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1 Introduction

The big-bang singularity appears in the Einstein gravity as the initial singularity. Never-

theless, in string cosmology, the situation is somewhat different. For D = d+1 dimensional

spacetime, in a cosmological context, where all the fields only depend on time, the string

effective action possesses a “scale-factor duality” [1–5], which turns out to be a particular

case of O(d, d) symmetry.

The scale-factor duality had been first observed in the tree level1 gravi-dilaton effective

theory, for cosmological background. It shows that the equations of motion (EOM) with

the FLRW-like background is invariant under the transformation between the scale factor

and its inverse, a (t) ←→ 1/a (t). This duality is absent in the Einstein gravity since

the dilaton plays a central role in the transformation. There are two main differences

between T-duality and scale-factor duality. The first is that the scale-factor duality does

not require compactified backgrounds. Furthermore, the scale-factor duality is a property

of classical fields, in contrast to that T-duality is manifested by the energy levels of the

quantum string. The combination of time-reversal and the scale-factor duality leads to

a remarkable pre-big-bang cosmology [6–9]. It implies that there exists a long evolution

in the region of pre-big-bang. Pre- and post-big-bang scenarios are disconnected by the

big-bang singularity.

As the universe approaches the big-bang singularity, the growth of the string coupling

gs = exp (2φ) and the Hubble parameter H (t) makes the perturbative theory break down.

In such non-perturbative regions, two kinds of corrections should be included: (1) higher

derivative α′ corrections at the string curvature scale H(t) ∼ 1/
√
α′, and (2) the quantum

loop corrections at the strong coupling regime gs ∼ 1. The first expansion represents

“stringy” effects and has no correspondence in point particle. The second one is similar to

the loop expansion in quantum field theory, dedicated to quantum effects.

It is natural to expect that these corrections could resolve the big-bang singularity

in the non-perturbative regime. However, the difficulty is that little is known for specific

1In this paper, “tree level” means the theory is truncated to the lowest order in both α′ expansion and

loop expansion.
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information of these two kinds of corrections. As for the quantum loop corrections, a lot

of effective dilaton potentials were proposed and indeed, the big-bang singularity could be

smoothed out by these phenomenological models [9, 10]. A comprehensive treatment and

a large number of references are referred to [11].

On the other hand, progresses on this problem for the α′ corrections are not satis-

factory. The main reason is that, the higher order α′ corrections in general are expected

to change the EOM from second order differential equations to higher order differential

equations. Thus the α′ corrections cannot be implemented simply by adding some phe-

nomenological effective terms. For the first order α′ correction, it is well known that the

higher than second order derivatives can be eliminated from the EOM by field redefini-

tions [12]. By using this property and carefully designed final states, in ref. [13], the authors

numerically verified that the singularity could be smoothed out, at the price of losing the

scale-factor duality. In [14], by assuming the heterotic string admits non-singular constant

curvature solutions in the Einstein frame, an O(d, d) violating first order α′ correction was

chosen. The EOM, as expected, are fourth order differential equations in terms of the scale

factor a(t). A special simple effective dilaton potential was also introduced to enable a

non-singular evolution from an early-time de-Sitter phase to a late-time Minkowski space-

time. On the other hand, as showed in ref. [15], the perturbative solutions obtained order

by order always suffer the big-bang singularity. Since the truncation of the α′ corrections

typically causes various pathologies, analytical non-perturbative analyses of the full stringy

effects are desirable. Some other relevant discussions can be found in refs. [16–18].

To this end, let us focus on the recent remarkable developments on classifying all the

α′ corrections. In 1990s, Meissner and Veneziano showed that, to the first order in α′,

when all fields only depend on time, the classical string effective action has an explicit

O(d, d) symmetry [1, 19]. Sen proved this is true to all orders in α′ and for configurations

independent of m coordinates, the symmetry is O(m,m) [2, 3]. This is also confirmed in

ref. [20] from the perspective of σ model expansion. It turns out that to the first order

in α′, the O(d, d) matrix can maintain the standard form in terms of α′ corrected fields,

for both time dependent [19] or single space dependent configurations [21]. One can be

easily convinced that this is also true for all orders in α′, from the derivations in [19, 21].

