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1 Introduction

The masses of the Standard Model (SM) quarks and leptons exhibit large hierarchies [1].

The mass of the lightest quark, the up quark, is five orders of magnitude smaller than the

mass of the heaviest quark, the top quark. The hierarchies in the leptonic sector are even

more striking; the heaviest charged lepton, the tau, has a mass that is at least ten orders of

magnitude larger than the mass of the heaviest neutrino. Furthermore, in the quark sector

the measurable misalignment between the gauge and mass-eigenstates is also hierarchical,

as encoded in the CKM matrix. For leptons, on the other hand, the three mixing angles

in the PMNS matrix are all large.

This very peculiar flavor structure calls for a dynamical explanation. A very attractive

solution to the above SM flavor puzzle is provided by the Froggatt-Nielsen (FN) models
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of flavor [2] (see also [3, 4]). In FN models the SM mass hierarchy is due to a horizontal

U(1)FN, spontaneously broken by the vacuum expectation value (vev) of the flavon field,

〈φ〉. The SM fermions carry horizontal U(1)FN charges. The up and down quark Yukawa

matrices are then given by1

(
Yu
)
ij
∼
(〈φ〉
M

)[qi]−[uj ]

,
(
Yd
)
ij
∼
(〈φ〉
M

)[qi]−[dj ]

, (1.1)

with M the typical mass of the new FN vector-like fermions, while [qi], [ui], [di] are the hor-

izontal charges of the SM left-handed quark doublets, the up quarks, and the down quarks,

respectively, with i, j = 1, 2, 3 the generational indices. For 〈φ〉/M ∼ 0.2 one can reproduce

the parametric size of the CKM matrix and the quark masses with the appropriate choice of

horizontal charges, [qi], [ui], [di] (for details, see below). For generic horizontal charges, and

without additional field content, such a horizontal U(1)FN is anomalous and thus needs to

be a global symmetry. It is also possible to gauge the FN horizontal symmetry for special

choices of horizontal charges for which the symmetry is not anomalous. For example, ref. [5]

builds neutrino mass models based on an anomaly free U(1)2
FN FN symmetry, while the full

list of anomaly free charge assignments for U(1)FN can be found in [6, 7] (for related work,

see also [8–14]). The gauged U(1)FN can also be left naively anomalous, if the cancellation

of U(1)FN gauge anomalies occurs through the Green-Schwarz mechanism [15–26].

In this paper we explore a twist to the original FN proposal. In our modified set of

FN models the horizontal U(1)FN is anomaly free for any horizontal charge assignments,

[qi], [ui], [di], making it much easier to obtain agreement with the measured fermion masses

and mixings. In this case up and down quark Yukawa matrices are given by

(
Yu
)
ij
∼
(
M

〈φ〉

)[qi]−[uj ]

,
(
Yd
)
ij
∼
(
M

〈φ〉

)[qi]−[dj ]

. (1.2)

In these “inverted FN models” the SM mass hierarchy is obtained for flavon vev that is para-

metrically larger than the vector-like masses, e.g., for 〈φ〉/M ∼ 5. Such a realization of the

FN flavor model was discussed in ref. [27], where it was given as a possible UV realization

of the clockwork mechanism [28]. We extend the results of ref. [27] in several ways. First

of all, two choices for the horizontal symmetry group, GFN = U(1)3
FN and GFN = U(1)FN,

are explored. The choice GFN = U(1)3
FN most closely resembles the analysis in ref. [27],

except that we allow O(1) variations for all the Yukawa couplings. We also assume that

GFN is gauged, and explore the phenomenology of the associated Z ′ gauge bosons.

The typical spectra of inverted FN models for the two choices of GFN are shown in

figure 1. The flavor constraints require the vector-like fermions and the flavon to be heavy,

for instance, the vector-like fermions need to be heavier than about O(107 GeV). The mass

of Z ′, however, can span many orders of magnitude. For gauge couplings g′ ∼ O(1) the Z ′

is heavy, while for small values of g′ it can be light and accessible at experiments. A better

part of the present manuscript is devoted to analyzing the experimental possibilities for

the light Z ′ searches.

1To shorten the discussion we focus manly on quarks, but also show in section 4 how the discussion

naturally generalizes to leptons.
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Figure 1. Mass spectra for GFN = U(1)3 (left) and GFN = U(1) models (right), with masses of

vector-like masses denoted in red, of SM fermions in blue and the considered range of Z ′ masses

denoted with a dashed line. The spectra correspond to the two benchmarks considered in section 5

and appendix B. The flavon mass (dashed red) is not fixed in the two benchmarks, but is set to

107 GeV in the two panels, indicative of its typical value.

The paper is organized as follows. In section 2 we present the inverted FN model

based on U(1)3
FN symmetry, starting with the mass suppression mechanism for a single

quark generation, which is then readily extended to the case of three generations. Here

we also explain that the scaling (1.2) can be understood using a spurion analysis for an

approximate U(1)app that emerges at low energies, and is broken by M rather than 〈φ〉.
In subsection 2.2 we then perform a numerical scan over the parameters of the U(1)3

FN

model and compare the results with the measured values of quark masses and mixings. In

section 3 we present the U(1)FN model and the respective numerical scan. In section 4 we

extend both models to the lepton sector. In section 5 we explore the phenomenological

implications of the two models, covering the bounds from a number of flavor conserving

and violating processes induced by the exchanges of Z ′i gauge bosons, with implications

for precision flavor, astrophysics and beam dump experiments. Section 6 contains our

conclusions, while appendix A gives further details on K− K̄ bounds for flavorful light Z ′.

The representative benchmarks for the two models are given in appendix B.

2 Decoupled FN chains — the U(1)3FN model

2.1 The set-up of the model

We start by assuming that there is a separate horizontal U(1)FN for each generation of the

SM fermions, i.e., that the horizontal gauge group is GFN = U(1)1 × U(1)2 × U(1)3. The

field content is that of the SM, supplemented by a number of vector-like fermions whose

FN charges differ by one unit and are organized in chains of vector-like fermions.

– 3 –
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Figure 2. The anomaly free inverted Froggatt-Nielsen model for a single generation of down quarks.

The quark doublet vector-like chain is to the left, and down quark singlet vector-like chain to the

right of the central node, shaded with gray. The horizontal charges of fields on each node differ by

1. The central node has chiral quark fields, uncharged under the horizontal U(1)FN, coupling to the

Higgs. For clarity of presentation the labels on vector-like masses, as well as the Yukawa couplings

are not shown.

We first illustrate the set-up for the case of a single SM generation of down quarks,

setting also GFN = U(1)FN for now. The Lagrangian is

L1 = Lq + Ld +
(
Y d

0 q̄L,0dR,0H + h.c.
)
, (2.1)

where

Lq = i

Nq∑
n=1

q̄R,n /DqR,n+i

Nq∑
n=0

q̄L,n /DqL,n−
Nq∑
n=1

(
M q
nq̄L,nqR,n−Y q

nφq̄L,n−1qR,n+h.c.
)
, (2.2)

Ld = i

Nd∑
n=0

d̄R,n /DdR,n+i

Nd∑
n=1

d̄L,n /DdL,n−
Nd∑
n=1

(
Md
n d̄L,ndR,n−Y d

n φd̄L,ndR,n−1+h.c.
)
. (2.3)

The qL/R,j and dL/R,j have the SM quantum numbers of qL and dR SM quark fields,

respectively. The flavon fields, φ, carry the horizontal U(1)FN charge of [φ] = +1, while

dR/L,n and qR/L,n have charges [dR/L,n] = +n and [qR/L,n] = −n, respectively. The above

Lagrangian can be represented as a chain of nodes that contain fields with the same U(1)FN

charges, connected by flavon fields, see figure 2. For simplicity we set all the vector-like

masses to be equal, M . This can be trivially relaxed, without affecting the main properties

of the model as long as they remain O(M) (without loss of generality they can all be

made real positive through phase redefinitions). More important is the assumption that

the flavon couples on each node only to one field out of each pair of vector-like fermions, cf.

figure 2. In general, there could also be terms of the form φ∗d̄L,n−1dR,n and φ∗q̄R,n−1qL,n,

which were dropped in (2.2) and (2.3). The reason for this choice is that we expect the

above model to be supersymmetrized at some higher scale. Such terms are then absent

because the superpotential is holomorphic.

The flavon obtains a vev, 〈φ〉, which spontaneously breaks the horizontal U(1)FN. Each

of the chains of vector-like fermions, q and d, has one massless zero mode, and Nq and Nd

massive vector-like fermion states with mass O(M, 〈φ〉). For 〈φ〉 �M , with Y d
n , Y

q
n ∼ O(1)

the two zero modes are mostly localized towards the ends of the respective chains. More
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precisely, the q′L,0 and d′R,0 massless mass eigenstates are given by

q′L,0 =

Nq∑
n=0

V qL
n0 qL,n, d′R,0 =

Nd∑
n=0

V dR
n0 dR,n. (2.4)

The notation is borrowed from [27], with V qL and V qR the Nq×Nq and (Nq +1)× (Nq +1)

unitary matrices that diagonalize the Nq × (Nq + 1) mass matrix for the q fields through a

bi-unitary transformation (and similarly for dL,R fields with obvious change of notation).

For Y d
n = Y q

n = 1, Md
n = M q

n = M , the model realizes the clockworking mechanism, for

which the zero mode profiles are known analytically [27],

V qL
n0 = N qL

0

(
M

〈φ〉

)Nq−n
, V dR

n0 = N dR
0

(
M

〈φ〉

)Nd−n
, (2.5)

with the normalization constants Nψ
0 =

√(
q2−1

)
/(q2−1/q2Nψ)' 1, where q= 〈φ〉/M� 1.

The zero mode obtains a mass once the electroweak symmetry is broken through the

Higgs vev. The mass is suppressed by the zero mode wave functions on the zero node,

md ' fqLfdRY d
0 v/
√

2, (2.6)

where the overlaps with the zero-node are given by

fψ ≡ V ψ
00 '

(
M

〈φ〉

)Nψ
, (2.7)

and are thus exponentially suppressed for large Nψ and 〈φ〉 �M .

The suppression can be understood from a spurion analysis. In the limit of a heavy

flavon the fermion mass matrix has an emergent approximate U(1)app global symmetry

after the flavon obtains a vev. This is easy to see once the fermion fields are re-arranged

in a modified chain of nodes as shown in figure 3, while the heavy flavon is integrated out

and need not be considered here. The fields on a particular node have U(1)FN charges that

differ by one unit, but have the same U(1)app charges. The U(1)app charge reduces by one

unit when hopping to the right by one node in the chain. That is, the qL,Nq has the U(1)app

charge Nq, the qL,Nq−1 and q̄L,Nq the U(1)app charge Nq−1, and so on, all the way to dR,Nd
which carries a charge −Nd (the two greyed out nodes in figure 3 should be treated as a

single node, with all the corresponding fields uncharged under U(1)app). The mass terms

proportional to M explicitly break U(1)app. Treating M as a spurion with U(1)app charge

of +1 the fermion mass matrix is formally invariant under U(1)app. The zero modes, i.e.,

the SM fermions are mostly qL,Nq and dR,Nd , so that the zero mode mass term is given by

LSM ∼ Y d
0

(
M

〈φ〉

)Nq+Nd
q̄L,NqdR,NdH, (2.8)

which is U(1)app invariant. This is exactly the suppression found in (2.6). Furthermore,

note that the effective FN charge of the zero mode is approximately the same as its U(1)app

charge. The zero modes are localized toward the ends of the vector-like chains, see figure 5.

