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1 Introduction

Probing space-time with strings challenges the way we describe geometry. When the target

space possess commuting isometries string theory is invariant under Abelian T-duality, the

statement that different backgrounds lead to the same underlying physics. Double Field

Theory (DFT) [1–5] is a framework that accounts for such a generalized geometry by

making Abelian T-duality a manifest symmetry, for reviews see [6–8].

Interestingly the isometries need not be Abelian. An extension of Buscher’s proce-

dure [9, 10] to the case of backgrounds with non-commuting isometries led to the so-called

non-Abelian T-duality (NATD) [11]. This duality can connect backgrounds with isometry

groups of different dimensions, and so its action works in one direction but not reversely.

This drawback was cured in [12] where the requirement of isometries as a guiding principle

was abandoned. It was proposed that there must be some higher algebraic structure relat-

ing dual models that shows up only in special cases as an isometry group. This led to the

– 1 –



J
H
E
P
1
0
(
2
0
2
0
)
0
0
2

idea of Poisson-Lie T-duality [12]–[14], a generalization of Abelian and NATD. These gen-

eralized dualities are only symmetries of the classical string, and mostly work as a solution

generating technique, for a review see [15].

Generalized dualities are not obviously captured by the symmetries of DFT, where the

rigid O(d, d) invariance only accounts for Abelian T-duality. To understand how generalized

dualities fit into this framework, it is convenient to consider generalized Scherk-Schwarz

(gSS) reductions [16, 17] in the context of Gauged DFT [18, 19]. There, the background is

captured by a generalized twist matrix U ∈ O(d, d) plus a generalized dilaton shift e−2λ ∈
R+, that locally depend on the coordinates of the internal space. The background then

gauges the effective action through the fluxes generated by the duality twist. Interestingly,

there is a degeneration in the space of twists that lead to the same flux configurations [20].1

In fact, more generally it is enough to demand that the fluxes fall into the same duality orbit,

in which case the different backgrounds would lead to the same underlying physics.2 This

observation was originally done in [20], and lies at the core of many interesting discussions

on how DFT connects with generalized dualities [23]–[28]. We can resume it as follows:

Generalized dualities are represented through certain local O(d, d) transfor-

mations and shifts of the generalized dilaton that relate different backgrounds

(duality twists in Gauged DFT) whose gaugings fall into the same duality orbit.

In this paper we exploit the technology of DFT to compute the first order higher

derivative corrections to generalized dualities. Higher derivatives are incorporated into

DFT through deformations of the double local Lorentz transformations [29, 30].3 Iden-

tifying the duality covariant DFT fields with those of supergravity requires the choice of

a specific double Lorentz gauge and certain higher order field redefinitions. While in the

Gauged DFT sub-sector of DFT the fields transform linearly under O(d, d), the T-duality

transformation of the supergravity fields gets deformed by the double Lorentz transforma-

tions and the redefinitions. Interestingly, throughout this procedure the O(d, d) transfor-

mations need not be rigid, and so it can be applied to generalized dualities in light of the

observation made above.

In this paper we find a unified expression for first order corrections to generalized

dualities. It can be easily specified to any generalized T-duality (Abelian, non-Abelian,

Poisson-Lie, etc.) and deformations such as Yang-Baxter, in any of the theories captured

by the higher derivative corrections to DFT (bosonic or heterotic strings and HSZ theory),

in any supergravity frame related by field redefinitions.

Before introducing the original results, we intend to provide a pedagogical introduction

to DFT for readers of the generalized duality community, and the other way around. Section

1The paradigmatic case is that of SO(4) gaugings generated by O(3, 3) valued twists representing either

an S3 background with H-flux or a T-fold.
2Even more generally, the gaugings can fall into different orbits, as happens for instance when the

backgrounds are non-unimodular. We can still can make sense of the duality as connecting solutions to

deformed theories, such as generalized supergravities [21, 22].
3There are alternative formulations in which the generalized diffeomorphisms are deformed [31–35], and

also formulations in which the Lorentz deformations are accounted for through extensions of the duality

group [36–38].

– 2 –



J
H
E
P
1
0
(
2
0
2
0
)
0
0
2

2 is devoted to review some relevant aspects of DFT, its flux formulation, its gauged version

and the way to encode higher derivatives. We discuss there how generalized dualities fit

into Gauged DFT to leading order in α′. Section 3 discusses how generalized dualities

are captured by local O(d, d) × R+ transformations, and present the explicit form of the

elements of this group in the case of Abelian, non-Abelian and Poisson-Lie T-duality.

Section 4 contains most of the original results of this paper, combining the ideas in section 2

and 3 to generate a general formula for higher derivative corrections to generalized dualities.

Along the paper the reader will find the following results:

• Although local O(d, d) transformations and R+ shifts of the generalized dilaton are

not symmetries of DFT, some specific elements of this group transform Gauged DFT

into another Gauged DFT in the same duality orbit. In certain cases when the

gaugings fall into distinct duality orbits, one can still make sense of the transformation

as connecting background solutions to deformed DFTs.

• The local O(d, d)× R+ transformations that relate dual backgrounds remain uncor-

rected with respect to higher derivatives. The elements that generate the generalized

dualities can then be read from the backgrounds to lowest order, and applied to

higher-order corrected backgrounds so as to obtain the corrections to the dual back-

ground. This result is extremely powerful, as it allows to perform duality transfor-

mations to backgrounds with higher derivatives, by knowing only the transformation

to lowest order. We give the explicit form of these transformations for different gen-

eralized dualities: Abelian (3.53), non-Abelian (3.63) and PL T-duality (3.100), and

discuss the relation between pluralities and the notion of orbits in Gauged DFT.

• In the context of Gauged DFT, the duality covariant generalized fields are linearly

acted on by the local O(d, d) × R+ transformation that defines the generalized du-

ality. However, when it comes to translating this into the language of supergravity,

the Lorentz gauge fixing and field redefinitions spoil the order and simplicity of gen-

eralized dualities in Gauged DFT, inducing higher-order corrections to the transfor-

mations of the supergravity fields. In this paper we compute these corrections in

full generality in (4.24). The result is remarkably simple, and still general enough to

account for any of the two parameters a and b that control the higher-order defor-

mations (a = 0 or b = 0 is the heterotic string, a = b is bosonic, a = −b is HSZ),

for any generalized duality (defined as connecting background solutions through local

O(d, d) transformations and generalized dilaton shifts), for any supergravity scheme

defined by its relation to the DFT scheme.

2 A review of Double Field Theory

In this section we set the conventions to be used throughout the paper, and briefly review

the frame [1, 2, 39] or flux [40] formulation of DFT, it’s gauged version [19] through gSS

reductions and it’s first order higher-derivative extension [29].

We begin with some conventions. D is the dimension of the full space-time, d is the

dimension of the internal compact space, and n = D − d is the dimension of the external
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Dim

Space
Curved Algebraic Flat

2D2D2D M,N I,J A,B
DDD µ, ν ι, κ α, β

2d2d2d M,N I, J A,B

ddd m, n i, j a, b

nnn m,n i, j a,b

Table 1. Index conventions.

space. Apart from the usual curved and flat type of indices, flux compactifications involve

an extra type of internal indices that we call “algebraic” for reason that will become clear

later. Table 1 contains the conventions for different type of indices in different dimensions.

2.1 Flux formulation of DFT

Double Field Theory (DFT) incorporates T-duality as a manifest symmetry, given by the

continuous global O(D,D) group that preserves the symmetric metric ηMN . This metric

and its inverse are used to raise a lower the 2D curved indices M,N on which O(D,D)

acts. Duality requires that in addition to the standard space-time coordinates Xµ, the

theory includes dual coordinates X̃µ, associated with the winding excitations of closed

string theory on backgrounds with non-trivial cycles. It is then defined over a doubled

space with coordinates XM = (Xµ, X̃µ). The double space is however constrained. One

option is to impose the strong constraint which states that all fields and their products

must be annihilated by the double Laplacian

∂M ∂M · · · = 0 . (2.1)

This implies that locally there is always an O(D,D) transformation that rotates into a

frame in which the fields depend only on half of the coordinates. A particular solution is

given by demanding that nothing depends on the dual coordinates ∂̃µ = 0 in which case

the section coincides with the standard D-dimensional space-time on which supergravity

is defined. Although flux compactifications of DFT permit a relaxation of this strong

constraint [19], as we will discuss later, in this paper we will impose the strong constraint

all along.

There is also a local O(1, D − 1) × O(1, D − 1) symmetry usually referred to as the

double Lorentz symmetry. It preserves two symmetric matrices ηAB and HAB and acts on

flat 2D indices A,B which are raised and lowered by ηAB.

The field content of the theory simply consists of a generalized frame EM
A and a

generalized dilaton d, that depend on the double coordinates. The generalized frame is

constrained to satisfy

ηMN = EM
A ηAB EN

B , (2.2)
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and permits to define the famous generalized metric as follows

HMN = EM
AHAB ENB . (2.3)

The O(D,D) transformations

ΨM
P ηPQΨN

Q = ηMN , Ψ ∈ O(D,D) , (2.4)

act linearly on the space and fields through matrix multiplication

X′M = XNΨN
M , E′(X′)MA = ΨM

NE(X)N
A , d′(X′) = d(X) . (2.5)

The double Lorentz transformations

OAC ηCDOBD = ηAB , OACHCDOBD = HAB , O ∈ O(1, D − 1)×O(1, D − 1) , (2.6)

act on the fields as follows

L(E)M
A = EN

BOBA , L(d) = d . (2.7)

It is convenient to define a different set of double Lorentz invariants

P (±)
AB ≡

1

2
(ηAB ±HAB) , (2.8)

which are projectors P (±)2 = P (±) and P (±)P (∓) = 0 acting on the different factors of the

double Lorentz product. We define the following index notation for future reference

P (+)
A
BTB ≡ TA , P (−)

A
BTB ≡ TB , (2.9)

and the same holds for curved indices. It is also convenient to deal with infinitesimal double

Lorentz transformations OAB = δA
B + ΛA

B, parameterized by antisymmetric parameters

ΛAB = Λ[AB] which are diagonal with respect to the projections, namely ΛAB = 0. In

terms of these, the Lorentz variations of the fields read

δEM
A = EM

BΛB
A , δd = 0 . (2.10)

On top of these symmetries, DFT is invariant under generalized diffeomorphisms, which

will play a minor role in this work. Finally, there is a crucial transformation consisting in

a constant generalized dilaton shift, that we will call R+

e−2d′(X′) = e−2αe−2d(X) , e−2α ∈ R+ . (2.11)

This is not a strict symmetry of the action, but a rescalling, and then the equations of

motion turn out to be invariant under this symmetry. This will be crucial when it comes

to gauging the theory.

DFT is defined by an action that is fixed by invariance under the symmetries discussed

so far. In the frame formulation, it can be written compactly in terms of the so called

generalized fluxes

FABC ≡ 3Ω[ABC]

FA ≡ 2DAd+ ΩBBA where ΩABC ≡ DAENBENC , DA ≡ EMA∂M .
(2.12)
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The specific form of the action and the corresponding equations of motion are irrelevant in

this paper, the only important thing we need to keep in mind is that they can be written

in terms of the generalized fluxes and their flat derivatives (see [40] for the two-derivative

action, and [30] for the first order corrections in terms of fluxes). Of special importance

are certain projections of the generalized fluxes that happen to appear in higher derivative

Lorentz transformations, and so we define them here for future reference

F (+)
ABC = FABC , F (−)

ABC = FABC . (2.13)

Connecting with supergravity requires a GL(n) × O(d, d) decomposition of O(D,D).

Let us show how this works in the fully uncompactified scenario n = D. We first impose the

strong constraint and pick the solution ∂̃µ = 0, so nothing depends on the dual coordinates.

Next, we propose a parameterization of the generalized frame and dilaton

EM
A =

1√
2

(
−Qtµν e(−)να Qµν e

(+)ν
α

e(−)µα e(+)µ
α

)
, e−2d =

√
−Ge−2Φ , (2.14)

and also the invariant matrices

ηMN =

(
0 δµ

ν

δµν 0

)
, ηAB =

(
−gαβ 0

0 gαβ

)
, HAB =

(
gαβ 0

0 gαβ

)
. (2.15)

Here Qµν ≡ Gµν + Bµν and gαβ = diag{−1, 1, . . . , 1} are D-dimensional Minkowski ma-

trices that raise and lower flat D-dimensional indices. There are two vielbeins e(±)
µ
α

each transforming under different factors of the Lorentz group. They differ by a Lorentz

transformation, and so they generate the same metric

Gµν = e(±)
µ
α gαβ e

(±)
ν
β . (2.16)

If desired, the generalized metric can then be computed from these definitions (2.3)

HMN =

(
Gµν −BµρGρσBσν BµρGρν

−GµρBρν Gµν

)
. (2.17)

Using the parameterization of the generalized fields we can compute the components

of the generalized fluxes. In particular we show here the non-vanishing components of F (±)

in (2.13)

F (±)
αβ

γ =
1√
2
e(∓)ν

αω
(±)

νβ
γ , ω(±)

µα
β = ωµα

β(e(±))± 1

2
Hµα

β(e(±)) , (2.18)

where ω(e(±)) and H(e(±)) are the Levi-Civita spin connection and curvature for the two-

form respectively

ωµα
β(e) ≡ eνα∇µeνβ , Hµα

β(e) ≡ 3∂[µBνρ]e
ν
αe
ρβ , (2.19)

but evaluated in e(±) instead.

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
0
0
2

Making contact with supergravity requires a gauge fixing. This is achieved by choosing

a double Lorentz gauge in which

e(+)
µ
α = e(−)

µ
α ≡ eµα , (2.20)

and then locking the vielbeins to coincide with the unique vielbein that there is in super-

gravity. This gauge fixing breaks the double Lorenz group down to its diagonal subgroup,

and on the other hand it breaks the O(D,D) covariance of the generalized frame, so the

failure of O(D,D) to preserve the form of the generalized frame after the gauge fixing will

have to be compensated by a restoring double Lorentz transformation.