Based on this assumption, Hohm and Zwiebach [15, 22, 23] showed that, for cosmological

configurations, the α′ corrections to all orders, can be put into incredibly simple patterns.

The dilaton appears trivially and only first order time derivatives need to be included. This

seminal progress makes it possible to conduct non-perturbative analyses on the stringy

effects. They subsequently proved that non-perturbative de-Sitter (dS) vacua are possible

in bosonic string theory. The analogy in the Einstein frame is then studied in [24]. In

our recent work [21], we showed that for fields dependent on a single space coordinate,

similar story occurs and non-perturbative Anti-de-Sitter (AdS) vacua are also acceptable.

Furthermore, we proposed a conjecture that the non-perturbative AdS and dS vacua might

not be able to coexist in bosonic string theory.

Based on the Hohm-Zwiebach action, the purpose of this paper is to construct non-

perturbative non-singular cosmological solutions. One may question this is not viable since

only the first two orders in α′ expansion have been determined and there are infinitely many
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unknown coefficients. To answer this question, let us recall the methodology adopted to

study the loop corrections. Since the loop corrections do not change the order of the

differential equations, one may implement the loop corrections phenomenologically by a

(non-local) dilaton potential, which of course must respect some general conditions, say,

O(d, d) and general coordinate covariance. A large number of such examples are summa-

rized in ref. [11]. So, in the similar pattern, for the case concerned here, we could make

some ansatz for the coefficients of the higher orders and solve the equations of motion

(EOM). It turns out that, even constructing phenomenological solutions is difficult, since

the EOM are nonlinear and the cosmological solutions are constrained by two conditions:

(a) In the perturbative regime, namely, as α′ → 0 or |t| → ∞, the solution must reduce

to the perturbative vacua. Particularly, the first two orders, which are already known,

of the perturbative solution should be exactly matched. (b) The solution is supposed to

be regular everywhere. Indeed, the solutions we construct in this work do respect these

constraints. As expected, these solutions are obviously non-perturbative since they are

defined in the whole regime t ∈ (−∞,∞), in sharp contrast to the perturbative solution

which is defined only in the perturbative regime α′ → 0 or |t| → ∞. Thus the pre-big-bang

and post-big-bang are smoothly connected in these solutions.

The reminder of this paper is outlined as follows. In section 2, we briefly review the

results of string cosmology. In section 3, we construct consistent non-singular solutions.

Section 4 is the conclusion.

2 A brief review of string cosmology

It is of help to review some relevant results of string cosmology for later convenience. A

comprehensive treatment is referred to [11] and references therein. We start with the tree

level string effective action without matter sources. The action in D = d + 1 dimensional

spacetime is

I0 =

ˆ
dDx
√
−ge−2φ

[
R+ 4 (∂µφ)2 − 1

12
HµνρH

µνρ

]
, (2.1)

where φ is the physical dilaton, gµν is the string metric, and Hµνρ = 3∂[µ bνρ] is the field

strength of the anti-symmetric Kalb-Ramond bµν field. For simplicity, we set the anti-

symmetric Kalb-Ramond field bµν = 0. The equations of motion (EOM) are given by

Rµν + 2∇µ∇νφ = 0,

∇2φ− 2 (∂µφ)2 = 0. (2.2)

It is convenient for following discussions to introduce the O (d, d) invariant dilaton field:

Φ = 2φ− ln
√
−g. (2.3)

For the FLRW background,

ds2 = −dt2 + a (t)2 δijdx
idxj , (2.4)
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I ȧ+ (t) > 0, expansion ä+ (t) < 0, decelerated Ḣ+ < 0, decreasing curvature post-big bang

II ȧ− (t) < 0, contraction ä− (t) > 0, decelerated Ḣ− > 0, decreasing curvature post-big bang

