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1 Introduction

Heavy mesons carrying bottom and strange quantum numbers have attracted increasing

attention due to the large data sample which has been collected by the LHCb collaboration

over the last years. With the new precise measurements it becomes increasingly important

to also get more accurate theoretical predictions. This involves, in particular, reliable

estimates of the SU(3) flavour symmetry violation, to be taken into account while analyzing

the Bs data and comparing to the results for nonstrange bottom mesons. Among important

quantities in the theoretical analyses are the light-cone distribution amplitudes (DAs) of

heavy mesons. While these quantities were extensively studied for nonstrange bottom

mesons, the SU(3)fl violating effects for Bs have not yet been estimated.

The light-cone DAs of B-meson introduced [1] in the framework of Heavy Quark Ef-

fective Theory (HQET) (see also [2]) describe momentum distribution of the light quark

in a heavy pseudoscalar meson. These DAs enter various factorization formulas for the

exclusive decays of B-meson (see e.g. [3–7]). They also provide the main nonperturbative

input in one of the versions [8, 9] of QCD light-cone sum rules for B-meson form factors.

In all these applications, the key parameter is the inverse moment of the leading (lowest

twist) B-meson DA.

Evidently, the mass of the light u, d quarks plays no role in the Bu,d meson DAs. It

can safely be neglected not only in comparison with any of the large scales involved in an

exclusive Bu,d decay, but also with respect to typical hadronic scales of O(ΛQCD). This

is, however, not the case for the s-quark. In fact, the leptonic decay constants of bottom

mesons exhibit an appreciable SU(3)fl symmetry violation. The ratio fBs/fBu,d calculated
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from the lattice QCD deviates by about 20% from the unity [10]. QCD sum rules (see

e.g. [11, 12]) predict this ratio in the same ballpark. Nevertheless, the influence of the

strange quark mass on the inverse moment of Bs-meson DA has never been investigated.

One of the reasons is that the heavy meson DAs are not yet accessible in lattice QCD (for

the first exploratory studies see e.g. [13, 14]). For simplicity, the inverse moments of all

bottom mesons are assumed equal, as for example in the QCD factorization analysis of

nonleptonic B and Bs decays [15].

The Bs-meson DA is needed to describe many important decay channels, such as the

B̄s → K(∗), φ semileptonic and Flavor Changing Neutral Current (FCNC) transitions, as

well as various nonleptonic Bs decays, where precision predictions for observables are vitally

needed. It is therefore timely to make a quantitative assessment of the SU(3)fl symmetry

violation in the bottom meson DAs.

In the future, accurate measurements of the photoleptonic decay B− → `−ν̄`γ will allow

to constrain the inverse moment of the B-meson DA using a well elaborated factorization

formula for the form factors of this decay (the most recent analyses can be found in [16–18]).

There is no such channel available for the Bs-meson DA. For example, the FCNC decay

Bs → `+`−γ is “contaminated” by nonlocal hadronic effects which are not simply reducible

to DAs. In this situation, a theory estimate of the SU(3)fl violation in the inverse moment

is definitely useful.

In this paper, we obtain the inverse moments of the Bs meson from the QCD sum

rule in HQET. We closely follow the method used in [1, 20] for the B - meson DA, but, in

contrast, we do not attempt to determine the shape of DA. Instead, we obtain a QCD sum

rule directly for the inverse moment. Including the O(ms) effects in the perturbative part

and taking into account the difference between strange and nonstrange quark condensates,

we estimate the inverse moment of Bs-meson DA and, as a byproduct, the inverse moment

of the B-meson DA. Finally, we predict the ratio of the two inverse moments with a

lesser uncertainty.

In what follows, in section 2 we specify the method combining the two QCD sum rules

in HQET: the one for the leptonic decay constant and the another one for the DA. The

effects of strange quark mass are calculated and taken into account. Our numerical results

are presented in section 3 and we summarize in section 4. The appendix contains some

useful details of the calculation.

2 The method

2.1 Sum rule for the Bs decay constant

To explain how the SU(3)fl violating difference between strange and nonstrange bottom

mesons emerges, it is instructive to begin with the sum rule for the leptonic decay constant.

We consider it first in QCD with finite masses of b and s quarks, and then take the limit

of infinitely heavy b-quark, performing a transition to the HQET sum rule. We also need

the latter sum rule to fix the input parameters for the sum rule determination of the

Bs-meson DAs.
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We start with the correlation function of the two pseudoscalar heavy-light currents

defined in the standard way:

Π5q(q
2) = i

∫
d4x eiq·x〈0|T{j5q(x)j†5q(0)}|0〉 , (2.1)

where j5q is the divergence of the axial current j5q = (mb+mq)q̄iγ5b with mb and mq being

the b-quark and light-quark (q = u, d, s) mass, respectively. In what follows, we neglect the

u, d-quark masses, assuming isospin and chiral symmetry. We also adopt the MS scheme

for the s- and b-quark masses. The decay constant of the pseudoscalar B ≡ Bu,d- and

Bs-meson is defined, respectively, as

〈0|j5u(d)|B(pB)〉 = m2
BfB , 〈0|j5s|Bs(pBs)〉 = m2

BsfBs . (2.2)

The correlation function (2.1) satisfies a double-subtracted dispersion relation which, after

the Borel transformation |q2| →M2, takes the form

Π5q(M
2) =

1

π

∞∫
0

ds e−s/M
2
ImΠ5q(s) , (2.3)

in which subtraction terms vanish. To obtain the sum rule, we use the operator product

expansion (OPE) of the correlation function Π5q valid at deep spacelike q2 � m2
b or,

equivalently, at sufficiently large M2. The result Π
(OPE)
5q (M2) consists of the perturbative

and nonperturbative (vacuum condensate) parts:

Π
(OPE)
5q (M2) =

∞∫
(mb+ms)2

ds e−s/M
2
ρ

(pert)
5q (s) + Π

(cond)
5q (M2) , (2.4)

where the perturbative contribution is written in a dispersion integral form with the spec-

tral density

ρ
(pert)
5q (s) =

1

π
Im Π

(pert)
5q (s) .

