic and vector dark matter through the dilaton portal

The dilaton portal is particularly interesting and simple for dark matter models because

the dark matter coupling is unique (being determined only by the dark matter mass). The

most commonly considered and perhaps simplest dark matter candidate in a dilaton portal

model is a Majorana fermion Ψ or a real scalar S, with a Z2 symmetry. Note that in

ref. [17] a Dirac fermion was considered, which has instead a continuous unbroken global

U(1) symmetry (although this was not explicitly stated). The phenomenology is however

very similar up to some factors of 2.

There is little to add to the analysis of dark matter constraints performed in this earlier

work (and for the case of zero mixing, in the works of refs. [9, 15, 16]). However, we update

those results by providing limits from recent monojet and multijet searches in the fermionic

case in section 4.1, and projections for a future 100 TeV collider in section 5.

A vector boson as the dark matter particle has attracted some interest as an alternative

to the more common fermion or scalar candidates. The particular challenge for the vector

case is to allow it to remain stable; a Z2 symmetry forbids conventional gauge interactions.

We must either accept this [9, 19–22] or we can stabilise the vector through another sym-

metry such as a custodial one [23]. Here we shall be considering the minimal model, which

can arise from a Stückelberg U(1) field coupled to the dilaton. This automatically features

a Z2 symmetry provided there is no matter charged under it; and the symmetry also forbids

any kinetic mixing term involving the dark vector field, through which it could decay.

Since our dilaton must be rather heavy and couples to all the SM particles including

the Higgs boson, we could consider it as generating effective Higgs portal interactions.

Indeed, integrating it out generates the effective Lagrangian Leff ,

Leff =
1

2f2m2
σ

[∑
ψ

mψψψ −m2
VXµX

µ −m2
ZZµZ

µ − 2m2
WW

+
µ W

−µ +m2
hh

2

]2

, (2.24)

after neglecting any higher-dimensional operators. This can be compared with the standard

Higgs-portal Lagrangian for vector dark matter LVHPDM (which has become a popular

benchmark scenario) [21, 22],

LVHPDM =
λhv
8
h2XµX

µ +
1

2
m2
VXµX

µ +
λ

4
(XµX

µ)2 , (2.25)

that exhibits the same classes of terms. These types of vector dark matter effective Lagra-

gians including a mass term generated by the Stückelberg mechanism exhibit a violation

of unitarity, in particular at high energy colliders and even for the standard Higgs portal.

The Higgs invisible decay width hence diverges when mV → 0. One simple way to cure

these problems consists of introducing a Higgs mechanism in the dark sector [24]. Then,

– 8 –
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the Higgs invisible decay width becomes finite [25] and unitarity is restored [26–28]. In the

following, we will not suffer this complication.

In the dilaton case, the generic coefficients λhv, mV and λ are expressed in terms of

mV and f . While in LVHPDM the vector self-coupling λ is rather unimportant, Leff instead

features additional dimensionless quartic terms (XµX
µ)(ZµZ

µ) and (XµX
µ)(W+

µ W
−µ)

that are crucial for the phenomenology of the model. They indeed provide the principal

annihilation channels for the dark matter. We therefore see no reason why these couplings

should be neglected in a generic vector dark matter effective field theory, and invite the

reader to reconsider benchmark scenarios that omit them.

Another interesting feature of a vector coupling to the dilaton is that a heavy dila-

ton will predominantly decay into vectors. The partial width of the dilaton into dark

matter becomes

Γ(σ → XX) =
m3
σ

32πf2

[
1− 4

m2
V

m2
σ

+ 3
m4
V

m4
σ

]√
1−

4m2
V

m2
σ

−→
mσ�mV

m3
σ

32πf2
, (2.26)

which is independent of the vector mass. When we fully consider the decay channels into

Z and W bosons, we find that the total width of the dilaton can be well approximated by

Γ '
mσ�mV ,mZ

m3
σ

8πf2
, (2.27)

and the branching ratio of the dilaton into dark matter then becomes roughly 0.25. This is

much larger than for the scalar or fermionic cases, where the dilaton branching ratio into

dark matter tends to zero for small dark matter masses. Consequently, vector dark matter

production at colliders could be potentially enhanced via a dilaton resonance.

This width also provides a limit on the size of the dilaton mass from the requirement

that it be a narrow state. However, as we shall see, this is actually a weaker constraint

than perturbative unitarity of scattering amplitudes.

2.4 Perturbative partial wave unitarity

Since our theory contains non-renormalisable operators, it must have a cutoff comparable

to the scale f . We expect this to be manifest, even at tree level, as perturbative unitarity

constraints on two-body scattering amplitudes. In particular, there are some couplings that

could in principle be large compared to f since they come with additional massive factors

— such as the masses of vector bosons, and particularly the dark matter (in the vector dark

matter scenario). We have therefore calculated the constraints originating from imposing

the unitarity of two-particle scattering when vector and dilaton fields are involved, as well

as the one stemming from the scattering of gluons into heavy vectors via a dilaton exchange.

The details are given in appendix A that also includes the derivation of useful approximate

formulae, such as an upper bound on the dilaton mass from self-scattering in eq. (A.9) of

mσ . 2f , (2.28)

which gives Γ/mσ . 1/2π.
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In particular, the scattering of gluons into vectors via a dilaton places a constraint on

the maximum scattering energy permissible in our theory. This will be relevant for the

LHC and future collider constraints; and also for all other unitarity constraints (which

necessarily also involve choosing a scattering momentum).

As shown in appendix A.4, unitarity is violated if

s >
8π2f2

7αs
. (2.29)

In principle, when the process centre-of-mass energy s is above this value (30 TeV for

f = 3 TeV), the cross section calculation in our theory is not reliable. However, in collider

processes, this is of course not the centre-of-mass energy of the proton-proton collision that

is relevant, but the partonic one ŝ. We have instead

ŝ ≡ x1x2s <
8π2f2

7αs
≡ ŝunitarity , (2.30)

or equivalently

x1x2 < 0.08

(
f

3 TeV

)2 (100 TeV)2

s
. (2.31)

Here x1,2 are the momentum fractions carried by the intial-state gluons, the relevant pro-

cesses being induced by gluon fusion. So provided that the gluon parton distribution

function (PDF) is negligible for xi > O(10−1), calculations for a 100 TeV collider are safe.