III ȧ+ (−t) < 0, contraction ä+ (−t) < 0, accelerated Ḣ+ < 0, increasing curvature pre-big bang

IV ȧ− (−t) > 0, expansion ä− (−t) > 0, accelerated Ḣ− > 0, increasing curvature pre-big bang

Table 1. The properties of the string cosmological solutions at the leading order.

the EOM (2.2) become

2Φ̈− Φ̇2 − dH2 = 0,

−dH2 + Φ̈ = 0,

Ḣ − Φ̇H = 0, (2.5)

where the Hubble parameter is defined as H (t) = ȧ
a = d

dt log a(t). The EOM are invariant

under the scale-factor duality:

a (t)←→ a (t)−1 , H → −H Φ (t)←→ Φ (t) . (2.6)

The system is also invariant under time reversal t→ −t. The dual solutions hence are

ds2
± = −dt2 +

∣∣∣∣ tt0
∣∣∣∣±2/

√
d

δijdx
idxj , Φ = − ln

∣∣∣∣ tt0
∣∣∣∣ , (2.7)

with the following notations:

a± (t) =

∣∣∣∣ tt0
∣∣∣∣±1/

√
d

, H± (t) =
ȧ±
a±

= ± 1√
d |t|

. (2.8)

The properties of the solutions are summarized in table 1.

Note that deceleration occurs when sign ȧ = −sign ä, and acceleration occurs when

sign ȧ = sign ä. When H2 is growing with time, the curvature is increasing, otherwise

the curvature is decreasing. Moreover, when H > 0, the universe is expanding, otherwise

the universe is contracting. All these solutions share the curvature singularity located at

|t| → 0 as illustrated in figure 1.

3 Non-singular string cosmology via α′ corrections

It turns out that for FLRW metric (2.4), the action (2.1) can be recast in an O(d, d)

covariant form. To this end, it is convenient to choose the gauge b0i = 0 and write the

fields in the form

gµν =

(
−1 0

0 Gij (t)

)
, bµν =

(
0 0

0 Bij (t)

)
, (3.1)

where Gij and Bij are d × d matrices representing the spatial part of the tensors. The

action can be rewritten as

I0 =

ˆ
dte−Φ

[
−Φ̇2 − 1

8
Tr
(
Ṡ2
)]
, (3.2)
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H+
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H-
(0)

I

IIIII
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t

H

Figure 1. The evolutions of the Hubble parameters of four solutions (we set d = 3 in this plot).

with

M =

(
G−1 −G−1B

BG−1 G−BG−1B

)
, S = ηM =

(
BG−1 G−BG−1B

G−1 −G−1B

)
, (3.3)

where η is the invariant metric of the O (d, d) group

η =

(
0 I

I 0

)
. (3.4)

Noticing M is symmetric and then S = S−1, this action is manifestly invariant under the

O (d, d) transformations

Φ −→ Φ, S −→ S̃ = ΩTSΩ, (3.5)

where Ω is a constant matrix, satisfying

ΩT ηΩ = η. (3.6)

For vanishing Kalb-Ramond field B = 0 and the FLRW metric (2.4), Gij = δija
2 (t), the

matrix S becomes

S =

(
0 a2 (t)

a−2 (t) 0

)
. (3.7)

Choosing Ω = η in (3.5), we have a new inequivalent solution

S̃ =

(
0 a−2 (t)

a2 (t) 0

)
, (3.8)

which is precisely the scale-factor duality. We thus see that the scale-factor duality does

belong to the more general O(d, d) symmetry.

When higher derivative terms are introduced to the action, the standard O(d, d) ma-

trix (3.3) receives higher order α′ corrections. To the first order in α′, these corrections can

be absorbed into the field redefinitions to keep the standard O(d, d) matrix unchanged [19].
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The derivations in ref. [19] make it reliable to assume this also happens for all orders in

α′. With this assumption, Hohm and Zwiebach [15, 22, 23] showed that all orders in α′ are

classified by even powers of Ṡ only:

I =

ˆ
dDx
√
−ge−2φ

(
R+ 4 (∂φ)2 − 1

12
H2 +

1

4
α′ (RµνρσRµνρσ + . . .) + α′2(. . .) + . . .