To leading order the qL,Nq and dR,Nd zero modes thus carry effective FN charges Nq and

−Nd, respectively.
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Figure 3. The anomaly free inverted Froggatt-Nielsen model for a single generation of down quarks,

but with rearranged fields on the nodes, see text for details.

Figure 4. The vector-like chains (blue) for the inverted FN model with GFN = U(1)3FN. The chiral

fermions are on the zero node, denoted by the red ellipse, which also contains the Higgs.

The above discussion is readily extended to the case of three generations, including

both down and up quarks. The horizontal gauge group is taken to be GFN = U(1)1 ×
U(1)2 × U(1)3, with a separate U(1)i for each of the three generations of fermions. The

fermion Lagrangian is then

Lf =
∑
i

(
Lq(i) + Ld(i) + Lu(i)

)
+
∑
ij

[(
Y d

0

)
ij
q̄

(i)
L,0d

(j)
R,0H +

(
Y u

0

)
ij
q̄

(i)
L,0u

(j)
R,0H̃ + h.c.

]
, (2.9)

with i, j = 1, 2, 3, the generation indices, and H̃ = iσ2H
∗. The kinetic Lagrangians are

given in (2.2) and (2.3), but with extra generational superscript on fermions, q
(i)
a , u

(i)
a , d

(i)
a

(replacing d → u in Ld(i) gives Lu(i)), and with M q
n → M

q(i)
n , Y q

n → Y
q(i)
n , Nq → Nq(i),

etc., as well as φ → φi, since each generation is gauged under a separate U(1)i. This

results in three uncoupled chains, one per each generation, for q fields, for d fields, and for

u fields. All of these chains attach to the central node with the Higgs, see figure 4. The

Yukawa matrices Y d
0 , Y

u
0 on the zero node are 3 × 3 complex matrices, while the Yukawa

couplings on each of the chains, (2.2) and (2.3), are just complex numbers.2 The Yukawa

interactions with the Higgs are thus the only terms mixing different generations, see the

last term in (2.9).

Up to higher corrections in v/M the SM fermions are equal to the zero modes. The

zero mode wave functions peak toward the ends of the chains, cf. eq. (2.5) and figure 5.

2The flavon Yukawa couplings Y
q(i)
1 , connecting the zero node with the first node of the q-chain, are in

general arbitrary complex three-vectors. To simplify the notation in (2.9) we take them to be orthogonal,

and then use the 3× 3 unitary field redefinitions of q̄
(i)
L,0 to ensure the Y

q(i)
1 have nonzero components only

in the i-th direction. We assume the same for Y
d(i)
1 and Y

u(i)
1 .
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Figure 5. Zero mode profiles for chains of lengths N = 2 (blue), N = 4 (red), and N = 6 (black),

setting q = 5. The overlaps with the zero node, n = 0, are exponentially suppressed.

This means that the SM fermion, q
(i)
L , has the largest component that is due to q

(i)
L,Nq

, the

left-handed part of the vector-like fermion that is the furthest away from the Higgs. For

u
(i)
R the largest component is u

(i)
R,Nu

, and similarly for d
(i)
R it is d

(i)
R,Nd

. The SM fermions

thus carry large U(1)i charges, and couplings to the U(1)i gauge bosons, Z ′is, roughly

given by the length of the corresponding vector-like chain, [ψ]i ≈ Nψ(i). However, for the

phenomenology of Z ′i also the subleading couplings are important, because they lead to

flavor violating transitions. We explore the implications of these in section 5.

The zero modes, identified with the SM fermions, obtain a nonzero mass after elec-

troweak symmetry breaking from the overlaps with the Higgs. The Higgs is on the zero

node, so that

(md)ij ' fq(i)L fd(j)R
(
Y d

0

)
ij

v√
2
, (mu)ij ' fq(i)L fu(j)R

(
Y u

0

)
ij

v√
2
. (2.10)

The structure of the zero node overlaps, fa, explains the hierarchy of SM fermion masses.

For M � 〈φ〉 the zero node overlaps, fa, are more suppressed the longer the corresponding

chain of the vector-like fermions. This can be seen analytically, if all the Yukawa couplings

are equal to one, see eq. (2.7), but is also true in general.

Below we perform a scan over the inputs of the model in order to explore how well the

eigenvalues of the quark mass matrices (2.10) resemble the observed values. To simplify

the discussion, we set

M1

〈φ1〉
=

M2

〈φ2〉
=

M3

〈φ3〉
=

1

q
' λ = 0.2, (2.11)

where M1,M2,M3 are the typical values of vector-like masses for each of the three gen-

erations. This choice will also make it easier to compare with the single U(1)FN case,

to be covered in section 3. The scalings for the mass matrices in (2.10) are then,

– 7 –
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mu md mc ms mt mb me mµ mτ

0.0007 0.0015 0.33 0.03 95 1.6 0.0005 0.104 1.798

Table 1. The experimental values of quark and charged lepton masses (in GeV) at µ = 107 GeV,

obtained from NNLO QCD RG evolution, and used for comparison with the numerical scan. Despite

the large allowed experimental range for mu and md we show only the central values, which coincide

with the choice made in ref. [27] at µ = 2 TeV.

for Y d
0 , Y

u
0 ∼ O(1),

(md)ij ' λNq(i)+Nd(j)
v√
2
, (mu)ij ' λNq(i)+Nu(j)

v√
2
. (2.12)

2.2 Numerical scan

For the numerical scan we set 〈φ〉 = 107 GeV and q = 5, cf. eq. (2.11). The vector-like

masses, Mf
n , f = u, d, q, eqs. (2.2), (2.3), in the units of 107 GeV, and the zero node Yukawa

matrix elements, (Y d
0 )ij , (Y

u
0 )ij , eq. (2.9), are taken to be random complex numbers of the

form rae
iϕa . The Yukawa couplings between the FN fermions and the flavon are taken to

be of the form Y f
n 〈φ〉 = rae

iϕaq, so that the ratios |Y f 〈φ〉/Mf | are on average equal to q.

The magnitudes and phases are taken to be uniformly distributed over ra ∈ [0.3, 0.9] and

ϕa ∈ [0, 2π), with ra, ϕa uncorrelated between different couplings. The range of ra was

chosen such that the top Yukawa, m̄t/(v/
√

2) ' 0.55 is close to the median, while the ratio

of the boundaries, rmax/rmin, is smaller than q. The predictions are not very sensitive to

the precise ranges for ra since these cancel on average in the ratios Mf
n/(Y

f
n 〈φ〉), which

control the hierarchies of the SM quark masses. The effect of changing the average value

of ra is thus mostly due to a different average values of the Y d,u
0 matrix elements. For

instance, using ra ∈ [0.6, 1.8] changes the distributions for the quark masses in figure 2.2

by an overall factor of 2. Relatively larger ra ranges, on the other hand, lead to wider

distributions of quark masses and mixings.

The lengths of the chains with the vector-like quarks are taken to be almost the same

as in ref. [27],3

Nq(1) = 3, Nq(2) = 2, Nq(3) = 0,

Nu(1) = 4, Nu(2) = 2, Nu(3) = 0,

Nd(1) = 4, Nd(2) = 3, Nd(3) = 3,

(2.13)

giving the configuration of the vector-like FN chains shown in figure 4.

In each run of the scan we generate and diagonalize the chains, then calculate the quark

masses and the CKM matrix elements. The results of the scan with 5000 runs are shown

in figure 6, with the CKM matrix elements shown in the first row, and the quark masses

in the second and third row. For ease of comparison we also denote the measured central

3The difference arises partially from taking significantly higher µ and different median values of Y d,u0

matrix elements. We take Nd(3) = 3, Nu(2) = 2 while in [27] these were set to Nd(3) = 2, Nu(2) = 1. We

thank A. Kagan for suggesting the new charge assignments that improve the agreement with bottom and

charm quark masses.
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Figure 6. Distributions of the CKM matrix elements and quark masses for inverted FN model

with the GFN = U(1)3FN gauge group, see text for details. The vertical solid (dashed) lines mark

the SM values (1σ bands) for the observables at µ = 107 GeV.

values with vertical solid lines, while the one sigma experimental bands are delineated with

dashed lines. The quark masses are the MS masses at µ = 104 TeV, which we anticipate

to be the rough lower bound on the vector-like fermion masses from flavor constraints, see

section 5 for details. The values of SM fermion masses at µ = 104 TeV, obtained through

NNLO RG evolution, are listed in table 1 (at µ = 2 TeV the values of the quark masses

coincide with ref. [27]). For the CKM matrix elements we checked using results in [29]

that the effects of RG evolution are negligible, so that we use the unevolved values from

the PDG [1].

3 Coupled FN chains — the U(1)FN model

3.1 The set-up of the model

We discuss next the coupled FN chains, which are obtained in the case of a single horizontal

U(1)FN, see figure 4. The Yukawa couplings between vector-like fermions and the flavon

field are now complex matrices. The Lagrangian is thus

L1 = Lq + Ld + Lu +
∑
ij

[(
Y d

0

)
ij
q̄

(i)
L,0d

(j)
R,0H +

(
Y u

0

)
ij
q̄

(i)
L,0u

(j)
R,0H̃ + h.c.

]
, (3.1)

– 9 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
8

!3
H
ig
gs

u(1)u(3)

q(3)

d(3)

d(2)

d(1)

q(1)
q(2)

u(2)

Figure 7. The vector-like chains (blue) for the inverted FN model with GFN = U(1)FN. The chiral

fermions are on the zero node, denoted by the red ellipse, which also contains the Higgs. Different

generations on each node mix through vector-like masses (filled orange ellipses), as do the fields on

neighboring nodes through Yukawa flavon interactions (empty orange ellipses).

where

Ld = i

Nd(i)∑
n=0

d̄
(i)
R,n

/Dd
(i)
R,n + i

Nd(i)∑
n=1

d̄
(i)
L,n

/Dd
(i)
L,nQ

−
Nd(1)∑
n=1

N̂d|n∑
i,j=1

(
Md
n)ij d̄

(i)
L,nd

(j)
R,n −

N̂d|n∑
i=1

N̂d|n−1∑
j=1

(Y d
n )ijφd̄

(i)
L,nd

(j)
R,n−1 + h.c.

 ,

(3.2)

and similarly for Lu with the d→ u replacement. For Lq, on the other hand, there is one

more left-handed field for each generation than the right-handed fields, so that

Lq = i

Nq(i)∑
n=1

q̄
(i)
R,n

/Dq
(i)
R,n + i

Nq(i)∑
n=0

q̄
(i)
L,n

/Dq
(i)
L,n

−
Nq(1)∑
n=1

N̂q |n∑
i,j=1

(
M q
n

)
ji
q̄

(j)
L,nq

(i)
R,n −

N̂q |n∑
i=1

N̂q |n−1∑
j=1

(
Y q
n

)
ji
φq̄

(j)
L,n−1q

(i)
R,n + h.c.

 .

(3.3)

The summation is over the nodes and the generations on each node. We label the fermions

such that the i-th generation fermions have a vector-like chain of length Nq(i). The first

generation has the longest fermion chain, so that the summation n = 1, . . . , Nq(1) sums

over all of the nodes. On node n there are N̂q|n generations, which are coupled to the

N̂q|n−1 generations of fermions on the (n− 1)-th node through an N̂q|n−1 × N̂q|n complex

Yukawa matrix Y q
n .