2.2 Gauged DFT

We now briefly review Gauged DFT [18, 19], which is obtained after performing a gener-

alized Scherk-Schwarz (gSS) reduction [16, 17] of DFT. The idea is to keep the O(D,D)

structure of the theory, assuming an underlying GL(n) × O(d, d) decomposition, under

which the coordinates split as XM = (Xm, X̃m, Y
M ) and the strong constraint is imposed

in the external space such that ∂̃m = 0. The gSS ansatz for the fields is read from the rigid

O(D,D) × R+ symmetries of the equations of motion, and separating the dependence on

external X and internal Y coordinates

E(X,Y )M
A = U(Y )M

IÊ(X)I
A , d(X,Y ) = d̂(X) + λ(Y ) , (2.21)

where the fields with a hat only depend on the external coordinates and correspond to

the dynamical objects in Gauged DFT. The matrix U(Y ) is usually called twist matrix or

duality twist, as it must be O(D,D) valued. It maps indices of the parent DFT M,N to

indices of the effective Gauged DFT I,J , and must be trivial in the external directions

UMI∂MT̂ (X) = δMI∂MT̂ (X) , (2.22)

so it is in fact an element of O(d, d). Together with λ(Y ), they encode all the dependence

on the double internal coordinates, and contain the information of the compactification

background.

To understand the physics behind the ansatz, it is instructive to see how it affects the

generalized metric

H(X,Y )MN = U(Y )M
IĤ(X)IJU(Y )N

J , Ĥ(X)IJ = Ê(X)I
AHABÊ(X)J

B . (2.23)

The full background H(X,Y )MN is written as perturbations around the compactification

background U(Y )M
IδIJU(Y )N

J , where the fluctuations are governed by Ĥ(X)IJ around

δIJ , which contains the fields in the effective action of Gauged DFT, and is fixed by it’s

equations of motion.

Under the gSS ansatz the generalized fluxes (2.12) split as a sum of external and

internal parts

FABC = F̂ (X)ABC + ÊIAÊ
J
BÊ
K
CFIJK , FA = F̂ (X)A + ÊA

IFI , (2.24)
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where all the dependence on the twists ends on the gaugings, defined by

FIJK ≡ 3Ω[IJK]

FI ≡ 2UMI∂Mλ+ ΩJ JI where ΩIJK ≡ UMI∂MUNJUNK .
(2.25)

Invariance of the action, covariance of the equations of motion and closure of the gauge

algebra leads to a set of consistency constraints

∂[IFJKR] −
3

4
F[IJ

SFKR]S = 0 , ∂KFKIJ + 2∂[IFJ ] − FKFKIJ = 0 , (2.26)

where we are defining ∂I = UMI∂M. Interestingly, the strong constraint implies these

equations, but the reserse it not true and so this is a relaxed version of the strong constraint

in the internal space, which can be truly double as long as these quadratic constraints are

satisfied [19]. Normally, the gaugings FI receive extra contributions through the gauging

of a warp factor re-scaling of the Kaluza-Klein fields that arise under a GL(n) × O(d, d)

decomposition. We are not assuming such a decomposition and so we will ignore this here,

for a general discussion on this point we refer to [16, 17] and [41]. We finally point out that

normally the fluxes are taken to be constant, in which case the action reduces to a lower

dimensional gauged supergravity. Here we will not always assume this, as non-constant

deformations are relevant when it comes to discuss certain backgrounds that arise in the

context of generalized dualities.

Since the twist matrix has to be trivial in the external sector (2.22) it can be parame-

terized as

UM
I =


δm

i 0 0 0

0 Um
i 0 Umi

0 0 δmi 0

0 Umi 0 Umi

 , UM
I =

(
Um

i Umi

Umi Umi

)
, (2.27)

where we defined a 2d-dimensional internal matrix UM
I that has to be O(d, d) valued.

Then, the gaugings only have internal components

FIJK −→ FIJK = 3Ω[IJK]

FI −→ FI = 2UMI∂Mλ+ ΩJ
JI where ΩIJK ≡ UMI∂MU

N
JUNK ,

(2.28)

that satisfy their own Jacobi identities

∂[IFJKR] −
3

4
F[IJ

SFKR]S = 0 , ∂KFKIJ + 2∂[IFJ ] − FKFKIJ = 0 . (2.29)

In the effective action, all the information of the background is encoded exclusively in the

gaugings FIJK and FI . Their explicit form will depend on the twist matrix U , which in

full generality is given by [40]

U =

(
u bu−t

βu (1 + βb)u−t

)
=

(
1 0

β 1

)(
1 b

0 1

)(
u 0

0 u−t

)
, b = −bt , β = −βt . (2.30)
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The so called geometric and non-geometric fluxes [42] in this context are simply partic-

ular components of the gaugings, and can be expressed in terms of these background

fields [16, 17]

Fijk = Hijk , Fij
k = fij

k , Fi
jk = Qi

jk , F ijk = Rijk . (2.31)

A priori there is no obstruction in the formalism to reach all possible orbits of gaugings

(this was proved for O(3, 3) in [20]) if the strong constraint is relaxed as in [19], although

a proof is still missing in general. It was shown in [20] that when the twists are strong

constrained, they additionally satisfy

∂IF
I − 1

2
FIF

I +
1

12
F IJKFIJK = 0 , (2.32)

which is the condition that the gaugings admit an embedding into maximal supergrav-

ity [43, 44]. This is not a constraint of Gauged DFT. Only a subset of the allowed gaugings

satisfy this condition, and so a relaxation of the strong constraint is mandatory in order

to reach all duality orbits. We refer to [20] for discussions on this point.

Let us discuss the idea of how generalized dualities are treated in the context of Gauged

DFT. Consider a background coordinatized by Y and characterized by U(Y ) and λ(Y ) with

gaugings
FIJK = 3U(Y )M [I∂MU(Y )NJU(Y )NK]

FI = 2U(Y )MI∂Mλ(Y )− ∂MU(Y )MI .
(2.33)

Next consider a different (dual) background coordinatized by Y ′ and characterized by

U ′(Y ′) and λ′(Y ′) with gaugings

F ′IJK = 3U ′(Y ′)M [I∂
′
MU

′(Y ′)NJU
′(Y ′)NK]

F ′I = 2U ′(Y ′)MI∂
′
Mλ
′(Y ′)− ∂′MU ′(Y ′)MI .

(2.34)

When the gaugings fall into the same duality orbit, namely when there exists a constant

element h ∈ O(d, d) such that

F ′IJK = hI
LhJ

GhK
HFLGH , F ′I = hI

LFL , (2.35)

then the equations of motion of Gauged DFT for the original background, and those of

the dual background are related by field redefinitions. These in fact are simply O(d, d)

rotations of the fields in the effective action by the same elements h

Ê′(X)I
A = hI

J Ê(X)J
A , d̂′(X) = d̂(X) . (2.36)

The combined action of (2.35) and (2.36) leave the full generalized fluxes (2.24) invariant

F ′ABC = FABC , F ′A = FA . (2.37)

Moreover, since these fluxes only depend on the external coordinates X, flat derivatives

acting on them are also invariant under this transformation (DAF )′ = DAF . As a result,

the full Gauged DFT action and it’s equations of motion remain invariant. The resulting

– 9 –
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effective theory for both dual backgrounds is the same, and in this sense they are dual to

each other. Moreover, if the external factors of the gSS ansatz Ê(X) and d̂(X) satisfy the

equations of motion of Gauged DFT, then the generalized duality maps a solution to a

solution. It is then trivial from the point of view of Gauged DFT that generalized dualities

act as a solution generating technique at the classical level. This is nicely discussed in [26].

The twists and their duals belong to different spaces with different set of coordinates,

Y for the original and Y ′ for the dual. We can think of going from one background to the

other through a transformation4

Y → Y ′ , ∂ → ∂′ , U(Y )→ U ′(Y ′) = ψ(Y, Y ′)U(Y ) , λ(Y )→ λ′(Y ′) = λ(Y )+α(Y, Y ′) ,

(2.38)

consisting in specific local O(d, d) rotations by the elements ψ(Y, Y ′) and local generalized

dilaton shifts by α(Y, Y ′)

ψ(Y, Y ′) = U ′(Y ′)U−1(Y ) ∈ O(d, d) , α(Y, Y ′) = λ′(Y ′)− λ(Y ) , (2.39)

that connect backgrounds whose gaugings fall into the same duality orbit. It is in this sense

that generalized dualities can be defined by promoting the global symmetries of DFT into

local symmetries of Gauged DFT.

We can summarize how generalized dualities are captured by Gauged DFT as follows:

Although local O(d, d) transformations and R+ shifts of the generalized dilaton

are not symmetries of DFT, some specific elements of this group transform

Gauged DFT into another Gauged DFT in the same duality orbit.

Now suppose the following scenario. We have a local O(d, d) × R+ transformation

connecting two backgrounds (U , λ) and (U ′, λ′) that generate gaugings that fall into

distinct duality orbits. In this case, it might be possible to deform them (by modifying the

twists) and force them to coincide. If the deformation on its own generates a consistent

gauging, then the backgrounds can be interpreted as solutions to different Gauged DFTs

gauged by the deformations. We will see this effect explicitly when discussing particular

examples of generalized dualities.

The local O(d, d)×R+ transformations that connect twists (U , λ) and (U ′, λ′)

that fall into distinct duality orbits, can sometimes be interpreted as a mapping

between solutions of deformed theories.

2.3 Higher derivatives in DFT

In this section we review how to incorporate higher-derivatives in DFT through corrections

to the double Lorentz transformations [29]. The infinitesimal first-order in α′ deformation

is given by the generalized Green-Schwarz transformation (antisymmetrization of projected

indices exchanges the index but not the projection [AB] = 1
2(AB − BA))

δΛEM
A = EM

B
[
ΛB
A + Λ(1)

B
A
]
, Λ(1)

BA ≡ aD[BΛC
DF (−)

A]D
C − bD[BΛC

DF (+)
A]D
C ,

(2.40)

4Abelian T-duality is a special case in which dual coordinates are related by these elements of O(d, d),

namely Y ′ = ψY .
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where a and b are both O(α′) and interpolate between different string effective theories.

The generalized dilaton remains a Lorentz scalar. This first-order correction implies that

the component fields parameterizing the generalized fields under a GL(n)×O(d, d) decom-

position cannot be the standard ones that transform covariantly under Lorentz transfor-

mations. Instead, they are related to those through first order Lorentz non-covariant field

redefinitions. Then, when written in terms of the Lorentz covariant fields, the generalized

frame is parameterized by higher derivative terms. For this reason, it is convenient to

parameterize the generalized frame as follows (for concreteness we take the case n = D)

EM
A=

1√
2

(
−Q̄tµν ē(−)να Q̄µν ē

(+)ν
α

ē(−)µα ē(+)µ
α

)
, e−2d =

√
−Ḡe−2Φ̄ , ΛA

B=

(
Λ̄(−)

α
β 0

0 Λ̄(+)α
β

)
,

(2.41)

where the overline indicates that the components are duality covariant but not Lorentz

covariant. In other words, the duality covariant fields Ψ̄ are related to the Lorentz covariant

ones Ψ though first order redefinitions ∆Ψ, namely Ψ̄ = Ψ + ∆Ψ. Note that Ψ̄ is duality

covariant but Lorentz non-covariant, and Ψ is the opposite. The parameterization of the

first-order deformation is

Λ(1)
B
A =

(
0 e(−)µ

βe
(+)ν

αΣµν

e(−)
ν
αe(+)

µ
βΣνµ 0

)

Σµν ≡
1

4

(
aΣ(−)

µν + bΣ(+)
νµ

)
, Σ(±)

µν ≡ ∂µΛ(±)
α
βω(±)

νβ
α .

(2.42)

Note that because this deformation is already first-order, it is the same to put bars or not

as the difference is of higher order. The corrected transformations of the D-dimensional

fields are given by

δΛ̄ē
(+) = ē(+)Λ̄(+) − ΣtG−1e(+) , δΛ̄ē

(−) = ē(−)Λ̄(−) − ΣG−1e(−) , δΛ̄Q̄ = −2Σ , (2.43)

where we have written everything in matrix notation.

When it comes to reduce this setup to supergravity one has to perform a double

Lorentz transformation to a certain gauge in which the two vielbeins coincide. These

transformations are finite, so we now discuss how to extract the finite version of the double

Lorentz deformations from the infinitesimal ones considered above, following the strategy

in [45] closely. We aim at re-writing the transformations in terms of Ō(±) = 1 + Λ̄(±) + . . .

where the dots represent higher orders in Λ̄(±), such that Ō(±)gŌ(±)t = g. Since the lowest

order is trivial, let us focus on the generalized Green-Schwarz transformation. To this end,

consider the finite and infinitesimal transformation of the spin connections (which follows

from L(ē(±)) = ē(±)O(±))

L(ω(±)
µα
β) = O(±)−1

α
γO(±)

δ
βω(±)

µγ
δ + O(±)−1

α
γ∂µO(±)

γ
β

δΛω
(±)

µα
β = −Λ(±)

α
γω(±)

µγ
β + Λ(±)

γ
βω(±)

µα
γ + ∂µΛ(±)

α
β .

(2.44)

Using the above we take the following tour for the symmetric part of Σ(±) in (2.42)

Σ(±)
(µν) = ∂(µΛ(±)

α
βω(±)

ν)β
α = δΛ

(
1

2
ω(±)

µα
βω(±)

νβ
α

)
→ L

(
1

2
ω(±)

µα
βω(±)

νβ
α

)
,

(2.45)
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ending with

Σ(±)
(µν) = ω(±)

(µα
β∂ν)O(±)

β
γO(±)−1

γ
α − 1

2
∂µO(±)−1

α
β∂νO(±)

β
α . (2.46)

What we did above is the following. We identified Σ(±)
(µν) with the infinitesimal failure of

1
2tr(ω(±)ω(±)) to remain invariant, and the arrow indicates that we now replace Σ(±)

(µν)

by the failure of 1
2tr(ω(±)ω(±)) to be invariant under finite Lorentz transformations.