)
,

(3.9)

=

ˆ
dte−Φ

(
−Φ̇2 +

∞∑
k=1

(
α′
)k−1

cktr
(
Ṡ2k
))

. (3.10)

Eq. (3.9) is the classical action for the general background with all α′ corrections included.

In literature, only the zeroth order and first order in α′ are unambiguously determined,

while orders higher than one are still out of reach. Eq. (3.10), the Hohm-Zwiebach action, is

the action in the FLRW background (2.4) with B = 0, where c1 = −1
8 to recover eq. (3.2),

c2 = 1
64 for the bosonic string theory [15] and ck≥3 are yet unknown constants. The EOM

of eq. (3.10) are

Φ̈ +
1

2
Hf (H) = 0,

d

dt

(
e−Φf (H)

)
= 0,

Φ̇2 + g (H) = 0. (3.11)

where

H (t) =
ȧ (t)

a (t)
,

f (H) = d
∞∑
k=1

(
−α′

)k−1
22(k+1)kckH

2k−1 = −2dH − 2dα′H3 +O
(
α′2
)
,

g (H) = d

∞∑
k=1

(
−α′

)k−1
22k+1 (2k − 1) ckH

2k = −dH2 − 3

2
dα′H4 +O

(
α′2
)
. (3.12)

It is easy to check that g′(H) = Hf ′(H) and g(H) = Hf(H) −
´ H

0 f(x)dx. With the

surprising simplification of the Hohm-Zwiebach action, the non-perturbative EOM are still

second order differential equations, even after including all the α′ corrections!

It turns out that the perturbative solution of these EOM inevitably has the big-bang

singularity in every order, as shown in ref. [15]. Therefore, the possible non-singular so-

lutions must be non-perturbative. The main purpose of this paper is to construct such

non-singular non-perturbative solutions. One may doubt this is not possible since there

are infinitely many unknown coefficients ck≥3. To answer this question, let us recall the

methodology adopted to study the loop corrections. Since the loop corrections do not

change the order of the differential equations, one may implement the loop corrections

phenomenologically by a (non-local) dilaton potential, which of course must maintain the

– 6 –
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O(d, d) symmetry and general coordinate covariance. A large number of such examples

are summarized in the book [11]. For the case studied here, due to the Hohm-Zwiebach

action, the higher order corrections do not change the order of the differential equations

in the EOM, too. Thus, one can assume values for ck≥3 and solve the EOM, at least

phenomenologically. Two constraints must be respected by such cosmological solutions:

a. As α′ → 0 or |t| → ∞, the solutions must exactly match the zeroth and first orders in

α′ of the perturbative results.

b. The constructed solution is anticipated to be regular everywhere.

However, it is far from easy to look for such solutions. As an illustration, referring to

eq. (3.12), one can make an ansatz for f(H), whose first two terms of the expansion in

α′ agree with the perturbative results (easy). Then we have g(H) = Hf(H)−
´ H

0 f(x) dx

(might be solvable). The insurmountable barrier is to solve H(t) and Φ(t) by substituting

f(H) and g(H) into the nonlinear EOM.