Adopting the usual quark-hadron duality ansatz, the hadronic spectral density in eq. (2.3)

is approximated by the contribution of the lowest pseudoscalar bottom meson and the OPE

perturbative density taken above an effective threshold. Considering, for definiteness, the

Bs case of our interest, we have:

1

π
ImΠ5s(s) = m4

Bsf
2
Bsδ(s−m

2
Bs) + θ(s− s0s)ρ

(pert)
5s (s) . (2.5)

Substituting the above expression in r.h.s. of eq. (2.3) and using for the l.h.s. the OPE

result (2.4), we arrive at the sum rule:

m4
Bsf

2
Bse
−m2

Bs
/M2

=

s0s∫
(mb+ms)2

ds ρ
(pert)
5s (s)e−s/M

2
+ Π

(cond)
5q (M2) . (2.6)
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The leading-order (LO) perturbative term in the OPE of the spectral density arises from

the simple quark-antiquark loop diagram and is given by

ρ
(pert,LO)
5s (s) =

3

8π2
(mb +ms)

2

(
1− (mb −ms)

2

s

)
λ1/2(s,m2

b ,m
2
s) , (2.7)

where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy− 2xz− 2yz is the Källén function. Note that here it

is more convenient to use the above spectral density than to expand it in the powers of ms

as it is customary in the literature (see e.g., [11, 12]). To complete the sum rule, the gluon

radiative corrections will be added to the r.h.s. of eq. (2.6). All necessary expressions can

be found e.g., in [12].

As a next step, we transform the variables and parameters in the sum rule (2.6) in

order to separate the heavy b-quark scale and pave the way to the sum rule in HQET.

In our case, there is a nonvanishing s-quark mass involved in this transformation. We

express the external momentum squared in the correlation function (2.1) in terms of a new

variable ω:

q2 = m2
b + 2mb ω , (2.8)

and, simultaneously, replace the Bs-meson mass by

mBs = mb + Λ̄s , (2.9)

so that ω and Λ̄s do not scale with the b-quark mass.

The relation (2.8) yields for the variable q2 = s in the timelike region:

s = m2
b + 2mbω

′ , (2.10)

so that ω′ will serve as the integration variable in the sum rule. According to eq. (2.9),

the position of the Bs pole at s = m2
Bs

corresponds to ω′ = Λ̄s and the quark-antiquark

threshold of the loop diagram at s = (mb + ms)
2 turns into ω′ = ms. Note that all

these relations are valid up to O(1/mb) corrections which vanish in the mb → ∞ limit.

Furthermore, in accordance with the above definitions, we transform the threshold and the

Borel parameter, respectively:

s0s = m2
b + 2mb ω0s, and M2 = 2mbτ , (2.11)

where the parameter ω0s and the variable τ again do not scale with the b-quark mass.

Note, on the other hand, that the Bs binding energy Λ̄s and the effective threshold ω0s

both implicitly depend on ms. Applying eqs. (2.8)–(2.11) to eq. (2.6), we then take the

limit mb →∞, transforming this sum rule to its HQET form:

[
FBs(µ)

]2
e−Λ̄s/τ =

3

π2

ω0s∫
ms

dω′ e−ω
′/τ (ω′ +ms)

√
ω′2 −m2

s

+
3αs
π3

ω0s∫
0

dω′ e−ω
′/τω′2

(
17

3
+

4π2

9
− 2 ln

2ω′

µ

)

− 〈s̄s〉
[
1 +

2αs
π
− m2

0

16τ2

]
, (2.12)
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where FBs is the decay constant in HQET, related at the O(αs) accuracy to the one defined

in eq. (2.2):

fBs
√
mBs = FBs(µ)

[
1 +

CFαs
4π

(
3 ln

mb

µ
− 2

)
+ . . .

]
, (2.13)

and µ is the renormalization scale. The expression for the perturbative LO part coincides

with the one in [19] where the light-quark mass was retained in the heavy-quark limit of

the correlation function (2.1). Furthermore, in the second line of eq. (2.12) we have added

the O(αs) gluon radiative corrections in HQET taking them from [20].1 In the third line

we include the condensate contributions, where 〈s̄s〉 denotes the strange quark condensate

density and m2
0 is the ratio of the quark-gluon and quark condensates. Note that in the

sum rule (2.12), we have neglected the very small effects of O(αsms) in the perturbative

spectral density (hence, the zero limit in the second integral in eq. (2.12)) as well as in

the quark condensate term. In addition, we assume that the ratio m2
0 is the same for

all three light quarks and neglect the numerically insignificant contributions of gluon and

four-quark condensates.

