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1 Introduction and conclusions

The AdS/CFT correspondence, [1], has provided a framework to study quantum field

theories in various dimensions with various amount of supersymmetry through their gravi-

tational duals. When it comes to the non-supersymmetric quantum field theories, even

though there are several known perturbatively stable, [2–4], non-supersymmetric AdS

vacua, due to the limited control over the non-supersymmetry, not much was able to

be investigated.1 Furthermore, recently, as a stronger version of the weak gravity conjec-

ture, [6], a conjecture on non-supersymmetric AdS vacua was suggested: there are no stable

non-supersymmetric AdS vacua from string and M-theory, [7]. In support of testing the

conjecture, a new non-perturbative decay channel called brane-jet instability was proposed

by Bena, Pilch and Warner in [8]. This examines the force acting on the probe branes and if

the force is repulsive, the vacuum is determined to be unstable. In [8], the authors showed

the only known perturbatively stable non-supersymmetric AdS4 vacuum, [9, 10], among

the AdS vacua of four-, [11], and five-, [12], dimensional maximal gauged supergravity is, in

fact, brane-jet unstable. See also [13] for the brane-jet stability from the D2-brane theories.

There is a closely related channel of non-perturbative instability from instantons. The

condition for nucleation of a bubble in Euclidean AdS is analyzed in [14]. It is given by the

competition of tension and charge of the particles. Once the bubble is created, it reaches

the boundary of AdS in finite Lorentzian time and destabilizes the AdS spacetime.2 This

idea was recently extended to branes in string theory in [15]. See e.g., [16–19] also for

studies of instability of AdS and instantons.

1There is a recent search of curious 5d non-supersymmetric CFTs in [5].
2We would like to thank Gabriele Lo Monaco and collaborators of [15] for comments on this.
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The purpose of this note is to examine the brane-jet instability of AdS vacua of six-

and seven-dimensional gauged supergravity in [20] and in [21–24], respectively. In six- and

seven-dimensional gauged supergravity, each scalar potential has one supersymmetric and

one non-supersymmetric fixed points.

In seven dimensions, minimal gauged supergravity, [21, 22], is a subsector of maximal

gauged supergravity, [23, 24]. As we identify the scalar fields to a scalar field, the maximal

theory reduces to the minimal theory. The scalar potentials of the theories have a pair

of supersymmetric and non-supersymmetric fixed points. The non-supersymmetric fixed

point is known to be perturbatively stable in the minimal theory, [22], but not stable

in the maximal theory, [24]. Maximal and minimal theories commonly uplift to eleven-

dimensional supergravity, [25–27] and [28], but the minimal theory also uplifts to massive

type IIA supergravity, [29]. We will examine the brane-jet stability of the AdS7 fixed points

when they are uplifted to eleven-dimensional supergravity.

In F (4) gauged supergravity in six dimensions, [20], there are also a pair of supersym-

metric and non-supersymmetric fixed points. The non-supersymmetric AdS6 fixed point

is known to be perturbatively stable, [20]. F (4) gauged supergravity is a consistent trun-

cation of massive type IIA supergravity, [30] and also of type IIB supergravity, [31–33].

We will examine the brane-jet stability of the AdS6 fixed points when they are uplifted to

massive type IIA supergravity.

Indeed we show that when they are uplifted to massive type IIA and eleven-dimensional

supergravity, respectively, the non-supersymmetric AdS6 and AdS7 fixed points are both

brane-jet unstable in favor of the conjecture on non-supersymmetric vacua in [7].

It would be interesting to consider the alternative uplifts of the AdS6 and AdS7 fixed

points to type IIB, [31–33] from [34, 35], and massive type IIA supergravity, [29] from [36],

respectively. Indeed, the instabilities of AdS7 solutions in massive type IIA supergravity

are already examined in [15, 37, 38].3

In section 2 and 3, we test the brane-jet instabilities of AdS fixed points from six-

and seven-dimensional gauged supergravity, respectively. In an appendix, we present the

calculation of potentials of the fluxes for supersymmetric flows and show that the probe

brane potentials vanish over the whole flows identically.