This produces a set of coupled FN chains, where the mixing between generations is

not only through 3× 3 Yukawa matrices on the zero node, coupling to the Higgs, but also

through the flavon Yukawa couplings,
(
Y q
n

)
ji

, and vector-like masses,
(
M q
n

)
ji

, cf. figure 7.

The zero modes are obtained through unitary transformations

q′
(i)
L,0 =

Nq(1)∑
n=0

N̂q |n∑
j=1

V qL
n(j),0(i)q

(j)
L,n, d′

(i)
R,0 =

Nd(1)∑
n=0

N̂q |n∑
j=1

V dR
n(j),0(i)d

(j)
R,n, (3.4)
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and similarly for the up quark zero modes. As in the decoupled case, the Higgs provides the

zero modes with nonzero masses after electroweak symmetry breaking from their overlaps

with the zero node. However, in the coupled case the zero mode overlaps with the zero

node are described by 3× 3 matrices, V dR,uR
0(j),0(i), due to the inter-generational mixing in the

chains. Therefore, the quark mass matrices become

(md)kl ' V qL
0(i),0(k)

(
Y d

0

)
ij
V dR

0(j),0(l)

v√
2
, (md)kl ' V qL

0(i),0(k)

(
Y u

0

)
ij
V uR

0(j),0(l)

v√
2
. (3.5)

For 〈φ〉 � M the zero-modes are, also in this case, mostly localized towards the

ends of the respective FN chains, with small overlaps with the Higgs on the zero node.

Parametrically,

f
q
(i)
L

∼
(

M q

Y q〈φ〉

)Nq(i)
, f

u
(i)
R

∼
(

Mu

Y u〈φ〉

)Nu(i)
, f

d
(i)
R

∼
(

Md

Y d〈φ〉

)Nd(i)
, (3.6)

with M q,u,d, Y q,u,d denoting the typical values of the corresponding matrix elements.

The hierarchy in the overlaps then translates into the hierarchy of the quark masses, cf.

eq. (2.10). However, due to additional flavour mixing on each node the parametric relations

are now even more approximate compared to the case of decoupled of FN chains. We show

this by performing a numerical scan. Since the expressions for SM quark masses effectively

involve multiplications of a number of random matrices, eq. (3.6), part of the hierarchy

comes from the properties of random matrix multiplications [30] (see also section 4).

3.2 Numerical scan

We choose the chain configurations with the following number of fermion generations on

each node

N̂q|n = {3, 2, 2, 1},
N̂u|n = {3, 2, 2, 1},
N̂d|n = {3, 3, 3, 3}.

(3.7)

Here n = 0, . . . , 3, respectively, for each of the three cases. This implies that the lengths

of the vector-like chains are given by,

Nq(1) = 3, Nq(2) = 2, Nq(3) = 0,

Nu(1) = 3, Nu(2) = 2, Nu(3) = 0,

Nd(1) = 3, Nd(2) = 3, Nd(3) = 3,

(3.8)

where Na + 1 is the length of the corresponding chain, cf. eq. (3.2). The above chain

configuration differs from the one for the decoupled FN chains in (2.13), in that the all

three dR generations now have the same lengths of chains, and that the chain for the first

uR generation is shorter.

We use a similar procedure as in section 2.2 to produce the numerical scan for the

coupled case. We fix q = 5, 〈φ〉 = 107 GeV, and vary the matrices Mf
ij , (Y

f
n )ij〈φ〉, f =

u, d, q, cf. eqs. (3.2) (3.3), and (Y d
0 )ij , (Y

u
0 )ij , cf. eq. (3.1). The vector-like masses are
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Figure 8. Distributions of the CKM matrix elements and quark masses generated in the numerical

scan with 5000 runs in the case of coupled FN chains, see text for details.

taken to be random complex numbers of the form rae
iϕa in the units of 107 GeV, while

the elements of Yukawa matrices are taken to be of the form (Y f
n )ij〈φ〉 = rae

iϕaq. The

ra are varied in the range [0.3, 0.9] and phases in [0, 2π). For each scan run we generate

and diagonalize the coupled chains and extract the quark masses and the CKM matrix

elements. The results of the scan with 5000 runs are shown in figure 8, using the same

layout as in figure 6.

Even though the dR chains are of the same length for all generations, we still have

hierarchical masses for down quarks due to different lengths of qL chains. Part of the

required hierarchy also comes from the fact that products of random matrices lead to ma-

trices with hierarchical eigenvalues [30]. The resulting mass distributions are much broader

than in the U(1)3
FN case. This is particularly apparent in the distributions of CKM matrix

elements, where the distributions for the Vcd and Vcb matrix elements almost completely

overlap. This is a result of relatively small expansion parameter 1/q ' 0.2, required to fit

the observed values realized in Nature. In figure 9 we show that a hierarchical structure

does appear also for the CKM matrix elements once a much larger value of q = 103 is taken.

4 Extension to leptons

It is straightforward to extend the above framework to leptons. To shorten the discussion

we assume that the neutrinos have Majorana masses. For the GFN = U(1)3
FN case the
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Figure 9. The CKM elements that would be obtained from coupled FN chains for the case of a very

large q = 1000. This shows the hierarchy between the would-be CKM matrix elements more clearly.

Lagrangian for the leptons is then given by replacing Q→ L, d→ e in eq. (2.9), and ignore

terms that involve u. Performing the same replacements in eq. (3.1) gives the Lagrangian

for the GFN = U(1)FN case.

For the neutrino masses we assume that they come from the dimension 5 Weinberg

operator. On the zero node we thus add the mass term

Ldim 5 ⊃ cij(LiH)(LjH)/ΛLN, (4.1)

with cij ∼ O(1). In the 〈φ〉 �ML
n limit the neutrino mass matrix takes the form

mν
ij ' cij

v2

ΛLN

(
ML

〈φ〉

)NL(i)+NL(j)

, (4.2)

after the vector-like fermions are integrated out.

The FN charge assignments for charged leptons depend crucially on the assumed flavor

structure of the neutrino mass matrix, see, e.g., [31]. We focus on the case where the

neutrino masses are completely anarchic, with all the PMNS mixing angles taken to be

O(1). This happens if all the left-handed leptons have the vector-like fermion chains of the

same length,

NL(1) = NL(2) = NL(3). (4.3)

For GFN = U(1)3
FN the hierarchy among charged lepton masses is then due to different

lengths of FN chains for the right-handed leptons, giving

me
ij ∼ v

(
M

〈φ〉

)NL(i)+Ne(j)

. (4.4)

The observed hierarchy between me : mµ : mτ is obtain for

Ne(1) = Ne(2) + 3 = Ne(3) + 4. (4.5)

Even with this identification, there is still significant freedom in phenomenologically viable

charge assignment, since one can compensate for a particular choice of NL(i) by adjusting
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Figure 10. The distributions of the charged lepton masses for the case of decoupled FN chains,

GFN = U(1)3FN (left), with charge assignments in eq. (4.6), and for the coupled FN chains, GFN =

U(1)FN (right), with charge assignments in eq. (4.7).

globally the Ne(i). In figure 10 (left) we show the charged lepton masses that are obtained

by setting

NL(1) = NL(2) = NL(3) = 3, Ne(1) = 4, Ne(2) = 1, Ne(3) = 0. (4.6)

Figure 11 shows the resulting values of PMNS matrix elements and of the neutrino masses,

setting ΛLN = 1011 GeV in order to approximately saturate the bound on the sum of neu-

trino masses from cosmology
∑

imνi . 0.15 [32]. These are compared with the measured

values with solid (dashed) lines denoting the central values (1σ bands) [1]. The scan is

peformed in the same way as for the quarks in the case of decoupled FN chains, section 2.2.

The vector-like masses are taken to be random complex numbers with magnitudes in the

ranges ra ∈ [0.3, 0.9] in units of 107 GeV, with arbitrary phases, while the Yukawa cou-

plings Y f
n 〈φ〉 are equal to q up to a randomized complex prefactor with magnitude in

the range [0.3, 0.9] and a random phase, where 〈φ〉 = 107 GeV. This preferentially leads

to normal hierarchy, see figure 11, and to PMNS phase and Majorana phases that are

completely random.

For the case of coupled FN chains, GFN = U(1)FN, we exploit the fact that products

of random matrices have hierarchical eigenvalues. We find that a completely anarchic

charge assignment

NL(i) ≡ NL = 2, Ne(i) ≡ Ne = 3, (4.7)

describes well the hierarchy among the charged leptons, see figure 10 (right). In the 〈φ〉 �
M limit the charged lepton mass matrix is then

me
ij '

v√
2
ML
NL

(
Y L
NL
〈φ〉
)−1 · · ·

(
Y L

1 〈φ〉
)−1

Y e
0

(
Y e

1 〈φ〉
)−1

M e
1 · · ·

(
Y e
Ne〈φ〉

)−1
M e
Ne . (4.8)

For (ML,e
n )ij = (cL,en )ijq〈φ〉, with the Y L,e

n and cL,en matrix elements randomly distributed,
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Figure 11. The distributions of the absolute values of the PMNS matrix elements (top), as well

as the sum of neutrino masses
∑
imνi (middle left) and neutrino mass squared differences ∆m2

12,

∆m2
31 (middler right and bottom) for the case of decoupled FN chains, GFN = U(1)3FN, setting

ΛLN = 1011 GeV. The measured values are shown as vertical bars [1, 32, 33], with dashed lines

denoting 1σ errors. For
∑
imνi the upper bound is shown [32], while for ∆m2

31 two lines are shown:

blue (orange) for normal (inverted) ordering.

such that their average values vanish, one has [30]

〈(detme)2〉 =

(
v√
2
q−(Ne+NL)

)2Nf (
Nf !σ2Nf )2(Ne+NL)+1, (4.9)

〈Trmeme†〉 =
v2

2
q−2(Ne+NL)Nf (Nfσ

2)2(Ne+NL)+1, (4.10)

where for simplicity we have assumed that (cL,en )−1 and Y L,e
n all follow the same distribution

with variance σ. Here Nf = 3 is the number of families, while 2(Ne+NL)+1 is the number

of random matrices that get multiplied in eq. (4.8). From (4.9) and (4.10) we get

√
memµ

mτ
.

1

N
3/4
f

 Nf !

N
Nf
f


2(Ne+NL)+1

4

=
1

33/4

(
2

9

) 2(Ne+NL)+1

4

. (4.11)
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Figure 12. The same as in figure 11, but for the coupled FN chains, GFN = U(1)FN. Here we use

ΛLN = 1013 GeV, see text for details.

If the lengths of the FN chains grow the eigenvalues become more hierarchical follow-

ing (4.11), which we also checked numerically.

The distributions of electron, muon and tau masses that follow from the anarchic charge

assignments for the coupled FN chains in eq. (4.7) are shown in figure 10 (right). We see

that despite the anarchic charges the hierarchy among the eigenvalues indeed reproduces

well the measured hierarchy of charged lepton masses. In the scan we used the same

approach as for quarks in section 3.2; the vector-like masses are random complex variables

with a magnitude in the range [0.3, 0.9] and a random phase, while the elements of Yukawa

matrices have entries equal to q up to a similar random complex prefactor with magnitude

in the range [0.3, 0.9].

