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Introduction

Massive Higher-Spin (HS) resonances exist: atoms in electromagnetism and resonances in

QCD are familiar examples. The importance of HS modes extends potentially beyond these,

into the realm of physics Beyond the Standard Model (BSM). String excitations and large-

N Yang-Mills theory contain HS modes, and it is plausible that these might populate the

universe at very short distances. Such HS resonances have been shown to have distinctive

phenomenological signatures in cosmology [1–4] and it is interesting to speculate about

their implications for other experiments, such as in colliders or dark matter searches.

In the first part of this article, section 1, we discuss the effective field theory (EFT) of

an isolated massive (integer) HS resonance from a particle physics perspective, in which we

identify the different sectors associated, respectively, with the transverse (massless) polar-

izations of the HS mode, and the longitudinal ones as would-be-eaten Goldstones. Such a

separation has been proven very important in the context of spin-1 particles, in the form of

the equivalence theorem [5], and for spin-2 particles [6], providing a systematic approach to

power-count the interactions and estimate the cutoff of the EFT. Here, it will enable us to

build a consistent interacting HS EFT and to study systematically its high-energy regime.
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Massless HS particles are hunted by a series of “No-Go” theorems, see e.g. [7, 8] for

reviews. These do not represent a fundamental obstacle in the construction of a consistent

massive HS EFT, but rather single out very specific low-energy structures amenable to

more detailed and quantitative studies, as those we propose in this article. The Coleman-

Mandula theorem [9] forbids the existence of HS conserved charges that commute with the

S-matrix: the symmetry generated by such a current must be spontaneously broken. Re-

quiring that the associated Goldstone bosons generate self-consistently a mass gap via the

Higgs mechanism dictates completely the IR coupling of transverse modes and Goldstone

bosons. Analogously, interactions which are not proportional to the mass vanish in the limit

of small momentum, meaning derivative couplings that do not transmit long-range forces,

in harmony with the Weinberg soft theorems [10]. The first part of this work is dedicated to

showing that seemingly consistent low-energy interacting EFTs for HS are in fact possible.

Yet, in QCD, the HS arise as relativistic strongly-coupled bound states of quarks and

gluons, with a mass comparable to or larger than their inverse typical size, set by the

interaction scale. Similarly in electromagnetism. In perturbative string theory, infinitely

many HS come in towers with no parametric mass separation. So, in these examples,

HS excitations cannot be considered in isolation: they are always accompanied by other

resonances. In the language of EFT, this implies that the cutoff of an HS is of order its mass.

In the second part of this article, section 2, we focus on the question of whether the

absence of a separation of scales between mass and cutoff is a fundamental feature of HS

theories or just an accident of the limited examples that have been experienced. The

relevant parameter to approach this question is

ε =
m

Λ
,

the scale Λ being the physical cutoff. A small ε� 1 implies a large range of validity for the

HS EFT, while for ε→ 1 this range shrinks to none. Ref. [11] found that if an HS particle

of spin s couples to electromagnetism with charge q, then ε & q1/(2s−1) assuming the cutoff

lies below the strong-coupling scale, hence implying that ε → 1 as the spin increases.

This bound is evaded in models without minimal coupling to photons, for instance when a

single neutral HS is at the bottom of the spectrum. A similar bound is expected to hold for

coupling HS to gravity with the replacement q → m/mPl, and indeed ref. [12] has explicitly

shown that ε & (m/mPl)
1/3 for s = 2. Other consistency conditions that rely on probing the

HS sector by scattering scalar particles that exchange an intermediate HS at tree level are

discussed e.g. in ref. [13]. Generalizing the causality constraints of ref. [14], the positivity

of the eikonal phase shift in the tree-level scattering of an HS gravitationally coupled to

a scalar, sets other bounds under certain assumptions [15]. While these gravitational

bounds are robust — gravity is universally coupled — they are not directly relevant for

phenomenological purposes far below the Planck scale — gravity is very weakly coupled at

low energy — and in fact these constraints evaporate as Λ/mPl → 0 or when new, light,

degrees of freedom are more important than gravity.

In this article, we propose a new class of constraints on ε, which do not rely on cou-

pling to external probes, but rather target directly the consistency of the self-interacting

HS theory, based on our construction and understanding developed in section 1. We first

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
9

discuss the simple requirement that the EFT be perturbative in its range of validity. Then

the constraints from perturbativity are superseded in theories where the putative micro-

scopic theory from which the HS EFT emerges is Lorentz invariant, local and unitary.

Dispersion relations for forward elastic scattering amplitudes lead indeed to certain posi-

tivity bounds [16–18] that lower the cutoff to be parametrically close to the HS mass. More

specifically, for a generic potential λLΦ4 the (beyond) positivity bounds for the longitudinal

polarizations give ε & (λL/16π2)1/(8s−4), which is more stringent than the perturbativity

bound set by the strong-coupling scale. The bound implies that the higher the spin the

smaller the gap, ε→ 1, unless the coupling is simultaneously taken smaller. A similar bound

holds as well for special types of potentials that display higher strong-coupling scales anal-

ogously to the case of Λ3-theory of massive gravity [6, 19]: the associated beyond-positivity

bound for the longitudinal polarizations remains much more stringent, alike the case for

the massive spin-2 theory [18]. We remark that the beyond-positivity bounds constrain as

well the cutoff of the transverse modes, see eq. (2.21). Finally, if certain conditions about

weak coupling are met, we find that ε→ 1 independently on the value of s > 2.

1 Effective theory of massive higher spins

A free massive spin-s particle can be described by a field Φ transforming in the repre-

sentation D(s/2, s/2) of the Lorentz group and satisfying on-shell the usual Klein-Gordon

equation, together with the traceless and transverse conditions,1(
�−m2

)
Φ = 0 , Φ′ = 0 , ∂ · Φ = 0 . (1.2)

More precisely, the free field can be constructed in terms of the physical polarizations

〈0|Φµ1...µs(0)|p, σ〉 = εµ1...µs(p, σ) ,

which satisfy the on-shell conditions, with σ labelling the spin-z component. At high

energies, E2 � m2, the solutions to the equations of motions eq. (1.2) are defined up to

gauge transformations

εµ1...µs → εµ1...µs + p(µ1χµ2...µs) , (1.3)

parametrized by a transverse (p·χ = 0) and traceless (χ′ = 0) tensor χ, which transforms as

a lower-spin polarization. The χ represent the longitudinal modes of the massive multiplet

in the high-energy regime. Therefore, in the EFT perspective, theories of interacting

massive HS particles of integer spin can be equivalently separated into the EFTs for the

transverse and for the longitudinal modes, the latter corresponding to lower-spin would-be

Goldstone bosons, also known as Stueckelberg fields.

1Notation: given a rank-s totally symmetric field φµ1...µs , we use the following notation

φ = φµ1...µs , φ′ = φ′µ3...µs
= ηµ1µ2φµ1...µs , ∂φ = ∂(µφµ1...µs) , ∂ · φ = ∂αφαµ2...µs , (1.1)

where (anti) symmetrizations are defined without normalization factors, e.g. a(µbν) = aµbν + bνaµ and

a[µbν] = aµbν − bνaµ. We use mostly plus signature ηµν = diag (−,+,+,+). The φT represents the

traceless part of φ, namely φT = φ− 1
2s
ηφ′.
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1.1 The transverse sector

The transverse sector contains, in isolation, a massless spin-s state i.e. two degrees of

freedom. In order to extend the description off-shell with a Lagrangian, it is useful to

relax the on-shell conditions p ·χ = 0 while enlarging the gauge symmetry group eq. (1.3).

We introduce traces Φ′ as pure gauge degrees of freedom while keep working with double-

traceless fields Φ′′ = 0.2 The massless spin-s field enjoys then the gauge invariance3

Φ→ Φ + ∂ξ , ξ′ = 0 , (1.4)

which makes only two components of the field propagate (see [8] for a pedagogical review).

The quadratic gauge invariant Lagrangian is [20]

Ls =
s

2
(∂ · Φ)2−1

2
(∂µΦ)2+

s(s− 1)

2

[
Φ′ · ∂ · ∂ · Φ +

1

2

(
∂µΦ′

)2
+

(s− 2)

4

(
∂ · Φ′

)2]
, (1.5)

from which the field equations can be collected in terms of the so-called Fronsdal tensor

Γs ≡ �Φ− ∂∂ · Φ + ∂∂Φ′ = 0 , (1.6)

that can be used to write the kinetic lagrangian in the more compact form

L0
sT

=
1

2
Φ ·
(

Γs −
1

2
ηΓ′s

)
≡ Φ · Γ̂s . (1.7)

Interactions. Self interactions of massless HS can be written in terms of Γs in eq. (1.6)

and the generalized Riemann tensor

Rα1α2...αsµ1µ2...µs = ∂α1α2...αsΦµ1µ2...µs (1.8)

with anti-symmetric contractions. These generalizations of the Christoffel symbols and

curvature tensor of spin-2 fields, introduced in ref. [21], are linear in the HS field and

manifestly gauge invariant

δξΓµ1...µs = 3∂(µ1∂µ2ξ
σ

µ3...µs)σ
= 0 , δξRα1α2...αsµ1µ2...µs = 0 , (1.9)

where the first relation holds only for traceless ξ parameters, while the second involving R
is satisfied also for ξ σ

µ3...µsσ 6= 0. These are the necessary ingredients to construct gauge

invariant interactions. Interactions involving the Fronsdal tensor Γs are proportional to

the equations of motion (see eq. (1.6)) and can therefore be removed by a suitable field

redefinition (the same holds for other operators with less than s derivatives per field [21]

that we do not discuss here).

