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Abstract: Conformal blocks are the fundamental, theory-independent building blocks in

any CFT, so it is important to understand their holographic representation in the context

of AdS/CFT. We describe how to systematically extract the holographic objects which

compute higher-point global (scalar) conformal blocks in arbitrary spacetime dimensions,

extending the result for the four-point block, known in the literature as a geodesic Witten

diagram, to five- and six-point blocks. The main new tools which allow us to obtain such

representations are various higher-point propagator identities, which can be interpreted

as generalizations of the well-known flat space star-triangle identity, and which compute

integrals over products of three bulk-to-bulk and/or bulk-to-boundary propagators in nega-

tively curved spacetime. Using the holographic representation of the higher-point conformal

blocks and higher-point propagator identities, we develop geodesic diagram techniques to

obtain the explicit direct-channel conformal block decomposition of a broad class of higher-

point AdS diagrams in a scalar effective bulk theory, with closed-form expressions for the

decomposition coefficients. These methods require only certain elementary manipulations

and no bulk integration, and furthermore provide quite trivially a simple algebraic origin

of the logarithmic singularities of higher-point tree-level AdS diagrams. We also provide a

more compact repackaging in terms of the spectral decomposition of the same diagrams, as

well as an independent discussion on the closely related but computationally simpler frame-

work over p-adics which admits comparable statements for all previously mentioned results.
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1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence [1–3] provides a pow-

erful repackaging of CFTs in terms of gravitational theories in asymptotically AdS space-

times and vice versa. Particularly, conformal correlators in large N CFTs admit a pertur-

bative holographic expansion in 1/N in terms of bulk Feynman diagrams (also referred to

as Witten diagrams or AdS diagrams). From the CFT perspective, repeated application

of operator product expansion (OPE) in a correlator reduces any higher-point correlator
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into a combination of two- and three-point functions, which are fixed entirely by confor-

mal invariance, up to an overall constant for the three-point function given by the OPE

coefficient. The resulting decomposition can be interpreted as a conformal block decom-

position (CBD) which provides an efficient organization of the kinematic and dynamical

information in the correlators, in terms of an expansion in the basis of appropriate confor-

mal blocks (the theory independent, non-perturbative, conformally invariant fundamental

building blocks of correlators) and the CFT data (the spectrum of operators in the theory

and the associated OPE coefficients).

In the case of four-point correlators, the associativity of taking the OPE provides a

powerful constraint, called the crossing equation, which via the conformal bootstrap pro-

gram [4–6] has provided one of the strongest numerical and analytical approaches towards

solving (higher-dimensional) CFTs (see e.g. refs. [7, 8]). Holographically, the AdS diagram

expansion of CFT correlators organizes itself such that it solves the crossing equation or-

der by order in 1/N , as established at leading [9] and subleading orders [10] in 1/N in

simple cases. The four-point exchange AdS diagrams in Mellin space [11, 12] (up to cer-

tain contact interactions) are also known to be directly related to the four-point conformal

block [13].1 Moreover, these diagrams appear directly as an expansion basis in a variant

of the bootstrap approach also in Mellin space [15–17] pioneered in ref. [5].

Given the central role and importance of AdS diagrams in AdS/CFT, they have been

the subject of much interest and considerable progress over the past decade. Arguably the

most powerful results so far have been obtained in Mellin space, where Mellin amplitudes

in effective scalar field theories on AdS can be written in closed-form series or contour

integral representations, for arbitrary tree-level AdS diagrams [12, 18–22], as well as for

certain classes of higher-loop diagrams [12, 23–27]. There are also recursive techniques

for computing tree-level AdS diagrams in momentum space in four [28, 29] and higher-

dimensional [30–33] bulk spacetime. To a limited extent, higher-loop results have also been

obtained directly in position space using bulk [34–36] as well as CFT techniques [10, 37–41].

However, most position space results have been limited to up to four-point AdS diagrams,2

and as such relatively little is known about the position space representation of higher-point

diagrams, even at tree-level.

AdS diagrams are by construction conformally covariant, thus like conformal corre-

lators they admit CBDs in any choice of conformal basis. The CBD is perhaps best

understood via harmonic analysis on the (Euclidean) conformal group SO(d+1, 1) [43–46].

Particularly, the shadow formalism [47–50] provides a convenient framework for writing

down conformal blocks [51] as well as the decomposition of conformal correlators in po-

sition space. The main objects here are the so called conformal partial waves, which are

given in terms of linear combinations of conformal blocks and their “shadow blocks”. This

formalism allows a convenient rewriting of AdS diagrams as spectral integrals, from which

the CBD can in principle be obtained by evaluating all (contour) integrals. However such

integrals can get increasingly tedious to evaluate for higher-point diagrams, rendering the

1Subsequently an alternate attractive holographic interpretation for four-point blocks was provided [14],

which we will comment on shortly.
2See however, the recent paper [42].
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path from the spectral decomposition to the explicit CBD somewhat unwieldy. Thus it

remains fruitful to search for methods which can yield the explicit CBD directly. Fur-

thermore, explicit closed-form expressions for conformal partial waves or global conformal

blocks are not known except in a relatively small number of cases, such as for low-point

blocks or in low spacetime dimensions. While closed-form expressions or series representa-

tions are known for the global scalar conformal blocks in general spacetime dimension d at

four [50, 52–56] and (only very recently) five points [57], at six points and higher, the only

global conformal blocks for which closed-form expressions are available so far are those in

the comb channel in d = 1 and d = 2 [57]. Knowledge of higher-point blocks in arbitrary

spacetime dimensions thus remains an important missing link in the study of higher-point

AdS diagrams.3

It is useful to study higher-point diagrams because their decomposition involves multi-

twist exchanges.4 Multi-twist exchanges also appear in the conformal perturbation theory

of lower-point diagrams such as in the context of the lightcone bootstrap approach [60–69].

Thus understanding various analytic limits of higher-point AdS diagrams can be useful

in gaining further understanding of four-point crossing symmetry constraints in various

regimes. Such decompositions can further be quite useful in setting up an n-point analog

of the four-point crossing equations and conformal bootstrap with external scalar operators,

which collectively may possibly be sufficient and present analytical or numerical advantages

over the usual four-point program where one must also include all spinning operators in

the spectrum [57].

The present paper aims to partially fill the gap in the study of higher-point AdS dia-

grams, particularly in an effective scalar field theory on AdSd+1 by developing a systematic

study of higher-point global conformal blocks in arbitrary spacetime dimensions. Specifi-

cally, we will develop tools to obtain the holographic representation of higher-point blocks,

expressed in terms of geodesic diagrams. These tools include various integral AdS prop-

agator identities, one of which was used recently to obtain the holographic dual of the

five-point block [70]. In this paper, we will apply these tools to obtain the six-point block

in the so called OPE channel. Further, we will generalize the geodesic diagram techniques

of ref. [14] to obtain the explicit direct channel CBD of all tree-level scalar five-point dia-

grams with scalar exchanges and a significant subset of six-point diagrams (more precisely,

those which admit a direct channel decomposition in the so-called OPE channel). Like in

the case of four-point diagrams [14], such calculations will not involve any bulk or con-

3See, however, refs. [58, 59] for recent results on obtaining recursively higher-point conformal blocks and

conformal correlators via the embedding space formalism.
4A notational remark: the class of double-trace primaries of twist ∆a+∆b+2M and spin ` is constructed

out of scalar operators Oa,Ob of dimensions ∆a,∆b respectively, written schematically as

[OaOb]M,` ≈ Oa∂2M∂µ1 . . . ∂µ`Ob + traces . (1.1)

We will interchangeably refer to the operator in (1.1) as “double-twist” or double-trace. “Multi-twist”

operators appearing in this paper will usually arise as double-twists of double-twists and so on. Whenever

we refer to “higher-twist” operators, we will mean non-zero values of M in (1.1), and since we will only be

dealing with scalar external and exchanged operators, the terminology “lowest-twist” operators will refer

to the case M = 0.
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tour integrations, but only algebraic steps. The analysis presented provides the road-map

for extensions to conformal blocks beyond six-points. Moreover, we will also present the

parallel story in the closely related framework of p-adic AdS/CFT [71, 72], which affords

a useful toy model for studying conformal blocks and CBDs. Here, we will present the

corresponding propagator identities on the Bruhat-Tits tree, the holographic duals of the

five-point block as well as the six-point block in the OPE channel, and apply geodesic

diagram methods to obtain the CBD of five- and six-point diagrams in p-adic AdS/CFT.

In the remainder of this section, we expand lightly on the setup of this paper, before

ending with an outline.

Holographic conformal blocks and propagator identities. At four-points, the scalar

contact and exchange diagrams in an effective scalar field theory in AdS admit a direct

channel decomposition as a sum over infinitely many four-point conformal blocks, each

representing the exchange of an appropriate representation of the conformal group, corre-

sponding to higher-twist double-trace exchanges (more generally “double-twist” exchanges)

and additionally a single-trace exchange in the case of the exchange diagram, each weighted

essentially by factors of OPE coefficients squared [73]. Recent work has focused on alter-

nate efficient means of obtaining such decompositions, including the split representation of

bulk-to-bulk propagators [74, 75], the conformal Casimir equation [76], and the use of the

so-called geodesic Witten diagrams [14].5

The four-point geodesic diagram is a four-point exchange AdS diagram, except with

both AdS integrations replaced by geodesic integrals over boundary anchored geodesics

joining pairs of boundary insertion points. Such a holographic object computes precisely

the four-point global conformal block [14, 72, 83–90] (see also refs. [91, 92] for an alternate

point of view).6 The holographic conformal block representation, together with certain

crucial two-propagator identities reduce the task of obtaining the decomposition of four-

point AdS diagrams in the direct channel to a number of elementary algebraic operations,

with no further need to evaluate bulk integrals [14]. With some work this approach can

be extended to a higher-point setting as is done in this paper; consequently one needs the

holographic duals of higher-point conformal blocks, as well as higher-point generalizations

of the two-propagator identities. In addition to being useful for obtaining the decomposition

of AdS diagrams, each of these generalizations is of interest in its own right, as we now

briefly describe.

Global conformal blocks are projections of conformal correlators onto the contribution

from individual conformal families, associated to representations of the d-dimensional global

conformal group. The representations are labeled by the conformal dimensions and spin. In

this paper we will focus only on scalar conformal blocks with scalar intermediate exchanges,

5Recently, progress has also been made in obtaining relations obeyed by the decomposition coefficients

of four-point exchange diagrams in the crossed channel [17, 27, 76–82] but in this paper we will restrict our

discussion to only direct channel decomposition.
6In AdS3/CFT2, various limits of Virasoro blocks, obtained by taking particular heavy/light limits

of dimensions of external operators, are also interpreted in terms of lengths of bulk geodesics and as

geodesic diagrams in defect geometries [62, 93–96]). In some cases, higher-point results (n ≥ 5) are also

available [97–103].
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Figure 1. Graphical representation of the scalar five-point conformal block, W∆1,...,∆5

∆a;∆b
(xi) (LHS),

and the leading term in its holographic representation (RHS). All solid lines in the bulk diagram on

the RHS are bulk-to-bulk or bulk-to-boundary propagators, with the two bulk vertices integrated

over boundary anchored geodesics (red dashed curves) and the conformal dimensions associated

with some of the propagators explicitly displayed in blue (which makes use of the shorthand (1.5)).

The ellipsis represents contribution from the exchange of descendants in the conformal multiplet of

primaries Oa and Ob. The precise relation, obtained in ref. [70], can be found in (4.7).

so from here on we will suppress the spin label. We leave extensions to external and

exchanged spin operators along the lines of refs. [14, 83–90] for the future.

The five-point conformal block corresponding to the projection onto the conformal

multiplets labeled by weights ∆a and ∆b (and zero spin) can be written as7

W∆1,...,∆5

∆a;∆b
(xi) ≡

〈O1(x1)O2(x2)P∆aO3(x3)P∆b
O4(x4)O5(x5)〉

C∆1∆2∆aC∆a∆3∆b
C∆b∆4∆5

, (1.2)

where P∆ =
∑

k |P kO∆〉〈P kO∆| is the projection operator projecting onto the conformal

family of the primary O∆. The OPE coefficients, given by C∆i∆j∆k
, have been quotiented

out in the expression to obtain a purely kinematical quantity. Graphically, we will often

represent the five-point conformal block as shown in the LHS of figure 1. At six points

and higher, conformal blocks admit topologically distinct channels not simply related to

each other by permutations of operators and boundary insertions or conformal transforma-

tions. The two conformally distinct channels for the six-point block are the so-called comb

channel, given by

W∆1,...,∆6

∆`;∆c;∆r
(xi) ≡

〈O1(x1)O2(x2)P∆`
O3(x3)P∆cO4(x4)P∆rO5(x5)O6(x6)〉

C∆1∆2∆`
C∆`∆3∆cC∆c∆4∆rC∆r∆5∆6

, (1.3)

7Following the nomenclature in recent literature, we reserve the term conformal block to refer to objects

such as the one in (1.2), which include the entire position space dependence as opposed to dependence

merely on the conformal cross-ratios. This is in contrast with the notation used in ref. [70] where this

object was referred to as a “conformal partial wave”, a term that in this paper is instead reserved for the

object which is given by a linear combination of a conformal block and its shadow blocks, and which has

useful orthogonality and single-valuedness properties.
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O1

O2 O3 O4 O5

O6O` Oc Or

Figure 2. The global scalar six-point block W∆1,...,∆6

∆`;∆c;∆r
(xi), in the comb channel. We will not

discuss its holographic representation in this paper.

O1

O2

O3 O4

O5

O6

O` Or

Oc ∝

O1

O2

O3 O4

O5

O6

∆`c,r ∆rc,`

∆`r,c

+ · · ·

Figure 3. The graphical representation of the global scalar six-point block in the OPE channel,

W∆1,...,∆6

∆`;∆c;∆r
(xi) (LHS), and the leading term in its holographic representation (RHS). To interpret

the RHS, see the caption of figure 1. The precise relation can be found in (4.17).

and the OPE channel, written as

W∆1,...,∆6

∆`;∆c;∆r
(xi)≡

1

C∆1∆2∆`
C∆3∆4∆cC∆r∆5∆6C∆`∆c∆r

∑
k`,kc,kr

〈O1(x1)O2(x2)|P k`O∆`
〉

×〈P kcO∆c |O3(x3)O4(x4)〉〈P k`O∆`
|P kcO∆cP

krO∆r〉〈P krO∆r |O5(x5)O6(x6)〉 .
(1.4)

The graphical representations of these blocks, shown in figures 2–3 are perhaps more il-

luminating and in fact suggestive of the names for the channels. Later in this paper we

will provide an alternative definition of these blocks based on the Casimir equations and

appropriate boundary conditions they satisfy.8

For the five-point block, a series representation was obtained using the shadow for-

malism [57], while the recently obtained holographic dual of the five-point block provides

an alternate mixed integral and series representation [70]. The first term in the holo-

graphic representation is displayed in the RHS of figure 1. The alternate representation

makes the holographic origin of the five-point block more transparent, and in this paper

this transparency is leveraged to furnish the CBD of all tree-level scalar five-point AdS

diagrams. Moreover, in this paper we will obtain the general d-dimensional holographic

representation for the six-point block in the OPE channel (see the RHS of figure 3), for

which no other representation, either from the boundary or the bulk perspective, is known

8The four- and five-point blocks may be interpreted as examples of comb channel blocks, but the four-

point block also qualifies as an OPE channel block.
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∆c

∆a ∆b

wc

wa wb

= C∆a∆b∆c

∆ca,b ∆cb,a

∆ab,c

wc

wa wb

+ · · ·

Figure 4. A schematic representation of a three-propagator identity. The common point of

intersection of three bulk-to-bulk propagators, shown as a green disk on the LHS is to be integrated

over all of AdS. The overall factor of C∆a∆b∆c
is the OPE coefficient associated with primaries

of conformal dimensions ∆a,∆b and ∆c. We have only shown one of a four-fold infinity of terms

which appear on the RHS. The precise identity can be found in (3.16). See section 3.2 for variants

of this identity involving factors of the bulk-to-boundary propagator.

at the moment, and apply it in decomposing a class of six-point tree-level AdS diagrams.

These new representations may also be useful in investigating analytically relatively less

understood physical properties of higher-point blocks, such as various non-OPE limits.

This paper also establishes higher-point propagator identities that equate products

of bulk-to-bulk and bulk-to-boundary propagators, incident at a common bulk point that

is integrated over all of bulk space, with unintegrated expressions involving linear com-

binations of these propagators. These identities provide examples of higher-point “bulk

scattering amplitudes”. For instance, we present a three-particle bulk scattering ampli-

tude in AdS (i.e. a product of three bulk-to-bulk propagators incident on a cubic contact

vertex to be integrated over all of AdS) as the AdS generalization of the well-known flat

space star-triangle identity [104]. See figure 4 for a schematic depiction of this identity.

Furthermore, the higher-point AdS propagator identities derived in this paper enable a

physical decomposition of various AdS integrals into terms each of which can be inter-

preted as corresponding to the contribution to an AdS diagram coming from a particular

(multi-twist) operator exchange. In the future, the identities may also prove useful in

evaluating or simplifying various loop-level AdS diagrams.

A p-adic toy model. Another computational tool we make use of in developing the

higher-point holographic functions program is the framework of p-adic AdS/CFT [71, 105].

In this discrete version of holography, boundary operators are real- or complex-valued

maps from the (projective line over) p-adic numbers or an algebraic extension thereof. As

a consequence, spinning operators and local derivatives are absent so that not only is the

CFT devoid of descendants, but it only contains the lowest-twist operators [72, 106]. For

instance, the class of double-trace primaries (1.1) exists only at M = 0, ` = 0 in such p-adic

CFTs, and similarly for higher-trace operators. So the decomposition of AdS diagrams in

p-adic AdS/CFT is especially simple, with all conformal blocks reduced to scaling blocks

given by trivial power laws of conformal cross-ratios (due to the absence of descendants in

conformal families), and the presence of only the lowest-twist contributions in the decom-

position (due to the absence of local derivative operators); see ref. [72] for a demonstration

in the case of the four-point diagrams. Correspondingly, we will show that the holographic

duals of the five- and six-point blocks will be fully specified precisely by the single term

– 7 –
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shown on the RHS in figures 1 and 3. This is a drastic simplification of the situation in

conventional AdS/CFT. Moreover, the general structure of the CBD and the decompo-

sition coefficients turns out to be strikingly reminiscent of the results from conventional

AdS/CFT, as will also be demonstrated for higher-point diagrams in this paper.

Indeed, despite the dramatic simplicity of the p-adic setup alluded to above, computa-

tions and results closely echo those encountered in the conventional AdS/CFT literature.

Some examples include the (adelically) identical functional forms of OPE coefficients when

expressed in terms of local zeta functions [72], the similar structure of conformal corre-

lators [71, 72, 107], the existence of geodesic bulk diagrams which serve as holographic

duals of conformal blocks [72], universal real/p-adic closed-form expressions for Mellin

amplitudes for arbitrary tree-level bulk diagrams [108, 109], and tensor network construc-

tions [105, 110, 111] to name a few (see refs. [112–119] for other developments). For this

reason, p-adic AdS/CFT serves as a convenient toy model, affording significant compu-

tational advantages while at the same time informing the more involved setup over reals.

Thus we will find it beneficial to make a brief detour to the p-adic setup before turning our

attention to conventional AdSd+1/CFTd over the reals.

Outline. An outline for the rest of the paper is as follows:

• In section 2, in the context of p-adic AdS/CFT, we employ propagator identities to

obtain the holographic duals of five- and six-point conformal blocks on the Bruhat-

Tits tree. Further, CBD of five-point diagrams is presented. This section is restricted

to the p-adic setting, but the computations and results find very close analogs with

the conventional (real) AdSd+1/CFTd setting discussed in the subsequent sections.

The discussion is presented such that the rest of the paper can be read independently

of this section.

• From section 3 onward the paper essentially pans out in the conventional

AdSd+1/CFTd setting over the reals. In section 3 we present new higher-point bulk-

to-bulk and bulk-to-boundary propagator identities which relate integrals over all of

bulk AdS of products of propagators to infinite sums over unintegrated combinations

of propagators.

• In section 4 we present new results on the holographic dual of the six-point global

scalar conformal block in the OPE channel, and show that it satisfies the correct

conformal Casimir equations with the right boundary conditions. Like in the five-

point case, the holographic representation of the six-point block is given in terms of

an infinite linear combination of six-point geodesic diagrams.

• In section 5 we provide a derivation of the CBD for all tree-level five-point diagrams

— the scalar contact diagram, various five-point exchange diagrams admitting scalar

exchanges, as well as a class of six-point diagrams which admits a direct channel de-

composition in the OPE channel (which includes the six-point contact diagram, and

several six-point exchange diagrams with one, two, or three exchanges). The compu-

tation involves a higher-point generalization of the geodesic diagram techniques; the

– 8 –
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intermediate steps are essentially purely algebraic and no further bulk integration or

contour integrals are necessary, although some hypergeometric summation identities

will be needed. We end the section with comments on the algebraic origins of loga-

rithmic singularities (section 5.4) and the relation to the spectral decomposition of

AdS diagrams (section 5.5).

• Finally, in section 6, we end the paper with a discussion of the results and future

directions.

• In the appendices we provide the explicit derivation of the spectral decomposition of

a few simple diagrams (appendix A), and proofs of all new propagator and hyperge-

ometric summation identities (appendix B) utilized in the main text.

Notation. We introduce a convenient shorthand for conformal dimensions which will be

used frequently throughout the paper:

∆i1...i`,i`+1...ik ≡
1

2

(
∆i1 + · · ·+ ∆i` −∆i`+1

− · · · −∆ik

)
. (1.5)

2 A p-adic étude

In this section we will be focusing on the computationally simpler setup of p-adic AdS/CFT.

This section can be read independently from the rest of the paper but serves as a warm-up

to the later sections over the reals, and the patient reader may benefit from the general

lessons and the less cluttered discussion afforded by the p-adic setup.

One of the practical benefits of the p-adic AdS/CFT setup of refs. [71, 105] is that sim-

ple bulk theories of massive scalar fields in a fixed negatively curved spacetime are modelled

as scalar lattice theories on a regular tree (called the Bruhat-Tits tree) with polynomial

contact interactions,9 which dramatically simplifies bulk computations of such objects as

the amplitudes associated with bulk Feynman diagrams. The putative dual conformal field

theory lives on the boundary of the Bruhat-Tits tree described by the projective line over

the p-adic numbers (or some appropriate extension of p-adic numbers). Here we will re-

strict ourselves to the field Qpd , which is the unique unramified extension of p-adic numbers

of degree d, which forms a d-dimensional vector space over the p-adic numbers Qp while

maintaining a field structure. (For a review on p-adic numbers and their extensions, see,

e.g. refs. [71, section 2] and [120].) The p-adic conformal field theory, with global conformal

group PGL(2,Qpd), does not admit local derivative operators; consequently there are no

descendants in the conformal family and all operators are the lowest-twist zero-spin single-

and multi-trace primary operators [72, 106]. Thus the global conformal blocks are trivial,

and the conformal block decomposition of CFT correlators is significantly uncomplicated,

as will become apparent below.

This section is organized as follows. We will begin in section 2.1 by presenting vari-

ous propagator identities, involving bulk integration on the Bruhat-Tits tree of a product

9More generally, higher-order derivative couplings are incorporated as (next)k-to-nearest neighbor inter-

actions in the discrete setting, with k ≥ 0 [72].
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of three bulk-to-bulk and/or bulk-to-boundary propagators over a common bulk vertex,

adapted from ref. [72]. These will then be used in section 2.2 to obtain the holographic du-

als of five- and six-point conformal blocks in terms of geodesic diagrams. In section 2.3 we

will present a few representative examples demonstrating the geodesic diagram approach

to obtaining the CBD of five-point bulk diagrams and interpret the simplicity of the pro-

cedure and the final result. More examples are reserved for later in section 5 where we

comment on the close connection between CBD in the p-adic and conventional AdS/CFT

formalisms.

2.1 Propagator identities on the Bruhat-Tits tree

We collect here various propagator identities which will prove useful in extracting the

holographic objects that compute various higher-point global conformal blocks as well as

in obtaining the CBD of bulk diagrams in p-adic AdS/CFT. These identities were already

written down in ref. [72], but here we restate them in a slightly different but mathematically

equivalent form, which accommodates a direct analogy with the corresponding propagator

identities in real AdS, the subject of section 3. The identities described below are set

up on the Bruhat-Tits tree Tpd , a (pd + 1)-regular graph with the associated boundary

∂Tpd = P1(Qpd).

We first briefly review the propagators of p-adic AdS/CFT; for more details refer to

ref. [71]. The normalizable and non-normalizable solutions of the Laplace equation on

the Bruhat-Tits tree will be denoted Ĝ∆ and K̂∆, and they represent the bulk-to-bulk

and bulk-to-boundary propagators on the Bruhat-Tits tree, respectively. The bulk-to-bulk

propagator is given by

Ĝ∆(w, z) = p−∆ d(w,z) (2.1)

where d(w, z) is the graph-distance on the Bruhat-Tits tree between bulk nodes w and z,

and we have chosen the normalization such that Ĝ is the Green’s function of the Bruhat-

Tits Laplace equation

(�z +m2
∆)Ĝ∆(w, z) =

−1

N∆
δ(w, z) N∆ ≡

−ζp(2∆)

2ν∆ζp(2∆− d)
2ν∆ ≡ p∆ − pd−∆ , (2.2)

where �z is the graph Laplacian acting on the z bulk node. The p-adic mass-dimension

relation relates the bulk scalar field mass m2
∆ to the conformal dimension of the dual

operator ∆ via

m2
∆ =

−1

ζp(−∆)ζp(∆− d)
, (2.3)

where we have defined the “local zeta function” for every prime p,

ζp(s) =
1

1− p−s
. (2.4)

The bulk-to-boundary propagator is obtained as a regularized limit of the bulk-to-bulk

propagator upon sending one of the bulk nodes to the boundary,

K̂∆(x, z) =
|z0|∆p

|z0, zx − x|2∆
s

(2.5)
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where z = (z0, zx) ∈ pZ × Qpd is the bulk node parametrized by the radial coordinate z0

and the boundary direction zx, and | · |p is the p-adic norm while |x, y|s ≡ sup{|x|p, |y|p} is

the supremum norm.

