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1 Introduction

In recent years, out-of-time-order correlators (OTOCs)

F (t,x) := 〈V0(0)Wx(t)V0(0)Wx(t)〉 , (1.1)

have been recognized as very useful tools to diagnose many-body quantum chaos.1 Here, V

and W are general local operators and we denote their spatial dependence as subscripts, i.e.,

Wx(t). In the case of holographic theories, OTOCs have a dual gravitational description

in terms of a high-energy collision that takes place close to the black hole horizon [6–9].

This leads to a simple and universal result

〈V0(0)Wx(t)V0(0)Wx(t)〉
〈V0(0)V0(0)〉〈Wx(t)Wx(t)〉

= 1− ε∆V ∆W
e
λL

(
t−t∗− |x|vB

)
for td � t . t∗ , (1.2)

where λL is the Lyapunov exponent, vB is the butterfly velocity, and the t∗ is the scrambling

time. All these parameters are determined from the geometry near the black hole horizon,

and they are universal in the sense that they do not depend on the operators V and

W . The prefactor ε∆V ∆W
is a non-universal piece that contains information about the

operators in the OTOC. The dissipation time td controls the decay of two-point functions,

i.e., 〈V (0)V (t)〉 ∼ e−t/td .
1See [1–5] for studies connecting/comparing OTOCs with other notions of quantum chaos.
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Despite the existence of a very extensive literature about the holographic description of

chaos,2 it is very difficult to find examples where OTOCs can be calculated in both sides of

the AdS/CFT duality [12–14]. The only cases where calculations were done in both sides

are: BTZ black holes/2-dimensional CFTs [9, 15–19], and AdS2 gravity/SYK-like mod-

els [20–25]. In higher dimensional cases, there are some OTOC results for CFTs in hyper-

bolic space [26], which, however, have not yet been reproduced by holographic calculations.

In this work, we fill this gap. We calculate OTOCs for an AdS-Rindler geometry in

(d + 1)−dimensions for d > 2. This geometry is dual to a d-dimensional CFT in hyper-

bolic space. We find agreement between our holographic calculations and the previously

reported CFT results [26]. For more generic black holes, we compute the butterfly veloc-

ity in two different ways, namely: from shock waves and from a pole-skipping analysis,

finding perfect agreement between these two methods. The butterfly velocity vB(T ) nicely

interpolates between the AdS-Rindler result vB
(
T = 1

2π`

)
= 1

d−1 and the planar result

vB(T � 1
` ) =

√
d

2(d−1) .

This paper is organized as follows. In section 2, we briefly review the geometry of

hyperbolic black holes in AdS spacetime, and discuss the hyperbolic slicing of AdS forming

the Rindler wedge. In section 3, we use the eikonal approximation to derive OTOCs from

bulk shock wave collisions. In section 4, we obtain the Lyapunov exponent and the butterfly

velocity using a pole-skipping analysis. We discuss our results in section 5. We relegate

some technical details to appendix A.

2 Hyperbolic black holes in AdS spacetime

2.1 General hyperbolic black holes

We consider the (d+ 1)−dimensional Einstein-Hilbert action

S =
1

16πGN

∫
dd+1x

√
−g
(
R+

d(d− 1)

`2

)
, (2.1)

and, as a classical solution, the hyperbolic black holes of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dH2

d−1 , (2.2)

with the emblackening factor

f(r) =
r2

`2
− 1− rd−2

0

rd−2

(
r2

0

`2
− 1

)
. (2.3)

Here, ` denotes the AdS length scale and dH2
d−1 = dχ2 + sinh2 χdΩ2

d−2 is the line element

(squared) of the (d − 1)−dimensional hyperbolic space Hd−1. (dΩd−2 is the line element

of a unit sphere Sd−2.) The horizon is located at r = r0, while the boundary is located

at r =∞.

2See, for instance, the recent reviews [10, 11].
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Figure 1. Penrose diagram for two-sided black holes with asymptotically AdS geometry.

These coordinates only cover the exterior region (r ≥ r0) of the black hole. The

maximally extended spacetime (the two-sided eternal black hole geometry) can be described

by introducing the Kruskal-Szekeres coordinates U, V as

U = +e
2π
β

(r∗−t) , V = −e
2π
β

(r∗+t) (left exterior region)

U = −e
2π
β

(r∗−t) , V = +e
2π
β

(r∗+t) (right exterior region)

U = +e
2π
β

(r∗−t) , V = +e
2π
β

(r∗+t) (future interior region)

U = −e
2π
β

(r∗−t) , V = −e
2π
β

(r∗+t) (past interior region)

(2.4)

where the tortoise coordinate is defined as

r∗(r) =

∫ r dr′

f(r′)
, (2.5)

and β = 4π/f ′(r0) is the black hole inverse temperature.

In terms of these coordinates, the metric reads

ds2 = 2A(UV )dUdV + r2(UV )dH2
d−1 , (2.6)

where

A(UV ) =
β2

8π2

f(r(UV ))

UV
. (2.7)

In these coordinates, the left and right asymptotic boundaries are located at UV = −1,

and the past and future singularities at UV = 1. One of the horizons is located at U = 0,

while the other one is located at V = 0. The Penrose diagram3 for this geometry is shown

in figure 1.

2.2 Rindler-AdS spacetime

In embedding coordinates, the AdSd+1 space is defined as the hyperboloid

− T 2
1 − T 2

2 +X2
1 + . . .+X2

d = −`2 , (2.8)

3This diagram is obtained by an additional change of coordinates U → Ũ = tanh(U) and V → Ṽ =

tanh(V ).