2This is analogous to the case of a massless spin-2 in General Relativity, where one can choose to work

with a traceful hµν by enlarging the volume-preserving gauge transformations to generic diffeomorphisms.

Going back to a traceless hµν is just a question of gauge fixing.
3We are not aware of any consistent non-abelian extensions of the gauge transformation in flat space-

time, therefore we focus on abelian transformations.
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For a single flavour and odd spin, cubic interactions are forbidden,4 while for a non-

trivial flavour structure or even spin, their contributions to scattering amplitudes is always

smaller than those from the quartic contact-term, since they scale with more powers of

energy. We can therefore focus on quartic interactions for the transverse polarizations,

schematically of the form

Lint
sT

=
(Rα1...αs

µ1...µs )4

f4s
T

+ · · · (1.10)

with fT a scale characterizing the interaction strength, and the dots standing for terms with

higher derivatives (whose suppression scale is discussed in section 2), or more insertions

of R, relevant for processes with more than 4 external states. Eq. (1.10) implicitly hides

thousands of possible contractions; from studying HS scattering amplitudes it is however

obvious that the number of physically independent contractions, as long as massless states

are concerned, is equivalent to the number of helicity 4-point amplitudes: only four parity-

invariant combinations are independent.

As expected, the highly irrelevant operators in eq. (1.10) vanish at low energy, com-

plying with the Weinberg soft theorems. Moreover, since these interactions are trivially

invariant under eq. (1.4), they do not give rise to any HS charge, in agreement with the

Coleman-Mandula theorem. Yet, the exactly massless limit is incompatible with a finite

coupling to gravity [24], an argument that can be evaded only at finite mass.

1.2 The longitudinal sector

The longitudinal sector, external a priori to the transverse one, provides the missing lon-

gitudinal modes necessary to describe a massive multiplet of spin s in a somehow compli-

cated generalization of the known case of massive vector theories. It consists of a tower of

lower-rank double-traceless tensor fields φ(k) of spin k = s − 1, s − 2, . . . , 0, transforming

non-linearly under the would-be spin-s gauge symmetry. In order to project out unneces-

sary degrees of freedom otherwise present in this redundant description, the fields in the

longitudinal sector transform under a tower of gauge transformations

δφ(s−1) = m
√
s ξ + ∂λ(s−2)

δφ(s−2) = λ(s−2) + ∂λ(s−3)

. . .

δφ(0) = λ(0)

(1.11)

where λ(k) are traceless gauge parameters, and the fields have non-canonical mass dimen-

sion, [φ(s−k)] = 2−k; the dimensionfull parameter m will be linked later to the HS physical

mass.5 The symmetry associated with the ξ parameters will eventually be gauged when

4Poincaré symmetry implies that the amplitude for the state of any two spin-s particles, with s odd,

from the cubic vertex be anti-symmetric (e.g. [22]). Moreover, two of the helicities in a massless cubic

vertex with spin s are always equal; therefore it can be non-zero only in the presence of a non-trivial flavour

structure, in which case they may be constrained by the arguments of ref. [23].
5The normalization of the gauge parameter ξ has been chosen to reproduce the quadratic Lagrangian

with bare mass m, see eq. (1.19).
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longitudinal and transverse sectors interact to concoct a massive HS state; but for the

purpose of studying the longitudinal sector in isolation, ξ should be thought of as the pa-

rameter of a global symmetry. This is the HS analog of the shift symmetry characteristic

of the scalar Goldstone bosons eaten into massive spin-1 states.

Analogously, but within the longitudinal sector, each Goldstone boson φs−n eats the

lower-level Goldstone boson φs−n−1 whose shift symmetry φs−n−1 → φs−n−1 + λs−n−1 has

been gauged in eq. (1.11). Another simple way to derive such a cascade of shift-symmetries,

whose Goldstone bosons are gauged-away, is by Kaluza-Klein reduction of a massless HS

in 5 dimensions [11, 25].

A Lagrangian for the longitudinal sector is easily built in terms of the double-traceless

combinations

ϕ(k) ≡ φ(k) − ∂ϕT(k−1) , (1.12)

which, under the web of gauge transformations eq. (1.11), shift simply as

δϕ(k) = λ(k) , δϕ(s−1) = λ(s−1) ≡ m
√
s ξ . (1.13)

Then, simple invariants can be built in terms of derivatives of ϕ(s−1) (given that, in isola-

tion, ξ is constant) as well as single traces ϕ′(k) (given that the gauge parameters λ(k) are

traceless). In addition to these, the generalized Christoffel and Riemann tensors for φ(s−1)

(but not the ones of lower spin) can also be used to build invariants. At the quadratic level

the most general Lagrangian, invariant under eq. (1.11) up to total derivatives, is therefore

L0
sL

= φ(s−1) · Γ̂s−1 + Laux (1.14)

with Γ̂s−1 defined in eq. (1.7) and

Laux =
∑
k

bk

(
∂µϕ

′
(s−k)

)2
+ b̃k

(
∂ · ϕ′(s−k)

)2
+ ck

(
ϕ′(k)

)2
+
∑
k<k′

ak,k′
(
∂ · ϕ′(s−k)

)
· ϕ′(s−k′) ,

(1.15)

where bk, b̃k, ak,k′ , ck are dimension-full coefficients. Terms with more fields, will-be inter-

actions, can be written instead as polynomials in

ϕ′(k) , ∂ϕ(s−1) , (1.16)

and their derivatives. We stress that eq. (1.14) should not be thought as a weakly cou-

pled Lagrangian for particles in isolation, as the standard kinetic terms for the lower-spin

Goldstone fields are induced only after mixing with the transverse sector. Similarly to

the situation in massive gravity, and contrary to the spin-1 case, the longitudinal sector

in isolation does not describe a theory of particles. Yet, coupling it to the transverse sec-

tor, accompanied by the tuning of a finite set of parameters (analog to Fierz-Pauli tuning

in massive gravity), will make the longitudinal components sprout to life and defer the

would-be ghost instabilities beyond the cutoff, as we discuss next.
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1.3 Mixing between sectors, tuning and Higgsing

Interactions between transverse and longitudinal sectors are generically controlled by the

most relevant operator: the minimal coupling of the transverse spin-s fields with the current

of the longitudinal sector, associated to global shifts of φ(s−1) in eq. (1.14), namely

Lmix = −ΦJ . (1.17)

In practice this is equivalent to weakly gauging the global symmetry ξ in eq. (1.11), that

is promoting it to a local symmetry. The current, in its expression invariant under the λk
gauge symmetries of the longitudinal sector in eq. (1.11), is given by

J = − m√
s

[
∂ϕ(s−1) − 2η∂ · ϕ(s−1) +

1

2
η∂ϕ′(s−1)

]
. (1.18)

Since it is charged under the gauged ξ-shift, δξJ ∼ m2, a mass term for the spin-s field is

necessary in order to make the full Lagrangian L0
sT

+ L0
sL

+ Lmix invariant under local ξ

transformations. The resulting quadratic Lagrangian is

L0 = Φ · Γ̂s + φ(s−1) · Γ̂s−1 −
m2

2

[
Φ2 − s(s− 1)

2
Φ′

2
]
− Φ · J + Laux . (1.19)

By a proper gauge choice — the HS analog of the unitary gauge — both φ(0), φ(1) and

the traceless component of the higher-spin Golstone fields φ(k>1) can be removed from

eq. (1.19). On the other hand, the single-traces of the Goldstones fields with k = 2, . . . , s−1

cannot be removed and appear as auxiliary fields of spin 0, 1, . . . , s− 3:

φ(k) =
1

2k
ηφ′(k) . (1.20)

Tuning conditions. For generic values of the coefficients in eq. (1.15), single-traces are

dynamical and ghost-like (e.g. double poles of propagators at low energy). However, there

exists a specific choice which fixes the number of degrees of freedom to Ndof = 2s − 1,

removes ghost-like instabilities, and makes these fields auxiliary, in the sense that the

equations of motions are algebraic, φ′(k) = 0. We can find this choice by demanding that

ghost-like kinetic terms for the Goldstone fields be absent (for instance, the Fierz-Pauli

tuning of a massive spin-2 field theory projects out the term (�φ(0))
2).6

We single out a piece Is−2 from the current eq. (1.18),

J = J̃ + Is−2 , Is−2 =
m√
s

[
2∂∂ϕT(s−2) − 2η�ϕT(s−2) − η∂∂ · ϕ

T
(s−2)

]
, (1.21)

where we recall that ϕT(s−2) is the traceless part of ϕ(s−2). A standard kinetic term for

φ(s−2), i.e. of the form of eq. (1.5), can be induced under the field redefinition

Φ→ Φ + κ ηϕT(s−2) , κ =
m√

s(s− 1)
, (1.22)

6Ref. [26] obtains the same result by enforcing the equations of motion eqs. (1.2), (1.20).
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where κ has been chosen to cancel the kinetic term transformation under eq. (1.22),

δ
(

Φ · Γ̂s
)

= 2Φ · δΓ̂s + κ ηϕT(s−2) · δΓ̂s , δΓ̂s = κ

√
s

2m
(s− 1)Is−2 , (1.23)

against the mixing −Φ · Is−2. This generates the standard kinetic term of a traceless field7

m2

2
(2s− 1)ϕT(s−2) · Γ(ϕT(s−2))−

3

2
m2(s− 1)(s− 2)

(
∂ · ϕT(s−2)

)2
, (1.24)

with an additional piece that is canceled by tuning the coefficient

cs−1 =
3

8
m2(s− 1)(s− 2) . (1.25)

From eq. (1.24) and the definition of ϕ in eq. (1.12), we recognise that the Lagrangian

contains still ghost-like terms ∼
(
∂2ϕT(s−3)

)2
for the spin-(s − 3) field. With a proper

tuning of the others coefficients in eq. (1.15), we can generate a gauge-invariant kinetic

term for the traceful field ϕs−2 such that these ghost-like kinetic terms cancel as well, and

we can repeat the procedure until all ghost-like kinetic terms are absent. We detail this

for the (s− 3)-Goldstone field in appendix A.