The sum rule (2.12) can also be derived in the framework of HQET as it was done for

the nonstrange B-meson in [21–23]. One starts from the correlation function of currents

containing the effective heavy quark field hv, so that the external four-momentum is k =

q −mbv. In this case, the effective variable ω = k · v, where v = (1,~0) is the velocity four-

vector, replaces q2, and the deep spacelike region q2 � m2
b corresponds to the external

off-shell energy ω � 0. Accordingly, the dispersion relation in the variable ω is used with

the Bs pole located at ω = Λ̄s and the duality interval ms < ω < ω0s. The HQET state of

a B(s)-meson differs from the state in eq. (2.2) by a normalization factor:

|B(s)(v)〉 =
(
mB(s)

)−1/2|B(s)(pBs)〉 . (2.14)

The HQET sum rule for the nonstrange B-meson decay constant in the adopted ap-

proximation is simply obtained from eq. (2.12) putting ms → 0 and replacing

Λ̄s → Λ̄, ω0s → ω0 , 〈s̄s〉 → 〈ūu〉 ' 〈d̄d〉 . (2.15)

The definitions (2.8) and (2.10) are the same, but the lower limit of the integration over

ω′ shifts from ms to zero. A comparison of the sum rules for FBs and FB reveals several

contributions to the SU(3)fl violation. One of them is due to the ms-dependence of the

perturbative spectral density in (2.12). Note that this effect is of O(ms/ω0) ∼ O(ms/τ),

that is, parametrically enhanced with respect to the terms proportional to ms/mb which

have vanished in the infinitely heavy quark limit. An additional SU(3)fl violation effect

in the OPE of the correlation function revealed on r.h.s. of eq. (2.12) is caused by the

difference between the strange and nonstrange quark condensate densities. This nonper-

turbative effect intrinsically depends on the s-quark mass, however this dependence cannot

be represented in an explicit form. In the sum rule, the s-quark mass effects in the OPE

1The relation of these corrections to the ones [11, 12] in the full QCD sum rule deserves a separate

discussion for which we refer to [19, 21, 22].
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are balanced in the hadronic part by the differences between the effective thresholds (ω0s

versus ω0) and the binding energies. For the latter we have the relation:

Λ̄s = Λ̄ +mBs −mB . (2.16)

In the numerical analysis below, we will use the sum rule (2.12) and its counterpart for

B-meson to estimate the value of the continuum thresholds ω0 and ω0s. To this end, each

sum rule is differentiated with respect to −1/τ and then divided by itself. In the resulting

relations, the dependence on the decay constants FB and FBs drops out, allowing us to fix

ω0 and ω0s at a certain adopted value of Λ̄, whereas Λ̄s is given by the relation (2.16).

Having revealed the scale of SU(3)fl symmetry violation in the decay constants of

heavy-light mesons, we anticipate the effects to be in the same ballpark in more involved

hadronic matrix elements, such as the DAs of Bs-meson.

2.2 Sum rule for the inverse moment of Bs DA

The Bs-meson light-cone DA is defined as the hadronic matrix element of the bilocal

operator built of an effective heavy-quark field hv with velocity v and a strange antiquark

field s̄ located at a lightlike separation:

〈0|s̄(tn)iγ5 6n[tn, 0]hv(0)|B̄s(v)〉 = FBs(µ)

∞∫
0

dk e−iktφBs+ (k, µ) , (2.17)

with the lightlike gauge link

[tn, 0] ≡ P exp

ig 1∫
0

dunµA
µ(utn)

 . (2.18)

Here nµ is the lightlike vector, n2 = 0, such that n · v = 1, and t is an arbitrary real

valued parameter. In eq. (2.17) we used the general definition [1, 3] of the two-particle

heavy-meson DA (see e.g. eq. (17) in [8, 9]) and projected it onto the leading, twist-2

DA component φBs+ (ω), multiplying both sides of this definition by (iγ5 6n) and taking the

trace. Note that |B̄s(v)〉 is the HQET state defined in eq. (2.14). The variable k in (2.17)

can be interpreted as the light-cone projection of the light s-quark momentum. Due to

non-vanishing ms, it is natural to expect that for Bs this variable is limited from below by

k = ms, hence in a realistic model, φBs+ (k, µ) ∼ θ(k−ms). However, here we will not dwell

on reproducing the shape of the Bs-meson DA. Instead, we concentrate on our main task,

that is, to obtain a sum rule estimate for the inverse moment defined as:

λ−1
B(s)

(µ) =

∞∫
0

dk

k
φ
B(s)

+ (k, µ) . (2.19)

To achieve the goal, we largely follow the method used for the B-meson in [1] and

upgraded in [20] to include the gluon radiative corrections (see also the review [24]). At
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the same time, we modify this method and obtain the sum rule directly for the inverse

moment (2.19).

To this end, we introduce the following correlation function in HQET:

Ps(ω, t) = i

∫
d4xe−iω v·x〈0|T

{
s̄(tn)iγ5 6n[tn, 0]hv(0)h̄v(x)iγ5s(x)

}
|0〉 . (2.20)

It contains a product of the bilocal operator (2.17) with the local pseudoscalar current

interpolating the Bs(v) state. The variable ω is analogous to the one introduced in eq. (2.8)

for a transition to HQET of a simpler two-point correlation function (2.1). In other words,

if, instead of eq. (2.20), we consider a correlation function with the finite mass b-quark fields

and the external four-momentum q, then, after reparameterizing to the effective fields hv,

the four-momentum in the exponent becomes (q −mbv) = ωv.

The hadronic dispersion relation for the correlation function (2.20) follows from ana-

lyticity with respect to the effective variable ω:

Ps(ω, t) =
1

π

∞∫
0

dω′
ImPs(ω, t)
ω′ − ω

=
〈0|s̄(tn)iγ5 6n[tn, 0]hv(0)|B̄s(v)〉〈B̄s(v)|h̄viγ5s|0〉

2(Λ̄s − ω)
+ . . .

=

[
FBs(µ)]2

2(Λ̄s − ω)

∞∫
0

dk e−iktφBs+ (k, µ) + . . . , (2.21)

In the above, the contribution of the Bs pole located at ω = Λ̄s is singled out, and we use

the definition (2.17) together with the one for the Bs decay constant in HQET:

〈B̄s(v)|h̄viγ5s|0〉 = FBs . (2.22)

As it is usually done in QCD sum rules, the contributions of excited and continuum states

with the Bs quantum numbers, indicated in eq. (2.21) by the ellipsis, will be approxi-

mated assuming the quark-hadron duality. Furthermore, to decrease the sensitivity to this

approximation, we employ the Borel transformation in the variable ω defined in HQET as:

Bτf(ω) = lim
{−ω,n}→∞,−ω/n=τ

(−ω)n+1

n!