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
7

with ambient metric

ds2
d+2 = −dT 2

1 − dT 2
2 + dX2

1 + . . .+ dX2
d . (2.9)

The Rindler-AdS geometry (also known as the “Rindler wedge of AdS” or as a “topological

black hole”) is defined as

T1 =
√
r2 − `2 sinh

t

`
,

T2 = r coshχ ,

Xd =
√
r2 − `2 cosh

t

`
,

X2
1 + . . .+X2

d−1 = r2 sinh2 χ ,

(2.10)

where r ∈ [`,∞), χ ∈ [0,∞) and t ∈ (−∞,∞). In terms of these coordinates, the met-

ric becomes

ds2 = −
(
r2

`2
− 1

)
dt2 +

dr2

r2

`2
− 1

+ r2dH2
d−1 . (2.11)

This corresponds to a special case of the metric (2.2), in which r0 = `. Note that in this

case the Hawking inverse temperature becomes β = 2π`.

For future purposes, it will also be useful to write the embedding coordinates in terms

of Kruskal coordinates, namely

T1 = `
U + V

1 + UV
,

T2 = `
1− UV
1 + UV

coshχ ,

Xd = `
V − U
1 + UV

,

X2
1 + . . .+X2

d−1 = `2
(

1− UV
1 + UV

)
sinh2 χ ,

(2.12)

in terms of which the metric (2.9) becomes

ds2 = − 4`2dUdV

(1 + UV )2
+

(
1− UV
1 + UV

)2

dH2
d−1 , (2.13)

which corresponds to the metric (2.6) with r0 = ` or β = 2π`.

2.3 The dual CFT description

The hyperbolic black hole geometry is dual to a CFT in hyperbolic space R×Hd−1. The

maximally extended hyperbolic black hole geometry is dual to a thermofield double (TFD)

state constructed by entangling two copies of such CFTs

|TFD〉t=0 =
1

Z(β)1/2

∑
n

e−βEn/2 |En〉L ⊗ |En〉R , with Z(β) = Tr e−βH , (2.14)

– 4 –
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where each CFT has Hamiltonian H and partition function Z(β). Here, the subscript L (R)

denotes the energy eigenstates of the CFT living on the left (right) asymptotic boundary

of geometry.

Interestingly, the pure AdSd+1 geometry can be thought of as an entangled state of a

pair of CFTs on hyperbolic space [27], with inverse temperature β = 2π`. In this case, the

corresponding geometry is simply the hyperbolic slicing of AdSd+1, which is also known as

the “Rindler-AdS geometry”.

3 OTOCs from shock waves

3.1 OTOCs in the eikonal approximation

In this section, we use the elastic eikonal gravity approximation [9] to compute OTOCs of

the form

F = 〈TFD|Vx1(t1)Wx2(t2)Vx3(t3)Wx4(t4)|TFD〉 , (3.1)

where V and W are single trace operators acting on the right side of the geometry. We

regularize the OTOC by considering complex times

t1 = −t/2 + iε1 , t3 = −t/2 + iε3 ,

t2 = t/2 + iε2 , t4 = t/2 + iε4 .
(3.2)

Following [9], we write the OTOC as a scattering amplitude

F = 〈out|in〉 , (3.3)

where |in〉 = Vx3(t3)Wx4(t4)|TFD〉 and |out〉 = Wx2(t2)†Vx1(t1)†|TFD〉 are ‘in’ and ‘out’

states. In the bulk, these states can be described in terms of two particle states, which can

be represented on any bulk slice. See figure 2. We call V -particle (W -particle) the field

excitation dual to the operator V (W ). We will be interested in the configuration where

t is large. In this case the V -particle (W -particle) will be highly boosted with respect to

the t = 0 slice of the geometry, having a large momentum in the V -direction (U -direction).

The ‘in’ state represents the V and W particles heading to collide, while the ‘out’ state

represents the outcome of that collision.

For convenience, we decompose the state of the V -particle in the basis |pU,x〉 of well-

defined momentum and position, and represent it in the U = 0 slice of the geometry. In the

same way, we decompose the state of the W -particle in the basis |pV,x′〉 and represent it in

the V = 0 slice of the geometry. By representing V and W via the ‘extrapolate’ dictionary,

we write the ‘in’ state as

Vx3(t3)Wx4(t4)|TFD〉 =

∫
dx′3 dx

′
4

∫
dpU

3dp
V
3 ψ3(pU

3 ,x
′
3)ψ4(pV

4 ,x
′
4)|pU

3 ,x
′
3〉 ⊗ |pV

4 ,x
′
4〉 ,
(3.4)

while the ‘out’ state is written as

Vx1(t1)†Wx2(t2)†|TFD〉 =

∫
dx′1 dx

′
2

∫
dpU

1dp
V
2 ψ1(pU

1 ,x
′
1)ψ2(pV

2 ,x
′
2)|pU

1 ,x
′
1〉 ⊗ |pV

2 ,x
′
2〉 .
(3.5)

– 5 –
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Ũ Ṽ

pV
4 pU

3

Vx3(t3)Wx4(t4)|TFD〉

t3

t4

t1

t2

Wx2(t2)†Vx1(t1)†|TFD〉

pU
1 pV

2

Figure 2. Left : representation of the ‘in’ state Vx3(t3)Wx4(t4)|TFD〉 on a bulk slice that touches

the right boundary at time t3. Right : representation of the ‘out’ state Wx2(t2)†Wx1(t1)†|TFD〉 on

a bulk slice that touches the right boundary at time t2.