The resulting Lagrangian describes the 2s−1 degrees of freedom of a massive HS state,

with mass m [26].

1.4 Interactions

We have identified different types of interactions: those that originate in the transverse

sector in terms of the Riemann tensor eq. (1.10), and those from the longitudinal sector

originally built with the building blocks in eq. (1.16): ∂ϕ(s−1) and ϕ′(k). Operators involv-

ing the auxiliary fields ϕ′(k), to which no physical poles are associated, may be removed

by means of field redefinitions.8 Since interactions built with ∂ϕ(s−1) are not invariant

under the local transformations associated with ξ(x), one should promote the symmetrized

derivatives of ϕ(s−1), gauged by the Φ-field, to covariant derivatives9

Dϕ(s−1) ≡ ∂ϕ(s−1) −m
√
sΦ . (1.26)

For instance, an interaction
(
∂ϕ(s−1)

)4
/f4
L, with fL the scale controlling its strength in the

longitudinal sector in isolation, is written as
(
Dϕ(s−1)

)4
and can be read in the unitary

gauge schematically as

λL(Φµ1...µs)
4 , λL ∝ m4/f4

L . (1.27)

7With Γ
(
ϕT
)

we mean the Fronsdal tensor eq. (1.6) projected on the traceless components of ϕ.
8For instance, we can iteratively remove interaction of the form φ′(s−1)G

[
∂n, φ′(k),Φ

]
with G[. . .] a

polynomial in fields with at most n derivatives, by the variation of the mass term of φ′(s−1) under the

redefinition φ′(s−1) → φ′(s−1) −G
[
∂n, φ′(k),Φ

]
/(2cs−1).

9Anti-symmetric combinations, e.g. ∂[αϕµ1]µ2...µs , could be gauged by other fields as in eq. (1.26),

however by assumption these do not populate the infrared physics. Therefore, we omit these combinations

in the following, noticing that they cannot be dynamically generated as long as the interactions only involve

symmetrized derivatives.

– 8 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
9

Notice that in non-abelian theories, like massive gravity, longitudinal interactions arise al-

ready from the mass term, so that their coupling equals m2; for abelian theories instead,

mass and couplings are independent and therefore λL ∼ m4 remains a conservative esti-

mate. Of course, one can always add more irrelevant operators in each sector by including

more derivatives, see e.g. eq. (2.23), or consider mixed-type interactions involving Riemann

tensors, e.g. m2

f2Lf
6
T

Φ2R2 or other mixed cubic interactions, see e.g. [27].

1.5 Spin-3 and decoupling limit

The explicit example of a massive spin-3 will make more concrete the points introduced

above. To make the notation clearer, we label the Goldstone fields as

φ(2) ≡ Hµν , φ(1) ≡ Aµ , φ(0) ≡ π .

In the unitary gauge, only the trace H = φ′(2) survives as an auxiliary field and the free

Lagrangian eq. (1.19) becomes

L0 = −1

2
(∂σΦµνρ)

2 +
3

2
(∂µΦµνρ)2 +

3

4
(∂µΦµ)2 +

3

2
(∂µΦν)2 + 3Φρ∂µ∂νΦµνρ

− m2

2

[
Φ2
µνρ − 3Φ2

µ

]
+

3

16
(∂H)2 +

3m2

4
H2 +

√
3

4
mΦµ∂

µH ,

(1.28)

with equations of motion(
�−m2

)
Φµνρ = 0 , H = 0 , ∂µΦµνρ = 0 , Φµ = 0 . (1.29)

The most relevant self-interactions of each separate type are10

Lint = −λLΦ4 +
R4

f12
T

+ · · · . (1.30)

While there are thousands possible contractions of four Riemann tensors, only three inde-

pendent contractions Φ4 give non-vanishing contributions to on-shell scattering amplitudes,

−λLΦ4 = λ1 Φ de
a ΦabcΦ f

bd Φcef +λ2 Φ d
ab ΦabcΦ ef

c Φdef +λ3

(
ΦabcΦ

abc
)2

= −V (Φ) , (1.31)

and constitute a potential for Φ.

High-energy limit. The high-energy regime E � m can be understood by studying the

behaviour of scattering amplitudes in terms of the eaten Goldstone bosons with lower spins.

The procedure outlined above, and detailed in appendix A, aimed at finding a ghost-free

quadratic HS EFT, delivers as a by-product the high-energy theory in which polarizations

of different helicities behave as independent massless states of spin (s− k), k = 0, . . . , s.

10We remark that for odd spins a cubic potential is not allowed by Lorentz invariance, while for even

spins it is. For simplicity, we focus in what follows on situations symmetric under Φ → −Φ and comment

in the conclusions about the possible impact of trilinear couplings like Φ3, Φ2∂Φ, . . . .
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The mixings in eq. (1.28) are resolved in a way that keeps the m→ 0 limit manifestly

smooth,

Φµνρ → Φµνρ +
m

2
√

3

[
η(µνAρ) − η(µν∂ρ)π

]
,

Hµν → Hµν +
5

2
m2 ηµνπ ,

(1.32)

and isolates the propagating “high-energy” degrees of freedom as massless spin-3, 2, 1 and

0 states, associated with the fields Φ, H,A, π in the Lagrangian

L0
m→0 = ΦµνρΓ̂

µνρ
3 +HµνΓ̂µν2 −

5

4
F̂ 2
µν − 15(∂π̂)2 , (1.33)

with Aµ = Âµ/m and π = π̂/m2 the (almost) canonically normalized fields; see appendix B

for expressions away from the massless limit. This is the analog of eq. (1.24), when all the

ghost-like kinetic terms have been removed, and it corresponds to the HS-equivalence theo-

rem for massive HS states: at high energy their dynamics separates into that of transverse

modes and the longitudinal ones.

In the massless limit, the quadratic action is trivially invariant under the N -th order

polynomial symmetries

π̂ → π̂ + f (N)(x) , Âν → Âν + C(N)
ν (x) , (1.34)

with

f (N)(x) =

N∑
n=0

1

n!
cTµ1...µnx

µ1 . . . xµn , (1.35)

C(N)
ν (x) =

N∑
n=1

1

n!
bTνµ1...µnx

µ1 . . . xµn (1.36)

where cTµ1...µn and bTνµ1...µn are traceless tensors and symmetric under νi ↔ νj .
11 Generically,

the latter corresponds to a generalization of the Galileon symmetry to HS fields [28] but also

includes gauge symmetries, i.e. C
(N)
ν = ∂νΩ, when all the indexes are totally symmetrized.

For instance, N = 1 non-gauge transformations are of the kind bT[µν1]. Notice that these

transformations are true symmetries (not gauge redundancies), as they act on the transverse

modes of the vector field. The scalar transformation is instead an extended shift-symmetry

of the type described in ref. [29]. Generically, the interactions are expected to spoil this

invariance (for any N) and therefore it is interesting to probe the set of operators which

preserves the highest number of symmetries, at least in the high-energy regime. Interactions

made of ∂N+1π̂ and ∂N+1Âµ are trivially invariant for any N ; we are interested instead

in non-trivial invariants with less then N + 1 derivatives per field, of which we provide a

novel example in eq. (2.10).

Interactions from the longitudinal sector (in general interactions that cannot be written

in terms of R) are rewritable in terms of the covariant derivative

D(µϕ(2)νρ) ≡ ∂(µHνρ)−
2

m
∂(µνÂρ)+

6

m2
∂µνρπ̂+3η(µν∂ρ)π̂−

1

2
mη(µνÂρ)−

√
3mΦµνρ . (1.37)

11We thank David Stefanyszyn for useful discussions.
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This makes it clear that the polarisation vectors of spin 3, 2, 1, and 0 grow respectively as

E0, E1, E2, E3 with E the particle energy, and that in the high-energy regime we generically

expect N = 2 symmetry for the scalar mode and N = 1 for the vector.

Since the powers of energy are accompanied by inverse powers of mass, and E/m� 1,

they lead in practice to a premature loss of predictivity, or in other words to a low strong-

coupling scale, as we discuss next.

2 Structural constraints

There are a number of reasons why the ratio between mass and cutoff, ε, cannot take

arbitrary values in a HS theory with a given interaction. First, analogously to massive

gravity, the theory becomes strongly coupled at energy scales Λsc parametrically close to the

particle’s mass, leading to a constraint on ε if one demands an energy range of calculability.

Second, dispersion relations for forward scattering amplitudes imply UV-IR relations [16,

17] when the S-matrix is unitary, analytic, crossing symmetric, and polynomially bounded

in the forward limit (the latter condition is implied by the Froissart bound [30, 31] in local

UV completions). These lead to different classes of positivity constraints on the parameter

ε that we are now going to study. Non-forward dispersion relations may also be exploited

in weakly coupled theories [32, 33]; we leave the exploration of those constraints to future

work.