(
d

dω

)n
f(ω) ≡ f(τ) . (2.23)

Applying it to eq. (2.21), we have:

Ps(τ, t) =
1

2

[
FBs(µ)]2e−Λ̄s/τ

∞∫
0

dk e−iktφBs+ (k, µ) + . . . . (2.24)

The next task is to obtain the OPE of the correlation function:

POPE
s (ω, t) = P(pert)

s (ω, t) + P(cond)
s (ω, t) , (2.25)

valid in the region |ω| � ΛQCD. The LO perturbative part is described by the diagram

in figure 1(a) with a nonzero s-quark mass. This diagram is a simple loop, where the
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(d)(c)

(b)(a)

(e)

x

0

tn

x

b

s

Figure 1. The diagrams contributing to the correlation function (2.20): (a) LO loop; (b) one of

the gluon radiative corrections; (c) quark condensate contribution in LO; (d) one of the gluon ra-

diative corrections to quark condensate; (e) quark-gluon condensate contributions. The double line

describes the heavy (b-quark) effective field, the point at x corresponds to the pseudoscalar inter-

polating current, the dashed interval connecting the points 0 and tn on the light-cone indicates the

bilocal operator interpolating the meson DA. All possible diagrams at O(αs) can be found in [20].

external momentum transfer takes place through the virtual quark and antiquark lines.

The O(αs) radiative gluon corrections in P(pert)
s are exemplified by one of the diagrams

shown in figure 1(b). For these corrections we neglect the O(αsms) effects, and use the

formulas derived in [20]. The quark condensate contribution to P(cond)
s in LO corresponds

to the diagram in figure 1 (c) and one of the radiative gluon corrections to this term of

OPE is shown in figure 1 (d). In addition, both diagrams in figures 1 (c,e) contribute to

the quark-gluon condensate term. Similar to the sum rule (2.12), the SU(3)fl violation

reveals itself by the ms 6= 0 and 〈s̄s〉 6= 〈ūu〉 effects, respectively, in the perturbative and

condensate parts of the OPE (2.25).

The perturbative part is represented in a form of a dispersion integral in the variable ω′:

P(pert)
s (ω, t) =

1

π

∞∫
ms

dω′
ImP(pert)

s (ω, t)

ω′ − ω
. (2.26)

Note that the lower limit of the integration is equal to the threshold of the quark loop with

ms 6= 0 in HQET (cf. the LO term in eq. (2.12)). Using the relation (2.26) in eq. (2.25)

and performing Borel transformation, we equate the result to eq. (2.24):

1

2

[
FBs(µ)]2e−Λ̄s/τ

∞∫
0

dk e−iktφBs+ (k, µ)+ · · · = 1

π

∞∫
ms

dω′ e−ω
′/τ ImP(pert)

s (ω′, t)+P(cond)
s (τ, t) .

(2.27)

Applying the quark-hadron duality approximation, we equate the sum of contributions on

l.h.s. located above the Bs pole to the part of the integral on r.h.s. above the threshold ω0s

– 8 –
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which is taken the same as in the sum rule (2.12). We finally obtain:

1

2

[
FBs(µ)]2e−Λ̄s/τ

∞∫
0

dk e−iktφBs+ (k, µ) =
1

π

ω0s∫
ms

dω′ e−ω
′/τ ImP(pert)

s (ω′, t) + P(cond)
s (τ, t) .

(2.28)

Calculating the perturbative spectral density and condensate term from the diagrams

in figure 1, it is possible to reduce both of them to the half-Fourier transforms similar to

the l.h.s.:

ImP(pert)
s (ω′, t) =

∞∫
0

dk e−ikt ImP̃(pert)
s (ω′, k) , P(cond)

s (τ, t) =

∞∫
0

dk e−ikt P̃(cond)
s (τ, k) .

(2.29)

The calculation details are presented in appendix. For the NLO O(αs) corrections, we

neglect the O(ms) effects and employ the results of [20] obtained for the correlation function

with a massless quark. The condensate contributions in the form (2.29) are also inferred

from the results of [20] replacing 〈ūu〉 → 〈s̄s〉.
Substituting eq. (2.29) in eq. (2.28) and comparing the integrands on both sides, we

are in a position to read off the Bs-meson DA as a function of the variable k, in the same

way as it has been done for the B-meson DA in [1, 20] (see also [8, 9] where analogous sum

rules have been obtained for the B-meson quark-antiquark-gluon DAs). However, as noted

already in [1, 20] and discussed in detail below, the sum rule based on a local OPE yields a

DA which is not a smooth function, since the local condensate contributions produce terms

of the form φ+(k) ∼ δ(k). The region of small k has to be regularized by introducing a

nonlocality into the condensate contribution. In addition, we expect also modifications of

the Bs DA at small k, due to the threshold effects from ms 6= 0.

In this work, we are eventually interested in the inverse moment (2.19). Hence, we will

avoid the determination of the DA shape, noticing that we can directly obtain a sum rule

for the inverse moment, integrating both sides of (2.28) over the parameter t for 0 ≤ t ≤ ∞:

1

2

[
λBs(µ)

]−1[
FBs(µ)]2e−Λ̄s/τ =

1

π

ω0s∫
ms

dω′ e−ω
′/τ

∞∫
0

dk

k
ImP̃(pert)

s (ω′, k) +

∞∫
0

dk

k
P̃(cond)
s (τ, k) .