We consider processes where a single dilaton is resonantly produced. The relevant scale

therefore consists of its mass mσ, and taking into account the dilaton mass range inves-

tigated in this work, the typical gluon-gluon parton collision scale is x1x2 ∼ 10−4 − 10−3.

This therefore guarantees the suppression of any growth in the cross section coming from

high-energy subprocesses.

On the other hand, the above constraint is very important when considering the uni-

tarity of (vector) dark matter scattering. While we typically want to take the high-energy

limit for unitarity calculations to simplify matters and avoid resonances, we have seen that

it is not possible for our model. In particular, the scattering of dilaton pairs into longitudi-

nal vectors exhibits (only) a logarithmic growth with energy, so that the cutoff of eq. (2.29)

also reduces the power of other unitarity constraints. To be safe for f = 2 TeV we should

take
√
s < 20 TeV and for f = 1 TeV we should take

√
s < 10 TeV.

Throughout the rest of the paper we shall use the above limit as a guide for fixing

the cutoff on our theory. This only appears in the other unitarity constraints, arising

from vector and dilaton scattering, which we scan all momentum values up to a maximum

vector centre-of-mass momentum pV,max where pV =
√
s/4−m2

V . Since these other con-

straints grow logarithmically with pV,max this is both necessary (to give finite results) and

conservative.

3 Constraints on the Higgs-dilaton mixing

In order to assess the viable regions of the model parameter space, we use input from

experimental Higgs-boson measurements and heavy scalar searches, as well as constraints
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on the magnitude of the new physics contributions to the Peskin-Takeuchi parameters S

and T [29].

For the Higgs and heavy scalar set of constraints, we enforce that predictions for the

signal strengths of various scattering processes (i.e. the ratio of total rates to their Standard

Model counterparts) is consistent with observations (within uncertainties). In this context,

it is assumed that the light or heavy scalar is resonantly produced. It is therefore allowed

to factorise the scattering cross sections into the scalar production cross section times the

branching ratio of the considered decay mode.

The Higgs and heavy scalar constraints are determined using Lilith-2.2.0 [30]

and HiggsSignals-2.4.0 [31] for the SM-like Higgs measurements, and HiggsBounds-

5.5.0 [32] for the heavy scalar searches. The input for these codes is generated using a

specially written main program for MicrOMEGAs-5.0.8 [33] using model files generated

with FeynRules-2.3.36 [34]. The Higgs and heavy scalar search limits require the compu-

tation of ratios of scalar couplings to the ones of a SM-like Higgs particle of the same mass,

both for the lighter (observed) state and the heavier one. These are estimated using a mod-

ified version of the routines embedded into HiggsBounds, that calculate tree-level scalar

decays into quarks with their masses evaluated at a fixed running scale of 100 GeV, as well

as quark-loop-induced couplings to photons and gluons (including some higher-order QCD

factors) which we supplement with the higher-order operators given by eq. (2.19). We have

verified that in the limit of small dilaton masses, the loop-induced operators exactly cancel

against the dilatonic ones for the dilaton state, as they should.

Predictions for the electroweak parameters S and T are obtained by rescaling Stan-

dard Model results, which we compare with the experimental values extracted from the

electroweak precision fits [35] according to formulæ taken from ref. [36]. For the calculation

of the contributions from the h and σ scalars (δS and δT ), we use the SM Higgs-boson

contribution XSM (for X = S, T ) [37], after replacing the Higgs-boson mass by the cor-

responding scalar mass and modifying the couplings as explained in section 2.2. This

leads to

δX =
[
(rfsα + cα)2 − 1

]
XSM(mh) + (rfcα − sα)2XSM(mσ) . (3.1)

3.1 Constraints from the light SM-like Higgs boson

Since a mass-mixing term between the dilaton and the SM-like Higgs scalar must violate the

electroweak symmetry, it is natural to assume that this mixing should be small. However,

in the absence of complete top-down constraints, we should consider all possible bottom-up

values for the mixing angle α. The allowed amount of mixing, depending on the parameter

f (or rf ), was examined in ref. [17] for heavy scalar masses of 200, 600 and 900 GeV with

the Dirac dark matter mass being fixed to 300 GeV. While the bounds from heavy scalar

searches obviously are strongly dependent on the mass of the heavy scalar (having a rather

weak dependence on the dark matter mass with some provisos), the constraints on the light

Higgs couplings are independent of both the dilaton and the dark matter masses (provided

that the dark matter is not lighter than half the Higgs-boson mass, opening up invisible

decays). The constraints from the S and T parameters are also only relatively weakly

dependent on the dilaton mass and have hence not drastically altered since 2014. The

– 11 –



J
H
E
P
1
0
(
2
0
2
0
)
0
4
4

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
sin

0.2

0.4

0.6

0.8

1.0

v/
f

Figure 1. Constraints on the mixing angle between the Higgs and dilaton against the ratio v/f ,

computed using Lilith (solid green contour) and HiggsSignals (blue dot-dashed contour). We

also show the allowed regions from constraints originating from the electroweak S and T parameters

for dilaton masses of 3000 GeV (inner, light brown shaded region) and 500 GeV (outer, light red

shaded region).

possible values are therefore restricted to | sinα| � 1 or rf � 1 (or both), whereas the

combination with electroweak precision measurements imposes an additional upper bound

of approximately 0.4 for | sinα| and rf .

Figure 1 shows the preferred parameter space regions in the (sinα, rf ) plane, after

considering 99% exclusion bounds stemming from the most recent experimental input from

Higgs measurements (as implemented in Lilith [30] and HiggsSignals [31]), as well as

values for the S and T parameters extracted from the most up-to-date electroweak fits [35].

The dark matter mass has been chosen sufficiently high such that none of the scalars can

decay invisibly, in order to obtain bounds on sinα and rf which are not influenced by dark

matter. The bounds originating from the electroweak precision fit are presented for heavy

scalar masses of 500 and 3000 GeV.