2.1 Strong coupling

We focus on 2→ 2 scatterings, whose amplitudesM have dimension of a coupling-squared,

so that we define

g2(E) ≡M(E) (2.1)

with E =
√
s the center of mass energy. Different processes and interactions can be

associated with different coupling strengths, for each of them we define the value of the

coupling at the physical cutoff Λ as g2 ≡ g2(Λ). The EFT becomes strongly coupled at

E = Λsc when

g2(Λsc) =M(Λsc) ' (4π)2 . (2.2)

Therefore the strong-coupling scale Λsc corresponds roughly to the largest possible value for

the physical cutoff, Λ < Λsc, for a useful calculable EFT: it does not necessarily correspond

to the physical mass of a particle Λ, but it is the ultimate energy above which the theory

changes regime and a new EFT description is required. This is the analog of the strong-

coupling scale 4πmW /g in the scattering of longitudinally polarised W bosons, for which

a SM description without the physical Higgs boson ceases to make sense, but lies much

above both mW and the Higgs mass.

For concreteness we discuss spin-3 particles and focus first on interactions of the simple

form R4 and Φ4. Amplitudes for the scattering of different helicities (which we label

σ = T, T ′, H,H ′, V, V ′, S for spin 3, 2, 1 and 0 respectively) exhibit different rates of

energy-growth, some of which are illustrated in table 1.
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TTTT HHHH H ′H ′H ′H ′ V V V V SSSS

R4 (E/f)12 (m/E)4 (E/f)12 (m/E)4 (E/f)12 (E/f)12 (m/E)4 (E/f)12

Φ4 λL λL(E/m)4 λL(E/m)4 λL(E/m)8 λL(E/m)12

Φ4 tuned 0 0 λL(E/m)4 λL(E/m)6 λL(E/m)10

Table 1. Examples of leading energy-growth rate of 2 → 2 scattering amplitudes with E ∼
√
s ∼√

−t, for generic Lorentz contractions (the last line corresponding to the specific combination in

eq. (2.8)). For more general combinations of external polarizations, the energy-growth can be

readily estimated from the examples in the table.

Interactions of the type R4/f12
T contribute like g2

T (E) ' (E/fT )12 to the elastic scat-

tering of transverse polarizations. Indeed, at the leading order in m, the Riemann tensor R
sources only purely transverse polarizations (it is invariant in particular under the traceful

gauge transformation that introduces the longitudinal fields in eq. (1.37)). The scattering

of the H,H ′ polarizations takes place only after mixing with the transverse ones, thus

suppressed by powers of m/E, while for V and S the leading contributions arise from

the first and second field redefinitions in (1.32), respectively. Since m/E < 1, transverse

polarizations have the strongest coupling g2
T = Λ12

T /f
12
T and lowest strong-coupling scale

(associated to R4 only). The transverse cutoff is then bounded by

ΛT . Λsc
T = (4π)1/6fT , (2.3)

which is very close to the scale fT which characterises the interactions and, a priori, ar-

bitrarily far from the particle mass m. Therefore, for what concerns the transverse po-

larizations in a R4-theory, the ratio between mass and cutoff can take arbitrary values

0 ≤ ε = m/Λ < 1 in the interacting theory.

Interactions of the form λLΦ4 are instead very different. They source longitudinal

polarizations that grow at high energy (see discussion below eq. (1.37)) and generically be-

come strongly coupled at energies different than Λsc
T . For instance, the leading contribution

from eq. (1.31) to the amplitude for scattering of the helicity-0 polarizations at E � m is

MSS→SS =
1

25m12

[
3

4
(2λ1 − λ2 + 2λ3) (stu)2 +

λ2 + 2λ3

16

(
s2 + t2 + u2

)3]
+ · · · (2.4)

and grows as fast as ∼ (E/m)12, so that the theory becomes strongly coupled already at

E ' m
(

16π2

λL

)1/12

= Λsc
12 , (2.5)

where we defined a generic strong-coupling scale

Λsc
n ≡ m

(
16π2

λL

)1/n

. (2.6)

Similarly, the V polarizations become strongly coupled at Λsc
8 > Λsc

12 while H-polarizations

at Λsc
4 > Λsc

8 > Λsc
12. Interactions involving different polarizations have other strong-

coupling scales as a result of the different powers of mass in eq. (1.37) and are illustrated

in figure 1.
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Figure 1. Left: different strong-coupling scales for s = 3 as function of
√
λL in eq. (1.31) or

eq. (2.23). For E & m the interaction strength increases at high energy; the S(V ) polarizations are

strongly coupled at Λsc
12(Λsc

8 ) generically (solid lines) or at Λsc
10(Λsc

6 ) for the tuned theory (dashed

lines). Beyond-positivity bounds for the λLΦ4 interaction (dotted) and λL∂
4Φ4/Λ4 (dot-dashed):

this represents the maximal cutoff Λ of the theory, well below the strong-coupling scales. Right:

similar energy scales and beyond-positivity bounds for the R4 interaction as function of m (solid

line for s=3, dotted for s→∞).

In light of this it is interesting to see that the choice λ2 = λ1 = −2λ3 cancels the

terms ∼ E12 in eq. (2.4) and leads to amplitudes that grow only as ∼ E10:

MSS→SS =
4

25

λ3

m10
stu(s2 + t2 + u2) + · · · , (2.7)

with a similar cancellation for helicity-1 amplitudes, see table 1. This tuning corresponds

to the combination [34, 35]

− λLΦ4 = −λ3εµ1µ2µ3µ4εν1ν2ν3ν4Φµ1ν1σΦµ2ν2
σΦµ3ν3ρΦµ4ν4

ρ , (2.8)

and is analogous to what happens in the theory of massive gravity [6, 19] where it leads to

the raising of the strong-coupling scale from Λ5 to Λ3. The high-energy limit

m→ 0 , λL → 0 , Λsc
10 = fixed , (2.9)

selects the interactions

8λ3

m10
εµ1µ2µ3µ4εν1ν2ν3ν4

[
∂ρF̂µ2ν2∂

ρF̂ν1µ1 ∂µ3ν3σπ̂ ∂
σ

µ4ν4 π̂ + 2∂σF̂µ2ν2∂
ρF̂ν1µ1 ∂µ3ν3ρπ̂ ∂

σ
µ4ν4 π̂

− 1

25
ηµ4ν4∂

σπ̂∂µ1ν1σπ̂∂µ2ν2ρπ̂∂
ρ

µ3ν3 π̂

]
, (2.10)

that are most relevant for E < Λsc
10, where the tuned EFT is valid. Here only the S and V

helicities are interacting, while the others decouple.
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The tuning of the potential eq. (2.8) can be equivalently seen in terms of the Goldstone

field π. At high energy, the interaction Φ4 corresponds to ∼
(
∂3π

)4
, but the specific combi-

nation appearing in eq. (2.8) vanishes up to total derivatives because of anti-symmetrization

with the ε-tensors. Therefore, the would-be sub-leading terms ∼ (∂π)(∂3π)3 now domi-

nate the scalar amplitude and reproduce the energy-growth ∼ E10 reported in table 1. In

fact, it is easy to show that each operator in eq. (2.10) is a non-trivial invariant under the

N = 2 polynomial shift symmetry.12 Besides, they are not renormalized by loops, as can be

understood by simple derivative counting, similarly to what happens for N = 1 invariant

Galileons [37, 38].

The arguments of this section can be swiftly generalized for arbitrary HS fields Φµ1...µs .

Interactions of the type λLΦ4 lead to scalar scattering amplitudes growing as M ∼ E4s

with a strong coupling scale Λsc
4s. However, softer behaviours can be achieved with the

generalization of the tuning eq. (2.8) to spin-s fields

s even: εµ1...µ4εν1...ν4 · · · ερ1...ρ4 Φµ1ν1...ρ1Φµ2ν2...ρ2Φµ3ν3...ρ3Φµ4ν4...ρ4 , (2.11)

s odd: εµ1...µ4εν1...ν4 · · · ερ1...ρ4Φµ1ν1...ρ1αΦ α
µ2ν2...ρ2 Φµ3ν3...ρ3βΦ β

µ4ν4...ρ4 . (2.12)

These potentials lead to scalar amplitudesM∼ E3s orM∼ E3s+1 for even and odd spins

respectively, realizing explicitly the optimal high-energy behaviour conjectured in ref. [34].

This result can be understood by consistently taking the decoupling limit, as explicitly

shown in appendix C. For the EFT to be perturbative, the cutoff ΛL must lie below the

strong-coupling scale

Generic: ΛL . Λsc
4s , (2.13)

Tuned (s even or odd): ΛL . Λsc
3s , 3s+1 . (2.14)

The vector polarizations are strongly coupled at Λsc
4(s−1) and similarly for the other modes.

Interactions R4/f4s
T , withR the Riemann tensor for spin-s, imply amplitudes involving

transverse polarizations that also grow as M ∼ E4s, but are not suppressed by inverse

powers of the mass. The strong-coupling scale of the transverse interactions is therefore

mass independent,

ΛT . Λsc
T = (4π)

1
2s fT . (2.15)

Other polarisations have larger cutoffs associated with the R4/f4s
T interactions.