The wave functions ψi featuring in the above formulas are Fourier transforms of bulk-

to-boundary propagators along either the U = 0 or V = 0 horizons

ψ1(pU,x) =

∫
dV eiA0pUV 〈ΦV (U, V,x)Vx1(t1)†〉|U=0 ,

ψ2(pV,x) =

∫
dUeiA0pVU 〈ΦW (U, V,x)Wx2(t2)†〉|V=0 ,

ψ3(pU,x) =

∫
dV eiA0pUV 〈ΦV (U, V,x)Vx3(t3)〉|U=0 ,

ψ4(pV,x) =

∫
dUeiA0pVU 〈ΦW (U, V,x)Wx4(t4)〉|V=0 ,

(3.6)

where the bulk fields ΦV and ΦW are dual to the operators V and W .

The measure factors are given by

dx = sinhd−2 χdχdΩd−2, (3.7)

with dΩd−2 = sind−3 θd−3 · · · sin θ1dφdθ1 · · · dθd−2. We normalize the basis vectors as

〈pU,x|qU,x′〉 =
A2

0 p
U

πrd−1
0

δ(pU − qU) δ(x,x′) , (3.8)

where we defined A0 := A(0) and δ(x,x′) := δ(χ−χ′)
sinhd−2 χ

δ(θ1−θ′1) ··· δ(θd−2−θ′d−2)

sin θ′1 ··· sind−3 θ′d−3

δ(φ− φ′).
The collision takes place close to the bifurcation surface (at U = V = 0), where

both particles have very large momentum. In this configuration, since the collision impact

parameter (denoted by b) is fixed and GN is small, the gravitational interaction dominates

over all other interactions, and the amplitude is dominated by ladder and crossed ladder

diagrams involving graviton exchanges [28]. This leads to the very simple result

(|pU
1 ,x1〉 ⊗ |pV

2 ,x2〉)out ≈ e
iδ(s,b) (|pU

1 ,x1〉 ⊗ |pV
2 ,x2〉)in + |inelastic〉 , (3.9)

where the phase shift δ(s, b) depends on s = (p1 + p2)2 = 2A0 p
UpV and b is the impact

parameter. The state |inelastic〉 accounts for an inelastic contribution that is orthogonal

to all two-particle ‘in’ states.

– 6 –
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Using the above formulas, the OTOC can be written as

F =
A4

0

π2

∫ ∫
dxdx′

∫ ∫
dpU

1dp
V
2 e
iδ(s,b)

[
pU

1ψ
∗
1(pU

1 ,x)ψ3(pU
1 ,x)

][
pV

2ψ
∗
2(pV

2 ,x
′)ψ4(pV

2 ,x
′)
]
.

(3.10)

Thus, once we know the phase shift δ(a, b) and the wave functions ψi we can compute the

OTOC. In the next subsection, we explain how to compute the phase shift for general

hyperbolic black holes, with metric of the form (2.2). The computation of the wave func-

tions ψi requires the knowledge of bulk-to-boundary propagators, which are unknown for

general hyperbolic black holes. However, for the special case of a Rindler-AdS geometry,

which can be obtained from (2.2) by setting r0 = `, the bulk-to-boundary propagators are

known, and the wave functions can be computed. In this case, (3.10) can be evaluated, and

one obtains an analytic result for the OTOCs. This calculation is done in subsection 3.2.

The case of general hyperbolic black holes, in which (3.10) cannot be evaluated precisely,

is discussed in section 3.3.

3.1.1 The phase shift

In the elastic eikonal gravity approximation, the phase shift is given by

δ(s, b) = Sclassical , (3.11)

where Sclassical is the sum of the on-shell actions for the V and W particles. To compute this

action, we need to know the stress-energy tensor of these particles, and the corresponding

back-reaction on the geometry.

For very large t, the V -particle follows an almost null trajectory, very close to the

V = 0 horizon. In this configuration, the stress-energy of this particle reads

V − particle : TV V (x,x′) =
A0

rd−1
0

pU
1 δ(V )δ(x,x′) , (3.12)

where x′ denotes the position of the V -particle in Hd−1. The corresponding back-reaction

on the geometry can be simply obtained with the replacement

ds2 → ds2 + hV V dV
2 , hV V =

16πGNA0

rd−1
0

pU
1 δ(V )h(d(x,x′)) , (3.13)

where ds2 denotes the unperturbed geometry (2.6), and the shock wave transverse profile

h(d(x,x′)) is a solution of the equation[
�Hd−1

− 2π

β
r0(d− 1)

]
h(d(x,x′)) = −8πGN

rd−3
0

pVδ(x,x′) . (3.14)

Here, the function h is a function of d(x,x′), which is the geodesic distance between x and

x′ in Hd−1. Its explicit form is given in (3.22).

For large values of d(x,x′), the shock wave transverse profile behaves as4

h(χ) = c1 e
−µd(x,x′) , µ ≡ 1

2

(
d− 2 +

√
(d− 2)2 +

8πr0

β
(d− 1)

)
, (3.15)

where c1 is a constant.

4See appendix A for more details.
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The W -particle, by its turn, follows an almost null trajectory very close to the U = 0

horizon, with stress-energy tensor given by

W − particle : TUU (x,x′′) =
A0

rd−1
0

pV
2 δ(U)δ(x,x′′) . (3.16)

The corresponding back-reaction on the geometry is obtained with the replacement

ds2 → ds2 + hUUdU
2 , hUU =

16πGNA0

rd−1
0

pV
2 δ(U)h(d(x,x′′)) . (3.17)

The on-shell action can be written as [9, 28]

Sclassical =
1

4

∫
dd+1x

√
−g
(
hUUT

UU + hV V T
V V
)
. (3.18)

The above formula is actually symmetric in the exchange of the two particles: while hUU
refers to the W -particle, the stress-energy tensor TUU = gUV gUV TV V refers to the V -

particle, with a similar story for hV V and T V V . Substituting the expressions for the

stress-energy tensors and the corresponding back-reactions, we find

δ(s, b) =
4πGN

rd−1
0

s h(b/`) =
8πGN

rd−1
0

A0 p
U
1p

V
2 c1 e

−µ
`
b , (3.19)

where s = 2A0 p
U
1p

V
2 and b = ` d(x′,x′′) is an impact parameter of length dimension while

the geodesic distance d(x′,x′′) is dimensionless. We emphasize that (3.19) is valid for a

generic hyperbolic black hole, as long as the metric has the form (2.2).