The simplest of the propagator identities is the one involving a product of three bulk-to-

boundary propagators, which computes the leading contribution to CFT scalar three-point

correlator, ∑
z∈T

pd

K̂∆1(x1, z)K̂∆2(x2, z)K̂∆3(x3, z) =
C∆1∆2∆3

|x2
12|

∆12,3
p |x2

23|
∆23,1
p |x2

31|
∆31,2
p

, (2.6)

where the OPE coefficient of the putative dual CFT is

C∆i∆j∆k
= ζp(2∆ijk, − d)

ζp(2∆ij,k)ζp(2∆jk,i)ζp(2∆ki,j)

ζp(2∆i)ζp(2∆j)ζp(2∆k)
. (2.7)

The following three identities involve replacing more and more factors of bulk-to-

boundary propagators K̂ with factors of bulk-to-bulk propagators Ĝ, culminating in a

purely AdS (more precisely, Bruhat-Tits tree) three-point contact scattering process in-

volving three factors of bulk-to-bulk propagators:

∑
z∈T

pd

Ĝ∆a(wa,z)K̂∆2(x2,z)K̂∆3(x3,z) =C∆a∆2∆3

K̂∆a2,3(x2,wa)K̂∆a3,2(x3,wa)

|x2
23|

∆23,a
p

+
1

m2
2∆23,

−m2
∆a

1

N∆a

K̂∆2(x2,wa)K̂∆3(x3,wa) ,

(2.8)∑
z∈T

pd

K̂∆3(x3,z)Ĝ∆a(wa,z)Ĝ∆b
(wb,z) =C∆3∆a∆b

K̂∆3a,b
(x3,wa)K̂∆3b,a

(x3,wb)Ĝ∆ab,3
(wa,wb)

+
1

m2
2∆a3,

−m2
∆b

1

N∆b

Ĝ∆a(wa,wb)K̂∆3(x3,wb)

+
1

m2
2∆b3,

−m2
∆a

1

N∆a

Ĝ∆b
(wa,wb)K̂∆3(x3,wa) ,

(2.9)

and∑
z∈T

pd

Ĝ∆a(wa,z)Ĝ∆b
(wb,z)Ĝ∆c(wc,z) =C∆a∆b∆c Ĝ∆ac,b

(wa,wc)Ĝ∆ab,c
(wa,wb)Ĝ∆bc,a

(wb,wc)

+
1

m2
2∆bc,
−m2

∆a

1

N∆a

Ĝ∆b
(wb,wa)Ĝ∆c(wc,wa)

+
1

m2
2∆ac,

−m2
∆b

1

N∆b

Ĝ∆a(wa,wb)Ĝ∆c(wc,wb)

+
1

m2
2∆ab,

−m2
∆c

1

N∆c

Ĝ∆a(wa,wc)Ĝ∆b
(wb,wc) .

(2.10)
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The first term in each of these identities has been recast in a form slightly different from that

originally written in ref. [72], which made reference to the unique bulk point of intersection

of the bulk geodesics joining the three fixed (bulk and/or boundary) points. Such a bulk

point always exists on the Bruhat-Tits tree, but the corresponding construction does not

carry over to continuum AdS space. On the other hand, the “star-triangle” rewriting of the

first term in the identities above has a direct analog over the reals, as will become apparent

later in section 3.2. We will comment on the relevance and interpretation of both forms

of identities at the end of the next subsection, as they relate to the holographic duals of

conformal blocks.

2.2 Holographic duals of five- and six-point conformal blocks

Five-point block. The strategy to extract the holographic duals of conformal blocks

will be the same as the one detailed in ref. [70] where it was used to obtain the holographic

dual of the global five-point block in AdS. Namely, to obtain the holographic dual of

the five-point block on the Bruhat-Tits tree, we start with the following bulk Feynman

diagram,

O1

O2

O3

O4

O5

∆0 ∆0′

(2.11)

where the green-colored disk-shaped vertices correspond to bulk nodes to be integrated over

all nodes of the Bruhat-Tits tree, while the solid lines in the Poincaré disk represent bulk-

to-bulk or bulk-to-boundary propagators (2.1) or (2.5). We have suppressed boundary

coordinate labels in the diagram; unless otherwise noted, the operator Oi of conformal

dimension ∆i will be inserted on the boundary at position xi. Further, we will assume that

the conformal cross ratios10

u ≡
∣∣∣∣x2

12x
2
34

x2
13x

2
24

∣∣∣∣
p

v ≡
∣∣∣∣x2

23x
2
45

x2
24x

2
35

∣∣∣∣
p

, (2.12)

satisfy u < 1, v < 1.

We can trade the two outside bulk integrations for a geodesic integration, using the

identity [72]

K̂∆1(x1, z)K̂∆2(x2, z) =
1

βp(2∆1, 2∆2)

∑
w∈γ12

K̂∆1(x1, w)K̂∆2(x2, w)Ĝ∆1+∆2(w, z) , (2.13)

where

βp(s, t) ≡
ζp(s)ζp(t)

ζp(s+ t)
, (2.14)

10On the Bruhat-Tits tree, whose boundary is the projective line over an extension of the p-adic numbers,

the number of independent cross-ratios that can be formed from five boundary points is precisely two,

analogous to the situation in a (real) one-dimensional CFT.
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and γ12 is the boundary anchored bulk geodesic joining boundary points x1 and x2, over

which the bulk point w is to be integrated over. Pictorially, this is depicted as

O1

O2

O3

O4

O5

∆0 ∆0′

=
1

βp(2∆1, 2∆2)βp(2∆4, 2∆5)

O1

O2

O3

O4

O5

∆0 ∆0′

2∆12, 2∆45,

=
C∆1∆2∆0 C∆4∆5∆0′

βp(2∆01,2, 2∆02,1) βp(2∆0′4,5, 2∆0′5,4)

O1

O2

O3

O4

O5

∆0 ∆0′

+ · · ·

(2.15)

where the bulk vertices on the dotted red boundary anchored geodesics are to be integrated

over the respective geodesics rather than the entire Bruhat-Tits tree. The bulk-to-boundary

propagators incident, say on γ12, the boundary anchored geodesic joining boundary points

x1 and x2 have associated conformal dimensions ∆1 and ∆2 corresponding to the oper-

ator insertions O1 and O2. In the second equality of (2.15) we used the two-propagator

identity [72]∑
z∈T

pd

Ĝ∆a(a, z)Ĝ∆b
(b, z) =

1

m2
∆a
−m2

∆b

(
1

N∆b

Ĝ∆a(a, b)− 1

N∆a

Ĝ∆b
(a, b)

)
(2.16)

to write one of in total four terms; the other three are not relevant for the present purposes

and are absorbed into the ellipsis. At this point we employ the propagator identity (2.9)

on the first term to obtain

O1

O2

O3

O4

O5

∆0 ∆0′

=


C∆1∆2∆0 C∆0∆3∆0′ C∆4∆5∆0′

βp(2∆01,2, 2∆02,1) βp(2∆0′4,5, 2∆0′5,4)

O1

O2

x3

O4

O5

∆30,0′ ∆30′,0

∆00′,3

+ · · ·


+ · · · (2.17)

where the ellipsis inside the parentheses indicates the terms originating from the second

and third lines of (2.9), which again are unimportant for the purposes of extracting the

holographic dual of the five-point block. As indicated before, we have suppressed boundary

coordinate labels, except at x3 where we have explicitly indicated the dimensions of the

bulk-to-boundary propagators incident at the boundary point in blue.
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We are interested in the term in the expansion of the exchange diagram proportional

to the product of the three OPE coefficients as shown in (2.17), since in the CBD the

five-point conformal block representing the exchange of single-trace primaries of weights

∆0 and ∆0′ in the intermediate channels also appears with an overall factor of the same

OPE coefficients. The last observation follows from the holographic version of the CBD

for individual diagrams.

We note that this strategy to extract the putative holographic dual to the conformal

block is not guaranteed to work, since the inverse problem of solving for the conformal

blocks given the five-point function and the OPE coefficients is not well-posed. Neverthe-

less, it serves as a heuristic guide in guessing a natural candidate for the holographic dual,

which must then be confirmed by independent means.

Going back to (2.17), we expect from the heuristic argument above that the five-point

conformal block is given by

W∆1,...,∆5

∆0;∆0′
(xi) =

1

βp(2∆01,2, 2∆02,1) βp(2∆0′4,5, 2∆0′5,4)
W∆1,...,∆5

∆0;∆0′
(xi) , (2.18)

where we have defined the five-point geodesic bulk diagram on the Bruhat-Tits tree, the

holographic dual to the conformal block as

W∆1,...,∆5

∆0;∆0′
(xi) ≡

O1

O2

x3

O4

O5

∆30,0′ ∆30′,0

∆00′,3

=
∑
w∈γ12

w′∈γ45

K̂∆1(x1, w)K̂∆2(x2, w)K̂∆4(x4, w
′)K̂∆5(x5, w

′)

× K̂∆30,0′ (x3, w)Ĝ∆00′,3(w,w′)K̂∆30′,0(x3, w
′) .

(2.19)

Indeed, explicit evaluation of the geodesic bulk diagram on the Bruhat-Tits tree confirms

this expectation. We find

W∆1,...,∆5

∆0;∆0′
(xi) = βp(2∆01,2, 2∆02,1) βp(2∆0′4,5, 2∆0′5,4)W

(5)
0 (xi) u

∆0/2v∆0′/2 , (2.20)

where the conformal cross-ratios were defined in (2.12) and the “leg factor” accounts for

the remaining coordinate and external dimensions dependence,

W
(5)
0 ≡ 1

|x2
12|

∆12,
p |x2

34|
∆3/2
p |x2

45|
∆45,
p

∣∣∣∣x2
23

x2
13

∣∣∣∣∆1,2

p

∣∣∣∣x2
24

x2
23

∣∣∣∣∆3/2

p

∣∣∣∣x2
35

x2
34

∣∣∣∣∆4,5

p

. (2.21)

Thus (2.18) with the geodesic bulk diagram given by (2.19)–(2.20) reproduces precisely

the leading scaling (i.e. descendant-free) contribution to the global five-point block in a

one-dimensional CFT. In a p-adic CFT defined on P1(Qpd), which lacks descendants, the

scaling block is the full five-point conformal block. This provides the independent check of

our proposal.
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Six-point block in the OPE channel. A very similar exercise leads to the holographic

dual of the six-point block in the OPE channel, shown in figure 3. This time, to obtain the

geometric representation, the three-bulk-to-bulk-propagators identity (2.10) will be em-

ployed. Detailed calculations are provided in section 4 for the real analog of this result.

The p-adic result is obtained by following closely the same steps — which incidentally ben-

efit from considerable calculational simplifications — leading in this case to a significantly

simpler, but related answer as compared with the reals. The upshot is that the holographic

dual of the six-point global conformal block in the OPE channel is given by the following

geodesic bulk diagram,

W∆1,...,∆6

∆a;∆c;∆b
(xi) =

O1

O2

O3 O4

O5

O6

∆ac,b ∆bc,a

∆ab,c

=
∑
w∈γ12

w′∈γ34

w′′∈γ56

K̂∆1(x1,w)K̂∆2(x2,w)K̂∆3(x3,w
′)K̂∆4(x4,w

′)K̂∆5(x5,w
′′)K̂∆6(x6,w

′′)

×Ĝ∆ac,b
(w,w′)Ĝ∆bc,a

(w′′,w′)Ĝ∆ab,c
(w,w′′) , (2.22)

and an explicit evaluation of the geodesic integrals (i.e. geodesic summations on the Bruhat-

Tits tree) above reveals that the diagram is related to the six-point conformal block via a

simple relation,

W∆1,...,∆6

∆a;∆c;∆b
(xi) = βp(2∆a1,2, 2∆a2,1) βp(2∆c3,4, 2∆c4,3) βp(2∆b5,6, 2∆b6,5)W∆1,...,∆6

∆a;∆c;∆b
(xi)

= βp(2∆a1,2, 2∆a2,1) βp(2∆c3,4, 2∆c4,3) βp(2∆b5,6, 2∆b6,5)

×W (6)
0 (xi) u

∆a/2
1 u

∆b/2
2 u

∆c/2
3 , (2.23)

where

u1 ≡
∣∣∣∣x2

12x
2
35

x2
13x

2
25

∣∣∣∣
p

u2 ≡
∣∣∣∣x2

13x
2
56

x2
15x

2
36

∣∣∣∣
p

u3 ≡
∣∣∣∣x2

15x
2
34

x2
13x

2
45

∣∣∣∣
p

, (2.24)

and

W
(6)
0 (xi) ≡

∣∣∣∣ x2
23

x2
12x

2
13

∣∣∣∣
∆1
2

p

∣∣∣∣ x2
13

x2
12x

2
23

∣∣∣∣
∆2
2

p

∣∣∣∣ x2
24

x2
23x

2
34

∣∣∣∣
∆3
2

p

∣∣∣∣ x2
35

x2
34x

2
45

∣∣∣∣
∆4
2

p

∣∣∣∣ x2
46

x2
45x

2
56

∣∣∣∣
∆5
2

p

∣∣∣∣ x2
45

x2
46x

2
56

∣∣∣∣
∆6
2

p

.

(2.25)

Above, we assumed u1, u2, u3 < 1 and used the fact that in a one-dimensional CFT lacking

any descendants, the six-point global conformal block in the OPE channel is given by a

trivial scaling block written in terms of the three independent conformally invariant cross-

ratios (2.24) constructed out of the six insertion points.
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The trivial scaling form of p-adic global conformal blocks permits an alternate holo-

graphic representation on the discrete Bruhat-Tits tree. Such an alternate, but equivalent

representation can be recovered by employing the original forms of the propagator identi-

ties [72] in the derivation of the holographic duals presented above, as was alluded at the

end of the previous subsection. This leads to the following dual representations:

W∆1,...,∆5

∆0;∆0′
=

O1

O2

O3

O4

O5

∆0 ∆0′

W∆1,...,∆6

∆a;∆c;∆b
=

O1

O2

O3

O5

O6

O4

∆a ∆b

∆c

, (2.26)

which satisfy (2.18) and (2.23), respectively. In the alternate holographic representation

for the five-point block above, the unfilled disk-shaped bulk vertex represents the unique

Bruhat-Tits tree point of intersection of the bulk geodesics joining the two bulk points

being integrated over the boundary anchored (red dashed) geodesics, and the boundary

insertion point x3. This vertex remains fixed even as the bulk points are integrated over

the geodesics.11 Such a representation is equivalent to the one obtained in (2.19) as long as

the conformal cross-ratios (2.12) satisfy u, v < 1. The equivalence is easily established by

appealing to the tree-like geometry of the Bruhat-Tits tree. Likewise, the holographic dual

of the six-point block admits an alternate representation as shown above, for cross-ratios

as defined in (2.24) satisfying u1, u2, u3 < 1. The unfilled disk-shaped bulk vertex in the

holographic representation is now the unique point of intersection on the Bruhat-Tits tree of

geodesics joining the three bulk points being integrated over respective boundary anchored

geodesics.12 As we will show later, the real analogs of the holographic representations

resemble closely the forms in (2.19) and (2.22), but it is not entirely clear what the real

analog of (2.26) should be, or whether such a representation even exists. It is intriguing

to note that the unfilled disk-shaped vertices in (2.26) can be interpreted as Fermant-

Torricelli points on the Bruhat-Tits tree. Curiously, such points play an important role in

the holographic interpretation of perturbative large-c Virasoro conformal blocks [102]. It

would be interesting to explore whether Fermat-Torricelli points also appear in the context

of holographic representations of (real) global conformal blocks.

2.3 Conformal block decomposition of bulk diagrams

In this section, we work out the CBDs of scalar five-point bulk diagrams using the previ-

ously discussed propagator identities, and the holographic representation of the five-point

conformal block. With these tools in hand, no additional bulk integrations need be explic-

itly performed and all steps are purely algebraic. This approach is a generalization of the

geodesic diagram techniques [14, 72] to evaluate higher-point diagrams. We obtain explicit

11This vertex is precisely the same vertex on the Bruhat-Tits tree as the one at which geodesics from all

five boundary insertion points meet.
12Alternatively, it is unique the vertex at which geodesics from all six boundary insertion points meet in

the bulk.
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closed-form expressions for the decomposition in the basis of five-point conformal blocks

involving the exchange of single- or multi-trace primaries in the intermediate channels, and

we find that the CBD coefficients themselves are given by very simple analytic expressions

in terms of the CFT data. Further, the CBD coefficients of various five-point exchange

diagrams share simple relations that repackage the pole structure of the diagrams into

simple algebraic relations.

We begin with the five-point contact diagram,13

D5 ≡

O1

O2

O3

O4

O5

. (2.27)

To obtain a CBD in the channel shown in figure 1, we apply the propagator identity (2.13)

to the boundary insertion points (x1, x2) and (x4, x5) to get

D5 =
1

βp(2∆1, 2∆2)βp(2∆4, 2∆5)

O1

O2

O3

O4

O5

2∆12, 2∆45,

. (2.28)

The bulk integration over the green vertex is immediately carried out using identity (2.9),

to give a sum of three terms

D5 =
1

βp(2∆1,2∆2)βp(2∆4,2∆5)

C2∆12,∆3 2∆45,

O1

O2

x3

O4

O5

∆123,45 ∆345,12

∆1245,3

+
(N2∆45,)

−1

m2
2∆123,

−m2
2∆45,

O1

O2

O3

O4

O5

∆3

2∆12,

+
(N2∆12,)

−1

m2
2∆345,

−m2
2∆12,

O1

O2

O3

O4

O5

∆3

2∆45,

 .
(2.29)

We remind the reader that our convention is that the operator Oi is inserted at position xi,

but the position label is usually suppressed. In the first term in (2.29), we have indicated

explicitly the position coordinate x3 and the conformal dimensions of the bulk-to-boundary

13Throughout this section, without loss of generality, we will assume the cross-ratios defined in (2.12)

satisfy u, v ≤ 1. Such a situation can always be arranged up to a relabelling of boundary coordinates.
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propagators incident at the boundary point in blue. Consistent with this notation, we have

also indicated the dimensions of the bulk-to-boundary propagators incident at x3 in the

second and third terms, although here the conformal dimension label ∆3 is redundant since

we have already specified the operator insertion O3. This notation will come handy when

we eventually discuss the analogous computation in standard AdS/CFT over the reals later

in this paper.

Using (2.18)–(2.19) we recognize each of the geodesic diagrams in (2.29) as a five-point

conformal block associated with the exchange of a particular set of (higher-trace) primary

operators in the intermediate channels. This leads to

O1

O2

O3

O4

O5

= P
(12,45)
cont


O1

O2
O3 O4

O5

O1O2 O4O5



+ P
(12,123)
cont


O1

O2
O3 O4

O5

O1O2 O1O2O3

+ P
(345,45)
cont


O1

O2
O3 O4

O5

O3O4O5 O4O5

 ,

(2.30)

where we are using the graphical notation for the p-adic five-point block as defined in

figure 1, with the CBD coefficients given by

P
(12,45)
cont = C2∆12, ∆3 2∆45,

P
(12,123)
cont =

βp(2∆1234,5, 2∆1235,4)

βp(2∆4, 2∆5)

(N2∆45,)
−1

m2
2∆123,

−m2
2∆45,

= C2∆123, ∆4 ∆5

P
(345,45)
cont =

βp(2∆3451,2, 2∆3452,1)

βp(2∆1, 2∆2)

(N2∆12,)
−1

m2
2∆345,

−m2
2∆12,

= C∆1 ∆2 2∆345, .

(2.31)

In simplifying the coefficients above, we made use of the identity

βp(2∆01,2, 2∆02,1)

βp(2∆1, 2∆2)N2∆12,(m
2
∆0
−m2

2∆12,
)

= C∆0∆1∆2 , (2.32)

which is easily verified by substituting for each function using their definitions.

Now let’s turn to a five-point diagram with a single scalar field exchange of mass m2
∆0

,

D1-exch
5 =

O1

O2

O3

O4

O5

∆0

. (2.33)

– 18 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
8

Applying (2.13) to the pairs (x1, x2) and (x4, x5) like before, we recast the exchange diagram

as a diagram involving two geodesic integrals, and two full bulk integrals. One of the full

bulk integrals is of the form (2.16) while the other is of the form (2.9). Using (2.16) to

evaluate the former, we end up with

D1-exch
5 =

βp(2∆1, 2∆2)−1βp(2∆4, 2∆5)−1

m2
2∆12,

−m2
∆0

×


1

N∆0

O1

O2

O3

O4

O5

2∆12, 2∆45,

− 1

N2∆12,

O1

O2

O3

O4

O5

∆0 2∆45,

 .

(2.34)

Applying (2.9) to both the terms, we get

D1-exch
5 =

βp(2∆1,2∆2)−1βp(2∆4,2∆5)−1

m2
2∆12,

−m2
∆0


C2∆12,∆3 2∆45,

N∆0

O1

O2

x3

O4

O5

∆123,45 ∆345,12

∆1245,3

+
(N∆0N2∆45,)

−1

m2
2∆123,

−m2
2∆45,

O1

O2

O3

O4

O5

∆3

2∆12,

+
(N∆0N2∆12,)

−1

m2
2∆345,

−m2
2∆12,

O1

O2

O3

O4

O5

∆3

2∆45,

−
C∆0 ∆3 2∆45,

N2∆12,

O1

O2

x3

O4

O5

∆30,45 ∆345,0

∆045,3

−
(N2∆12,N2∆45,)

−1

m2
2∆03,

−m2
2∆45,

O1

O2

O3

O4

O5

∆3

∆0

−
(N2∆12,N∆0)−1

m2
2∆345,

−m2
∆0

O1

O2

O3

O4

O5

∆3

2∆45,

 . (2.35)

Using (2.18)–(2.19), we recognize five independent conformal blocks above (with the third

and sixth terms above proportional to the same block). Indeed, with simple substitutions,
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the exchange diagram CBD can be re-expressed as

O1

O2

O3

O4

O5

∆0

= P
(12,45)
1-exch


O1

O2
O3 O4

O5

O1O2 O4O5



+ P
(0,45)
1-exch


O1

O2
O3 O4

O5

O0 O4O5

+ P
(12,123)
1-exch


O1

O2
O3 O4

O5

O1O2 O1O2O3



+ P
(0,03)
1-exch


O1

O2
O3 O4

O5

O0 O0O3

+ P
(345,45)
1-exch


O1

O2
O3 O4

O5

O3O4O5 O4O5

 , (2.36)

where14

P
(12,45)
1-exch =

C2∆12, ∆3 2∆45,

N∆0(m2
2∆12,

−m2
∆0

)

P
(12,123)
1-exch =

βp(2∆1234,5, 2∆1235,4)βp(2∆4, 2∆5)−1

N∆0(m2
2∆12,

−m2
∆0

)N2∆45,(m
2
2∆123,

−m2
2∆45,

)

=
C2∆123, ∆4 ∆5

N∆0(m2
2∆12,

−m2
∆0

)

P
(345,45)
1-exch =

βp(2∆1345,2, 2∆2345,1)βp(2∆1, 2∆2)−1

N∆0(m2
2∆345,

−m2
∆0

)N2∆12,(m
2
2∆345,

−m2
2∆12,

)

=
C∆1 ∆2 2∆345,

N∆0(m2
2∆345,

−m2
∆0

)
,

(2.38)

and

P
(0,45)
1-exch =

βp(2∆01,2, 2∆02,1)

βp(2∆1, 2∆2)

C∆0 ∆3 2∆45,

N2∆12,(m
2
∆0
−m2

2∆12,
)

= C∆0∆1∆2 C∆0 ∆3 2∆45,

P
(0,03)
1-exch =

βp(2∆01,2, 2∆02,1)βp(2∆034,5, 2∆035,4)βp(2∆1, 2∆2)−1βp(2∆4, 2∆5)−1

N2∆12,(m
2
∆0
−m2

2∆12,
)N2∆45,(m

2
2∆03,

−m2
2∆45,

)

= C∆0∆1∆2 C2∆03, ∆4 ∆5 .

(2.39)

Three of the five conformal blocks which appear in the direct channel CBD of the ex-

change diagram in (2.36) also appeared in the CBD of the contact diagram, and are related

14In simplifying the CBD coefficients, we used the identity (2.32), and

1

m2
2∆12,

−m2
∆0

(
1

m2
2∆345,

−m2
2∆12,

− 1

m2
2∆345,

−m2
∆0,

)
=

1

m2
2∆345,

−m2
∆0

. (2.37)
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to exchanges of double- and higher-trace primaries in the two intermediate channels. Inter-

estingly, the associated CBD coefficients in the decomposition are also very simply related:

P
(12,45)
1-exch

P
(12,45)
cont

=
1

N∆0(m2
2∆12,

−m2
∆0

)

P
(12,123)
1-exch

P
(12,123)
cont

=
1

N∆0(m2
2∆12,

−m2
∆0

)

P
(345,45)
1-exch

P
(345,45)
cont

=
1

N∆0(m2
2∆345,

−m2
∆0

)
.

(2.40)

Such relations were noted in the case of the four-point contact and exchange diagrams

earlier [14, 72]. We will comment on this observation further in the next subsection.

Finally, for the tree-level five-point diagram built from three cubic bulk interaction ver-

tices, the procedure to obtain its direct-channel CBD is identical to the one demonstrated

for the contact and exchange diagrams above. We omit the details of the straightforward

computation, but present the final result:

O1

O2

O3

O4

O5

∆0 ∆0′

= P
(0,0′)
2-exch


O1

O2
O3 O4

O5

O0 O0′

+ P
(12,45)
2-exch


O1

O2
O3 O4

O5

O1O2 O4O5



+ P
(0,45)
2-exch


O1

O2
O3 O4

O5

O0 O4O5

+ P
(0,03)
2-exch


O1

O2
O3 O4

O5

O0 O0O3



+ P
(12,0′)
2-exch


O1

O2
O3 O4

O5

O1O2 O0′

+ P
(0′3,0′)
2-exch


O1

O2
O3 O4

O5

O0′O3 O0′



+ P
(12,123)
2-exch


O1

O2
O3 O4

O5

O1O2 O1O2O3

+ P
(345,45)
2-exch


O1

O2
O3 O4

O5

O3O4O5 O4O5

 , (2.41)

with the coefficients

P
(0,0′)
2-exch = C∆1∆2∆0 C∆0∆3∆0′ C∆4∆5∆0′ P

(12,45)
2-exch =

P
(12,45)
1-exch

N∆0′ (m
2
2∆45,

−m2
∆0′

)

P
(0,45)
2-exch =

P
(0,45)
1-exch

N∆0′ (m
2
2∆45,

−m2
∆0′

)
P

(0,03)
2-exch =

P
(0,03)
1-exch

N∆0′ (m
2
2∆03,

−m2
∆0′

)

P
(12,123)
2-exch =

P
(12,123)
1-exch

N∆0′ (m
2
2∆123,

−m2
∆0′

)
P

(345,45)
2-exch =

P
(345,45)
1-exch

N∆0′ (m
2
2∆45,

−m2
∆0′

)
.

(2.42)
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The remaining two coefficients are obtained by symmetry:

P
(12,0′)
2-exch =

P
(12,0′)
1-exch

N∆0(m2
2∆12,

−m2
∆0

)
P

(0′3,0′)
2-exch =

P
(0′3,0′)
1-exch

N∆0′ (m
2
2∆0′3,

−m2
∆0

)
, (2.43)

where, analogous to (2.39) we have defined

P
(12,0′)
1-exch = C∆3 ∆0′ 2∆12, C∆4∆5∆0′ P

(0′3,0′)
1-exch = C∆1 ∆2 2∆0′3, C∆4∆5∆0′ . (2.44)

The coefficients corresponding to exchanges of solely higher-trace primaries further admit

an expression in terms of the contact diagram coefficients:

P
(12,45)
2-exch =

P
(12,45)
cont

N∆0(m2
2∆12,

−m2
∆0

)N∆0′ (m
2
2∆45,

−m2
∆0′

)

P
(12,123)
2-exch =

P
(12,123)
cont

N∆0(m2
2∆12,

−m2
∆0

)N∆0′ (m
2
2∆123,

−m2
∆0′

)

P
(345,45)
2-exch =

P
(345,45)
cont

N∆0(m2
2∆345,

−m2
∆0

)N∆0′ (m
2
2∆45,

−m2
∆0′

)
.

(2.45)

A similar procedure also leads to the CBD of six-point diagrams, but we refrain from

presenting the details here. Instead, the six-point case is discussed in more detail for

the usual real AdS/CFT (with a few remarks on their p-adic analogs) in section 5.3. In

section 5.5 we will comment on the form of the decompositions obtained and match against

the expectations from the shadow formalism.