For the antisymmetric part of Σ(±) we proceed similarly. First we note that B̄µν
recieves a first order Lorentz transformation from the generalized Green-Schwarz term,

given by δΛB̄µν = −2Σ[µν], which implies that Hµνρ = 3∂[µB̄νρ] cannot be the three-form

field strength as it is not Lorentz invariant

δΛHµνρ = −3a

2
∂[µ

(
∂νΛ(−)

α
βω(−)

ρ]β
α
)

+
3b

2
∂[µ

(
∂νΛ(+)

α
βω(+)

ρ]β
α
)
. (2.47)

The failure coincides with the infinitesimal Lorentz transformation of two copies of Chern-

Simons three forms

δΛCS(±)
µνρ = −∂[µ

(
∂νΛ(±)

α
βω(±)

ρ]β
α
)

(2.48)

CS(±)
µνρ ≡ ω(±)

[µα
β∂νω

(±)
ρ]β

α +
2

3
ω(±)

[µα
βω(±)

νβ
γω(±)

ρ]γ
α , (2.49)

such that

− 6∂[µΣνρ] = 3∂[µδΛB̄νρ] = δΛHµνρ =
3a

2
δΛCS(−)

µνρ −
3b

2
δΛCS(+)

µνρ . (2.50)

As before, we now consider the finite Lorentz transformation of the Chern-Simons three-

forms

L
(

CS(±)
µνρ

)
= CS(±)

µνρ + ∂[µ

(
ω(±)

να
β∂ρ]O(±)

β
γO(±)−1

γ
α
)

(2.51)

−1

3
∂[µO(±)

α
βO(±)−1

β
γ∂νO(±)

γ
δO(±)−1

δ
ε∂ρ]O(±)

ε
ξO(±)−1

ξ
α ,

and considering that the last term is closed and then locally exact, we readily arrive at

Σ(±)
[µν] = −ω(±)

[µα
β∂ν]O(±)

β
γO(±)−1

γ
α + Σ(±)WZW

µν

∂[µΣ(±)WZW
νρ] =

1

3
∂[µO(±)

α
βO(±)−1

β
γ∂νO(±)

γ
δO(±)−1

δ
ε∂ρ]O(±)

ε
ξO(±)−1

ξ
α .

(2.52)

In conclusion, the finite version of the generalized Green-Schwarz transformation on

D-dimensional fields is as follows

L(ē(+)) = ē(+)Ō(+) − ΣtG−1e(+)O(+)

L(ē(−)) = ē(−)Ō(−) − ΣG−1e(−)O(−)

L(Ḡ) = Ḡ− (Σ + Σt)

L(B̄) = B̄ − (Σ− Σt)

L(Q̄) = Q̄− 2Σ

L(Φ̄) = Φ̄− 1

2
GµνΣµν ,

(2.53)
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where

Σµν =
1

4

(
aΣ(−)

µν + bΣ(+)
νµ

)
Σ(±)

µν = ∂µO(±)
β
γO(±)−1

γ
αω(±)

να
β − 1

2
∂µO(±)−1

α
β∂νO(±)

β
α + Σ(±)WZW

µν

∂[µΣ(±)WZW
νρ] =

1

3
∂[µO(±)

α
βO(±)−1

β
γ∂νO(±)

γ
δO(±)−1

δ
ε∂ρ]O(±)

ε
ξO(±)−1

ξ
α . (2.54)

In section 4 we wil specify specific dependencies on these functions. Here we are using

Σ = Σ
(
O(+),O(−), ω(±)(e(±))

)
, but later the arguments will change. We have also included

the Lorentz transformation for the dilaton field which is obtained from L(d) = d and its

parameterization (2.41). This result uses the strong constraint in the supergravity frame,

but otherwise is completely general and holds for any choice of the parameters a and b.

On a different page, let us comment here how this setup can be used to compute higher

derivative corrections to generalized dualities. To address this question we must follow the

approach in [30], which is simply the gauged version of the α′ deformed DFT [29]. The

idea is to perform a gSS reduction of DFT to first order in α′, which interestingly proceeds

in exactly the same way as in the two-derivative case. When the gSS ansatz (2.21) is

adopted, the twists U(Y ) and λ(Y ) end up forming the exact same fluxes that gauge the

action, equations of motion and gauge transformations in the two derivative action. This

is, nor the twists nor the gaugings receive higher-derivative corrections. However, because

the Gauged DFT now contains higher derivatives, the effective generalized fields Ê and d̂

now obey higher derivative equations of motion and then

E(X,Y ) = U(Y )Ê(X) = U(Y )
(
Ê(0)(X) + Ê(1)(X) + . . .

)
d(X,Y ) = d̂(X) + λ(Y ) = d̂(0)(X) + d̂(1)(X) + · · ·+ λ(Y ) .

(2.55)

Following the logic of how generalized dualities are captured by Gauged DFT, we can

now perform the local O(d, d) transformations and shifts of the generalized dilaton (2.38)

and (2.39) to transform the background into its dual

E′(X,Y ′) = U ′(Y ′)Ê(X) = U ′(Y ′)
(
Ê(0)(X) + Ê(1)(X) + . . .

)
d′(X,Y ′) = d̂(X) + λ′(Y ′) = d̂(0)(X) + d̂(1)(X) + · · ·+ λ′(Y ′) .

(2.56)

As before, when the dual background U ′(Y ′) and λ′(Y ′) generates gaugings that fall into

the same duality orbit than those of the original background, then it is guaranteed to be

a solution of the α′ corrected Gauged DFT. If instead the orbits are different, the dual

background could be a solution of a deformed α′ corrected Gauged DFT.

There is a remarkable consequence of the fact that the twists receive no corrections

and that all the corrections are captured by the external part of the gSS ansatz :

The local O(d, d) × R+ transformations that relate dual backgrounds remain

uncorrected with respect to higher derivatives. Then, we can read the elements

ψ(Y, Y ′) = U ′(Y ′)U−1(Y ) and α(Y, Y ′) = λ′(Y ′)− λ(Y ) from the backgrounds

to lowest order, and apply the transformation to higher-order corrected back-

grounds so as to obtain the corrections of the dual background.
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Then, in the context of Gauged DFT the generalized frame is simply acted on linearly

by the uncorrected local T = O(d, d) × R+ transformation that defines the generalized

duality. When it comes to make contact with supergravity, double Lorentz transformations

Ls and L′s must be performed in order to take the full frames E and E′ to a gauge in which

the two vielbeins coincide (2.20). This transformation is typically not allowed in Gauged

DFT, and then takes you away from it. We represent the situation in figure 1. If we want

to explore how to go from a supergravity configuration into its dual, we must first access

Gauged DFT though Ls in order to take the solution into a generalized Scherk-Schwarz

form, there act with T , and then double Lorentz transform back to the supergravity gauge

in the dual picture with L′s. It is through these double Lorentz transformations Ls and L′s
that the generalized dualities acting on supergravity backgrounds receive higher derivative

corrections due to the generalized Green-Schwarz transformation.

There is a subset of double Lorentz transformations that keep you inside Gauge DFT

(i.e. that preserve the gSS form of the generalized fields). These transformations are those

generated by double Lorentz elements that depend only on external coordinates. These

specific transformations commute with T even when it is local. This is not the case of

Ls not L′s because these elements depend on the background which typically carries a

dependence on the internal coordinates. Figure 1 is useful to show that starting from

a corrected supergravity solution, its generalized dual is also a solution. The argument

is as follows. Plugging the solution into the generalized frame (the same story holds for

the dilaton) in the supergravity gauge gives you a solution Es to the DFT equations of

motion. These are covariant under generic double Lorentz transformations, and so also E

is a solution. Now E being a solution of DFT means that Ê is a solution to the Gauged

DFT generated by the twist U . The action of T is to change U by U ′, but this gives you

back the same Gauged DFT. So E′ is also a solution of DFT. Finally transforming back to

the supergravity gauge with L′s (under which the DFT equations of motion are covariant)

gives E′s from which the dual supergravity background can be read. So from the DFT

perspective, this is a solution generating technique even at first order in α′.

3 O(D,D) structure of generalized dualities

We have defined generalized dualities as the combined action of specific local O(d, d) trans-

formations and generalized dilaton shifts R+ that map solutions into solutions of Gauged

DFTs. In this section we present the explicit form of these elements for the cases of

Abelian, non-Abelian and PL T-dualities, and also Yang-Baxter deformations. In addition

we discuss the embedding of these dualities into the full O(D,D)× R+.

3.1 Decompositions of O(D,D)

We introduce here how to decompose the group O(D,D) into its subgroups GL(D) (useful

to deal with full D-dimensional solutions) and GL(n)×O(d, d) (more relevant in compact-

ification scenarios).
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Figure 1. The inner box represents Gauged DFT where the original and dual backgrounds take the

gSS form. There T acts linearly and receives no corrections. The double Lorentz transformations Ls

and L′
s required to take the generalized frames to a supergravity gauge pull you out of Gauged DFT,

and induce higher order corrections to generalized dualities from the perspective of supergravity.

3.1.1 GL(D) decomposition

We now review the aspects of O(D,D) that will be relevant to us, for more details see [46,

47]. The O(D,D) group can be spanned by the matrices

Ψ•
• =

(
A·· B··
C·· D··

)
A,B,C,D ∈ RD×D ΨηΨt = η η•• =

(
0 1D

1D 0

)
, (3.1)

where the bullets represent the index structure and the D ×D matrices have to satisfy

AtC + CtA = BtD + DtB = 0 , AtD + CtB = 1D

ABt + BAt = CDt + DCt = 0 , ADt + BCt = 1D .
(3.2)

We will note the identity matrix in two different ways, depending on where the indices sit.

On the one hand we have 1D ≡ δµ
ν = δνµ = diag{1, . . . , 1}, and on the other we will also

consider the Kronecker deltas δ = δµν and δ−1 = δµν . Identical notation will be used for

dimensions other than D.

As it is well known, any element of the group can be decomposed as successive products

of the following transformations:

• Change of basis A ∈ GL(D,R)

ΨGL =

(
A 0

0 A−t

)
, (3.3)

where A−t ≡ (At)−1.

• B-shifts

ΨB =

(
1D Ξ

0 1D

)
, (3.4)

where Ξµν = −Ξνµ.
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• Factorized dualities

Ψtµ =

(
1D − tµ tµ

tµ 1D − tµ

)
, (tµ)νρ ≡ δµνδµρ . (3.5)

Any Ψ ∈ O(D,D) can be created through succesive products of these elements. The

following two transformations will be of special interest:

• Full factorized duality. This transformation is obtained by applying factorized

dualities over all directions

Ψf =

(
0 δD

δ−1
D 0

)
. (3.6)

• β-shifts.

Ψβ =

(
1D 0

β 1D

)
=

(
0 δD

δ−1
D 0

)(
1D δDβδD

0 1D

)(
0 δD

δ−1
D 0

)
, (3.7)

where βµν = −βνµ, and as can be seen is a product of a full factorized T-duality, a

B-shift and another full factorized transformation. For this reason it is also named

TsT transformation.

As explained in (2.5), the O(D,D) group acts linearly on the generalized frame

EM
A =

1√
2

(
−Qtµν e(−)να Qµν e

(+)ν
α

e(−)µα e(+)µ
α

)
. (3.8)

We can then analyze how O(D,D) transformations act on D-dimensional fields

T (e(−))µα = Nµνe(−)ν
α , T (e(+))µα = Mµ

νe
(+)ν

α

T (Q)µν = (AQ+ B)µρ(M−1)ρν = (N−t)µρ(QAt − Bt)ρν ,
(3.9)

where we defined

M ≡ CQ+ D , N = −CQt + D . (3.10)

Using the O(D,D) identities (3.2) it can be shown that both expressions for T (Q) are

equivalent.

Let us now discuss how generalized T-dualities act on supergravity backgrounds to

lowest order, following the route in figure 1. We first plug the supergravity background

into the generalized frame in the supergravity gauge in which both vielbeins are equal (this

is the starting point in the upper-left corner of figure 1)

Es =
1√
2

(
−Qt e−t g−1 Qe−t

e−tg−1 e−t

)
. (3.11)
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We then do a double Lorentz transformation Ls to bring it to a gSS form in Gauged DFT.

There, the two vielbeins are given by

E = Ls(Es) = EsOs =
1√
2

(
−Qt e−t g−1 Qe−t

e−tg−1 e−t

)(
O(−)
s 0

0 O(+)
s

)

=
1√
2

(
−Qt e(−)−t g−1 Qe(+)−t

e(−)−tg−1 e(+)−t

)
,

(3.12)

so now e(±) = eO(±)
s . We are now in the lower-left corner of figure 1, and next we move

to the right by applying the O(D,D) transformation (3.9) E′ = T (E) = ΨE, which at the

level of components reads

e(±)′ = T (e(±)) , Q′ = T (Q) . (3.13)

Finally we implement the last arrow in figure 1, Lorentz transforming back with L′s to take

the dual generalized frame E′ in Gauged DFT to the dual supergravity gauge E′s

E′s = L′s(E
′) = E′O′s =

1√
2

(
−Q′t e(−)′−t g−1 Q′ e(+)′−t

e(−)′−tg−1 e(+)′−t

)(
O(−)
s
′ 0

0 O(+)
s
′

)

=
1√
2

(
−Q′t e′−t g−1 Q′ e′−t

e′−tg−1 e′−t

)
,

(3.14)

where we then have e′ = e(±)′O(±)
s
′.

The composition of this sequence of transformations yields the following result for the

supergravity vielbein

e′ = N−teO(−)
s O(−)

s
′ = M−teO(+)

s O(+)
s
′ . (3.15)

We then see on the one hand that the Lorentz transformations are related by the fact that

we are forcing the initial and dual backgrounds to be in the supergravity gauge. There is

an ambiguity in how to define the supergravity gauge, because it is preserved by diagonal

Lorentz transformations. We can use this freedom on both sides of the duality to set

e(+) = e , e(+)′ = e′ , (3.16)

so that

O(+)
s = O(+)

s
′ = 1 . (3.17)

This choice leaves us with

O(−)
s = e−1e(−) , O(−)

s
′ = e(−)′−1e′ ⇒ O(−)

s O(−)
s
′ = e−1NtM−te = getN−1Me−tg−1 ,

(3.18)

where the last rewriting follows by using the identity

M−tGM−1 = N−tGN−1 , (3.19)
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and then in this diagonal Lorentz gauge the vielbein transforms as

e′ = M−te . (3.20)

We could as well have chosen the gauge in which e′ = N−te, or any other one related to

this by a Lorentz transformation. We will stick to the choice (3.16) in the remainder of the

paper.

From (3.14) we can extract G′ and B′ as the symmetric and anti-symmetric part of Q′.

Notably, using the O(D,D) identities, the transformations can be rewritten in a democratic

way by defining shifted fields G∗ and B∗

G∗ ≡ G , B∗ ≡ B + DtB +QtCtAQ+QtCtB− BtCQ = −B∗t . (3.21)

The result for the O(D,D) transformations of the vielbein and two-form is:

e′ = M−te
G′ = M−tGM−1 = N−tGN−1

B′ = M−tB∗M−1

Q′ = (AQ+ B)M−1 = M−tQ∗M−1 .

(3.22)

The two ways of writing G′ are equivalent due to (3.19). This is not surprising because

both transformations correspond to the two ways of selecting e′ discussed below (3.20)

which are related by a Lorentz transformation, under which the metric is invariant.

