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1 Introduction

The quantization of the gravitational field is one of the most prominent open problems in

modern theoretical physics. Within the Loop Quantum Gravity framework, one can study

the nonperturbative quantization of gravity, both canonically and covariantly, see [1–3] for

an overview and a comprehensive introduction. The covariant approach focuses on the

definition of the path integral for the gravitational field,

Z =

∫
Dg eiS[g] , (1.1)

by considering a triangulation of a spacetime manifold, and defining the path integral as

a discrete state sum of the gravitational field configurations living on the simplices in the

triangulation. This quantization technique is known as the spinfoam quantization method,

and roughly goes along the following lines:

1. first, one writes the classical action S[g] as a topological BF action plus a simplicity

constraint,
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2. then one uses the algebraic structure (a Lie group) underlying the topological sector

of the action to define a triangulation-independent state sum Z,

3. and finally, one imposes the simplicity constraints on the state sum, promoting it

into a path integral for a physical theory.

This quantization prescription has been implemented for various choices of the action, the

Lie group, and the spacetime dimension. For example, in 3 dimensions, the prototype

spinfoam model is known as the Ponzano-Regge model [4]. In 4 dimensions there are

multiple models, such as the Barrett-Crane model [5, 6], the Ooguri model [7], and the

most sophisticated EPRL/FK model [8, 9]. All these models aim to define a viable theory

of quantum gravity, with variable success. However, virtually all of them are focused on

pure gravity, without matter fields. The attempts to include matter fields have had limited

success [10], mainly because the mass terms could not be expressed in the theory due to

the absence of the tetrad fields from the BF sector of the theory.

In order to resolve this issue, a new approach has been developed, using the categorical

generalization of the BF action, within the framework of higher gauge theory (see [11] for a

review). In particular, one uses the idea of a categorical ladder to promote the BF action,

which is based on some Lie group, into a 2BF action, which is based on the so-called 2-group

structure. If chosen in a suitable way, the 2-group structure should hopefully introduce

the tetrad fields into the action. This approach has been successfully implemented [12],

rewriting the action for general relativity as a constrained 2BF action, such that the tetrad

fields are present in the topological sector. This result opened up a possibility to couple

all matter fields to gravity in a straightforward way. Nevertheless, the matter fields could

not be naturally expressed using the underlying algebraic structure of a 2-group, rendering

the spinfoam quantization method only half-implementable, since the matter sector of the

classical action could not be expressed as a topological term plus a simplicity constraint,

which means that the steps 2 and 3 above could not be performed for the matter sector of

the action.

We address this problem in this paper. As we will show, it turns out that it is necessary

to perform one more step in the categorical ladder, generalizing the underlying algebraic

structure from a 2-group to a 3-group. This generalization then naturally gives rise to the

so-called 3BF action, which proves to be suitable for a unified description of both gravity

and matter fields. The steps of the categorical ladder can be conveniently summarized in

the following table:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed differential Lie

2BF theory tetrad fields
module crossed module

Lie 3-group
Lie 2-crossed differential Lie

3BF theory
scalar and

module 2-crossed module fermion fields
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Once the suitable gauge 3-group has been specified and the corresponding 3BF action

constructed, the most important thing that remains, in order to complete the step 1 of the

spinfoam quantization programme, is to impose appropriate simplicity constraints onto

the degrees of freedom present in the 3BF action, so that we obtain the desired classical

dynamics of the gravitational and matter fields. Then one can proceed with steps 2 and 3

of the spinfoam quantization, hopefully ending up with a viable model of quantum gravity

and matter.

In this paper, we restrict our attention to the first of the above steps: we will construct a

constrained 3BF action for the cases of Klein-Gordon, Dirac, Weyl and Majorana fields, as

well as Yang-Mills and Proca vector fields, all coupled to the Einstein-Cartan gravity in the

standard way. This construction will lead us to an unexpected novel result. As we shall see,

the scalar and fermion fields will be naturally associated to a new gauge group, generalizing

the notion of a gauge group in the Yang-Mills theory, which describes vector bosons. This

new group opens up a possibility to use it as an algebraic way of classifying matter fields,

describing the structures such as quark and lepton families, and so on. The insight into

the existence of this new gauge group is the consequence of the categorical ladder and

is one of the main results of the paper. However, given the complexity of the algebraic

properties of 3-groups, we will restrict ourselves only to the reconstruction of the already

known theories, such as the Standard Model (SM), in the new framework. In this sense, any

potential explanation of the spectrum of matter fields in the SM will be left for future work.

The layout of the paper is as follows. In subsection 2.1 we will give a short overview

of the constrained BF actions, including the well-known example of the Plebanski action

for general relativity, and a completely new example of the Yang-Mills theory rewritten

as a constrained BF model. In the subsection 2.2 we also introduce the formalism of the

constrained 2BF actions, reviewing the example of general relativity as a constrained 2BF

action, first introduced in [12]. In addition, we will demonstrate how to couple gravity in

a natural way within the formalism of 2-groups. Section 3 contains the main results of

the paper and is split into 4 subsections. The subsection 3.1 introduces the formalism of

3-groups, and the definition and properties of a 3BF action, including the three types of

gauge transformations. The subsection 3.2 focuses on the construction of a constrained

3BF action which describes a single real scalar field coupled to gravity. It provides the

most elementary example of the insight that matter fields correspond to a gauge group.

Encouraged by these results, in the subsection 3.3 we construct the constrained 3BF action

for the Dirac field coupled to gravity and specify its gauge group. Finally, the subsection 3.4

deals with the construction of the constrained 3BF action for the Weyl and Majorana fields

coupled to gravity, thereby covering all types of fields potentially relevant for the Standard

Model and beyond. After the construction of all building blocks, in section 4 we apply

the results of sections 2 and 3 to construct the constrained 3BF action corresponding to

the full Standard Model coupled to Einstein-Cartan gravity. Finally, section 5 is devoted

to the discussion of the results and the possible future lines of research. The appendices

contain some mathematical reminders and technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted

by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the
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Minkowski metric ηab with signature (−,+,+,+). Spacetime indices are denoted by the

Greek letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe
a
µe
b
ν ,

where eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other indices that

appear in the paper are dependent on the context, and their usage is explicitly defined in

the text where they appear. A lot of additional notation is defined in appendix A. We work

in the natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck length.

2 BF and 2BF models, ordinary gauge fields and gravity

Let us begin by giving a short review of BF and 2BF theories in general. For additional

information on these topics, see for example [11, 13–18].

2.1 BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called

BF action as

SBF =

∫
M4

〈B ∧ F〉g . (2.1)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connection 1-form α ∈
A1(M4 , g) on some 4-dimensional spacetime manifold M4. In addition, B ∈ A2(M4 , g)

is a Lagrange multiplier 2-form, while 〈 , 〉g denotes the G-invariant bilinear symmetric

nondegenerate form.

From the structure of (2.1), one can see that the action is diffeomorphism invariant,

and it is usually understood to be gauge invariant with respect to G. In addition to these

properties, the BF action is topological, in the following sense. Varying the action (2.1)

with respect to Bβ and αβ , where the index β counts the generators of g (see appendix A

for notation and conventions), one obtains the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one immediately sees that α is a flat connection, which

then together with the second equation of motion implies that B is constant. Therefore,

there are no local propagating degrees of freedom in the theory, and one then says that the

theory is topological.

Usually, in physics one is interested in theories which are nontopological, i.e., which

have local propagating degrees of freedom. In order to transform the BF action into

such a theory, one adds an additional term to the action, commonly called the simplicity

constraint. A very nice example is the Yang-Mills theory for the SU(N) group, which can

be rewritten as a constrained BF theory in the following way:

S =

∫
BI∧F I+λI∧

(
BI−

12

g
MabIδ

a∧δb
)

+ζabI
(
MabIεcdefδ

c∧δd∧δe∧δf−gIJF J∧δa∧δb
)
.

(2.3)

Here F ≡ dA+A∧A is again the curvature 2-form for the connection A ∈ A1(M4 , su(N)),

and B ∈ A2(M4 , su(N)) is the Lagrange multiplier 2-form. The Killing form gIJ ≡
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〈τI , τJ〉su(N) ∝ fIKLfJLK is used to raise and lower the indices I, J, . . . which count the gen-

erators of SU(N), where f IJ
K are the structure constants for the su(N) algebra. In addition

to the topological B ∧ F term, we also have two simplicity constraint terms, featuring the

Lagrange multiplier 2-form λI and the Lagrange multiplier 0-form ζabI . The 0-form MabI

is also a Lagrange multiplier, while g is the coupling constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global coordinate frame

in which its components are equal to the Kronecker symbol δaµ (hence the notation δa).