We have found out that a large amount of mixing is still permitted by data. Larger

mixing however modifies the constraints related to both heavy Higgs searches (see below)

and the dark matter sector. For the latter, the effect is to more strongly couple the dark

matter to the Higgs boson, which greatly strengthens constraints from direct detection

since the Higgs couples much more strongly to light quarks than the dilaton does.

Our results additionally allow for a comparison between the Lilith and HiggsSignals

programs, the former requiring slightly more input (the decays needing to be specified)

while the latter calculates the decay table based on coupling ratios. The results agree at

an excellent level and do not substantially differ from older bounds [17].
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Figure 2. Excluded regions of the model parameter space, presented in the (f,mσ) plane for a

selection of mixing angles, with the ‘minimal mixing term’ treatment of the Higgs-dilaton mixing.

We include 99% confidence level exclusions from Higgs measurements (blue) and the electroweak S

and T parameters (red/purple), as well as 95% confidence level bounds from heavy scalar searches

(green). The parameter scans were done using Lilith and HiggsBounds. Our findings demon-

strate that for sufficiently low positive mixing angles, a gap in the exclusion emerges around the

value f that satisfies v/f = tanα. In this gap, the couplings of the heavy scalar to the Standard

Model fermions and massive gauge bosons are close or equal to zero, so that searches for heavy

scalars turn out to be insensitive and arbitrary heavy scalar masses are allowed.

3.2 Heavy scalar searches

Heavy scalar searches provide rather powerful complementary information, and indeed have

been substantially strengthened during the second run of the LHC. These constitute some

of the main new results of this paper. Here we probe the allowed parameter space for

f and mσ for fixed mixing angles. The results depend crucially on the treatment of the

dilaton-Higgs mixing term, as we describe below.

We consider a heavy dilaton with a mass larger than 300 GeV. Throughout most of

the parameter space the main constraint therefore comes from diboson searches since the

dilaton predominantly decays to heavy vector bosons. However, there are two notable

special cases.

The first is when the dilaton decay constant is not large compared to the dilaton mass.

As we have seen, the dilaton can become a wide resonance, for large mσ. Even though
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Figure 3. Constraints on the parameter space of f and mσ for sinα = 0.11 (left) and sinα = 0.15

(right) with a ‘gauge invariant’ treatment of the dilaton-Higgs mixing. The colour coding is the

same as for figure 2.

unitarity constrains Γ/mσ . 1/2π, the width may be large enough that the standard narrow

resonance searches do not apply. We shall avoid this issue by restricting our attention to

a narrow dilaton.

The second special case, as already pointed out in ref. [17], is when f and α fulfill the

condition

(−sα + rfcα) = 0 ⇔ rf = tanα . (3.2)

Here the couplings of the heavy scalar σ to fermions and heavy vector bosons in eqs. (2.15)

and (2.16) vanish, independently of mσ. This does not mean that the heavy scalar com-

pletely decouples from the Standard Model: the tree-level couplings to photons and espe-

cially gluons do not carry the factor (−sα+rfcα) and are therefore non-vanishing (although

the contribution from fermion and vector loops vanishes). Moreover, since the dark matter

particle does not obtain its mass from the Higgs mechanism, its coupling to the heavy scalar

is also non-vanishing at this point. Therefore, in a ‘magic window’ around rf = tanα the

most stringent constraints on the heavy scalar disappear, yet it can still be produced by

gluon fusion and decay significantly to dark matter.

There are still constraints even exactly at this magic value, notably from diphoton and

di-Higgs decays. The details depend crucially on the treatment of the mixing mass term,

as described in section 2.2. If we take the minimal approach to the dilaton-Higgs mixing,

and do not introduce additional interactions, then for small values of the mixing angle

we do see this ‘magic window’ appear. The width of this window in terms of values of f

depends on the mixing and mass mσ, and so does the depth: for sufficiently large mixing

the window actually disappears. The appearance of a wide window at small sin α = 0.04

and large f = 6 TeV, and its eventual disappearance around sinα = 0.13 are illustrated in

figure 2. At larger mixing angles, the constraints from the light Higgs measurements and

the S/T parameters moreover dominate.

On the other hand, if we introduce an additional term in the Lagrangian to restore

gauge invariance, then our results are dramatically modified. In particular, the ‘magic

window’ around v/f = tanα that was found with the minimal treatment of the mixing
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Figure 4. Constraints on dilaton-induced dark matter for fermionic dark matter (left) and vector

dark matter (right), presented in the (mσ,mV ) plane. For each mass configuration, we evaluate

the maximum value of the cut-off scale that can be probed by using 140 fb−1 of LHC data and the

ATLAS analysis of ref. [38].

disappears. In the ‘minimal mixing’ case and for large dilaton mass, the trilinear σh2

coupling λσhh becomes

λσhh −→
v/f=sα/cα

m2
σ

v
c2
αs

3
α(ξ − 2)− 2

m2
h

v
c4
αsα + . . . (3.3)

where the ellipsis denotes additional terms suppressed by powers of sα. On the other hand,

in the ‘gauge invariant mixing’ case it becomes

λσhh −→
v/f=sα/cα

− c4
αsα

m2
σ

v
+ . . . (3.4)

which is dramatically enhanced compared to the previous value, by a factor of order m2
σ/m

2
h.

This leads to dilaton decays into two Higgs fields dominating for much of the parameter

space, and has the effect of completely erasing the ‘magic window’. We show the constraints

in this case in figure 3, which shows current heavy scalar searches wiping out all of the

interesting parameter space.

4 Underground searches for dark matter

We now turn to considering the constraints on our dilaton dark matter model originating

from the relic density, direct detection, and the LHC. Combined with unitarity constraints,

we will show which part of the parameter space remains viable, and to what extent the

different searches are complementary.