2 The AdS6 fixed points

2.1 Solutions in massive type IIA supergravity

We consider the scalar-gravity action of F (4) gauged supergravity, [20], in the conventions

of [30],

e−1L = R− 1

2
∂µφ∂

µφ− g2

(
2

9
e

3√
2
φ − 8

3
e

1√
2
φ − 2e

− 1√
2
φ
)
. (2.1)

There are supersymmetric and non-supersymmetric fixed points of the scalar potential at

e
− 1

2
√
2
φ

= 1 and e
− 1

2
√
2
φ

= 1/31/4, respectively.

3Some massless solutions considered in [15] would be obtained from dimensional reduction of the AdS7

solutions of eleven-dimensional supergravity we study in this work.
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We consider the domain wall background,

ds2
6 = e2Ads2

1,4 + dr2 , (2.2)

where A = r/l at the AdS6 fixed points. The radius of AdS6 is given by l.

We employ the uplift formula to massive type IIA supergravity, [39], in [30]. In Ein-

stein frame, the metric, the dilaton, and the four-form flux are non-trivial and are given,

respectively, by, [40],

ds2 = X1/8 sin1/12 ξ

(
∆3/8ds2

6 +
2

g2
∆3/8X2dξ2 +

1

2g2

cos2 ξ

∆5/8X
ds2
S3

)
, (2.3)

eΦ =
∆1/4

X5/4 sin5/6 ξ
, (2.4)

F(4) = −
√

2

6

U sin1/3 ξ cos3 ξ

g3∆2
dξ ∧ volS3 −

√
2

sin4/3 ξ cos4 ξ

g3∆2X3
dX ∧ volS3 , (2.5)

where we define

X = e
− φ

2
√
2 ,

∆ = X cos2 ξ +X−3 sin2 ξ ,

U = X−6 sin2 ξ − 3X2 cos2 ξ + 4X−2 cos2 ξ − 6X−2 . (2.6)

The metric and the volume form of the three-sphere are given, respectively, by

ds2
S3 =

3∑
I=1

(
σI
)2
,

volS3 = σ1 ∧ σ2 ∧ σ3 , (2.7)

where σI are SU(2) left-invariant one-forms,

dσI = −1

2
εIJKσ

J ∧ σK . (2.8)

We may introduce explicit SU(2) left-invariant one-forms,

σ1 = − sinα2 cosα3dα1 + sinα3dα2 ,

σ2 = sinα2 sinα3dα1 + cosα3dα2 ,

σ3 = cosα2dα1 + dα3 . (2.9)

Then the metric and the volume form are

ds2
S3 = dα2

1 + dα2
2 + dα2

3 + 2 cosα2dα1dα3 ,

volS3 = sinα2dα1dα2dα3 . (2.10)
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2.2 D4-brane probes

The uplift formula for the six-form flux is given by, [30],

F(6) = eΦ/2 ∗ F(4) = −
√

2g

3
Uvol6 +

4
√

2

g

sin ξ cos ξ

X
∗ dX ∧ dξ + · · · . (2.11)

At the AdS6 fixed points, it gives

F(6) = −
√

2g

3
Ue5Adx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dr , (2.12)

where

A =
r

l
, U = U(ξ) , X = constant , (2.13)

and l is the radius of AdS6. Thus we obtain that the five-form potential is

C(5) =

√
2g

3

l

5
Ue5Adx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 , (2.14)

where we use ∂rU = 0, ∂ξU = 0 at the fixed points. U is so-called geometric scalar

potential.4

We partition the spacetime coordinates,

xa = {x0, x1, x2, x3, x4} , ym = {r, ξ, α1, α2, α3} , (2.15)

and choose the static gauge,

x0 = t = η0 , xa = ηa , ym = ym(t) , (2.16)

where ηa are the worldvolume coordinates. The pull-back of the metric is

G̃ab = Gµν
∂xµ

∂ηa
∂xν

∂ηb
. (2.17)

Now we study the worldvolume action of the D4-branes which is given by a sum of

DBI and WZ terms. If the probe branes move slowly, the worldvolume action in Einstein

frame is

S=−eΦ/4

∫
d5η

√
−det(G̃)−

∫
C̃(5)