The simplicity of the CBD in the p-adic setting essentially stems from the lack of

spinning and descendant operators, so that there are no infinite series (corresponding to

higher-twist contributions) to be summed in the decomposition. Mathematically, this dras-

tic simplicity arises because the poles of the spectral density function in the spectral repre-

sentation of the bulk diagrams are governed by poles of the local zeta function (2.4), which

only has a single simple pole on the real axis, as opposed to the case in the conventional

(real) AdS/CFT where the pole structure is governed by arguments of the Euler Gamma

function, which has a semi-infinite sequence of poles along the real axis. Such a simplifica-

tion is manifest in the logarithmic singularity structure of the CBDs, which we now discuss.

2.3.1 Logarithmic singularities

Relations similar to (2.40) and (2.42)–(2.45) between the CBD coefficients of five-point bulk

diagrams also exist for four-point contact and exchange diagrams [72] (see also ref. [14] for

four-point diagrams in real AdS/CFT). These, together with the form of the contact

diagram CBD coefficients provide an algebraic origin [14] of the integrality conditions for

non-generic conformal dimensions, which signal the appearance of logarithmic singularities

in bulk Feynman diagrams [73] (arising when anomalous dimensions of exchanged operators

contribute at tree-level). Due to the lack of higher-twist primaries in the CBD, such

“integrality” conditions are in fact more restrictive in p-adic AdS/CFT [72].
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In this subsection we show that this continues to hold true for the five-point diagrams

discussed above. In the case of the five-point contact diagram decomposed in the channel

depicted in figure 1, using (2.31)–(2.32) to isolate poles coming from the factor of m2
∆a
−m2

∆b

in the denominator for various pairs of conformal dimensions ∆a,∆b, we find that the

following poles of the CBD coefficients at non-generic values of external dimensions,

m2
2∆12,

−m2
2∆345,

= 0 m2
2∆123,

−m2
2∆45,

= 0 , (2.46)

correspond to the appearance of logarithmic terms. Equivalently15

∆1 + ∆2 −∆3 −∆4 −∆5 = 0 ∆1 + ∆2 + ∆3 −∆4 −∆5 = 0 . (2.47)

These are the p-adic “integrality” conditions for the five-point contact diagram. For the

exchange diagram (2.36), in addition to the conditions above, some more conditions are

possible. These are easily obtained from (2.39)–(2.40), to be

m2
∆0
−m2

2∆12,
= 0 m2

∆0
−m2

2∆345,
= 0 m2

2∆03,
−m2

2∆45,
= 0 . (2.48)

These give rise to the integrality conditions,

∆0 −∆1 −∆2 = 0 ∆0 −∆3 −∆4 −∆5 = 0 ∆0 + ∆3 −∆4 −∆5 = 0 . (2.49)

Finally, for the five-point diagram (2.41) involving the exchange of two scalar fields, in

addition to (2.46), (2.48), we also have

m2
∆0′
−m2

2∆45,
= 0 m2

∆0′
−m2

2∆123,
= 0 m2

2∆0′3,
−m2

2∆12,
= 0

m2
∆0′
−m2

2∆03,
= 0 m2

∆0
−m2

2∆0′3,
= 0 .

(2.50)

which translate straightforwardly to five obvious integrality conditions, which we do not

write down. For any such choice of conformal dimensions, the contributions from the

anomalous dimensions of double- or higher-trace operators will be visible at tree-level.

This concludes our discussion of the toy model of p-adic AdS/CFT. From the next

section onward, we begin the analysis in the usual Euclidean signature AdSd+1/CFTd over

real numbers.

3 Propagator identities in AdS

This section is devoted to various crucial propagator identities in continuum AdSd+1 space

which allow the extraction of holographic duals of conformal blocks in real CFTd, as well

as the CBD of individual bulk diagrams, which will be the subject of the next section. The

new identities, collected in section 3.2 are proven in appendix B.1.

15The algebraic condition m2
∆a
− m2

∆b
has in general two solutions, ∆a − ∆b = 0 or ∆a + ∆b = d in

p-adic AdS/CFT. This follows directly from the mass-dimension relation (2.3) and the fact that the local

zeta function ζp has a single simple pole on the real axis. However, the latter solution in conjunction with

unitarity (and some convergence conditions) reduces to the former solution [72].
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We first recall the basic building blocks of perturbative bulk dynamics in EAdSd+1,

i.e. the propagators used to construct the AdS Feynman diagram expansion perturbatively

in 1/N . The normalizable solution to the bulk Klein-Gordon equation is the scalar bulk-

to-bulk propagator Ĝ, which we normalize according to

(−∇2
AdS +m2

∆)Ĝ∆(w, z) =
−1

N∆
δd+1(w, z) N∆ ≡

−ζ∞(2∆)

2ν∆ζ∞(2∆− d)
2ν∆ ≡ 2∆− d ,

(3.1)

where we have defined the “local zeta function”,

ζ∞(s) = π−s/2Γ(s/2) , (3.2)

and the classic mass-dimension relation relating the bulk scalar field mass m2
∆ to the

conformal dimension of the dual operator ∆ is m2
∆ = ∆(∆ − d). The expression for the

propagator in Poincaré coordinates takes the form

Ĝ∆(w, z) =

(
ξ(w, z)

2

)∆

2F1

[
∆

2
,

∆ + 1

2
; ∆− d

2
+ 1; ξ(w, z)2

]
ξ(w, z) =

2w0z0

w2
0 + z2

0 + (wi − zi)2
,

(3.3)

where z = (z0, z
i) ∈ R+ × Rd is the bulk point in Poincaré coordinates, parametrized

by the radial coordinate z0 and the boundary direction zi (and similarly for w). We will

sometimes abuse terminology to refer to the factor of ξ(w, z)/2 as the chordal distance.16

The bulk-to-boundary propagator is obtained as a regularized limit of the bulk-to-bulk

propagator upon sending one of the bulk points to the boundary:

K̂∆(xi, z) =
z∆

0

(z2
0 + (zi − xi)2)∆

. (3.4)

We will drop the spatial index on xi and it should be clear from the context whether the

variable refers to the boundary direction or a bulk coordinate.

The simplest of the propagator identities is the well-known one involving a product of

three bulk-to-boundary propagators, which computes the leading contribution to the scalar

three-point conformal correlator,∫
z∈AdS

K̂∆1(x1, z)K̂∆2(x2, z)K̂∆3(x3, z) =
C∆1∆2∆3

(x2
12)∆12,3(x2

23)∆23,1(x2
31)∆31,2

, (3.5)

where the AdS integral
∫
z∈AdS represents the integration of bulk point z over all of AdS,

such that in Poincaré coordinates the measure takes the form
∫
dd+1z/zd+1

0 , with the OPE

coefficient of the putative dual CFT given by

C∆i∆j∆k
=

1

2
ζ∞(2∆ijk, − d)

ζ∞(2∆ij,k)ζ∞(2∆jk,i)ζ∞(2∆ki,j)

ζ∞(2∆i)ζ∞(2∆j)ζ∞(2∆k)

=
π
n
2

2
Γ

(
∆ijk, −

d

2

)
Γ(∆ij,k)Γ(∆jk,i)Γ(∆ki,j)

Γ(∆i)Γ(∆j)Γ(∆k)
.

(3.6)

16Strictly speaking, ξ(w, z)−1 = coshσ(w, z) = 1+u(w, z) where σ(w, z) is the geodesic distance between

the bulk points w and z and u(w, z) is the true chordal distance-squared between them.
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We invite the reader to notice the strong functional similarity between the OPE coefficients

in the real and p-adic (equation (2.7)) setups.

3.1 Propagator identities involving two propagators

In this subsection, we recall two propagator identities which we will employ in the subse-

quent sections. First, we have the identity [14]

K̂∆1(x1, z)K̂∆2(x2, z) = 2

∞∑
M=0

a∆1;∆2

M

∫
w∈γ12

K̂∆1(x1, w) K̂∆2(x2, w) Ĝ2∆12,+2M (w, z) ,

(3.7)

where

a∆1;∆2

M =
1

B(∆1 +M,∆2 +M)

(−1)M

M !

(∆1)M (∆2)M
(∆1 + ∆2 +M − h)M

. (3.8)

Here, it will be convenient to give the following combination a compact name:

α∆1;∆2

M ≡ B(∆1 +M,∆2 +M) a∆1;∆2

M . (3.9)

Second, we will utilize the identity [14]

∫
z∈AdS

Ĝ∆a(wa, z)Ĝ∆b
(wb, z) =

1
N∆b

Ĝ∆a(wa, wb)− 1
N∆a

Ĝ∆b
(wa, wb)

m2
∆a
−m2

∆b

, (3.10)

where N∆ was defined in (3.1).

Graphically, we express (3.7) as

O1

O2

z = 2

∞∑
ML=0

a∆1;∆2

ML

O1

O2

∆L

z , (3.11)

where the red-dashed arc denotes a boundary anchored geodesic γ12 joining boundary

points x1, x2, along which the trivalent bulk point situated on it must be integrated over,

and

∆L ≡ ∆1 + ∆2 + 2ML . (3.12)

In (3.11) and below, we will often suppress position space labels; unless otherwise indicated,

the operator insertion Oi will be understood to be at boundary point xi.
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Identity (3.11) is to an extent reminiscent of taking an OPE of the operators O1 and

O2 on the boundary [14, 121–124], thus we will often refer to it as the “holographic OPE”

identity. In a similar vein (3.10) is expressed graphically as

∆a ∆b

wa wb
=

1

m2
∆a
−m2

∆b

 1

N∆b ∆a

wa wb − 1

N∆a ∆b

wa wb

 , (3.13)

where the green bulk vertex denotes a bulk point to be integrated over the entire AdS

space, while the filled black discs are fixed bulk points. The bulk-to-bulk propagators

are represented as solid lines starting and ending inside the Poincaré disk while bulk-to-

boundary propagators are represented as solid lines starting on the boundary and ending in

the bulk. For future reference, we also point out that factors of powers of chordal distance

(ξ/2)∆ (see equation (3.3)) will be represented by dotted-black lines joining bulk points.

3.2 Bulk/boundary three-point scattering

In this subsection we collect new propagator identities involving a bulk integration over

three AdS propagators. The graphical representation will be based on the conventions

explained in the previous subsection, with one additional piece of notation explained below.

We encourage the reader to notice the close similarities between the following identities

and their p-adic analogs written in section 2.1.

3.2.1
∫
K̂K̂Ĝ

The simplest of the mixed bulk/boundary three-point scattering process, represented by

a bulk integration over a product of two factors of the bulk-to-boundary propagator and

one factor of bulk-to-bulk propagator, can be re-expressed, using a version of an AdS

star-triangle-like identity, as follows:

∆2 ∆3

x2 x3

wa

∆a = C∆a∆2∆3

∞∑
ka=0

c∆2;∆a;∆3

ka

(x2
23)∆23,a−ka

∆a2,3 + ka ∆a3,2 + ka

x2 x3

wa

+
1

m2
2∆23,

−m2
∆a

1

N∆a

∞∑
ka=0

d∆2;∆a;∆3

ka

(x2
23)−ka

∆2 + ka ∆3 + ka

x2 x3

wa

,

(3.14)

where explicit expressions for the coefficients c∆2;∆3;∆a

ka
and d∆2;∆3;∆a

ka
are provided in ap-

pendix B.1.1 in equations (B.9)–(B.10). In the same appendix this identity is written

explicitly in terms of bulk-to-bulk and bulk-to-boundary propagators, and an equivalent

contour integral form is also presented, along with proofs for each of these using the em-

bedding space formalism.
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3.2.2
∫
K̂ĜĜ

The tree-level three-point bulk/boundary scattering amplitude with precisely two bulk legs

can be evaluated as follows

∆3

∆a ∆b

x3

wa wb

= C∆3∆a∆b

∞∑
ka,kb=0

c∆a;∆3;∆b
ka;kb

∆3a,b

+ka − kb

∆3b,a

−ka + kb

∆ab,3

+ka + kb

x3

wa wb

+


∞∑

ka,kb=0

d∆a;∆3;∆b
ka;kb

∆3 + ka −ka

∆b

+2kb + ka

x3

wa wb

+ (a↔ b)

 ,

(3.15)

where the expansion coefficients are written in terms of Lauricella functions and are given

in (B.35)–(B.36). The dotted-black lines denote factors of chordal distance rather than

the full bulk-to-bulk propagator; for instance in the first term on the RHS, the dotted

line stands for a factor of (ξ(a, b)/2)∆ab,3+ka+kb . Here and below, the moniker “(a ↔ b)”

represents switching all instances of a and b, including all labels where a and b appear

as subscripts or superscripts. This identity, rewritten explicitly in (B.34), is proven in

appendix B.1.2.

3.2.3
∫
ĜĜĜ

Finally, the purely AdS three-particle scattering provides the following variant of the flat

space star-triangle-identity [104]:

∆c

∆a ∆b

wc

wa wb

= C∆a∆b∆c

∞∑
ka,kb,kc=0

c∆a;∆b;∆c

ka;kb;kc

∆ca,b

+kca,b

∆cb,a

+kcb,a

∆ab,c

+kab,c

wc

wa wb

+


∞∑

ka,kb,kc=0

d∆a;∆b;∆c

ka;kb;kc

∆c

+2kc + ka
−ka

∆b

+2kb + ka

wc

wa wb
+ (a↔ b) + (a↔ c)

 ,

(3.16)

where the expansion coefficients are given in (B.57)–(B.58) and the identity is proven in

appendix B.1.3. Here we are using the shorthand

ki1...i`,i`+1...ij ≡ ki1 + · · ·+ ki` − ki`+1
− · · · − kij (3.17)

for the integral parameters ka, where we stress the factor of two difference compared with

the corresponding shorthand for conformal dimensions defined in (1.5).
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We end this section with some remarks.

• The inverse relation [70](
ξ(w, z)

2

)∆

=
∞∑
k=0

(−1)k

k!

(∆)2k

(∆− d/2 + k)k
Ĝ∆+2k(w, z) , (3.18)

can be used to re-express the dotted-black lines denoting chordal distance factors on

the right-hand-side of the various propagator identities in terms of the bulk-to-bulk

propagator, at the cost of introducing an additional sum for each such factor.

• As will become clear later, when we use the identities above to obtain the CBD of bulk

diagrams, the terms in the second lines of (3.14), (3.15) and (3.16) will correspond

physically to the exchange of various combinations of higher-trace operators in the

intermediate channels.

4 Holographic dual of the six-point block in the OPE channel

Before presenting new results for the six-point conformal block, let us briefly review what

is known in the literature. The holographic dual for the global four-point conformal block

with external scalar insertions and an arbitrary operator in the intermediate channel was

worked out in ref. [14]. As mentioned in section 1, the geometric representation is given

in terms of a four-point exchange diagram, except with both bulk integrals replaced by

geodesic integrals over boundary anchored geodesics. Using the pictorial conventions of

sections 3.1–3.2, the geodesic diagram given by

W∆1,∆2,∆3,∆4

∆a
(x1, x2, x3, x4) =

O1

O2 O3

O4

∆a

(4.1)

computes the scalar four-point block, via

W∆1,∆2,∆3,∆4

∆a
(xi) =

4

B(∆a1,2,∆a2,1)B(∆a3,4,∆a4,3)
W∆1,∆2,∆3,∆4

∆a
(xi) , (4.2)

where B(·, ·) is the Euler Beta function.17 Further generalizations to spinning external

and exchanged operators were considered in refs. [72, 83–90]. It is helpful to consider an

alternate representation of (4.1), which makes the comparison with the higher-point blocks

17The four-point block is normalized such that for (x2
12x

2
34)/(x2

13x
2
24) � 1 and (x2

14x
2
23)/(x2

13x
2
24) ≈ 1, it

has the leading order behavior

W∆1,...,∆4
∆a

(xi) ≈
1

(x2
12)∆12,(x2

34)∆34,

(
x2

24

x2
14

)∆1,2
(
x2

14

x2
13

)∆3,4
(
x2

12x
2
34

x2
13x

2
24

)∆a/2

. (4.3)
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discussed below more transparent. Essentially, we replace the bulk-to-bulk propagator

in (4.1) with its series representation in terms of the chordal distance function (see (3.3)),

to yield

W∆1,...,∆4

∆a
(xi) =

∞∑
ka=0

c∆a
ka

O1

O2 O3

O4

∆a + 2ka
, (4.4)

where

c∆a
ka

=
1

ka!

(∆a)2ka

(∆a − d/2 + 1)ka
. (4.5)

The five-point case. More recently, in ref. [70] it was shown that the object

W∆1,...,∆5

∆a;∆b
(xi) =

∞∑
ka,kb=0

c∆a;∆3;∆b
ka;kb

O1

O2

x3

O4

O5

∆3a,b

+ka − kb
∆3b,a

−ka + kb

∆ab,3 + ka + kb

, (4.6)

with c∆a;∆3;∆b
ka;kb

given by (B.35), computes the global five-point conformal block in arbitrary

spacetime dimensions, according to

W∆1,...,∆5

∆a;∆b
(xi) =

4

B(∆a1,2,∆a2,1)B(∆b4,5,∆b5,4)
W∆1,...,∆5

∆a;∆b
(xi) , (4.7)

where W∆1,...,∆5

∆a;∆b
(xi) is the five-point conformal block (1.2) corresponding to external scalar

insertions ∆1, . . . ,∆5, representing the contribution coming from the conformal families

of operators with highest-weight spin-0 representations labelled by dimensions ∆a and

∆b. The only bulk-integrations in (4.6) are geodesic integrations over boundary anchored

geodesics γ12 and γ45 joining boundary points x1 to x2 and x4 to x5 respectively. Graphi-

cally, we will represent the five-point conformal block (4.7) itself by the diagram shown in

figure 1. The five-point block was also recently computed purely within the CFT framework

using the shadow formalism [57].

– 29 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
8

It is instructive to compare the p-adic result (2.19)–(2.20) with its real analog above.

The holographic dual over the reals takes essentially the same form as the p-adics, the dif-

ference being it is written as a sum over a two-parameter semi-infinite families of diagrams

parametrized by two integers, which account for the descendant contribution originating

from the conformal families of the two single-trace primaries being exchanged in the inter-

mediate channels. The similarities are even more apparent when one notes that the Euler

Beta function B(s, t) in (4.7), which is to be compared with (2.18), can be rewritten as

B(s, t) = β∞(2s, 2t) ≡ ζ∞(2s)ζ∞(2t)

ζ∞(2s+ 2t)
(4.8)

in terms of the local zeta function ζ∞ defined in (3.2).

Six-point block in the OPE channel. We now turn our attention to the six-point

conformal block in the so-called OPE channel, depicted on the LHS of figure 3, where one

first takes pairwise OPEs between operator insertions at (x1, x2), (x3, x4) and (x5, x6)

to isolate the contribution from the conformal families associated with highest weight

representations labelled by ∆a,∆b and ∆c in the intermediate channels. The procedure

leading to its holographic representation, as discussed below, follows closely the strategy

discussed in ref. [70] in the context of the five-point block.

The starting point is the six-point exchange diagram in the star configuration, with

three internal scalar field exchanges, to which we apply the holographic OPE identity (3.11)

at insertion-point pairs (x1, x2), (x3, x4) and (x5, x6):

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

=

∞∑
MLMR,MC=0

8 a∆1;∆2

ML
a∆5;∆6

MR
a∆3;∆4

MC

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

∆L ∆R

∆C

,

(4.9)

where

∆L ≡ 2∆12, + 2ML ∆C ≡ 2∆34, + 2MC ∆R ≡ 2∆56, + 2MR . (4.10)

From here on, the upper and lower limits of sums over the variables M,MA,MB, . . . etc

will be suppressed and implicitly assumed to be ∞ and 0, respectively, unless otherwise

stated. Now use (3.13) to evaluate the three “outside” bulk integrations, but focus solely
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on one of the resulting eight terms:

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

=
∑

MLMR,MC

8a∆1;∆2

ML
a∆5;∆6

MR
a∆3;∆4

MC

N∆L
(m2

∆0
−m2

∆L
)N∆R

(m2
∆0′
−m2

∆R
)N∆C

(m2
∆c
−m2

∆C
)

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

+(7 other terms) . (4.11)

In fact, the three sums in the first term of (4.11) can be performed analytically, using

∞∑
M=0

1

N∆1+∆2+2M

a∆1,∆2

M

m2
∆0
−m2

∆1+∆2+2M

=
C∆0∆1∆2

B(∆01,2,∆02,1)
; (4.12)

see appendix B.2.1 for a derivation.18 This leads to

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

=
8C∆0∆1∆2 C∆c∆3∆4 C∆′0∆5∆6

B(∆01,2,∆02,1)B(∆c3,4,∆c4,3)B(∆0′5,6,∆0′6,5)

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

+ (7 other terms) . (4.13)

At this point the three-particle scattering identity (3.16) is employed on the first term

to obtain

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

=

(
8C∆0∆1∆2 C∆c∆3∆4 C∆′0∆5∆6

C∆0∆c∆′0

B(∆01,2,∆02,1)B(∆c3,4,∆c4,3)B(∆0′5,6,∆0′6,5)
W∆1,...,∆6

∆0;∆c;∆0′
(xi)

+ (3 more terms)

)
+ (7 other terms) , (4.14)

18A special case of this identity, for d = 2, was noted in ref. [72]. The equation (4.12) itself is a special

case of the identity (5.19) that we use below to carry out the CBD of 5-point diagrams. And (5.19) is a

special case of the identity (5.39) that we use to perform the CBD of 6-point diagrams. We can think of

these equations as analogs of the simpler equation (2.32) that we used in the parallel p-adic computations.
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where only one of the four terms arising from applying (3.16) are explicitly shown, and

we have defined the six-point geodesic bulk diagram in the OPE channel (more precisely, a

weighted sum over six-point geodesic bulk diagrams)19

W∆1,...,∆6

∆a;∆c;∆b
(xi) ≡

∞∑
ka,kb,kc=0

c∆a;∆b;∆c

ka;kb;kc

O1

O2

O3 O4

O5

O6

∆ac,b + kac,b ∆bc,a + kbc,a

∆ab,c

+kab,c

, (4.15)

where, explicitly

H∆L,∆C ,∆R
≡

O1

O2

O3 O4

O5

O6

∆L ∆R

∆C

≡

∫∫∫
w∈γ12

w′∈γ34

w′′∈γ56

K̂∆1(x1, w)K̂∆2(x2, w)K̂∆3(x3, w
′)

×K̂∆4(x4, w
′)K̂∆5(x5, w

′′)K̂∆6(x6, w
′′)

×
(
ξ(w,w′)

2

)∆L
(
ξ(w,w′′)

2

)∆C
(
ξ(w′, w′′)

2

)∆R

(4.16)

and c∆a;∆b;∆c

ka;kb;kc
is given in (B.57).

Following the strategy of ref. [70], we are now in a position to make an educated guess

for the holographic representation of the six-point global conformal block. We conjecture

that the coefficient of the product of OPE coefficients is the holographic object which

computes the six-point block, that is

W∆1,...,∆6

∆a;∆c;∆b
(xi) =

8

B(∆a1,2,∆a2,1)B(∆c3,4,∆c4,3)B(∆b5,6,∆b6,5)
W∆1,...,∆6

∆a;∆c;∆b
(xi) , (4.17)

where W∆1,...,∆6

∆a;∆c;∆b
(xi) is the six-point block in the OPE channel, given in (1.4) and depicted

graphically in figure 3.

In the rest of this section, we prove this conjecture by establishing that the geodesic

bulk diagram satisfies the correct differential equations with the right boundary conditions.

More precisely, we will show that (4.17) is an eigenfunction of the appropriate multi-point

Casimirs of the global conformal group SO(d + 1, 1) with the right eigenvalues and has

the right limiting behavior in the OPE limit. These checks are sufficient to establish the

conjecture [51].

19Note the slight change in the names for internal scaling dimensions moving forward.

– 32 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
8

Before proceeding, we make some additional remarks.

• Using (3.18), one can easily re-express the holographic representation (4.15)

(and (4.6)) in terms of bulk-to-bulk propagators rather than chordal distances.

However, for computational convenience we prefer to use the representation given

in (4.15).

• It is reassuring to observe that the correspondence between the real and p-adic holo-

graphic representations of four- and five-point blocks continues to hold at six-points;

at six-points the comparison is between (4.15)–(4.17) and (2.22)–(2.23), with (4.8)

in mind.

• Equipped with the knowledge of the holographic representation of the six-point block,

a full analysis of all the terms in (4.14) leads to the full CBD of the six-point star-

shaped bulk diagram in the OPE channel; look forward to section 5.3 for more details.

4.1 OPE limit

In the OPE limit x2 → x1, the leading contribution to the conformal block defined in (4.17)

comes from the term with ka = 0, and takes the form

lim
x2→x1

8W∆1,...,∆6

∆a;∆c;∆b
(xi)

B(∆a1,2,∆a2,1)B(∆c3,4,∆c4,3)B(∆b5,6,∆b6,5)

=
4(x2

12)∆a,12

B(∆c3,4,∆c4,3)B(∆b5,6,∆b6,5)

∞∑
kb,kc=0

c∆a;∆b;∆c

0;kb;kc

O5(x5)

O6(x6)

x1

O3(x3)

O4(x4)

∆ab,c

+kb − kc
∆ac,b

−kb + kc

∆bc,a + kb + kc

= (x2
12)∆a,12 W∆3,∆4,∆a,∆5,∆6

∆c;∆b
(x3, x4, x1, x5, x6) , (4.18)

where in the last equality we used the fact that c∆a;∆b;∆c

0;kb;kc
= c∆b;∆a;∆c

kb;kc
(using the defini-

tions (B.35) and (B.57)), as well as the relation between the linear combination of five-point

geodesic diagrams and the five-point conformal block (4.6)–(4.7). The subleading terms

above scale with an overall factor of (x2
12)∆a,12+ka for positive integral ka, thus are sup-

pressed in the limit under consideration.

By symmetry, an identical analysis is possible in the other OPE limits, x4 → x3 and

x6 → x5. Thus in each case, we establish that the six-point conformal block in the OPE

channel, as defined in (4.17), obeys the correct boundary conditions:

lim
x2→x1

W∆1,∆2,∆3,∆4,∆5,∆6

∆a;∆c;∆b
(x1, x2, x3, x4, x5, x6) = (x2

12)∆a,12 W∆3,∆4,∆a,∆5,∆6

∆c;∆b
(x3, x4, x1, x5, x6) ,

(4.19)

with the other limits obtained from permuting the labels appropriately.
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This provides a check that the right boundary conditions are obeyed by our conjecture.

Next we prove that the conformal block as defined by the right hand side of (4.17) obeys

the correct differential equations as well.

4.2 Eigenfunction of conformal Casimirs

In this section we will prove that the six-point block given by (4.17) is an eigenfunction of

the appropriate multi-point Casimirs with the right eigenvalues. Particularly, in the OPE

channel of figure 3, we will show that the geodesic diagram (4.15) satisfies

(L(1) + L(2))2W∆1,...,∆6

∆a;∆c;∆b
(xi) = C2(∆a)W∆1,...,∆6

∆a;∆c;∆b
(xi)

(L(3) + L(4))2W∆1,...,∆6

∆a;∆c;∆b
(xi) = C2(∆c)W∆1,...,∆6

∆a;∆c;∆b
(xi)

(L(5) + L(6))2W∆1,...,∆6

∆a;∆c;∆b
(xi) = C2(∆b)W∆1,...,∆6

∆a;∆c;∆b
(xi) ,

(4.20)

where

C2(∆) = m2
∆ = ∆(∆− n) . (4.21)

Here L(1)
AB are the differential generators of the global conformal algebra constructed out of

the spacetime coordinate and conformal dimension associated with the operator insertion

at x1. The Casimir is constructed as L2 ≡ 1
2LABL

AB, while the Casimirs considered above

are analogously defined multi-point Casimirs.