4.1 Collider constraints

In order to assess the constraints originating from dark matter searches at the LHC, we

used the implementation in the FeynRules package [34] of the Lagrangian in eq. (2.8)

described in section 3, to generate a UFO library [39]. We then employ MG5 aMC [40]
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to generate hard-scattering events relevant for the production of a pair of dark matter

particles together with jets,

pp→ XXj , (4.1)

where X generically denotes the dark matter particle (a Majorana fermion or a vector

boson). In our simulations, we convolute leading-order (LO) matrix elements with the LO

set of NNPDF 3.0 parton densities [41]. Moreover, for every dilaton/dark matter mass

configuration, we evaluate the dilaton width with the MadSpin [42] and MadWidth [43]

packages and make sure that the dilaton is narrow (see eq. (2.27)). In other words, we

enforce the mσ/f ratio to be small enough.

The above hard process gives rise to a monojet or a multijet plus missing transverse

energy (MET) collider signature, that is targeted by numerous dark matter searches un-

dertaken by the ATLAS and CMS collaborations [38, 44]. As those searches usually select

events featuring at least one highly-energetic central jet, we impose, at the event gener-

ator level, that the transverse momentum of the jet satisfies pT > 100 GeV and that its

pseudo-rapidity fulfills |η| < 5.

The simulation of the QCD environment relevant for proton-proton collisions is

achieved by matching our hard-scattering events with parton showering and hadronisa-

tion as modeled in the Pythia 8 program [45]. The LHC sensitivity to the model is then

estimated by re-interpreting the results of the ATLAS-CONF-2019-040 analysis [38] that

probes dark matter models through a luminosity of 140 fb−1 of LHC data at a centre-

of-mass energy of 13 TeV. This analysis targets multijet events featuring a monojet-like

topology, i.e. it requires events to exhibit a large amount of missing transverse energy, a

large number of jets with at least one of them being very hard. As a consequence, it gives

a great handle on the model considered in this work and dark matter models in general.

Starting from Monte Carlo simulations of the dilaton-induced dark matter signal, we

make use of the MadAnalysis 5 program [46, 47] to automatically simulate the response

of the ATLAS detector through a tune of the Delphes 3 package [48], that internally

relies on the FastJet software [49] for event reconstruction on the basis of the anti-kT
jet algorithm [50]. We then estimate, still within the MadAnalysis 5 framework, the

efficiencies of the different signal regions of the ATLAS-CONF-2019-040 analysis as it has

been implemented in the Public Analysis Database [51]. The sensitivity of the LHC run 2

to the signal is extracted through the CLs method [52].

In figure 4, we present the obtained constraints for various dark matter and dilaton

mass configurations, both for Majorana fermion (left panel) and vector (right panel) dark

matter. For each mass configuration, we evaluate the maximum value of the cut-off scale

that is excluded by the ATLAS analysis under consideration.

This shows that the LHC has no sensitivity to scenarios in which the dilaton cannot be

produced on-shell and then decay into a pair of dark matter particles (which corresponds

to the parameter space region lying above the blue line). In contrast, when 2mX . mσ

(with mX generically denoting the dark matter mass), cut-off scales f around the TeV

scale can be reached, which closes a part of the small light dilaton window visible allowed
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by Higgs data (see the upper left panel of figure 2). Moreover, as expected from the spin

nature, constraints are tighter in the vector dark matter case than in the fermionic one.

Enforcing a naive scaling of both the background and the signal [53], we have verified

that the future high-luminosity operation of the LHC will not substantially affect those

conclusions, even with 3000 fb−1 of data. Multijet plus missing transverse energy LHC

analysis targeting a monojet-like topology within a multijet environment are indeed already

limited by the systematics [54] so that mild improvements can only be expected with a larger

amount of luminosity. Moreover, in the present case, the limit depends on the fourth power

of the cut-off scale, so that a noticeable improvement at the level of the bounds on f would

require a huge improvement at the analysis level.

4.2 Vector dark matter at zero mixing

The dilaton portal for dark matter is very simple, and, as described above, rather special.

Its phenomenology in the case of no mixing between the Higgs and the dilaton is therefore

rather straightforward: we have two regimes, either near the s-channel resonance where

mV ' mσ/2, or in the parameter space region where mV � mσ in which there is a

combination of t-channel annihilations of the dark matter to dilaton pairs and s-channel

annihilation. However, in the previous sections we saw that heavy Higgs searches force

mσ > 3 TeV for f < 3 TeV at zero mixing, and the bound on mσ is roughly given by

3000 GeV/f. Clearly this will limit the possibilities for detecting dilaton-induced vector

dark matter at colliders or via direct detection.

We show in figure 5 the contours of relic density matching the Planck results [55]

for fixed f values in the (mσ,mV ) plane, for values of f upwards of 3 TeV. We see that

the sensitivity of heavy scalar searches is not noticeably weakened due to the invisible

dilaton decays into dark matter, and so the most promising regions for detection cor-

responds to a resonant configuration. This thus leads to mσ > 2700 GeV (rather than

3000 GeV without the presence of dark matter) for f = 4000 GeV, but where unfortu-

nately σproton,spin−independent ' 10−50 cm2, well beyond the reach of current and near-future

direct-detection experiments. Moreover, the LHC and HL-LHC searches described in the

previous section do not limit the parameter space in the figure at all. Alternatively we can

say that this model has a large unexcluded viable parameter space.

We also present limits from unitarity as described in appendix A, which appear at the

edges of figure 5. The constraints come from dark-matter scattering at low momentum

via a dilaton exchange, and at small dilaton masses. This could also be interpreted as the

regime where Sommerfeld enhancement should be taken into account in the calculations.

In the top right corner of the figure, high-energy scattering constraints become visible,

where we have taken a maximum centre-of-mass vector momentum of pV,max = 20 TeV.