The 1-form δa plays the role of a background field, and defines the global spacetime metric,

via the equation

ηµν = ηabδ
a
µδ
b
ν , (2.4)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the coordinate system

is global, the spacetime manifold M4 is understood to be flat. The indices a, b, . . . are

local Lorentz indices, taking values 0, . . . , 3. Note that the field δa has all the properties

of the tetrad 1-form ea in the flat Minkowski spacetime. Also note that the action (2.3) is

manifestly diffeomorphism invariant and gauge invariant with respect to SU(N), but not

background independent, due to the presence of δa.

The equations of motion are obtained by varying the action (2.3) with respect to the

variables ζabI , MabI , A
I , BI , and λI , respectively (note that we do not take the variation

of the action with respect to the background field δa):

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (2.5)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (2.6)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (2.7)

FI + λI = 0 , (2.8)

BI −
12

g
MabIδ

a ∧ δb = 0 , (2.9)

From the algebraic equations (2.5), (2.6), (2.8) and (2.9) one obtains the multipliers as

functions of the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd , λIab = F Iab , BIab =

1

2g
εabcdF I

cd .

(2.10)

Here we used the notation FIab = FIµνδa
µδb

ν , where we used the fact that δaµ is invertible,

and similarly for other variables. Using these equations and the differential equation (2.7)

one obtains the equation of motion for gauge field AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (2.11)

This is precisely the classical equation of motion for the free Yang-Mills theory. Note that

in addition to the Yang-Mills theory, one can easily extend the action (2.3) in order to

describe the massive vector field and obtain the Proca equation of motion. This is done

by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (2.12)
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to the action (2.3). Of course, this term explicitly breaks the SU(N) gauge symmetry of

the action.

Another example of the constrained BF theory is the Plebanski action for general

relativity [15], see also [13] for a recent review. Starting from a gauge group SO(3, 1), one

constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (2.13)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the usual Lagrange

multiplier 2-form, while φabcd is the Lagrange multiplier 0-form corresponding to the sim-

plicity constraint term Bab ∧ Bcd. It can be shown that the variation of this action with

respect to Bab, ω
ab and φabcd gives rise to equations of motion which are equivalent to

vacuum general relativity. However, the tetrad fields appear in the model as a solution

to the simplicity constraint equation of motion Bab ∧ Bcd = 0. Thus, being intrinsically

on-shell objects, they are not present in the action and cannot be quantized. This renders

the Plebanski model unsuitable for coupling of matter fields to gravity [10, 12, 19]. Never-

theless, as a model for pure gravity, the Plebanski model has been successfully quantized

in the context of spinfoam models, see [1, 2, 8, 9] for details and references.

2.2 2BF theory

In order to circumvent the issue of coupling of matter fields, a recent promising approach

has been developed [12, 19–23] in the context of higher category theory [11]. In particular,

one employs the higher category theory construction to generalize the BF action to the

so-called 2BF action, by passing from the notion of a gauge group to the notion of a gauge

2-group. In order to introduce it, let us first give a short review of the 2-group formalism.

In the framework of category theory, the group as an algebraic structure can be under-

stood as a specific type of category, namely a category with only one object and invertible

morphisms [11]. The notion of a category can be generalized to the so-called higher cat-

egories, which have not only objects and morphisms, but also 2-morphisms (morphisms

between morphisms), and so on. This process of generalization is called the categorical

ladder. Similarly to the notion of a group, one can introduce a 2-group as a 2-category

consisting of only one object, where all the morphisms and 2-morphisms are invertible. It

has been shown that every strict 2-group is equivalent to a crossed module (H
∂→ G ,B),

see appendix A for definition. Here G and H are groups, δ is a homomorphism from H to

G, while B : G×H → H is an action of G on H.

An important example of this structure is a vector space V equipped with an isometry

group O. Namely, V can be regarded as an Abelian Lie group with addition as a group

operation, so that a representation of O on V is an action B of O on the group V , giving

rise to the crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be trivial,

i.e., it maps every element of V into a unit of O. We will make use of this example below

to introduce the Poincaré 2-group.

Similarly to the case of an ordinary Lie group G which has a naturally associated

notion of a connection α, giving rise to a BF theory, the 2-group structure has a naturally

– 6 –
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associated notion of a 2-connection (α , β), described by the usual g-valued 1-form α ∈
A1(M4 , g) and an h-valued 2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie

group H. The 2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (2.14)

Here α ∧B β means that α and β are multiplied as forms using ∧, and simultaneously

multiplied as algebra elements using B, see appendix A. The curvature pair (F ,G) is called

fake because of the presence of the ∂β term in the definition of F , see [11] for details.

Using these variables, one can introduce a new action as a generalization of the BF

action, such that it is gauge invariant with respect to both G and H groups. It is called

the 2BF action and is defined in the following way [16, 17]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h , (2.15)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers.

Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear symmetric nondegenerate forms for

the algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed

module (see appendix A), the bilinear form 〈 , 〉h is H-invariant as well. See [16, 17] for

review and references.

Similarly to the BF action, the 2BF action is also topological, which can be seen from

equations of motion. Varying with respect to B and C one obtains

F = 0 , G = 0 , (2.16)

while varying with respect to α and β one obtains the equations for the multipliers,

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa = 0 , (2.17)

dCa − ∂aαBα + Bαa
bCb ∧ αα = 0 . (2.18)

One can either show that these equations have only trivial solutions, or one can use the

Hamiltonian analysis to show that there are no local propagating degrees of freedom (see

for example [21, 22]), demostrating the topological nature of the theory.

An example of a 2-group relevant for physics is the Poincaré 2-group, which is con-

structed using the aforementioned example of a vector space equipped with an isometry

group. One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 , (2.19)

while B is a natural action of SO(3, 1) on R4, and the map ∂ is trivial. The 2-connection

(α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (2.20)

where ωab is the spin connection, while Mab and Pa are the generators of groups SO(3, 1)

and R4, respectively. The corresponding 2-curvature in this case is given by

F = (dωab+ωac∧ωcb)Mab ≡ RabMab , G = (dβa+ωab∧βb)Pa ≡ ∇βaPa ≡ GaPa , (2.21)

– 7 –
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where we have evaluated ∧B using the equation Mab B Pc = η[bcPa]. Note that, since ∂ is

trivial, the fake curvature is the same as ordinary curvature. Using the bilinear forms

〈Mab,Mcd〉g = ηa[cηbd] , 〈Pa, Pb〉h = ηab , (2.22)

one can show that 1-forms Ca transform in the same way as the tetrad 1-forms ea under

the Lorentz transformations and diffeomorphisms, so the fields Ca can be identified with

the tetrads. Then one can rewrite the 2BF action (2.15) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (2.23)

In order to obtain general relativity, the topological action (2.23) can be modified by

adding a convenient simplicity constraint, like it is done in the BF case:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (2.24)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and

lp is the Planck length. Varying the action (2.24) with respect to Bab, ea, ωab, βa and λab,

one obtains the following equations of motion:

Rab − λab = 0 , (2.25)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (2.26)

∇Bab − e[a ∧ βb] = 0 , (2.27)

∇ea = 0 , (2.28)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (2.29)

The only dynamical fields are the tetrads ea, while all other fields can be algebraically

determined, as follows. From the equations (2.28) and (2.29) we obtain that ∇Bab = 0,

from which it follows, using the equation (2.27), that e[a ∧ βb] = 0. Assuming that the

tetrads are nondegenerate, e ≡ det(eaµ) 6= 0, it can be shown that this is equivalent to

the condition βa = 0 (for the proof see appendix in [12]). Therefore, from the equa-

tions (2.25), (2.27), (2.28) and (2.29) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ . (2.30)

Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (2.31)

where

cabc = eµbe
ν
c (∂µe

a
ν − ∂νeaµ) . (2.32)

– 8 –
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Finally, the remaining equation (2.26) reduces to

εabcdR
bc ∧ ed = 0 , (2.33)

which is nothing but the vacuum Einstein field equation Rµν − 1
2gµνR = 0. Therefore, the

action (2.24) is classically equivalent to general relativity.

The main advantage of the action (2.24) over the Plebanski model and similar ap-

proaches lies in the fact that the tetrad fields are explicitly present in the topological

sector of the theory. This allows one to couple matter fields in a straightforward way, as

demonstrated in [12]. However, one can do even better, and couple gauge fields to gravity

within a unified framework of 2-group formalism.

Let us demonstrate this on the example of the SU(N) Yang-Mills theory. Begin by

modifying the Poincaré 2-group structure to include the SU(N) gauge group, as follows.