In fact we simply need to prove the first equation in (4.20); the remaining two follow

trivially from symmetry arguments. The proof is most convenient in embedding space.

To keep the discussion short, we refer the reader to refs. [14, 70] for more details on the

embedding space formalism as it relates to the proof by conformal Casimir. Indeed, the

proof presented here follows closely the procedure used in ref. [70] in the context of the

five-point block.

In embedding space, define

F∆L,∆C
(P1, P2,W

′,W ′′) ≡
∫
W∈γ12

K̂∆1(P1,W )K̂∆2(P2,W )

(
ξ(W,W ′)

2

)∆L
(
ξ(W,W ′′)

2

)∆C

,

(4.22)

where P 2
i = 0 denote the null coordinates and W 2 = W ′2 = W ′′2 = −1 define the AdS

hypersurface. The bulk-to-boundary propagator and chordal distance factors take simple

power law forms in embedding space, while the conformal generators act linearly making

computations especially easier. In fact, using the fact that F∆L,∆C
is conformally invariant

under simultaneous rotations of P1, P2,W
′,W ′′, one can trade the action of the multi-point

Casimir constructed out of P1, P2 for one constructed out of W ′,W ′′ [14, 70]:

(L(1) + L(2))2 F∆L,∆C
(P1, P2,W

′,W ′′) = (L(W ′) + L(W ′′))2 F∆L,∆C
(P1, P2,W

′,W ′′) .

(4.23)

Using the definition of F∆C ,∆R
and the explicit forms for K̂ and ξ in embedding space

(see appendix B.1), this can easily be computed to give (suppressing the arguments of
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F∆C ,∆R
) [70],

(L(W ′)+L(W ′′))2F∆L,∆C
=m2

∆L+∆C
F∆L,∆C

−4∆L∆C

(
ξ(W ′,W ′′)

2

)−1

F∆L+1,∆C+1

−4∆L(∆L+1)F∆L+2,∆C
−4∆C(∆C+1)F∆L,∆C+2 . (4.24)

Using this we immediately obtain

(L(1) + L(2))2 H∆L,∆C ,∆R
= m2

∆L+∆C
H∆L,∆C ,∆R

− 4∆L∆C H∆L+1,∆C+1,∆R−1

− 4∆L(∆L + 1)H∆L+2,∆C ,∆R
− 4∆C(∆C + 1)H∆L,∆C+2,∆R

,

(4.25)

where H∆L,∆C ,∆R
was defined in (4.16). Due to (4.25), we conclude that the geodesic bulk

diagram in (4.15) satisfies

(L(1)+L(2))2W∆1,...,∆6

∆a;∆c;∆b
(Pi) = (L(1)+L(2))2

∞∑
ka,kb,kc=0

c∆a;∆b;∆c

ka;kb;kc

O1

O2

O3 O4

O5

O6

∆ac,b + kac,b ∆bc,a + kbc,a

∆ab,c

+kab,c

=
∞∑

ka,kb,kc=0

c̃ka;kb;kc

O1

O2

O3 O4

O5

O6

∆ac,b + kac,b ∆bc,a + kbc,a

∆ab,c

+kab,c

, (4.26)

where (suppressing in the symbols c∆a;∆b;∆c

ka;kb;kc
the superscripts, which remain fixed) we have

defined

c̃ka;kb;kc ≡ m
2
∆a+2ka cka;kb;kc − 4(∆ac,b + kac,b − 1)(∆ab,c + kab,c − 1) cka−1;kb;kc

− 4(∆ac,b + kac,b − 2)(∆ac,b + kac,b − 1) cka−1;kb;kc−1

− 4(∆ab,c + kab,c − 2)(∆ab,c + kab,c − 1) cka−1;kb−1;kc .

(4.27)

In the last step in (4.26), we integer-shifted the dummy variables ka, kb, kc to bring the

diagram on the RHS to the same form as the one on the LHS, leading to the coefficient

in (4.27).

All we need to do now is to show that

c̃ka;kb;kc −m
2
∆a
cka;kb;kc = 0 ∀ ka; kb; kc . (4.28)
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This can be checked numerically to arbitrary precision for any given choice of conformal

dimensions and all non-negative integer values of ka, kb, and kc. To show this analytically,

first recall from (B.57) that the cka;kb;kc coefficients involve Lauricella functions of three

variables. We use the series representation of the Lauricella function given in (B.12) to

rewrite the LHS of (4.28) as a triple sum over dummy integral variables na, nb and nc,

where we have paired ka with na and so on. Next, we evaluate the sums over na and nb,

to obtain a summand for the nc sum, which can be simplified using a basic hypergeometric

3F2 identity [125] to give that c̃ka;kb;kc −m2
∆a
cka;kb;kc is equal to

4(−1)ka+kb+kc+1(∆ab,c)kab,c(∆ac,b)kac,b(∆bc,a)kbc,a
kb!(ka−1)!(∆a− n

2 +1)ka−1

kc∑
nc=0

[
(−1)nc−sinπkc cscπ(kc−nc)

nc!Γ(kc−nc)

×
(
∆abc,− n

2

)
nc

(∆a,bc−nc)ka
(∆bc,a+nc)(∆c− n

2 +1)nc
3F2

[
−kb, ∆bc, a+nc, ∆abc,− n

2 +nc
∆b− n

2 +1, ∆bc, a+nc−ka
;1

]]
.

(4.29)

The formal analytic manipulation described above led to an indeterminate summand, since

nc, kc are non-negative integers (with nc ≤ kc). To obtain a sensible expression, we impart

a small real part to kc by shifting kc → kc+ε in the summand, where ε is some non-integral

real number, and at the end we take the limit ε→ 0. Then it’s clear the summand vanishes

exactly, since it is proportional to

(−1)nc − sinπ(kc + ε) cscπ(kc + ε− nc) = (−1)nc − sinπ(kc + ε)

(−1)nc sinπ(kc + ε)
= 0 (4.30)

and the remainder of the summand is well-behaved in the limit ε→ 0.

This proves (4.28), thus establishing (4.20) and in turn the fact that the geometric

RHS of (4.17) indeed computes the six-point conformal block.

5 Conformal block decomposition via geodesic diagrams

In this section we work out the CBD of several tree-level AdS diagrams in the direct chan-

nel. We will use the propagator identities of section 3, where each individual term in

identities such as (3.14), (3.15) and (3.16) will be physically reinterpreted as the contribu-

tion to a given bulk diagram from the conformal families of a specific set of intermediate

(single-trace and/or multi-twist) primary exchanges. This computation will also rely on

the knowledge of the holographic representations for five- and six-point conformal blocks

in the decomposition channel of interest, as discussed in the previous section. At the end

of this section we will provide a repackaging of the CBDs in terms of spectral integrals,

which reaffirms the agreement with the expected results from the shadow formalism.

We begin by recalling the CBD of four-point contact and exchange diagrams, rederived

in ref. [14] with the help of two-propagator identities (3.11) and (3.13). Like in the rest

of the paper, we will restrict ourselves to external scalar operators with scalar exchanges.

Generalizations to spinning four-point bulk diagrams with spin exchanges can be found in

refs. [83–86, 88–90].
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The CBD of the four-point contact diagram is given by

D4 ≡
∫
z∈AdS

K̂∆1(x1, z)K̂∆2(x2, z)K̂∆4(x4, z)K̂∆5(x5, z)

=
∑
MA

P
(12)
cont (MA)W∆1,∆2,∆4,∆5

∆A
(xi) +

∑
MB

P
(45)
cont (MB)W∆1,∆2,∆4,∆5

∆B
(xi) ,

(5.1)

where we have defined

∆A ≡ ∆1 + ∆2 + 2MA ∆B ≡ ∆4 + ∆5 + 2MB , (5.2)

and like before W∆1,∆2,∆4,∆5

∆ is the four-point conformal block [54] for external scalar

operators ∆1,∆2,∆4 and ∆5 with the exchanged scalar primary labelled by the dimension

∆, and the decomposition coefficients are20

P
(12)
cont (MA) = α∆1;∆2

MA

B(∆A4,5,∆A5,4)
∑
MB

1

N∆B

a∆4;∆5

MB

m2
∆A
−m2

∆B


P

(45)
cont (MB) = α∆4;∆5

MB

B(∆B1,2,∆B2,1)
∑
MA

1

N∆A

a∆1;∆2

MA

m2
∆B
−m2

∆A

 ,

(5.3)

where αs;tM was defined in (3.9). We remind the reader that the upper and lower limits

on the Mi sums are understood to be ∞ and 0 respectively. In fact, we can analytically

perform the sums in (5.3) using (4.12) to obtain the compact expressions

P
(12)
cont (MA) = α∆1;∆2

MA
C∆4∆5∆A

P
(45)
cont (MB) = α∆4;∆5

MB
C∆1∆2∆B

,
(5.4)

where the OPE coefficient Cijk was written down in (3.6). The primary operators being

exchanged in the CBD (5.1) are interpreted as double-trace primaries, written schemati-

cally as

[OiOj ]M ≈ Oi∂2MOj , (5.5)

with conformal dimensions (the same as twists since the external operators are scalars and

we have set ` = 0 in (1.1))

∆(ij)(M) = ∆i + ∆j + 2M + γ(ij)(M) , (5.6)

where γ(ij) is the anomalous dimension. For generic external conformal dimensions, these

anomalous dimensions do not contribute to the CBD at this order in 1/N , a characteristic

of large N CFTs [73].

20We thank E. Perlmutter for pointing out a normalization convention typo in eq. (4.8) of ref. [14]. Fixing

the typo leads to an extra normalization factor in (5.3), as compared to eq. (4.12) of ref. [14].
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Graphically, we write (5.1) as

O1

O2 O4

O5

=
∑
MA

P
(12)
cont (MA)


O1

O2 O4

O5

[O1O2]MA

+
∑
MB

P
(45)
cont (MB)


O1

O2 O4

O5

[O4O5]MB

,
(5.7)

where the green disc-shaped bulk point is a quartic contact interaction vertex to be inte-

grated over all of AdS, and the diagrams in parentheses denote the four-point conformal

blocks in a chosen channel with double-trace primaries exchanged in the intermediate

channels.

We now turn to the four-point exchange diagram, defined as

Dexch
4 ≡

O1

O2 O4

O5

∆0

≡
∫∫

z,w∈AdS
K̂∆1(x1, z)K̂∆2(x2, z)Ĝ∆0(z, w)K̂∆4(x4, w)K̂∆5(x5, w) ,

(5.8)

which admits the CBD,

O1

O2 O4

O5

∆0

=P
(∆0)
exch


O1

O2 O4

O5

O0

+
∑
MA

P
(12)
exch(MA)


O1

O2 O4

O5

[O1O2]MA



+
∑
MB

P
(45)
exch(MB)


O1

O2 O4

O5

[O4O5]MB

 , (5.9)

with21

P
(∆0)
exch =

B(∆01,2,∆02,1)
∑
MA

1

N∆A

a∆1;∆2

MA

m2
∆0
−m2

∆A

B(∆04,5,∆05,4)
∑
MB

1

N∆B

a∆4;∆5

MB

m2
∆0
−m2

∆B


P

(12)
exch(MA) =

(
B(∆A1,2,∆A2,1)

1

N∆0

a∆1;∆2

MA

m2
∆A
−m2

∆0

)B(∆A4,5,∆A5,4)
∑
MB

1

N∆B

a∆4;∆5

MB

m2
∆A
−m2

∆B


P

(45)
exch(MB) =

(
B(∆B4,5,∆B5,4)

1

N∆0

a∆4;∆5

MB

m2
∆B
−m2

∆0

)B(∆B1,2,∆B2,1)
∑
MA

1

N∆A

a∆1;∆2

MA

m2
∆B
−m2

∆A

 .
(5.10)

21For the same reason as the one mentioned in footnote 20, the expressions for the OPE coefficients (5.10)

differ from those quoted in eq. (4.17) of ref. [14] by particular normalization factors.
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Like in the case of the contact diagram, we can in fact evaluate the infinite sums above

using the identity (4.12) to obtain more compact expressions,

P
(∆0)
exch = C∆1∆2∆0 C∆4∆5∆0

P
(12)
exch(MA) =

(
1

N∆0

α∆1;∆2

MA

m2
∆A
−m2

∆0

)
C∆4∆5∆A

P
(45)
exch(MB) =

(
1

N∆0

α∆4;∆5

MB

m2
∆B
−m2

∆0

)
C∆1∆2∆B

.

(5.11)

Note that the four-point contact and exchange diagram OPE coefficients squared are related

via

P
(12)
exch(MA)

P
(12)
cont (MA)

=
1

N∆0

1

m2
∆A
−m2

∆0

P
(45)
exch(MB)

P
(45)
cont (MB)

=
1

N∆0

1

m2
∆B
−m2

∆0

. (5.12)

The normalization factor N∆0 above can be absorbed into the definition of the four-point

exchange diagram (5.8) by using a different normalization for the bulk-to-bulk propagator

in (3.1).

In the remainder of this section, we extend the methods of ref. [14] to provide a

geodesic diagram derivation of the CBD of higher-point bulk diagrams (specifically, five-

and six-point tree-level diagrams) without performing any further bulk or contour integra-

tions. We end the section with a discussion of the CBD of individual diagrams repackaged

into a spectral decomposition, which clarifies relations of the form (5.12) also obeyed by

decomposition coefficients of higher-point AdS diagrams.

5.1 Five-point contact diagram

In this subsection we will perform the CBD of the five-point contact diagram,

D5 ≡

O1

O2

O3

O4

O5

≡
∫
z∈AdS

5∏
i=1

K̂∆i(xi, z) . (5.13)

Like for the decomposition of four-point exchange diagrams [14], we begin by applying the

holographic OPE (3.11) at the legs (x1, x2) and (x4, x5), to obtain

D5 = 4
∑

MA,MB

a∆1;∆2

MA
a∆4;∆5

MB

O1

O2

O3

O4

O5

∆A ∆B

, (5.14)

where ∆A,∆B were defined in (5.2). We can now make use of the three-propagator iden-

tity (3.15) to perform this bulk integration. The three terms on the RHS of (3.15) admit

– 39 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
8

a physical interpretation, corresponding individually to the contributions coming from the

exchange of a pair of a specific combination of multi-trace primaries and their higher-twist

cousins (often referred to as multi-twist operators). Indeed, we will show below that

O1

O2

O3

O4

O5

=
∑

MA,MB

P
(12,45)
cont (MA,MB)


O1

O2
O3 O4

O5

[O1O2]MA [O4O5]MB



+
∑
MA,M

P
(12,123)
cont (MA,M)


O1

O2
O3 O4

O5

[O1O2]MA

[[O1O2]MAO3]M



+
∑
M,MB

P
(345,45)
cont (M,MB)


O1

O2
O3 O4

O5

[[O4O5]MBO3]M

[O4O5]MB

, (5.15)

where the coefficients P
(s,t)
cont , to be determined below, are related to the OPE coefficients

of the dual CFT, via

P
(12,45)
cont (MA,MB) = α∆1;∆2

MA
α∆4;∆5

MB
C∆3∆A∆B

P
(345,45)
cont (M,MB) = α∆3;∆B

M α∆4;∆5

MB
C∆1;∆2;2∆3B,+2M

P
(12,123)
cont (MA,M) = α∆1;∆2

MA
α∆3;∆A
M C∆4;∆5;2∆3A,+2M .

(5.16)

The diagrams in parentheses above represent five-point conformal blocks reviewed in sec-

tion 4, with multi-twist primaries (more accurately double-twist, or even double-twist of

double-twist primaries), color-coded for visual aid, exchanged in the intermediate channels.

We are using the notation (5.5) to denote schematically the multi-twist operators.

We now present the computational details. Explicitly, employing (3.15) to evaluate

the bulk integration in (5.14), we find

D5 = 4
∑

MA,MB

a∆1;∆2

MA
a∆4;∆5

MB


C∆3∆A∆B

∞∑
kA,kB=0

c∆A;∆3;∆B

kA;kB

O1

O2

x3

O4

O5

∆3A,B

+kA − kB

∆3B,A

−kA + kB

∆AB,3

+kA + kB

+


∞∑

kA,kB=0

d∆A;∆3;∆B

kA;kB

O1

O2

x3

O4

O5

∆3 + kA −kA

∆B + kA + 2kB

+ “(A↔ B)”




, (5.17)
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where c∆A;∆3;∆B

kA;kB
and d∆A;∆3;∆B

kA;kB
are defined in (B.35)–(B.36). The last term written as

“(A↔ B)” is interpreted in the sense explained below (3.15).

The first term in (5.17) is already in its desired form. Making use of (4.6)–(4.7) we

recognize it to be the first term in the CBD (5.15), with the CBD coefficient given by

P
(12,45)
cont (MA,MB) = α∆1;∆2

MA
α∆4;∆5

MB
C∆3∆A∆B

, (5.18)

where α∆,∆′

M was defined in (3.9).

To bring the second term in (5.17) to a form which makes the contribution from the

appropriate conformal block manifest, we make use of the following non-trivial identity

proven in appendix B.2.2,22

∞∑
MA=0

a∆1;∆2

MA
d

2∆12,+2MA;∆3;∆0

kA;kB
=

∞∑
M=0

α∆3;∆0

M C∆1 ∆2 2∆03,+2M

B(∆031,2+M,∆032,1+M)
c

2∆03,+2M ;∆3;∆0

kAB,−M ;kB
. (5.19)

Recognizing 2∆12, + 2MA = ∆A and setting ∆0 = ∆B = 2∆45, + 2MB, we can re-express

the sum over MA in the second term of (5.17) to obtain the following equivalent form:

4
∑
M,MB

a∆4;∆5

MB
α∆3;∆B
M C∆1 ∆2 2∆3B,+2M

B(∆3B1,2+M,∆3B2,1+M)

∞∑
kA,kB=0

c
2∆3B,+2M ;∆3;∆B

kAB,−M ;kB

O1

O2

x3

O4

O5

∆3 + kA −kA

∆B + kA + 2kB

.

(5.20)

The final manipulation we need is to send the variable kA → kA − kB + M , which also

changes the lower limit of the kA summation to kB −M . However, it is clear from the

explicit form of c
2∆B3,+2M ;∆3;∆B

kA;kB
(refer to the definition (B.35)) that it vanishes for negative

integer values of kA, as well as for values of kA from the set {0, 1, . . . , kB−M} for kB > M .

Hence we can change the lower limit of the sum over the transformed variable kA back to

0 without affecting the sum. Then (5.20) becomes

4
∑
M,MB

a∆4;∆5

MB
α∆3;∆B
M C∆1 ∆2 2∆3B,+2M

B(∆3B1,2+M,∆3B2,1+M)

∞∑
kA,kB=0

c
2∆3B,+2M ;∆3;∆B

kA;kB

O1

O2

x3

O4

O5

∆3 + M

+kA − kB

−M
−kA + kB

∆B + M

+kA + kB

.

(5.21)

22This equation may be thought of as the real analog of the simpler identity (2.32) that was used in the

parallel p-adic computation.
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The inner sum over kA, kB is immediately recognized, with the help of (4.6)–(4.7) as the

conformal block W∆1,...,∆5

2∆3B,+2M ;∆B
(xi) up to an overall factor. This is precisely the third term

of (5.15), with the CBD coefficient taking the form

P
(345,45)
cont (M,MB) = α∆3;∆B

M α∆4;∆5

MB
C∆1 ∆2 2∆3B,+2M . (5.22)

An analogous analysis for the third term in (5.17) reproduces the second term of the

CBD (5.15) with the coefficient

P
(12,123)
cont (MA,M) = α∆1;∆2

MA
α∆3;∆A
M C∆4 ∆5 2∆3A,+2M . (5.23)

This completes the CBD of the five-point contact diagram. The reader may note the

similarity with the CBD coefficients of the four-point contact diagram.

Moreover, this five-point decomposition is very similar to the one computed in the

p-adic setup for the corresponding contact diagram in section 2.3. At the same time, the

functional form of the coefficients is preserved. Essentially for any tree-level diagram, the

p-adic CBDs will turn out to be identical to the real decompositions, except that there will

be no descendant contributions (corresponding to triviality of p-adic conformal blocks), and

only the lowest-twist states will contribute; thus all infinite sums such as those in (5.7), (5.9)

and (5.15) will collapse to the leading terms in the sums.

5.2 Five-point exchange diagrams

We now turn to five-point exchange diagrams. Up to a relabelling of external operators,

the most general five-point tree-level bulk exchange diagram involving the exchange of a

single bulk scalar of conformal dimension ∆0 is

D1-exch
5 ≡

O1

O2

O3

O4

O5

∆0

. (5.24)

Here, we show that in the basis of the conformal block of figure 1 it admits the CBD,

D1-exch
5 =

∞∑
MA,MB=0

P
(12,45)
1-exch (MA,MB)W∆1,...,∆5

∆A;∆B
+

∞∑
MB=0

P
(0,45)
1-exch(MB)W∆1,...,∆5

∆0;∆B

+

∞∑
M,MA=0

P
(12,123)
1-exch (MA,M)W∆1,...,∆5

∆A;2∆3A,+2M +

∞∑
M=0

P
(0,03)
1-exch(M)W∆1,...,∆5

∆0;2∆03,+2M

+
∞∑

M,MB=0

P
(345,45)
1-exch (M,MB)W∆1,...,∆5

2∆3B,+2M ;∆B
, (5.25)

– 42 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
8

where the CBD coefficients are given by

P
(12,45)
1-exch (MA,MB) =

P
(12,45)
cont (MA,MB)

N∆0(m2
∆A
−m2

∆0
)

P
(0,45)
1-exch(MB) = α∆4;∆5

MB
C∆3∆0∆B

C∆1∆2∆0

P
(12,123)
1-exch (MA,M) =

P
(12,123)
cont (MA,M)

N∆0(m2
∆A
−m2

∆0
)

P
(0,03)
1-exch(M) = α∆0;∆3

M C∆4 ∆5 2∆03,+2M C∆1∆2∆0

P
(345,45)
1-exch (M,MB) =

P
(345,45)
cont (M,MB)

N∆0(m2
2∆3B,+2M −m2

∆0
)
,

(5.26)

with the contact diagram coefficients P
(s,t)
cont given in (5.16). Like in the case of the contact

diagram, the CBD in (5.25) is interpreted in terms of the exchange of multi-twist primaries

in the intermediate channels, so that we may rewrite it as

D1-exch
5

=
∑

MA,MB

P
(12,45)
1-exch


O1

O2
O3 O4

O5

[O1O2]MA [O4O5]MB

+
∑
MB

P
(0,45)
1-exch


O1

O2
O3 O4

O5

O0 [O4O5]MB



+
∑
MA,M

P
(12,123)
1-exch


O1

O2
O3 O4

O5

[O1O2]MA

[[O1O2]MAO3]M

+
∑
M

P
(0,03)
1-exch


O1

O2
O3 O4

O5

O0 [O0O3]M



+
∑
M,MB

P
(345,45)
1-exch


O1

O2
O3 O4

O5

[[O4O5]MBO3]M

[O4O5]MB

. (5.27)

To show the decomposition, we begin with an application of the holographic OPE

identity (3.11) on the pairs of legs (x1, x2) and (x4, x5), followed by an application of the

propagator identity (3.13) to evaluate one of the two full AdS integrations, to obtain

D1-exch
5 = 4

∑
MA,MB

a∆1;∆2

MA
a∆4;∆5

MB

m2
∆A
−m2

∆0


1

N∆0

O1

O2

O3

O4

O5

∆A ∆B

− 1

N∆A

O1

O2

O3

O4

O5

∆0 ∆B

.
(5.28)

At this point we can use the propagator identity (3.15) to trade the remaining cubic AdS

integration for an expression involving sums over specific products of bulk-to-bulk and
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bulk-to-boundary propagators:

D1-exch
5 = 4

∑
MA,MB

a∆1;∆2

MA
a∆4;∆5

MB

m2
∆A
−m2

∆0

∞∑
kA,kB=0


C∆A∆B∆3

N∆0

c∆A;∆3;∆B

kA;kB

O1

O2

x3

O4

O5

∆3A,B

+kA − kB

∆3B,A

−kA + kB

∆AB,3

+kA + kB

+
d∆B ;∆3;∆A

kA;kB

N∆0

O1

O2

x3

O4

O5

−kB ∆3 + kB

∆A + 2kA + kB

+
d∆A;∆3;∆B

kA;kB

N∆0

O1

O2

x3

O4

O5

∆3 + kA −kA

∆B + kA + 2kB

−C∆0∆B∆3

N∆A

c∆0;∆3;∆B

kA;kB

O1

O2

x3

O4

O5

∆30,B

+kA − kB

∆3B,0

−kA + kB

∆0B,3

+kA + kB

−
d∆B ;∆3;∆0

kA;kB

N∆A

O1

O2

x3

O4

O5

−kB ∆3 + kB

∆0 + 2kA + kB

−
d∆0;∆3;∆B

kA;kB

N∆A

O1

O2

x3

O4

O5

∆3 + kA −kA

∆B + kA + 2kB


. (5.29)

The first and fourth terms in this equation are already written directly as a sum over

conformal blocks W∆1,...,∆5

∆A;∆B
and W∆1,...,∆5

∆0;∆B
and their higher-twist analogs, so we can directly

read off the CBD coefficients in (5.25) using (4.6)–(4.7):

P
(12,45)
1-exch (MA,MB) =

α∆1;∆2

MA
α∆4;∆5

MB

N∆0(m2
∆A
−m2

∆0
)
C∆A∆B∆3

P
(0,45)
1-exch(MB) = α∆4;∆5

MB
C∆0∆B∆3

∞∑
MA=0

B(∆01,2,∆02,1)a∆1;∆2

MA

N∆A
(m2

∆0
−m2

∆A
)

= α∆4;∆5

MB
C∆0∆B∆3 C∆0∆1∆2 ,

(5.30)
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where we made use of (4.12) in the last equation. This reproduces the first two terms

of (5.25). As for the third and fourth terms of (5.25), these are equal to the second and

fifth terms in (5.29), respectively. This can be seen by changing the order of summation

in (5.29), applying equation (5.19), and performing a change of summation variables like

the one used in going from (5.20) to (5.21), to explicitly rewrite the second and fifth terms

as sums over conformal blocks W∆1,...,∆5

∆a;2∆3A,+2M and W∆1,...,∆5

∆0;2∆03,+2M respectively, with CBD

coefficients

P
(12,123)
1-exch (MA,M) =

α∆1;∆2

MA
α∆A;∆3

M

N∆0(m2
∆A
−m2

∆0
)
C∆4 ∆5 2∆A3,+2M

P
(0,03)
1-exch(M) = α∆0;∆3

M C∆4 ∆5 2∆03,+2M

∑
MA

B(∆01,2,∆02,1)a∆1;∆2

MA

N∆A
(m2

∆0
−m2

∆A
)

= α∆0;∆3

M C∆4 ∆5 2∆03,+2M C∆0∆1∆2 .