After amount of trial and error, we find a class of solutions of the EOM (3.11):

Φ (t) = log

(
−
√
α′√

32d3/2
f (t)

)
,

H (t) =

√
α′

2
√

2d3/2t2

(
2

5−6n
2−4nd

3−4n
2−4n

√
α′

t

)2n

 4
n

1−2nd
n

1−2n(
2
5−6n
2−4n d

3−4n
2−4n√

α′
t

)2n

+ 1


− 1

2n

×

(2
5−6n
2−4nd

3−4n
2−4n

√
α′

t

)2n

− 2n+ 1

(2
5−6n
2−4nd

3−4n
2−4n

√
α′

t

)2n

+ 1

−2

, (3.13)

where n are positive integers. f(t) and g(t) are given by

f (t) = −4
√

2d3/2

 4
n

1−2nd
n

1−2n(
2

5−6n
2−4nd

3−4n
2−4n t

)2n
+ α′n


1
2n

,

g (t) = −df (t)2 − f (t)2


(2
√
d
)− 2n

2n−1 −

( √
α′√

32d3/2
f (t)

)2n
 2n−1

n

− d

 . (3.14)

It is worth noting that −H (t) is also a solution simply from the scale-factor duality:

H → −H, Φ→ Φ, f (t)→ −f (t) , g (t)→ g (t) . (3.15)

In these solutions, the power n is determined by the particular value c2 of various string

theories. To match c2 = 1/64 for the bosonic string theory we are concerned here,2 we set

2For heterotic string, c2 = 1
128

and we also have n = 1. For type II strings, c2 = 0 and we need to set

n ≥ 2. But one needs to first prove the Hohm-Zwiebach action for these string theories.

– 7 –
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H+(t)

H-(t)

-4 -2 2 4
t

-2

-1

1

2
H

Φ

-10 -5 5 10
t

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

Φ

Figure 2. The left panel shows the non-perturbative Hubble parameters. Blue solid line describes

H+ (t) and red dashed line denotes H− (t). The right panel shows the O(d, d) dilaton evolution

along the time. We set d = 3, α′ = 1 and n = 1 in these plots.

n = 1 and the solutions are

H± (t) = ∓
√

2
(
α′ − 2dt2

)
(α′ + 2dt2)3/2

,

Φ (t) = log

(
1

2

√
α′

d (α′ + 2dt2)

)
,

f± (t) = ∓ 2
√

2d√
α′ + 2dt2

,

g (t) = − 4d2t2

(α′ + 2dt2)2 , (3.16)

as plotted in figure 2.

We now check the consistency of these solutions. To simplify the notation, we consider

H+ only and suppress the symbol +. It is obvious that, for fixed finite α′, the solutions

are regular everywhere in t ∈ (−∞,∞). The big-bang singularity is indeed smoothed out.

In the perturbative regime, |t| → ∞ (or equivalently α′ → 0), the solution is expanded as

H (t) =
1√
dt
− 5

4

1

d3/2t3
α′ +O

(
α′2
)
, (3.17)

Φ(t) = −1

2
log

(
8d2 · t

2

α′

)
− 1

4d
· α
′

t2
+O

(
α′2

t4

)

= − log

∣∣∣∣ tt0
∣∣∣∣− 2d

t20
t2

+O
(
t0

4

t4

)
, t20 ≡

α′

8d2
, (3.18)

f (H (t)) = −2
√
d

t
+

α′

2
√
dt3

+O
(
α′2
)

= −2d

(
1√
dt
− 5

4

1

d3/2t3
α′ + . . .

)
− 2dα′

(
1√
dt
− 5

4

1

d3/2t3
α′ + . . .

)3

+O
(
α′2
)

= −2dH − 2dα′H3 +O
(
α′2
)
, (3.19)

– 8 –
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g (H (t)) = − 1

t2
+

α′

dt4
+O

(
α′2
)

= −d
(

1√
dt
− 5

4

1

d3/2t3
α′ + . . .

)2

− 3

2
dα′

(
1√
dt
− 5

4

1

d3/2t3
α′ + . . .

)4

+O
(
α′2
)

= −dH2 − 3

2
dα′H4 +O

(
α′2
)
, (3.20)

It is ready to see that the first term of the Hubble parameter (3.17) or the dilaton (3.18)

matches the perturbative result of the tree level string cosmology eq. (2.8) or (2.7), re-

spectively. The second term of the Hubble parameter or the diaton completely agrees with

that calculated perturbatively in [15], where we adopt c1 = −1
8 and c2 = 1

64 for the bosonic

string theory. Moreover, we see that the singularity t = 0 in the perturbative solution is

an artifact of the truncation.