We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (2.34)

and we define the action B of the group G in the following way. As in the case of the

Poincaré 2-group, it acts on itself via conjugation. Next, it acts on H such that the

SO(3, 1) subgroup acts on R4 via the vector representation, while the action of SU(N)

subgroup is trivial. The map ∂ also remains trivial, as before. The 2-connection (α, β)

now obtains the form which reflects the structure of the group G,

α = ωabMab +AIτI , β = βaPa , (2.35)

where AI is the gauge connection 1-form, while τI are the SU(N) generators. The curvature

for α is thus

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (2.36)

The curvature for β remains the same as before, since the action B of SU(N) on R4 is

trivial, i.e., τI B Pa = 0. Finally, the product structure of the group G implies that its

Killing form 〈 , 〉g reduces to the Killing forms for the SO(3, 1) and SU(N), along with the

identity 〈Mab, τI〉g = 0.

Given a crossed module defined in this way, its corresponding topological 2BF ac-

tion (2.15) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.37)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. In order to transform this

topological action into action with nontrivial dynamics, we again introduce the appropriate

simplicity constraints. The constraint giving rise to gravity is the same as in (2.24), while

the constraint for the gauge fields is given as in the action (2.3) with the substitution

δa → ea:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
(2.38)

+ λI ∧
(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.
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It is crucial to note that the action (2.38) is a combination of the pure gravity action (2.24)

and the Yang-Mills action (2.3), such that the nondynamical background field δa from (2.3)

gets promoted to a dynamical field ea. The relationship between these fields has already

been hinted at in the equation (2.4), which describes the connection between δa and the

flat spacetime metric ηµν . Once promoted to ea, this field becomes dynamical, while the

equation (2.4) becomes the usual relation between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (2.39)

further confirming that the Lagrange multiplier Ca should be identified with the tetrad.

Moreover, the total action (2.38) now becomes background independent, as expected in

general relativity. All this is a consequence of the fact that the tetrad field is explicitly

present in the topological sector of the action (2.24), establishing an improvement over the

Plebanski model.

By varying the action (2.38) with respect to the variables Bab, ωab, βa, λab, ζ
abI , MabI ,

BI , λ
I , AI , and ea, we obtain the following equations of motion, respectively:

Rab − λab = 0 , (2.40)

∇Bab − e[a ∧ βb] = 0 , (2.41)

∇ea = 0 , (2.42)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (2.43)

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − FI ∧ ea ∧ eb = 0 , (2.44)

−12

g
λI ∧ ea ∧ eb + ζabIεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (2.45)

FI + λI = 0 , (2.46)

BI −
12

g
MabIe

a ∧ eb = 0 , (2.47)

−dBI +BK ∧ gJIKAJ + d(ζabI ea ∧ eb)− ζabK ea ∧ eb ∧ gJIKAJ = 0 , (2.48)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed − 24

g
MabIλ

I ∧ eb

+4ζef
I
Mef Iεabcde

b ∧ ec ∧ ed − 2ζab
IFI ∧ eb = 0 . (2.49)

In the above system of equations, we have two dynamical equations for ea and AI , while

all other variables are algebraically determined from these. In particular, from equa-

tions (2.40)–(2.47), we have:

λabµν =Rabµν , βaµν =0, ωabµ=4abµ , λabI =FabI , BµνI =− e

2g
εµνρσF

ρσ
I , (2.50)

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , MabI =− 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

Then, substituting all these into (2.48) and (2.49) we obtain the differential equation of

motion for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (2.51)
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where Γ λµν is the standard Levi-Civita connection, and a differential equation of motion

for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (2.52)

The system of equations (2.50)–(2.52) is equivalent to the system (2.40)–(2.49). Note that

we have again obtained that βa = 0, as in the pure gravity case.

In this way, we see that both gravity and gauge fields can be represented within a

unified framework of higher gauge theory based on a 2-group structure.

3 3BF models, scalar and fermion matter fields

While the structure of a 2-group can successfully accommodate both gravitational and

gauge fields, unfortunately it cannot include other matter fields, such as scalars or fermions.

In order to construct a unified description of all matter fields within the framework of higher

gauge theory, we are led to make a further generalization, passing from the notion of a 2-

group to the notion of a 3-group. As it turns out, the 3-group structure is a perfect fit

for the description of all fields that are present in the Standard Model, coupled to gravity.

Moreover, this structure gives rise to a new gauge group, which corresponds to the choice

of the scalar and fermion fields present in the theory. This is a novel and unexpected result,

which has the potential to open up a new avenue of research with the aim of explaining

the structure of the matter sector of the Standard Model and beyond.

In order to demonstrate this in more detail, we first need to introduce the notion of

a 3-group, which we will afterward use to construct constrained 3BF actions describing

scalar and fermion fields on an equal footing with gravity and gauge fields.

3.1 3-groups and topological 3BF action

Similarly to the concepts of a group and a 2-group, one can introduce the notion of a

3-group in the framework of higher category theory, as a 3-category with only one object

where all the morphisms, 2-morphisms and 3-morphisms are invertible. It has been proved

that a strict 3-group is equivalent to a 2-crossed module [24], in the same way as a 2-group

is equivalent to a crossed module.

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is a algebraic structure

specified by three Lie groups G, H and L, together with the homomorphisms δ and ∂, an

action B of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. See appendix A for more details.

In complete analogy to the construction of BF and 2BF topological actions, one

can define a gauge invariant topological 3BF action for the manifold M4 and 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Given g, h and l as Lie algebras corresponding to the

groups G, H and L, one can introduce a 3-connection (α, β, γ) given by the algebra-valued
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differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding

fake 3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ , H = dγ + α ∧B γ + {β ∧ β} . (3.1)

see [24, 25] for details. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (3.2)

where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange multipliers. The

forms 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric nondegenerate forms on

g, h and l, respectively. Under certain conditions, the forms 〈 , 〉h and 〈 , 〉l are also

H-invariant and L-invariant, see appendix B for details.

One can see that varying the action with respect to the variables B, C and D, one

obtains the equations of motion

F = 0 , G = 0 , H = 0 , (3.3)

while varying with respect to α, β, γ one obtains

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa + BαB

ADA ∧ γB = 0 , (3.4)

dCa − ∂aαBα + Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (3.5)

dDA −BαA
BDB ∧ αα + δA

aCa = 0 . (3.6)

Regarding the gauge transformations, the 3BF action is invariant with respect to

three different types of transformations, generated by the groups G, H and L, respectively.

Under the G-gauge transformations, the 3-connection transforms as

α′ = g−1αg + g−1dg , β′ = g−1 B β , γ′ = g−1 B γ , (3.7)

where g : M4 → G is an element of the G-principal bundle over M4. Next, under the

H-gauge transformations, generated by η ∈ A1(M4 , h), the 3-connection transforms as

α′ = α+ ∂η , β′ = β + dη + α′ ∧B η − η ∧ η , γ′ = γ − {β′ ∧ η} − {η ∧ β} . (3.8)

Finally, under the L-gauge transformations, generated by θ ∈ A2(M4 , l), the 3-connection

transforms as

α′ = α , β′ = β − δθ , γ′ = γ − dθ − α ∧ θ . (3.9)

As a consequence of the definition (3.1) and the above transformation rules, the curvatures

transform under the G-gauge transformations as

F → g−1Fg , G → g−1 B G , H → g−1 BH , (3.10)

under the H-gauge transformations as

F → F , G → G + F ∧B η , H → H− {G′ ∧ η}+ {η ∧ G} , (3.11)
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and under the L-gauge transformations as

F → F , G → G , H → H−F ∧B θ . (3.12)

For more details, the reader is referred to [25].

In order to make the action (3.2) gauge invariant with respect to the transforma-

tions (3.7), (3.8) and (3.9), the Lagrange multipliers B, C and D must transform under

the G-gauge transformations as

B → g−1Bg , C → g−1 B C , D → g−1 BD , (3.13)

under the H-gauge transformations as

B → B+C ′∧T η−η∧D η∧DD , C → C+D∧X1 η+D∧X2 η , D → D , (3.14)

while under the L-gauge transformations they transform as

B → B −D ∧S θ , C → C , D → D . (3.15)

See appendix B for details, for the definition of the maps T , D, X1, X2, S, and for the

notation of the ∧T , ∧D, ∧X1 , ∧X2 , and ∧S products.

3.2 Constrained 3BF action for a real Klein-Gordon field

Once the topological 3BF action is specified, we can proceed with the construction of the

constrained 3BF action, describing a realistic case of a scalar field coupled to gravity. In

order to perform this construction, we have to define a specific 2-crossed module which

gives rise to the topological sector of the action, and then we have to impose convenient

simplicity constraints.

We begin by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are given as

G = SO(3, 1) , H = R4 , L = R . (3.16)

The group G acts on itself via conjugation, on H via the vector representation, and on L

via the trivial representation. This specifies the definition of the action B. The map ∂ is

chosen to be trivial, as before. The map δ is also trivial, that is, every element of L is

mapped to the identity element of H. Finally, the Peiffer lifting is trivial as well, mapping

every ordered pair of elements in H to an identity element in L. This specifies one concrete

2-crossed module.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γI , (3.17)

where I is the sole generator of the Lie group R. From (3.1), the fake 3-curvature (F ,G ,H)

reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (3.18)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0. The topological

3BF action (3.2) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (3.19)

where the bilinear form for L is 〈I, I〉l = 1.