(5.31)

The remaining two terms in (5.29) combine since they are proportional to the same geodesic

bulk diagram. Together, they can be recast as a weighted sum over conformal blocks. To

do that, we need to use a variant of identity (5.19), proven in appendix B.2.3, namely23

∞∑
MA=0

a∆1;∆2

MA

m2
∆1+∆2+2MA

−m2
∆0

[
d∆1+∆2+2MA;∆3;∆B

kA;kB

N∆0

−
d∆0;∆3;∆B

kA;kB

N∆1+∆2+2MA

]

=

∞∑
M=0

1

N∆0

C∆1 ∆2 2∆3B,+2M

m2
2∆3B,+2M −m2

∆0

α∆3;∆B
M

B(∆3B2,1 +M,∆3B1,2 +M)
c

2∆3B,+2M ;∆3;∆B

kAB,−M ;kB
.

(5.32)

Changing the order of summation between MA and kA, kB, applying (5.32) to the sum

of third and sixth terms in (5.29), and performing a change of variables like the one be-

tween (5.20) and (5.21) turns these terms into a sum over conformal blocks W∆1,...,∆5

2∆3B,+2M ;∆B
,

with coefficients given by

P
(345,45)
1-exch (M,MB) = α∆4;∆5

MB

1

N∆0

C∆1 ∆2 2∆3B,+2M

m2
2∆3B,+2M −m2

∆0

α∆3;∆B
M . (5.33)

Thus the third and sixth terms in (5.29) together reproduce the last term in (5.25).

Like in the case of the contact diagram, the coefficients (5.26) share strong structural

similarities with the four-point exchange coefficients (5.11); importantly the five-point ex-

change coefficients corresponding to the exchange of multi-twist primaries admit very sim-

ple relations with the five-point contact coefficients. Indeed in (5.26), we have written some

of the CBD coefficients directly in terms of the five-point contact diagram CBD coefficients

to highlight the simple algebraic relation between the two. These relations take the same

form as the ones for four-point coefficients in (5.12).

23This equation is a special case of the identity (5.43) that we use below to work out the CBD of six-point

exchange diagrams. These two equations can be thought of as analogs of the simpler identity (2.37) used

in the parallel p-adic computations.
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Finally, turning to the five-point exchange diagram involving three cubic contact in-

teraction vertices, its CBD can be obtained using the same method, tools and techniques

described above; in particular, the manipulations (5.19) and (5.32) are used again, and no

further identities are necessary. Thus we omit the long but un-illuminating computational

details, and only show the final result for the direct channel decomposition:

O1

O2

O3

O4

O5

∆0 ∆0′

= P
(0,0′)
2-exch


O1

O2
O3 O4

O5

O0 O0′

+
∑

MA,MB

P
(12,45)
2-exch


O1

O2
O3 O4

O5

[O1O2]MA [O4O5]MB



+
∑
MB

P
(0,45)
2-exch


O1

O2
O3 O4

O5

O0 [O4O5]MB

+
∑
M

P
(0,03)
2-exch


O1

O2
O3 O4

O5

O0 [O0O3]M



+
∑
MA

P
(12,0′)
2-exch


O1

O2
O3 O4

O5

[O1O2]MA
O0′

+
∑
M

P
(0′3,0′)
2-exch


O1

O2
O3 O4

O5

[O0′O3]M O0′



+
∑
MA,M

P
(12,123)
2-exch


O1

O2
O3 O4

O5

[O1O2]MA

[[O1O2]MAO3]M

+
∑
M,MB

P
(345,45)
2-exch


O1

O2
O3 O4

O5

[[O4O5]MBO3]M

[O4O5]MB


(5.34)

with the coefficients (whose arguments we suppressed above) given by

P
(0,0′)
2-exch =C∆1∆2∆0C∆0∆3∆0′C∆4∆5∆0′ P

(12,45)
2-exch (MA,MB) =

P
(12,45)
1-exch (MA,MB)

N∆0′ (m
2
∆B
−m2

∆0′
)

P
(0,45)
2-exch(MB) =

P
(0,45)
1-exch(MB)

N∆0′ (m
2
∆B
−m2

∆0′
)

P
(0,03)
2-exch(M) =

P
(0,03)
1-exch(M)

N∆0′ (m
2
2∆03,+2M−m2

∆0′
)

P
(12,123)
2-exch (MA,M) =

P
(12,123)
1-exch (MA,M)

N∆0′ (m
2
2∆3A,+2M−m2

∆0′
)

P
(345,45)
2-exch (M,MB) =

P
(345,45)
1-exch (M,MB)

N∆0′ (m
2
∆B
−m2

∆0′
)
,

(5.35)

and the remaining two coefficients are obtained by symmetry (or equivalently in terms of

the CBD coefficients of an asymmetric scalar exchange diagram obtained from (5.24) with
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a simple relabelling):

P
(12,0′)
2-exch (MA) =

P
(12,0′)
1-exch (MA)

N∆0(m2
∆A
−m2

∆0
)

P
(0′3,0′)
2-exch (M) =

P
(0′3,0′)
1-exch (M)

N∆0′ (m
2
2∆0′3,+2M −m2

∆0
)
,

(5.36)

where, analogous to P
(0,45)
1-exch and P

(0,03)
1-exch in (5.26) for the exchange diagram (5.24), we have

defined

P
(12,0′)
1-exch (MA) = α∆1;∆2

MA
C∆3∆0′∆A

C∆4∆5∆0′

P
(0′3,0′)
1-exch (M) = α

∆0′ ;∆3

M C∆1 ∆2 2∆0′3,+2M C∆4∆5∆0′

(5.37)

for the corresponding exchange diagram obtained from (5.24) after relabelling. Finally, we

note that the coefficients corresponding to exchanges of solely multi-twist primaries further

admit an expression in terms of the contact diagram coefficients:

P
(12,45)
2-exch (MA,MB) =

P
(12,45)
cont (MA,MB)

N∆0(m2
∆A
−m2

∆0
)N∆0′ (m

2
∆B
−m2

∆0′
)

P
(12,123)
2-exch (MA,M) =

P
(12,123)
cont (MA,M)

N∆0(m2
∆A
−m2

∆0
)N∆0′ (m

2
2∆3A,+2M −m2

∆0′
)

P
(345,45)
2-exch (M,MB) =

P
(345,45)
cont (M,MB)

N∆0(m2
2∆3B,+2M −m2

∆0
)N∆0′ (m

2
∆B
−m2

∆0′
)
.

(5.38)

5.3 Six-point diagrams

In this section we present the CBD of various tree-level six-point bulk diagrams obtained

using geodesic diagram techniques. Figures 5–6 catalogue exhaustively all inequivalent (up

to relabelling of conformal dimensions and insertion points) tree-level six-point diagrams.

In this section we focus on the diagrams shown in figure 5 since their direct channel CBD

can be done in the basis of the OPE channel conformal block discussed in section 4. The

direct channel decomposition of the six-point diagrams of figure 6 is expressed in terms of

the six-point conformal block in the comb channel, for which an explicit form is currently

only known in one and two spacetime dimensions [57]; the holographic representation is

also currently unknown. Thus we will not discuss these diagrams further.24

The procedure to obtain the CBD for the diagrams in figure 5 is identical to the

one explained in the previous subsection (and the first few steps were already alluded to in

section 4), except we will require variants of hypergeometric identities (5.19) and (5.32), this

time involving the expansion coefficients which appear in the propagator identity (3.16).

Since the computations are fairly straightforward and have been explained in detail before,

we refrain from presenting the intermediate steps, but list the new ingredients, in the form

24These diagrams are expected to admit a crossed-channel decomposition in the OPE channel discussed

previously, but we will not discuss this point further in this paper.
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O1

O2

O3 O4

O5

O6

O1

O2

O3

O4

O5

O6

∆0

O1

O2

O3

O5

O6

O4

∆0 ∆0′

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

Figure 5. Inequivalent (up to relabelling) six-point tree-level diagrams which admit a direct

channel CBD in the conformal basis of the OPE channel six-point block of section 4.

O1

O2

O3 O4

O5

O6

∆0

O1

O2

O3

O4

O5

O6

∆0 ∆0′

O1

O2

O3 O4

O5

O6

∆` ∆c ∆r

Figure 6. Inequivalent six-point tree-level diagrams which do not admit a direct channel CBD in

the conformal basis of the OPE channel six-point block (instead, they do so in the comb channel).

of the hypergeometric identities mentioned above. The key identity required for the CBD

of the six-point contact diagram is:

∞∑
M=0

a∆1;∆2

M d
2∆12,+2M ; ∆b; ∆c

ka;kb;kc
=

∞∑
M=0

α∆b;∆c

M C∆1 ∆2 2∆bc,+2M

B(∆bc1,2 +M,∆bc2,1 +M)
c

2∆bc,+2M ; ∆b; ∆c

kabc,−M ; kc; kc
, (5.39)

which is proven in appendix B.2.4. This leads to the CBD of the six-point contact diagram

in the OPE channel:

O1

O2

O3 O4

O5

O6

(5.40)

=
∑

ML,MC ,MR

P
(12,34,56)
cont


O1

O2

O3 O4

O5

O6

OL OR

OC

+
∑

ML,MC ,M

P
(12,34,1234)
cont


O1

O2

O3 O4

O5

O6

OL
[OLOC ]M

OC



+
∑

ML,M,MR

P
(12,1256,56)
cont


O1

O2

O3 O4

O5

O6

OL OR

[OLOR]M

+
∑

M,MC ,MR

P
(3456,34,56)
cont


O1

O2

O3 O4

O5

O6

[OROC ]M

OROC

,
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where for brevity we have defined the following double-trace higher-twist (i.e. double-twist)

primaries

OL ≡ [O1O2]ML
OC ≡ [O3O4]MC

OR ≡ [O5O6]MR
, (5.41)

with the CBD coefficients

P
(12,34,56)
cont (ML,MC ,MR) = α∆1;∆2

ML
α∆3;∆4

MC
α∆5;∆6

MR
C∆L∆C∆R

P
(12,34,1234)
cont (ML,MC ,M) = α∆1;∆2

ML
α∆3;∆4

MC
α∆L;∆C
M C∆5 ∆6 2∆LC,+2M

P
(12,1256,56)
cont (ML,M,MR) = α∆1;∆2

ML
α∆L;∆R
M α∆5;∆6

MR
C∆3 ∆4 2∆LR,+2M

P
(3456,34,56)
cont (M,MC ,MR) = α∆C ;∆R

M α∆3;∆4

MC
α∆5;∆6

MR
C∆1 ∆2 2∆CR,+2M ,

(5.42)

where ∆L,∆C and ∆R were defined in (4.10). To guide the eye, we have color-coded the

internal lines and the primaries being exchanged in the intermediate channels in (5.40). It

is worth pointing out that the CBD of the six-point diagram continues to show strong

structural similarities with its four- and five-point contact diagram cousins presented

in (5.4), (5.7) and (5.15)–(5.16).

For decomposing the remaining exchange diagrams in figure 5, we need the following

hypergeometric identity, proven in appendix B.2.5:

∞∑
M=0

a∆1;∆2

M

m2
2∆12,+2M −m2

∆0

[
d∆1+∆2+2M ;∆b;∆c

ka;kb;kc

N∆0

−
d∆0;∆b;∆c

ka;kb;kc

N∆2∆12,+2M

]

=

∞∑
M=0

1

N∆0

C∆1 ∆2 2∆bc,+2M

m2
2∆bc,+2M −m2

∆0

α∆b;∆c

M

B(∆bc2,1 +M,∆bc1,2 +M)
c

2∆bc,+2M ; ∆b; ∆c

kabc,−M ; kb; kc
.

(5.43)

Then the exchange diagram built from a cubic and a quintic bulk contact interaction

vertex is found to decompose as

O1

O2

O3

O4

O5

O6

∆0

=
∑

MC ,MR

P
(0,34,56)
1-exch


O1

O2

O3 O4

O5

O6

O0 OR

OC

 (5.44)

+
∑
MC ,M

P
(0,34,034)
1-exch


O1

O2

O3 O4

O5

O6

O0

[O0OC ]M

OC

+
∑
M,MR

P
(0,056,56)
1-exch


O1

O2

O3 O4

O5

O6

O0 OR

[O0OR]M



+
∑

ML,MC ,MR

P
(12,34,56)
1-exch


O1

O2

O3 O4

O5

O6

OL OR

OC

+
∑

ML,MC ,M

P
(12,34,1234)
1-exch


O1

O2

O3 O4

O5

O6

OL
[OLOC ]M

OC



+
∑

ML,M,MR

P
(12,1256,56)
1-exch


O1

O2

O3 O4

O5

O6

OL OR

[OLOR]M

+
∑

M,MC ,MR

P
(3456,34,56)
1-exch


O1

O2

O3 O4

O5

O6

[OROC ]M

OROC

,
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where

P
(0,34,56)
1-exch (MC ,MR) = α∆3;∆4

MC
α∆5;∆6

MR
C∆1∆2∆0 C∆0∆C∆R

P
(0,34,034)
1-exch (MC ,M) = α∆3;∆4

MC
α∆0;∆C
M C∆1∆2∆0 C∆5 ∆6 2∆0C,+2M

P
(0,056,56)
1-exch (M,MR) = α∆0;∆R

M α∆5;∆6

MR
C∆1∆2∆0 C∆3 ∆4 2∆0R,+2M ,

(5.45)

and

P
(12,34,56)
1-exch (ML,MC ,MR) =

P
(12,34,56)
cont (ML,MC ,MR)

N∆0(m2
∆L
−m2

∆0
)

P
(12,34,1234)
1-exch (ML,MC ,M) =

P
(12,34,1234)
cont (ML,MC ,M)

N∆0(m2
∆L
−m2

∆0
)

P
(12,1256,56)
1-exch (ML,M,MR) =

P
(12,1256,56)
cont (ML,M,MR)

N∆0(m2
∆L
−m2

∆0
)

P
(3456,34,56)
1-exch (M,MC ,MR) =

P
(3456,34,56)
cont (M,MC ,MR)

N∆0(m2
2∆RC,+2M −m2

∆0
)
.

(5.46)

Moreover, the six-point exchange diagram in figure 5 with three bulk interaction ver-

tices is decomposed as

O1

O2

O3

O5

O6

O4

∆0 ∆0′

=
∑
MC

P
(0,34,0′)
2-exch


O1

O2

O3 O4

O5

O6

O0 O0′

OC

+
∑
M

P
(0,00′,0′)
2-exch


O1

O2

O3 O4

O5

O6

O0 O0′

[O0O0′ ]M



+
∑

MC ,MR

P
(0,34,56)
2-exch


O1

O2

O3 O4

O5

O6

O0 OR

OC

+
∑

ML,MC

P
(12,34,0′)
2-exch


O1

O2

O3 O4

O5

O6

OL O0′

OC



+
∑
MC ,M

P
(0,34,034)
2-exch


O1

O2

O3 O4

O5

O6

O0

[O0OC ]M

OC

+
∑
M,MR

P
(0,056,56)
2-exch


O1

O2

O3 O4

O5

O6

O0 OR

[O0OR]M



+
∑
MC ,M

P
(0′34,34,0′)
2-exch


O1

O2

O3 O4

O5

O6

[O0′OC ]M

O0′OC

+
∑
M,ML

P
(12,0′12,0′)
2-exch


O1

O2

O3 O4

O5

O6

OL O0′

[O0′OL]M
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+
∑

ML,MC ,MR

P
(12,34,56)
2-exch


O1

O2

O3 O4

O5

O6

OL OR

OC

+
∑

ML,MC ,M

P
(12,34,1234)
2-exch


O1

O2

O3 O4

O5

O6

OL
[OLOC ]M

OC



+
∑

ML,M,MR

P
(12,1256,56)
2-exch


O1

O2

O3 O4

O5

O6

OL OR

[OLOR]M

+
∑

M,MC ,MR

P
(3456,34,56)
2-exch


O1

O2

O3 O4

O5

O6

[OROC ]M

OROC

,
(5.47)

with

P
(0,34,0′)
2-exch (MC) = α∆3;∆4

MC
C∆1∆2∆0 C∆0∆C∆0′ C∆0′∆5∆6

P
(0,00′,0′)
2-exch (M) = α

∆0;∆0′
M C∆1∆2∆0 C∆3 ∆4 2∆00′,+2M C∆0′∆5∆6 ,

(5.48)

P
(0,34,56)
2-exch (MC ,MR) =

P
(0,34,56)
1-exch (MC ,MR)

N∆0′ (m
2
∆R
−m2

∆0′
)

P
(0,34,034)
2-exch (MC ,M) =

P
(0,34,034)
1-exch (MC ,M)

N∆0′ (m
2
2∆0C,+2M −m2

∆0′
)

P
(0,056,56)
2-exch (M,MR) =

P
(0,056,56)
1-exch (M,MR)

N∆0′ (m
2
∆R
−m2

∆0′
)
,

(5.49)

and

P
(12,34,56)
2-exch (ML,MC ,MR) =

P
(12,34,56)
cont (ML,MC ,MR)

N∆0(m2
∆L
−m2

∆0
)N∆0′ (m

2
∆R
−m2

∆0′
)

P
(12,34,1234)
2-exch (ML,MC ,M) =

P
(12,34,1234)
cont (ML,MC ,M)

N∆0(m2
∆L
−m2

∆0
)N∆0′ (m

2
2∆LC,+2M −m2

∆0′
)

P
(12,1256,56)
2-exch (ML,M,MR) =

P
(12,1256,56)
cont (ML,M,MR)

N∆0(m2
∆L
−m2

∆0
)N∆0′ (m

2
∆R
−m2

∆0′
)

P
(3456,34,56)
2-exch (M,MC ,MR) =

P
(3456,34,56)
cont (M,MC ,MR)

N∆0(m2
2∆RC,+2M −m2

∆0
)N∆0′ (m

2
∆R
−m2

∆0′
)
.

(5.50)

The remaining three CBD coefficients are obtained from (5.49) by permuting the labels,

as demonstrated earlier in a five-point example for the CBD coefficients (5.36)–(5.37).

Finally, the six-point diagram in figure 5 with four cubic interaction vertices admits a

direct channel decomposition in a basis of twenty six-point conformal blocks in the OPE

channel. Twelve of the blocks are the ones which already appeared in the CBD shown

in (5.47), while the remaining eight are the ones in (5.47) where the double-trace operator

OC appearing in any of the intermediate channels is replaced with the single-trace primary

Oc. Displaying only the terms not related to each other by a simple relabelling of indices,
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the CBD can be expressed as

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

(5.51)

= P
(0,c,0′)
3-exch


O1

O2

O3 O4

O5

O6

O0 O0′

Oc

+
∑

ML,MC ,MR

P
(12,34,56)
3-exch


O1

O2

O3 O4

O5

O6

OL OR

OC



+
∑
MR

P
(0,c,56)
3-exch


O1

O2

O3 O4

O5

O6

O0 OR

Oc

+ (2 terms obtained by permuting indices)

+
∑
M

P
(0′c,c,0′)
3-exch


O1

O2

O3 O4

O5

O6

[O0′Oc]M

O0′Oc

+ (2 terms obtained by permuting indices)

+
∑

MC ,MR

P
(0,34,56)
3-exch


O1

O2

O3 O4

O5

O6

O0 OR

OC

+ (2 terms obtained by permuting indices)

+
∑
M,MR

P
(c56,c,56)
3-exch


O1

O2

O3 O4

O5

O6

[OROc]M

OROc

+ (5 terms obtained by permuting indices)

+
∑

M,MC ,MR

P
(3456,34,56)
3-exch


O1

O2

O3 O4

O5

O6

[OROC ]M

OROC

+ (2 terms obtained by permuting indices) ,

where by a permutation of indices we mean an element of the permutation group S3 acting

on the three ordered sets (1, 2, 0), (3, 4, c), and (5, 6, 0′),25 and the CBD coefficients are

25Under any such permutation, P
(0,c,0′)
3-exch gets mapped to itself, and so does P

(12,34,56)
3-exch . But for example,

P
(0′c,c,0′)
3-exch can be mapped to P

(0,00′,0′)
3-exch and P

(0,c,c0)
3-exch . Likewise P

(c56,c,56)
3-exch can be mapped to P

(12,c,c12)
3-exch ,

P
(0,34,034)
3-exch , P

(0,056,56)
3-exch , P

(12,0′12,0′)
3-exch , and P

(0′34,34,0′)
3-exch .
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given by

P
(0,c,0′)
3-exch = C∆1∆2∆0 C∆3∆4∆c C∆0′∆5∆6 C∆0∆c∆0′

P
(0,c,56)
3-exch (MR) =

α∆5;∆6

MR
C∆1∆2∆0 C∆3∆4∆c C∆0∆c∆R

N∆0′ (m
2
∆R
−m2

∆0′
)

P
(0′c,c,0′)
3-exch (M) =

α
∆0′ ;∆c

M C∆1 ∆2 2∆0′c,+2M C∆3∆4∆c C∆0′∆5∆6

N∆0(m2
2∆0′c,+2M −m2

∆0
)

P
(c56,c,56)
3-exch (M,MR) =

α∆c;∆R
M α∆5;∆6

MR
C∆1 ∆2 2∆Rc,+2M C∆3∆4∆c

N∆0(m2
2∆Rc,+2M −m2

∆0
)N∆0′ (m

2
∆R
−m2

∆0′
)
,

(5.52)

and

P
(0,34,56)
3-exch (MC ,MR) =

P
(0,34,56)
1-exch (MC ,MR)

N∆0′ (m
2
∆R
−m2

∆0′
)N∆c(m

2
∆C
−m2

∆c
)

P
(12,34,56)
3-exch (ML,MC ,MR) =

P
(12,34,56)
cont (ML,MC ,MR)

N∆0(m2
∆L
−m2

∆0
)N∆0′ (m

2
∆R
−m2

∆0′
)N∆c(m

2
∆C
−m2

∆c
)

P
(3456,34,56)
3-exch (M,MC ,MR) =

P
(3456,34,56)
cont (M,MC ,MR)

N∆0(m2
2∆RC,+2M−m2

∆0
)N∆0′ (m

2
∆R
−m2

∆0′
)N∆c(m

2
∆C
−m2

∆c
)
.

(5.53)

It is worth remarking that the CBD coefficients in (5.52) may also be rewritten in terms

of the CBD coefficients of diagrams with fewer exchanged bulk scalars.

The CBDs for the corresponding six-point diagrams in p-adic AdS/CFT are easily

obtained from the ones worked out in this section using the mapping between real and

p-adic results described at the end of section 5.1 — all infinite sums should be collapsed to

their leading terms, and the real conformal blocks should be replaced with the scaling p-adic

conformal blocks. The CBD coefficients take the same form, except explicit expressions

are obtained by using the p-adic versions of the OPE coefficients, mass-dimension relation

and normalization factors given in section 2.26

5.4 Algebraic origin of logarithmic singularities

The decomposition of AdS diagrams discussed above had generic external and internal

conformal dimensions. For certain combinations of non-generic dimensions, the diagrams

are expected to develop logarithmic singularities, corresponding to the contributions from

anomalous dimensions of multi-twist operators at tree-level [73, 126, 127]. These are the

so-called integrality conditions. For instance, for the four-point contact diagram (5.1), the

condition on external dimensions is ∆1+∆2−∆4−∆5 ∈ Z. These conditions were originally

obtained from analyzing directly the divergence of the associated integrals, and are repack-

aged in Mellin space as double poles of the Mellin amplitude. In ref. [14] the appearance

26Upon setting all integral summation parameters to zero, the αs;tM functions appearing in the real CBD

coefficients reduce identically to unity and thus their p-adic analogs are simply constant factors of unity.
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of logarithms is associated trivially with certain algebraic conditions. As can be seen from

the explicit form of the decomposition (5.1) and the associated coefficients in (5.3), loga-

rithms appear in the CBD when m2
∆A

= m2
∆B

, explicitly, m2
∆1+∆2+2MA

= m2
∆4+∆5+2MB

for

MA,MB ∈ Z≥0.27 These are equivalent to the integrality conditions mentioned above [14].

In the case of the four-point exchange diagram, the decomposition (5.9) and the associ-

ated coefficients (5.10) immediately yield the condition for logarithmic terms; they appear

whenever any of m2
∆A
,m2

∆B
,m2

∆0
coincide [14].

This continues to hold for higher-point diagrams as well. For example, for the five-point

contact diagram (5.15), one can use the identity (4.12) to re-express the structure constants

appearing in the decomposition coefficients (5.16) in their series representation, to make

the algebraic origin of the logarithms transparent. While there are several non-unique

choices for the series representation due to the totally symmetric nature of the structure

constants, given the CBD (5.15) only particular choices of the series representation for each

CBD coefficient will make manifest the algebraic conditions; these choices are dictated by

the precise operators being exchanged in the intermediate channels in the corresponding

conformal block. This immediately leads to the result that logarithmic singularities appear

whenever

m2
∆1+∆2+2MA

= m2
∆3+∆4+∆5+2M+2MB

or m2
∆4+∆5+2MB

= m2
∆1+∆2+∆3+2MA+2M ,

(5.54)

for M,MA,MB ∈ Z≥0. The associated integrality conditions are ∆1+∆2−∆3−∆4−∆5 ∈ Z
or ∆1 + ∆2 + ∆3 − ∆4 − ∆5 ∈ Z. Likewise, for the five-point exchange diagram (5.25),

the form of the decomposition coefficients (5.26) dictates the algebraic conditions for loga-

rithmic singularities. In addition to the conditions (5.54), logarithms will appear whenever

any of the following holds:

m2
∆0

= m2
∆1+∆2+2MA

, m2
∆0

= m2
∆3+∆4+∆5+2M+2MB

, m2
∆0+∆3+2M = m2

∆4+∆5+2MB
.

(5.55)

The algebraic conditions for the five-point diagram in (5.34) also follow trivially from a

similar analysis. In addition to the conditions (5.54) and (5.55), there are a few more

possibilities for non-generic conformal dimensions which admit logarithmic terms at tree-

level. They are

m2
∆0′

= m2
∆4+∆5+2MB

, m2
∆0′

= m2
∆1+∆2+∆3+2MA+2M , m2

∆0′+∆3+2M = m2
∆1+∆2+2MA

,

m2
∆0

= m2
∆0′+∆3+2M , m2

∆0′
= m2

∆0+∆3+2M . (5.56)

We invite the reader to note the agreement between these conditions and those obtained

in the p-adic framework in section 2.3.1.

27The four-point contact diagram admits direct channel decompositions in other channels as well, as long

as the boundary insertions satisfy the relevant OPE convergence conditions. In such cases there will be

corresponding algebraic conditions in the other channels. The same will be true for higher-point diagrams

to be discussed shortly, but this point will be not be explicitly discussed.
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One can similarly obtain the algebraic conditions for the six-point diagrams presented

in this paper leading to logarithmic singularities. For example, for the six-point contact

diagram decomposed in the OPE channel as in (5.40), logarithms appear at tree-level

whenever any of the following conditions are met:

m2
∆1+∆2+2ML

= m2
∆3+∆4+∆5+∆6+2MC+2MR

, m2
∆3+∆4+2MC

= m2
∆1+∆2+∆5+∆6+2ML+2MR

,

m2
∆5+∆6+2MR

= m2
∆1+∆2+∆3+∆4+2ML+2MC

, (5.57)

where ML,MC ,MR ∈ Z≥0. Likewise similar algebraic conditions can be read off of the

explicit CBD and the associated CBD coefficients of the other exchange six-point diagrams

presented in section 5.3. As another example, the exchange diagram in (5.44) admits, in

addition to (5.57), the following conditions:

m2
∆0

=m2
∆1+∆2+2ML

, m2
∆0

=m2
∆3+∆4+∆5+∆6+2MC+2MR

,

m2
∆0+∆3+∆4+2M+2MC

=m2
∆5+∆6+2MR

, m2
∆0+∆5+∆6+2M+2MR

=m2
∆3+∆4+2MC

. (5.58)

It is a trivial exercise to determine similar conditions for the remaining six-point diagrams;

we omit stating the somewhat lengthy list of the conditions here.28

5.5 Spectral decomposition of AdS diagrams

The conformal block decomposition of tree-level diagrams can also be obtained in the

framework of the shadow formalism. Using the split representation [12] one can recast

all bulk integrations in the diagram into three-point contact integrals which can be read-

ily evaluated. The ensuing boundary integrals are recognized as conformal partial waves,

corresponding to the exchange of states in the principal series representation of the confor-

mal group. This gives the spectral decomposition of AdS diagrams, with the poles of the

spectral density function under the contour integral dictating the explicit conformal block

decomposition. Two detailed examples are provided in appendix A for illustrative purposes.