2.2 Positivity

For a given mass m, the longitudinal scalar modes remain perturbative only up to energies

of order Λsc. If the underlying UV completion is Lorentz invariant, unitary, casual and local,

one can obtain stronger bounds on the physical cutoff Λ [16, 17, 39], which may be pushed

well below Λsc, as we will now show. The key physical quantity that enters these arguments

is the elastic 2→ 2 scattering amplitudeMz1z2z1z2(s, t), with (linear) polarizations labelled

12The four-field scalar operator in eq. (2.10) is not present in the classification of ref. [29], as one can

check comparing the energy-growth of the scattering amplitudes. See also ref. [36] for an exhaustive non-

relativistic classification.
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by zi, which in the forward elastic limit t = 0 enters into the n-subtracted “IR residue”,

namely13

Σ
z1z2 (n)
IR ≡ 1

2πi

∮
Γ
ds
Mz1z2(s)

(s− µ2)n+1
=
∑

Res
s=si,µ2

[
Mz1z2(s)

(s− µ2)n+1

]
, (2.16)

with Mz1z2(s) ≡ Mz1z2z1z2(s, t = 0). The Σ
z1z2 (n)
IR is calculable within the EFT, since

0 < µ2 < 4m2, in terms of the couplings and masses of the IR theory. Using the analytic

properties of the scattering amplitude, the Froissart-Martin asymptotic bound, crossing

symmetry and the optical theorem, one derives the dispersion relation for even n ≥ 2

Σ
z1z2 (n)
IR =

∑
X

∫ ∞
4m2

ds

π

√
1− 4

m2

s

[
sσz1z2→X(s)

(s− µ2)n+1
+

sσ−z̄1z2→X(s)

(s− 4m2 + µ2)n+1

]
, (2.17)

which connects the IR physics (matched, by definition, with the EFT) to the UV, through

an integral of the total cross section for the production of any (not necessarily elastic)

kinematically accessible state X. In any interacting theory the right-hand side of eq. (2.17)

is strictly positive,

Σ
z1z2 (n)
IR (µ2) > 0 , (2.18)

for any value of µ2 in the above range. For instance, the TTTT amplitudes from a generic

R4/f4s
T interaction scale like M∼ s2s so that the residue

Σ
TT (n)
IR ∼ m4s−2n

f4s
T

(2.19)

is proportional to some power of m. In section 2.3 we show that these positivity bounds

set very strong constraints on the EFT of HS, even stronger than in the case of massive

gravity [18, 33, 40].

Beyond positivity. The integral on the right-hand side of eq. (2.17) contains a positive

IR contribution for 4m2 < s . Λ2 that is still calculable within the EFT.14 The unknown

UV contribution s� Λ2 is still positive and eq. (2.17) can be turned into an inequality

Σz1z2
IR >

∑
X

∫ Λ2
ds

πs2

[
σz1z2→X(s) + σz1−z̄2→X(s)

]
EFT

, (2.20)

where we focus on the n = 2 residue for µ2 ∼ m2 � Λ.

Consider first spin-s interactions of the type R4/f4s
T . The elastic cross section for

TTTT scattering scales as σ ∼ 1/16π2 × s4s−1/f8s
T at high energy, while the n = 2 residue

13In this equation, the contour of integration Γ encloses all the physical IR poles si associated with stable

resonances, if any, together with the point µ2 < 4m2. See refs. [16, 18] for more details.
14Strictly speaking, at E ∼ Λ the EFT produces results which are O(1) accurate in the dispersion relation.

Better accuracy can be derived by using the EFT only up to Emax < Λ, as in refs. [18, 41, 42]. While it is

straightforward to keep track of this factor, it is not very important since even O(1) errors in the dispersion

relations translate into small modifications of the bounds on the cutoff for large spin.
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eq. (2.19) is suppressed by 4s− 4 powers of the mass. Using these ingredients in eq. (2.20)

we find parametrically

Λ .
(
16π2f4s

T m
4s−4

) 1
8s−4 = ΛscT

(
m

ΛscT

) 4s−4
8s−4

< ΛscT . (2.21)

This new cutoff scale is always smaller than the strong-coupling scale eq. (2.15), unless the

EFT is not valid m ∼ ΛscT , as illustrated in the right panel of figure 1.

For interactions of the type λLΦ4, the strongest constraints come from studying the

longitudinal amplitudes SSSS, whose forward limit generically scales as λLs
2s/m4s. The

bound eq. (2.20) then implies

Λ . m

(
16π2

λL

) 1
8s−4

= Λsc8s−4 < Λsc4s (2.22)

which is, again, lower than the strong-coupling scales mentioned in eq. (2.13). For spin-3,

these beyond-positivity bounds are illustrated in figure 1.

For tuned interactions the arguments are very similar, and beyond positivity leads to

a cutoff Λ < Λsc
6s−4 or Λ < Λsc

6s−2 for even or odd spin respectively, still lower than the

estimates in eq. (2.14). More irrelevant interactions p > 2 (even)

L =
∑
p

λ
(p)
L

∂p

Λp
Φ4 = λ

(0)
L Φ4 +

λ
(2)
L

Λ2
∂2Φ4 +

λ
(4)
L

Λ4
∂4Φ4 + · · · (2.23)

lead (up to O(1) factors) to

Generic: Λ . Λsc
8s−4+p , (2.24)

Tuned (s even or odd): Λ . Λsc
6s−4+p , 6s−2+p , (2.25)

which are always stronger than the analog bound in the theory without derivatives

eq. (2.22): Λsc
8s−4+p < Λsc

8s−4, and analogously for the tuned case.

Beyond positivity and weak coupling. The dispersion relation eq. (2.17) can be

used to relate residues with different numbers of subtractions. Neglecting for simplicity

µ2 ∼ m2 � Λ2 and working with linear polarizations, we define a subtracted residue

Σ̃(n)(E) ≡ Σ
(n)
IR −

2

π

∫ E2

4m2

ds

sn
σ =

2

π

∫ ∞
E2

ds

sn
σ (2.26)

which by the Cauchy theorem is nothing but the anti-clockward integral over two half-

circles,15 just above and below the branch cuts, centered at s = 0 and of radius E2. Since

s > Λ2 inside the integral in eq. (2.26), we have that

Σ̃(n)(E) > E4 Σ̃(n+2)(E) . (2.27)

15For illustration, considering n = 2 and M(s, t = 0) = a(µ2)s2 + β
2
s2
[
log(s/µ2) + log(−s/µ2)

]
, then

Σ̃(2)(Λ) = a(µ2) + β log(Λ2/µ2), which represents the run s2-coefficient at the scale Λ. Incidentally, the

positivity of the total cross section σ shows that running from Λ to Λ′ < Λ makes the Wilson coefficient

larger, that is Σ̃(n)(Λ′) > Σ̃(n)(Λ) for Λ′ < Λ, or equivalently β = da(µ2)/d log µ2 < 0.
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Now, eqs. (2.21), (2.22) imply that a sizeable separation between the mass m and the

cutoff Λ is possible only if the theory is weakly coupled λL, gT � 4π. Therefore, we can

calculate Σ̃(n)(E . Λ) using the IR EFT, with (2.27) setting non-trivial bounds on the

EFT coefficients. Just to make this apparent and direct, let us make the simplification of

dropping the difference between Σ̃(n)(E . Λ) and Σ̃(n)(2m) = Σ
(n)
IR , which is neglecting

the IR branch cuts in the dispersive integral relative to the UV ones.16 This provides an

extremely powerful constraint for the soft amplitudes typical of HS theories, which have

the first few even powers in s suppressed. Consider the example of a single operators

of the form λLΦ4 which gives Σ̃(n≤2s)(E . Λ) ' λL/m
2n, or a single R4/f4s

T that gives

Σ̃(n≤2s)(E . Λ) ∼ m4s−2n/f4s
T . Then, for n ≤ 2s− 2 eq. (2.27) reads

λLΦ4 : λL
1

m2n
& λL

Λ4

m2n+4
(2.28)

R4/f4s
T :

m4s−2n

f4s
T

&
Λ4m4s−2n

m4f4s
T

(2.29)

so that in either case

m & Λ (2.30)

in contradiction with the very assumption that the EFT has a well-defined range of validity!

More generally, we expect eq. (2.28) and such a conclusion to hold true even when the IR

contribution in Σ̃(n)(E ' Λ) is retained, except that λL is evaluated at Λ rather than at

m, as discussed in footnote 14.

2.3 Constraints on spin-3

As an example of the general arguments given above, we focus here on the spin-3 case

and the interactions in eq. (1.31). The non-vanishing elastic residues for n = 2 at the

crossing-symmetric point µ2 = 2m2 read

ΣV V
IR =

16

75m4
(−2λ1 + 7λ2 + 6λ3) > 0 , ΣV S

IR = − 16

75m4
(3λ1 − 4λ2) > 0

ΣV V ′
IR = − 32

225m4
(3λ1 − 5λ2) > 0 , ΣV H

IR =
8

15m4
λ2 > 0 (2.31)

ΣSS
IR = − 18

25m4
(λ1 − 2λ2 − 2λ3) > 0 , ΣSH

IR = − 2

15m4
(3λ1 − 7λ2) > 0

ΣHH
IR =

1

3m4
(λ1 + 2λ2 + 6λ3) > 0

while TX → TX gives ∼ O(s) forward amplitudes for any state X (O(s0) for X = T ) and

have vanishing residue. The positivity constraints for S, V,H helicities eq. (2.18) selects

the blue (yellow) regions for n = 2(4) in figure 2. Moreover, generic linear combinations

of polarizations X1X2 → X1X2 with X1,2
µνρ =

∑7
i=1 x

1,2
i εiµνρ and

∑7
i=1 x

1,2
i x1,2

i = 1, lead to

more constraints (indeed ΣXY
IR is not just a linear combination of eq. (2.31) but it includes

inelastic residues summed into an elastic combination). Such constraints are linear in

16See also ref. [43] for a derivation that does not rely on ignoring the IR part of the integral, and ref. [44]

for a discussion in the context of the 2-point functions.
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Figure 2. Allowed regions of the coefficients λ1, λ2 as function of the sign of λ3. Blue: result from

scattering of linear-definite polarizations eq. (2.31). Red: result from Σ
(2)
IR > 0 by scattering different

choices of linear combination of polarizations. Yellow: result from Σ
(4)
IR > 0 by scattering only

linear-definite polarizations. The dotted line correspond to the tuning λ1 = λ2 = −λ3 in eq. (2.8).