It is important to note that the Lagrange multiplier D in (3.2) is a 0-form and trans-

forms trivially with respect to G, H and L gauge transformations for our choice of the

2-crossed module, as can be seen from (3.13), (3.14) and (3.15). Thus, D has all the hall-

mark properties of a real scalar field, allowing us to make identification between them, and

conveniently relabel D into φ in (3.19). This is a crucial property of the 3-group structure

in a 4-dimensional spacetime and is one of the main results of the paper. It follows the

line of reasoning used in recognizing the Lagrange multiplier Ca in the 2BF action for the

Poincaré 2-group as a tetrad field ea. It is also important to stress that the choice of the

third gauge group, L, dictates the number and the structure of the matter fields present in

the action. In this case, L = R implies that we have only one real scalar field, correspond-

ing to a single generator I of R. The trivial nature of the action B of SO(3, 1) on R also

implies that φ transforms as a scalar field. Finally, the scalar field appears as a degree of

freedom in the topological sector of the action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, in order to obtain nontrivial dynamics, we need

to impose convenient simplicity constraints on the variables in the action (3.19). Since we

are interested in obtaining the scalar field φ of mass m coupled to gravity in the standard

way, we choose the action in the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed . (3.20)

Note that the first row is the topological sector (3.19), the second row is the familiar

simplicity constraint for gravity from the action (2.24), the third row contains the new

simplicity constraints corresponding to the Lagrange multiplier 1-forms λ and Λab and

featuring the Lagrange multiplier 0-form Habc, while the fourth row is the mass term for

the scalar field.

Varying the total action (3.20) with respect to the variables Bab, ωab, βa, λab, Λab, γ,

λ, Habc, φ and ea one obtains the equations of motion:

Rab − λab = 0 , (3.21)

∇Bab − e[a ∧ βb] = 0 , (3.22)

∇ea = 0 , (3.23)
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Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.24)

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb = 0 , (3.25)

dφ− λ = 0 , (3.26)

γ − 1

2
Habce

a ∧ eb ∧ ec = 0 , (3.27)

−1

2
λ ∧ ea ∧ eb ∧ ec + εcdefΛab ∧ ed ∧ ee ∧ ef = 0 , (3.28)

dγ − d(Λab ∧ ea ∧ eb)−
1

4!
m2φεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (3.29)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
Habcλ ∧ eb ∧ ec + 3HdefεabcdΛef ∧ eb ∧ ec

−2Λab ∧ dφ ∧ eb − 2
1

4!
m2φεabcde

b ∧ ec ∧ ed = 0 . (3.30)

The dynamical degrees of freedom are ea and φ, while the remaining variables are alge-

braically determined in terms of them. Specifically, the equations (3.21)–(3.28) give

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , λµ = ∂µφ .

(3.31)

Note that from the equations (3.22), (3.23) and (3.24) it follows that βa = 0, as in the

pure gravity case. The equation of motion (3.29) reduces to the covariant Klein-Gordon

equation for the scalar field, (
∇µ∇µ −m2

)
φ = 0 . (3.32)

Finally, the equation of motion (3.30) for ea becomes:

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)
. (3.33)

The system of equations (3.21)–(3.30) is equivalent to the system of equations (3.31)–(3.33).

Note that in addition to the correct covariant form of the Klein-Gordon equation, we have

also obtained the correct form of the stress-energy tensor for the scalar field.

3.3 Constrained 3BF action for the Dirac field

Now we pass to the more complicated case of the Dirac field. We first define a 2-crossed

module (L
δ→ H

∂→ G ,B , { , }) as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (3.34)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ and the Peiffer

lifting are trivial. The action of the group G on itself is given via conjugation, on H

via vector representation, and on L via spinor representation, as follows. Denoting the
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8 generators of the Lie group R8(G) as Pα and Pα, where the index α takes the values

1, . . . , 4, the action of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B Pα = −1

2
(σab)

α
βP

β , (3.35)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the anticommutation

rule {γa , γb} = −2ηab.

As in the case of the scalar field, the choice of the group L dictates the matter content

of the theory, while the action B of G on L specifies its transformation properties. To see

this explicitly, let us construct the corresponding 3BF action. The 3-connection (α , β , γ)

now takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (3.36)

while the 3-curvature (F ,G ,H), defined in (3.1), is given as

F = RabMab ,G = ∇βaPa , (3.37)

H =

(
dγα +

1

2
ωab(σab)

α
βγ

β

)
Pα +

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα ≡ (

→
∇γ)αPα + (γ̄

←
∇)αP

α ,

where we have used (3.35). The bilinear form 〈 , 〉l is defined as

〈Pα, Pβ〉l = 0 , 〈Pα, P β〉l = 0 , 〈Pα, P β〉l = −δβα , 〈Pα, Pβ〉l = δαβ . (3.38)

Note that, for general A,B ∈ l, we can write

〈A,B〉l = AIBJgIJ , 〈B,A〉l = BJAIgJI . (3.39)

Since we require the bilinear form to be symmetric, the two expressions must be equal.

However, since the coefficients in l are Grassmann numbers, we have AIBJ = −BJAI , so

it follows that gIJ = −gJI . Hence the antisymmetry of (3.38).

Now we use the properties of the group L and the action B of G on L to recognize

the physical nature of the Lagrange multiplier D in (3.2). Indeed, the choice of the group

L dictates that D contains 8 independent complex Grassmannian matter fields as its com-

ponents. Moreover, due to the fact that D is a 0-form and that it transforms according

to the spinorial representation of SO(3, 1), we can identify its components with the Dirac

bispinor fields, and write

D = ψαPα + ψ̄αP
α , (3.40)

where it is assumed that ψ and ψ̄ are independent fields, as usual. This is again an

illustration of the fact that information about the structure of the matter sector in the

theory is specified by the choice of the group L in the 2-crossed module, and another main

result of the paper.

Given all of the above, now we can finally write the 3BF action (3.2) corresponding

to this choice of the 2-crossed module as

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (3.41)
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In order to promote this action into a full theory of gravity coupled to Dirac fermions, we

add the convenient constraint terms to the action, as follows:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd . (3.42)

Here the first row is the topological sector, the second row is the gravitational simplicity

constraint term from (2.24), while the third row contains the new simplicity constraints for

the Dirac field corresponding to the Lagrange multiplier 1-forms λα and λ̄α. The fourth row

contains the mass term for the Dirac field, and a term which ensures the correct coupling

between the torsion and the spin of the Dirac field, as specified by the Einstein-Cartan

theory. Namely, we want to ensure that the torsion has the form

Ta ≡ ∇ea = 2πl2psa , (3.43)

where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (3.44)

is the spin 2-form. Of course, other couplings should also be straightforward to imple-

ment, but we choose this particular coupling because we are interested in reproducing the

standard Einstein-Cartan gravity coupled to the Dirac field.

Varying the action (3.42) with respect to Bab, λ
ab, γ̄α, γα, λα, λ̄α, ψ̄α, ψα, ea, βa and

ωab one obtains the equations of motion:

Rab − λab = 0 , (3.45)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.46)

(
→
∇ψ)α − λα = 0 , (3.47)

(ψ̄
←
∇)α − λ̄α = 0 , (3.48)

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α = 0 , (3.49)

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α = 0 , (3.50)

dγα + ωαβ ∧ γβ +
i

6
λβ ∧ εabcdea ∧ eb ∧ ecγdαβ +

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψα

+i2πl2pεabcde
a ∧ eb ∧ βc(γ5γdψ)α = 0 , (3.51)

dγ̄α − γ̄β ∧ ωβα +
i

6
λ̄β ∧ εabcdea ∧ eb ∧ ecγdβα −

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψ̄α

−i2πl2pεabcdea ∧ eb ∧ βc(ψ̄γ5γd)α = 0 , (3.52)
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∇βa + 2εabcdλ
bc ∧ ed − i

2
εabcdλ

α ∧ eb ∧ ec(ψ̄γd)α +
i

2
εabcdλ̄α ∧ eb ∧ ec(γdψ)α

−1

3
εabcde

b ∧ ec ∧ edmψ̄ψ − 4πl2piεabcde
b ∧ βcψ̄γ5γdψ = 0 , (3.53)

∇ea − i2πl2pεabcdeb ∧ ecψ̄γ5γdψ = 0 , (3.54)

∇Bab − e[a ∧ βb] + γ̄
1

8
[γa, γb]ψ + ψ̄

1

8
[γa, γb]γ = 0 . (3.55)