The diagram in figure 1 applied to the dilaton field is trivial because L(d) = d and

L′s(d
′) = d′. Apart from the rigid O(D,D) symmetry, the equations of motion of DFT are

invariant under constant shifts of the generalized dilaton

e−2d → e−2αe−2d , e−2α ∈ R+ , (3.23)

and in most cases this symmetry must also be gauged for consistency. Taking into account

the parameterization of the generalized dilaton (2.14) and that the transformation of the

determinant of the metric is given by Det(G′) = Det(G)

Det(M)2
, we readily arrive to the O(D,D)×

R+ transformation of the dilaton

Φ′ = Φ− 1

2
ln (Det (M)) + α . (3.24)

Note from (3.22) and (3.24) that the linear action of Ψ over generalized tensors leads

to non-linear transformations of the D-dimensional fields G,B and Φ.

In the next section we will study some particular generalized dualities. From all of

them, we will compute E in the lower-left corner of the diagram in figure 1. The most

general form of the generalized vielbein is given by (2.30)

E = UÊ =

(
u bu−t

βu (1 + βb)u−t

)
1√
2

(
−Q̂t ê(−)−t g−1 Q ê(+)−t

ê(−)−tg−1 ê(+)−t

)

=
1√
2

(
−Qt e(−)−t g−1 Qe(+)−t

e(−)−tg−1 e(+)−t

)
,

(3.25)
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from which one can read

e(+) =
[
βuQ̂+ (1 + βb)u−t

]−t
ê(+) , e(−) =

[
−βuQ̂t + (1 + βb)u−t

]−t
ê(−)

Q =
[
uQ̂+ bu−t

] [
βuQ̂+ (1 + βb)u−t

]−1
.

(3.26)

These e(±) are exactly the ones needed to build O(−)
s and O(−)

s
′ (3.18), considering e = e(+),

they are given by

O(−)
s = ê(+)−1

[
βuQ̂+ (1 + βb)u−t

]t [
−βuQ̂t + (1 + βb)u−t

]−t
ê(−)

O(−)
s
′ = ê(−)−1

[
−βuQ̂t + (1 + βb)u−t

]t
NtM−t

[
βuQ̂+ (1 + βb)u−t

]−t
ê(+) ,

(3.27)

where the latter can be also expressed in terms of the dual twist matrix U ′ in terms of u′, b′

and β′. We mentioned before that within the Gauged DFT, the allowed transformations are

those that preserve the gSS form of the fields and parameters [19, 30]. These transforma-

tions are inherited from the parent DFT, and act only on the external fields Ê and d̂. Their

internal coordinate dependence enters only through gaugings, and then they commute with

the local elements of T = O(D,D) × R+ that generate the generalized dualities. These

transformations can be used to select an external double Lorentz gauge in which ê(+) = ê(−).

We would like to emphasize that at no point in this section we assumed that the

O(D,D)× R+ transformations are rigid, they can (and will in most cases) depend locally

on the coordinates of the internal space. We also stress that after the transformation the

dual space is coordinatized by new coordinates X′, so the effect of the transformation is

not only to rotate the fields, but also to change their coordinate dependence. In the case of

rigid transformations both set of coordinates are related by (2.5), but in more general cases

the relation is less clear. For concreteness, let us briefly discuss the coordinate dependence

of the fields

E′(X′) = Ψ(X,X′)E(X) . (3.28)

The original background E(X) is rotated with Ψ(X,X′) in such a way that the product

Ψ(X,X′)E(X) depends only on X′. On the r.h.s. it looks like there is some dependence on

the original set of coordinates, but in reality there is not, the entire r.h.s. is a function of

X′ only. For this reason, we are allowed replace on the r.h.s. X→ X′ at no cost and avoid

keeping track on the distinction between coordinates. Still, for clarity we will keep the

distinction throughout the paper.

Let us point out that the generalized fluxes (2.12) are only invariant F ′ABC =

F [T (E)]ABC = F [E]ABC in the double Lorentz gauge in which the generalized fields and

fluxes take the gSS form (2.24), namely in Gauged DFT. Then, in that particular gauge

one has the following T transformations for the components (2.18)

T (ω(+)) = N−tω(+) , T (ω(−)) = M−tω(−) . (3.29)

This can also be obtained by direct computation from (3.22). Let us point out that these

are not the dual torsionfull spin connections in the dual supergravity frame, which are
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given by ω(±)′ = ω(±)(e′). Using e′ = e(−)′O(−)
s
′ = N−teO(−)

s O(−)
s
′, the latter are obtained

as a combination of (3.29) and two Lorentz transformations (2.44)

ω(+)′ = N−tω(+)

ω(−)′ = O(−)
s
′−1M−t

(
O(−)−1
s ω(−)O(−)

s + O(−)−1
s ∂O(−)

s

)
O(−)
s
′ + O(−)

s
′−1∂O(−)

s
′ .

(3.30)

To avoid confusion, what we are calculating are the torsionfull spin connections in the dual

supergravity gauge, in terms of those in the original supergravity gauge. So, while (3.29)

is a relation at the level of Gauged DFT, (3.30) is a relation at the level of supergravity.

3.1.2 GL(n)× O(d, d) decomposition

We now discuss the embedding of O(d, d) into O(D,D). To this end, the external com-

ponents remain unchanged under the action of the duality group which only affects the

internal space, namely

Ψ =

(
A B
C D

)
A =

(
1n 0

0 a

)
B =

(
0 0

0 b

)
C =

(
0 0

0 c

)
D =

(
1n 0

0 d

)
,

(3.31)

with a, b, c, d being d× d matrices. These internal matrices can be rewritten in terms of an

O(d, d) object

ψ =

(
a b

c d

)
, (3.32)

which is the internal version of Ψ. It will be always possible to get Ψ from ψ using the

trivial embedding (3.31).

Introducing this into (3.22) and decomposing the D-dimensional fields

Qµν =

(
Qmn Qmn

Qmn Qmn

)
eµ
α =

(
em

α

em
α

)
, (3.33)

we can get a component version of the transformations

Q′mn = Qmn −Qmp(M
−1c)pqQqn Q′mn = (am

pQpq + bmq) (M−1)qn (3.34a)

Q′mn = Qmp(M
−1)pn Q′mn =

(
am

p −Q′mqcqp
)
Qpn (3.34b)

e′m
α = em

α −Qpmcqp(M−t)qoeoα e′m
α = (M−t)m

pep
α , (3.34c)

where we defined the internal version of M

M ≡ (cQd + d) , (3.35)

where Qd is the matrix notation for the internal d× d components of Q, namely Qmn. To

complete the picture, we notice that Det(M) = Det(M) and so

Φ′ = Φ− 1

2
ln (Det (M)) + α . (3.36)

The equations (3.34) and (3.36) relate different backgrounds connected by local

O(d, d)× R+ transformations.
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3.2 Generalized dualities

In this section we give a brief review of generalized T-dualities and their embedding into

O(D,D)×R+. Before moving to a case by case study, we first introduce a common starting

point to set the notation. Let us emphasize that the examples discussed here do not exhaust

the possibilities of generalized dualities that can be captured by Gauged DFT.

Consider a group G acting freely on a manifold M . This means that given g ∈ G and p ∈
M , if g ·p = p then g = e is the identity element. This permits to take a set of adapted coor-

dinates on the target space (X, g) where g ∈ G, and Xm are the spectator fields (or external

coordinates) that label the orbits of G. As we explained before, and will discuss largely in

this section, generalized dualities are represented by certain local O(D,D)× R+ transfor-

mations that act exclusively on the twists that contain the information of the internal back-

ground. These are independent of the external coordinates, which then play no role in iden-

tifying the O(D,D)×R+ elements associated to the generalized dualities. They do however

play a major role when it comes to computing higher derivative corrections (as discussed

around (2.55)–(2.56)), but we will concentrate on that in the next section. When the expec-

tator fields are frozen to a trivial value, the action of G on M becomes transitive, meaning

that any two points p1, p2 ∈M are always connected trough some g ∈ G such that g·p1 = p2.

In this case all the orbits become isomorphic to the manifold M itself and so we have a group

manifold M = G, such that g ∈ G are the points in M parameterized with coordinates Y m.

Given the Lie algebra g of G

[ti, tj ] = fij
k tk , f[ij

rfk]r
s = 0 , (3.37)

the free and transitive right-action of G on M is carried by left-invariant vector fields ki ∈ g

that transform the coordinates as

Y m → Y ′m = Y m + δY m = Y m + εiki
m . (3.38)

The effect on the group element g′ = g+ δg can be obtained in two different but equivalent

ways: through the right action on g′ = g eε
iti or by a change in the coordinates (3.38).

This gives the relations

δg = gεiti = ∂mgε
iki

m . (3.39)

We now define the following quantities

Adg−1ti = g−1tig = ai
jtj , Lm

i =
(
g−1∂mg

)i
, Rm

i =
(
∂mgg

−1
)i
. (3.40)

The first is the adjoint action of g defined by matrices ai
j , and the last two are the left

and right invariant one-forms, respectively. It is easy to see from (3.39) that the following

relations hold

ki
mLm

j = δi
j , ki

mRm
j = (a−1)i

j , Rm
jaj

i = Lm
i , (3.41)

which in turn imply that the left and right invariant one-forms satisfy the Maurer-Cartan

equations

dLi = −1

2
fjk

iLj ∧ Lk , dRi =
1

2
fjk

iRj ∧Rk . (3.42)
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The duals of the left and right invariant one-forms are respectively left Li
m and right Ri

m

invariant vectors. From (3.41) we see that Li
m = ki

m. The Maurer-Cartan equations lead

to algebraic conditions on the vector fields

Lkikj = [ki, kj ] = fij
kkk , LRiRj = −fijkRk , LkiRj = 0 , (3.43)

where L is the Lie derivative and [ , ] the Lie bracket. The last identity follows from noticing

that Ri = ai
jkj and ∂mai

j = −Lmkairfkrj .

3.2.1 Abelian T-duality

This is the simplest case of a generalized duality that relates backgrounds with Abelian

isometries. When the original background posses d Abelian isometries, there is a set of

commuting killing vectors ki

[ki, kj ] = 0 , Y m → Y ′m = Y m + εiki
m . (3.44)

The Abelian algebra fij
k = 0 allows to choose adapted coordinates for which all fields are

independent of Y m and the compactified sigma model takes the form

S=

∫
d2σ [∂+X

m∂−X
nQmn+∂+Y

m∂−X
nQmn+∂+X

m∂−Y
nQmn+∂+Y

m∂−Y
nQmn] ,

(3.45)

where Q = G+B contains the different components of the metric and B-field which depend

on Xm only. As explained before, for our purposes we could very well freeze the expectator

fields Xm and restrict attention to the internal sector, but we will keep track of them for

the moment. Here we are neglecting the dilaton coupling which is going to be treated

separately. The transformation (3.44) is a symmetry of the sigma-model as long as the

fields satisfy the isometry conditions

LkQ = 0 . (3.46)

The way Abelian T-dualities emerge as symmetries was discussed by Buscher [9, 10].

Beginning with the Lagrangian (3.45) one follows a 3-step recipe:

(1) Gauge the global isometries, and then pick a gauge in which Y m = 0

∂±Y
m → D±Y

m ≡ ∂±Y m +Am± → Am± . (3.47)

(2) Demand that the gauge fields behave like pure gauge by adding Lagrange multipliers

Ỹm
− ỸmFm+− with Fm+− = ∂+A

m
− − ∂−Am+ . (3.48)

(3) Integrate A± out and end up with the dual theory in terms of the dual coordinates

Ỹm and the dual background Q̃d

Q̃mn = Qmn −Qmm(Q−1
d )mnQnn Q̃mn = (Q−1

d )mn

Q̃m
n = Qmm(Q−1

d )mn Q̃mn = −(Q−1
d )mnQnn .

(3.49)
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It can also be shown that the transformation of the dilaton is given by [9, 10] (see

also [46, 47])

Φ̃ = Φ− 1

2
ln (Det(Qd)) , (3.50)

where Qd is the matrix notation for the internal components of Q.

The duality transformations (3.49) can be compared with the general way in which an

element ψ ∈ O(d, d) acts on the background fields (3.34). This requires matching internal

indices in both expressions by introducing δ matrices to relate tildes with primes

Y ′m ≡ δmnỸn Q′mn ≡ δmpQ̃pqδqn Φ′ = Φ̃ , (3.51)

and so

Q′d = δQ̃dδ = δQ−1
d δ = δ

(
δ−1Qd

)−1
. (3.52)

Just to remind the reader, both coordinates and fields with tildes and primes refer to the

dual space. The former carry an unconventional index structure due to the way they are

obtained through the Buscher procedure. The latter are defined to coincide componentwise

to the former, in such a way that the standard index structure is restored through Kronecker

deltas.

After comparison with (3.34) and (3.36) we can read the local O(d, d) × R+ that

connects the original background with its dual

ψM
N =

(
0 δmn

δmn 0

)
, α = 0 . (3.53)

This result shows that after Buscher’s procedure, we end up with a dual theory obtained

by the application of a full factorized transformation (3.6) on the background. Had we

dualized along a fewer number of isometries, for instance only one, the resulting O(d, d)

element would have been a (product of) factorized T-duality (3.5). Let us also mention

that while global GL(d) transformations are manifest symmetries of the sigma model, it

is also possible to prove that invariance under B-shifts can be achieved by incorporating

a boundary term containing a closed 2-form. The combined action of these symmetries

spans the full rigid O(d, d) action on the background.

Because we chose adapted coordinates, the internal twists of the original background

UM
I and λ, and those of the dual background U ′M

I and λ′ are constant and so generate

vanishing gaugings (2.33)–(2.34)

FIJK = F ′IJK = 0 , FI = F ′I = 0 . (3.54)

In this case it is obvious that both set of gaugings belong to the same duality orbit, and

then give rise to the same physics, namely that of an ungauged supergravity.

Since the twist matrix is constant it can be absorbed by Ê. Then, considering the exter-

nal Lorentz gauge in which ê(+) = ê(−), we see from (3.27) that O(−)
s = 1 and consequently

the Lorentz transformation connecting the supergravity gauge with gauged DFT is trivial.
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3.2.2 Non-Abelian T-duality

The non-Abelian counterpart of T-duality [11] now relies on the target space possessing

d non-commuting isometries LkQ = 0, generated by a non-Abelian group G with killing

vectors satisfying

[ki, kj ] = fij
kkk .