~λ = (λ1, λ2, λ3) and can be written as ΣXY
IR ≡ ~F (µ2, ~x1, ~x2) ·~λ > 0 for a certain function ~F ,

that has to hold for any µ2 ∈ [0, 4m2] and polarizations ~x1,2. With 12 free variables x1,2
i

and only 3 coefficients λi, we find numerically a finite set of points {µ2
n, ~xn, ~yn} implying the

positivity constraints shown in red in figure (2). The lack of overlap between the red and

blue regions implies that the theory with an infrared dominating potential is inconsistent.17

Surprisingly, the leading interactions eq. (1.31) are incompatible with positivity when

all helicity amplitudes are taken into account. This does not mean that the entire HS

formulation is inconsistent, but implies that the leading consistent interactions are not

those of eq. (1.31), but must be more irrelevant, i.e. higher in derivatives.18 However, more

irrelevant interactions lead in fact to stronger bounds, as discussed around eq. (2.24).

We have studied numerically the 24-dimensional parameter space of operators of the

form ∂2Φ4 looking for combinations that satisfy the simple positivity bound Σ(n) > 0 for

n = 2, 4, 6 for all elastic amplitudes. We find that no linear combination passes all positivity

requirements. This suggests that the most important unitarity-consistent self-interaction at

low energy is actually much more irrelevant than naively anticipated, hence leading to even

more stringent beyond-positivity bounds. For illustration we show the bound eq. (2.24)

for operators p = 4 as a dot-dashed line in the left panel of figure 1. With similar tools,

we have analysed few of the many contractions R4, without finding any combination that

passes all the simple positivity bounds. This is certainly very intriguing and we leave for

future studies a systematic discussion of more irrelevant operators.

17See ref. [45] for similar bounds on a restricted class of massive spin-2 theories.
18The interactions of eq. (1.31) can still be present, but they must be subdominant or at most comparable

in the IR; since they are the most relevant, they are also subdominant at higher energy. Keeping them does

not change our qualitative conclusions.
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2.4 Couplings to other fields

So far we have focussed on HS self-interactions. From a phenomenological perspective,

interactions with other fields are very important as well. These are interesting in the

context of cosmology [3, 4], but also in collider physics. For instance, the highly irrelevant

HS interactions would explain the absence of BSM signals at low energies, compatibly with

the presence of detectable structure at higher energies [46–48]. For the same reason, one

can wonder whether HS may provide viable dark matter candidates [49, 50], where e.g. the

WIMP miracle is realized because of the irrelevance of the interactions at low energies

rather than a genuine weak coupling.

Linear couplings. We consider in the following the case where the sector that gives rise

to the HS longitudinal modes contains as well some of the other matter fields, e.g. fields of

the SM (fermions ψ’s, gauge bosons A, etc.). These enter quadratically in the dimension-5

current for the spin-3, which reads19

Φµνρ

Λ2
Jµνρ

∣∣
mat

=
Φµνρ

Λ2

∑
sym

{
cψ

(
ψ̄γν

↔
∂ν
↔
∂ρψ−

1

5
(∂µ∂ν−�ηµν)ψ̄γρψ

)
+cAF

+
να

↔
∂µF

−
αρ+ · · ·

}
,

(2.32)

where the sum
∑

sym is over all permutations (normalized by their number), and Fµν =

F+
µν + F−µν , 1/2εµνρσFρσ = F+

µν − F−µν [52]. These matter spin-3 currents are conserved

in the free theory whereas they are not in the interacting theory, in agreement with the

Coleman-Mandula theorem. The non-conservation is a non-issue, as long as the cutoff of

the longitudinal modes is not lowered. For example, the scattering of a pair of HS particles

into matter that follows from eq. (2.32) scales as

MSS→ψ̄ψ,AA,... ∼ c2
ψ,A,...

(
E10

m6Λ4

)
, (2.33)

which exhibits the same energy-growth as the tuned Φ4-potential eq. (2.8) (see table 1).

Therefore, the strong-coupling scale associated with eq. (2.32) is unchanged as long as

c2
ψ,A,... < λLΛ4/m4. On the other hand, the beyond-positivity bounds eq. (2.20) become

stronger by retaining the inelastic channel eq. (2.33) on the right-hand side of the dispersion

relation for the SSSS amplitude, and imply the scaling

cψ,A,... . O(λ
1/4
L m2) . (2.34)

For λL ∼ m4, this gives cψ,A,... ∼ O(m3) and therefore the coupling of the longitudinal zero

mode π to matter would be finite in the massless limit. However, since the beyond-positivity

bounds imply that λL goes to zero even faster than m4, π should actually decouple from

matter in the massless limit.

19The universal gravitational coupling to the energy-momentum tensor is present as well, but this can be

neglected as long as ε = m/Λ and the other couplings are not too small, e.g. for λL � Λ2/m2
Pl. Moreover,

it can be consistently subtracted by the positivity bounds [51].
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Quadratic couplings. Other HS-matter couplings can be built e.g. with Φ2 or R2 and

singlet operators from matter fields; these are the dominant interactions preserving the

Φµνρ → −Φµνρ symmetry necessary for the HS to possibly play the role of dark matter. In

this class, the coupling to a scalar (e.g. the Higgs boson) admits even marginal couplings

g2
L

m2|H|2

Λ2

(
c1,HΦ2

µνρ − 3c2,HΦ2
µ

)
, (2.35)

where we have inserted m2 as discussed below eq. (1.26). IfH obtains a vacuum expectation

value 〈v〉, as the Higgs in the SM, this interaction contributes to the HS potential, detuning

it, and could lower the cutoff of the HS theory to Λ2
ghost = Λm2/(vgL

√
|c1,H − c2,H |). This

contribution can be removed by tuning c1,H = c2,H . Alternatively, using again the non-

elastic channel SS → HH on the right-hand side of the dispersion relation eq. (2.20), we

see that for generic ci,H

gL . O(λ
1/4
L m) , (2.36)

which implies that, even in the presence of eq. (2.35), the cutoff is expected to be Λ �
Λghost, given that λ

1/4
L happens to scale faster than m.

Other invariants, of higher dimensionality but contributing to interactions with differ-

ent helicity structure, can be built with R2 or other SM operators, for instance

g2
T

|H|2R2

Λ2s
T

, g2
T

F 2
µνR2

Λ2s+2
T

, g2
L

m2F 2
µνΦ2

Λ8
L

. (2.37)

3 Conclusions and outlook

In this article, we have provided an effective quantum field theory description of abelian,

single flavor, self-interacting massive (integer) higher-spin states. The relativistic degrees

of freedom of the HS correspond to the longitudinal (Goldstone) and transverse (gauge)

modes, which follow different power counting rules since they realize, non-linearly, different

symmetries. The separation into longitudinal and transverse modes is both conceptual and

practical. It offers, for example, a neat understanding of the structure of the HS kinetic

and mass terms needed to generate a gap between the mass of the HS and the cutoff of the

theory, by removing would-be light ghosts from the spectrum. Moreover, the symmetries

of the modes have allowed us to identify the least irrelevant interactions that come in

a variety of structures, depending on the helicities involved. For example, the leading

operators that contribute to scattering amplitudes among transverse-only modes are made

of the HS-Riemann tensorRn (which respects the emerging gauge symmetry of the massless

limit), whereas the leading one for scattering Goldstone-only modes is of the form Φn. In

between, there are other operators, e.g. R2Φ2, which dominate mixed helicity scatterings.

These represent the HS generalization of the massive spin-1 F 4
µν , A4

µ, and F 2
µνA

2
ρ type of

operators, respectively.

This EFT may be useful for phenomenological applications. Indeed, heavy HS can

have interesting signatures in cosmology, through their imprint in the cosmic microwave

background. Lighter HS coupled to the SM fields could in principle be observed at colliders
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or could play the role of dark matter: their irrelevant interactions are very small at low

energies, potentially explaining why they have not yet been observed.

As for any relativistic EFT to make sense, a gap between the mass of the HS states and

the cutoff of the theory is necessary. We have studied whether such a gap may originate from

underlying microscopic UV completions that are causal, local and unitary, a question that

can be addressed by using dispersion relations. Our findings are summarised in figure 1 and

show that, for a given strength of the 4-point interaction, the cutoff is parametrically close

to the mass, and it goes to zero in the limit where the HS states are massless. As represen-

tative of the general method, we find an upper limit on the cutoff of a theory with R4/f4
T

interactions by studying TTTT amplitudes, see eq. (2.21). For interactions among the

longitudinal modes controlled by λLΦ4, we have studied the SSSS scattering amplitudes,

leading to the upper bound eq. (2.22). These bounds are always more stringent than those

associated with the strong-coupling scales of the theory, eqs. (2.13)–(2.15), as portrayed by

the lowest lying curves in figure 1. Alternatively, for a given cutoff, the interaction strength

must vanish sufficiently fast as the mass goes to zero, and the theory quickly becomes free.