The dynamical degrees of freedom are ea, ψα and ψ̄α, while the remaining variables are

determined in terms of the dynamical variables, and are given as:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α , (3.56)

λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

Here Kab
µ is the contorsion tensor, constructed in the standard way from the torsion tensor,

whereas from (3.54) we have

Ta ≡ ∇ea = 2πl2psa , (3.57)

which is precisely the desired equation (3.43). Further, from the equation (3.46) one obtains

∇Bab = − 1

8πl2p
εabcd (ec ∧∇ed) . (3.58)

Substituting this expression in the equation (3.55) it follows that

2εabcde
c ∧
(
− 1

16πl2p
∇ed +

1

8
sd
)
− e[a ∧ βb] = 0 . (3.59)

The expression in the parentheses is equal to zero, according to the equation (3.54). From

the remaining term e[a ∧ βb] = 0 it again follows that

β = 0 . (3.60)

Using this result, the equation of motion (3.51) for fermions becomes

i

6
εabcde

a ∧ eb ∧
(

2ec ∧ γd
→
∇+

im

2
ec ∧ ed − 3(∇ec)γd

)
ψ = 0 . (3.61)

Using equation (3.54), the last term in the parentheses vanishes, and the equation reduces

to the covariant Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (3.62)

where eµa is the inverse tetrad. Similarly, the equation (3.52) gives the conjugated Dirac

equation:

ψ̄(i
←
∇µeµaγa +m) = 0 . (3.63)
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Finally, the equation of motion (3.53) for tetrad field reduces to

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ i

2
ψ̄γν

↔
∇aeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (3.64)

Here, we used the notation
↔
∇ =

→
∇−

←
∇. The system of equations (3.45)–(3.55) is equivalent

to the system of equations (3.56), (3.60), (3.62)–(3.64). As we expected, the equations

of motion (3.57), (3.62), (3.63) and (3.64) are precisely the equations of motion of the

Einstein-Cartan theory coupled to a Dirac field.

3.4 Constrained 3BF action for the Weyl and Majorana fields

A general solution of the Dirac equation is not an irreducible representation of the Lorentz

group, and one can rewrite Dirac fermions as left-chiral and right-chiral fermion fields that

both retain their chirality under Lorentz transformations, implying their irreducibility.

Hence, it is useful to rewrite the action for left and right Weyl spinors as a constrained

3BF action. For simplicity, we will discuss only left-chiral spinor field, while the right-

chiral field can be treated analogously. Both Weyl and Majorana fermions can be treated

in the same way, the only difference being the presence of an additional mass term in the

Majorana action.

We being by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (3.65)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group G on G, H

and L is given in the same way as for the Dirac case, whereas the spinorial representation

reduces to

Mab B Pα =
1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (3.66)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in which ~σ denotes

the set of three Pauli matrices. The four generators of the group L are denoted as Pα and

Pα̇, where the Weyl indices α, α̇ take values 1, 2.

The 3-connection (α , β , γ) now takes the form corresponding to this choice of Lie

groups,

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (3.67)

while the fake 3-curvature (F ,G ,H) defined in (3.1) is

F = RabMab , G = ∇βaPa , (3.68)

H =

(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇

)
P α̇ ≡ (

→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

Introducing the spinor fields ψα and ψ̄α̇ via the Lagrange multiplier D as

D = ψαP
α + ψ̄α̇Pα̇ , (3.69)

and using the bilinear form 〈 , 〉l for the group L,

〈Pα, P β〉l = εαβ , 〈Pα̇, Pβ̇〉l = εα̇β̇ , 〈Pα, Pβ̇〉l = 0 , 〈Pα̇, P β〉l = 0 , (3.70)
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where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita symbols, the

topological 3BF action (3.2) for spinors coupled to gravity becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (3.71)

In order to obtain the suitable equations of motion for the Weyl spinors, we again introduce

appropriate simplicity constraints, so that the action becomes:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γα +

i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇

)
− λ̄α̇ ∧

(
γ̄α̇ +

i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ
)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) . (3.72)

The new simplicity constraints are in the third row, featuring the Lagrange multiplier

1-forms λα and λ̄α̇. Also, using the coupling between the Dirac field and torsion from

Einstein-Cartan theory as a model, the term in the fourth row is chosen to ensure that the

coupling between the Weyl spin tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ , (3.73)

and torsion is given as:

Ta = 4πl2psa . (3.74)

The case of the Majorana field is introduced in exactly the same way, albeit with an

additional mass term in the action, of the form:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (3.75)

Varying the action (3.72) with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα,

ψ̄α̇, ea, βa and ωab one again obtains the complete set of equations of motion, displayed

in the appendix C. The only dynamical degrees of freedom are ψα, ψ̄α̇ and ea, while the

remaining variables are algebraically determined in terms of these as:

λabµν = Rabµν , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ , (3.76)

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ , ωabµ = 4abµ +Kabµ .

In addition, one also maintains the result β = 0 as before. Finally, the equations of motion

for the dynamical fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (3.77)

and

Rµν − 1

2
gµνR = 8πl2p T

µν , (3.78)
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where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄ − gµν

1

2

(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
. (3.79)

Here we have suppressed the spinor indices. In the case of the Majorana field, the equations

of motion (3.76) remain the same, while the equations of motion for ψα and ψ̄α̇ take the

form

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (3.80)

whereas the stress-energy tensor takes the form

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

− gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(3.81)

4 The Standard Model

The Standard Model 3-group can be defined as:

G = SO(3, 1)×SU(3)×SU(2)×U(1) , H = R4 , L = R4(C)×R64(G)×R64(G)×R64(G) ,

(4.1)

where C denotes the field of complex numbers. The motivation for this choice of the group

L is given in the table below.

1. lepton generation

red color

1. quark generation

green color

1. quark generation

blue color

1. quark generation(
νe

e−

)
L

(
ur

dr

)
L

(
ug

dg

)
L

(
ub

db

)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R

We see that in order to introduce one generation of matter one needs to provide 16

spinors, or equivalently the group L has to be chosen as L = R64(G). As there are three

generations of matter, the part of the group L that corresponds to the fermion fields in

the theory is chosen to be L = R64(G)×R64(G)×R64(G). To define the Higgs sector one

needs two complex scalar fields

(
φ+

φ0

)
, or equivalently the scalar sector of the group L is

given as L = R4(C).

The maps ∂, δ and the Peiffer lifting are trivial. The action of the group G on itself

is given via conjugation. The action of the SO(3, 1) subgroup of G on H is via vector

representation and the action of SU(3)× SU(2)×U(1) subgroup on H is via trivial repre-

sentation. The action of the SO(3, 1) on L is via trivial representation for the generators

corresponding to the scalar fields, i.e. the R4(C) subgroup of L, and via spinor represen-

tation for the every quadruple of generators corresponding to the fermion fields, given as
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in the section 3. The information how spinors transform under the SU(3) × SU(2)× U(1)

group is encoded in the action of that subgroup of G on L, as specified in the table above.

For simplicity, in the following, only one family of the lepton sector and only electroweak

part of the gauge sector of the Standard model is considered.

The groups are chosen as:

G = SO(3, 1)× SU(2)×U(1) , H = R4 , Lleptons = R16(G)× R4(C) . (4.2)

The 3-connection then takes the form

α = ωabMab +W ITI +AY , β = βaPa ,

γ = γα
L̃PαL̃ + γα̇L̃Pα̇

L̃ + γα
R̃PαR̃ + γα̇R̃Pα̇

R̃ + γãPã .
(4.3)

Here the indices I, J, . . . take the values 1, 2, 3 and counts the Pauli matrices, generators

of the group SU(2), the indices L̃, L̃′, . . . take the values 1, 2 and count the components of

left doublet, R̃ denotes the right singlet (e−)R and right singlet (νe)R, and indices ã, b̃, . . .

take values 1, 2 and count the components of the scalar doublet. It is also useful to define

ĩ = (L̃, R̃) which takes values 1, . . . , 4.