In eq. (3.19) and eq. (3.20), we used eq. (3.17) to replace t by the Hubble parameter

H. Comparing with the perturbative results eq. (3.12), we find complete agreement.

On the other hand, we have known that the big-bang singularity also could be resolved

by the loop corrections implemented by phenomenological (non-local) dilaton potentials.

It is of interest to take a look at the similarities and differences between these two kinds

of corrections. To this end, a non-local dilaton potential

V (Φ (t)) = −V0e
4Φ(t), V0 > 0, (3.21)

is added into the tree level action (2.1). The solution is [9, 10]:

HLoop (t) =

(
t0
√
d

√
t2

t20
+ 1

)−1

, ΦLoop (t) = −1

2
log

[√
V0t0

(
1 +

t2

t20

)]
, (3.22)

where t0 is an integration constant. Since the O(d, d) symmetry is not broken by the po-

tential, a scale-factor dual solution also exists, namely HLoop (t)→ −HLoop (t), ΦLoop (t)→
ΦLoop (t). We plot the non-perturbative α′-corrected, non-perturbative loop corrected and

tree level perturbative solutions in figure 3. Note the right panel in figure 3 is the phys-

ical dilaton φ = Φ/2 + 1/4 log |g| rather than the O(d, d) dilaton Φ. One can see that

the α′ corrections, much stronger than the loop corrections, leads to a contraction phase

around t = 0. We would like to note that for the loop and α′ corrected solutions with

vanishing Kalb-Ramond field, the physical dilaton monotonically grows as t→∞. This is

the property of the perturbative solutions which we need to match. However, considering

the loop corrected solutions, ref. [25] showed that the stabilization of string coupling could

be obtained by introducing the non-trivial Kalb-Ramond field. We therefore expect this

stabilization mechanism also applies to the α′ corrected solutions.

Finally, let us consider the Hubble parameter (3.16) in the Einstein frame. The relation

between the string frame and the Einstein frame is given by

gEµν = exp

(
− 4φ

d− 1

)
gµν . (3.23)

– 9 –
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Blue solid line: Hubble parameter (left panel) and physical dilaton (right panel) with all α′ corrections.

Red dashed line: Hubble parameter (left panel) and physical dilaton (right panel) with loop corrections.

Black dotted line: Tree level Hubble parameter (left panel) and physical dilaton (right panel).

Figure 3. The Hubble parameters and physical dilatons computed with various corrections.
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Figure 4. Hubble parameters in the Einstein frame.

Therefore, we have

HE
± (t) =

ȧE (t)

aE (t)
= − 1

d− 1

(
Φ̇ +H±

)

=
2dt
(
α′3/2 + 2

√
α′dt2

)
±
√

2 (α′ + 2dt2)
(
α′3/2 − 2

√
α′dt2

)
√
α′(d− 1) (α′ + 2dt2)2 , (3.24)

which are also regular in t ∈ (−∞,∞), as plotted in figure 4.

4 Conclusions

In this paper, we constructed consistent non-perturbative non-singular cosmological solu-

tions with all higher-derivative α′ corrections included. This becomes possible because of

the classification on the higher derivative terms by the Hohm-Zwiebach action. Though

the construction is phenomenological, our solutions do confirm that the big-bang singular-

ity could be resolved by α′ corrections, in a non-perturbative way. As an outset in this
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direction, we addressed gravi-dilaton system only. It would be of importance to include

the time dependent Kalb-Ramond field or matter sources in the future work. By these

extensions, we expect more realistic evolutions can be achieved.

In the last section, we compared the influences on the evolution by the α′ correction

and loop corrections. Both corrections are able to resolve the singularity. It is conceivable

in the complete quantum gravity regime, their combination leads to a regular evolution. It

is of interest to find (phenomenological) solutions with both kinds of corrections and some

new features might arise.
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