3.2 OTOCs in the Rindler-AdSd+1 geometry

In this section, we compute OTOCs for a Rindler-AdSd+1 geometry. We start by computing

the geodesic distance between points in this geometry. From this we can easily obtain

the bulk-to-boundary propagators and then the wave functions ψi, which are essential

ingredients for evaluating (3.10).

First, the geodesic distance d(p, p′) between two points p = (T1, T2, X1, . . . , Xd) and

p′ = (T ′1, T
′
2, X

′
1, . . . , X

′
d) is [6]

cosh

(
d(p, p′)

`

)
=

1

`2
(
T1T

′
1 + T2T

′
2 −X1X

′
1 −X2X

′
2 − . . .−XdX

′
d

)
. (3.20)

It is convenient to write the boundary point in terms of AdS-Rindler coordinates p′ =

(t, r,x′) (in the limit r → ∞) and the bulk point in terms of Kruskal coordinates p =

(U, V,x). Here x = (χ,Ωd−2) and x′ = (χ′,Ω′d−2) denote points in hyperbolic space Hd−1,

with Ωd−2 and Ω′d−2 being points in the sphere Sd−2.

Eq. (3.20) can then be written as5

cosh d(p, p′) =
1

1 + UV

[√
r2 − 1

(
Uet − V e−t

)
+ r(1− UV ) cosh d(x,x′)

]
, (3.21)

5Here, to simplify our formulas and avoid clutter, we set ` = 1. This fixes the inverse Hawking temper-

ature as β = 2π.
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where (2.10) and (2.12) were used and d(x,x′) is the geodesic distance between the points

x and x′ in Hd−1. This distance can be written as [29]

d(x,x′) = cosh−1
(
coshχ coshχ′ − sinhχ sinhχ′ cos γ

)
, (3.22)

with

cos γ := cos(φ− φ′)
d−3∏
i=1

sin θi sin θ′i +

d−3∑
i=1

cos θi cos θ′i

i−1∏
j=1

sin θj sin θ′j . (3.23)

Here γ may be understood as the geodesic distance between two points Ωd−2 and Ω′d−2

in the sphere Sd−2. Here, φ ∈ [0, 2π) and θi ∈ [0, π]. For example, in S2, cos γ =

cos(φ − φ′) sin θ sin θ′ + cos θ cos θ′, where θ ∈ [0, π] is the polar angle, while φ ∈ [0, 2π) is

the azimuthal angle.

Having computed the geodesic distances, the bulk-to-bulk propagator associated to a

bulk field Φ, dual to an operator O∆ of scaling dimension ∆, can be obtained as [30]

G∆(p; p′) =
Γ(∆)

πd/2Γ(∆− d
2)

(
cosh d(p, p′)

)−∆
. (3.24)

The bulk-to-boundary propagator can then be computed as [30]

〈Φ(U, V,x)O∆(t,x′)〉 = (2∆− 1) lim
r→∞

r∆[G∆(U, V,x; t, r,x′)] . (3.25)

Using the above formulas, we find

〈Φ(U, V,x)O∆(t,x′)〉 = C∆

[
Uet − V e−t + (1− UV ) cosh d(x,x1)

]
, (3.26)

where C∆ = Γ(∆)

πd/2Γ(∆− d
2

)
.

We are now ready to evaluate the integral (3.10) for an Rindler-AdSd+1 geometry. Since

we set ` = 1, we have A0 = 2, r0 = 1 and β = 2π. Using (3.26), the bulk-to-boundary

propagators can be written as

〈ΦV (U, V,x)Vx1(t1)〉 = cV

[
Uet − V e−t + (1− UV ) cosh d(x,x1)

]−∆V

, (3.27)

〈ΦW (U, V,x′)Wx2(t2)〉 = cW

[
Uet − V e−t + (1− UV ) cosh d(x′,x2)

]−∆W

, (3.28)

from which we obtain the following wave functions

ψ1(pU,x) = −θ(pU)
2πicV
Γ(∆V )

et
*
1

(
−2ipUet

*
1

)∆V −1
e2ipUet

*
1 cosh d(x,x1) ,

ψ3(pU,x) = −θ(pU)
2πicV
Γ(∆V )

et3
(
−2ipUet3

)∆V −1
e2ipUet3 cosh d(x,x1) ,

ψ2(pV,x′) = θ(pV)
2πicW
Γ(∆W )

e−t
*
2

(
2ipVe−t

*
2

)∆W−1
e−2ipVe−t

*
2 cosh d(x′,x2) ,

ψ2(pV,x′) = θ(pV)
2πicW
Γ(∆W )

e−t4
(
2ipVe−t4

)∆W−1
e−2ipVe−t4 cosh d(x′,x2) .