The action of the group G on L is defined as:

Mab B Pαi =
1

2
(σab)

α
βP

β
i , Mab B Pα̇i =

1

2
(σ̄ab)

β̇
α̇Pβ̇i , Mab B Pã = 0 ,

TI B PαL̃ =
1

2
(σI)

L̃′

L̃P
α
L̃′ , TI B Pα̇L̃ =

1

2
(σI)

L̃′

L̃Pα̇L̃′ ,

TI B PαR̃ = 0 , TI B Pα̇R̃ = 0 , TI B Pã =
1

2
(σI)

b̃
ãPb̃ ,

Y B PαL̃ = −PαL̃ , Y B PαeR = −2PαeR , Y B PανR = −2PανR , Y B Pã = Pã ,

Y B Pα̇L̃ = −Pα̇L̃ , Y B Pα̇eR = −2Pα̇eR , Y B Pα̇νR = −2Pα̇νR . (4.4)

The 3-curvatures are given as:

F = RabMab + F ITI + FY , G = ∇βaPa ,

H = (
→
∇γL̃)αP

α
L̃ + (γ̄L̃

←
∇)α̇P α̇

L̃ + (
→
∇γR̃)αP

α
R̃ + (γ̄R̃

←
∇)α̇P α̇

R̃ + dγãPã .
(4.5)

The topological 3BF action is defined as:

S =

∫
BabR

ab +BIF
I +BF + ea∇βa + ψαĩ(

→
∇γ ĩ)α + ψ̄α̇

ĩ(γ̄ ĩ
←
∇)α̇ + φãdγã . (4.6)

At this point, it is useful to simplify the notation and denote all indices of the group G by

α̂, of the group H by â and L by Â. In order to promote this action to a full theory of

first lepton family coupled to electroweak gauge fields, Higgs field, and gravity, we again
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introduce the appropriate simplicity constraint, as follows

S =

∫
Bα̂ ∧ F α̂ + eâ ∧ Gâ +DÂ ∧H

Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧ λα̂ −

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧ λÂ

+ ζabα̂ ∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)

+ ζabÂ ∧
(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

− εabcdea ∧ eb ∧ ec ∧ ed
(
YÂB̂ĈD

ÂDB̂DĈ +MÂB̂D
ÂDB̂ + LÂB̂ĈD̂D

ÂDB̂DĈDD̂
)

− 4πi l2p εabcde
a ∧ eb ∧ βcDÂT

dÂ
B̂D

B̂ , (4.7)

where:

Bα̂ =
[
Bab BI B

]
, F α̂ =

[
Rab FI F

]
T , DÂ =

[
ψαL̃ ψ̄α̇L̃ ψ

α
R ψ̄α̇R φã

]
,

HÂ =
[

(
→
∇γL̃)α (γ̄L̃

←
∇)α̇ (

→
∇γR̃)α (γ̄R̃

←
∇)α̇ dγã

]
T , γÂ =

[
γαL̃ γ̄α̇L̃ γ

α
R̃ γ̄α̇R̃ γã

]
,

λα̂ =
[
−λab λI λ

]
T , ζcdα̂ =

[
0 ζcdI ζ

cd
]
, ζabÂ =

[
ζab 0 0

]
,

λÂ =
[
λαL λ̄

α̇
L λαR λ̄α̇R λã

]
T , Mcdα̂ =

[
εabcd McdI Mcd

]
,

MabcÂ =
[
εabcdσ

d
αβ̇ψ̄

β̇
L εabcdσ̄

dα̇βψβL εabcdσ
d
αβ̇ψ̄

β̇
R εabcdσ̄

dα̇βψβR Mabcã

]
.

The matrices Cα̂β̂ , CÂB̂, MÂB̂, YÂB̂Ĉ , LÂB̂ĈD̂ and T dÂB̂ are constant matrices, and

carry the information about gauge coupling constants, mass of the Higgs field, Yukawa

couplings and mixing angles, Higgs self-coupling constant and torsion coupling, respectively.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short reminder

of the BF theory and described how one can use it to construct the action for general

relativity (the well known Plebanski model), and the action for the Yang-Mills theory

in flat spacetime, in a novel way. Passing on to higher gauge theory, we have reviewed

the formalism of 2-groups and the corresponding 2BF theory, using it again to construct

the action for general relativity (a model first described in [12]), and the unified action

of general relativity and Yang-Mills theory, both naturally described using the 2-group

formalism. With this background material in hand, in section 3 we have used the idea

of a categorical ladder yet again, generalizing the 2BF theory to 3BF theory, with the

underlying structure of a 3-group instead of a 2-group. This has led us to the main insight

that the scalar and fermion fields can be specified using a gauge group, namely the third

gauge group, denoted L, present in the 2-crossed module corresponding to a given 3-group.

This has allowed us to single out specific gauge groups corresponding to the Klein-Gordon,

Dirac, Weyl and Majorana fields, and to construct the relevant constrained 3BF actions

that describe all these fields coupled to gravity in the standard way.
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The obtained results represent the fundamental building blocks for the construction of

the complete Standard Model of elementary particles coupled to Einstein-Cartan gravity

as a 3BF action with suitable simplicity constraints, as demonstrated in section 4. In

this way, we can complete the first step of the spinfoam quantization programme for the

complete theory of gravity and all matter fields, as specified in the Introduction. This is

a clear improvement over the ordinary spinfoam models based on an ordinary constrained

BF theory.

In addition to this, the gauge group which determines the matter spectrum of the

theory is a completely novel structure, not present in the Standard Model. This new

gauge group stems from the 3-group structure of the theory, so it is not surprising that

it is invisible in the ordinary formulation of the Standard Model, since the latter does

not use any 3-group structure in an explicit way. In this paper, we have discussed the

choices of this group which give rise to all relevant matter fields, and these can simply be

directly multiplied to give the group corresponding to the full Standard Model, encoding

the quark and lepton families and all other structure of the matter spectrum. However,

the true potential of the matter gauge group lies in a possibility of nontrivial unification

of matter fields, by choosing it to be something other than the ordinary product of its

component groups. For example, instead of choosing R8(G) for the Dirac field, one can try a

noncommutative SU(3) group, which also contains 8 generators, but its noncommutativity

requires that the maps δ and { , } be nontrivial, in order to satisfy the axioms of a

2-crossed module. This, in turn, leads to a distinction between 3-curvature and fake 3-

curvature, which can have consequences for the dynamics of the theory. In this way, by

studying nontrivial choices of a 3-group, one can construct various different 3-group-unified

models of gravity and matter fields, within the context of higher gauge theory. This idea

resembles the ordinary grand unification programme within the framework of the standard

gauge theory, where one constructs various different models of vector fields by making

various choices for the Yang-Mills gauge group. The detailed discussion of these 3-group

unified models is left for future work.

As far as the spinfoam quantization programme is concerned, having completed the

step 1 (as outlined in the Introduction), there is a clear possibility to complete the steps 2

and 3 as well. First, the fact that the full action is written completely in terms of differential

forms of various degrees, allows us to adapt it to a triangulated spacetime manifold, in the

sense of Regge calculus. In particular, all fields and their field strengths present in the

3BF action can be naturally associated to the appropriate d-dimensional simplices of a

4-dimensional triangulation, by matching 0-forms to vertices, 1-forms to edges, etc. This

leads us to the following table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃
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Once the classical Regge-discretized topological 3BF action is constructed, one can

attempt to construct a state sum Z which defines the path integral for the theory. The

topological nature of the pure 3BF action, together with the underlying structure of the 3-

group, should ensure that such a state sum Z is a topological invariant, in the sense that it is

triangulation independent. Unfortunately, in order to perform this step precisely, one needs

a generalization of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups, a

mathematical result that is presently still missing. The purpose of the Peter-Weyl theorem

is to provide a decomposition of a function on a group into a sum over the corresponding

irreducible representations, which ultimately specifies the appropriate spectrum of labels

for the d-simplices in the triangulation, fixing the domain of values for the fields living on

those d-simplices. In the case of 2-groups and especially 3-groups, the representation theory

has not been developed well enough to allow for such a construction, with a consequence of

the missing Peter-Weyl theorem for 2-groups and 3-groups. However, until the theorem is

proved, we can still try to guess the appropriate structure of the irreducible representations

of the 2- and 3-groups, as was done for example in [12], leading to the so-called spincube

model of quantum gravity.

Finally, if we remember that for the purpose of physics we are not really interested in a

topological theory, but instead in one which contains local propagating degrees of freedom,

we are therefore not really engaged in constructing a topological invariant Z, but rather

a state sum which describes nontrivial dynamics. In particular, we need to impose the

simplicity constraints onto the state sum Z, which is the step 3 of the spinfoam quantization

programme. In light of that, one of the main motivations and also main results of our paper

was to rewrite the action for gravity and matter in a way that explicitly distinguishes the

topological sector from the simplicity constraints. Imposing the constraints is therefore

straightforward in the context of a 3-group gauge theory, and completing this step would

ultimately lead us to a state sum corresponding to a tentative theory of quantum gravity

with matter. This is also a topic for future work.

In the end, let us also mention that aside from the unification and quantization pro-

grammes, there is also a plethora of additional studies one can perform with the constrained

3BF action, such as the analysis of the Hamiltonian structure of the theory (suitable for

a potential canonical quantization programme), the idea of imposing the simplicity con-

straints using a spontaneous symmetry breaking mechanism, and finally a detailed study

of the mathematical structure and properties of the simplicity constraints. This list is of

course not conclusive, and there may be many more interesting related topics to study in

both physics and mathematics.
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A Category theory, 2-groups and 3-groups

Definition 1 (Pre-crossed module and crossed module) A pre-crossed module

(H
∂→ G ,B) of groups G and H, is given by a group map ∂ : H → G, together with a

left action B of G on H, by automorphisms, such that for each h1 , h2 ∈ H and g ∈ G the

following identity hold:

g∂hg−1 = ∂(g B h) .