(2.30)

The perturbative part of this sum rule consists of the LO and NLO parts:

ImP̃(pert)
s (ω′, k) = ImP̃(pert,LO)

s (ω′, k) + ImP̃(pert,NLO)
s (ω′, k) .

The LO part, at ms 6= 0, derived in the appendix reads:

ImP̃(pert,LO)
s (ω′, k) =

3

4π
θ
(
kmax(ω′)− k

)
θ
(
k − kmin(ω′)

)
(k +ms) , (2.31)

where

kmax,min(ω′) = ω′ ±
√
ω′2 −m2

s . (2.32)
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The NLO part (at ms = 0) is taken from [20]; we only change the order of integrations.

Performing the k-integration of the LO part (2.31), we obtain a more detailed expression

for the sum rule (2.30):

[
λBs(µ)

]−1[
FBs(µ)]2e−Λ̄s/τ =

3

2π2

ω0s∫
ms

dω′ e−ω
′/τ

[
2
√
ω′2−m2

s+ms log
ω′+

√
ω′2−m2

s

ω′−
√
ω′2−m2

s

]

+
αs
π3

ω0s∫
0

dω′ e−ω
′/τ

 2ω′∫
0

dk ρ̃<(ω′, k,µ)+

2ω0s∫
2ω′

dk ρ̃>(ω′, k,µ)+

∞∫
2ω0s

dk ρ̃>(ω′, k,µ)

+Cs(τ) ,

(2.33)

where the functions ρ̃< and ρ̃> are presented in appendix and

Cs(τ) = 2

∞∫
0

dk

k
P̃(cond)
s (τ, k) , (2.34)

is the nonperturbative contribution to the sum rule for inverse moment.

This contribution is dominated by the s-quark vacuum condensate, described by the

diagram in figure 1(c). As already known from [1, 20], the local condensate approximation

for this diagram yields a divergence. The form of the local condensate term is easy to

obtain, replacing in the correlation function (2.20) the vacuum average of s-quark fields by

a constant condensate density, i.e. effectively neglecting the momentum flow through the

s-quark lines in figure 1(c). The condensate term after Borel transform reads:

P(cond)
s (τ, t) = −1

2
〈s̄s〉 , (2.35)

yielding

P̃(cond)
s (τ, k) = −1

2
〈s̄s〉δ(k) , (2.36)

which, after integration in eq. (2.34), indeed results in a divergent contribution to the

inverse moment. The quark-gluon and other higher dimension condensates produce even

stronger singularities.

The remedy suggested in [1, 20] — which we also adopt here — is to use a nonlocal

condensate introduced earlier [25, 26] in the context of QCD sum rules for the pion DA. The

quark-antiquark fluctuations in QCD vacuum are parameterized as a vacuum expectation

value of a bilocal quark-antiquark operator

〈0|s̄(x)[x, 0]s(0)|0〉 = 〈s̄s〉
∫ ∞

0
dν eνx

2/4F(ν) , (2.37)

where the function F(ν) is interpreted as a distribution of the quark-antiquark vacuum

fluctuations with the virtuality ν. Expanding the above parameterization at small dis-

tances, around x2 = 0, one fixes the first two terms of this expansion, matching them to

the quark and quark-gluon condensate densities in the local OPE:∫ ∞
0
dν F(ν) = 1 ,

∫ ∞
0
dν νF(ν) =

m2
0

4
, (2.38)
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or, equivalently,

F(ν) = δ(ν)− m2
0

4
δ′(ν) + . . . . (2.39)

Here we neglect the possible O(ms) threshold effects in the nonlocal strange-quark conden-

sate and assume that the only difference between eq. (2.37) and the nonstrange nonlocal

condensate is in the quark condensate density. The SU(3)fl violation in the first power

moment in eq. (2.38) amounts to replacing m2
0 by m2

0 −m2
s (see e.g. [27]) and is neglected

in view of the much larger uncertainty in the parameter m2
0. In addition, an exponential

fall-off of the nonlocal condensate is required at large Euclidean separations |x2| → ∞.

Following [20], we choose the two conceivable models, suggested, respectively in [25, 26]

and [28]:

model I : F(ν) = δ(ν −m2
0/4) , (2.40)

model II : F(ν) =
λp−2

Γ(p− 2)
ν1−pe−λ/ν , p = 3 +

4λ

m2
0

, (2.41)

where all above mentioned conditions are satisfied. The model II has one free parameter λ.

We follow the arguments presented in [29] (see also [27]), where the nonlocal condensate

is linked to the light-quark propagator at large distances and inferred from the correlation

function of heavy-light currents in HQET. Accordingly, we choose this parameter equal

to the square of the binding energy in HQET, λ = Λ̄2 for both Bs and B, neglecting the

difference Λ̄s − Λ̄ which is a second order effect in ms in eq. (2.37).

Replacing the local condensate density by the nonlocal distribution (2.37) leads, instead

of eq. (2.35), to the following condensate term in the Borel transformed correlation function:

P(cond)
s (τ, t) = −1

2
〈s̄s〉

∞∫
0

dνF(ν)e−
ν

4τ2
− itν

2τ . (2.42)

A detailed derivation of this expression is presented in the appendix. Equating it to the half-

Fourier representation (2.29) and integrating both parts of this equation over 0 < t < ∞,

we obtain the condensate term in the sum rule (2.33):

Cs(τ) = −2〈s̄s〉τ
∞∫

0

dν

ν
F(ν)e−

ν
4τ2 . (2.43)

Since the nonlocal condensate effectively involves quark and quark-gluon condensates, we

will not include the O(αs) corrections to the local quark condensate, i.e. the diagrams

similar to the one in figure 1(d) calculated in [20]. The gluon condensate contribution

calculated there and found very small is also neglected here.