To facilitate contact with the discussion at the beginning of this section, this is the first

equation in (3.43). The sigma-model is

S =

∫
d2σ

[
∂+X

m∂−X
nQmn +R+

i∂−X
nQin + ∂+X

mR−
jQmj +R+

iR−
jQij

]
, (3.55)

where now the internal dependency is encoded in the right-invariant one-forms Rm
i, which

act as vielbeins exchanging algebraic i, j = 1, . . . , d and curved m,n = 1, . . . , d indices

R+
iR+

jQij = ∂+Y
mRm

iQijRn
j∂−Y

n ≡ ∂+Y
mQmn∂−Y

n . (3.56)

This way of writing the background shows that the whole dependence on the internal space

is encoded in the Maurer-Cartan forms R(Y )m
i, while the components Q(X)ij depend

only on the spectator fields (external coordinates). Equation (3.56) is useful to note the

difference with the Abelian case (3.45), where the Maurer-Cartan forms were trivial Rm
i =

δm
i and so using algebraic or curved indices was equivalent.

There is a Buscher-like procedure built by De la Ossa and Quevedo [11] that leads to

an equivalent dual background. The procedure closely follows the one performed before

with the difference that the auxiliary fields A± and their strength-energy tensors F+− are

now valued in a non-Abelian algebra. The result is given by

Q̃mn = Qmn −Qmi

[(
Qd + fY ′

)−1
]
ijQjn Q̃ij =

[(
Qd + fY ′

)−1
]
ij

Q̃m
j = Qmi

[(
Qd + fY ′

)−1
]
ij Q̃in = −

[(
Qd + fY ′

)−1
]
ijQjn ,

(3.57)

where

(fY ′)ij ≡ fijk Y ′k .

Regarding the dilaton field, its transformation can be obtained from [48]

Φ̃ = Φ− 1

2
ln
(
Det

(
Qd + fY ′

))
+

1

2
ln Det(a) , (3.58)

with a defined in (3.40), and this reduces to the standard form found by Quevedo and de

la Ossa [11] when the algebra is uni-modular fij
j = 0. To cast this transformation in an

O(d, d) format, we first need to express everything in terms of curved indices and then

change from the tilde convention to the prime convention as we did in (3.51). To curve

the indices we use the Maurer-Cartan forms of each space. For the original background

we rotate with Rm
i, which connects Qmn = Rm

iQijRn
j , and for brevity we will keep

noting this with matrix notation Qd even though now this is a curved object. The dual

background happens to carry an Abelian algebra and so algebraic and curved indices are

indistinguishable and related by δm
i. For instance in the internal sector we have

Q̃mn = δi
m
[(
R−1QdR

−t + fY ′
)−1

]
ijδj

n . (3.59)
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Finally, we lower the indices with δmn as we did in (3.51) and for brevity we introduce a

new mixed-index Kronecker’s delta δmnδi
n ≡ δmi ≡ δ. After this procedure, (3.57) leads to

Q′mn = Qmn −Qmp

[(
Qd +RfY ′Rt

)−1
]
pqQqn

Q′mn = Qmp

[(
δ−1R−1Qd + δ−1fY ′Rt

)−1
]
p
n

Q′mn = −δmiRpi
[(
δ−1R−1Qd + δ−1fY ′Rt

)−1
]
p
qδ
qjRj

pQpn

Q′mn = δmiRp
i
[(
δ−1R−1Qd + δ−1fY ′Rt

)−1
]
p
n ,

(3.60)

while for the dilaton we have

Φ′ = Φ− 1

2
ln
(
Det

(
δ−1R−1Qd + δ−1fY ′Rt

))
+

1

2
ln Det (L) . (3.61)

As discussed in (3.28), the r.h.s. of these equations look like there is a dependence on

the original set of coordinates through R(Y ), but after some work these equations can be

taken to the form
Q′mn = Qmn −Qmi

[(
Qd + fY ′

)−1
]
ijQjn

Q′mn = Qmi

[(
Qd + fY ′

)−1
]
ijδjn

Q′mn = −δmi
[(
Qd + fY ′

)−1
]
ijQjn

Q′mn = δmi
[(
Qd + fY ′

)−1
]
ijδjn

Φ′ = Φ̂− 1

2
ln
(
Det

(
Qd + fY ′

))
,

(3.62)

where Qd ≡ Q(X)ij and we are considering a non-trivial background for the dilaton

Φ(X,Y ) = Φ̂(X) − 1
2 ln Det(a(Y )), which is isometric except in the non-unimodular case

LkiΦ = 1
2fij

j . It is then clear that the dual fields depend only on the dual coordinates Y ′

only.

The expressions (3.60) and (3.61) can now be compared directly with (3.34) and (3.36)

to recognize the O(d, d)× R+ transformation that connects the dual backgrounds

ψ(Y, Y ′)M
N =

(
0 δmjR(Y )n

j

δmjR(Y )j
n δmkfkj

rY ′rR(Y )n
j

)
, α(Y ) =

1

2
ln Det (L(Y )) . (3.63)

We see immediately that (3.63) reduces to the Abelian case (3.53) when fij
k = 0 and

Rm
i = Lm

i = δm
i.

Let us briefly discuss what happened above in the language of Gauged DFT. We started

with the original generalized background

U(Y )M
I =

(
R(Y )m

i 0

0 R(Y )mi

)
, λ(Y ) = −1

2
ln Det (L(Y )) , (3.64)

corresponding to a geometric background with vielbein Rm
i, dilaton background

−1
2 ln Det(a) and vanishing 2-form flux. As such, the only components of the gaugings

FIJK and FI are given by metric fluxes (2.33)

Fijk = Fi
jk = F ijk = 0 , Fij

k = −fijk , FI = 0 . (3.65)
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These identities follow from the Lie bracket of R−1 (3.43) and the Jacobi identity. After

the dualization, we ended with a different generalized background

U ′(Y ′)M
I =

(
0 δmi

δmi δmj (fY ′)ji

)
, λ′(Y ′) = 0 , (3.66)

that yields the exact same gaugings (2.34) except for the vectorial flux FI which picks up

a contribution from the trace of the structure constants

F ′ijk = F ′i
jk = F ′ijk = 0 , F ′ij

k = −fijk , F ′i = fij
j , F ′i = 0 . (3.67)

In can be checked that (3.65) and (3.67) satisfy the consistency conditions (2.29).

We now discuss two distinct cases. If the group were unimodular fij
j = 0, then both

set of gaugings (3.65) and (3.67) would coincide exactly. As a consequence, the Gauged

DFT would remain invariant under the local O(d, d) × R+ transformation (3.63) yielding

the physical equivalence of both backgrounds, at least at the classical level. It would have

been enough that both gaugings fell into the same orbit, but interestingly in this case they

happen to coincide. Instead, if the group is not unimodular fij
j 6= 0, then both set of

gaugings (3.65) and (3.67) fall into different duality orbits, and we loose guaranty that

if the original background is a solution to the DFT equations of motion, so is the dual

background. Note however that if the dual background (U ′, λ′) in (3.66) is deformed into

(U ′, λ′ + λ̃′), with

λ̃′ = −1

2
fij

jδmiỸ ′m , (3.68)

the gaugings of this deformed background coincide with those of the original background

F ′ijk = F ′i
jk = F ′ijk = 0 , F ′ij

k = −fijk , F ′I = 0 . (3.69)

Then, this background is indeed a solution to the equations of motion of DFT. We can

interpret this fact as follows. The deformed background is a composition of two successive

reductions: one with twist (1, λ̃′) and another one with twist (U ′, λ′). The first twist (1,

λ̃′) produces a first gauging of DFT with fluxes

F ′IJK = 0 , F ′i = −fijj , F ′i = 0 . (3.70)

The second twist reduces this Gauged DFT into another one with gaugings (3.69), which

now happily fall into the same duality orbit than (3.65). Then, the local O(d, d)×R+ (3.63)

maps a solution (3.64) of ungauged DFT, to a solution (3.66) of a Gauged DFT with

gaugings (3.70). Interestingly, the gauging (3.70) leads to the deformations of the DFT

equation of motions, which on section happen to correspond to the so-called generalized

supergravity equations [21, 22], as discussed in [49–54].

Interestingly, since the original space is a geometric background (3.64) we see that,

understood as a particular case of (3.25), namely u = R, b = β = 0, the double Lorentz

transformation Ls in figure 1 is trivial in the external gauge ê(+) = ê(−) which induces

e(+) = e(−). We then have O(−)
s = 1, which means that the supergravity gauge is already

in the gSS form.
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The question remains on how to interpret the dual background (3.66) in the context

of Gauged DFT. It is difficult to read a background from a generalized twist due to the

double Lorentz symmetry. To avoid this ambiguity, it is instructive to build the generalized

metric for the dual background

H′MN = U ′M
IδIJU

′
N
J =

(
δmn δmpβ

pn

−βmpδpn δmn − βmpδpqβqn

)
where βmn = −δmi(fY ′)ijδjn ,

(3.71)

where we set the scalar fluctuations to zero HIJ = δIJ . This form of the parameterization

in terms of a bi-vector is typical of globally non geometric backgrounds (see for exam-

ple [40, 55, 56]). It is clear from here that the background is locally geometric, but globally

it corresponds to the wired case of a non-geometric background with a generalized paralel-

lization that renders the gaugings purely geometric. Let us explain this a little further.

The background is usually simple to read from the background generalized metric, while

reading it from the twist matrix is cumbersome due to the redundancy produced by the

choice of the internal double Lorentz gauge. This choice fixes the generalized paralelliza-

tion [57, 58]. It doesn’t affect the background, but it does change the fluxes and then has a

crucial impact on the lower dimensional physics. The paradigmatic case is that of a torus

parallelized in a funny way that yields the fluxes of a sphere [20] (see also [59]).

3.2.3 Yang-Baxter deformations

Yang-Baxter deformations [60] relate backgrounds associated to integrable systems [61].

They are based on an Rij-matrix (not to be confused with the right-invariant one-form

Rm
i) satisfying the algebraic equation

[RX,RY ]− R ([RX,Y ] + [X,RY ]) = c2 [X,Y ] , (3.72)

where c ∈ [−1, 0, 1], X,Y ∈ g and [ , ] is the Lie-bracket of the isometry algebra of

the background to be deformed. The case c = 0 corresponds to classical YB equations

(CYBE) (also called homogeneous equations) and c 6= 0 leads to so-called modified classi-

cal YB equations. The latter cases leads to in-homogeneous YB deformations, sometimes

called η-deformations, and they have been widely study in the context of AdS5× S5 back-

grounds [62]. Here we will concentrate on CYBE only, which lead to homogeneous YB

deformations, because its connection to NATD is simpler. These transformations preserve

conformal invariance if the R-matrix is unimodular [63]

Rijfij
k = 0 . (3.73)

It was conjectured in [64] that the homogeneous Yang-Baxter model can be obtained by

applying NATD to the original background, with respect to an isometry group determined

by the R-matrix. This conjecture was proven in [65] and [66] for principal chiral models

where rules were established for connecting NATD and YB models.

Picturing YB deformations as NATDs requires a dressed R operator

Rg ≡ Adg−1RAdg , (Rg)
ij = ak

iRkrar
j = Rm

ikk
mRkrkr

nRn
j , (3.74)

– 27 –



J
H
E
P
1
0
(
2
0
2
0
)
0
0
2

and identifying

fij
kY ′k = η−1(R−1)ij − η−1(R−1

g )ij , dY ′i = η−1(R−1
g )ijR

j , (3.75)

in the NATD background (3.57), where η is called the deformation parameter.

In [67] the NATD transformations for the Green-Schwarz (GS) superstring with a

generic isometry group were derived. Using the rules between NATD and YB, the authors

also deduced the form of homogeneous YB deformations for a generic GS sigma model

given by [68, 69]

Q′d = Qd (ηΘQd + 1) , Φ′ = Φ− 1

2
ln (Det(ηΘQd + 1)) , (3.76)

where

Θmn ≡ kimRijkj
n = Ri

mRij
g Rj

n , (3.77)

is nothing but the curved version of the dressed R operator. Using the killing equations

and closure of the algebra, the CYBE (3.72) translates into

Θq[m∂qΘ
np] = 0 . (3.78)

Comparing (3.76) with the general formulas (3.34) and (3.36) one can identify the YB

transformation with the following local O(d, d)× R+ transformation [70]

ψ(Y )M
N =

(
δm

n 0

ηΘ(Y )mn δmn

)
, α = 0 . (3.79)

The original and deformed backgrounds depend on the same set of coordinates Y . The

interpretation of YB as the non-Abelian extension of β-shifts [24, 71]–[74] (also known as

TsT transformations) can be easily seen from here. When R is defined in an Abelian sub-

algebra of the isometry algebra, the killing vectors and Maurer-Cartan forms are trivial

k = R = 1 and so Θ and R are constant. As a consequence (3.79) reduces exactly to a

constant beta shift (3.7).

We can check if the fluxes generated by the original and dual background indeed fall

into the same duality orbit. Consider the original background described in Gauged DFT by

generic twists U(Y )M
I and λ(Y ) depending only on the supergravity coordinates. The de-

formed background is defined over the same set of coordinates U ′(Y )M
I = ψ(Y )M

NU(Y )N
I

and λ′(Y ) = λ(Y ) + α = λ(Y ). It can be shown that the isometric condition for the back-

ground fields and the uni-modularity condition ensure that both FIJK and FI remain

invariant [24, 45, 75]. This can be seen by splitting

ΨM
N = δM

N + ηΘM
N , ΘMN = ki

MRijkj
N ≡

(
Θmn 0

0 0

)
, ki

M ≡ (ki
m, 0) , (3.80)

which gives

F ′IJK = FIJK + 3η
(
UP [Iki

PRijUNKL̂kjU
N
J ] + ηΘM [P∂MΘQN ]UPIUQJUNK

)
= FIJK (3.81)

F ′I = FI + 2η
(
UPIki

PRijL̂kjλ+ Rrskr
P∂Pks

MUMI

)
, (3.82)
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where L̂ki is the generalized Lie derivative. If the twist U is generalized isometric with

respect to the generalized killing vector ki, then the first term in (3.81) vanishes, while the

second vanishes due to the YB equation (3.78). Then, the fluxes FIJK remain invariant.

Regarding the fluxes FI , the first term in (3.82) vanishes if the twist λ is generalized

isometric, while the second term vanishes if the group is unimodular (3.73). If this is the

case, then the dual gaugings fall into the same duality orbit. If not, a procedure similar

to (3.68) is required in order to interpret the dual background as a solution to a deformed

theory. Note however that in this case, the dual vectorial fluxes would be non-constant,

and so it is unclear to us if they can be generated through a twist in Gauged DFT. A

similar discussion on this point will take place in PL T-duality.