Conformal partial waves themselves are linear combinations of conformal blocks and

their shadow blocks, so one can trade conformal partial waves in the integrand for conformal

blocks in the shadow formalism, to make the connection with CBD manifest. For example,

in the case of the four-point diagrams, this computation leads to the following spectral

decomposition (see appendix A)

O1

O2 O4

O5

=

∫ i∞

−i∞

dc

2πi

ζ∞(d+2c)

ζ∞(2c)
C∆1∆2

d
2

+cC d
2

+c∆4∆5


O1

O2 O4

O5

d
2

+ c


(5.59)

O1

O2 O4

O5

∆0

=
1

N∆0

∫ i∞

−i∞

dc

2πi

ζ∞(d+2c)

ζ∞(2c)

C∆1∆2
d
2

+cC d
2

+c∆4∆5

m2
d
2

+c
−m2

∆0


O1

O2 O4

O5

d
2

+ c

,
(5.60)

28The p-adic analogs of the six-point conditions mentioned in this section can be obtained simply by

setting all integral parameters Mi to zero, and using the p-adic analog of the mass-dimension relation (2.3).
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where the local zeta function ζ∞ was defined in (3.2), and the OPE coefficients and nor-

malization factor N∆ can be found in (3.6) and (3.1) respectively. Evaluating the contour

integral using the residue theorem reproduces the CBDs in (5.7) and (5.9) with the right

decomposition coefficients. We note that we have written the spectral density in the de-

compositions above in a form which makes the pole structure manifest and admits a direct

generalization to higher-point diagrams.

Likewise higher-point diagrams considered in this section also admit similar spectral

decompositions. For example, the five-point diagrams decompose as

O1

O2

O3

O4

O5

=

∫ i∞

−i∞

 ∏
j=A,B

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2
O3 O4

O5

d
2

+ cA
d
2

+ cB


×C∆1 ∆2

d
2

+cA
C d

2
+cA∆3

d
2

+cB
C d

2
+cB∆4 ∆5

, (5.61)

O1

O2

O3

O4

O5

∆0

=
1

N∆0

∫ i∞

−i∞

 ∏
j=A,B

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2
O3 O4

O5

d
2

+ cA
d
2

+ cB


×
C∆1 ∆2

d
2

+cA
C d

2
+cA∆3

d
2

+cB
C d

2
+cB∆4 ∆5

m2
d
2

+cA
−m2

∆0

, (5.62)

O1

O2

O3

O4

O5

∆0 ∆0′

=
1

N∆0N∆0′

∫ i∞

−i∞

 ∏
j=A,B

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2
O3 O4

O5

d
2

+ cA
d
2

+ cB



×
C∆1 ∆2

d
2

+cA
C d

2
+cA∆3

d
2

+cB
C d

2
+cB∆4 ∆5

(m2
d
2

+cA
−m2

∆0
)(m2

d
2

+cB
−m2

∆0′
)

. (5.63)

In the integrands above, the object in parantheses is the global scalar five-point conformal

block [57, 70] discussed briefly in section 4. Similarly, the six-point diagrams which admit

an OPE channel direct channel decomposition can be written as

O1

O2

O3 O4

O5

O6

=
∫ i∞

−i∞

 ∏
j=L,C,R

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2

O3 O4

O5

O6

d
2

+ cL
d
2

+ cR

d
2

+ cC


×C∆1 ∆2

d
2

+cL
C d

2
+cL

d
2

+cC
d
2

+cR
C d

2
+cC ∆3 ∆4

C d
2

+cR∆5 ∆6
, (5.64)
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O1

O2

O3

O4

O5

O6

∆0

=
1

N∆0

∫ i∞

−i∞

 ∏
j=L,C,R

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2

O3 O4

O5

O6

d
2

+ cL
d
2

+ cR

d
2

+ cC


×
C∆1 ∆2

d
2

+cL
C d

2
+cL

d
2

+cC
d
2

+cR
C d

2
+cC ∆3 ∆4

C d
2

+cR∆5 ∆6

m2
d
2

+cL
−m2

∆0

, (5.65)

O1

O2

O3

O5

O6

O4

∆0 ∆0′

=
1

N∆0N∆0′

∫ i∞

−i∞

 ∏
j=L,C,R

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2

O3 O4

O5

O6

d
2

+ cL
d
2

+ cR

d
2

+ cC



×
C∆1 ∆2

d
2

+cL
C d

2
+cL

d
2

+cC
d
2

+cR
C d

2
+cC ∆3 ∆4

C d
2

+cR∆5 ∆6

(m2
d
2

+cL
−m2

∆0
)(m2

d
2

+cR
−m2

∆0′
)

, (5.66)

O1

O2

O3

O5

O6

O4

∆0 ∆0′

∆c

=
1

N∆0N∆cN∆0′

∫ i∞

−i∞

 ∏
j=L,C,R

dcj
2πi

ζ∞(d+2cj)

ζ∞(2cj)



O1

O2

O3 O4

O5

O6

d
2

+ cL
d
2

+ cR

d
2

+ cC


×
C∆1 ∆2

d
2

+cL
C d

2
+cL

d
2

+cC
d
2

+cR
C d

2
+cC ∆3 ∆4

C d
2

+cR∆5 ∆6

(m2
d
2

+cL
−m2

∆0
)(m2

d
2

+cC
−m2

∆c
)(m2

d
2

+cR
−m2

∆0′
)

. (5.67)

In the integrands above, the object inside parentheses is the global scalar six-point confor-

mal block in the OPE channel, whose holographic representation was obtained in section 4.

Evaluating the contour integrals yields explicitly the CBDs obtained earlier using geodesic

diagram techniques. Moreover, the form of the spectral density function explains the al-

gebraic relations between the decomposition coefficients of contact and exchange diagrams

involving more and more interaction vertices highlighted earlier in this section. Finally,

the generalization to arbitrary scalar tree-level AdS diagrams should be clear from the

examples considered here.

Before closing this section, we point out the closely related results in the p-adic

AdS/CFT framework of section 2. The same diagrams evaluated on the Bruhat-Tits tree

admit identical spectral decompositions as the ones shown above, except we must essen-

tially replace all ζ∞ local zeta functions in the formulas with the ζp local zeta function

defined in (2.4). More precisely, in the spectral decomposition one should simply use the

formulas for the OPE coefficient (2.7), the overall normalization factor (2.2) and bulk scalar

mass (2.3) as encountered in the p-adic framework, as well as the simpler p-adic confor-

mal block. The lack of higher-twist contributions in the p-adic CBD seen in section 2.3

is repackaged into the drastically simpler pole structure of the ζp local zeta function, as

compared to its real analog, the ζ∞ function defined in (3.2).29

29Also, owing to the periodicity of ζp in the imaginary direction, in the p-adic case the complex variables

cj are not integrated over a line in the complex plane but along a contour that wraps around a cylindrical

manifold with circumference π/ log p; see ref. [108] where the necessary p-adic split representation was first

worked out.
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6 Discussion

In this paper we presented new results establishing the holographic duals of global scalar

conformal blocks for the five-point block (equations (2.18)–(2.19)), and the six-point block

in the OPE channel (equations (2.22)–(2.23)) in p-adic AdS/CFT, and the six-point block in

the OPE channel in conventional (real) AdSd+1/CFTd (equations (4.15)–(4.17)), following

the techniques introduced in ref. [70] where the dual of the global five-point block in

conventional AdSd+1/CFTd was obtained. Similar to the holographic representation of

the global four-point block [14], the holographic duals of the higher-point blocks have

an integral representation in terms of geodesic diagrams, viz. variants of bulk Feynman

diagrams involving solely bulk integrals over boundary anchored geodesics. In the case of

the six-point global conformal block in the OPE channel, to our knowledge the holographic

dual provides the only known explicit representation of the associated block.

However, in contrast with the four-point block, whose holographic dual is a single

tree-level four-point AdS exchange diagram except with all AdS integrations replaced with

geodesic integrals, the precise holographic representations for higher-point blocks turn out

to be more complicated for a number of reasons.

First, the holographic representation of the six-point block in the OPE channel ad-

mits an interpretation as the six-point one-loop AdS diagram built out of three quartic

interactions vertices with bulk-to-bulk propagators assigned special linear combinations of

conformal dimensions, but with all AdS integrations replaced by geodesic integrals.

Second, one must perform a weighted sum over an infinite number of diagrams of this

class; conceptually this sums up the contributions from the full conformal families asso-

ciated with the conformal representations being exchanged in the intermediate channels.

Reassuringly, such infinite sums are missing in the holographic duals of the p-adic versions

of the same conformal blocks and they are represented as single geodesic bulk diagrams,

since the putative dual p-adic CFT lacks descendants [106]. However, the contrast with

the holographic dual of the real four-point block [14] is only superficial. The four-point

holographic dual does indeed admit a representation as an infinite sum over geodesic bulk

diagrams [70]; this representation (described in section 4) is easily summed up analytically

leading to the compact closed-form holographic representation of ref. [14]. For both prac-

tical and conceptual purposes, it would be useful to determine whether the simplification

in the case of the four-point block was accidental or if holographic duals of higher-point

blocks should also admit further simplifications that allow them to be written as single

geodesic bulk diagrams.

Third, the holographic representation of the global five-point comb channel block in real

AdSd+1/CFTd [70] does not lend itself to a direct interpretation in terms of a conventional

(tree- or loop-level) AdS diagram, albeit with all AdS integrations replaced with geodesic

integrals, as can be seen in (4.6). This suggests that a more fundamental interpretation of

the holographic representations of global conformal blocks which applies more generally to

arbitrary n-point blocks in any spacetime dimension in any channel is perhaps more subtle.

At first glance, such seems to be the case also for the five- and six-point blocks in p-adic

AdS/CFT presented in this paper. However, the p-adic blocks, owing to their drastically
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simpler scaling forms, do admit a simpler, alternative holographic interpretation on the

Bruhat-Tits tree in terms of geodesic diagrams involving cubic bulk interaction vertices and

no full bulk integrations, as discussed at the end of section 2.2. This interpretation relies

on the existence of special bulk points, which may either be interpreted as unique points of

intersections of geodesics joining boundary insertion points, or as Fermat-Torricelli points

solving a geodesic length minimization problem. Other interpretations may also be possible

on the Bruhat-Tits tree, and it is not obvious which one, if any, might carry over to the

real setup (although there may conceivably be a connection with Fermat-Torricelli points

and Steiner trees in hyperbolic space; such constructs recently appeared in the context of

holographic representations of large-c Virasoro conformal blocks [102]).

In any case, since in some aspects the formulation of p-adic AdS/CFT [71, 105] is

similar to d = 1 dimensional (real) AdS/CFT, perhaps there is a possibility that at least

low-dimensional AdS/CFT may allow simpler interpretations of the holographic duals for

(real) conformal blocks. Further in d = 2, following the work of ref. [87] for the four-

point global conformal blocks, it would be interesting to extend the higher-point results of

this paper to holographic duals of higher-point global blocks in finite temperature CFTs.

Moreover in d = 2 it would be interesting to explore the connections between the higher-

point geodesic diagrams of this paper and higher-point Virasoro blocks along the lines of

refs. [95, 100] (see also refs. [62, 93, 94, 96–99, 101, 102]). In arbitrary spacetime dimensions,

it is also natural to consider the generalizations of the holographic duals of the higher-point

scalar blocks of this paper to those involving external and exchanged spinning operators,

along the lines of the four-point case [83–86, 88–90].

One of the direct applications of the holographic duals of higher-point global confor-

mal blocks was an alternate, direct derivation of the conformal block decomposition of

higher-point AdS diagrams. One of the main technical tools developed in this paper for

this purpose was a class of AdS propagator identities involving bulk integration over a

common point of intersection of three bulk-to-bulk and/or bulk-to-boundary propagators

(see sections 2.1 and 3). These identities provide a generalization of the three-point con-

tact diagram, with a subset of boundary points pushed into the bulk. Indeed, with the

knowledge of the holographic duals and various propagator identities which re-express bulk

integrations in terms of unintegrated combinations of bulk-to-bulk and bulk-to-boundary

propagators, we were able to obtain the explicit direct channel CBD of a number of higher-

point tree-level scalar AdS diagrams involving scalar contact interactions. With various

AdS propagator and hypergeometric identities in hand, the procedure to obtain the CBD

involved only simple algebraic operations, and no bulk integrations. Notably, in section 5

we presented the explicit decomposition of all five-point scalar diagrams and the class of all

six-point diagrams which admit a direct-channel CBD in the basis of OPE channel six-point

blocks.30 This procedure provides a higher-point generalization of the direct-channel CBD

of four-point AdS diagrams using geodesic diagram techniques. As described in section 5.4

(as well as section 2.3.1), the conditions for the presence of logarithmic singularities in

30The resulting decompositions are presented in (5.15)–(5.16), (5.26)–(5.27), and (5.34)–(5.38) for the five-

point diagrams, and (5.40)–(5.42), (5.44)–(5.46), (5.47)–(5.50) and (5.51)–(5.53) for the six-point diagrams.
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tree-level AdS diagrams also fall out trivially as simple algebraic relations. It would be

useful to find generalizations of the higher-point method that incorporate spinning AdS

diagrams, derivative and spin exchanges. Progress along this direction may also aid the

technically challenging task of the holographic reconstruction of the classical bulk action

for higher spin gravity theories beyond quartic interaction vertices [128–130]. The rewrit-

ing of spectral decomposition of AdS diagrams in terms of conformal blocks as presented

in section 5.5 may also turn out to be useful in this regard.

A class of four-point loop diagrams (such as the bubble diagram), which admit a

rewriting as a sum over infinitely many tree-level exchange diagrams [12], can in principle

be decomposed in the direct channel using the techniques of ref. [14] (see also ref. [131]).

However, a detailed analysis of the structure and properties of the resulting decomposition

coefficients remains insufficiently addressed. The new propagator identities of this paper

provide yet another method to obtain the CBD of such diagrams using only elementary

operations. It would be interesting to investigate if these new tools provide new insights

into the decomposition of such loop amplitudes, and more ambitiously into the decompo-

sition of arbitrary loop amplitudes. The evaluation of certain loop diagrams may involve

generalizations of AdS propagator identities derived in this paper to products of four or

more bulk-to-bulk and/or bulk-to-boundary propagators. These would also be helpful in

obtaining the decomposition of seven- and higher-point AdS diagrams via geodesic diagram

techniques. We are also hopeful methods presented in this paper may help inform the dis-

cussion on the CBD of AdS diagrams and conformal partial waves in the crossed channel,

which has been the subject of much recent interest — see e.g. refs. [17, 27, 76, 78–82] —

especially because the p-adic analog of these methods yields, promisingly, a closed-form

expression for the crossed channel decomposition of the four-point exchange diagram on

the Bruhat-Tits tree [72].

We hope to see progress in these directions in the near future.
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A Spectral decomposition: four-point examples

In this appendix, we will derive (5.59)–(5.60).

Our starting point is the integral representation of the four-point conformal partial

wave associated with the conformal multiplet of weight (∆, J), given by [47–51]

Ψ∆1,...,∆4

∆,J
(xi) ≡

∫
y∈∂AdS

〈〈O1(x1)O2(x2)Oµ1...µJ
∆,J (y)〉〉〈〈Õ∆,J,µ1...µJ (y)O3(x3)O4(x4)〉〉 ,

(A.1)
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where 〈〈·〉〉 is the purely kinematic part of the three-point function, i.e. devoid of the OPE

coefficient, and Õ∆,J,µ1...µJ is the shadow operator of O∆,J,µ1...µJ ,

Õ(x) ≡
∫
y∈∂AdS

1

(x− y)2(d−∆)
O(x) . (A.2)

Conformal partial waves are single-valued functions of coordinates and, for integer spins

and unphysical complex dimensions ∆ = d/2 + iν (ν ∈ R) corresponding to the principal

series representation of the conformal group, form a complete set of functions obeying

orthogonality relations [45].31 The four-point partial wave transforms like the four-point

conformal correlator and in fact is an eigenfunction of the multi-point Casimir constructed

out of positions x1 and x2, with the same eigenvalue as the one associated with the four-

point conformal block. However, the integral (A.1) is not the conformal block. Instead, the

precise relation between the four-point conformal partial wave and the global conformal

block is [45, 54]

Ψ∆1,...,∆4

∆,J (xi) = K∆3,∆4

∆̃,J
W∆1,...,∆4

∆,J (xi) +K∆1,∆2

∆,J W∆1,...,∆4

∆̃,J
(xi) , (A.3)

where W∆1,...,∆4

∆,J is the four-point conformal block which is the contribution to the four-

point correlator coming from the exchange of an operator of dimension ∆ and spin J and

all its descendants in the (12, 34)-channel, we have defined ∆̃ = d−∆, and

K∆1,∆2

∆,J =

(
−1

2

)J π d2 Γ
(
∆− d

2

)
Γ(∆ + J − 1) Γ

(
∆̃+∆1−∆2+J

2

)
Γ
(

∆̃+∆2−∆1+J
2

)
Γ(∆− 1) Γ(∆̃ + J) Γ

(
∆+∆1−∆2+J

2

)
Γ
(

∆+∆2−∆1+J
2

) . (A.4)

The second term in (A.3) represents the four-point shadow block. Since we are focusing on

external and exchanged scalars in this paper, we specialize to J = 0 and drop the spin label

altogether; see refs. [74, 75] for a generalization to higher derivative contact interactions,

exchange of spinning operators, and spinning external operators for four-point diagrams.

Consider the four-point contact and exchange diagrams (5.1) and (5.8). Using the split

representations [12, 74, 130] of respectively, the delta function on the contact vertex, and

the bulk-to-bulk propagator in the exchange diagram,

δd+1(z, w) =

∫
y∈∂AdS

∫ i∞

−i∞

dc

2πi
ρ(c)K̂ d

2
+c(y, z)K̂ d

2
−c(y, w)

Ĝ∆(z, w) =

∫
y∈∂AdS

∫ i∞

−i∞

dc

2πi
ρ∆(c)K̂ d

2
+c(y, z)K̂ d

2
−c(y, w),

(A.5)

where

ρ(c) ≡ ζ∞(d+ 2c)

2ζ∞(2c)

ζ∞(d− 2c)

2ζ∞(−2c)

ρ∆(c) ≡ −1

N∆

ρ(c)

m2
∆ −m2

d
2

+c

(A.6)

31In odd d one must also include a discrete series representation; see e.g. ref. [132].
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and the normalization N∆ is defined in (3.1), one can recast all bulk integrations in the

diagrams into (unphysical) three-point contact diagrams which can be readily evaluated,

to give

D4 =

∫ i∞

−i∞

dc

2πi
ρcont(c)

∫
y∈∂AdS

〈〈O1(x1)O2(x2)O d
2

+c(y)〉〉〈〈Õ d
2

+c(y)O4(x4)O5(x5)〉〉

Dexch
4 =

∫ i∞

−i∞

dc

2πi
ρexch

∆0
(c)

∫
y∈∂AdS

〈〈O1(x1)O2(x2)O d
2

+c(y)〉〉〈〈Õ d
2

+c(y)O4(x4)O5(x5)〉〉 ,

(A.7)

where

ρcont(c) ≡ ρ(c) C∆1 ∆2
d
2

+cC∆4 ∆5
d
2
−c

ρexch
∆0

(c) ≡ ρ∆0(c) C∆1 ∆2
d
2

+cC∆4 ∆5
d
2
−c ,

(A.8)

and C∆i∆j∆k
are the OPE coefficients (3.6). Identifying the integral representation of the

(spin 0) four-point conformal partial wave, one obtains a spectral integral over the principal

series

D4 =

∫ i∞

−i∞

dc

2πi
ρcont(c) Ψ∆1,...,∆4

d
2

+c
(xi)

=

∫ i∞

−i∞

dc

2πi
2K∆3,∆4

d
2
−c ρcont(c)W∆1,...,∆4

d
2

+c
(xi) ,

(A.9)

and

Dexch
4 =

∫ i∞

−i∞

dc

2πi
ρexch

∆0
(c)Ψ∆1,...,∆4

d
2

+c
(xi)

=

∫ i∞

−i∞

dc

2πi
2K∆3,∆4

d
2
−c ρexch

∆0
(c)W∆1,...,∆4

d
2

+c
(xi) ,

(A.10)

where in the second lines of (A.9)–(A.10) we have used (A.3) to re-express the spec-

tral decomposition in terms of the four-point conformal blocks (see e.g. ref. [76]). As

noted previously, we are suppressing all spin J subscripts, so for example we have defined

K∆a,∆b
∆ ≡ K∆a,∆b

∆,0 . Closing the contour on the right and picking up the poles one obtains

the well-known direct channel conformal block decomposition of the four-point contact and

exchange diagrams.

As currently written, the pole structure of the spectral density function for the con-

formal block decompositions is not obvious. However, the spectral density simplifies to a

more accessible form,

2K∆3,∆4
d
2
−c ρcont(c) =

ζ∞(d+ 2c)

2ζ∞(2c)
C∆1 ∆2

d
2

+c C∆3 ∆4
d
2

+c

2K∆3,∆4
d
2
−c ρexch

∆0
(c) =

−1

N∆0

ζ∞(d+ 2c)

2ζ∞(2c)

C∆1 ∆2
d
2

+c C∆3 ∆4
d
2

+c

m2
∆0
−m2

d
2

+c

,
(A.11)
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which makes the pole structure, and thus the spectrum of operators being exchanged in

the intermediate channels in the conformal block decomposition, manifest. For example,

the CBD of the contact diagram will be a linear combination of two conformal blocks, one

associated with the exchange of multi-twist primaries of dimensions d
2+c = ∆1+∆2+2M for

M ∈ Z≥0 and their entire conformal families, and the other associated with the exchange of

multi-twist primaries with conformal dimensions d
2 +c = ∆3+∆4+2M and the contribution

from their conformal families. These poles arise from the OPE coefficients in (A.11). For

the exachange diagram, in addition to the poles above, there is a pole at d
2 + c = ∆0

coming from the zero of the mass-squared expression in the denominator, corresponding

to the exchange of the single-trace operator with dimension ∆0 and its conformal family.

B Proofs of important identities

B.1 Propagator identities

In this appendix we provide derivations of the three real propagator identities (3.14), (3.15),

and (3.16).32 For ease of computation, we will use the embedding space formalism. Here,

boundary points xi ∈ Rd are described in terms of the space of light rays in Rd+1,1 that

pass through the origin,

−(P 0)2 + (P 1)2 + . . .+ (P d+1)2 = 0 , (B.1)

according to

P 0 =
1 + x2

2

P i = xi

P d+1 =
1− x2

2
.

(B.2)

Bulk points z = (z0, z
i) ∈ R+×Rd are described in terms of the hyperboloid in R+×Rd+1,

−(Z0)2 + (Z1)2 + . . .+ (Zd+1)2 = −1 , (B.3)

according to

Z0 =
1 + z2

0 + z2

2z0

Zi =
zi

z0

Zd+1 =
1− z2

0 − z2

2z0
.

(B.4)

32The three p-adic propagator identities (2.8), (2.9), and (2.10), originally given in ref. [72] and found by

direct computation on the Bruhat-Tits tree, can also be derived in a manner parallel to the computations

over the reals shown in this appendix using the p-adic Schwinger-parametrization and Mellin representation

developed in ref. [108] (though various infinite series encountered in the following calculations get collapsed

to just the leading term of the series).
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In embedding space coordinates, the quantity closely related to chordal distance in (3.3) is

written as

ξ(W,Z)

2
=

1

(−2W · Z)
, (B.5)

the bulk-to-bulk propagator in (3.3) is given by

Ĝ∆(W,Z) =

(
ξ(W,Z)

2

)∆

2F1

[
∆

2
,
∆ + 1

2
; ∆− d

2
+ 1; ξ(W,Z)2

]
, (B.6)

and the bulk-to-boundary propagator (3.4) takes the form

K̂∆(P,Z) =
1

(−2P · Z)∆
. (B.7)

B.1.1
∫
K̂K̂Ĝ

In this subsection we derive (3.14), explicitly,∫
z∈AdS

K̂∆2(x2, z)K̂∆3(x3, z)Ĝ∆a(wa, z)

= C∆a∆2∆3

∞∑
ka=0

c∆2;∆a;∆3

ka

K̂∆a2,3+ka(x2, wa)K̂∆a3,2+ka(x3, wa)

(x2
23)∆23,a−ka

+
1

m2
2∆23,

−m2
∆a

1

N∆a

∞∑
ka=0

d∆2;∆a;∆3

ka

K̂∆2+ka(x2, wa)K̂∆3+ka(x3, wa)

(x2
23)−ka

,

(B.8)

where

c∆2;∆a;∆3

ka
=

(−1)ka

ka!
(∆a2,3)ka (∆a3,2)ka (∆23,a)−ka F

(1)
A

[
∆a23,−h;

{
−ka

}
;
{

∆a−h+1
}

;1
]

=
1

ka!

(∆a2,3)ka(∆a3,2)ka
(∆a−h+1)ka

, (B.9)

and

d∆2;∆a;∆3

ka
=

(∆2)ka(∆3)ka
(∆23,a + 1)ka(∆a23, − h+ 1)ka

, (B.10)

with

h ≡ d

2
. (B.11)

In writing the c-coefficient we have defined the Lauricella function F
(`)
A of ` variables

F
(`)
A

[
g;{a1, . . . ,a`};{b1, . . . , b`};x1, . . . ,x`

]
≡

[∏̀
i=1

∞∑
ni=0

]
(g)∑`

i=1ni

∏̀
i=1

(ai)ni
(bi)ni

xnii
ni!

. (B.12)

Note that the notation (a)n ≡ Γ(a+ n)/Γ(a) stands for the Pochhammer symbol.
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We therefore need to evaluate the following integral:

J ≡
∫
z∈AdS

K̂∆2(x2, z)K̂∆3(x3, z)Ĝ∆a(wa, z)

=

∞∑
`=0

4`
(

∆a
2

)
`

(
∆a+1

2

)
`

`! (∆a − h+ 1)`

∫
AdS

dZ
1

(−2P2 · Z)∆2

1

(−2P3 · Z)∆3

1

(−2Wa · Z)∆a+2`
,

(B.13)

where in the second line above we have employed the embedding space formalism. Applying

the Schwinger parametrization

1

x∆
=

1

Γ(∆)

∫ ∞
0

ds

s
s∆e−2sx (B.14)

to the three power law factors and using the AdS integral identity [12]∫
AdS

dZ e2Z·Q = πh
∫ ∞

0

dz

z
z−he−z+

Q2

z , (B.15)

one obtains the equation

J = πh
∞∑
`=0

4`
(

∆a
2

)
`

(
∆a+1

2

)
`

`! (∆a − h+ 1)`

∫ ∞
0

ds2ds3dsa
s2s3sa

s∆2
2 s∆3

3 s∆a+2`
a

Γ(∆2)Γ(∆3)Γ(∆a + 2`)

×
∫ ∞

0

dz

z1+h
e−z+

1
z (2s2s3P2·P3+2s2saP2·Wa+2s3saP3·Wa−s2a) .