An even stronger bound, eq. (2.30), can be obtained whenever the IR theory is more

weakly coupled than the UV completion: it requires the mass of the HS to be as large as

the cutoff, invalidating the EFT, under our assumptions.

These arguments hold for general spin but rely on estimates based on dimensional

analysis. To make the bounds more concrete and precise, we have worked out the details

of the explicit spin-3 case. By studying the most relevant interactions of the form λLΦ4,

we have found a special combination that maximises the strong-coupling scale eq. (2.8), in

agreement with the conjecture of ref. [34]. Surprisingly, however, both tuned and generic

interactions of the form λLΦ4 do not pass standard positivity constraints that use mixed-

helicity elastic amplitudes. This means that spin-3 self-interactions are actually more

irrelevant than one would have naively anticipated, given that the would-be leading ones

are very much suppressed. Neither the 24-dimensional space spanned by the couplings of

irrelevant operators of the type λL∂
2Φ4/Λ2 is consistent with our positivity bounds. We

find intriguing the lack of any consistent interaction at the order we have studied, perhaps

a sign of a deeper inconsistency, the study of which we leave for future work.

Our bounds are general and robust because they are derived from fundamental proper-

ties of the S-matrix together with basic EFT reasoning. However, one can try to relax the

assumptions that go into the EFT. Perhaps the most obvious direction would be to take

m ' Λ at face value by adding extra states of lower spin at around the mass of the highest

spin state, trying to construct a new EFT for this larger set of degrees of freedom. The

structural question would then become whether a finite set of degrees of freedom is needed

to generate a new gap m/Λ � 1 consistent with the positivity bounds. For instance, an

odd spin Φs may couple to a lower spin Φs−1 in order to form trilinears m2
sms−1

Λ2 Φ2
sΦs−1,

m3
s−1Φ3

s−1, etc. that affect significantly the positivity bounds for ms ' ms−1. Alternatively,

one can relax the discrete symmetry Φs → −Φs for even spin and consider cubic vertices
m3

Λ2 Φ3
s, which giveMSS ∼ (m/Λ)4

(
s/m2

)3s−1
in the hard scattering limit, whereas provid-

ing O(1) effects to the IR residues, relative to the contribution from Φ4, in the positivity

bounds. However, while trilinear couplings may resolve the inconsistency of the Φ4 inter-
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action with the standard positivity bounds, more stringent constraints than eq. (2.22) are

expected by the beyond-positivity bounds. A detailed analysis of these alternative EFTs

is left to future work.
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A Tuning conditions

In this appendix, we show that the mixing between the spin-s field and the current of

Goldstones J generates the correct kinetic term for φs−2 and φs−3 if the mass terms and

kinetic mixings of the auxiliary fields are tuned to specific values. These correspond to the

coefficients found in ref. [26] after some field redefinitions.

Consider the resulting Lagrangian of a massive spin-s particle eq. (1.19) after the

transformation eq. (1.22)

L = Φ · Γ̂s + φ(s−1) · Γ̂s−1 +
m2

2
(2s− 1)ϕT(s−2) · Γs−2

− m2

2

[(
Φ + κηϕT(s−2)

)2
− s(s− 1)

2

(
Φ′ + 2sκϕT(s−2)

)2
]
−
(

Φ + κηϕT(s−2)

)
· J̃

+ cs−1

(
φ′(s−1)

)2
− 4cs−1φ

′
(s−1) · ∂ · ϕ

T
(s−2) + a1,2

(
∂ · ϕ′(s−1)

)
· ϕ′(s−2)

+ cs−2

(
ϕ′(s−2)

)2
+ b2

(
∂µϕ

′
(s−2)

)2
+ b̃2

(
∂ · ϕ′(s−2)

)2
+ · · ·

(A.1)

where we have added additional mass terms and kinetic terms of the auxiliary fields. In

what follows, we define the operator

Ik ≡
m√
s

[
2∂∂ϕT(k) − 2η�ϕT(k) − η∂∂ · ϕ

T
(k)

]
, (A.2)

which reduces to eq. (1.21) for k = s−2 and is proportional to the variation of the Fronsdal

tensor under Weyl-like transformations of the field φ(k),

φ(k) → φ(k) + λkηϕ
T
(k−2) , δΓ̂(k) = λk

√
s

2m
(k − 1) Ik−2 , (A.3)

where λk is the transformation parameter.

In the main text, we have shown that a field redefinition of Φ (see eq. (1.22)) in-

troduces a kinetic term for ϕT(s−2) which is invariant only under gauge transformations

with transverse gauge parameters. Therefore, the Lagrangian contains ghost-like terms

∼
(
∂2ϕT(s−3)

)2
, since the definition

ϕTs−2 = φT(s−2) − ∂ϕ
T
(s−3) +

1

(s− 2)
η∂ · ϕT(s−3) (A.4)
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does not resemble a transverse gauge transformation. These terms can only be removed

if the coefficients a1,2, b2 and b̃2 are tuned to specific values, such that a gauge invariant

kinetic term for the traceful field ϕ(s−2) is recovered. For this purpose, we recall that for a

massless spin-k field the quadratic Lagrangian can be equivalently written in terms of the

traceless fields ϕ′(k) and ϕT(k)

L(k) = −1

2

(
∂µϕ

T
(k)

)2
+
k

2

(
∂ · ϕT(k)

)2
+

(k − 1)2

2
ϕ′(k)∂ · ∂ · ϕ

T
(k)

+
(k − 1)2(2k − 1)

8k

(
∂µϕ

′
(k)

)2
+

(k − 1)2(k − 2)2

8k

(
∂ · ϕ′(k)

)2
.

(A.5)

It is then clear that a gauge invariant kinetic term for ϕ(s−2) is reproduced if we match the

coefficients a1,2, b2, b̃2 with the previous equation

a1,2 = −m2 (2s− 1)(s− 3)2

4
, b2 = m2 (2s− 1)(s− 3)2(2s− 5)

8(s− 2)

b̃2 = m2 (2s− 1)(s− 3)2(s− 4)2

8(s− 2)
,

(A.6)

whereas the coefficient cs−2 is fixed by demanding a Fronsdal kinetic term for ϕTs−3, as

done previously for cs−1. Indeed, let us notice that the transformation eq. (1.22) induces

a kinetic term for ϕT(s−3) through the mass term of Φ, i.e.

− m4s(2s− 1)(s− 2)

2(s− 1)
ϕT(s−3)Γs−3 −

m4s(2s− 1)(2s− 5)

2(s− 1)
ϕT(s−3) · ∂∂ · ϕ

T
(s−3) , (A.7)

as well as mixing terms between φ(s−1) and ϕT(s−3)

s(1− 2s)κφ(s−1) · Is−3 +
1

2
m2(s− 3)(2s− 1)φ′(s−1) · ∂∂ · ϕ

T
(s−3) . (A.8)

With the choice of a1,2 made in eq. (A.6), the latter mixing is removed, whereas the former

can be removed by a Weyl-like transformation

φ(s−1) → φ(s−1) + λs−1ηϕ
T
(s−3) , (A.9)

under which the kinetic term of φ(s−1) transforms as

δ
(
φ(s−1) · Γ̂(s−1)

)
=

√
s(s− 2)

m
λs−1φ(s−1) · Is−3 + λs−1ηϕ

T
(s−3) · δΓ̂(s−1) . (A.10)

The mixing φ(s−1) · Is−3 in eq. (A.8) then cancels if

λs−1 =
m2(2s− 1)

(s− 1)(s− 2)
. (A.11)

Therefore, by summing eq. (A.7), (A.8), (A.10) a non-standard kinetic term is generated

3

2
m4(s− 1)(2s− 1)ϕT(s−3) · Γs−3 +m4(2s− 1)(2s− 3)ϕT(s−3) · ∂∂ · ϕ

T
(s−3) . (A.12)

The coefficient cs−2 must be tuned to cancel the last mixing

cs−2 = m4 (s− 3)(2s− 1)(2s− 3)

4
. (A.13)
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B Decoupling limit of massive spin-3 theory

In this section, we present a more explicit computation of the decoupling limit of the free

massive spin-3 theory. To simplify the computation, we can conveniently choose the gauge

Aµ = 0. When most of the kinetic mixings with the scalar mode will be removed, we will

reintroduce the field Aµ together with its gauge invariance.

By following our construction in section 1, we consider the Lagrangian in term of the

field ϕµν = Hµν + 2∂µ∂νπ

L0 = ΦµνρΓ̂
µνρ
3 − m2

2

[
Φ2
µνρ − 3Φ2

µ

]
+ ϕµνΓ̂µν2 + LΦϕ2

mix + Lmass
ϕ , (B.1)

where ϕµνΓ̂µν2 is the usual linearized Einstein-Hilbert free action and

LΦϕ2

mix =
√

3m

[
Φµνρ∂

µϕνρ +
1

2
Φµ∂

µϕαα − 2Φµ∂νϕ
µν

]
, Lmass

ϕ = c1

(
ϕµµ
)2
. (B.2)

The scalar mode π enters the definition of ϕµν as a gauge transformation and therefore does

not affect the Einstein-Hilbert kinetic term. Instead, it affects the mass and mixing terms

δLmass
ϕ = 4c1

[
H�π + (�π)2

]
, (B.3)

δLΦϕ2

mix =
√

3m [2Φµνρ∂
µ∂ν∂ρπ − 3Φµ∂

µ�π] . (B.4)

We can remove the last mixing kinetic term through the field redefinition

Φµνρ → Φµνρ −
m

2
√

3
η(µν∂ρ)π . (B.5)

Indeed, this transformation does affect the kinetic term of the spin-3 field

δ
(

ΦµνρΓ̂
µνρ
3

)
=

15

4
m4(∂π)2+3m2 (�π)2−

√
3m (2Φµνρ∂µνρπ − 3Φµ∂

µ�π)− 5
√

3

2
m3φµ∂

µπ

(B.6)

providing the term to cancel the mixing between the spin-3 and the scalar Goldstone.