Finally it is worth mentioning that, in analogy with the NATD case, if we consider the

original space as a geometric background the double Lorentz transformation Ls is again

trivial O(−)
s = 1.

3.2.4 Poisson-Lie T-duality

In [12], Klimcik and Severa brilliantly abandoned the requirement of isometries as the

guiding principle for duality, replacing it by a higher algebraic structure that relates dual

models, in which isometries only show up in special cases. We will review the procedure

restricting attention to the internal sector, so the expectator fields will be frozen. The

starting point is then the internal sector of a generic sigma-model

S =

∫
d2σ ∂+Y

m∂−Y
nQmn , (3.83)

where the group G acts freely and transitively. It transforms the coordinates as in (3.38)

δY m = εi(σ±)ki
m, inducing the following change in the action

δS =

∫
d2σεi [∂+Y

m∂−Y
nLkiQmn]−

∫ [
εidJi + d

(
εiJi
)]
, (3.84)

where we defined the Noether currents

Ji ≡ kim
(
Qmn∂−Y

ndσ− −Qnm∂+Y
ndσ+

)
. (3.85)

Neglecting the global term in (3.84), the Abelian and non-Abelian T-duality scenarios

are recovered by considering G as the isometry group of the target space in which k are

the killing vectors. The interesting point is that the invariance of the action can still be

satisfied without isometries. The idea is to think of Ji as the components of an element J

of a dual algebra g′

J = Jit
′i [t′i, t′j ] = f ′ijkt

′k , (3.86)

with an associated Maurer-Cartan equation

dJi =
1

2
f ′jkiJj ∧ Jk . (3.87)

The invariance of the action, namely the vanishing of (3.84), leads to a non-isometric

condition on the background

LkiQmn = −f ′jkikjpkkqQmpQqn , (3.88)
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and analyzing the closure of the algebra over it leads to a bi-algebraic condition [76–78]

fij
sf ′krs = 4fs[i

[kf ′r]sj] , (3.89)

which can be conceived as the mixed components of the Jacobi identities of an extended

algebra

[ti, tj ] = fij
ktk ,

[
t′i, t′j

]
= f ′ijkt

′k ,
[
ti, t
′j] = fki

jt′k − f ′kjitk . (3.90)

To enforce that both algebras appear on an equal footing in this framework, a dual

background Q′mn is introduced

Lk′iQ′mn = −fjkik′jpk′kqQ′mpQ′qn , (3.91)

together with a dual version of the algebraic identities (3.40)–(3.43)

Adg′−1t′i = g′−1t′ig′ = a′ijt
′j , L′mi =

(
g′−1∂′mg

′)
i , R′mi =

(
∂′mg

′g′−1
)
i ,

k′imL′mj = δij , k′imR′mj = (a′−1)ij , R′mja
′j
i = L′mi , (3.92)

which defines dual left and right invariant Maurer-Cartan forms L′mi, R
′
mi. Now we have a

dual group G′ and ∂′m ≡ ∂
∂Y ′m with Y ′m the coordinates of the dual manifold. Everything

is now doubled, and starts to smell like DFT.

Combining the bi-algebraic condition (3.89) with the introduction of a non-degenerate,

ad-invariant bilinear form 〈 , 〉 satisfying

〈ti, tj〉 = 〈t′i, t′j〉 = 0 , 〈ti, t′j〉 = δi
j , (3.93)

one can identify g and g′ with the maximally isotropic subalgebras of a Drinfeld double

D [76]. It was shown in [12] and [79] that the sigma-models associated to Q and Q′ are

related by a canonical transformation, so both backgrounds satisfy the same equations of

motion.

Using the structure of Drinfeld doubles one can build solutions to the PL condi-

tions (3.88) and (3.91) given by [12]

Qmn = Rm
i[Q̂−1 − π]−1

ij Rn
j , Q′mn = R′mi[Q̂− π′]−1ijR′nj , (3.94)

where

πij ≡ cik(a−1)k
j = −πji , π′ij ≡ c′ik(a′−1)kj = −π′ji , (3.95)

and the matrices a(g), c(g), a′(g′) and c′(g′) are defined by the adjoint action

Adg−1(ti) = ai
j tj , Adg−1(t′

i
) = cijtj + (a−t)ijt

′j , (3.96)

while for the dual matrices we have

Adg′−1(t′i) = a′ij t
′j , Adg′−1(ti) = c′ijt

′j + (a′−t)i
jtj . (3.97)

Regarding the field Q̂, it is a constant matrix that would depend on external coordinates

if the spectator fields were taken into account. It comes from the construction of the
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explicit solutions (3.94) to the PL conditions (3.88) and (3.91), corresponding to the original

background evaluated at the identity of the Drinfeld double, i.e. Q̂ = Q(e).

The expression for the dilatons were originally given in [80] and latter improved in [48]

in the context of PL-plurality (see also [25])

Φ = Φ̂− 1

2
ln Det

(
Q̂

R−1QdR−ta−t

)
, Φ′ = Φ̂− 1

2
ln Det

(
1

R′−1Q′dR
′−ta′−t

)
, (3.98)

where, Φ̂ can be taken to be a constant, that on general grounds would depend only on

the expectator fields.5

Elimination of Q̂ and Φ̂ in (3.94) and (3.98) leads to

Q′d =
(
R′πR−1Qd+R′Rt

)[(
R′−tR−1−R′−tπ′πR−1

)
Qd−R′−tπ′Rt

]−1
(3.99)

Φ′= Φ− 1

2
lnDet

[(
R′−tR−1−R′−tπ′πR−1

)
Qd−R′−tπ′Rt

]
+

1

2
lnDet(L)− 1

2
lnDet(L′) .

Notice once again that although here it looks like the r.h.s. depends on the original set

of coordinates Y through L(Y ), R(Y ) and π(Y ), in reality they only depend on Y ′ as is

clear from (3.94) and (3.98). These expressions (3.99) can now be compared with (3.34)

and (3.36) to recognize the O(d, d)×R+ transformation that connects the dual backgrounds

ψ(Y, Y ′)M
N =

(
R′πR−1 R′Rt

R′−tR−1 −R′−tπ′πR−1 −R′−tπ′Rt

)
,

α(Y, Y ′) =
1

2
ln Det(L)− 1

2
ln Det(L′) ,

(3.100)

where the unprimed components depend on Y , and the primed ones on Y ′.

From the point of view of Gauged DFT, the solutions (3.94) and (3.98) can be inter-

preted in terms of a gSS ansatz (2.21) in which Q̂ and Φ̂ are the external coordinate depen-

dent fields encoded in Ê(X) and d̂(X), the twists of the original background are given by

U(Y )M
I =

(
R(Y ) 0

−R(Y )−tπ(Y ) R(Y )−t

)
, λ(Y ) = −1

2
ln Det(L(Y )) , (3.101)

and those of the dual background by

U ′(Y ′) =

(
0 R′(Y ′)

R′(Y ′)−t −R′(Y ′)−tπ′(Y ′)

)
, λ′(Y ′) = −1

2
ln Det(L′(Y ′)) . (3.102)

Both backgrounds are connected by the local O(d, d) × R+ transformation (3.100) as

U ′(Y ′) = ψ(Y, Y ′)U(Y ) and λ′(Y ′) = λ(Y ) + α(Y, Y ′). It is then clear from (2.55)

and (2.56) that higher derivatives enter the solutions only though Q̂ and Φ̂.

Before we compute the gaugings, let us show how the previously introduced expressions

can be cast into a double language (see for example [49, 50]). Grouping the generators into

5PL-duality works even if Φ̂ depends on the internal coordinates [48].
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a double generator TI = (ti, t
′i) permits to cast the maximal isotropic condition (3.93) in

terms of the O(d, d) invariant matrix

〈TI , TJ〉 = ηIJ =

(
0 δi

j

δij 0

)
, (3.103)

and also regroup the algebra (3.90) in an O(d, d) covariant fashion

[TI , TJ ] = −FIJKTK , Fij
k = −fijk , F ijk = −f ′ijk . (3.104)

The ad-invariant condition over 〈 , 〉 can then be written as

〈[TI , TJ ] , TK〉 = 〈TJ , [TK , TI ]〉 , 〈TI , TJ〉 = 〈gTIg−1, gTJg
−1〉 . (3.105)

Of course we will see that these generalized structure constants FIJ
K are exactly the gaug-

ings generated by both backgrounds. We finally point out that the adjoint actions (3.96)

and (3.97) can be also combined into an O(d, d) form

(Adg)I
J =

(
(a−1)i

j 0

(ct)ij (at)ij

)
, (Adg′)I

J =

(
(a′t)i

j c′tij

0 (a′−1)ij

)
, (3.106)

where we read Adg−1 and Adg′−1 from (3.96) and (3.97) and then inverted the matrices.

These matrices can be contracted with double left-invariant 1-forms

LMI =

(
Lm

i 0

0 Lmi

)
, L′MI =

(
L′mi 0

0 L′mi

)
, (3.107)

in order to obtain the twist matrices (3.101) and (3.102)

UM
I = LMJ(Adg)J

I , U ′M
I = L′MJ(Adg′)J

I . (3.108)

Having written everything in double language, it is now obvious that we can rotate

every object carrying indices I, J,K, . . . with rigid elements h ∈ O(d, d), which is simply

a renaming that does not change the results. In the language of Gauged DFT this simply

amounts to translations withing a fixed duality orbit, as discussed around (2.35). In the

context of generalized dualities, these rotations are known as PL T-pluralities [48]. This is

a generalization of PL T-duality which considers that a Drinfeld double D, can be decom-

posed in several maximally isotropic subalgebras g and g′. Together with the Lie algebra

of the Drinfeld d, every such decomposition (d, g, g′) is known as a Manin tripleM(D). An

important remark is that for any D at least we have two Manin triples (d, g, g′) and (d, g′, g),

connected by a full factorized O(d, d) rotation, which from the point of view of the bialgebra

are distinct objects. Any such decomposition will give rise to a different background but all

of them will be dual to each other. In this scenario, all models are connected by rigid O(d, d)

rotations preserving the bi-algebra (3.90) and the maximally isotropic condition (3.103)

T ′I = hI
JTJ , 〈T ′I , T ′J〉 = ηIJ . (3.109)

– 32 –



J
H
E
P
1
0
(
2
0
2
0
)
0
0
2

We can finally compute the gaugings in the context of Gauged DFT defined by the

twists (3.101) and (3.102), yielding6

FI →

{
Fi = 0

F i = (a−1)k
if ′kjj

, FIJK →


Fijk = 0

Fij
k = −fijk

F ijk = −f ′ijk
F ijk = 0

F ′I →

{
F ′i = (a′−1)kifkj

j

F ′i = 0
, F ′IJK →


F ′ijk = 0

F ′ij
k = −fijk

F ′ijk = −f ′ijk
F ′ijk = 0

(3.112)

where the structure constants of the bi-algebra (3.90) turn out to be the non-vanishing

components of the generalized fluxes, as expected. Keeping track of the origin of the

fluxes, it can be seen that in the unprimed background the geometric-type fluxes come

from R-vielbein metric fluxes, while π introduces the non-geometric Q-type flux given by

the structure constants f ′ of the dual algebra. Curiously, in the primed background the

Q-type fluxes are generated by R′, and the geometric ones come from the bi-vector π′ (this

a generalization of the NATD case where we saw that the dual background consisted of

a globally non-geometric space (3.71) with a generalized parallelization that rendered the

fluxes geometric).

As in the NATD case, we have two different situations. If the groups are unimod-

ular fij
j = f ′ij

j = 0, then the original and dual gaugings fall into the same orbit, both

backgrounds are solutions to ungauged DFT, and we are done. If not, the original and

dual gaugings (3.112) happen to fall into different orbits due to the discrepancy between

the vectorial components. Moreover, these gaugings are not constant, as they carry a de-

pendency on the internal coordinates through the adjoint matrices. Interestingly, they still

happen to satisfy the consistency constraints (2.29). The action and equations of motion of

DFT depend on the gaugings through the generalized fluxes (2.24). Then, the discrepancy

between gaugings (3.112) can be cured by deforming the original and dual DFT through

shifts in FA intended to annihilate FI and F ′I respectively. While in the case of NATD

these shifts were produced through a gauging procedure (3.68), it is unclear to us if similar

6To facilitate the computation of the fluxes, we list some useful identities (see also the appendix of [79]).

The ad-invariance condition of the bilinear form (3.105) implies

aj
rak

s(a−1)t
ifrs

t = fjk
i , (a−1)r

j(a−1)s
kai

tf ′
rs
t − f ′

jk
i = 2fir

[jπk]r

(a−1)r
j(a−1)s

kf ′rstc
it = frs

iπrjπsk − 2f ′i[jrπ
k]r , f ′[ijrπ

k]r − πr[ifrs
jπk]s = 0 . (3.110)

Analogous identities can be obtained for the dual objects by just adding/removing primes and exchanging

the position of all indices. We finally point out that the derivatives of π and π′

∂mπ
ij = −Lmk(a−1)s

i(a−1)t
jf ′stk ∂′mπ

′
ij = −L′mk(a′−1)si(a

′−1)tjfst
k (3.111)

can be obtained by deriving the adjoint actions (3.96) and (3.97). Also (3.43) must be used.
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steps can be taken in this case. The required deformations again fall into the category of

the so-called generalized supergravities [21, 22], as shown in [25, 81]. So again, as in the

NATD case with non-unimodular gaugings, the local O(d, d)×R+ transformation connects

solutions of deformed DFTs.

Let us point out that as opposed to the dualities considered before, here we start from

a non-geometric background (3.101) which leads to a non-trivial O(−)
s given by (3.27) where

u = R, β = −R−tπR−1 and b = 0. This non-geometric behaviour demands that the original

background in Gauged DFT is described by a generalized frame in which e(+) 6= e(−).