The resulting PMNS matrix elements and neutrino masses for ΛLN = 1013 GeV are

shown in figure 12. We observe that there is a tendency for Ue,2, Uµ,3, Uτ,2, Uτ,3 to be below

the observed values, and for Ue,1, Uµ,2, Uτ,3 to be above. Still, the agreement with the

values realized in Nature remains reasonable. For the neutrino masses the normal ordering

is heavily favored as can be seen from figure 12 (middle and bottom). The Majorana and

PMNS phases are randomly distributed.
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5 The phenomenology of flavorful Z′ bosons

How can one uncover experimentally whether any of the above anomaly free FN models

is realized in Nature? The immediate answer is to search for new contributions to Flavor

Changing Neutral Currents (FCNCs), e.g., B − B̄, K − K̄, mixing, µ→ eγ, etc. The new

contributions are due to the exchanges of flavons, heavy vector-like fermions, and, if GFN

is gauged, also flavorful Z’s. Below we will see that the FCNC constraints on possible

tree level Z ′ exchanges bound 〈φ〉 & O(107 GeV). This in turn means that the vector-like

fermions are heavier than about 107 GeV, since for O(1) Yukawa couplings their masses

are comparable to the flavon vev, 〈φ〉.
We will derive the FCNC constraints on inverted FN models assuming the Z ′ con-

tributions dominate. That is, we will assume that both the vector-like fermions and the

flavon have masses mi ∼ 〈φ〉. As a result, their contributions to FCNC transitions are sub-

leading compared to the Z ′ contributions. The vector-like fermions contribute to FCNCs

only at one-loop, while the FCNC flavon couplings to the SM fermions fi, fj are suppressed

by
√
mfimfj/〈φ〉.

In the construction of inverted FN models we made two choices for the anomaly free

horizontal group GFN. If GFN is gauged, there is one extra gauge boson, Z ′, for the

GFN = U(1)FN case, and three new gauge bosons, Z ′i, i = 1, 2, 3 for the GFN = U(1)3
FN

case. The rest of this section is devoted to the phenomenology of these flavorful Z ′s. If the

GFN gauge couplings are small the Z ′ can be light. This means that beside the indirect

searches using FCNCs, the Z ′ can also be searched for in on-shell production, e.g., in beam

dumps or in astrophysical environments.

We first focus on the GFN = U(1)FN case. After the U(1)FN is broken the relevant

terms in the Lagrangian are

L ⊃ −1

4
BµνB

µν − 1

4
Z ′µνZ

′µν − ε

2
BµνZ

′µν +BµJ
µ
Y +W a

µJ
µ
Wa + Z ′µJ

µ
FN , (5.1)

where Bµν and Z ′µν are the field strength tensors of UY (1) and U(1)FN, respectively, with

Bµ, Z ′µ the corresponding gauge bosons, while W a
µ are the SU(2)L gauge bosons. Since the

FN fermions are charged both under the SM gauge group and the U(1)FN, the fermionic

kinetic terms give the couplings of the Bµ,W
a
µ and Z ′µ to the chains of FN fermions. These

result in the last three terms in (5.1), where

JµY = gY Yq

3∑
i=1

(
q̄

(i)
L,0γ

µq
(i)
L,0

)
+ gY Yq

Nq(1)∑
n=1

N̂q |n∑
i=1

(
q̄

(i)
L,nγ

µq
(i)
L,j + q̄

(i)
R,nγ

µq
(i)
R,n

)
+ · · · , (5.2)

JµFN = g′
Nq(1)∑
n=1

N̂q |n∑
i=1

nδq
(
q̄

(i)
L,nγ

µq
(i)
L,n + q̄

(i)
R,nγ

µq
(i)
R,n

)
+ · · · , (5.3)

while JµWa is obtained from JµY by replacing gY Yq with gT a, where g is the SU(2)L cou-

pling constant, and T a the corresponding generators (now acting inside the quark cur-

rents). The ellipses denote the couplings to leptonic, up- and down-quark FN chains.
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These are obtained from the terms explicitly shown in (5.2), (5.3) by making replace-

ments qL → LL, eR, uR, dR and qR → LR, eL, uL, dL, respectively. Here gY and g′ are the

UY (1) and U(1)′FN gauge couplings, while Yf and nδf are, respectively, the hypercharge

and the horizontal U(1)FN quantum numbers of the fermion f
(i)
L/R,n, where δq = δL = −1

and δu = δd = δe = 1.

The couplings to the SM fermions are obtained by performing the unitary transforma-

tions in (3.4), and keeping only the zero modes. This gives

JµY = gY Yq

3∑
i=1

(
q̄

(i)
L γµq

(i)
L

)
+ · · · , JµWa = g

3∑
i=1

(
q̄

(i)
L γµT aq

(i)
L

)
+ · · · ,

JµFN = g′
3∑

i,j=1

c′qLij
(
q̄

(i)
L γµq

(j)
L

)
+ · · · ,

(5.4)

where, as before, the ellipses denote the couplings to right-handed quarks and to leptons,

obtained through trivial replacements. The two electroweak currents, JµY and JWa , are

flavor diagonal, since the FN chains carry the same SM charges as the corresponding SM

fermions. In contrast, the FN current, JµFN, has flavor violating couplings,

c′qLij =

Nq(1)∑
n=1

N̂q |n∑
k=1

V qL∗
n(k),0(i)V

qL
n(k),0(j)nδq, (5.5)

and similarly for the other c′fij matrices. The off-diagonal entries arise because the horizontal

charges of fermions on different nodes differ. Note that the zero modes are localized toward

the ends of vector-like chains, and thus we expect c′qLij to have eigenvalues that are O(Nq(i)),

see also the discussion below (2.8).

We can get rid of the kinetic mixing between Bµ and Z ′µ, eq. (5.1), by performing a

field redifinition Bµ → Bµ− εZ ′µ.4 This induces a coupling of Z ′ with JµY proportional to ε,

L ⊃
(
Bµ − εZ ′µ

)
JµY + Z ′µJ

µ
FN . (5.6)

After the field redefinition the covariant derivative acting on the Higgs also contains Z ′,

DµH =
(
∂µ + igY (Bµ − εZ ′µ)/2 + igT aW a

µ

)
H. After FN symmetry and electroweak sym-

metry are broken, φ→ 〈φ〉, H → (0, v/
√

2), the scalar kinetic terms,

L ⊃ (Dµφ)†(Dµφ) + (DµH)†(DµH), (5.7)

mix the Bµ,W
3
µ and Z ′µ (here Dµφ =

(
∂µ + ig′Z ′µ

)
φ). This mixing can be thought of as

occurring in two steps. In the ε → 0 limit the electroweak breaking mixes Bµ,W
3
µ into a

massless photon, Aµ, and the massive Zµ. For nonzero ε the Zµ and Z ′µ further mix into

two mass eigenstates, Ẑ ′µ = cθZ
′
µ + sθZµ, Ẑµ = −sθZ ′µ + cθZµ, where sθ = sin θ, cθ = cos θ.

The mixing angle is, up to O(ε2) corrections,

tan 2θ = 2sW ε
m2
Z

2g′2〈φ〉2 −m2
Z

, (5.8)

4To have canonically normalized fields one also needs to rescale Z′ at O(ε2), which we can safely ignore

since we work to O(ε).
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with sW = sin θW the sine of the weak mixing angle. The mass of Ẑ is the same as for the

SM Z, mZ , up to O(ε2) corrections, while the Ẑ ′ has the mass

m2
Z′ = m2

Z(sθ + εsW )2 + 2g′2〈φ〉2. (5.9)

Note that for mZ � g′〈φ〉 we have θ → −sW ε and mZ′ →
√

2g′〈φ〉.
We can finally write down the couplings of Z ′ to the SM fermions,

L ⊃ Z ′µ
∑
f,i,j

[
g′cijfL

(
f̄

(i)
L γµf

(j)
L

)
+ g′cijfR

(
f̄

(i)
R γµf

(j)
R

)]
, (5.10)

where the sum runs over all the SM fermions, f = u, d, `, ν, with cijνR = 0, and i, j = 1, . . . , 3,

the generation indices. The couplings receive two contributions, the flavor diagonal one

from JµY and Jµ
W 3 , while the contribution from the horizontal current, JµFN, also contains

the flavor violating couplings,

cijuL = ε̂uLδij +
(
V †uLc

′qLVuL
)
ij
, cijuR = ε̂uRδij +

(
V †uRc

′uRVuR
)
ij
, (5.11)

and similarly for dL,R with u → d replacements, for `L,R with q → L, u → ` replace-

ments, and for νL with q → L, uL → νL replacements in the above expressions. For later

convenience we also introduce the vector and axial couplings

cijfV =
1

2

(
cijfR + cijfL

)
, cijfA =

1

2

(
cijfR − c

ij
fL

)
, f = u, d, `. (5.12)

The flavor diagonal ε̂f term is of O(ε),

g′ε̂f = −eQf εcW + (sθ + sW ε)
(
− gY YfsW + gT f3 cW

)
, (5.13)

where T f3 is the weak isospin for fermion f . Note that the second term vanishes in the

mZ → ∞ limit, cf. eq. (5.8), while the first term is the contribution from the kinetic

mixing between Z ′ and the photon. The unitary matrices Vf in (5.11) diagonalize the

corresponding SM fermion Yukawa matrices (or in the case of neutrinos the Weinberg

operator mass term).

There are two distinct regimes for the couplings of Z ′ to the SM fermions. If the cf are

dominated by ε̂f , then the phenomenology of Z ′ is the same as for the dark photon. In the

opposite limit, when ε̂f is negligible, the couplings of the Z ′ are governed by the U(1)FN

charges, giving both flavor diagonal and off-diagonal couplings of comparable strength. In

the numerical examples below we set ε→ 0, see table 2 and appendix B. In this limit the

Z ′ mostly couples through axial vector couplings, since left-handed and right-handed zero

modes carry opposite effective U(1)FN charges, cf. appendix B.

The above derivations generalize straightforwardly to the case of GFN = U(1)3
FN, i.e.,

the decoupled FN chains. The Z ′ terms in the GFN = U(1)FN Lagrangian, eq. (5.1), are

replaced by

L ⊃
3∑
i=1

(
−1

4
Z ′i,µνZ

′
i
µν − εi

2
BµνZ

′
i
µν + Z ′i,µJ

µ
i,FN

)
+

3∑
i>j

εij
2
Z ′i,µνZ

′
j
µν , (5.14)
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where Jµi,FN are the currents corresponding to the horizontal U(1)i symmetries for the i-th

generation,

Jµi,FN = g′i

Nq(1)∑
n=1

nδq
(
q̄

(i)
L,nγ

µq
(i)
L,n + q̄

(i)
R,nγ

µq
(i)
R,n

)
+ · · · , (5.15)

with g′i the gauge coupling of U(1)i. The last term in eq. (5.14) contains kinetic mixings

between different Z ′i. These enter the interactions with the SM fermions only at order

O(εg′) or O(ε2) and can be safely ignored. The field redefinition Bµ → Bµ −
∑3

i=1 εiZ
′
i,µ

gets rid of the kinetic mixing between Bµ and Z ′i and trades it for mixing between Z and

Z ′i through the gauge boson mass terms, mirroring the discussion for the GFN = U(1)FN

case above. This results in O(ε) flavor diagonal couplings of Z ′i to the SM fermions, while

the Jµi,FN result in both flavor diagonal and off-diagonal couplings. In general we can write

L ⊃
∑
f,i,j

Z ′k,µ

[
g′kc

ij
fL,k

(
f̄

(i)
L γµf

(j)
L

)
+ g′kc

ij
fR,k

(
f̄

(i)
R γµf

(j)
R

)]
, (5.16)

where the coefficients have the same general form as in eq. (5.11), but now for each Z ′i
separately, i.e.,

cijuL,k = ε̂uL,kδij +
(
V †uLc

′qL
k VuL

)
ij
, cijuR,k = ε̂uR,kδij +

(
V †uRc

′uR
k VuR

)
ij
. (5.17)

The VuL and VuR diagonalize the up quark mass matrix, while the c′qLk matrix has only one

nonzero entry, (
c′qLk

)
kk

=

Nq(k)∑
n=1

V
qL(k)∗
n,0 V

qL(k)
n,0 nδq, (5.18)

and similarly for the other c′fk matrices. Since the zero modes are localized toward the

ends of vector-like chains we expect
(
c′qLk

)
kk
∼ Nq(k). The ε̂f,k coefficients are of O(εi) and

vanish in the limit εi → 0. Since this is the limit we will work we do not display them

explicitly. For later convenience we also define the vector and axial couplings as

cijfV,k =
1

2

(
cijfR,k + cijfL,k

)
, cijfA,k =

1

2

(
cijfR,k − c

ij
fL,k

)
, f = u, d, `. (5.19)

The bounds on flavorful Z ′s come from a variety of experimental observables. They

can be grouped into four broad categories: the bounds that come from Z ′ couplings to

quarks or from Z ′ couplings to leptons, in each case either due to flavor diagonal or from

flavor violating couplings. In the rest of this section we work out the relevant bounds for

two representative benchmarks, one for the coupled and one for the uncoupled FN chains.