It is legitimate to ask what happens at smaller values of f : can there remain some

viable parameter space? For f = 1 TeV, the constraints on the gluon scattering momentum

force us to impose a maximum cutoff of s = 10 TeV, leading to pV,max = 5 TeV. In the

left panel of figure 6, we see that this excludes mσ < 2.5 TeV. However, if we are more

aggressive and allow for a higher cutoff, the parameter space can be further shrunk. In

that figure, we also show the sensitivity of the collider searches for dark matter, although
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Figure 5. Dilaton and vector dark matter masses that saturate the observed dark matter relic

density Ωh2 = 0.12, for differing values of f and no mixing between the dilaton and the Higgs

boson. The curves are green and solid when the points are not excluded by any observations; they

are orange and dot-dashed when excluded by heavy Higgs searches. The dark matter is underdense

(and thus allowed if there is another source of dark matter) between the two curves related to a given

f value, and overdense (hence excluded unless there is some mechanism to dilute the dark matter

density) outside them. For the values f = 3000, 4000 GeV the underdense region therefore extends

above the curves towards mV →∞. Unitarity constraints are shown as the shaded grey regions.

the entire (mσ,mV ) plane is excluded by a combination of heavy Higgs search results, dark

matter and unitarity constraints.

On the other hand, as shown in the right panel of figure 6, the unitarity constraints

give us an upper bound on the dark matter mass for f = 2 TeV. In our results, we naively

limit the considered parameter space regions to mσ > 3 TeV and mV ∈ [1.1, 2.5] TeV. The

reason is that at mσ = 3 TeV the dilaton is rather wide, with Γσ ' 250 GeV. This means

that the dark matter density constraint does not longer result in a funnel, as dark matter is

underdense everywhere above the shown curve. Clearly, the choice f = 2 TeV is therefore

rather borderline in terms of whether we trust the results of the numerical calculations.

4.3 Collider and vector dark matter constraints at non-zero mixing

The hope of detecting dark matter greatly improves once we allow for dilaton-Higgs boson

mixing: the dark matter acquires a coupling to the Higgs, and so interacts much more

strongly with nuclei (in principle the model can then accommodate a Higgs portal, which

we shall not consider as being very fine-tuned). Moreover, we also have the possibility of

sitting in the ‘magic window’ where f = v/ tanα, which should also maximise the reach of

dark matter collider searches.
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Figure 6. Dark matter curve as in figure 5, but for f = 1000 GeV (left) and 2000 GeV (right);

the red portion of the curve corresponds to regions excluded by both heavy Higgs searches and

dark matter direct detection experiments. The solid and hatched regions show (current) LHC and

(future) HL-LHC exclusions from dark-matter-inspired collider searches: the solid blue region is

the future exclusion reach at the HL-LHC, after accounting for LO signal cross sections, and the

hatched blue region shows the same constraint but with a signal enhanced by a K-factor of 2.

Similarly, the red solid and hatched regions depict the current LHC exclusion without and with a

K-factor of 2. Unitarity constraints are again shown as shaded grey regions. On the left figure,

the entire parameter space of the model is excluded by a combination of heavy Higgs searches and

unitarity. On the right panel, the monojet/multijet+MET searches are barely visible, and some

viable parameter space exists above the reach of heavy Higgs searches.

In the ‘minimal mixing’ case, this would seem to be the ideal situation: the dilaton still

has barely suppressed gluon and dark vector couplings, but its couplings to SM bosons and

fermions vanish. This means that the dilaton decays only to the dark vector and the SM

Higgs boson. Potentially, then, monojet and multijet + MET searches could probe some

interesting part of the parameter space of the model. Since the collider searches depend so

strongly on f , to have the best sensitivity we should look for the lowest possible value. We

saw earlier that in the ‘minimal mixing’ case at the magic window, for mσ > 300 GeV, the

minimum value of f that survives all constraints was for sinα = 0.11, giving f = 2.2 TeV.

For the ‘minimal mixing’ case we show the results for both relic density, direct detection

and direct production at the LHC and HL-LHC in figure 7, for mixing angles of sinα = 0.11

and sinα = 0.15. The relic density and direct detection cross sections were computed using

MicrOMEGAs and compared with the limits summarised in ref. [56]. The LHC limits

and projections were inferred from the results in section 4.1 by recomputing the production

cross sections (for the pp→ V V j process with the same cuts on the hard jet) for the mixing

case. Due to the dilaton widths and the relative coupling changes, we could not naively

rescale the cross sections. However, the same cutflows/limits on the total rate can be used.

We observe that the (HL-)LHC searches do not overlap with any of the viable regions of

the parameter space, so that for sinα = 0.11 we could have a viable dark matter model for

mσ < 1 TeV.

On the other hand, as we discussed previously, if we make the mass mixing term

gauge invariant, the decays to the SM Higgs boson then dominate, and exclude the dilaton
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Figure 7. Combined dark matter, Higgs and collider constraints on the considered model for

sinα = 0.11 (left) and 0.15 (right) in the ‘magic window’ where f = v/ tanα and under the

assumption of a ‘minimal Higgs-dilaton mixing’ treatment. The solid lines show the curves where

the dark matter density matches the Planck limit of Ωh2 = 0.12 with the circular shading between

them showing the underdense regions. The solid line is green and orange for allowed and excluded

by heavy Higgs searches, and black when excluded by dark matter direct detection. The solid and

hatched regions show the current and future exclusions from dark matter collider searches: the solid

blue region is the future exclusion reach at the HL-LHC after accounting for LO signal cross sections

and the hatched blue region is the same constraint but with the signal enhanced by 2σ according

to the uncertainty on its total rate. The red solid and hatched region represent the corresponding

constraints at the end of the LHC run 2.
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Figure 8. Combined dark matter and Higgs constraints for sinα = 0.11 (left panel) and 0.15 (right

panel) for a ‘gauge invariant’ treatment of the Higgs-dilaton mixing. The description is similar as in

figure 7, except that there are no LHC or HL-LHC constraints from monojets or multijet searches,

the cross sections being orders of magnitude too small.

over masses from about 300 GeV up to the limit reached by the LHC searches (currently

3 TeV). We therefore present the same results but for the ‘gauge invariant mixing’ case

in figure 8. There is no dark matter parameter space available for mσ > 300 GeV, and

the LHC/HL-LHC searches are completely wiped out as the production of dark matter

greatly diminishes. The ‘gauge invariant mixing’ scenario is therefore entirely unappealing

phenomenologically, and invites other model-building solutions.
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Figure 9. Missing energy selection thresholds as a function of the dilaton and fermionic (left

panel) and vector (right panel) dark matter masses to achieve the best sensitivity at a future

100 TeV proton-proton collider. In order to avoid any potential unitarity issues at high energies,

we impose that the threshold value is smaller than 5 TeV.