In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1) B h−12 .

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are

trivial, which is to say that

(∂h) B h′ = hh′h−1 ,

i.e. the Peiffer identity is satisfied.

Definition 2 (2-crossed module) A 2-crossed module (L
δ→ H

∂→ G, B, {−, −}) is

given by three groups G, H and L, together with maps ∂ and δ such that:

L
δ→ H

∂→ G ,

where ∂δ = 1, an action B of the group G on all three groups, and an G-equivariant map

called the Peiffer lifting:

{− ,−} : H ×H → L .

The following identities are satisfied:

1. The maps ∂ and δ are G-equivariant, i.e. for each g ∈ G and h ∈ H:

g B ∂(h) = ∂(g B h) , g B δ(l) = δ(g B l) ,

the action of the group G on the groups H and L is a smooth left action by automor-

phisms, i.e. for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and e ∈ H,L:

g1B(g2Be) = (g1g2)Be , gB(h1h2) = (gBh1)(gBh2) , gB(l1l2) = (gBl1)(gBl2) ,

and the Peiffer lifting is G-equivariant, i.e. for each h1, h2 ∈ H and g ∈ G:

g B {h1 , h2} = {g B h1, g B h2} ;

2. the action of the group G on itself is via conjugation, i.e. for each g , g0 ∈ G:

g B g0 = g g0 g
−1 ;
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3. In a 2-crossed module the structure (L
δ→ H, B′) is a crossed module, with action of

the group H on the group L is defined for each h ∈ H and l ∈ L as:

hB′ l = l {δ(l)−1, h} ,

but (H
∂→ G ,B) may not be one, and the Peiffer identity does not necessary hold.

However, when ∂ is chosen to be trivial and group H Abelian, the Peiffer identity is

satisfied, i.e. for each h, h′ ∈ H:

δ(h) B h′ = hh′ h−1 ;

4. δ({h1, h2}) = 〈h1 , h2〉p, ∀h1, h2 ∈ H,

5. [l1, l2] = {δ(l1) , δ(l2)}, ∀l1 , l2 ∈ L. Here, the notation [l, k] = lkl−1k−1 is used;

6. {h1h2, h3} = {h1, h2h3h−12 }∂(h1) B {h2, h3}, ∀h1, h2, h3 ∈ H;

7. {h1, h2h3} = {h1, h2}{h1, h3}{〈h1, h3〉−1p , ∂(h1) B h2}, ∀h1, h2, h3 ∈ H;

8. {δ(l), h}{h, δ(l)} = l(∂(h) B l−1), ∀h ∈ H , ∀l ∈ L.

Definition 3 (Differential pre-crossed module, differential crossed module)

A differential pre-crossed module (h
∂→ g ,B) of algebras g and h is given by a Lie algebra

map ∂ : h→ g together with an action B of g on h such that for each h ∈ h and g ∈ g:

∂(g B h) = [g, ∂(h)] .

The action B of g on h is on left by derivations, i.e. for each h1, h2 ∈ h and each g ∈ g:

g B [h1, h2] = [g B h1, h2] + [h1, g B h2] .

In a differential pre-crossed module, the Peiffer commutators are defined for each h1, h2 ∈ h

as:

〈h1, h2〉p = [h1, h2]− ∂(h1) B h2 .

The map (h1, h2) ∈ h× h→ 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1 , h2 ∈ h and g ∈ g satisfy the following identity:

g B 〈h1 , h2〉p = 〈g B h1 , h2〉+ 〈h1 , g B h2〉p .

A differential pre-crossed module is said to be a differential crossed module if all of its

Peiffer commutators vanish, which is to say that for each h1, h2 ∈ h:

∂(h1) B h2 = [h1, h2] .

Definition 4 (Differential 2-crossed module) A differential 2-crossed module is given

by a complex of Lie algebras:

l
δ→ h

∂→ g ,
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together with left action B of g on h, l, by derivations, and on itself via adjoint represen-

tation, and a g-equivariant bilinear map called the Peiffer lifting:

{− , −} : h× h→ l

Fixing the basis in algebra TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC , [ta, tb] = fab

c tc , [τα, τβ ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta ,

and action of g on the generators of l, h and g is, respectively:

τα B TA = BαA
B TB , τα B ta = Bαa

b tb , τα B τβ = Bαβ
γ τγ .

Note that when η is g-valued differential form and ω is l, h or g valued differential form

the previous action is defined as:

η B ω = ηα ∧ ωA BαA
B TB , η B ω = ηα ∧ ωa Bαa

b tb , η B ω = ηα ∧ ωβfαβγ τγ .

The coefficients Xab
A are introduced as:

{ta, tb} = Xab
ATA .

The following identities are satisfied:

1. In the differential crossed module (L
δ→ H ,B′) the action B′ of h on l is defined for

each h ∈ h and l ∈ l as:

hB′ l = −{δ(l), h} ,

or written in the basis where ta B′ TA = B′aABTB the previous identity becomes:

B′aA
B

= −δAbXba
B ;

2. The action of g on itself is via adjoint representation:

Bαβ
γ = fαβ

γ ;

3. The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
βfαβ

γ = Bαa
b∂b

γ , δA
a Bαa

b = BαA
BδB

b ;

4. The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g B {h1, h2} = {g B h1, h2}+ {h1, g B h2} ,

or written in the basis:

Xab
BBαB

A = Bαa
cXcb

A + Bαb
cXac

A ;
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5. δ({h1, h2}) = 〈h1, h2〉 p , ∀h1, h2 ∈ h, i.e.

Xab
AδA

c = fab
c − ∂aαBαb

c ;

6. [l1, l2] = {δ(l1), δ(l2)} , ∀l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C ;

7. {[h1, h2], h3} = ∂(h1)B {h2, h3}+ {h1, [h2, h3]}−∂(h2)B {h1, h3}−{h2, [h1, h3]} ,
∀h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3} = {∂(h1)Bh2, h3}−{∂(h2)Bh1, h3}−{h1, δ{h2, h3}}+{h2, δ{h1, q, h3}},

fab
dXdc

B = ∂a
αXbc

ABαA
B +Xad

Bfbc
d − ∂bαBαA

BXac
A −Xbd

Bfac
d ;

8. {h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} , ∀h1, h2, h3 ∈ h, i.e.

Xad
Afbc

d = Xab
BδB

dXdc
A −Xac

BδB
dXdb

A ;

9. {δ(l), h}+ {h, δ(l)} = −∂(h) B l , ∀l ∈ l , ∀h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂bαBαA
B .

Note that the property 6. implies that either trivial map δ or the trivial Peiffer lifting imply

that L is an Abelian group. Conversely, if L is Abelian, property 6. implies that either the

map δ or the Peiffer lifting is trivial, or both.

In the case of an Abelian group H and trivial map ∂, among the aforementioned

properties the only non-trivial remaining are:

1. δ{h1, h2} = 0 , ∀h1 , h2 ∈ h ;

2. [l1, l2] = {δ(l1), δ(l2)} , ∀l1 , l2 ∈ l ;

3. {δ(l), h} = −{h, δ(l)} , ∀h ∈ h , ∀l ∈ l .

A reader intrested in more details about 3-groups is referred to [25].

B The construction of gauge-invariant actions for 3BF theory

Symmetric bilinear invariant nondegenerate forms are defined as:

〈TA , TB〉l = gAB , 〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ .

They satisfy the following properties:

• 〈 , 〉g is G-invariant:

〈gταg−1 , gτβg−1〉g = 〈τα , τβ〉g , ∀g ∈ G ;
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• 〈 , 〉h is G-invariant:

〈g B ta , g B tb〉h = 〈ta , tb〉h , ∀g ∈ G ,

and, when (H
∂→ G ,B) is a crossed module, consequently H-invariant:

〈htah−1 , htbh−1〉h = 〈∂(h) B ta , ∂(h) B tb〉h = 〈ta , tb〉h , ∀h ∈ H ;

• 〈 , 〉l is G-invariant:

〈g B TA , g B TB〉l = 〈TA , TB〉l , ∀g ∈ G ,

and in the case when the Peiffer lifting or the map δ is trivial consequently H-

invariant:

〈hB′ TA , hB′ TB〉l = 〈TA − {δ(TA), h} , TB − {δ(TB), h}〉l = 〈TA , TB〉l , ∀h ∈ H .

From the H-invariance of 〈 , 〉l and properties of a crossed module (L
δ→ H ,B′)

follows L-invariance:

〈lTAl−1 , lTBl−1〉l = 〈δ(l) B′ TA , δ(l) B′ TB〉l = 〈TA , TB〉l , ∀l ∈ L .