The numerical inputs as well as the resulting Z ′ couplings for the two benchmarks are given

in appendix B. In both benchmarks we take the ε→ 0 limit, therefore the Z ′ couplings are

completely dictated by JµFN, eq. (5.4). The various experimental bounds in the (mZ′ , g
′)

plane are compiled in figures 13–18. Note that the couplings of Z ′ are mostly axial, cf.

table 2. For other phenomenological analysis of light axial vectors, see [34, 35].
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i ciiuL ciiuR ciidL ciidR cii`L cii`R ciiνL

1 −2.3 3 −2 3 −2 3 −2

2 −2.7 1.9 −2.9 2.9 −1.9 3 −1.9

3 −0.001 0.026 −0.002 2.5 −1.9 2.1 −1.9

Table 2. The flavor diagonal couplings of Z ′ to the SM fermions, eq. (5.10), for the GFN = U(1)FN
benchmark. For a complete list see appendix B.

5.1 The bounds on flavorful Z′ for the GFN = U(1)FN benchmark

We first derive the experimental bounds on the GFN = U(1)FN benchmark, see ap-

pendix B.2. As we will show below, the K − K̄ mixing bounds the flavon vev to be

very large, 〈φ〉 & 107 GeV. This means that the FN fermions are very heavy, with masses

mF ∼ O(〈φ〉). They only give suppressed contributions to flavor observables at one loop

level and can be safely ignored in our analysis. To simplify the discussion, we also assume

that the flavon is very massive mφ ∼ O(〈φ〉), giving ∼ mdimdj/m
2
φ suppressed contributions

to the flavor observables compared to the Z ′ and can thus be ignored. This assumption

can be relaxed in the future, since mφ is a free parameter. To make the analysis tractable,

we also limit the mass of the Z ′ to be above, mZ′ > 10 MeV, an assumption that could also

be relaxed in future studies. The results obtained for GFN = U(1)FN are straightforward

to extend to the U(1)3
FN model, which we do in section 5.2.

5.1.1 Flavor diagonal couplings to quarks and/or leptons

We start by deriving constraints on Z ′ couplings from flavor conserving processes. Rep-

resentative Feynman diagrams are shown in figure 15, while the numerical values of Z ′

couplings with fermions in our benchmark are listed in appendix B.2. The Z ′ couplings

are almost flavor diagonal, see eqs. (B.44)–(B.47). Furthermore, the couplings to top and

bottom are highly suppressed, except the coupling to bR. This is easy to understand from

the U(1)FN charge assignments, since the q
(3)
L and u

(3)
R are not charged under U(1)FN, see

eq. (3.8) and figure 7.

Direct Z′ production. A number of experiments have searched for a dark photon, a

heavy gauge boson that kinematically mixes with the hypercharge. These searches were

recast in ref. [36] for a generic Z ′ with flavor diagonal vector couplings to quarks and leptons,

or to new invisible states, with the results available in the form of a public code, Darkcast.

We use Darkcast to obtain the limits on Z ′ from direct production, adapting it to the

case in hand. The U(1)FN Z ′ has predominantly axial vector couplings, cf. table 2, unlike

dark photon, which only has flavor diagonal vector couplings. For e+e− → Z ′γ searches at

BaBar [37, 38], KLOE [39] and LEP [40, 41] in Z ′ → e+e−, µ+µ−, inv channels, as well as

for the Z ′ bremsstrahlung [42–44] in electron beam dump searches at A1 [45], APEX [46],

E137 [47], E141 [48], E774 [49], Orsay [50], KEK [51], NA64 [52], and in proton beam dump

search at ν-CAL I [53], with Z ′ → e+e−, the Darkcast recast of bounds applies to our Z ′

benchmark with the replacement εeQf → ((c11
fV )2 + (c11

fA)2)1/2 for f = e, u, d, taking into

account the change in the branching ratios due to possible decays to neutrinos and heavier
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Figure 13. The strongest bounds on the Z ′ mass as a function of gauge coupling g′ of the horizontal

GFN = U(1)FN group, setting kinetic mixing to zero. Region I (II) collects bounds due to the direct

production of Z ′ in proton and electron beam dumps (at e+e− colliders), while Region III shows

the exclusion from SN1987A. The solid (dashed) dark green line depicts the present (future) µ→ e

bound, the solid black line the bound from K − K̄ mixing, see text for details.

charged fermions. The induced uncertainties due to this identification are of roughly the

same size as the uncertainties due to the approximations done in the original recast of the

experiments by ref. [36]. In the same way, the LHCb searches for dark photon [54] can be

recast for mZ′ > 1 GeV region, where the production is dominated by Drell-Yan production,

q̄iqi → Z ′. We can also safely neglect off-diagonal couplings in direct Z ′ production, which

only lead to highly suppressed corrections. The resulting bounds are shown as red (from

beam dumps) and orange (from e+e− colliders) excluded regions in figure 13 and, assuming

only couplings to leptons, in the first three panels in figure 14.

In addition, there are a number of searches for light new particles that are harder to

recast for axial Z ′; by LHCb [54] formZ′ < 1 GeV, by NA60 [55], CHARM [56], ν-CAL I [57]

and KLOE [58]. For instance, for dark photon with mass below 1 GeV the production in pp

collision is dominated by production from π0 → γdγ, η → γdγ, ω → γdπ
0 decays, which can

be well estimated using vector meson dominance. For axial vector it is not clear what is the

dominant production channel, and would require a dedicated phenomenological analysis

(for π0 → Z ′γ see [34]). Using NDA we expect that the exclusions from these remaining

experiments are likely to fall within or close to the red and orange exclusion regions in

figure 13, the same as they do for the dark photon.

Atomic Parity Violation (APV). The APV measurements bound the parity violating

combination of couplings g′2|c11
`Ac

V
N | (see figure 15 left), as a function of mZ′ , where c11

`A is the

axial coupling to electrons, while cVN = c11
uV (2Z+N)/A+c11

dV (2N+Z)/A ' 1.41c11
uV +1.59c11

dV

is the average vector coupling of Z ′ to the nucleon. In the last equality we evaluated

the average for the Cs nucleus, which has Z = 55, A = 133, N = A − Z = 78, since
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Figure 14. The top panels and bottom left (right) panel show bounds on the Z ′ mass and the g′

gauge coupling constant for the GFN = U(1)′FN model benchmark in the limit of no couplings to

quarks (leptons). Direct Z ′ production searches exclude orange and red regions, cf. figure 13. Top

left : bounds involving electrons, from the electron EDM (ν̄e − e scattering, (g − 2)e, white dwarf

cooling), shown as black line (green line, blue line, purple excluded region). Top right : bounds

involving muons, from µ → e conversion, (µ → 3e, µ → eγ, neutrino trident production, νµ − e
scattering), shown as green (purple, blue, black, cyan) lines, while the gray region is consistent with

(g − 2)µ. Bottom left : bounds involving taus, from τ → 3µ (τ → 3e, τ → µγ, τ → eγ) shown

with blue (purple, brown, black) lines. Bottom right : bounds involving quarks only, from K − K̄
mixing (D− D̄, Bs− B̄s, Bd− B̄d mixing, neutron EDM, APV), shown as black (red, green, brown,

blue, purple) lines, while the gray region is excluded by SN1987A. Solid (dashed) lines give present

(future) bounds, see text for details.

the most stringent bounds on NP contributions to APV come from measurements of the

6s − 7s transition in Cs [59]. Translating the results of ref. [60] to our notation gives

g′2c11
`Ac

V
N > 3.9 · 10−8

(
m2
Z′/GeV2

)
, which is not very stringent and is comparable to the

nEDM bound in figure 14 (bottom right).

Constraints from SN1987a. The Z ′ bosons can be copiously produced in a core of a

Supernova (SN) if they are light enough. If g′ is small enough the Z ′ bosons can escape

the SN core and contribute to the cooling of the proto-neutron star. Demanding that this

cooling mechanism does not lead to an instantaneous energy flux that is bigger than the one

from neutrinos when the SN core reaches peak density, gives the bound shown as the gray

region in figure 13. For smaller g′ the Z ′ bosons are not produced efficiently, while for larger

g′ the Z ′ are efficiently trapped inside the SN. We restrict the analysis to mZ′ ≥ 10 MeV,

in which case two simplifications occur that make it easy to rescale reliably the results for
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Figure 15. Representative diagrams relevant for (from left to right) atomic parity violation,

neutrino trident production, and white dwarf cooling bounds.

dark photon from ref. [61] to our case of a Z ′ with predominantly axial vector couplings.

First of all, for mZ′ ≥ 10 MeV we can neglect the corrections due to the coupling of Z ′

with the electron plasma, an important effect for lighter gauge bosons. Furthermore, for

mZ′ ≥ 10 MeV the main mechanism of production and absorption of Z ′ in the SN core is

bremsstrahlung in neutron-proton scattering. The bounds can then be obtained by simply

rescaling the results from [61]. We use that the pn → pnZ ′ cross sections, σA,V , induced

by the axial or vector couplings of Z ′ to proton, respectively, satisfy the numerical relation

σA/σV ∼ 3c2
pA/c

2
pV , where cpA,V = 2c11

uA,V + c11
dA,V . We can thus translate the bounds

in [61] by replacing ε′ with
√

3g′cpA, giving the gray regions in figures 13 and 14.

Neutrino trident production. Neutrino scattering on nucleus, A, can produce lepton

pairs through electroweak interactions. Such a trident process, νiA→ νj`
+
k `
−
l A, can receive

a contribution from a tree level exchange of an extra Z ′, see figure 15 (middle). This would

result in a deviation of the total cross section from the SM prediction, signaling new

physics [62]. For small Z ′ couplings the main correction to the trident cross section comes

from the interference with the leading SM contribution, which is due to the Z exchange.

This means that the results of ref. [63] for the Lµ−Lτ gauge boson directly translate to our

case (see also [64]). The bound on g′ from figure 8 of [63] needs only to be re-interpreted

as the bound on g′
[
c22
νL

(
(−1

4 + s2
W )c22

`L
+ s2

W c
22
`R

)
/
(
− 1

4 + 2s2
W

)]1/2
, with sW ≡ sin θW the

sine of the weak mixing angle. The resulting bounds from the CCFR experiment [65] and

the future projections for DUNE [63] are shown in figure 14 (top right) as solid black and

dashed black lines, respectively.