5 Future collider constraints

We showed in the previous sections that searches for dark matter at the LHC and at

its future high-luminosity operation are not sensitive to our scenario. In this section, we

investigate instead monojet and multijet+MET collider probes at a future 100 TeV collider.

We make use of the simulation chain introduced in section 4.1, studying the hard-scattering

process of eq. (4.1). At the generator level, we impose that the transverse momentum of the

hardest jet satisfies pT > 1500 GeV and that its pseudo-rapidity fulfills |η| < 5. In addition,

we consider as the main backgrounds to our analysis the production of an invisible Z-boson

with jets.

In our analysis, we first veto the presence of charged leptons with a transverse mo-

mentum pT > 20 GeV and a pseudo-rapidity |η| < 2.5 and 2.1 for electrons and muons

respectively, and then reject events featuring at least one hadronic tau with pT > 40 GeV

and |η| < 2.3. We next require that the leading jet is central and very hard, with

pT (j1) > 1500 GeV and |η(j1)| < 2.4, and allow for some extra hadronic activity in the

selected events. This hadronic activity is associated with the ensemble of non-leading

jets whose pT > 30 GeV and |η| < 4.5. The leading and all the extra jets satisfying the

above requirements are further imposed to be well separated in azimuth from the missing

momentum,

∆ϕ(/pT , ji) < 0.4 , (5.1)

and additionally, the second jet is prevented from being back-to-back with the leading jet,

∆ϕ(j1, j2) < 2.5 . (5.2)

After this preselection, our analysis relies on various signal regions to estimate

the sensitivity of a future 100 TeV proton-proton collider to the dark matter mono-
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Figure 10. Sensitivity of a 100 TeV future proton-proton collider to the dilaton portal dark matter

model considered in this work, for the case of Majorana (left panel) and vector (right panel) dark

matter. The results are presented in the (mσ,mΨ,V ) plane and we indicate, through the colour

coding, the expected reach on the theory cutoff scale f . Our findings correspond to integrated

luminosity of 3 ab−1.

jet/multijet+MET signal predicted in our model. Each signal region is defined by a differ-

ent missing transverse momentum selection,

/ET > /E
thr.
T with /E

thr.
T ∈ [2− 5] TeV , (5.3)

so that any considered dark matter and dilaton mass configurations could be optimally

covered. In the above setup, we restrict all missing transverse energy thresholds to be

smaller than 5 TeV, which guarantees to avoid any potential unitarity issues. The best

MET threshold value for a given mass spectrum depends on both masses, as depicted

in the left and right panels of figure 9 for the fermionic and vector dark matter cases

respectively.

For dark matter masses much larger than half the dilaton mass (i.e. far from any

resonant configuration), the optimal selection enforces the missing energy to be larger than

1-3 times the dark matter mass for the two classes of models, the MET spectrum being

in general flat enough to guarantee a large signal selection efficiency and a good rejection

of the Z+jets background. In contrast, when dark matter production is enhanced by the

existence of a dilaton resonance (i.e. for mΨ < mσ/2 and mV < mσ/2 in the fermion and

vector dark matter cases respectively), the best selection threshold is directly fixed by the

dilaton mass.

We observe in figure 10 that in contrast with the LHC, 3 ab−1 of proton-proton col-

lisions at 100 TeV are sufficient to probe cutoff scales lying in the multi-TeV regime for

both the fermion (left panel) and vector (right panel) dark matter cases. The results are

presented in the (mσ,mΨ,V ) mass plane respectively, and the values of the f scale that are

reachable for each mass spectrum are indicated by a colour code. For each configuration

for which the dark matter can be produced from the decay of a resonantly produced dilaton

(below the red line), scales larger than 4 TeV can be probed, providing hence complemen-

tary constraints to models allowed by cosmological considerations.
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In contrast, for configurations in which the dilaton cannot decay into a pair of dark

matter particles, the signal cross sections are smaller. This results in a loss of sensitivity,

in particular in regions favoured by cosmology.

6 Conclusions

We have presented a comprehensive and up-to-date set of current and future constraints

on the most interesting (heavy) dilaton-portal dark matter models. While heavy scalar

and unitarity constraints push the model to large masses and weak couplings, to the extent

that the direct dark matter production at the LHC can only probe a light dilaton, and not

reach any viable parameter space above 300 GeV, a future collider would potentially be

sensitive with the same searches. It would be interesting to examine future projections for

heavy scalar and dark matter searches, to see whether these will be complementary. On

the other hand, the (HL) LHC reach could be enhanced if the experimental collaborations

extend their published diboson limits above 3 TeV.

We discussed the fact that vector dark matter is more promising for collider searches

thanks to the dilaton’s much larger branching ratio into vectors compared to fermions or

scalars. Allowing mixing of the dilaton with the Higgs boson then apparently leads to a

way to weaken or evade heavy scalar searches (and increase the coupling of the dark matter

to the visible sector via the Higgs portal) via the opening of a ‘magic window’. We showed

that this could allow the dark matter and dilaton below 1 TeV in the ‘minimal mixing

treatment’.

However, the ‘minimal mixing’ of the dilaton with the Higgs boson is not gauge in-

variant. If we include operators to restore gauge invariance to the model then the ‘magic

window’ is erased, and di-Higgs bounds dominate all constraints that could be imposed

on the dilaton properties. It would nevertheless be interesting to explore the high-energy

origin of these Higgs-dilaton mixing terms, in the context of concrete models. Similarly,

we could have formulated the theory in a gauge-invariant way by including the dilaton

before electroweak symmetry breaking, as performed in ref. [15]: it would be interesting to

revisit our constraints and searches in this alternative (and inequivalent) formulation of

the theory.
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A Perturbative unitarity constraints

Since our theory contains non-renormalisable operators, it must have a cutoff comparable

to the scale f . We expect this to be manifest, even at tree level, in perturbative unitarity

constraints on two-body scattering amplitudes. In particular, there are some couplings that

could in principle be large compared to f since they are enhanced by additional massive

factors involving the masses of the theory vector bosons (especially in the dark matter

case). In this appendix, we describe the calculation of the unitarity constraints involving

massive vectors. For simplicity, we restrict to the case of no mixing between the dilaton

and the Higgs, and neglect the Higgs boson entirely. For references on the calculation of

unitarity constraints, and in particular including vector bosons, see refs. [57–61].