=− ∆1/16

X5/16 sin5/24 ξ

∫
d5η
(
e5A∆15/16X5/16 sin5/24 ξ− 1

2
e3A∆9/16X3/16 sin1/8 ξGmnẏ

mẏn+· · ·
)

−
∫ √

2g

3

l

5
e5AU dx0∧dx1∧dx2∧dx3∧dx4 , (2.18)

where C̃(5) is the pull-back of the five-form potential.5 Then the worldvolume action

reduces to

S =

∫
d5η (K − V ) , (2.19)

4For the supersymmetric flows we can calculate the five-form potential over the whole flow. See ap-

pendix A.1.
5The sign of the C̃(5) term is determined by the orientation of our solution. There is an overall sign

choice for the supersymmetry equations in (A.2) and it is interelated to the sign choice.
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Figure 1. he probe brane potentials of the supersymmetric and non-supersymmetric fixed points

at X = 1 and X = 1/31/4, respectively.

where the kinetic and the potential terms are

K =
1

2
e3A ∆5/8

X1/8 sin1/12 ξ
Gmnẏ

mẏn + · · · ,

V = e5A

(
∆ +

√
2g

3

l

5
U

)
. (2.20)

The final probe brane potential is quite simple. From the probe brane potential, we

test the brane-jet instabilities of the supersymmetric and non-supersymmetric AdS6 fixed

points. We set g = 3
√

2
2 for l = 1. The plots of the brane potential over the hemisphere,

0 ≤ ξ ≤ π, are given in figure 1. We conclude that the non-supersymmetric AdS6 fixed

point is not stable.

3 The AdS7 fixed points

3.1 Solutions in eleven-dimensional supergravity

We consider the minimal scalar-gravity action of seven-dimensional gauged supergrav-

ity, [21, 22] and [23, 24], in the conventions of [41],

e−1L = R− 20∂µλ∂
µλ+ g2

(
4X2 + 4X−3 − 1

2
X−8

)
, (3.1)

where X = e2λ. There are supersymmetric and non-supersymmetric fixed points of the

scalar potential at X = 1 and X = 1/21/5, respectively.

We consider the domain wall background,

ds2
7 = e2Ads2

1,5 + dr2 , (3.2)

where A = r/l at the AdS7 fixed points. The radius of AdS7 is given by l.
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We employ the uplift formula to eleven-dimensional supergravity, [42], in [41]. The

metric and the seven-form flux are given by,

ds2 = ∆1/3ds2
7 +

1

g2
∆−2/3

(
X−1

0 dµ2
0 +

2∑
i=1

X−1
i

(
dµ2

i + µ2
i dφ

2
i

))
, (3.3)

F(7) = Uvol7 +
1

2g

2∑
α=0

X−1
α ∗7 dXα ∧ d(µ2

α) , (3.4)

where vol7 and ∗7 are volume form and Hodge dual on ds2
7. We define6

X = X1 = X2 = e2λ , X0 = (X1X2)−2 ,

∆ =
2∑

α=0

Xαµ
2
α ,

U = 2g

2∑
α=0

(
X2
αµ

2
α −∆Xα

)
+ g∆X0 ,

1 =

2∑
α=0

µ2
α . (3.5)

We introduce explicit coordinates,

µ0 = cosα , µ1 = sinα cosβ , µ2 = sinα cosβ . (3.6)

3.2 M5-brane probes

At the AdS7 fixed points, the seven-form flux is

F(7) = Ue6Adx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dr , (3.7)

where

A =
r

l
, U = U(α) , X = constant , (3.8)

and l is the radius of AdS7. Thus we obtain that the six-form potential is

C(6) =
l

6
Ue6Adx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 , (3.9)

where we use ∂rU = 0, ∂αU = 0 at the fixed points. U is so-called geometric scalar

potential.7

We partition the spacetime coordinates,

xa = {x0, x1, x2, x3, x4, x5} , ym = {r, α, β, φ1, φ2} , (3.10)