As mentioned above, Poisson-Lie T-duality is as a generalization of Abelian and non-

Abelian T-dualities and so these results must contain both of them as particular cases. Lets

see how this works. To do this, we need the explicit infinitesimal expressions for π and π′

which can be obtained using the exponential maps for g = exp(Y iti) and g′ = exp(Y ′it
′i)

in the definition of the adjoint actions

πij = −f ′ijkY k + Y rY sf ′k[i
rfsk

j] − . . . , π′ij = −f ijkY ′k + Y ′rY
′
sfk[i

rf ′skj] − . . . . (3.113)

For the other objects, namely L, R and a and their duals, it will be enough to know that

they are trivial for Abelian algebras

Lm
i = Rm

i = δm
i , ai

j = δi
j , L′mi = R′mi = δmi , a′ij = δij . (3.114)

Then, for Abelian T-duality we have f = f ′ = 0 and so

π = π′ = 0 , L = R = a = a′ = 1 , L′ = R′ = δ . (3.115)

Inserting this into (3.99) we obtain

Q′mn = δmi(Q
−1
d )ijδjn , Φ′ = Φ− 1

2
ln Det(Qd) , (3.116)

which are exactly the Abelian transformations (3.50) and (3.52).

Likewise, for non-Abelian T-duality (3.57) we have f ′ = 0 but f 6= 0 so

π = 0 , π′ij = −fijkY ′k ,

Also, since the dual algebra is Abelian R′ = L′ = δ, a′ = 1. Inserting this particular case

in (3.99), we get

Q′mn = δmiRp
i
[(
δ−1R−1Qd + δ−1fY ′Rt

)−1
]
p
n ,

Φ′ = Φ− 1

2
ln
(
Det

(
δ−1R−1Qd + δ−1fY ′Rt

))
+

1

2
ln Det (L) ,

(3.117)

which are the non-Abelian T-dual transformations (3.60) and (3.61), restricted to the

internal sector.
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4 Generalized dualities and higher derivatives

In this section we arrive at the main result of this paper: a general formula for first order

higher derivative corrections to generalized dualities.

To do so, we implement the procedure described in section 3 to the next order in α′.

The path to follow is again the one depicted in figure 1 in which the corrections will enter

trough the double Lorentz transformations. As explained in section 2.3, higher derivatives

deform the double Lorentz transformations of generalized fields, and consequently of their

components. For this reason, the components are not the usual fields in supergravity, but

instead are related to them through field redefinitions. In order to distinguish them we use

the notation that the components of generalized fields carry an overline ē(±), B̄ and Φ̄.

Our starting point is again the generalized frame in terms of the supergravity back-

ground but now the fields therein are α′-corrected, i.e.

Es =
1√
2

(
−Q̄t ē−tg−1 Q̄ ē−t

ē−tg−1 ē−t

)
. (4.1)

In order to bring it to a gSS form, we apply a corrected double Lorentz transformation Ls.

The components of the vielbein E = Ls(Es) are reached by (2.53)

ē(+) = ēŌ(+)
s − Σt

sG
−1eO(+)

s

ē(−) = ēŌ(−)
s − ΣsG

−1eO(−)
s

ḠGDFT = Ls(Ḡ) = Ḡ− (Σs + Σt
s)

B̄GDFT = Ls(B̄) = B̄ − (Σs − Σt
s)

Q̄GDFT = Ls(Q̄) = Q̄− 2Σs

Φ̄GDFT = Ls(Φ̄) = barΦ− 1

2
Tr
(
G−1Σs

)
,

(4.2)

where Σs = Σ
(
O(+)
s ,O(−)

s , ω(±)(e)
)

can be read in (2.54). We are now in the lower-left

corner of figure 1, so we included a sublabel “GDFT” to distinguish the fields from those

in the supergravity gauge.

We now move to the right of the diagram in figure 1 by applying the O(D,D) trans-

formation (3.9) E′ = T (E) = ΨE together with d′ = T (d) = d. The results have the same

structure as the leading order (3.9) and (3.24)

ē(±)′ = T (ē(±)) , Q̄′GDFT = T (Q̄GDFT ) , Φ̄′GDFT = T (Φ̄GDFT ) , (4.3)

but now the matrices M̄ and N̄ depend on the overlined fields in Gauged DFT

M̄(Q̄GDFT ) ≡ CQ̄GDFT + D , N̄(Q̄GDFT ) = −CQ̄tGDFT + D . (4.4)

The matrices A, B, C and D in the O(D,D) element in (3.1) receive no corrections, and so

remain unbarred. The same happens with the generalized dilaton shift α (3.23). We now

work a little on (4.4)

M̄(Q̄GDFT ) = M̄(Q̄)− 2CΣs ⇒ M̄(Q̄GDFT )−t = M̄−t + 2M−tΣt
sCtM−t

N̄(Q̄GDFT ) = N̄(Q̄) + 2CΣt
s ⇒ N̄(Q̄GDFT )−t = N̄−t − 2N−tΣsCtN−t ,

(4.5)
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where we used the identity (A + ε)−1 h A−1 − A−1εA−1 for small perturbations, and

truncated the result to first order in α′. Then, the matrices M̄ and N̄ appearing now

depend on the background Q̄ in the supergravity double Lorentz gauge. Introducing these

expressions into ē(±)′ together with the explicit form of ē(±) in terms of ē in (4.2) we get

ē(+)′ = M̄−tēŌ(+)
s −M−tΣt

s

(
1− 2CtM−tG

)
G−1eO(+)

s

ē(−)′ = N̄−tēŌ(−)
s − N−tΣs

(
1 + 2CtN−tG

)
G−1eO(−)

s .
(4.6)

These expressions can be improved by using the following O(D,D) identities

Ct = −M−1CNt , M = N+2CG , N−1M = 1−2CtM−tG , M−1N = 1+2CtN−tG . (4.7)

Using these identities we arrive at

ē(+)′ = M̄−tēŌ(+)
s −M−tΣt

sN−1MG−1eO(+)
s

ē(−)′ = N̄−tēŌ(−)
s − N−tΣsM−1NG−1eO(−)

s

Ḡ′GDFT = M̄−tḠM̄−1 −M−tΣt
sN−1 − N−tΣsM−1

B̄′GDFT = M̄−tB̄∗M̄−1 + M−tΣt
sN−1 − N−tΣsM−1

Q̄′GDFT = M̄−tQ̄∗M̄−1 − 2N−tΣsM−1

Φ̄′GDFT = Φ̄− 1

2
ln Det(M̄) + α− 1

2
Tr
(
NG−1ΣsM−1

)
.

(4.8)

These equations express the fields in the lower-right corner of figure 1 in terms of those in

the upper-left corner.

Next we implement the last arrow in figure 1 with a corrected double Lorentz L′s to

arrive at the dual supergravity gauge E′s

ē′ = M̄−tēŌ(+)
s O(+)

s
′ −
[
M−tΣt

sN−1 + Σ′s
t
]
G′−1M−teO(+)

s O(+)
s
′

= N̄−tēŌ(−)
s O(−)

s
′ −
[
N−tΣsM−1 + Σ′s

]
G′−1N−teO(−)

s O(−)
s
′

Ḡ′ = M̄−tḠM̄−1 −
[
M−tΣt

sN−1 + Σ′s
t
]
−
[
N−tΣsM−1 + Σ′s

]
B̄′ = M̄−tB̄∗M̄−1 +

[
M−tΣt

sN−1 + Σ′s
t
]
−
[
N−tΣsM−1 + Σ′s

]
Q̄′ = M̄−tQ̄∗M̄−1 − 2

[
N−tΣsM−1 + Σ′s

]
Φ̄′ = Φ̄− 1

2
ln Det(M̄) + α− 1

2
Tr
(
G′−1

[
N−tΣsM−1 + Σ′s

])
,

(4.9)

where Σ′s = Σ
(
O(+)
s
′,O(−)

s
′, ω(±)(e(±)′)

)
.

Finally, we choose the same gauge we took for the leading order

ē(+) = e , ē(+)′ = ē′ , (4.10)

so that

Ō(+)
s = Ō(+)

s
′ = 1 , (4.11)

and

Ō(−)
s Ō(−)

s
′ = ē−1N̄tM̄−tē+ e−1Nt

[(
N−tΣsM−1 + Σ′s

)
−
(
N−tΣsM−1 + Σ′s

)
t
]
G′−1M−te ,

(4.12)
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which can be shown to be a Lorentz element as a consequence of the antisymmetric appear-

ance of
(
N−tΣsM−1 + Σ′s

)
. In this gauge, where Ō(+)

s = Ō(+)
s
′ = 1, we have that Σ(+) = 0

both in Σs and Σ′s as it should be clear from (2.54). This leaves Σ(−) as the only contri-

bution and so the dependency on the parameter b is completely removed. Starting with a

different diagonal Lorentz gauge in the supergravity gauge would lead to other dependence

on the parameters a and b. In particular if we started in the gauge in which e = e(−), that

would induce corrections with only the parameter b.

We have then finally arrived at the first order in α′ generalized T-duality transforma-

tions in the DFT scheme:

ē′ = M̄−tē−
[
M−tΣt

sN−1 + Σ′s
t
]
MG−1e

Ḡ′ = M̄−tḠM̄−1 −
[
M−tΣt

sN−1 + Σt′
s

]
−
[
N−tΣsM−1 + Σ′s

]
B̄′ = M̄−tB̄∗M̄−1 +

[
M−tΣt

sN−1 + Σ′s
t
]
−
[
N−tΣsM−1 + Σ′s

]
Q̄′ = M̄−tQ̄∗M̄−1 − 2

[
N−tΣsM−1 + Σ′s

]
,

Q̄∗ = Ḡ+ B̄∗ , B̄∗ = B̄ + DtB + Q̄tCtAQ̄+ Q̄tCtB− BtCQ̄

Φ̄′ = Φ̄− 1

2
ln Det(M̄) + α− 1

2
Tr
(
G′−1

[
N−tΣsM−1 + Σ′s

])
,

(4.13)

where Σs = Σ
(

1,O(−)
s , ω(−)(e)

)
and Σ′s = Σ

(
1,O(−)

s
′, ω(−)(e(−)′)

)
with O(−)

s and O(−)
s
′

defined in (3.27). The dependency on ω(−)(e(−)′) can be improved using e(−)′ = N−te(−) =

N−teO(−)
s and the Lorentz and O(D,D) transformations of ω(−) in (2.44) and (3.29) re-

spectively

ω(−)(e(−)′) = M−t
(
O(−)−1
s ω(−)(e)O(−)

s + O(−)−1
s ∂O(−)

s

)
. (4.14)

These are the first order corrections to the equations (3.22) and (3.24). They capture

any generalized duality, encoded here in generic local O(D,D) × R+ transformations, for

any choice of the parameters a and b that control the first-order corrections in the deformed

DFT. These expressions are valid in the DFT scheme, namely for the components of the

duality covariant fields after the gauge fixing. These are not the fields that appear in

supergravity, but are related to them through field redefinitions, as we discuss in the

following section. Note that the right hand side in equation (4.13) contains the original

background in the DFT scheme ē, B̄, Φ̄. All the other elements that appear (A, B, C, D, α,

O(−)
s , O(−)

s
′) can be read from the generalized duality to the lowest order. So knowing how

the duality works to lowest order, and having a corrected supergravity solution permits to

compute its dual from this expression.

In the following section we will need the generic Lorentz transformation of ē. From

the DFT point of view the double Lorentz transformations acts differently on ē(+) and

ē(−), so in order for this transformation to keep us in the supergravity gauge we need

L(ē(+)) = L(ē(−)) = L(ē) in (2.53). This forces a relation between Ō(+) and Ō(−)

Ō(−) = Ō(+) + e−1
(
Σ− Σt

)
e−tg−1O(+) , (4.15)

that is solved as follows

Ō(−) = (1 + γAg−1) Ō , A = e−1
(
Σ− Σt

)
e−t

Ō(+) = (1 + (γ − 1)Ag−1) Ō .
(4.16)
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It is clear that these are elements of the Lorentz group for any value of the parameter γ

because the matrix A is antisymmetric. Note that while to lowest order the two elements

are forced to coincide (this is the usual case in which the double Lorentz symmetry breaks

to its diagonal subgroup), higher orders make the two transformations differ. Since γ can be

chosen at will, we set its value to γ = 1. This implies the following Lorentz transformations

for the gauge fixed fields

L(ē) = ē Ō− ΣtG−1eO
L(Ḡ) = Ḡ− (Σ + Σt)

L(B̄) = B̄ − (Σ− Σt)

L(Q̄) = Q̄− 2Σ

L(Φ̄) = Φ̄− 1

2
GµνΣµν ,

(4.17)

where Σ = Σ(O,O, ω(±)(e)) is given in (2.54). Other choices of γ simply ammount to redefi-

nitions of Ō. These expressions are important, because as opposed to this DFT supergravity

scheme, in all other supergravity schemes the metric and dilaton are Lorentz invariant, and

then field redefinitions will be required to remove this anomalous transformation.

We explained at the end of section 2.3 why, even at higher orders, the local O(D,D)×
R+ transformations map solutions into solutions of DFT. In the context of Gauged DFT

this is realized rather trivially: the transformation keeps the gaugings into the same orbit

and then works as a symmetry of the Gauged DFT. Even if the orbits are different one

can make sense of the transformation as a solution generating technique between deformed

theories, as we discussed for instance when gaugings are non-unimodular. It is then natural

to ask why this extreme simplicity is no longer reflected in the results of this section. The

reason is that the gauge choice necessary to make contact with supergravity (in the DFT

scheme) requires double Lorentz transformations which are deformed by higher derivatives.

4.1 Supergravity schemes

The overline on fields in the previous section indicates that they are components of the

generalized fields in DFT, and so we call this set of fields the DFT scheme. In this scheme

the frame field receives a first order Lorentz transformation inherited from the generalized

Green-Schwarz transformation (4.17), and so it is not the standard frame field in supergrav-

ity. However, it is related to it through a first order Lorentz non-covariant field redefinition.

The same is true for the dilaton and two-form (although in some cases the Lorentz trans-

formation of the two-form cannot be redefined away). So the fields in the DFT scheme

(with an overline) and the fields in supergravity (without an overline) are related by

ē = e+ ∆e , B̄ = B + ∆B , Φ̄ = Φ + ∆Φ . (4.18)

The correction ∆ depends on the supergravity scheme to be considered, and is defined up

to covariant Lorentz redefinitions. The non-covariant part is fixed by

L(e) = eO , L(G) = G , L(Φ) = Φ . (4.19)
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The only case in which the two-form can be taken to be a Lorentz invariant field L(B) = B

is when a = b, which corresponds to the bosonic string [29]. Otherwise it carries a

Green-Schwarz transformation. Different supergravity schemes [82–86] correspond to

different choices of (∆e, ∆B, ∆Φ) related by Lorentz covariant field redefinitions.