Electron-neutrino scattering experiments. Measurements of νi − e− and ν̄i − e−

scattering cross sections can bound the couplings c11
`Ac

ii
νL and c11

`V c
ii
νL, where i is the flavor

of the neutrino in the beam. The most stringent constraints are due to CHARM-II [66],

which used O(10 GeV) νµ and ν̄µ beams, and from TEXONO [67], which used O(1 MeV)

reactor ν̄e beam. We use the CHARM-II measured ratio σ(νµe)/σ(ν̄µe) = 0.910±0.113 [66],

where σ(νµe) and σ(ν̄µe) are the total νµe and ν̄µe scattering cross sections, respectively.

Using this result we set the bound shown as a cyan line in figure 14 (top right). The

TEXONO measured total ν̄e scattering rate, normalized to the SM prediction, Rexp/RSM =

– 24 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
8

1.08±0.36 [67] results in the bound on g′ shown as a green solid line in figure 14 (top left).

To derive these constraints we used the analytical results from ref. [68].

Møller scattering. Measurements of parity violating contributions to the Møller scat-

tering, e−e− → e−e−, bound the product c11
`V c

11
`A. The most precise measurements were

performed by E158 at SLAC at q2 ' (0.16 GeV)2 [69]. Comparison with the SM gives

for mZ′ . 100 MeV the bound g′2|c11
`V c

11
`A| . 10−8, and for mZ′ & 100 MeV the bound

g′2|c11
`V c

11
`A| . 3 · 10−8 · (mZ′/200 MeV)2 (see also [34]). In our benchmark c11

`V c
11
`A ' 0.30,

giving relatively weak bounds g′ . 2 · 10−4 and g′ . 2 · 10−4(mZ′/100 MeV), respectively,

which we thus do not plot in figure 14.

Isotope shift spectroscopy. The isotope shift spectroscopy constrains vector couplings

of Z ′, giving g′2|c11
`V c

11
fV | . 10−7 ·m2

Z′/(10 MeV)2 for f = u, d, when charge radius deter-

mination from Lamb shift in muonic atoms is used [70] (see also [71–73]). Since the Z ′

has suppressed vector couplings, these bounds are not very constraining, and we do not

consider them further.

White dwarf cooling. The tree level Z ′ exchange contributes to the e+e− → νν̄ process

which can increase the cooling rate of the white dwarf (WD) core [74]. The cooling rate

due to this additional cooling mechanism should not exceed the SM cooling rate due to

the plasmon decaying into neutrinos. For our Z ′ benchmarks the contribution to the star

cooling is described by the effective Lagrangian

L =
g′2cijνL
m2
Z′

(
c11
`V

(
ēγµe

)(
ν̄iLγ

µνjL
)

+ c11
`A

(
ēγµγ5e

)(
ν̄iLγ

µνjL
))

, (5.20)

since the Z ′ is much heavier than the WD internal temperature of a few keV, and can be

integrated out. Translating the limits from [74] to our notation gives (see also [75]),

1.12 · 10−5

GeV−2 <
g′2ceff

νL
ceff
e

m2
Z′

<
4.50 · 10−3

GeV−2 , (5.21)

with (ceff
νL

)2 =
∑

ij |c
ij
νL |2, and (ceff

e )2 = |c11
`A|2 + |c11

`V |2. In our benchmark, ceff
νL ' 3.4, and

ceff
e ' 2.5, giving the exclusion shown in figure 14 (top left) as a purple region.

Anomalous magnetic moments. At one loop the Z ′ exchange contributes to the lepton

anomalous magnetic moment, (g − 2)`, cf. figure 17 (with `i = `j). For our Z ′ benchmark

we only need to keep the contribution to (g − 2)µ from the diagonal couplings, with µ

running in the loop. A similar diagram with a τ running in the loop does get a chirality

flip enhancement of mτ/mµ ∼ 10, but is also suppressed by two off-diagonal couplings,

|(c23
`L
c23
`R

)/(c22
`L

)2| ∼ 10−3. For the (g − 2)e the two corresponding factors are mτ/me ∼
3 · 103 and |(c13

`L
c13
`R

)/(c11
`L

)2| ∼ 6 · 10−5, so that again the diagram with diagonal couplings

dominates. Using the results of ref. [76] with a trivial change of notation gives (see also [35]),

δa` =
(g′cii`V )2

12π2

m2
`

m2
Z′
F (mZ′/m`)−

(g′cii`A)2

4π2

m2
`

m2
Z′
H(mZ′/m`) , (5.22)

– 25 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
8

with i = 1, 2 for ` = e, µ, respectively. The normalization of the loop functions,

F (u) = 3u2

∫ 1

0
dx

x2(1− x)

x2 + u2(1− x)
, H(u) =

∫ 1

0
dx

2x3 + (x− x2)(4− x)u

x2 + u(1− x)
, (5.23)

is such that for heavy Z ′, limu→∞ F (u) = 1, limu→∞H(u) = 5/3, whereas for mZ′ = m`,

F (1) ' 0.31, H(1) ' 1.31, and for light Z ′, i.e., for u� 1, F (u) ' 3u2/2, H(u) ' 1.

In figure 14 (top right) we show in gray the 1σ band in the g′,mZ′ parameter space

that gives (g − 2)µ in agreement with experiment. The required value of g′ is excluded

by a number of other measurements, among others also by the limit on the allowed NP

contribution to (g − 2)e, denoted with a blue line in figure 14 (top left).

Note that here we consider only the contributions to (g − 2)f from Z ′ running in the

loop. The contributions from heavy vector-like fermions running in the loop are expected

to give contributions that are parametrically of the same order. We do not attempt to

include these contributions given that the (g−2)f measurements put only weak bounds on

our inverted FN benchmark. However, because of this approximation one should view the

(g− 2)f bounds shown in figure 14 only as indicative. Similar comments apply to electron

EDM, which we discuss next.

Electric dipole moments. The complex off-diagonal couplings of Z ′ generate at one

loop the electric dipole moments (EDMs). The contribution to the EDM of fermion fi
from the fermion fj running in the loop is given by [77]

dfi
e

=
g′2

4π2

∑
j

mfj Im
(
cijfV c

ij ∗
fA − c

ij
fAc

ij ∗
fV

) (
2C+

1 − C0

)
jjZ′

, (5.24)

where C+
1 , C0, are the three-point one loop integrals arising from the evaluation of the

Feynman diagram in figure 17 (right), the analytic expression for which can be found

in [78]. The chromo-EDMs, d̃fi , are obtained from (5.24) by replacing g → gs. The

experimental bound on electron EDM, |de| < 1.1 · 10−29e cm [79], results in a bound shown

as a black line in figure 14 (top left). The bound on neutron EDM, dn, on the other hand,

translates to a bound denoted with a blue line in figure 14 (bottom right). The neutron

EDM receives contributions both from quark EDMs, dq, and quark chromo-EDMs, d̃q, so

that dn =
∑

q=u,d,s

(
βqdq+β̃qd̃q

)
. For matrix elements of quark EDM operators, βq, a recent

lattice QCD calculation obtained βu = 0.784(30), βd = −0.204(15), βs = −0.0027(16) at

µ = 2 GeV in MS scheme [80]. In contrast, the matrix elements of chromo-EDM operators

are poorly known with the estimates ranging over an order of magnitude, β̃u = −(0.09−0.9),

β̃d = −(0.2 − 1.8) [81]. In figure 14 (bottom right) we used the estimated best values,

β̃u = −0.35, β̃d = −0.7 [81].

5.1.2 Flavor violating couplings to quarks

The exchange of Z ′ induces Flavor Changing Neutral Currents (FCNCs) already at tree

level, as shown in figure 16. Strong constraints are obtained from the meson mixings, which

we derive in detail in the next paragraphs.
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qi

q̄j

qj

q̄i
Z ′

Figure 16. Meson mixing process induced by a tree level Z ′ exchange.

K0 − K̄0 mixing. To estimate the contributions of tree level Z ′ exchanges to K − K̄
mixing we distinguish two regimes. For light Z ′, mZ′ . mK , we can use ChPT with the Z ′

acting as an external field. Using ChPT expansion we have (s̄γµγ5d) → −fK∂µK0 + · · · ,
where the ellipses denote higher orders in momentum expansion. Using this in eq. (5.10)

gives for the tree level Z ′ exchange contribution to K − K̄ mixing (cf. eq. (5.12))

MZ′
12 = 〈K0|HZ′eff |K̄0〉 = g′2(c12

dA

)2 f2
K

2mK

m2
K

m2
Z′
, [light Z ′], (5.25)

where fK ' 156 MeV is the kaon decay constant, and we use the same phase conventions

for M12 as in [82, 83]. Note that this contribution is proportional to 1/m2
Z′ even though the

momentum flowing in the Z ′ propagator is O(mK), so that MZ′
12 ∝ 1/〈φ〉2. This is most

easily understood in the Feynman gauge, where the dominant contribution to MZ′
12 due to

the exchange of the arg(φ) Goldstone boson, whose couplings to SM fermions are ∝ 1/〈φ〉
and do not depend on g′. In the unitary gauge the dominant contribution arises from the

longitudinal component of the Z ′ propagator. The vector couplings of Z ′ contribute only

at higher order in ChPT and are relatively suppressed by O(m2
K/(4πfK)2) ∼ O(0.2), on

top of the suppression of vector couplings themselves. For completeness we calculate these

contributions in appendix A.

For mZ′ � mK we can integrate out the Z ′ at the scale µ ' mZ′ and match onto the

effective weak Hamiltonian, Heff =
∑

aCaQa, where the sum runs over the operators in

ref. [84]. The nonzero NP contributions to the Wilson coefficients are,

Csd1 =
g′2

m2
Z′

(c12
dL

)2, C̃sd1 =
g′2

m2
Z′

(c12
dR

)2, Csd5 = −4
g′2

m2
Z′
c12
dL
c12
dR

[heavy Z ′], (5.26)

where Qsd1 = (d̄γµsL)2, Q̃sd1 = (d̄γµsR)2, Qsd5 = (d̄αsβR)(d̄βsαL). To compare with the

experimental results we run from µ ' mZ′ down to 2 GeV using the results of [84, 85].

The comparison of the SM predictions and the experimental measurements for indirect

CP violation parameter εK is made through a ratio

CεK =
εexp
K

εSM
K

=
Im 〈K0|HSM+Z′

eff |K̄0〉
Im 〈K0|HSM

eff |K̄0〉 . (5.27)

Estimating the errors due to charm loop contributions in the SM prediction of εK is non-

trivial and leads to differences between CKMfitter and UTFit collaborations [86, 87] (see

also the introduction in [88]). For consistency we use the UTFit collaboration extraction
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0.87 < CεK < 1.39 at 95% C.L. [87] as well as their prediction for εSM
K using NLO charm

contribution [89]. We denote the resulting bounds in figures 13 and 14 (bottom right) with

black lines, where we use the heavy Z ′ solution (5.26) for mZ′ > 3mK , the light Z ′ solu-

tion (5.25) for mZ′ < mK/3, and connect the two with naive linear interpolation to guide

the eye. The Z ′ contribution to the K − K̄ mixing is ∝ 1/〈φ〉2. For heavy Z ′, mZ′ � mK ,

this then leads to a bound 〈φ〉 = mZ′/g
′ > 1.2 · 107 GeV for our benchmark.