6For the scalar fields in [41], X1 = e
− 1√

2
ϕ1− 1√

10
ϕ2 and X2 = e

1√
2
ϕ1− 1√

10
ϕ2 , we set ϕ1 = 0 and ϕ2 =

−2
√

10λ.
7For the supersymmetric flows we can calculate the six-form potential over the whole flow. See ap-

pendix A.2.
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and choose the static gauge,

x0 = t = η0 , xa = ηa , ym = ym(t) , (3.11)

where ηa are the worldvolume coordinates. The pull-back of the metric is

G̃ab = Gµν
∂xµ

∂ηa
∂xν

∂ηb
. (3.12)

Now we study the worldvolume action of the M5-branes which is given by a sum of

DBI and WZ terms. If the probe branes move slowly, the worldvolume action is

S = −
∫
d6η

√
−det(G̃)−

∫
C̃(6)

= −
∫
d6η

(
e6A∆− 1

2
e4A∆2/3Gmnẏ

mẏn + · · ·
)

−
∫

l

6
Ue6A dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 , (3.13)

where C̃(6) is the pull-back of the six-form potential.8 Then the worldvolume action

reduces to

S =

∫
d6η (K − V ) , (3.14)

where the kinetic and the potential terms are

K =
1

2
e4A∆2/3Gmnẏ

mẏn + · · · ,

V = e6A

(
∆ +

l

6
U

)
. (3.15)

The final probe brane potential is quite simple. From the probe brane potential, we test the

brane-jet instabilities of the supersymmetric and non-supersymmetric AdS7 fixed points.

We set g = 2 for l = 1. The plots are given in figure 2. We conclude that the non-

supersymmetric AdS7 fixed point is not stable.
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Figure 2. The probe brane potentials of the supersymmetric and non-supersymmetric fixed points

at X = 1 and X = 1/21/5, respectively.

A Potentials of the fluxes for supersymmetric flows

For the flows to supersymmetric fixed points, we can derive the potentials of the fluxes not

just at the fixed point but over the whole flow. In the appendix we present the derivations.

A.1 Flows from AdS6

We consider the domain wall background, [43],

ds2
6 = e2Ads2

1,4 + dr2 . (A.1)

The supersymmetry equations are given by

φ′ = g

(
e
− φ

2
√
2 − e

3φ

2
√
2

)
,

A′ =
g

2
√

2

(
e
− φ

2
√
2 +

1

3
e

3φ

2
√
2

)
. (A.2)

The uplift formula for the six-form flux is given by, [30],

F(6) = eΦ/2 ∗ F(4) = −
√

2g

3
Uvol6 +

4
√

2

g

sin ξ cos ξ

X
∗ dX ∧ dξ . (A.3)

For the domain wall solutions, the six-form flux is

F(6) = ωr dx0∧dx1∧dx2∧dx3∧dx4∧dr+ωξ dx0∧dx1∧dx2∧dx3∧dx4∧dξ , (A.4)

where

ωr = −
√

2g

3
e5AU ,

ωξ =
4
√

2

g

e5AX ′ sin ξ cos ξ

X
. (A.5)
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Employing the supersymmetry equations, (A.2), they satisfy a relation,9

∂ωξ
∂r

=
∂ωr
∂ξ

. (A.6)

Then we obtain that the five-form potential is

C(5) = −e5A∆ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 . (A.7)

If we employ this five-form potential to compute the probe brane potential, it vanishes

identically over the whole flow,

V = e5A (∆−∆) = 0 . (A.8)

A.2 Flows from AdS7

We consider the domain wall background, [46],

ds2
7 = e2Ads2

1,5 + dr2 . (A.9)

The supersymmetry equations are given by

λ′ =
2

5
e−8λ − 2

5
e2λ ,

A′ =
1

5
e−8λ +

4

5
e2λ . (A.10)

The uplift formula for the seven-form flux is given by, [41],

F(7) = Uvol7 +
1

2g

2∑
α=0

X−1
α ∗7 dXα ∧ d(µ2

α) . (A.11)

From an analogous calculation of the previous subsection, we obtain that the six-form

potential is

C(6) = −e6A∆ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 . (A.12)

If we employ this six-form potential to compute the probe brane potential, it vanishes

identically over the whole flow,

V = e6A (∆−∆) = 0 . (A.13)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

9This is an analogous calculation of (3.13), (3.14), (3.28), (3.29) from [44] and (8) from [45].
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