Summing also the kinetic terms for π generated by the field redefinition eq. (B.5) from

the spin-3 mass terms and the mixing eq. (B.4), we arrive at the Lagrangian

L0 = ΦµνρΓ̂
µνρ
3 − m2

2

[
Φ2
µνρ − 3Φ2

µ

]
+HµνΓ̂µν2 + c1H

2 + LΦH
mix + LHπmix −

5

2
m2Φµ∂

µπ (B.7)

+
15

4
m4(∂π)2 +

(
4c1 − 3m2

)
(�π)2 , (B.8)

where

LHπmix =
[(

4c1 + 2m2
)
�H − 5m2∂µ∂νH

µν
]
π , (B.9)

LΦH
mix =

√
3m

[
Φµνρ∂

µHνρ +
1

2
Φµ∂

µH − 2Φµ∂νH
µν

]
. (B.10)
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The ghost-like kinetic term (�π)2 cancels only if c1 = 3/4m2. With this choice, the kinetic

mixing between π and Hµν can be resolved through the field redefinition20

Hµν → Hµν +
5

2
m2 ηµνπ (B.11)

under which

δ
(
LHπmix

)
=−75

2
m4 (∂π)2 , δ

(
Hµν Γ̂µν2

)
=

75

4
m4(∂π)2 +5m2 [∂µ∂νH

µν−�H]π , (B.12)

δ
(
c1H

2
)

= 15m4Hπ+75m6π2 , δ
(
LΦH

mix

)
=

5
√

3

2
m3Φµ∂

µπ . (B.13)

The last term of eq. (B.12) cancels eq. (B.9) if c1 = 3/4m2 and the Φµ∂
µπ mixing cancels

as well. The final lagrangian is then

L0 = ΦµνρΓ̂
µνρ
3 − m2

2

[
Φ2
µνρ − 3Φ2

µ

]
+HµνΓ̂µν2 +

3

4
m2H2 + LΦH

mix + 15m4Hπ

− 15m4 (∂π)2 + 75m6π2 .

(B.14)

Notice that the tuning of c1 was necessary in order to recover a ghost-free theory. Indeed, if

we set c1 =
(

3
4 + δc

)
m2 with δc ∼ O(1) then a ghost appears with a mass m2

ghost ∼ m2/δc.

We can now reintroduce the vector modes Aµ by redefining Hµν → Hµν −∂(µAν). The

computation is now simpler as most of the mixing terms have been removed. From our

result eq. (B.14), it is clear that Aµ will mix with Φµνρ and π. Once we reintroduce the

vector modes, we have the following additional terms

δ
(
LΦH

mix

)
= LΦA

mix ≡ −
√

3m [2Φµνρ∂
µ∂νAρ − Φµ∂

µ∂νAν − 2Φµ�A
µ] , (B.15)

δ

(
3

4
m2H2

)
= 3m2 (∂µA

µ)2 − 3m2∂µA
µH , δ

(
15m4Hπ

)
= −30m4∂µA

µπ . (B.16)

The kinetic mixing between Φµνρ and Aµ in eq. (B.15) can be removed with the following

field redefinition

Φµνρ → Φµνρ +
1

2
√

3
mη(µνAρ) , (B.17)

under which

δ
(

ΦµνρΓ̂
µνρ
3

)
= −LΦA

mix +
m2

2

[
(∂µA

µ)2 + 5 (∂µAν)2
]
, (B.18)

δ

(
−m

2

2

[
Φ2
µνρ − 3Φ2

µ

])
=

15

4
m4A2

µ +
5

2
m2Aµφ

µ (B.19)

δ
(
LΦA

mix

)
= −m2

[
5 (∂νAµ)2 + (∂µA

µ)2
]
, (B.20)

δ
(
LΦH

mix

)
= LAHmix ≡ m2 [2Aµ∂

µH − 5Aµ∂νH
µν ] . (B.21)

The mixing eq. (B.15) cancels with the first term of eq. (B.18) and a gauge invariant kinetic

term for the vector modes is generated

− 5

4
m2F 2

µν . (B.22)

20In the Fierz-Pauli Lagrangian, this is the same mixing (up to multiplicative constants) appearing

between the spin-2 massive field and the spin-0 Stueckelberg mode.
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Summing all the terms we get the Lagrangian

L0 = ΦµνρΓ̂
µνρ
3 +Hµν Γ̂µν2 −

5

4
m2F 2

µν − 15m4 (∂π)2

− m2

2

[
Φ2
µνρ − 3Φ2

µ

]
+

3

4
m2H2 +

15

4
m4A2

µ + 75m6π2

+ LΦH
mix + LAHmix + 15m4 [Hπ − 2∂µA

µπ] +
5

2
m2Aµφ

µ − 3m2∂µA
µH ,

(B.23)

which is smooth in the limit m→ 0, once all the fields are canonically normalized.

C Tuned potential for arbitrary spins

In this appendix, we show that our understanding of the mixings between the transverse

and longitudinal modes allows us to explicitly realize the best energy growth of four-scalar

amplitudes from zero-derivative interactions, namely M ∼ E3s and M ∼ E3s+1 for even

and odd spin respectively, which was conjectured in ref. [34]. The potential that gives rise

to such a behavior is a straightforward generalization of eq. (2.8), which can be conveniently

written as

s even: εµ1...µ4εν1...ν4 · · · ερ1...ρ4 Φµ1ν1...ρ1Φµ2ν2...ρ2Φµ3ν3...ρ3Φµ4ν4...ρ4 , (C.1)

s odd: εµ1...µ4εν1...ν4 · · · ερ1...ρ4Φµ1ν1...ρ1αΦ α
µ2ν2...ρ2 Φµ3ν3...ρ3βΦ β

µ4ν4...ρ4 , (C.2)

and consists of s and s−1 ε-tensors for even and odd spin respectively. The scalar interac-

tions in terms of the Stueckelberg scalar field π ≡ φ(0) can be read through the gauge invari-

ant combination Dϕ(s−2) defined in eq. (1.26) away from the unitary gauge. Generically,

the leading interaction is of the form (∂sπ)4, but the specific contractions with the ε-tensors

in eq. (C.1) makes this term vanish up to total derivatives. The would-be subleading terms

now dominate the amplitude and originate from non-vanishing terms proportional to

s even: εµ1...µ4εν1...ν4 · · · ερ1...ρ4∂µ1ν1...ρ1π ∂µ2ν2...ρ2π ∂µ3ν3...ρ3πDϕ(s−2)µ4ν4...ρ4
, (C.3)

s odd: εµ1...µ4εν1...ν4 · · · ερ1...ρ4∂µ1ν1...ρ1απ ∂ α
µ2ν2...ρ2 π ∂µ3ν3...ρ3βπDϕ(s−2)

β
µ4ν4...ρ4

. (C.4)

In this basis, the Stueckelberg field π has not a proper kinetic term, which must be

induced by resolving the mixings of the transverse and longitudinal modes. As we have

shown in section 1 and appendix A this is done via generalized Weyl transformations

Φs → Φs + κ η φ(s−2)

φ(s−1) → φ(s−1) + λs−1η φ(s−3)

φ(s−2) → φ(s−2) + λs−2η φ(s−4)

. . .

φ(2) → φ(2) + λ2η π

(C.5)

where κ, λk are chosen such as to generate gauge-invariant kinetic terms for the Goldstone

fields. Their value in unimportant for the purpose of this discussion.

Let us focus on the even and odd spins cases separately.
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Even spin. The leading scalar interaction is obtained by applying the cascade of transfor-

mations in eq. (C.5) to the non-vanishing term eq. (C.3). For even spins, the scalar field is

obtained as the result of the chain of transformations Φs → φ(s−2) → · · · → π under which

εµ1...µ4εν1...ν4 · · · εσ1...σ4ερ1...ρ4 ∂µ1ν1...σ1ρ1π ∂µ2ν2...σ2ρ2π ∂µ3ν3...σ3ρ3π η(µ4ν4 . . . ησ4ρ4)π (C.6)

is generated. This term is not vanishing and leads to a scalar amplitude M ∼ E3s, as

clearly seen by counting derivatives.

Odd spin. In this case, the scalar field comes from the chain of transformations starting

from the spin-(s−1) Goldstone field φ(s−1) → φ(s−3) → . . .→ π. The four-scalar interaction

that is then generated is

εµ1...µ4εν1...ν4 · · · εσ1...σ4ερ1...ρ4 ∂µ1ν1...σ1ρ1απ ∂ α
µ2ν2...σ2ρ2 π ∂ β

µ3ν3...σ3ρ3 π η(µ4ν4 . . . ησ4ρ4∂β)π .

(C.7)

Upon symmetrization and integration by parts, the only non-vanishing term is the one

where the index β lies on the derivative, which leads to M∼ E3s+1.

Incidentally, these interactions are symmetric under the polynomial shifts eq. (1.35)

with N = s− 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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