B0
q − B̄0

q mixing. We distinguish two limits, the heavy and light Z ′. For heavy Z ′,

mZ′ � mBq , the Z ′ is integrated out at µ ' mZ′ . The matching onto Heff =
∑

aCaQa,

gives, analogously to (5.26),

Cqb1 =
g′2

m2
Z′

(ci3dL)2, C̃qb1 =
g′2

m2
Z′

(ci3dR)2, Cqb5 = −4
g′2

m2
Z′
ci3dLc

i3
dR

[heavy Z ′], (5.28)

where q = d, s, with i = 1, 2, respectively. We RG evolve the above Wilson coefficients

from µ ' mZ′ down to µ = 4.2 GeV ' mb using the results of [84, 85], and compare with

the allowed deviations in the mixing matrix elements,

CBqe
2iφBq =

〈B0
q |HSM+Z′

eff |B̄0
q 〉

〈B0
q |HSM

eff |B̄0
q 〉

. (5.29)

The latest fit results from UTFit collaboration give 0.942 < CBs < 1.288, −1.35◦ < φBs <

2.21◦, and 0.83 < CBd < 1.29, −6.0◦ < φBd < 1.5◦ [87].

For light Z ′ we perform an operator product expansion, where, to leading order in

ΛQCD/mb, the dominant Wilson coefficients of the B0
q − B̄0

q operators are at µ ' mb

given by

Cqb2 = − g′2

m2
Z′

(ci3dL)2, C̃qb2 = − g′2

m2
Z′

(ci3dR)2, Cqb4 = −2
g′2

m2
Z′
ci3dLc

i3
dR

[light Z ′], (5.30)

with mb ' 4.2 GeV the b quark mass, while the remaining nonzero Wilson coefficients,

Cqb2 = −Cqb1 m
2
Z′/m

2
b , C̃

qb
2 = −C̃qb1 m

2
Z′/m

2
b , C

qb
5 = 2Cqb4 m

2
Z′/m

2
b , are parametrically sup-

pressed.

We denote the resulting bound in figure 14 (bottom right) with a green (brown) solid

line for Bs−B̄s (Bd−B̄d) mixing, while the corresponding dashed lines shows the projected

bounds after Belle II and LHCb Upgrade II [90].

Charm mixing. The Z ′ contributions to D−D̄ mixing take the same form as for B0
q−B̄0

q ,

after making the replacements i→ 1, 3→ 2 and d, q → u, b→ c in eqs. (5.28), (5.30). The

expressions for the case of light Z ′ are only approximate, valid to the extent that one can

use the operator product expansion despite the relatively light charm quark mass. The

resulting present bound [87] and projected sensitivity [90] are shown in figure 14 (bottom

right) as solid and dashed red lines, respectively.

5.1.3 Flavor violating couplings to leptons

In this subsection we derive the experimental bounds from lepton flavor violating transi-

tions. The relevant diagrams are summarized in figure 17.
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ℓi ℓjZ ′

ℓk

γ

Figure 17. Lepton flavor violating diagrams induced by a Z ′ exchange. Left : µ → e conversion.

Center : decay to three leptons, `i → `j`j ¯̀
j . Right : radiative decay, `i → `jγ.

µ → e conversion. Stopped muons can undergo coherent µ → e conversion in the

field of the nucleus. The most stringent limits to date were obtained by the SINDRUM II

experiment using 197Au [91]

Br(µ→ e) =
Γ(µ−Au→ e−Au)

Γcapt(µ−Au)
< 7 · 10−13 , at 90% C.L. (5.31)

Here Γ(µ−Au → e−Au) is the conversion rate, and Γcapt(µ
−Au) the muon capture rate.

State of the art estimates for both of these can be found in ref. [92] for a whole range of

nuclei, including gold. The tree level Z ′ exchange induces four-fermion effective interaction

for µ → e conversion, see figure 17, which in the notation of refs. [92, 93] takes the form

Lint = −
[
(GF /

√
2)
∑

f=u,d gLV (f)(ēγµPLµ)(f̄γµf) + gRV (f)(ēγµPRµ)(f̄γµf)
]

+
[
(f̄γµf)→

(f̄γµγ5f), V → A
]
, with

gLV (f) =

√
2

GF

g′2

m2
µ +m2

Z′
c12
`L
c11
fV , f = u, d, (5.32)

and similarly for gRV (f), but with L → R replacement, while gLA(f) and gRA(f) trivially

follow from V → A replacement.

The gRV (f) and gLV (f) operators induce coherent µ → e conversion for which we use

the results of ref. [92]. The gRA(f) and gLA(f) operators induce spin dependent µ → e

conversion, for which we use the results of [94], where the Wilson coefficients in the no-

tation of [94] are CffA,L = gLA(f)/4, CffA,L = gLA(f)/4, while the axial structure factors SA
we take from [95]. Note that the momentum exchange in µ → e conversion is q2 ' −m2

µ.

This is small enough that it is easily absorbed by the nucleus without changing its nuclear

structure. On the other hand, q2 ' −m2
µ is also large enough that even for very light Z ′,

mZ′ � mµ, the interaction can still be viewed as point-like in the calculation of conversion

rate, at least for the heavy nuclei. The neutron and proton density distributions of heavy

nuclei have radial extent which is parametrically bigger than the muon Compton wave-

lengths, for gold roughly rmax ∼ 4/mµ. This means that we can still use the calculations

of overlap integrals from ref. [92] even for light Z ′, up to corrections of about O(30%).

Spin-dependent conversion starts to be dominant at very low masses. While the spin-

independent conversion rate is coherently enhanced and at low masses goes as ∼ A2mµ,

where A is the atomic number, the spin-dependent rate increases as m3
µ/m

2
Z′ . For heavy

nuclei, such as 197Au used by the SINDRUM II experiment, the spin-dependent contribu-

tion starts to dominate around mZ′ ∼ 0.5 MeV, while for lighter nuclei, such as 26Al used
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by Mu2e, it begins at mZ′ ∼ 10 MeV. In both cases, the spin-dependent rate is important

for masses outside our range of interest, so we only consider the spin-independent rate in

obtaining the bounds on the Z ′ parameter space.

The constraint from eq. (5.31) is denoted in figure 13 with a solid green line, while in

figure 14 (top right) we also show the comparison with the other flavor violating processes

involving muons. The Mu2e collaboration plans to achieve the sensitivity Br(µ → e) <

8 · 10−17 for µ→ e conversion on Al nuclei [96], which gives the projected sensitivity on g′

denoted with a dashed green line in figures 13 and 14 (top right).

Decays to three leptons. The tree level Z ′ exchanges mediate the lepton flavor vio-

lating decays such at τ → 3µ, e2µ, . . ., see figure 17. To shorten the discussion we focus

on the decays of the form `i → 3`j : τ → 3µ, τ → 3e and µ → 3e. Similar constraints are

obtained also from the remaining modes, τ− → µ−e+e−, e−µ+e−, µ−µ+e−, µ−e+µ−, etc.

Depending on the value of mZ′ there are three different regimes for Γ(`i → 3`j). For

mZ′ � m`i , the Z ′ can be integrated out, leading to effective four fermion interaction. In

this limit, the `i → 3`j decay is a genuine three body decay, with the decay width [97]

Γ(`i → 3`j) '
g′4m5

`i

768π3m4
Z′

[
4Re

(
cji`V c

ji
`Ac

jj∗
`V c

jj∗
`A

)
+ 3

(
|cji`V |2 + |cji`A|2

)(
|cjj`V |2 + |cjj`A|2

) ]
,

(5.33)

where we neglected the terms proportional to m`j .

In the intermediate mass regime, 2m`j < mZ′ < m`i −m`j , the Z ′ can be produced

on shell. The `i → 3`j decay is thus a cascade decay, `i → Z ′`j followed by Z ′ → `+j `
−
j ,

so that

Γ(`i → 3`j) = Γ(`i → `jZ
′)Br(Z ′ → `j`j) , (5.34)

where

Γ(`i → `jZ
′) =

[
(cij`V )2 + (cij`A)2

] g′2
16π

m3
i

m2
Z′

(
1− m2

Z′

m2
i

)2(
1 +

2m2
Z′

m2
i

)
, (5.35)

where we neglected the mass of `j , while Br(Z ′ → `j`j) is the branching ratio for the

Z ′ → `+j `
−
j decay. In our benchmark Br(Z ′ → µµ) ∼ 0.16, while Br(Z ′ → ee) ∼ 0.23

for mµ < mZ′ < mτ and Br(Z ′ → ee) ∼ 0.28 for mZ′ < mµ. Note that Γ(`i → `jZ
′) ∝

g′2/m2
Z′ = 1/〈φ〉2 and thus does not diverge for mZ′ → 0.

Finally, if mZ′ < m`j the Z ′ is off-shell and we again have a genuine three body decay.

For mZ′ � m`j the axial current contributions are 1/m4
Z′ enhanced, giving [97]

Γ(`i → 3`j) '
g′4m3

`i
m2
`j

128π3m4
Z′
|cjj`A|2

(
|cij`V |2 + |cij`A|2

)
log2

(
m`j

m`i

)
. (5.36)

The contributions from flavor diagonal vector couplings of Z ′ are subleading and we can

safely neglect them.

The above expressions constrain g′ as a function of mZ′ given present bounds on

the τ → 3µ, 3e and µ → 3e decays. For our benchmark the most stringent is the 90%

C.L. bound Br(µ → 3e) < 1.0 · 10−12 [98], shown as the purple solid line in figure 14
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(top right), while the purple dashed line corresponds to the projected reach by Mu3e of

5.2 · 10−15 [99]. The present (projected Belle II) bounds Br(τ → 3µ) < 2.1(0.03) · 10−8 and

Br(τ → 3e) < 2.7(0.04) · 10−8 [100, 101] are shown as blue and purple solid (dashed) lines

in figure 14 (bottom left). The different thresholds appear as the breaks in the slopes of

the lines.

Rare meson decays. The tree level Z ′ exchanges also induce FCNC meson decays of

the type M1 →M2`
+
i `
−
j , such as K+ → π+µ+e−, etc. However, these processes require two

off-diagonal couplings, one for the quark flavor changing current in the meson transition

and one for the lepton current. The bounds on the Z ′ parameter space are thus much

weaker than from the lepton FCNC transitions or from meson mixings, and we do not

consider them further.

Flavor violating radiative decays. At one loop the off diagonal couplings of Z ′ to

leptons generate the `i → `jγ transition with the decay width [102], see also figure 17,

Γ(`i → `jγ) =
αg′4

4π

(
1− x2

j/i

)3
x4
i/Z′

(
|cγL|2 + |cγR|2

)
mi, (5.37)

where xa/b = ma/mb, and

cγL = Qk

(
cjk∗`R c

ik
`R
yRR + cjk∗`L c

ik
`L
yLL + cjk∗`R c

ik
`L
yRL + cjk∗`L c

ik
`R
yLR

)
, (5.38)

with Qk the charge of the fermion `k running in the loop, while cγR can be obtained by

making the replacement L↔ R in the above expression. The loop functions are

yRR = yLL/xj/i = 2f1 + 6f2 + 3(1 + x2
k/Z′)f3, (5.39)

yRL/xk/i = −4f1 − 2(3− x2
k/Z′)f2 + 3f3 − x2

i/Z′

(
f2 +

3

2
f3

)
− x2

j/Z′

(
f2 +

3

2
f3

)
, (5.40)

yLR = −3xj/Z′xk/Z′f3 , (5.41)

where (below we shorten xk/Z′ → x)

f1 =
1

16π2

[
1/(1− x2) + 2 log(x)/(1− x2)2

]
,

f2 = −1

4

1

16π2

[
(3− x2)/(1− x2)2 + 4 log(x)/(1− x2)3

]
,

f3 =
1

18

1

16π2

[
(2x4 − 7x2 + 11)/(1− x2)3 + 12 log(x)/(1− x2)4

]
.