(B.16)

Interchanging the order of integrals and changing from variables s2, s3, and sa to ta ≡ s2s3
z ,

t2 ≡ sas3
z , and t3 ≡ sas2

z , one rewrites

J =
πh

2Γ(∆1)Γ(∆2)

∞∑
`=0

4`
(

∆a
2

)
`

(
∆a+1

2

)
`

`! (∆a − h+ 1)` Γ(∆a + 2`)

∫ ∞
0

dz

z
z

∆1+∆2+∆a−d
2

+`e−z It (B.17)

where we have introduced the definition

It ≡
∫ ∞

0

dt2dt3dta
t2t3ta

t
∆3a,2+`
2 t

∆2a,3+`
3 t

∆23,a−`
a e2taP2·P3+2t3P2·Wa+2t2P3·Wa− t2t3ta . (B.18)

Carrying out the z integral using (B.14) and using the fact that(
∆

2

)
`

(
∆ + 1

2

)
`

=
1

4`
(∆)2` , (B.19)

one arrives at

J =
πh

2Γ(∆2)Γ(∆3)Γ(∆a)

∞∑
`=0

Γ (∆a23, − h+ `)

`! (∆a − h+ 1)`
It . (B.20)

Now let’s turn to evaluating It. Using the Mellin representation,

e−x =

∫ ε+i∞

ε−i∞

dc

2πi

Γ(c)

xc
, (B.21)
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for exp(−t2t3/ta), where ε is a small positive number, followed by changing the order of

integration, and subsequently carrying out the ti integrals (i = a, 2, 3) leads to

It =

∫ ε+i∞

ε−i∞

dc

2πi
Γ(c)

Γ (∆23,a − `+ c) Γ (∆2a,3 + `− c) Γ (∆3a,2 + `− c)
(−2P2 · P3)∆23,a−`+c(−2P2 ·Wa)∆2a,3+`−c(−2P3 ·Wa)∆3a,2+`−c .

(B.22)

The remaining c contour integral is straightforward to evaluate. Closing the contour to the

left and summing up the residues at the enclosed poles, at c = −m and c = `−∆12,a −m
where m ∈ N0 (i.e. the set of natural numbers including zero), we obtain

J = J1 + J2 (B.23)

where we have split J into two parts,

J1 ≡
πh

2Γ(∆2)Γ(∆3)Γ(∆a)

∞∑
`=0

Γ (∆23a, − h+ `)

`! (∆a − h+ 1)`
2πi

∞∑
m=0

Res
c=−m

It

J2 ≡
πh

2Γ(∆2)Γ(∆3)Γ(∆a)

∞∑
`=0

Γ (∆23a, − h+ `)

`! (∆a − h+ 1)`
2πi

∞∑
m=0

Res
c=`−∆12,a−m

It .

(B.24)

For the first part of J , we note that

2πi Res
c=−m

It =
(−1)m

m!

Γ (∆23,a − `−m) Γ (∆2a,3 + `+m) Γ (∆3a,2 + `+m)

(−2P2 · P3)∆23,a−`−m(−2P2 ·Wa)∆2a,3+`+m(−2P3 ·Wa)∆3a,2+`+m
.

(B.25)

Now change the summation variable in the expression for J1 from m to S ≡ m + ` and

then change the order of s and ` summations. Accordingly, one must change the limits of

the individual sums, so that now the S sum runs from zero to infinity and the ` sum runs

from zero to S. But the terms with ` > S each vanish due to the factor of (S − `)! in the

denominator. Thus we can freely extend the upper limit of the S sum to infinity, to write

J1 =
πh

2Γ(∆2)Γ(∆3)Γ(∆a)

∞∑
S=0

(−1)SΓ (∆23,a − S) Γ (∆2a,3 + S) Γ (∆3a,2 + S)

(−2P2 · P3)∆23,a−S(−2P2 ·Wa)∆2a,3+S(−2P3 ·Wa)∆3a,2+S

×
∞∑
`=0

(−1)`

(S − `)!
Γ (∆a23, − h+ `)

`! (∆a − h+ 1)`
.

(B.26)

Using

(−1)SΓ(∆− S) =
Γ(∆)

(1 + ∆)S
, (B.27)

as well as the result

∞∑
`=0

(−1)`Γ(∆a23, − h+ `)

(S − `)! `! (∆a − h+ 1)`
=

Γ(∆a23, − h)

S!

∞∑
`=0

(−S)`(∆a23, − h)`
`!(∆a − h+ 1)`

=
Γ(∆a23, − h)

S!

(1 + ∆a,23)S
(∆a − h+ 1)S

,

(B.28)
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one simplifies J1 to

J1 =
C∆a∆2∆3

(−2P2 · P3)∆23,a(−2P2 ·Wa)∆2a,3(−2P3 ·Wa)∆3a,2

×
∞∑
S=0

(∆2a,3)S(∆3a,2)S
S!(∆a − h+ 1)S

[
(−2P2 · P3)

(−2P2 ·Wa)(−2P3 ·Wa)

]S
,

(B.29)

where the OPE coefficient Cijk was written in (3.6).

For the second part of J , J2, we note that

2πi Res
c=`−∆12,a−m

It =
(−1)m

m!

Γ(∆a,23 + `−m)Γ (∆2 +m) Γ (∆3 +m)

(−2P2 · P3)−m(−2P2 ·Wa)∆2+m(−2P3 ·Wa)∆3+m
. (B.30)

Changing the order of summation in J2 and carrying out the sum over ` first, one finds

that

J2 =
πh

2

Γ(∆a23, − h)Γ(∆a,23)Γ(∆a − h+ 1)

Γ(∆a)Γ(∆a,23 + 1)Γ(∆a23, − h+ 1)

1

(−2P2 ·Wa)∆2(−2P3 ·Wa)∆3

×
∞∑
m=0

(∆2)m (∆3)m
(1−∆a,23)m (∆a23, − h+ 1)m

[
(−2P2 · P3)

(−2P2 ·Wa)(−2P3 ·Wa)

]m
.

(B.31)

Part of the prefactor in (B.31) may be reexpressed in terms of the mass of the bulk scalar

πh

2

Γ(∆a23, − h)Γ(∆a,23)Γ(∆a − h+ 1)

Γ(∆a)Γ(∆a,23 + 1)Γ(∆a23, − h+ 1)
=

1

N∆a(m2
∆2+∆3

−m2
∆a

)
. (B.32)

Further, the position dependent power law factors in (B.29) and (B.31) can be written in

terms of the bulk-to-boundary propagator using (B.7). With these replacements, adding

up (B.29) and (B.31) and substituting Poincaré coordinates one recovers (B.8), completing

the proof.

Finally, we note that in contour integral form, this identity takes the form

∫
z∈AdS

Ĝ∆a(wa, z)K̂∆2(x2, z)K̂∆3(x3, z)

= C∆a∆2∆3

∞∑
ka=0

(∆a23, − h)ka
ka! (∆a − h+ 1)ka

∫ ε+i∞

ε−i∞

dc

2πi
Γ(c)

× (∆a2,3)ka−c (∆a3,2)ka−c (∆23,a)−ka+c

K̂∆a2,3+ka−c(x2, wa)K̂∆a3,2+ka−c(x3, wa)

(x2
23)∆23,a−ka+c

.

(B.33)
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B.1.2
∫
K̂ĜĜ

In this subsection we derive (3.15), reproduced below,∫
z∈AdS

K̂∆3(x3, z)Ĝ∆a(wa, z)Ĝ∆b
(wb, z)

= C∆3∆a∆b

∞∑
ka,kb=0

c∆a;∆3;∆b
ka;kb

K̂∆3a,b+ka−kb(x3, wa)K̂∆3b,a−ka+kb(x3, wb)

(
ξ(wa, wb)

2

)∆ab,3+ka+kb

+

 ∞∑
ka,kb=0

d∆a;∆3;∆b
ka;kb

K̂∆3+ka(x3, wa)K̂−ka(x3, wb)

(
ξ(wa, wb)

2

)∆b+2kb+ka

+ (a↔ b)

 ,

(B.34)

where33

c∆a;∆3;∆b
ka;kb

≡ (−1)ka+kb

ka!kb!
(∆3a,b)ka−kb (∆ab,3)ka+kb

(∆3b,a)−ka+kb

× F (2)
A

[
∆ab3, − h;

{
− ka,−kb

}
;
{

∆a − h+ 1,∆b − h+ 1
}

; 1, 1
]
,

(B.35)

and

d∆a;∆3;∆b
ka;kb

=
πhΓ (∆3ab, − h)

2Γ(∆a)

(−1)ka+kb

ka!kb!
(∆3)ka (∆b)2kb+ka

Γ(∆a,b3 − kb − ka)

× F (2)
A [∆3ab, − h; {∆a,b3 − kb − ka,−kb} ; {∆a − h+ 1,∆b − h+ 1} ; 1, 1] .

(B.36)

The Lauricella function F
(`)
A was defined in (B.12). Name the left hand side of the identity

to be proven (B.34) J ,

J ≡
∫
z∈AdS

K̂∆3(x3, z)Ĝ∆a(wa, z)Ĝ∆b
(wb, z) . (B.37)

The same intermediate steps that lead us from (B.13) to (B.20) allow us to recast (B.37) as

J =
πh

2Γ(∆3)Γ(∆a)Γ(∆b)

∞∑
`a,`b=0

Γ (∆ab3, − h+ `a + `b)

`a! (∆a − h+ 1)`a `b! (∆b − h+ 1)`b
It , (B.38)

where we have introduced the definition

It ≡
∫ ∞

0

dt3dtadtb
t3tatb

t
∆ab,3+`a+`b
3 t

∆b3,a−`a+`b
a t

∆a3,b+`a−`b
b e

2tbP3·Wa+2taP3·Wb+2t3Wa·Wb−
t3tb
ta
− t3ta

tb .

(B.39)

33The coefficient c
∆a;∆3;∆b
ka;kb

was originally written in ref. [70] in terms of a hypergeometric 3F2 function

(see equation (2.14) of ref. [70]), but using [19, equation 4.29] we have re-expressed it in terms of the

Lauricella function FA of two variables in (B.35), since this has natural analogs in the case of
∫
K̂K̂Ĝ and∫

ĜĜĜ identities in terms of Lauricella functions of one and three variables, respectively.
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Applying the Mellin representation (B.21) for the factors exp(−t3tb/ta) and exp(−t3ta/tb),
and carrying out the ti integrals (for i = 3, a, b) we obtain

It =

∫ ε+i∞

ε−i∞

dca
2πi

Γ(ca)

∫ ε+i∞

ε−i∞

dcb
2πi

Γ(cb)

×
Γ(∆a3,b+`a−`b−ca+cb)Γ(∆b3,a−`a+`b+ca−cb)Γ(∆ab,3+`a+`b−ca−cb)

(−2P3 ·Wa)∆a3,b+`a−`b−ca+cb(−2P3 ·Wb)
∆b3,a−`a+`b+ca−cb(−2Wa ·Wb)

∆ab,3+`a+`b−ca−cb

≡
∫ ε+i∞

ε−i∞

dca
2πi

∫ ε+i∞

ε−i∞

dcb
2πi
Ĩt . (B.40)

Focusing on the ca integral first, we close the contour to the left and pick up the residues

of the poles at ca = −ma and ca = ∆a,b3 + `a − `b + cb −ma with ma ∈ N0:

It =

∫ ε+i∞

ε−i∞

dcb
2πi

Γ(cb)
(−1)ma

ma!

×

[
Γ(∆a3,b+`a−`b+ma+cb)Γ(∆b3,a−`a+`b−ma−cb)Γ(∆ab,3+la+lb+ma−cb)

(−2P3 ·Wa)∆a3,b+`a−`b+ma+cb(−2P3 ·Wb)
∆b3,a−`a+`b−ma−cb(−2Wa ·Wb)

∆ab,3+`a+`b+ma−cb

+
Γ(∆3+mA)Γ(∆a,b3+`a−`b−ma+cb)Γ(∆b+2`b+ma−2cb)

(−2P3 ·Wa)∆3+ma(−2P3 ·Wb)−ma(−2Wa ·Wb)∆b+2`b+ma−2cb

]
. (B.41)

We can carry out the cb integral by once again closing the contour to the left. In that case

we must sum over the series of residues at cb = −mb and cb = ∆b,a3 − `a + `b −ma −mb

in the first term in (B.41) for mb ∈ N0. In the second term, besides the pole at cb = −mb,

there are also poles at cb = ∆b3,a − `a + `b + ma − mb coming from the second gamma

function in the second term, with residues

Res
ca=∆a,b3+`a−`b+cb−ma,
cb=∆b3,a−`a+`b+ma−mb

Ĩt =
(−1)ma+mb

ma!mb!

×
Γ(∆b3,a−`a+`b+ma−mb)Γ(∆3+ma)Γ(∆a,3+2`a−ma+2mb)

(−2P3 ·Wa)∆3+ma(−2P3 ·Wb)−ma(−2Wa ·Wb)2∆a,3+2`a−ma+2mb
.

(B.42)

But in the first term there is a semi-infinite sequence of poles precisely at

cb = ∆b3,a − `a + `b − ma + mb, which can lie on the left-half plane for appropriate

values of ma,mb and thus be enclosed inside the contour, with residues

Res
ca=−ma,

cb=∆b3,a−`a+`b−ma+mb

Ĩt =−(−1)ma+mb

ma!mb!

×
Γ(∆b3,a−`a+`b−ma+mb)Γ(∆3+mb)Γ(∆a,3+2`a+2ma−mb)

(−2P3 ·Wa)∆3+mb(−2P3 ·Wb)−mb(−2Wa ·Wb)2∆a,3+2`a+2ma−mb
.

(B.43)

We notice that the above two types of residues occur at the same values of cb and are

equal to minus one another, except with ma and mb interchanged. Hence, on summing
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over all values of ma and mb the contributions to J from these two types of residues

cancel. With this observation, we decompose J into three parts,

J = J1 + J2 + J3 (B.44)

where Ji is defined to be

Ji ≡
πh

2Γ(∆3)Γ(∆a)Γ(∆b)

∞∑
`a,`b=0

Γ (∆ab3, − h+ `a + `b)

`a! (∆a − h+ 1)`a `b! (∆b − h+ 1)`b

∞∑
ma,mb=0

Ri(ma,mb) ,

(B.45)

and we have further introduced the definitions

R1(ma,mb) ≡ Res
ca=−ma,
cb=−mb

Ĩt

R2(ma,mb) ≡ Res
ca=∆a,b3+`a−`b+cb−ma,

cb=−mb

Ĩt

R3(ma,mb) ≡ Res
ca=−ma,

cb=∆b,a3−`a+`b−ma−mb

Ĩt .

(B.46)

Together, this accounts for the total contribution from the residues at all poles picked up

upon closing the two contours. Evaluating R1, we get

R1(ma,mb) =
(−1)ma+mb

ma!mb!

×
Γ(∆a3,b+Sa−Sb)Γ(∆b3,a−Sa+Sb)Γ(∆ab,3+Sa+Sb)

(−2P3 ·Wa)∆a3,b+Sa−Sb(−2P3 ·Wb)
∆b3,a−Sa+Sb(−2Wa ·Wb)

∆ab,3+Sa+Sb
,

(B.47)

where we have defined Sa ≡ ma+`a and Sb ≡ mb+`b. Changing summation variables from

ma and mb to Sa and Sb and changing the order of `i and Si summations, one finds that

J1 =
πh

2Γ(∆3)Γ(∆a)Γ(∆b)

×
∞∑

Sa,Sb=0

(−1)Sa+SbΓ(∆a3,b + Sa − Sb) Γ(∆b3,a − Sa + Sb) Γ(∆ab,3 + Sa + Sb)

(−2P3 ·Wa)∆a3,b+Sa−Sb(−2P3 ·Wb)
∆b3,a−Sa+Sb(−2Wa ·Wb)

∆ab,3+Sa+Sb

×
∞∑

`a,`b=0

(−1)`a+`b

(Sa − `a)!(Sb − `b)!
Γ (∆ab3, − h+ `a + `b)

`a! (∆a − h+ 1)`a `b! (∆b − h+ 1)`b
. (B.48)

Twice applying the trivial identity

(−1)`

(S − `)!
=

(−S)`
S!

, (B.49)

the sum over `a and `b is seen to be precisely in the series representation of the Lauricella

function F
(2)
A ,

F
(2)
A

[
a; {b, c}; {d, e}; 1, 1

]
=

∞∑
`,`′=0

(a)`+`′

`! `′!

(b)`(c)`′

(d)`(e)`′
. (B.50)
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Consequently, we can write

J1 =
πh

2

Γ(∆ab3, − h)

Γ(∆3)Γ(∆a)Γ(∆b)

∞∑
Sa,Sb=0

(−1)Sa+Sb

Sa!Sb!

× F (2)
A

[
∆ab3, − h; {−Sa,−Sb}; {∆a − h+ 1,∆b − h+ 1} ; 1, 1

]
×

Γ(∆a3,b + Sa − Sb) Γ(∆b3,a − Sa + Sb) Γ(∆ab,3 + Sa + Sb)

(−2P3 ·Wa)∆a3,b+Sa−Sb(−2P3 ·Wb)
∆b3,a−Sa+Sb(−2Wa ·Wb)

∆ab,3+Sa+Sb
.

(B.51)

For the second part of J , we note that

R2(ma,mb) =
(−1)ma+mb

ma!mb!

Γ(∆3 +mb)Γ(∆a,b3 − Sb −ma + `a)Γ(∆b + 2Sb +ma)

(−2P3 ·Wa)∆3+ma(−2P3 ·Wb)−ma(−2Wa ·Wb)∆b+2Sb+ma
.

(B.52)

Therefore, changing summation variable from mb to Sb and changing the order of

summation like we did for J1, we have that

J2 =
πh

2Γ(∆3)Γ(∆a)Γ(∆b)

×
∞∑

ma,Sb=0

(−1)ma+Sb

ma!Sb!

Γ(∆3 +ma)Γ(∆b + 2Sb +ma)

(−2P3 ·Wa)∆3+ma(−2P3 ·Wb)−ma(−2Wa ·Wb)∆b+2Sb+ma

×
∞∑

`a,`b=0

(−Sb)`b Γ(∆a,b3 − Sb −ma + `a) Γ (∆ab3, − h+ `a + `b)

`a!`b! (∆a − h+ 1)`a (∆b − h+ 1)`b
. (B.53)

We can recast this expression for J2 into the following:

J2 =
πhΓ(∆ab3, − h)

2Γ(∆a)

×
∞∑

ma,Sb=0

(−1)ma+Sb

ma!Sb!

(∆3)ma (∆b)2Sb+ma
Γ(∆a,b3 − Sb −ma)

(−2P3 ·Wa)∆3+ma(−2P3 ·Wb)−ma(−2Wa ·Wb)∆b+2Sb+ma

× F (2)
A

[
∆ab3, − h; {∆a,b1 − Sb −ma,−Sb} ; {∆a − h+ 1,∆b − h+ 1} ; 1, 1

]
. (B.54)

As for the third term in (B.44), J3, it differs from J2 only by a simple relabeling:

J3 = J2

∣∣
a↔b . (B.55)

Consequently, using (B.51) and (B.54) and adding together J1,J2, and J3, we obtain (B.34).
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B.1.3
∫
ĜĜĜ

In this section we derive (3.16), reproduced below,∫
z∈AdS

Ĝ∆a(wa, z)Ĝ∆b
(wb, z)Ĝ∆c(wc, z)

= C∆a∆b∆c

∞∑
ka,kb,kc=0

c∆a;∆b;∆c

ka;kb;kc

(
ξ(wa, wc)

2

)∆ac,b+kac,b
(
ξ(wa, wb)

2

)∆ab,c+kab,c
(
ξ(wb, wc)

2

)∆bc,a+kbc,a

+

(
∞∑

ka,kb,kc=0

d∆a;∆b;∆c

ka;kb;kc

(
ξ(wa, wc)

2

)∆c+2kc+ka (ξ(wa, wb)
2

)∆b+2kb+ka
(
ξ(wb, wc)

2

)−ka

+ (a↔ b) + (a↔ c)

)
, (B.56)

where

c∆a;∆b;∆c

ka;kb;kc
=

(−1)ka+kb+kc

ka!kb!kc!
(∆ac,b)kac,b (∆ab,c)kab,c (∆bc,a)kbc,a

×F (3)
A

[
∆abc,−h;

{
−ka,−kb,−kc

}
;
{

∆a−h+1,∆b−h+1,∆c−h+1
}

;1,1,1
]
,

(B.57)

and

d∆a;∆b;∆c

ka;kb;kc
=

(−1)kabc,

ka!kb!kc!
(∆b)2kb+ka(∆c)2kc+kaΓ(∆a,bc−kabc,)

πh

2

Γ(∆abc,−h)

Γ(∆a)

×F (3)
A

[
∆abc,−h;

{
∆a,bc−kabc,,−kb,−kc

}
;
{

∆a−h+1,∆b−h+1,∆c−h+1
}

;1,1,1
]
.

(B.58)

Here in writing kab,c etc., we are using the shorthand (3.17) — note the factor of two

difference with the corresponding notation for conformal dimensions (1.5).

We therefore turn our attention to the integral

J ≡
∫
Z∈AdS

Ĝ∆a(Wa, Z)Ĝ∆b
(Wb, Z)Ĝ∆c(Wc, Z) , (B.59)

in embedding space coordinates. Using the same steps which led us from (B.13) to (B.20),

we arrive this time at

J =
πh

2Γ(∆a)Γ(∆b)Γ(∆c)

∞∑
`a,`b,`c=0

Γ(∆abc, − h+ `a + `b + `c)

`a! (∆a − h+ 1)`a `b! (∆b − h+ 1)`b `c! (∆c − h+ 1)`c
It ,

(B.60)

where we have defined

It ≡
∫ ∞

0

dtadtbdtc
tatbtc

t
∆bc,a−`a+`b+`c
a t

∆ac,b+`a−`b+`c
b t

∆ab,c+`a+`b−`c
c

× e2taWb·Wc+2tbWa·Wc+2tcWa·Wb−
tbtc
ta
− tatc

tb
− tatb

tc .

(B.61)
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Applying the Mellin representation three times, and carrying out the ti integrals for i =

a, b, c, we get

It =

∫ ε+i∞

ε−i∞

dca
2πi

Γ(ca)

∫ ε+i∞

ε−i∞

dcb
2πi

Γ(cb)

∫ ε+i∞

ε−i∞

dcc
2πi

Γ(cc)
Γ(∆ab,c+`a+`b−`c−ca−cb+cc)

(−2Wa ·Wb)
∆ab,c+`a+`b−`c−ca−cb+cc

×
Γ(∆ac,b+`a−`b+`c−ca+cb−cc)

(−2Wa ·Wc)∆ac,b+`a−`b+`c−ca+cb−cc

×
Γ(∆bc,a−`a+`b+`c+ca−cb−cc)

(−2Wb ·Wc)∆bc,a−`a+`b+`c+ca−cb−cc

≡
∫ ε+i∞

ε−i∞

dca
2πi

∫ ε+i∞

ε−i∞

dcb
2πi

∫ ε+i∞

ε−i∞

dcc
2πi

Ĩt . (B.62)

Performing the ca integral by closing the contour on the left and summing over the semi-

infinite sequence of residues at ca = −ma and ca = ∆a,bc + `a − `b − `c + cb + cc − ma

(for ma ∈ N0), and then subsequently carrying out the cb integral by closing the contour

on the left and summing over the sequence of residues in the cb-plane at cb = −mb and

cb = ∆bc,a − `a + `b + `c +ma −mb (for mb ∈ N0), one finds that

It =

∫ ε+i∞

ε−i∞

dcc
2πi

Γ(cc)
(−1)ma+mb

ma!ma!

×

[
Γ(∆ac,b+Sa−Sb+`c−cc)Γ(∆bc,a−Sa+Sb+`c−cc)Γ(∆ab,c+Sa+Sb−`c+cc)

(−2Wc ·Wa)∆ac,b+Sa−Sb+`c−cc(−2Wc ·Wb)
∆bc,a−Sa+Sb+`c−cc(−2Wa ·Wb)

∆ab,c+Sa+Sb−`c+cc

+
Γ(∆c+2`c−2cc+ma)Γ(∆a,bc−Sb−ma+`a−`c+cc)Γ(∆b+2Sb+ma)

(−2Wc ·Wa)∆c+2`c−2cc+ma(−2Wc ·Wb)−ma(−2Wa ·Wb)∆b+2Sb+ma

+
Γ(∆c+2`c−2cc+mb)Γ(∆b,ac−Sa−mb+`b−`c+cc)Γ(∆a+2Sa+mb)

(−2Wc ·Wb)∆c+2`c−2cc+mb(−2Wc ·Wa)−mb(−2Wa ·Wb)∆a+2Sa+mb

]
. (B.63)

Here like before, we are using the definitions Sa = ma+`a and Sb = mb+`b. The last contour

integral can be carried out by closing the contour on the left as well. In the first term, we

sum over the semi-infinite sequence of residues at cc = −mc and cc = ∆c,ab−Sa−Sb+`c−mc

with mc ∈ N0. We will return to the spurious poles in the first term shortly. The second

term has poles at cc = −mc and cc = ∆bc,a + Sb + ma − `a + `c −mc, with the residue in

the latter case given by

Res
ca=∆a,bc+`a−`b−`c+cb+cc−ma,

cb=−mb,
cc=∆bc,a+Sb+ma−`a+`c−mc

Ĩt =
(−1)ma+mb+mc

ma!mb!mc!

×
Γ(2∆a,b − 2Sb −ma + 2`a + 2mc)Γ(∆bc,a + Sb +ma − `a + `b)Γ(∆b + 2Sb +ma)

(−2Wc ·Wa)2∆a,b−2Sb−ma+2`a+2mc(−2Wc ·Wb)−ma(−2Wa ·Wb)∆b+2Sb+ma
.

(B.64)

But there are also residues at cc = ∆bc,a−Sa+Sb+ `c+mc on account of the second factor
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of gamma function in the first term in (B.63):

Res
ca=−ma,
cb=−mb,

cc=∆bc,a−Sa+Sb+`c+mc

Ĩt =−(−1)ma+mb+mc

ma!mb!mc!

×
Γ(2∆a,b+2Sa−2Sb−mc)Γ(∆bc,a−Sa+Sb+`c+mc)Γ(∆b+2Sb+mc)

(−2Wc ·Wa)2∆a,b+2Sa−2Sb−mc(−2Wc ·Wb)−mc(−2Wa ·Wb)
∆ab,c+Sa+Sb−`c+cc

.