A.1 Scattering to dark matter

We first consider the scattering of vector bosons amongst themselves and into pairs of

dilatons, as well a dilaton self-scattering. The relevant terms in the Lagrangian read

LσV =
m2
V

f
σVµV

µ +
m2
V

2f2
σ2VµV

µ − ξm
2
σ

f
σ3 − ζ

24

m2
σ

f2
σ4, (A.1)

where ξ and ζ are model-dependent and usually taken to be 5/6 and 11 respectively.

Since the model has a Z2 symmetry, states with odd numbers of vectors can only scatter

to states with odd numbers of vectors, so that we only need to consider the Mσσ→σσ,

Mσσ→V V , MV V→σσ and MV V→V V scattering amplitudes. These are given by

iMσσ→σσ =− 36iξ2m
4
σ

f2

[
1

s−m2
σ

+
1

t−m2
σ

+
1

u−m2
σ

]
− ζim

2
σ

f2
,

iMV V→σσ =i
2m2

V

f2
ε1 · ε2 + 6iξε1 · ε2

m2
Vm

2
σ

f2(s−m2
σ)

+ i

(
2m2

V

f

)2

εµ1 ε
ν
2

[
1

t−m2
V

(
ηµν +

kµ1 k
ν
2

m2
V

)
+

1

u−m2
V

(
ηµν +

kµ2 k
ν
1

m2
V

)]
,

iMV V→V V = − i
4m4

V

f2
εµ1 ε

ν
2 ε̃
ρ
1ε̃
κ
2

[
ηµνηρκ
s−m2

V

+
ηµρηνκ
t−m2

V

+
ηµκηνρ
u−m2

V

]
, (A.2)

where ε1,2 denote the incoming polarisation vectors and ε̃1,2 the outgoing ones. Note that

in all of the amplitudes s/t/u channel poles are not possible, and so we can search over all

scattering momenta up to some potential cutoff without needing to excise singular regions

or submatrices as required in the general case [59, 61].

Since there are three initial polarisations possible for each vector, the scattering matrix

(including the dilaton-dilaton state) is in principle of rank 10. However, it breaks into

irreducible blocks under the Lorentz algebra, and in particular we can separate off the

symmetric and antisymmetric states of εµi ε
ν
j for i 6= j.

Typically, only the high-energy limit is considered, where we retain only longitudinal

gauge bosons. We find, however, that even the transverse components can contribute in

this limit. In fact, in the low-energy regime relevant for dark matter scattering, it is the

contribution of the transverse components that dominates. So, we can take a suitable basis
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of polarisation vectors, such as (0, 1, 0, 0), (0, 0, 1, 0), (pV /mV , 0, 0, EV /mV ) for a vector

aligned along the third spatial component and insert them in the above amplitudes. We

then extract the zeroth moment of the scattering matrix

T 0
ij = =

1

64π

√
4|pin| |pout|

s

∫ 1

−1
d(cos θ)Mij (A.3)

where we have included appropriate symmetry factors for our incoming and outgoing states

to be identical pairs, and pin and pout are the three-momenta in the centre-of-mass frame

for the incoming and outgoing states respectively.

To find the limit from unitarity, and since the incoming and outgoing states may be

related by a unitary rotation which we are not interested in, we take the square root of the

eigenvalues of the T 0 matrix and compare the maximum of these to 1/2,

|amax
0 | ≡

√
max

[
eigenvalues

(
T 0(T 0)†

)]
<

1

2
. (A.4)

For convenience we shall define

T 0
ij ≡

1

16πf2
T̃ 0
ij . (A.5)

The full expressions are too cumbersome to list here, but can be made available in

Mathematica format or in a c program; we shall here identify different regions of parameter

space of interest and give approximate formulae for those cases.

A.2 Scattering at high energy

In the limit of large s, we find the following for the scattering of longitudinal gauge bosons

and the dilaton,

T̃ 0
(VLVL)(VLVL) → −

3

2
m2
σ,

T̃ 0
(VLVL)(σσ) →

1

4

[
4m2

V + (6ξ − 4)m2
σ − 8m2

V log
s

m2
V

]
,

T̃ 0
(σσ)(σσ) → −

11

2
m2
σ.

(A.6)

At this level, scattering involving the transverse modes is also relevant, and the scattering

matrix can be rotated into

T̃ 0 =


0 0 0 0

0 0 −
√

2m2
V

√
2m2

V

0 −
√

2m2
V T̃ 0

(VLVL)(VLVL) T̃ 0
(VLVL)(σσ)

0
√

2m2
V T̃ 0

(σσ)(VLVL) T̃ 0
(σσ)(σσ)

 . (A.7)

In the limit that m2
V is small and the scattering energy is large, the amplitude is dominated

by dilaton-dilaton scattering. We find

amax
0 =

m2
σ

64πf2

√
261 + 28

√
65. (A.8)
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f (TeV) pV,max (TeV) Approx. max(mV ) (TeV)

1 5 1.9

1 20 1.4

2 10 3.8

2 20 3.1

Table 1. Bounds on the vector dark matter mass mV for given illustrative cutoff values f and

typical maximum centre-of-mass vector momentum pV,max.

This is essentially the constraint originating from dilaton self-scattering,

11m2
σ

16πf2
.1→ mσ . 2f, (A.9)

that is considerably stronger than the one from pure longitudinal vector scattering.

We can use the above result in the limit that s� m2
V , so that the logarithmic term

appearing in the second relation of eq. (A.6) is large. For reasonable values, we find that

the obtained constraint on mσ is comparable or slightly stronger than the above. For the

limit mV � mσ,
1

8πf2
m2
V log

s

m2
V

< 1/2 , (A.10)

which bounds mV for a given cutoff. We can directly compare this with the values shown in

figure 6 and that we report in table 1. These approximate values agree with the maximum

values of mV found numerically, although the high-energy limit is generally found not to

be a very good approximation for the full scattering matrix.