Applying a generalized duality to ē′ leads to

ē′ = e′ + (∆e)′ ⇒ e′ = ē′ − (∆e)′ , (4.20)

where (∆e)′ ≡ ∆e(e′). We know from (4.13) what ē′ is in terms of ē, and from (4.18) what

ē is in terms of e, so we can readily compute e′ expanding M̄−t = M−t −M−t(∆Q)tCtM−t

in the same way we did in (4.5), we then have

e′ = M−te+ M−t∆e−M−t(∆Q)tCtM−te−
[
M−tΣt

sN−1 + Σ′s
t
]
MG−1e− (∆e)′ . (4.21)

For the metric the above results imply

G′ = G(0) +G(1)

G(0) = M−tGM−1

G(1) =
1

2
N−t∆QM−1 −

[
N−tΣsM−1 + Σ′s

]
− 1

2
(∆G)′ + Transpose ,

(4.22)

where we used the identities (4.7). For the two-form we follow the same procedure and

after introducing B∗ as in (3.21) and using exhaustively the O(D,D) identities, we can get

a similar result as for the metric

B′ = B(0) +B(1)

B(0) = M−tB∗M−1

B(1) =
1

2
N−t∆QM−1 −

[
N−tΣsM−1 + Σ′s

]
− 1

2
(∆B)′ − Transpose .

(4.23)

Both results (4.22) and (4.23) can then be merged into a single expression in terms of

Q′ = Q(0) +Q(1). The final result for first order corrections to generalized dualities is given

by:

e(0) = M−te ,

e(1) = M−t∆e−M−t(∆Q)tCtM−te−
[
M−tΣt

sN−1 + Σt′
s

]
MG−1e− (∆e)′

Q(0) = M−tQ∗M−1 ,

Q(1) = N−t (∆Q− 2Σs)M−1 − (∆Q)′ − 2Σ′s

Φ(0) = Φ− 1

2
ln Det(M) + α

Φ(1) = −1

2
Tr
(
M−1C∆Q+G−1′

[
N−tΣsM−1 + Σ′s

])
+ ∆Φ− (∆Φ)′ .

(4.24)

We have then extended the result of the previous subsection to be applicable to generic

schemes related by field redefinitions from the DFT scheme. This reduces to (4.13) when

∆e = ∆B = ∆Φ = 0.
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The fields without an overline must transform covariantly under Lorentz transforma-

tions (4.19). We can then separate ∆ into a non-covariant part, and a covariant part.

The former is unambiguously defined, and the scheme in which ∆ contains only the non-

covariant part was named the Bergshoeff-de Roo (BdR) scheme in [29], after [85, 86]

∆G(BdR)
µν = −1

4

(
aω(−)2

µν + bω(+)2
µν

)
, ∆Φ(BdR) =

1

4
Gµν∆Gµν , ∆B(BdR)

µν = 0 , (4.25)

with ω
(±)2
µν = ω

(±)
µα

βω
(±)
νβ

α. As explained, it is not always possible to make the two-form

Lorentz invariant, and interestingly in the BdR scheme the two-form coincides with the

two-form in the DFT scheme.

4.2 Examples

4.2.1 Abelian T-duality

The α′-corrected T-duality transformations must contain the corrections to Abelian T-

duality as a particular case. In order to check this statement, we consider the decomposition

of O(D,D) into GL(D) transformations, B-shifts and factorized T-dualities. In the three

cases the matrices A,B,C,D are constant, and we take the generalized dilaton shifts to

vanish α = 0. Moreover, we remember that in this case O(−)
s = 1.

For GL(D) transformations, we have B = C = 0 and D = A−t so

M = N = A−t ⇒ O(−)
s
′ = 1 . (4.26)

For B-shifts A = D = 1, B = constant and C = 0 so

M = N = 1 ⇒ O(−)
s
′ = 1 . (4.27)

For a single factorized T-duality in a particular direction x, we need the reduced form of

the matrices (3.31). In this case a = d = 0 and b = c = 1 with

M = −N = Gd ⇒ O(−)
s
′ = −1 . (4.28)

Then, in the three cases O(−)
s and O(−)

s
′ are constant, and consequently Σs = Σ′s = 0. This

reduces the general formulas (4.24) to

Q(0) = M−tQM−1 , Q(1) = N−t∆QM−1 − (∆Q)′

Φ(0) = Φ− 1

2
ln Det(M) , Φ(1) = −1

2
Tr
(
M−1C∆Q

)
+ ∆Φ− (∆Φ)′

ω(+)′ = N−tω(+) , ω(−)′ = O(−)
s
−1′M−tω(−)O(−)

s
′ ,

(4.29)

where the transformations ω(±)′ are obtained from (3.30) with O(−)
s = 1 and O(−)

s
′ =

Constant.

To move forward, we need to specify a particular scheme. In this case we will consider

the Bergshoeff-de Roo scheme with the field redefinitions given in (4.25). The transformed

version of those field redefinitions can be easily obtained from ω(±)′

ω(+)2 = N−tω(+)2N−1 , ω(−)2 = M−tω(−)2M−1 . (4.30)
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Introducing these objects together with (4.25) in our general formula, and after some work

using O(D,D) identities, we arrive at

Q(1) =
1

2
N−t

[
aGN−1Cω(−)2 − bω(+)2CtM−tG

]
M−1 ,

Φ(1) =
1

8
(M−1)µνCνρ

(
aω(−)2

ρµ + bω(+)2
ρµ

)
.

(4.31)

For GL(D) transformations and B-shifts we have C = 0 and so Q(1) = Φ(1) = 0, so

interestingly GL(D) and B-shifts receive no corrections. For factorized T-dualities instead

we expect higher derivative corrections. Consider the heterotic string in particular, for

which a = 0 and b = −1

Q(1) =
1

2
N−tω(+)2CtM−tGM−1 , Φ(1) = −1

8
(M−1)µνCνρω(+)2

ρµ , ω(+)′ = N−tω(+) .

We consider the simple case of a single internal isometric direction, and then perform a

splitting as we did in section 3.1.2 for the zeroth order. In this case the results are

Q̄′mn = Q̄mn−
Q̄mxQ̄xn
Q̄xx

, Q̄′xx =
1

Q̄xx
, Q̄′mx =

Q̄mx

Q̄xx
, Q̄xm =−Q̄xm

Q̄xx

ē′m
α = ēm

α− Q̄xm
Q̄xx

ēx
α , ē′x

α =
ēx
α

Q̄xx

ω̄(+)′
mα

β = ω̄
(+)
mα

β− Q̄mx

Q̄xx
ω̄(+)
xα

β , ω̄(+)′
xα
β =− ω̄

(+)
xα

β

Q̄xx

G′mn =Gmn−
1

Gxx
(GmxGnx+bmxBnx)

+
1

G2
xx

(
GxxΩx(mBn)x−ΩxxGx(mBn)x−ΩxxBmxBnx

)
G′mx =

Bmx

Gxx
+

1

2G2
xx

(GxxΩmx−ΩxxGmx−2ΩxxBmx)

G′xx =
1

Gxx
− Ωxx

G2
xx

B′mn =Bmn−
1

Gxx
(GmxBxn+BmxGxn)+

1

G2
xx

(
GxxΩx[mBn]x−ΩxxGx[mBn]x

)
B′mx =

Gmx

Gxx
+

1

2G2
xx

(GxxΩmx−ΩxxGmx)

Φ′= Φ− 1

2
lnGxx−

1

4

Ωxx

Gxx
,

(4.32)

where we defined Ω ≡ 1
2ω

(+)2. These results are the same as the ones obtained in [87] for

the heterotic string after identifying B
(here)
mx = −B(there)

mx and setting the α parameter in

that paper to 1
2 (see eqs. (39,42,70,74,75,76)).

4.2.2 Yang-Baxter

We now move to a different generalized duality for backgrounds with non-Abelian isome-

tries. In [88] it was shown that after applying unimodular homogeneous YB transformations
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over bosonic string solutions at order α′, the resulting background could be corrected to

satisfy the equations of motion. This was done for backgrounds with vanishing NSNS fluxes

and up to second order in the deformation parameter η. Soon after, in [45] it was realized

that the same result could be obtained by considering these particular generalized dualities

in the context of DFT to order α′. In this case the deformed background was obtained at

all orders in η and the original background was allowed to have NSNS-fluxes. As expected,

the result reduced to the previous one after setting the particular conditions of [88].

Our general formula for higher-derivative corrections to generalized dualities includes

this scenario as a particular case. We will show here that the results of [45] are recovered, a

task that will turn out easy because we are using a notation similar to the one used there.

To see this, we first notice that (3.76) can be trivially extended to D-dimensions by

Θmn → Θµν = ki
µRijkj

ν , (4.33)

where ki
µ are extended by introducing the identity map on the external directions. The

same can be done for the Maurer-Cartan form and so the expression (3.76) can be brought

to

Q′ = Q (ηΘQ+ 1) , Φ′ = Φ− 1

2
ln (Det(ηΘQ+ 1)) . (4.34)

Then, we specify our results (4.24) to the bosonic case a = b = −1 and consider the scheme

used in [88]

∆Qµν =
1

2
ω(+)
µα

βω
(−)
νβ

α , ∆Φ = − 1

48
H2 +

1

4
Gµν∆Gµν , (4.35)

where H2 ≡ HµνρH
µνρ. Remembering that we come from a geometric background in

which e(+) = e(−) and consequently O(−)
s = 1 and Σ

(−)
s = 0, the corrected unimodular

homogeneous YB transformation is then obtained

Q(1) = −1

2
ω(−)′

να
β
(
ω(+)′

µβ
α −O(−)−1

s
′
β
γ∂µO(−)

s
′
γ
α
)

+
1

4
∂µO(−)−1

s
′
α
β∂νO(−)

s
′
β
α +

1

2
ΣWZW(O(−)

s
′)µν

+
1

2

[
(−QtΘ + 1)−1

]
ν
ρω(−)

ρα
βω(+)

σβ
α
[
(−ΘQt + 1)−1

]
σ
µ (4.36)

ω(+)′ = Ntω(+) , ω(−)′ = O(−)
s
−1′M−tω(−)O(−)

s
′ + O(−)

s
−1′∂O(−)

s
′ , O(−)

s
′ = e−1NtM−te ,

where the transformation for ω(±) follows from (3.30) with O(−)
s = 1.

From here, we can see after the change Θ→ −Θ, O(−)
s
′ → O(−)

s
−1′ these are the same

results obtained in eqs. (3.6), (4.15), (4.25) and (4.25) of [45]. Finally, for the dilaton

field instead of using our general formula, the more straightforward way to match results

is noticing that in the scheme (4.35) one has

e−2d = e−2Φ̄
√
Ḡ = e−2Φ

√
G

(
1 +

1

24
H2

)
, (4.37)

so using that for YB the generalized dilaton shift vanishes (3.79) d′ = d we get the trans-

formation for the dilaton

Φ′ = Φ− 1

2
lnM +

1

4
G(0)µνG(1)

µν +
1

48

(
H ′2 −H2

)
, (4.38)

which is exactly the expression given there in eq. (4.16).
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5 Outlook

A number of questions arise:

• Explicit solutions. It would be interesting to apply our result to specific exam-

ples. Higher-derivative corrections to Abelian T-duality have been applied in dif-

ferent contexts, such as corrections to entropy and black-hole solutions [89–93] and

cosmological backgrounds [94–96]. Higher-derivative corrections to Yang-Baxter de-

formations were recently considered in [45]. There have also been some analysis on

higher-derivative corrections to non-Abelian and PL dualities [97–99].

• Classification of generalized dualities. An interesting observation is that the

framework of Gauged DFT allows to envision further extensions of generalized duali-

ties, beyond those discussed here. In particular it might offer a classification through

classifications of duality orbits on the one hand, and on the other through the char-

acterization of the degeneracy in the space of duality twists that fall into the same

orbit. Steps in this direction were given in [20] and [100]. Also the formalism of

DFTWZW [101] can be useful in this respect because the frame algebra is simpler,

and gives a prescription to compute generalized twists in Gauged DFT. There are a

priori no obstructions in finding examples of generalized dualities in Gauged DFT that

go beyond PL T-plurality. An interesting case of study is the so called E-models [102]

recently discussed in the context of DFT in [49, 50].

• Extensions to higher orders. The whole construction in the paper was based on

the first order generalized Green-Schwarz transformation (2.40) introduced in [29]. In

order to proceed to even higher orders, we need further corrections to the generalized

Green-Schwarz transformation. Interestingly, for the heterotic string these correc-

tions are known non-perturbatively (through the so-called generalized Bergshoeff-de

Roo identification), and perturbatively to second order in α′ [103]. Soon, an all-order

proposal to corrections in the general bi-parametric case will appear [104], where the

second-order corrections will be worked out explicitly. The strategy applied here, to-

gether with these results will permit to extend our computations to second order in α′.

• Exceptional Drinfeld Doubles and maximal supergravity. The results in this

paper are at most compatible with half-maximal supergravity. Generalized dualities

in the context of maximal supergravities gained renewed interest after the proposal for

non-Abelian dualities of RR fields [105–107]. Type II and M-theory give rise to rigid

U-duality transformations upon compactifications on tori. Interestingly, the idea of

generalized U-dualities was recently introduced in [108, 109] and further discussed

in [110–115]. Looking for higher order corrections to generalized U-dualities is out of

reach at the moment, because these corrections are not even known in the Abelian

case. There are promising steps in this direction [116–118], systematics in the writ-

ing and counting of interactions is crucial [119] because higher derivatives appear in

maximal supergravity at order α′3, and so even the simplest corrections are hard to

handle. Still, there is at the moment no higher derivative formulation of Exceptional

Field Theory [120] nor Type II DFT [121, 122] (for a review see [123]), but generalized
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Scherk-Schwarz reductions have been extensively investigated [124–127] and surely

constitute the proper framework to deal with generalized U-duality, in the same sense

that Gauged DFT is the proper framework to deal with generalized T-duality.

We hope to make progress in these and other directions in the future.

Note. Upon completion of this work we became aware of [128] and [129] which overlap

significantly with our results.
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[36] O.A. Bedoya, D. Marques and C. Núñez, Heterotic α′-corrections in double field theory,

JHEP 12 (2014) 074 [arXiv:1407.0365] [INSPIRE].

[37] A. Coimbra, R. Minasian, H. Triendl and D. Waldram, Generalised geometry for string

corrections, JHEP 11 (2014) 160 [arXiv:1407.7542] [INSPIRE].

[38] K. Lee, Quadratic α′-corrections to heterotic double field theory, Nucl. Phys. B 899 (2015)

594 [arXiv:1504.00149] [INSPIRE].

[39] O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011)

085404 [arXiv:1011.4101] [INSPIRE].
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