(3.29)
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Using the above formulas, the OTOC becomes

F = K

∫
dxdx′dpUdpVeδ(s,b(x,x

′))(pU)2∆V −1(pV)2∆W−1 e
∆V (t1+t3)

e∆W (t2+t4)

e2ipU cosh d(x,x1)(et3−et1)

e2ipV cosh d(x′,x2)(et4−et2 )
,

(3.30)

where K :=
(

4πcV cW 2∆V +∆W

Γ(∆V )Γ(∆W )

)2
. By introducing the new variables

p = −2ipU
(
et3 − et1

)
,

q = 2ipV
(
et4 − et2

)
,

(3.31)

and specifying the times as in (3.2), the integral becomes

F = C

∫
dxdx′dpdqp2∆V −1q2∆W−1e−p cosh d(x,x1)e−q cosh d(x′,x2)eiGNp q e

th(d(x,x′))/ε13ε*24 ,

(3.32)

where εij := i(eiεi − eiεj ) and C is a constant given by

C =
2π2c2

V c
2
W

Γ(∆V )2Γ(∆W )2

[
1

2 sin
(
ε3−ε1

2

)]2∆V
[

1

2 sin
(
ε4−ε2

2

)]2∆W

. (3.33)

If we set δ(s, b) = 0, the above integral gives 〈V V 〉〈WW 〉. For δ(s, b) 6= 0, the integral

can be evaluated in the limit ∆W � ∆V � 1 and the result reads6

〈Vx1(t1)Wx2(t2)Vx1(t3)Wx2(t4)〉
〈Vx1(iε1)Vx1(iε3)〉〈Wx1(iε2)Wx4(iε4)〉

=
1[

1− 16π iGN∆W

ε13ε*24

eth(d(x1,x2))
]∆V

. (3.34)

By writing t∗ = log 1
16πGN

and using that h(d(x1,x2)) = c1 e
−(d−1)d(x1,x2) (see appendix A)

we can see that, for t . t∗, the OTOC behaves as

OTOC(t, b) = 1 +
i c1∆W∆V

ε13ε*
24

et−t∗−(d−1)b , b := d(x1,x2) , (3.35)

from which we can extract the Lyapunov exponent λL = 2π
β = 1,7 and the butterfly velocity

vB = 1
d−1 . This result matches the CFT result obtained by Perlmutter in [26].

3.3 OTOCs in general hyperbolic black holes

In this section, we consider general hyperbolic black holes, with a metric of the form (2.2).

In these cases, the bulk-to-boundary propagators are unknown, so we cannot evaluate the

integral (3.10). We can, however, proceed as in [9] and focus on the phase shift δ(s, b),

which essentially controls the magnitude of the OTOC.

In section 3.1.1, we show that the phase shift is given by (3.19):

δ(s, b) =
8πGN

rd−1
0

A0 p
U
1p

V
2 c1 e

−µ
`
b , (3.36)

6Here, we first write the integrals in x′ and q in the form
∫
dx′dq e−F (x′,q) and check that the result is

dominated by the region of integration where d(x′,x2) ≈ 0 and q ≈ 2∆W . After this, the integral in p can

be done analytically, and the integral in x can be done by a saddle point approximation.
7Recall that β = 2π in the Rindler-AdS geometry.
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where

µ =
1

2

(
d− 2 +

√
(d− 2)2 +

8πr0

β
(d− 1)

)
. (3.37)

Let us assume that Wx2(t/2) and Vx1(−t/2) are thermal scale operators that raise the

energy of the thermal state by an amount of order of the temperature T . That means

that, when time equals −t/2, the V particle is close to the boundary and has momentum

pU
1 ≈ T . The W particle, by its turn, is close to the boundary when time equals t/2, having

momentum pV
2 ≈ T . The collision, however, takes place near the bifurcation surface, at

the t = 0 slice of the geometry. In this time slice, we have pU
1 ≈ pV

2 ≈ Te
π
β
t
, because

the momentum of the V -particle increases exponentially as it falls into the black hole,

while the momentum of the W -particle decreases exponentially as it escapes from the

near-horizon region.8

This implies that, close to the bifurcation surface (at U = V = 0), we have

pU
1p

V
2 ≈ T 2e

2π
β
t
. (3.38)

With the above result the phase shift becomes

δ(s, b) ≈ 8πGN

rd−1
0

A0T
2e

2π
β
t−µ

`
b
, b := ` d(x1,x2), (3.39)

from which we can extract the maximal Lyapunov exponent λL = 2π
β and the butterfly

velocity

vB(r 0) ≡
2π`

βµ
=

√
d
[
2r 2

0(d− 1)− (d− 2)
]
− (d− 2)

2(d− 1)r 0

, r 0 :=
r0

`
. (3.40)

In section 4, we obtain the same result for λL and vB using a pole-skipping analysis.

The result (3.40) has some interesting limits

• vB(r 0 = 1) = 1
d−1 , which is (as expected) the result for Rindler-AdSd+1. By naively

applying the formula derived for planar black holes, vB =
√

2π`2

β(d−1)r0
(see [9], page

18), one gets the wrong result vB = 1√
d−1

, which differs from the correct one by a

square root;

• vB(r 0 � 1) =
√

d
2(d−1) , which is the result for a very large black hole (r0 � `). In this

case, the butterfly velocity takes the planar value, i.e., the value for a d-dimensional

CFT in flat space;

• vB(r 0 = r c) = 0, where r c =
√

d−2
d . This happens because vB = 2π`T

µ , and the black

hole’s temperature is zero for r 0 = r c;

• For r c ≤ r 0 ≤ 1, the temperature is positive, but black hole’s mass M is negative

(M =
(d−1)vol(Hd−1)

16πGN
(r 2

0 − 1)). Interestingly, the butterfly velocity does not show any

8See, for instance, [31].
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Figure 3. Temperature dependence of the butterfly velocity for hyperbolic black holes. The

Rindler-AdSd+1 result (T, vB) = ( 1
2π` ,

1
d−1 ) is indicated by the blue dot. Here we set d = 4

and ` = 1.

problematic behavior in this range. When the mass is negative, the emblackening

factor has two distinct zeros, giving rise to an inner and an outer horizon. As a

consequence, the causal structure of the spacetime changes, becoming similar to the

causal structure of the rotating BTZ black hole. The Penrose diagram of these

negative-mass black holes was studied in [32, 33]. The Penrose diagram for the

rotating BTZ black hole was studied in [34]. Therefore, when the mass is negative,

the derivation of OTOCs in hyperbolic black holes is very similar to the derivation

of OTOCs for rotating BTZ black holes. In [17], it was shown that, even though

the causal structure of the spacetime is different in the case of rotating black holes,

one can still use the formalism of [9] to compute OTOCs. This is because the two-

particle states have essentially the same bulk description in terms of shock waves.