(B.65)

The above two types of residues occur at the same values of cc and are equal to minus one

another, except with ma and mc interchanged. Hence, on summing over ma and mc, these

residues cancel. Similarly, the residues at cc = ∆ac,b + Sa + mb − `b + `c −mc due to the

second gamma function in the third term on the RHS of (B.63) cancel with the residues

at cc = ∆ac,b + Sa − Sb + `c +mc due to the first gamma function in the first term. Thus

accounting for the cancellations of residues from spurious poles, we decompose J as follows:

J = J1 + J2 + J3 + J4 , (B.66)

where the four parts Ji are given by

Ji =
πh

2Γ(∆a)Γ(∆b)Γ(∆c)

∞∑
`a,`b,`c=0

Γ(∆abc, − h+ `a + `b + `c)

`a! (∆a − h+ 1)`a `b! (∆b − h+ 1)`b `c! (∆c − h+ 1)`c

×
∞∑

ma,mb,mc=0

Ri(ma,mb,mc) ,

(B.67)

and we have introduced the definitions

R1(ma,mb,mc) ≡ Res
ca=−ma,
cb=−mb,
cc=−mc,

Ĩt

R2(ma,mb,mc) ≡ Res
ca=∆a,bc+`a−`b−`c+cb+cc−ma,

cb=−mb,
cc=−mc

Ĩt

R3(ma,mb,mc) ≡ Res
ca=−ma,

cb=∆b,ac−`a+`b−`c+cc−ma−mb,
cc=−mc

Ĩt

R4(ma,mb,mc) ≡ Res
ca=−ma,
cb=−mb,

cc=∆c,ab−`a−`b+`c−ma−mb−mc

Ĩt .

(B.68)

Defining Sc ≡ `c +mc, we have

R1 =
(−1)ma+mb+mc

ma!mb!mc!

×
Γ(∆ac,b+Sa−Sb+SC)Γ(∆bc,a−Sa+Sb+Sc)Γ(∆ab,c+Sa+Sb−Sc)

(−2Wc ·Wa)∆ac,b+Sa−Sb+Sc(−2Wc ·Wb)
∆bc,a−Sa+Sb+Sc(−2Wa ·Wb)

∆ab,c+Sa+Sb−Sc
.

(B.69)
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Changing summation variables from ma, mb, and mc to Sa, Sb, and Sc, changing order of

summation of Si and `i sums, and recognizing that the sum over `a, `b, and `b constitutes

the Lauricella function F
(3)
A , we obtain

J1 =
πh

2

Γ(∆abc,−h)

Γ(∆a)Γ(∆b)Γ(∆c)

∞∑
Sa,Sb,Sc=0

(−1)Sa+Sb+Sc

Sa!Sb!Sc!

×F (3)
A

[
∆abc,−h;{−Sa,−Sb,−Sc};{∆a−h+1,∆b−h+1,∆c−h+1};1,1,1

]
×

Γ(∆bc,a−Sa+Sb+Sc)Γ(∆ac,b+Sa−Sb+Sc)Γ(∆ab,c+Sa+Sb−Sc)
(−2Wc ·Wb)

∆bc,a−Sa+Sb+Sc(−2Wc ·Wa)∆ac,b+Sa−Sb+Sc(−2Wa ·Wb)
∆ab,c+Sa+Sb−Sc

.

(B.70)

For the second part of J, we start with the observation that

R2 =
(−1)ma+mb+mc

ma!mb!mc!

Γ(∆c + 2Sc +ma)Γ(∆a,bc − Sb −ma + `a − sc)Γ(∆b + 2Sb +ma)

(−2Wc ·Wb)∆c+2Sc+ma(−2Wc ·Wb)−ma(−2Wa ·Wb)∆b+2Sb+ma
.

(B.71)

Changing summation variable from mb and mc to Sb and Sc, changing order of summation,

and re-casting the sum over `a, `b, `c as a Lauricella function, one finds that the second

part of J is given by

J2 =
πhΓ (∆abc, − h)

2Γ(∆a)

∞∑
ma,Sb,Sc=0

(−1)ma+Sb+Sc

ma!Sb!Sc!

×
(∆c)2Sc+ma

(∆b)2Sb+ma
Γ(∆a,bc − Sb − Sc −ma)

(−2Wc ·Wb)−ma(−2Wc ·Wa)∆c+2Sc+ma(−2Wa ·Wb)∆b+2Sb+ma

× F (3)
A

[
∆abc, − h; {∆a,bc − Sb − Sc −ma,−Sb,−Sc};{

∆a − h+ 1,∆b −
n

2
+ 1,∆c − h+ 1

}
; 1, 1, 1

]
.

(B.72)

The remaining two terms in (B.66) are obtained by a mere relabeling of indices:

J3 = J2

∣∣
a↔b , J4 = J2

∣∣
a↔c . (B.73)

Finally, using (B.70) and (B.72) to add up J1, J2, J3, and J4, it is straightforward to

reproduce (B.56).

B.2 Hypergeometric identities

B.2.1 Proof of equation (4.12)

In this appendix we provide a derivation of equation (4.12),

∞∑
M=0

1

N∆1+∆2+2M

a∆1;∆2

M

m2
∆0
−m2

∆1+∆2+2M

=
C∆0∆1∆2

B(∆01,2 , ∆02,1)
. (B.74)
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Using the definitions (4.21), (3.1), and (3.8) for m2
∆, N∆, and a∆1;∆2

M , we can explicitly

write out the LHS of (B.74) as

LHS =−2πh
∞∑

M=0

Γ(2∆12,+2M−h+1)

Γ(2∆12,+2M)

(−1)M

M !

Γ(2∆12,+2M)

Γ(∆1)Γ(∆2)

Γ(2∆12,+M−h)

Γ(2∆12,+2M−h)

× 1

∆0(∆0−2h)−4(∆12,+M)(∆12,+M−h)
.

(B.75)

The sum above may be recast in terms of the hypergeometric 4F3 function:

LHS =
πhΓ(2∆12, − h)

Γ(∆1)Γ(∆2)

Γ(∆12, − h
2 + 1)Γ(∆12, − ∆0

2 )Γ(∆12, − h+ ∆0
2 )

Γ(∆12, − h
2 )Γ(∆12, − ∆0

2 + 1)Γ(∆12, − h+ ∆0
2 + 1)

× 4F3

[{
2∆12, − h , ∆12, − h+

∆0

2
, ∆12, −

∆0

2
, ∆12, −

h

2
+ 1

}
;{

∆12, −
∆0

2
+ 1 , ∆12, − h+

∆0

2
+ 1 , ∆12, −

h

2

}
;−1

]
.

(B.76)

The arguments of the above 4F3 hypergeometric functions are not all independent. In

fact, hypergeometric functions whose arguments exhibit the precise linear dependence of

the arguments of the 4F3 function in (B.76) are known in the mathematics literature as

“very-well poised hypergeometric functions” and in the present case simplify to a ratio of

gamma functions according to the identity [133]:

4F3

[{
a, b, c,

a

2
+ 1
}

;
{a

2
, a− b+ 1, a− c+ 1

}
;−1

]
=

Γ(a− b+ 1)Γ(a− c+ 1)

Γ(a+ 1)Γ(a− b− c+ 1)
. (B.77)

Applying (B.77) to (B.76), cancelling factors in numerator and denominator, and recalling

the definition (3.6), we recover (B.74):

LHS =
πh

2

Γ(∆12,0)Γ(∆012, − h)

Γ(∆1)Γ(∆2)
=

C∆0∆1∆2

B(∆01,2 , ∆02,1)
. (B.78)

B.2.2 Proof of equation (5.19)

In this appendix, we provide a derivation of equation (5.19). That is, we show that

∞∑
M=0

a∆1;∆2

M d
2∆12,+2M ;∆3;∆0

ka;kb
=

∞∑
M=0

f(M) c
2∆03,+2M ;∆3;∆0

kab,−M ;kb
, (B.79)

where the function f(M) is given by

f(M) =
α∆3;∆0

M C∆1 ∆2 2∆03,+2M

β∞(2∆013,2+2M , 2∆023,1+2M)

=
πh

2

(−1)M

M !

(∆0)M (∆3)M
Γ(∆1)Γ(∆2)

Γ(2∆03,+M−h)Γ(∆0123,+M−h)Γ(∆12,03−M)

Γ(2∆03,+2M−h)
,

(B.80)

and the c and d symbols were defined in (B.35)–(B.36). We first recall that the F
(A)
2

Lauricella function, which appears in expressions for both c and d symbols, is defined via
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a double-sum, one of which can be carried out to yield a ratio of gamma functions:

F
(A)
2

[
e, {a, b}, {A,B}; 1, 1

]
=

∞∑
`b=0

(e)`b(b)`b
`b!(B)`b

∞∑
`a=0

(e+ `b)`a(a)`a
`a!(A)`a

=

∞∑
`b=0

(e)`b(b)`b
`b!(B)`b

Γ(A)Γ(A− a− e− `b)
Γ(A− a)Γ(A− e− `b)

.

(B.81)

Applying this identity to the Lauricella functions appearing in the symbols d2∆12+2M ;∆3;∆0

ka;kb

and c2∆03+2M ;∆3;∆0

kab−M ;kb
, we can recast the left- and right-hand sides of (B.79) as sums over `b

as follows:

LHS =
Γ(∆3 + ka)Γ(∆0 + 2kb + ka)

ka!kb!

kb∑
`b=0

(−kb)`bΓ(kab, − `b + 1)

`b!(∆0 − h+ 1)`b
L`b (B.82)

RHS =
Γ(∆3 + ka)Γ(∆0 + 2kb + ka)

ka!kb!

kb∑
`b=0

(−kb)`bΓ(kab, − `b + 1)

`b!(∆0 − h+ 1)`b
R`b , (B.83)

where L`b , R`b in the summands are given by

L`b =
πh

2

(−1)kab,

Γ(∆0)Γ(∆3)

∞∑
M=0

a∆1;∆2

M

Γ(2∆12, + 2M)
Γ(∆12,03 +M − kab,)

× Γ(∆0123, +M − h+ `b)Γ(2∆12, + 2M − h+ 1)

Γ(∆0123, +M − h+ kab, + 1)Γ(∆12,03 +M − `b + 1)

(B.84)

R`b =

∞∑
M=0

f(M)
M !

(kab, −M)!Γ(∆3 +M)Γ(∆0 +M)

× Γ(2∆03, +M − h+ `b)Γ(2∆03, + 2M − h+ 1)

Γ(2∆03, +M − h)Γ(2∆03, +M − h+ 1 + kab,)Γ(M + 1− `b)
.

(B.85)

Now, the identity (B.79) follows from the fact that the summands above are identical, that

is (B.84) and (B.85) are equal, which can be seen by first noting that the sums over M

may be expressed in terms of 4F3 hypergeometric functions:

L`b =
πh

2

(−1)kab,

Γ(∆0)Γ(∆1)Γ(∆2)Γ(∆3)

Γ(2∆12, − h+ 1)Γ(∆12,03 − kab,)Γ(∆0123, − h+ `b)

Γ(∆0123, − h+ 1 + kab,)Γ(∆12,03 − `b + 1)

4F3

[{
2∆12, − h , ∆12,03 − kab, , ∆0123, − h+ `b , ∆12, −

h

2
+ 1

}
;{

∆12, −
h

2
, ∆0123, − h+ 1 + kab, , ∆12,03 − `b + 1

}
;−1

]
(B.86)

R`b =
πh

2

(−1)`b

Γ(∆0)Γ(∆1)Γ(∆2)Γ(∆3)

Γ(2∆03, − h+ 2`b + 1)Γ(∆0123, + `b − h)Γ(∆12,03 − `b)
Γ(2∆03, + `b − h+ 1 + kab,)Γ(kab, − `b + 1)

4F3

[{
2∆03, − h+ 2`b , `b − kab, , ∆0123, + `b − h , ∆03, −

h

2
+ `b + 1

}
;{

2∆03, − h+ `b + kab, + 1 , ∆03,12 + `b + 1 , ∆03, −
h

2
+ `b

}
;−1

]
. (B.87)
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The 4F3 hypergeometric functions in (B.86)–(B.87) are well-poised as well. Applying (B.77)

to these, we find that L`b and R`b can be simplified to the same expression,

L`b =
πh

2

(−1)kab,

Γ(∆0)Γ(∆1)Γ(∆2)Γ(∆3)

Γ(∆12,03 − kab,)Γ(∆0123, − h+ `b)

Γ(kab, − `b + 1)
= R`b , (B.88)

which establishes (B.79).

B.2.3 Proof of equation (5.32)

In this appendix we prove the identity

∞∑
M=0

a∆1;∆2

M

m2
2∆12,+2M −m2

0

[
d

2∆12,+2M ;∆3;∆b

ka,kb

N∆0

−
d∆0;∆3;∆b
ka;kb

N∆2∆12,+2M

]
=

∞∑
M=0

g(M)c
2∆b3,+2M ;∆3;∆b

kab,−M ;kb
,

(B.89)

where the function g(M) is given by

g(M) =
1

N∆0

C∆1 ∆2 2∆b3,+2M

m2
2∆b3,+2M −m2

∆0

α∆b;∆3

M

B(∆b23,1 +M , ∆b13,2 +M)

=

(
πh

2

)2
Γ(∆0 − h+ 1)

Γ(∆0)Γ(∆1)Γ(∆2)

(−1)M

M !

(∆b)M (∆3)M
(∆b03, +M − h)(∆0,b3 −M)

×
Γ(∆b123, +M − h)Γ(∆12,b3 −M)Γ(2∆b3, +M − h)

Γ(2∆b3, + 2M − h)
,

(B.90)

and the c, d symbols can be found in (B.35)–(B.36). Using the series expansion (B.81) of

Lauricella functions in c
2∆b3,+2M ;∆3;∆b

kab,−M ;kb
, we may rewrite the RHS of (B.89) as

RHS =
Γ(∆3 + ka)Γ(∆b + 2kb + ka)

ka!kb!

kb∑
`b=0

(−kb)`bΓ(kab, − `b + 1)

`b!(∆b − h+ 1)`b
R`b , (B.91)

where R`b is given by

R`b =

∞∑
M=0

g(M)
M !

(kab,−M)!Γ(∆3+M)Γ(∆b+M)

×
Γ(2∆b3,+M−h+`b)Γ(2∆b3,+2M−h+1)

Γ(2∆b3,+M−h)Γ(2∆b3,+M−h+1+kab,)Γ(M+1−`b)

=
π2h

4

(−1)`b+1Γ(∆0−h+1)Γ(∆12,b3−`b)Γ(2∆b3,−h+2`b+1)Γ(∆b123,−h+`b)

Γ(∆b)Γ(∆0)Γ(∆1)Γ(∆2)Γ(∆3)Γ(kab,−`b+1)Γ(2∆b3,−h+1+`b+kab,)

× 1

(∆b03,−h+`b)(∆b3,0+`b)

×6F5

[{
2∆b3,−h+2`b , `b−kab, , ∆b123,−h+`b , ∆b03,−h+`b , ∆b3,0+`b ,

∆b3,−
h

2
+`b+1

}
;

{
2∆b3,−h+`b+kab,+1 , ∆b3,12+`b+1 ,

∆b3,0+`b+1 , ∆b03,−h+`b+1 , ∆b3,−
h

2
+`b

}
;−1

]
.

(B.92)

– 78 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
8

The 6F5 hypergeometric function is very well-poised as well and can be reduced to a 3F2

hypergeometric function with the help of [134, Theorem 3.4.6] to give

R`b =
π2h

4

(−1)`b+1Γ(∆0 − h+ 1)Γ(∆12,b3 − `b)Γ(∆b123, − h+ `b)

Γ(∆b)Γ(∆0)Γ(∆1)Γ(∆2)Γ(∆3)Γ(kab, − `b + 1)

×
Γ(∆b3,12 + `b + 1)

Γ(∆b3,12 + kab, + 1)

1

(∆b03, − h+ `b)(∆b3,0 + `b)

× 3F2

[
{1 , `b − kab, , ∆b123, − h+ `b} ; {∆b3,0 + `b + 1 , ∆b03, − h+ `b + 1} ; 1

]
.

(B.93)

Turning to the LHS in (B.89), we can use the identity (4.12) to directly evaluate the sum

over M in the second term inside the square brackets. Then, applying (B.81) to the symbols

d∆1+∆2+2M ;∆3;∆b
ka;kb

and d∆0;∆3;∆b
ka;kb

, we get

LHS =

∞∑
M=0

a∆1;∆2

M

m2
2∆12,+2M −m2

0

d
2∆12,+2M ;∆3;∆b

ka;kb

N∆0

+
C∆0∆1∆2

B(∆01,2 , ∆02,1)
d∆0;∆3;∆b
ka;kb

=
Γ(∆3 + ka)Γ(∆b + 2kb + ka)

ka!kb!

kb∑
`b=0

(−kb)`bΓ(kab, − `b + 1)

`b!(∆b − h+ 1)`b
(L(1)

`b
+ L(2)

`b
) ,

(B.94)

where the terms L(2)
`b

and L(1)
`b

are given by

L(2)
`b

=
C∆0∆1∆2

B(∆01,2 , ∆02,1)

πh

2

(−1)kab,Γ (∆03b, − h)

Γ(∆0)Γ(∆3)Γ(∆b)

Γ(∆0,b3 − kab,)(∆03b, − h)`bΓ(∆0 − h+ 1)

Γ(∆0,b3 − `b + 1)Γ(∆b03, − h+ kab, + 1)
,

(B.95)

and

L(1)
`b

=
πh

2

(−1)kab,

Γ(∆3)Γ(∆b)N∆0

∞∑
M=0

a∆1;∆2

M

m2
2∆12,+2M−m2

∆0

×
Γ(∆b123,+M−h)Γ(∆12,b3+M−kab,)(∆b123,+M−h)`b

Γ(2∆12,+2M)Γ(∆12,b3+M−`b+1)(2∆12,+2M−h+1)kab,+∆b3,12−M

=
π2h

4

Γ(∆0−h+1)

∆12,0(∆012,−h)

(−1)kab,+1Γ(∆12,b3−kab,)Γ(2∆12,−h+1)Γ(∆b123,−h+`b)

Γ(∆b)Γ(∆0)Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆b123,−h+kab,+1)Γ(∆12,b3−`b+1)

×6F5

[{
2∆12−h , ∆12,b3−kab, , ∆b123,−h+`b , ∆12,0 , ∆012,−h , ∆12,−

h

2
+1

}
;{

∆b123,−h+kab,+1 , ∆12,b3−`b+1 , ∆12,0+1 , ∆012,−h+1 , ∆12,−
h

2

}
;−1

]
.

(B.96)

Once again, the 6F5 hypergeometric function above is very well-poised, so it can be reduced

to a 3F2 function with the help of [134, Theorem 3.4.6], to give

L(1)
`b

=
π2h

4

Γ(∆0−h+1)

∆12,0(∆012,−h)Γ(∆0)

(−1)kab,+1

Γ(∆b)Γ(∆1)Γ(∆2)Γ(∆3)

Γ(∆12,b3−kab,)Γ(∆b123,−h+`b)

Γ(kab,−`b+1)

×3F2

[
{1 , ∆12,b3−kab, , ∆b123,−h+`b} ;{∆12,0+1 , ∆012,−h+1} ;1

]
. (B.97)
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Finally, using the identity [135, Case 28],

3F2

[
{1,−k,a+b};{b+c+1, b−c+1};1

]
(b+c)(b−c)

− 3F2

[
{1,a−b−k,a+b};{a+c+1,a−c+1};1

]
(a−c)(a+c)

= (−1)k
Γ(k+1)Γ(a−c)Γ(a+c)Γ(b−c)Γ(b+c)

Γ(a−b−k)Γ(a+b)Γ(b−c+k+1)Γ(b+c+k+1)
, (B.98)

where k ∈ N0, it can be checked that

L(1)
`b

+ L(2)
`b

= R`b (B.99)

which establishes (B.89).

B.2.4 Proof of equation (5.39)

In this appendix we provide a derivation of equation (5.39):

∞∑
M=0

a∆1;∆2

M d
2∆12,+2M ;∆b;∆c

ka;kb;kc
=

∞∑
M=0

f̃(M)c
2∆bc,+2M ;∆b;∆c

kabc,−M ;kc;kc
, (B.100)

where the function f̃(M) is given by

f̃(M) =
α∆b;∆c

M C∆1 ∆2 2∆bc,+2M

B(∆bc1,2+M ,∆bc2,1+M)

=
(−1)M

M !

πh

2
Γ(∆b+M)Γ(∆c+M)

Γ(∆12,bc−M)Γ(∆bc12,−h+M)

Γ(∆b)Γ(∆c)Γ(∆1)Γ(∆2)

Γ(2∆bc,−h+M)

Γ(2∆bc,+2M−h)
,

(B.101)

and the c, d symbols can be found in (B.57)–(B.58). The F
(A)
3 Lauricella function which

appears in the c, d symbols is defined via a triple-sum (see (B.12)), one of which can be

performed to yield a double-sum over a ratio of gamma functions:

F
(A)
3

[
e,{a,b,c},{A,B,C};1,1

]
=

∞∑
`b,`c=0

(e)`bc(b)`b(c)`c
`b!`c!(B)`b(C)`c

∞∑
`a=0

(e+`bc)`a(a)`a
`a!(A)`a

=
∞∑

`b,`c=0

(e)`bc(b)`b(c)`c
`b!`c!(B)`b(C)`c

Γ(A)Γ(A−a−e−`bc)
Γ(A−a)Γ(A−e−`bc)

,

(B.102)

where we have defined `bc, ≡ `b + `c. Applying this to the F
(A)
3 Lauricella functions

appearing in the expressions for the symbols d
2∆12,+2Ma;∆b;∆c

ka;kb;kc
and c

2∆bc,+2M ;∆b;∆c

kabc,−M ;kc;kc
, we can

recast the left- and right-hand sides of (B.100) as follows:

L̃HS =
Γ(∆c + 2kc + ka)Γ(∆b + 2kb + ka)

ka!kb!kc!

∞∑
`b,`c=0

(−kb)`b(−kc)`cΓ(kabc, − `bc, + 1)

`b!`c!(∆b − h+ 1)`b(∆c − h+ 1)`c
L̃`b,`c

(B.103)

R̃HS =
Γ(∆c + 2kc + ka)Γ(∆b + 2kb + ka)

ka!kb!kc!

∞∑
`b,`c=0

(−kb)`b(−kc)`cΓ(kabc, − `bc, + 1)

`b!`c!(∆b − h+ 1)`b(∆c − h+ 1)`c
R̃`b,`c ,

(B.104)
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where L̃`b,`c , R̃`b,`c in the summands are given by

L̃`b,`c =
πh

2

(−1)kabc,

Γ(∆b)Γ(∆c)

∞∑
M=0

a∆1;∆2

M

Γ(2∆12, + 2M)
Γ(∆12,bc +M − kabc,)

×
Γ(∆bc12, +M − h+ `bc,)Γ(2∆12, + 2M − h+ 1)

Γ(∆bc12, +M − h+ kabc, + 1)Γ(∆12,bc +M − `bc, + 1)
,

(B.105)

and

R̃`b,`c =
∞∑

M=0

f̃(M)
M !

(kabc, −M)!Γ(∆b +M)Γ(∆c +M)

× (2∆bc, +M − h)`bc,
Γ(2∆bc, + 2M − h+ 1)

Γ(2∆bc, +M − h+ kabc, + 1)Γ(M + 1− `bc,)
.

(B.106)

Now, by comparing (B.101) with (B.80), (B.105) with (B.84), and (B.106) with (B.85), we

observe that

L̃`b,`c = L`b

∣∣∣∣ ∆0→∆b
∆3→∆c
`b→`bc,

kab,→kabc,

R̃`b,`c = R`b

∣∣∣∣ ∆0→∆b
∆3→∆c
`b→`bc,

kab,→kabc,

.
(B.107)

Hence (B.88) implies L̃`b,`c = R̃`b,`c , from which (B.100) follows.

B.2.5 Proof of equation (5.43)

In this appendix we derive equation (5.43):

∞∑
M=0

a∆1;∆2

M

m2
2∆12,+2M −m2

0

[
d

2∆12,+2M ;∆b;∆c

ka;kb;kc

N∆0

−
d∆0;∆b;∆c

ka;kb;kc

N∆2∆12,+2M

]
=

∞∑
M=0

g̃(M)c
2∆bc,+2M ;∆b;∆c

kabc,−M ;kb;kc
,

(B.108)

where the function g̃(M) is given by

g̃(M) =
1

N∆0

C∆1 ∆2 2∆bc,+2M

m2
2∆bc,+2M −m2

∆0

α∆b;∆c

M

B(∆bc2,1 +M,∆bc1,2 +M)
, (B.109)

and the c, d symbols are given in (B.57)–(B.58). By applying the F
(A)
3 identity (B.102) to

the Lauricella function appearing in the symbol c
2∆bc,+2M ;∆b;∆c

kabc,−M ;kb;kc
, we may rewrite the RHS

of (B.108) as

R̃HS =
Γ(∆c + 2kc + ka)Γ(∆b + 2kb + ka)

ka!kb!kc!

kb∑
`b=0

(−kb)`b(−kc)`cΓ(kabc, − `bc, + 1)

`b!(∆b − h+ 1)`b`c!(∆c − h+ 1)`c
R̃`b,`c ,

(B.110)

where R̃`b,`c in the summand is given by

R̃`b,`c =

∞∑
M=0

g̃(M)
M !

(kabc, −M)!Γ(∆c +M)Γ(∆b +M)

×
(2∆bc, +M − h)`bc,Γ(2∆bc, + 2M − h+ 1)

Γ(2∆bc, +M − h+ kabc, + 1)Γ(M − `bc, + 1)
.

(B.111)
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Turning to the left-hand side of (B.108), applying (4.12) and using (B.102) we are led to

L̃HS =

∞∑
M=0

a∆1;∆2

M

m2
2∆12,+2M−m2

0

d
2∆12,+2M ;∆b;∆c

ka;kb;kc

N∆0

+
C∆0∆1∆2

B(∆01,2 ,∆02,1)
d∆0;∆b;∆c

ka;kb;kc

=
Γ(∆c+2kc+ka)Γ(∆b+2kb+ka)

ka!kb!kc!

kb∑
`b=0

(−kb)`b(−kc)`cΓ(kabc,−`bc,+1)

`b!(∆b−h+1)`b`c!(∆c−h+1)`c
(L̃(1)

`b,`c
+L̃(2)

`b,`c
) ,

(B.112)

where the L̃(i)
`b,`c

functions in the summand are given by

L̃(1)
`b,`c

=
πh

2

(−1)kabc,

Γ(∆b)Γ(∆c)

∞∑
M=0

a∆1;∆2

M

N∆0(m2
2∆12,+2M−m2

0)

×
Γ(∆bc12,+M−h+`bc,)Γ(∆12,bc+M−kabc,)Γ(2∆12,+2M−h+1)

Γ(2∆12,+2M)Γ(∆12,bc+M−`bc,+1)Γ(∆bc12,+M−h+kabc,+1)
,

(B.113)

and

L̃(2)
`b,`c

=
C∆0∆1∆2

B(∆01,2 ,∆02,1)

πh

2

(−1)kabc,Γ(∆bc0,−h)

Γ(∆b)Γ(∆c)Γ(∆0)

Γ(∆0,bc−kabc,)(∆bc0,−h)`bc,Γ(∆0−h+1)

Γ(∆0,bc−`bc,+1)Γ(∆bc0,−h+kabc,+1)
.

(B.114)

By comparing (B.109) with (B.90), (B.111) with (B.92), (B.113) with (B.96), and (B.114)

with (B.95), we see that

L̃(1)
`b,`c

= L(1)
`b

∣∣∣∣ ∆3→∆c
`b→`bc,

kab,→kabc,

L̃(2)
`b,`c

= L(2)
`b

∣∣∣∣ ∆3→∆c
`b→`bc,

kab,→kabc,

R̃`b,`c = R`b

∣∣∣∣ ∆3→∆c
`b→`bc,

kab,→kabc,

.
(B.115)

Consequently, (B.99) implies L̃(1)
`b,`c

+ L̃(2)
`b,`c

= R̃`b,`c , which proves (B.108).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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