3 Numerical results

We turn to the numerical analysis of the QCD sum rule (2.33) for the inverse moment λBs .

In parallel, we obtain an estimate for λB by putting ms = 0 in eq. (2.33) and making the

replacements given in eq. (2.15). The necessary input parameters are listed in table 1.
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Parameters Values Ref.

Strange quark mass ms(2 GeV) = 93+11
−5 MeV [32]

QCD coupling
αs(mZ) = 0.1179± 0.011

[32, 33]
αs (1 GeV) = 0.458

Condensates

〈ūu〉(2 GeV) = 〈d̄d〉(2 GeV) = −(288+15
−13 MeV)3

[32, 34]〈s̄s〉/〈ūu〉 = 0.8± 0.3

m2
0 = 0.8± 0.2 GeV2

Meson masses
mB = (mB± +mB0)/2 = (5279.50± 0.12) MeV

[32]
mBs = (5366.88± 0.17) MeV

HQET binding energy Λ̄ = (0.55± 0.06) GeV [30]

Table 1. Values of the input parameters used in the numerical analysis.

Importantly, instead of the square of the heavy meson decay constant, we use the

sum rule (2.12) and its B-meson counterpart. This has an advantage of canceling out

the HQET binding energy from the resulting expression for the inverse moment. Given

the relation (2.16), we practically only need to specify the parameter Λ̄ in order to fix

the effective thresholds ω0 and ω0s from the differentiated sum rules and the parameter λ

in the model II. We use the most accurate central value obtained from the lattice QCD

simulation of HQET [30, 31]2 and doubled the uncertainty, to be on a conservative side.

Moreover, use of the sum rule for FB(s)
leads to a partial cancellation of the renormalization

scale and Borel parameter dependences in the sum rule for λB(s)
.

In addition, we have to specify the optimal renormalization scale and the interval

of Borel parameter. We adopt the default scale µ̄ = 3.0 GeV and the interval M2 =

4.5 − 6.5 GeV2 used in the numerical analysis of the QCD sum rule for the B(s) decay

constants in full QCD in [12]. There one can find a detailed discussion of this choice. We

then use the rescaling relation (2.11) and obtain the interval

τ =
M2

2mb(µ̄)
= 0.5− 0.7 GeV , (3.1)

where the value of the MS mass mb(µ̄) = 4.47 GeV is obtained by running from the central

value mb(mb) = 4.18 GeV [32]. As a default value we adopt τ = 0.6 GeV. Furthermore,

since the optimal renormalization scale in the sum rule is in the ballpark of the Borel

parameter, it is conceivable to use a not much larger scale µ = 1.0 GeV also in the HQET

sum rule.3

As a next step, we fix the duality thresholds with the procedure described in section 2.1:

ω0 = 1.00± 0.12 GeV, ω0s = 1.10± 0.13 GeV . (3.2)

2Note that Λ̄ ' mB − mb is defined in [30, 31], employing a specific definition of the b quark mass,

adapted to the heavy-quark expansion of the B-meson mass, whereas in the QCD sum rules, the MS mass

of the virtual b-quark is conveniently used.
3Obtaining the estimate of the inverse moment at µ ∼ 1 GeV, we leave the issue of the renormalization

scale dependence of the B(s)-meson DA [35] beyond our scope.
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Quantity
[
λBs(µ = 1 GeV)

]−1 [
λB(µ = 1 GeV)

]−1

Perturbative contribution 1.34± 0.15 1.17± 0.05

Condensate contribution (model I) 0.66± 0.25 1.00± 0.24

Condensate contribution (model II) 1.23± 0.51 1.88± 0.56

total value (model I) 2.00± 0.29 2.17± 0.24

total value (model II) 2.57± 0.53 3.05± 0.56

Table 2. The QCD sum rule prediction for the inverse value of the Bs and B DA inverse moment

(in the units GeV−1).

To assess the SU(3)fl symmetry violation, we note in passing that the ratio of the HQET

decay constants calculated from the sum rule (2.12):

FBs(µ = 1 GeV)/FB(µ = 1 GeV) = 1.16± 0.08 (3.3)

is in agreement with the analogous ratio fBs/fB obtained from the lattice QCD [10] and

from the sum rules in full QCD (see e.g., [12]). Hereafter, the errors of our predictions are

estimated incorporating all individual uncertainties generated by a separate variation of

each input parameter within its adopted interval. This includes the parameters listed in

table 1 and the Borel interval (3.1), whereas the value of the threshold ω0(s) is adjusted

each time for a given combination of other inputs.

Our numerical results are presented in table 2, where the inverse values of λBs and

λB obtained from the sum rule (2.33) are compared. The latter is in the same ballpark

as in [20] (see eq. (38) there); the difference is caused by the deviations of the input pa-

rameters, mainly of the quark condensate density and λ. The condensate contributions

are of the same order as the perturbative ones; note that the quark condensate contri-

butions are also enhanced in the correlation functions with heavy-light currents in full

QCD. Here we are mainly interested in the magnitude of the SU(3)fl symmetry violation.

A comparison of separate contributions to the sum rules for λ−1
Bs

and λ−1
B shows that a

∼ 15% decrease in the perturbative part is accompanied by an up to ∼ 30% increase in the

condensate part. However, the accuracy of the latter estimate suffers from the large uncer-

tainty of the ratio of strange and nonstrange condensates. We treat the difference between

the condensate contributions obtained with the two models of nonlocal condensate as an

approximate measure of the accuracy of the nonperturbative contributions. Adding this

difference to the parametrical uncertainty in quadrature, we obtain the following intervals

for the inverse moments:

λBs = 438± 150 MeV , λB = 383± 153 MeV . (3.4)

The previous result [20] λB = 460± 110 MeV is in agreement with our estimate. Note that

we estimate the uncertainties differently and in a more conservative way. The ratio of the

two inverse moments that we predict:

λBs
λB

= 1.19± 0.14 , (3.5)
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is obtained varying in a correlated way all the common inputs (e.g., the Borel parameter,

quark condensate density) in both the sum rules. Due to the partial cancellations of

inputs in this ratio, the resulting uncertainty is smaller compared to the individual errors

estimated in eq. (3.4).