In the case of hyperbolic black holes with negative mass, that means that we can

still use formula (3.10) to compute OTOCs. For more details about that, we refer to

section 3 of [17].

The temperature behavior of the butterfly velocity can be obtained by writing the Hawking

temperature as

T (r 0, `) =
2 + d(r 2

0 − 1)

4π`r 0

, (3.41)

and then making a parametric plot of vB(r 0) versus T (r 0, `). This is shown in figure 3,

where we can see that vB starts at zero at T = 0, increases as we increase T , and approaches

the planar value
√

d
2(d−1) for T � 1/`.

4 The pole-skipping analysis

In addition to OTOCs, the chaotic nature of many-body thermal systems is also encoded in

energy density two-point functions. These functions exhibit a curious behavior, referred to

as pole-skipping, from which one can extract both the Lyapunov exponent and the butterfly

velocity of the system [35, 36]. In this section, we use the pole-skipping analysis proposed

in [37] to extract the chaotic properties of 4-dimensional hyperbolic black holes.
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4.1 Pole-skipping: a brief review

In momentum space, a generic retarded two-point function can be written as

GR(ω, k) =
b(ω, k)

a(ω, k)
. (4.1)

The poles of GR are generically described by a dispersion relation of the form ω = F (k),

which corresponds to the zeros of a(ω, k). The pole-skipping phenomenon refers to the

existence of special points, (ω∗, k∗), satisfying the following conditions

a(ω∗, k∗) = 0 ,

b(ω∗, k∗) = 0 .
(4.2)

The first equation implies that the curve ω = F (k) passes through the special point (ω∗, k∗),

while the second equation implies that (ω∗, k∗) is not a pole of GR. This means that GR has

a line of poles along the curve ω = F (k), except at the special points, where the would-be

poles are skipped.9

The precise location of the special points depends on the type of two-point function

considered [38–40]. In particular, for the energy density two-point function, the lowest-lying

special point is related to the Lyapunov exponent and butterfly velocity as

ω∗ = iλL , k∗ = i
λL
vB

. (4.3)

This seems to be a generic property of holographic systems, being valid even under the

presence of higher curvature corrections [41].

The above discussion is valid for black holes with planar horizons. In those cases, the

boundary theory lives in flat space, and we can expand the metric perturbation in terms

of plane waves. For black holes with spherical or hyperbolic horizons, we will see that

we can expand the metric perturbations in terms of generalized spherical harmonics, with

analytically continued angular momentum L.10 In those cases, the pole skipping-point will

occur for a special value of (ω,L) which will also be related to λL and vB.

In planar black holes, pole-skipping points to a connection between chaos and hydrody-

namics. In hyperbolic black holes, it is not even clear if one should expect hydrodynamics

behavior. However, our results show that pole-skipping happens even in cases where there

is no obvious definition of hydrodynamics, if any.

4.2 Pole-skipping in hyperbolic black holes

In this section, we study the pole-skipping phenomenon in (3+1) dimensional Einstein

gravity

S =
1

16πGN

∫
d4x
√
−g
(
R+

6

`2

)
. (4.4)

9The fact that holographic Green’s functions have an infinite number of special points was recently

shown in [38, 39].
10We thank Richard Davison for pointing this out.
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We consider the following hyperbolic black hole solution

ds2 =
1

z2

(
−F(z)dt2 +

dz2

F(z)
+ dχ2 + sinh2 χdφ2

)
, (4.5)

F(z) = 1− z2 − 1− z2
0

z3
0

z3 , (4.6)

where z0 denotes the position of the horizon, while the boundary is located at z = 0.

Comparing with (2.2), here we use z = `/r and use F(z) to distinguish it from f(r)

in (2.3). The Hawking temperature is given by

T =
3− z2

0

4π`z0
. (4.7)

For our purposes, it will be useful to introduce the incoming Eddington-Finkelstein coor-

dinate v

v = t− z∗ , dz∗ =
dz

F
, (4.8)

in terms of which the metric becomes

ds2 = −F(z)

z2
dv2 − 2

z2
dvdz +

1

z2

(
dχ2 + sinh2 χdφ2

)
. (4.9)

We will be interested in the energy density retarded two-point function GRT 00T 00 of

the corresponding boundary theory. In planar black holes, this quantity is related to

fluctuations of the metric field in the sound channel [42], which are related to the vv

component of Einstein’s equations. In hyperbolic black holes, the decomposition of the

metric perturbations into different channels is different from the planar case, but the energy

density two-point function is still related to the vv component of Einstein’s equations.

We write the metric fluctuations as

δgµν(z, v, χ, φ) = δḡµν(z, χ, φ)e−iωv . (4.10)

The pole skipping phenomenon is related to a special property of Einstein’s equation near

the black hole horizon. More specifically, the constraint imposed by the vv component

of Einstein’s equations is absent precisely at the special point, leading to the existence of

an extra linearly independent incoming solution, that ultimately makes GRT 00T 00 infinitely

multiple-valued at the special point [37].