Finally, while we have computed separate constraints from the symmet-

ric/antisymmetric scattering of the transverse and longitudinal vector modes, in the large

momentum limit these all reduce to

√
2
m2
V

16πf2
<1/2. (A.11)

A.3 Scattering at low energy

When mV � mσ the amplitude is largest at low momenta, and dominated by the scattering

of transverse vectors of the type that obey ε ·k3,4 = 0. We find that the other modes reduce

the scattering amplitude and mix little with the other states. The largest eigenvalue is well

approximated by the (11)↔ (11) scattering, and largest when pV = mσ,

a0 =
m4
V

16πf2EV

[
1

pV
log

(
1 +

4p2
V

m2
σ

)
− 2pV

4m2
V + 4p2

V −m2
σ

]
'

m3
V

16πmσf2
log 5. (A.12)

This places a constraint on the minimum dilaton mass,

mσ &
m3
V

8πf2
log 5. (A.13)

This can correspondingly be considered the point at which Sommerfeld enhancement of

the amplitudes is significant, as clearly seen in figure 5.
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A.4 Scattering to gluons

In this work, we are interested in vector dark matter partly because it can be more copiously

produced than fermions or scalars via the dilaton portal. It should not be a surprise then

that a unitarity limit on our theory arises from the scattering of gluons into vector bosons

via the dilaton. The corresponding scattering amplitude is given by

iMgg→V V =

(
i
αsb3
4πf

εg1 · ε
g
2s

)
i

s−m2
σ

(
i
2m2

V

f
ε̃1 · ε̃2

)
, (A.14)

where εg1,2 are the gluon polarisation vectors and b3 denotes the QCD beta function. For

the longitudinal modes,

ε̃1 · ε̃2 =
1

m2
V

(p2 + E2) =
s

2m2
V

, (A.15)

so that in the s� 4m2
V limit, we have

iMgg→V V →− i
αsb3
4πf2

s2

s−m2
S

. (A.16)

Now |T 0
(gg),(VLVL)| = |M |

32π , but there are 2 incoming spins, and 8 incoming pairs of colours

that give non-zero results. So the scattering matrix looks like

T 0 =


0 T 0

(gg),(VLVL) · · ·
T 0

(gg),(VLVL) 0 0
... 0 0

 , (A.17)

so

T 0(T 0)† =

 16|T 0
(gg),(VLVL)|

2 0 · · ·
0 0 0
... 0 0

 . (A.18)

Therefore, we finally obtain

amax
0 =

√
16× αsb3

128π2f2
s. (A.19)

However, this is only for scattering into one vector boson species. After accounting for

the contributions of the Z and W bosons (that act as the equivalent of three individual

vectors), we obtain an additional factor of two in the limit,

√
4×
√

16× αsb3
128π2f2

s < 1/2→ s <
8π2f2

7αs
. (A.20)

Similar constraints on the maximal scattering energy via gluon fusion were found long ago

in ref. [58].
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[45] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)

159 [arXiv:1410.3012] [INSPIRE].

[46] E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider

phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

[47] E. Conte and B. Fuks, Confronting new physics theories to LHC data with MADANALYSIS

5, Int. J. Mod. Phys. A 33 (2018) 1830027 [arXiv:1808.00480] [INSPIRE].

[48] DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a

generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

[49] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896

[arXiv:1111.6097] [INSPIRE].

[50] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)

063 [arXiv:0802.1189] [INSPIRE].

[51] B. Dumont et al., Toward a public analysis database for LHC new physics searches using

MADANALYSIS 5, Eur. Phys. J. C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].

[52] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693

[INSPIRE].

[53] J.Y. Araz, M. Frank and B. Fuks, Reinterpreting the results of the LHC with MadAnalysis 5:

uncertainties and higher-luminosity estimates, Eur. Phys. J. C 80 (2020) 531

[arXiv:1910.11418] [INSPIRE].

– 30 –

https://doi.org/10.1007/BF01957770
https://arxiv.org/abs/hep-ph/9409380
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9409380
https://cds.cern.ch/record/2686254
https://doi.org/10.1016/j.cpc.2012.01.022
https://arxiv.org/abs/1108.2040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.2040
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.0301
https://doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8849
https://doi.org/10.1007/JHEP03(2013)015
https://arxiv.org/abs/1212.3460
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.3460
https://doi.org/10.1016/j.cpc.2015.08.031
https://doi.org/10.1016/j.cpc.2015.08.031
https://arxiv.org/abs/1402.1178
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.1178
https://doi.org/10.1103/PhysRevD.97.092005
https://arxiv.org/abs/1712.02345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.02345
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.3012
https://doi.org/10.1016/j.cpc.2012.09.009
https://arxiv.org/abs/1206.1599
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.1599
https://doi.org/10.1142/S0217751X18300272
https://arxiv.org/abs/1808.00480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.00480
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.6346
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6097
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.1189
https://doi.org/10.1140/epjc/s10052-014-3242-3
https://arxiv.org/abs/1407.3278
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.3278
https://doi.org/10.1088/0954-3899/28/10/313
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CG28%2C2693%22
https://doi.org/10.1140/epjc/s10052-020-8076-6
https://arxiv.org/abs/1910.11418
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.11418


J
H
E
P
1
0
(
2
0
2
0
)
0
4
4

[54] S. Banerjee, D. Barducci, G. Bélanger, B. Fuks, A. Goudelis and B. Zaldivar, Cornering

pseudoscalar-mediated dark matter with the LHC and cosmology, JHEP 07 (2017) 080

[arXiv:1705.02327] [INSPIRE].

[55] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.

641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

[56] M. Schumann, Direct detection of WIMP dark matter: concepts and status, J. Phys. G 46

(2019) 103003 [arXiv:1903.03026] [INSPIRE].

[57] C. Itzykson and J. Zuber, Quantum field theory, International Series In Pure and Applied

Physics, McGraw Hill, U.S.A. (1980).
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