The result in eq. (3.5) can be used in future when a more accurate value of λB is

available, e.g. from the analysis of the photoleptonic decay B → `ν`γ combined with

its measurement.

4 Summary

In this paper we have obtained the first estimate of the inverse moment of the leading twist

Bs-meson DA, assessing the SU(3)fl violation in this important hadronic parameter needed

for an accurate theoretical description of the Bs exclusive decays. We used the HQET sum

rule based on the correlation function containing a nonlocal heavy-light operator and a lo-

cal Bs interpolating current. Instead of aiming at a determination of the shape of the DA,

we obtained a sum rule for the inverse moment. We found that SU(3)fl violation in the

inverse moments is an appreciable effect, in the same ballpark as for the heavy meson decay

constants. The perturbative contribution to this effect is a combination of the O(ms) term

computed at LO and the difference in the quark-hadron duality thresholds. The latter we

fixed with the help of auxiliary two-point sum rules for the heavy meson decay constant.

This allows to somewhat reduce the systematic uncertainty due to the duality approxima-

tion. In the nonperturbative part of the sum rule we employed the nonlocal condensate

ansatz which on one hand effectively includes both quark and quark-gluon condensates and

on the other hand allows to avoid divergences caused by the local condensate appearing in

the local OPE. Using two different model descriptions, we found the condensate contribu-

tion to the SU(3)fl violation, governed in our approximation by the ratio of strange and

nonstrange condensate densities, to be as important as the perturbative part.

Our main practical result is the ratio of inverse moments of the Bs- and B-meson DAs

in which some correlated uncertainties partially cancel. This ratio indicates that the inverse

moment of the Bs-meson DA is larger than the one of the B-meson, within conservatively

estimated uncertainties. Altogether, the HQET version of QCD sum rules remains an

approximate but the only available tool to investigate the heavy-meson DAs, before the

lattice QCD methods become sufficiently developed to tackle this problem.
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A Details of the calculation

A.1 Perturbative spectral density at LO

Here we explain how to compute the LO contribution (the diagram in figure 1(a)) to the

HQET correlation function (2.20). Our convention for the light-cone vectors is:

nµ ≡ (1, 0, 0, 1), n̄µ ≡ (1, 0, 0,−1) , (A.1)

so that a decomposition of a four-vector aµ into its light-cone components reads:

aµ =
1

2
(a+n

µ + a−n̄
µ) + aµ⊥

with a+ ≡ a.n̄ =
(
a0 + a3

)
and a− ≡ a.n =

(
a0 − a3

)
. Adopting the light-cone gauge

(A+ = 0) removes the light-like gauge link [tn, 0] ≡ 1.

Contracting the effective heavy-quark and (massive) s-quark fields into free-field prop-

agators, we obtain for the LO contribution:

P(pert,LO)
s (ω, t) = −3i

∫
d4x e−iωv·x

×
∫

d4`

(2π)4
e−i`·(x−tn)

∫
d4k

(2π)4
eik·x Tr

[
/̀+ms

`2 −m2
s

γ5/n
1 + /v

2k · v
γ5

]
= −3

∫
d4`

(2π)4
eit(`·n)

∫
d4k

(2π)4

∫
d4x e−ix·(ωv+`−k) 4`·n− 4msv ·n

(`2 −m2
s) (2k · v)

, (A.2)

where the factor Nc = 3 originates from the colour trace. The coordinate integration gives

δ(4)(k − (`+ ωv)) which is removed by the momentum k integration and we obtain:

P(pert,LO)
s (ω, t) = 3i

∫
d4`

(2π)4
eit(`·n) 4(` · n−msv ·n)

(`2 −m2
s) (2(`+ ωv) · v)

, (A.3)

where the velocity four-vector v = (1, 0, 0, 0). We need the imaginary part of the above ex-

pression in the variable ω. To this end, we employ the Cutkosky rule for both propagators:

1

p2 −m2
→ −2πiδ(p2 −m2)θ(±p0) ,

and get:

ImP(pert,LO)
s (ω, t) = −3

∫
d4`

(2π)2
eit(`.n) [`·n−ms]

× δ(`2 −m2
s) δ(`0 + ω) θ(−`0 −ms) θ(`0 + ω) . (A.4)

Using the adopted convention for the light-cone vectors, we replace the four-dimen-

sional integration over the `µ in eq. (A.4) with:

∫
d4` =

∞∫
−∞

d`−

∞∫
−∞

d`+

∫
d~̀⊥ .
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Integrating over d~̀⊥ together with δ(`2 − m2
s) = δ(`+`+ − |`⊥|2 − m2

s) generates

π θ(`+`−−m2
s). Next, we carry out the d`+ integration with δ(`0+ω) = δ ((`+ + `−)/2 + ω).

After that, changing the variable `− = −k we obtain:

ImP(pert,LO)
s (ω, t) =

3

4π

+∞∫
−∞

dk e−ikt (k +ms) θ
(
2ωk − k2 −m2

s

)

=
3

4π

∞∫
0

dk e−ikt θ (kmax(ω)− ω) θ (ω − kmin(ω)) (k +ms) . (A.5)

where the limits kmax(ω′) and kmin(ω′) > 0 are defined in eq. (2.32) and in the last equation

above we have used the quadratic equation with respect to the variable k inside the θ

function, reducing the latter to a product of the two theta functions. Comparing this

equation with the first one in eq. (2.29) we finally obtain eq. (2.31).