To understand how this comes about, we consider a near horizon solution of the form

δḡµν(z, χ, φ) = δg(0)
µν (χ, φ) + δg(1)

µν (χ, φ)(z − z0) +O
[
(z − z0)2

]
. (4.11)

The vv component of Einstein’s equations reads

2

[
1+

`

z0

(
4πT−iω− 3z−1

0

`

)]
δg(0)
vv −csch2χ∂2

φ δg
(0)
vv −cothχ∂χ δg

(0)
vv −∂2

χ δg
(0)
vv

= (2πT+iω)
[
2cothχδg(0)

vχ +iω
(

csch2χδg
(0)
φφ +δg(0)

χχ

)
+2csch2χ∂φδg

(0)
vφ +2∂χδg

(0)
vχ

]
(4.12)
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For general values of ω, the above equation imposes a constraint involving the horizon

values of the metric components δg
(0)
vv , δg

(0)
vχ , δg

(0)
χχ , δg

(0)
vφ and δg

(0)
φφ . However, when the

frequency takes the special value, ω = ω∗ := i2πT , the metric component δg
(0)
vv decouples

from the other components and (4.12) dramatically simplifies(
1− 3z−2

0

)
δg(0)
vv +

(
csch2χ∂2

φ + cothχ∂χ + ∂2
χ

)
δg(0)
vv = 0 , (4.13)

taking precisely the same form as the equation for the shock wave profile (3.14) for d = 3

and β = 4π`z0/(3− z2
0). Note that �H2 = csch2χ∂2

φ + cothχ∂χ + ∂2
χ.

Now, to find the pole skipping point, we write the metric perturbation in terms of

generalized spherical harmonics

δg(0)
vv (χ, φ) = YM

L (iχ, φ) = eiMφPML (coshχ) , (4.14)

where PML is an associated Legendre function. Here, we call YM
L (iχ, φ) generalized spherical

harmonics because the parameter L is unconstrained — it may even be a complex number,

while the index M is an integer. In higher dimensional cases, the above function satisfies

the equation

�Hd−1
YM
L (iχ,Ωd−2) = L(L+ d− 2)YM

L (iχ,Ωd−2) . (4.15)

With the above ansatz, (4.13) becomes[(
1− 3z−2

0

)
+ L(L+ 1)

]
δg(0)
vv (χ, φ) = 0 . (4.16)

For generic values of L, this equation sets the constraint δg
(0)
vv = 0. However, at the

special points

L = L±∗ := −1

2

(
1±

√
12z−2

0 − 3

)
, (4.17)

(4.13) is identically satisfied, providing no constraint for δg
(0)
vv . As explained in [37], the

absence of this constraint implies the existence of a second linearly independent incoming

solution that ultimately leads to pole-skipping in the energy density two-point correla-

tion functions.

Interestingly, for generic values of z0, L+
∗ is related to the butterfly velocity (3.40) in

a simple way

L+
∗ = −2πT

vB
` , vB =

√
12z−2

0 − 3− 1

4z−1
0

. (4.18)

Note that z0 = 1/r 0 and T is given by (4.7). The other solution L−∗ is related with µ−
in (A.7) and it is irrelevant as discussed below (A.7). For large black holes, i.e., for z0 � 1,

the special point is related to the butterfly velocity in flat case: L+
∗ = −

√
3z−1

0 = −2πT
vB
`.

Note that L+
∗ < 0, which is allowed because our ansatz for δg

(0)
vv (χ, φ) is proportional to

the associated Legendre function, PML , for which the parameter L is unconstrained.
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Higher dimensional cases. In higher dimensional cases, (4.16) becomes[
L(L+ d− 2)− 2π

β
r0(d− 1)

]
δg(0)
vv (χ,Ωd−2) = 0 , (4.19)

where r0 = `/z0. The corresponding pole-skipping point is now

L = L+
∗ := −1

2

(
d− 2 +

√
d

[
2(d− 1)

r2
0

`2
− (d− 2)

])
= −2πT

vB
` , (4.20)

with vB given by (3.40).11

Asymptotic behavior and quasinormal modes. To understand how the above results

are connected with the result for planar black holes, we note that

Y 0
L (iχ, φ) ∝ PL(iχ) , (4.21)

where PL(iχ) is the Legendre function. For large values of χ, we can write

PL(iχ) ≈ cosL(iχ) = (coshχ)L ≈ eLχ . (4.22)

This shows that, for large values of χ, the metric perturbations behave as

∼ e−iωv+Lχ = e−iωv+i L
i`

(`χ) → e−iωv+ik(`χ) , (4.23)

where we identified −iL/` ≡ k. In terms of k, the pole-skipping point is given by k =

k∗ := i2πT
vB

, which is the same from as the flat case. Note that from this relation we may

also identify the butterfly velocity vB from L, i.e. vB = −2πT`/L, which is consistent

with (4.20).

Moreover, at the pole-skipping, we recover the shock wave transverse profile, i.e.,

eL∗χ = e
− 2πT
vB

`χ
. Based on the observed parallelism between the metric perturbation δg

(0)
vv

and the shock wave transverse profile [37] in the case of planar black holes, it seems that

L∗ has to be negative for the metric perturbations to have the correct asymptotic behavior.

i.e. the negative value of L∗ leads to metric perturbations that decay exponentially when

we move away from the source.

Finally, by considering angular independent perturbations, and taking the large χ

limit of the equations of motion, we can define the sound channel, just like in the planar

case. This channel involves δgvv , δgvz , δgzz , δgvχ , δgzχ , δgχχ , δgφφ . As another indepen-

dent crosscheck, we numerically computed the quasinormal modes of this ‘emergent’ sound

channel and confirmed that the line of poles of GRT 00T 00 precisely passes through the pole-

skipping point (ω∗, k∗), where k∗ = −iL∗/`. It confirms again our result, (3.40) or (4.18).

See figure 4.