From the invariance of the bilinear forms follows the existence of gauge-invariant topological

3BF action of the form:

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧ H〉l , (B.1)

where B ∈ A2(M4 , g), C ∈ A1(M4 , h) and D ∈ A0(M4 , l) are Lagrange multipliers, and

F ∈ A2(M4 , g), G ∈ A3(M4 , h) and H ∈ A4(M4 , l) are curvatures defined as in (3.1).

Written in the basis:

F =
1

2
Fαµνταdxµ ∧ dxν , G =

1

3!
Gaµνρtadxµ ∧ dxν ∧ dxρ ,

H =
1

4!
HAµνρσTAdxµ ∧ dxν ∧ dxρ ∧ dxσ ,

the coefficients are:

Fαµν = ∂µα
α
ν − ∂νααµ + fβγ

ααβµα
γ
ν − βaµν∂aα ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν

+ ααµβ
b
νρBαb

a + αανβ
b
ρµBαb

a + ααρβ
b
µνBαb

a − γAµνρδAa ,
HAµνρσ = ∂µγ

A
νρσ − ∂νγAρσµ + ∂ργ

A
σµν − ∂σγAµνρ

+ 2βaµνβ
b
ρσX{ab}

A − 2βaµρβ
b
νσX{ab}

A + 2βaµσβ
b
νρX{ab}

A

+ ααµγ
B
νρσBαB

A − αανγBρσµBαB
A + ααργ

B
σµνBαB

A − αασγBµνρBαB
A .

Note that the wedge product A ∧ B when A is a 0-form and B is a p-form is defined

as A ∧B = 1
p!ABµ1...µpdxµ1 ∧ · · · ∧ xµp .
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Given G-invariant symmetric non-degenerate bilinear forms in g and h, one can define

a bilinear antisymmetric map T : h× h→ g by the rule:

〈T (h1, h2) , g〉g = −〈h1, g B h2〉h, ∀h1, h2 ∈ h , ∀g ∈ g .

See [17] for more properties and the construction of 2BF invariant topological action using

this map. To define 3BF invariant topological action one has to first define a bilinear

antisymmetric map S : l× l→ g by the rule:

〈S(l1, l2), g〉g = −〈l1, g B l2〉l , ∀l1, ∀l2 ∈ l , ∀g ∈ g .

Note that 〈 , 〉g is non-degenerate and

〈l1, g B l2〉l = −〈g B l1, l2〉l = −〈l2, g B l1〉l , ∀g ∈ g, ∀l1, l2 ∈ l .

Morever, given g ∈ G and l1, l2 ∈ l one has:

S(g B l1, g B l2) = g S(l1, l2) g
−1 ,

since for each g ∈ g and l1, l2 ∈ l:

〈g, g−1S(g B l1 , g B l2)g〉g = 〈ggg−1, S(g B l1, g B l2)〉g
= −〈(g g g−1) B g B l1, g B l2〉l
= −〈g B l1 , l2〉l = 〈g ,S(l1, l2)〉g ,

where the following mixed relation has been used:

g B (g B l) = (g g g−1) B g B l . (B.2)

We thus have the following identity:

S(g B l1, l2) + S(l1, g B l2) = [g, S(l1, l2)] .

As far as the bilinear antisymmetric map S : l × l→ g, one can write it in the basis:

S(TA, TB) = SABατα ,

so that the defining relation for S becomes the relation:

SABαgαβ = −Bα[B
CgA]C .

Given two l-valued forms η and ω, one can define a g-valued form:

ω ∧S η = ωA ∧ ηBSABατα .

Now one can define the transformations of the Lagrange multipliers under L-gauge trans-

formations (3.15).
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Further, to define the transformations of the Lagrange multipliers under H-gauge

transformations one needs to define the bilinear map X1 : l× h→ h by the rule:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l ,

and bilinear map X2 : l× h→ h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l .

As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1Aa
b tb , X2(TA, ta) = X2Aa

b tb .

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
cgac = −Xba

BgAB , X2Ab
cgac = −Xab

BgAB .

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued

form as:

ω ∧X1 η = ωA ∧ ηaX1Aa
btb , ω ∧X2 η = ωA ∧ ηaX2Aa

btb .

Given any g ∈ G, l ∈ l and h ∈ h one has:

X1(g B l, g−1 B h) = g B X1(l, h) , X2(g B l, g B h) = g−1 B X2(l, h) ,

since for each h1, h2 ∈ h and l ∈ l:

〈h2, g−1 B X1(g B l, g B h1)〉h = 〈g B h2, X1(g B l, g B h1)〉h = 〈g B l, {g B h1, g B h2}〉l
〈g B l, g B {h1, h2}〉l = 〈l, {h1, h2}〉l = 〈h2, X1(l, h1)〉h ,

and similarly for X 2. Finaly, one needs to define a trilinear map D : h× h× l→ g by the

rule:

〈D(h1, h2, l), g〉g = −〈l, {g B h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g ,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabAατα ,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabAβgαβ = −Bαa
cXcb

BgAB .

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the

formula:

ω ∧D η ∧D ξ = ωa ∧ ηb ∧ ξADabAβτβ .

The following compatibility relation between the maps X1 and D hold:

〈D(h1, h2, l), g〉g = 〈X1(l, g B h1), h2〉h , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g , (B.3)
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which one can prove valid from the defining relations in terms of the coefficients. One can

demonstrate that for each h1, h2 ∈ h, l ∈ l and g ∈ G:

D(g B h1, g B h2, g B l) = gD(h1, h2, l) g
−1 ,

since for each h1, h2 ∈ h, l ∈ l, g ∈ g and g ∈ G:

〈g−1D(g B h1, g B h2, g B l)g, g〉g = 〈D(g B h1, g B h2, g B l), ggg−1〉g
= 〈X1(g B l, ggg−1 B g B h1), g B h2〉h
= 〈X1(g B l, g B g B h1), g B h2〉h
= 〈g B X1(l, g B h1), g B h2〉h
= 〈X1(l, g B h1), h2〉h
= 〈D(h1, h2, l) , g〉g ,

where the relation (B.2) and the compatibility relation (B.3) were used. We thus have for

each h1, h2 ∈ h, l ∈ l and g ∈ g the following identity:

D(g B h1, h2, l) +D(h1, g B h2, l) +D(h1, h2, g B l) = [g, D(h1, h2, l)] .

Now one can define the transformations of the Lagrange multipliers under H-gauge trans-

formations as in (3.14).

C The equations of motion for the Weyl and Majorana fields

The action for the Weyl spinor field coupled to gravity is given by (3.72). The variation of

this action with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab

one obtains the complete set of equations of motion, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

∇ψα + λα = 0 ,

∇ψ̄α̇ + λ̄α̇ = 0 ,

−γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇ = 0 ,

−γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ = 0 ,

∇γα −
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇λ̄
β̇ = 0 ,

∇γ̄α̇ − i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βλβ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcde

b ∧ ec ∧ (λ̄α̇σ̄
dα̇βψβ + λασdαβ̇ψ̄

β̇)

−8πil2pεabcde
bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,
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∇ea − 4πl2pεabcde
b ∧ ec ∧ (ψ̄α̇σ̄

dα̇βψβ) = 0 ,

∇Bab − e[a ∧ βb] −
1

2
γσabα

βψβ −
1

2
γ̄α̇σ̄

abα̇
β̇ψ̄

β̇ = 0 .

In the case of the Majorana field, one adds the mass term (3.75) to the action (3.72). Then,

the variation of the action with respect to Bab, ψ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇I , ea, βa and ωab

gives the equations of motion for the Majorana case, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

−∇ψα + λα = 0 ,

−∇ψ̄α̇ + λα̇ = 0 ,

γα − i

6
εabcde

a ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α = 0 ,

γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecψβ(σd)βα̇ = 0 ,

∇γα +
i

6
εabcdλ

β̇ ∧ ea ∧ eb ∧ ec(σd)αβ̇ −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα

−4iπl2pεabcde
a ∧ eb ∧ βcψ̄β̇(σ̄d)β̇α = 0 ,

∇γ̄α̇ +
i

6
εabcdλβ ∧ ea ∧ eb ∧ ec(σ̄d)α̇β −

1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα̇

−4iπl2pεabcde
a ∧ eb ∧ βcψβ(σd)βα̇ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcdλα ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α +

i

2
εabcdλ

α̇ ∧ eb ∧ ecψβ(σd)βα̇

−1

3
mεabcde

b ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇)− 8πil2pεabcde

bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇ea − 4iπl2pεabcde
b ∧ ec

(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇Bab − e[a ∧ βb] −
1

2
ψα(σab)α

βγβ −
1

2
ψ̄α̇(σ̄ab)α̇β̇ γ̄

β̇ = 0 .
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