A.2 Perturbative spectral density at NLO

Employing the results obtained in [20], we use the following functions determining the NLO

spectral density in the sum rule (2.33):

ρ̃<(ω,k,µ) =
7

2
+

7π2

24
− ln2 k

µ
− 5

2
ln(x−1)−(x−1) ln(x−1)

− 1

2
ln2(x−1)−2 ln

k

µ

[
1+ln(x−1)

]
+x lnx+Li2

(
1

1−x

)
, (A.6)

ρ̃>(ω,k,µ) =−x+ln(1−x)−2(1−x) ln(1−x)+2 ln2(1−x)+2 ln
k

µ

[
x+ln(1−x)

]
. (A.7)

Here Li2(x) is Euler dilogarithm function and x = 2ω/k.

A.3 Nonlocal condensate term

To obtain the nonlocal condensate contribution (2.42), we contract the s-quark fields in the

correlation function (2.20) into a vacuum average and parametrize it in accordance with

eq. (2.37):

〈0|s̄iα(tn)skβ(x)|0〉 = 〈s̄s〉
δαβδ

ik

3 · 4

∞∫
0

dν eν(tn−x)2/4F(ν) . (A.8)

The heavy-quark fields are contracted into a HQET propagator. This results in:

P(cond)
s (ω, t) =

1

4
〈s̄s〉

∫
d4x e−iωv·x

∞∫
0

dν eν(tn−x)2/4F(ν)

∫
d4k

(2π)4
eik·x Tr

[
γ5/n

1 + /v

2k · v
γ5

]

=
1

2
〈s̄s〉

∞∫
0

dν F(ν)

∫
d4k

(2π)4

[v · n
k · v

] ∫
d4x e

ν(tn−x)2
4

−i(ωv−k)·x . (A.9)
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Redefining the variable x→ z = x− tn so that x = z + tn, and using v · n = 1, we get

P(cond)
s (ω, t) =

1

2
〈s̄s〉

∞∫
0

dν F(ν)e−iωt
∫

d4k

(2π)4

eitk·n

k · v

∫
d4z e

νz2

4
−i(ωv−k)·z . (A.10)

The integral over four-coordinates is obtained by completing the argument of the ex-

ponent to a full square, shifting the integration variables and applying the Wick rotation,

z0 → −iz4: ∫
d4z e

νz2

4
−i(ωv−k)·z =

∫
d4z e

ν
4

(
z− 2i(ωv−k)

ν

)2

e
(ωv−k)2

ν

= e
(ωv−k)2

ν

∫
d4z e

νz2

4 = −16iπ2

ν2
e

(ωv−k)2
ν , (A.11)

so that

P(cond)
s (ω, t) = −i〈s̄s〉

2π2

∞∫
0

dν

ν2
F(ν)e−iωt

∫
d4k

k · v
eitk·n e

(ωv−k)2
ν . (A.12)

To compute the four-momentum integral, we use the transformation k → f = ωv − k, and

then, due to f · n = f0 − f3 and f · v = f0, factorize it into three separate integrations:

I(ω, t) ≡
∫

d4k

k · v
eitk·n e

(ωv−k)2
ν = eiωt

∫
d4f

(ωv − f) · v
e−it(f ·n)+ f2

ν

= eiωt
+∞∫
−∞

df0

ω − f0
e−itf0+

f20
ν

+∞∫
−∞

df3 e
itf3−

f23
ν 2π

∞∫
0

d|~f⊥||~f⊥| e−
|~f⊥|

2

ν , (A.13)

where we also used that v2 = 1. The integral over the two-dimensional plane f1,2 taken in

the polar coordinates with |~f⊥| =
√
f2

1 + f2
2 is equal to πν. Completing the arguments of

exponential functions in the integrals over the f0, f3, we integrate over f3 and, after the

shift of the variable

f0 → f̃0 = f0 − itν/2 ,

we get

I(ω, t) = πνeiωt
+∞∫
−∞

df0

ω − f0
e

(f0−itν/2)
2

ν e
t2ν
4

+∞∫
−∞

df3e
− (f3−itν/2)

2

ν e−
t2ν
4

= (πν)3/2eiωt
+∞∫
−∞

df0

ω − f0
e

(f0−itν/2)
2

ν = −(πν)3/2eiωt
+∞∫
−∞

df̃0

f̃0 + itν
2 − ω

e
f̃20
ν . (A.14)

Substituting this expression in eq. (A.12), we obtain

P(cond)
s (ω, t) = i

〈s̄s〉
2
√
π

∞∫
0

dν√
ν
F(ν)

+∞∫
−∞

df̃0

f̃0 + itν
2 − ω

e
f̃20
ν . (A.15)
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At this stage it is convenient to perform the Borel transformation:

P(cond)
s (τ, t) = i

〈s̄s〉
2
√
π

∞∫
0

dν√
ν
F(ν)

+∞∫
−∞

df̃0 e
f̃20
ν e−

f̃0+itν/2
τ . (A.16)

Applying the Wick rotation f̃0 → if4 we integrate:

+∞∫
−∞

df̃0 e
f̃20
ν e−

f̃0+itν/2
τ = i

+∞∫
−∞

df4 e
−f24
ν e−i

f4+tν/2
τ

= i

+∞∫
−∞

df4 e
− (f4+iν/(2τ))

2

ν e−
ν

4τ2 e−
itν
2τ = i

√
π
√
νe−

ν
4τ2 e−

itν
2τ , (A.17)

and, using the above result in eq. (A.16), finally reproduce eq. (2.42).
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