11The other solution L−∗ := − 1
2

(
d− 2−

√
d
[
2(d− 1)

r20
`2
− (d− 2)

])
is related with µ− in (A.7) and it

is irrelevant as discussed below (A.7).
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Figure 4. Sound channel quasinormal modes of the hyperbolic black hole defined in (4.5). The

blue dots represent the zeros of a(ω, k) in (4.1). They form a line that passes though the special

point (ω?, k?) = i(2πT, 2πT/vB) with vB given in (4.18). Here, k := −iL/`, and we set z0 = 1. For

simplicity, we used the asymptotic form of the Legendre functions in the ansatz for the metric per-

turbations.

5 Discussion

In this paper, we have studied the scrambling properties of (d+1)−dimensional hyperbolic

black holes. We gave a precise derivation of OTOCs for a Rindler-AdSd+1 geometry, which

is dual to a d-dimensional CFT in hyperbolic space with inverse temperature β = 2π`.

We found

OTOC(t, b) = 1 +
i c1∆W∆V

ε13ε*
24

e
1
`
(t−t∗)− (d−1)

`
b , b := `d(x1,x2) , (5.1)

which implies

λL =
1

`
= 2πT , vB =

1

d− 1
. (5.2)

The above result perfectly matches the corresponding CFT results [26].

For more general hyperbolic black holes, we calculated the phase shift, which essentially

controls the form of the OTOCs, and from which we can extract the Lyapunov exponent

and butterfly velocity. We found

λL = 2πT , vB(r 0) =

√
d
[
2r 2

0(d− 1)− (d− 2)
]
− (d− 2)

2(d− 1)r 0

, r 0 =
r0

`
. (5.3)

In section 4, we checked that the above result can also be obtained from a pole-skipping

analysis in two ways: i) the analytic near horizon condition, ii) the numerical quasinormal

mode computation. Contrary to the flat case, we expanded the metric perturbation in

terms of spherical harmonics, with analytically continued angular momentum L, instead of

plane waves. It is interesting that the pole-skipping analysis reveals a connection between

chaos and hydrodynamics also in hyperbolic black holes even though it is not clear if one

should expect hydrodynamics behavior in hyperbolic space.
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In our pole-skipping analysis, we consider metric perturbations which coupled to δgvv.

These perturbations form a sector that is analogous to the sound channel of planar black

holes. In the case of planar black holes, pole-skipping happens not only in the sound

channel, but also in the other channels [38–40]. It would be interesting to check if this also

happens for other channels of hyperbolic black holes.

The temperature dependence of the butterfly velocity is shown in figure 3. The but-

terfly velocity is zero at T = 0, and increases as T increases, quickly approaching the

asymptotic value
√

d
2(d−1) . This asymptotic value precisely coincides with the butterfly

velocity for a planar Schwarzschild black hole in (d + 1) dimensions [8]. This is expected,

because the very large temperatures occur for very large black holes r0
` � 1 (see (3.41)),

for which the geometry of the horizon should be approximately flat. Moreover, for T = 1
2π` ,

we recover the Rindler-AdSd+1 result: vB = 1
d−1 .

In the context of Einstein gravity, the butterfly velocity was shown to be bounded for

isotropic planar black holes satisfying the Null Energy Condition, with the bound given by

the Schwarzschild result [43]

vB ≤

√
d

2(d− 1)
. (5.4)

Our result suggests that this bound might also be valid for black holes with non-planar hori-

zons.12 It would be interesting to check whether this bound can be derived in these cases.
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A Full solution for the shock wave transverse profile

The equation of motion for the shock wave transverse profile reads[
�Hd−1

− 2π

β
r0(d− 1)

]
h(x) = −8πGN

rd−3
0

pVδ(x,0) . (A.1)

Assuming that h does not depend on the angular coordinates Ωd−2 and taking x 6= 0, this

equation becomes13 [
∂2
χ + (d− 2) cothχ∂χ −

2π

β
r0(d− 1)

]
h(χ) = 0 . (A.2)

12This bound was shown to be violated by anisotropy [44–47] and higher curvature corrections [41]. For

other interesting effects of higher curvature corrections on vB , see, for instance [48].
13Here we use that �Hd−1 = ∂2

χ + (d− 2) cothχ∂χ + 1
sinh2 χ

�Sd−2 .
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This equation has an exact solution

h(χ) = i1−d
(
−sech2(χ)

) 1
4

(a−2)
tanh

1
2
− d

2 (χ) tanh2(χ)
1
4

(−d−1)sech2(χ)d/4

×

[
c2 tanh2(χ)3/2

2F1

(
a− d+ 4

4
,
a− d+ 6

4
;
5− d

2
; tanh2(χ)

)
(A.3)

+ c1 i
d+1 tanh2(χ)d/2 2F1

(
a+ d− 2

4
,
a+ d

4
;
d− 1

2
; tanh2(χ)

)]
, (A.4)

where

a :=

√
(d− 2)2 +

8π

β
r0(d− 1) , (A.5)

and c1 and c2 are arbitrary constants. The asymptotic solution for large values of χ can

then be obtained as

h(χ) ∼ e−µ+χ , e−µ−χ , (A.6)

where

µ± :=
1

2

(
d− 2±

√
(d− 2)2 +

8πr0

β
(d− 1)

)
, µ := µ+ . (A.7)

Here, we discard the second solution because µ− < 0 always, which means the perturbation

grows when we move away from the source, instead of decreasing. For notational simplicity,

we define µ := µ+.

As a consequence of the SO(d − 1, 1) symmetry of Hd−1, the shock wave transverse

profile only depends on the geodesic distance χ = d(x,0) between x and the position of

the source, which take as 0 in (A.1). If we write the right hand side of (A.1) with a source

proportional to δ(x,x′), the SO(d−1, 1) isometry of hyperbolic space allows us to conclude

that h(d(x,x′)) = constant× e−µd(x,x′).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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