(5.42)

The present bounds on Br(τ → µ(e)γ) < 4.4(3.3) · 10−8 [103] and Br(µ → eγ) < 4.2 ·
10−13 [104] are denoted in figure 14 (bottom left) by a brown(black) solid line and in

figure 14 (top right) by a blue solid line. The projected sensitivities at Belle II [101]

and MEG-II [105] Br(τ → µ(e)γ) < 1(3) · 10−9 ,Br(µ → eγ) < 6 · 10−14, are shown

with the corresponding dashed lines. Note that in our benchmark for all three transitions

the largest contribution comes from a diagram with a τ running in the loop. Note also,

that the contributions from vector-like fermions, which we do not take into account, are

parametrically of the same order. The resulting bounds in figure 14 should thus be taken

only as indicative.
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Figure 18. The strongest bounds on the parameter space for the Z ′1 (top left), Z ′2 (top right), and

Z ′3 (bottom) gauge bosons in the U(1)3FN model. The color coding is the same as in figure 13.

5.2 Bounds on the Z′
i in the GFN = U(1)3FN model

Next, we extend the above analysis to the GFN = U(1)3
FN benchmark, with the couplings

of the three gauge bosons, Z ′i, i = 1, 2, 3, listed in appendix B.1. The Z ′3 only couples to

dR and `L, νL, see (B.37)–(B.39). This follows immediately from the charge assignments in

eqs. (2.13) and (4.6), because q
(i)
L and u

(i)
R are not charged under U(1)3. The large mixings

in dR and lepton sectors result in an almost anarchic form of Z ′3 couplings to dR and `L, νL,

with large couplings to the 2nd and 3rd generation and only slightly suppressed couplings

to the 1st generation SM fermions. The Z ′1 and Z ′2, on the other hand, predominantly

couple to the first and second generation, respectively, with the exception of Z ′2 couplings

to dR and `L, νL, where there are also large couplings to the third generation, again due

to the large mixings, see eqs. (B.29)–(B.36).

For all three Z ′i the most stringent constraints arise from µ → e conversion, K − K̄
mixing and SN constraints. This is the same as for the U(1)FN, section 5.1. However,

the relative importance of these constrains has shifted because of the changes in the flavor

patterns of the Z ′i couplings, see figure 18.

In figure 18 we also show the constraints from beam-dump (red regions) and from

e+e− experiments (orange regions). Here some care is needed, since for Z ′2 and Z ′3 the 12

off-diagonal couplings can dominate over the diagonal 11 couplings, see, e.g., eq. (B.37).

This means that we need to adjust our treatment of bounds from direct production of Z ′i
compared to what was done in section 5.1. For me + mµ < mZ′ < 2mµ the Z ′i → eµ
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decay is now the dominant decay channel. In the GFN = U(1)3
FN benchmark we have

Γ(Z ′2 → ee)/Γ(Z ′2 → eµ) ' 0.16 and Γ(Z ′3 → ee)/Γ(Z ′3 → eµ) ' 0.52, which is then used

to rescale appropriately the bounds from Darkcast, cf. section 5.1.1. The beam dump

constraints are stronger for Z ′1 than they are for Z ′2 and Z ′3, because Z ′2,3 have suppressed

couplings to the first generation quarks. This is also the reason that the regions excluded

by SN constraints (gray regions in figure 18), are shifted to larger values of gauge coupling

g′ for Z ′2 and Z ′3.

Figure 18 also gives the FCNC constraints from D − D̄, Bd − B̄d and Bs − B̄s mixing

(red, brown, blue lines). The expressions for these can be taken directly from section 5.1,

with trivial relabeling corresponding to Z ′ → Z ′i replacements. For Z ′1 the most stringent

constraints come from the FCNCs involving the first two generations, µ → e conversion

and K − K̄ mixing, since the Z ′1 has appreciable 12 off-diagonal couplings. The D − D̄
mixing, even though less stringent, can still be an important constraint, especially for

future projections, while the FCNCs involving third generations lead to weaker bounds.

For illustration we show the most stringent one, from Bd− B̄d mixing. The Z ′2 and Z ′3 have

much smaller 12 off-diagonal couplings. Even so, µ → e conversion and K − K̄ mixing

still lead to the most stringent constraints in our benchmark, but the FCNCs involving the

third generation, Bd − B̄d and Bs − B̄s mixing, are relatively more important and could

even become the most stringent constraints for low mass Z ′2 in the future.

In discussing the above constraints it is important to keep in mind that we show

bounds for a single benchmark. We expect other GFN = U(1)3
FN benchmarks to lead to a

similar pattern of constraints. However, the relative strengths of different constraints may

easily differ by relative O(1) factors (for instance for some benchmarks we would expect

µ→ e conversion to be more stringent than K − K̄ mixing even for heavy Z ′1, unlike what

was found here). Figure 18 should thus be taken only as an illustration of how important

different probes are for GFN = U(1)3
FN inverted FN models.

6 Conclusions

We introduced a class of anomaly-free Froggatt-Nielsen (FN) models that can simultane-

ously explain the fermion mass hierarchy as well as the mixing patterns. These inverted

FN models differ from the traditional FN models in that the expansion parameter has the

inverted form, M/〈φ〉, where M is the vector-like mass parameter and 〈φ〉 the vev of the

flavon field. The observed pattern of masses and mixings is obtained for 〈φ〉 � M , while

in the traditional FN models the opposite is required, M � 〈φ〉. Different realizations

of the inverted FN models differ in the choice of the FN horizontal group GFN and the

assignment of FN charges. The common feature, on the other hand, is that the fields that

are chiral under the SM do not carry GFN charges. These are the fields that couple directly

to the Higgs, and also to the chains of vector-like fermions that are charged under GFN.

This set-up gives zero modes that are localized toward the ends of chains, with exponen-

tially suppressed overlaps with the zero node where the Higgs resides. After electroweak

symmetry breaking this results in the hierarchy of the SM fermion masses. The set-up also

ensures that GFN is anomaly free irrespective of the choice of the FN charges, making it

easy to extend our work to other charge assignments or gauge groups.
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In the paper we explored in detail two choices for GFN: the “decoupled chains” model,

where GFN = U(1)3
FN, and the “coupled chains” model, with GFN = U(1)FN. For both cases

we showed using a numerical scan of input parameters that one can obtain the observed

hierarchy of SM quark masses and CKM matrix elements given the appropriate choice of

FN charges. The scan was over random O(1) complex flavon and Higgs Yukawa couplings

and over random vector-like mass parameters, Ma, taken to be on average a factor 5

smaller than 〈φ〉. The obtained solutions for the pattern of quark masses and mixings do

not contain any tunings — the associated Barbieri-Giudice measure only reaches values of

a few. Furthermore, the solutions simultaneously give the hierarchical quark masses and

hierarchical mixing angles. Demanding that the quark masses are the measured ones, the

probability for the scan to give all three mixing angles below their SM values is about

8% in both FN models (to be compared with the best case scenario of 0.53 = 12.5%, and

much higher than 3 · 10−6 for mixing angles that are distributed completely randomly).

Similarly, we showed that the neutrino mass differences and PMNS matrix elements are

well described by a completely anarchic form of a Weinberg dimension 5 operator. Since

the Weinberg operator couples to chains of vector-like fermions the neutrino masses are

still hierarchical, preferentially resulting in a normal ordering.

The inverted FN models do share a problem common to all FN models. Since one

introduces a relatively large number of states charged under QCD, the theory is no longer

asymptotically free in the UV, see, e.g., [27]. In the two models we presented there is

a QCD Landau pole about four orders of magnitude above 〈φ〉, i.e., for 〈φ〉 ∼ 107 GeV

this would be around 1011 GeV. One could potentially push this to even higher scales by

adjusting the lengths of FN chains along with the size of 〈φ〉/M expansion parameter.

Alternatively, for 〈φ〉 ∼ 1014− 1015 GeV, depending on the exact field content, the Landau

pole is above the Planck scale. Another interesting possibility is that with an appropriate

field content one may realize an asymptotically safe theory [106]. The possible Landau

pole in the U(1)FN is less constraining; for g′ < 0.11 at µ ' 107 GeV the Landau pole in g′

is above the Planck scale.

In the second part of the paper we explored the phenomenological implications of the

two inverted FN models. The structures we introduced leave imprints in FCNC transi-

tions, which then leads to stringent bounds on the allowed values of 〈φ〉 and Ma. We

focused on the case where GFN is gauged, resulting in three (one) gauge bosons Z ′i (Z ′) for

GFN = U(1)3
FN(U(1)FN). Since the FN charges have opposite signs for the weak SU(2)L

doublets and the weak SU(2)L singlets, the Z ′i have predominantly axial vector couplings

to the SM fermions. The non-universal GFN charges induce both flavor conserving and

flavor violating couplings of Z ′i to the SM fermions. The most important FCNC contri-

butions then come from tree level Z ′i exchanges, with K − K̄ mixing and µ → e con-

version bounds limiting 〈φ〉 & 107 GeV, and consequently also the masses of vector-like

fermions to roughly the same scale. The Z ′i, on the other hand, can be light, if g′ is

small. For light Z ′, with masses from several 10s MeV to several 100s MeV, the beam

dump searches are the most constraining, while the supernovae bounds are important for

masses below about 100MeV, see figures 13, 14 and 18 for the bounds on two representa-

tive benchmarks.

– 34 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
8

There are several ways in which our study could be extended in the future. Most

immediately, one could explore the bounds on inverted FN models, which are not gauged

so that there are no Z ′ tree level contributions to the FCNCs. It would also be interesting

to explore whether or not the inverted FN models can aid in exploring the experimental

anomalies in b→ s`+`− transitions, potentially along the lines of ref. [107].
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A Light Z′ contributions to K − K̄ mixing

In this appendix we give further details on the contributions from light Z ′ exchanges to the

K − K̄ mixing. For mZ′ � ΛChPT ' 4πfπ ∼ O(1 GeV) we can use Chiral Perturbation

Theory (ChPT) to describe these interactions. We estimate the leading contributions from

both axial and vector couplings of Z ′. The former start at tree level, the latter at one loop.

In order to construct the appropriate ChPT Lagrangian in the presence of flavor vi-

olating Z ′ we use the spurion analysis [108]. The QCD Lagrangian is now LQCD+Z′ =

q̄(i/∂ + gs /G
a
T a + χV /Z

′
+ χA /Z

′
γ5)q − q̄Mqq, where q = (u, d, s), Mq = diag(mu,md,ms),

and χV,A are 3× 3 Hermitian matrices of the form

χV,A = g′

0 0 0

0 c11
dV,A

c12
dV,A

0 c21
dV,A

c22
dV,A

 , (A.1)

with cijdV,A defined in (5.12). The QCD+Z ′ Lagrangian is formally invariant under SU(3)R×
SU(3)L transformations, qR,L → gR,L(x)qR,L, if χV,AZµ, andMq are promoted to spurions

that transform as vµ+aµ → gR(vµ+aµ)g†R+ igR∂µg
†
R, vµ−aµ → gL(vµ−aµ)g†L+ igL∂µg

†
L,

s+ ip→ gR(s+ ip)g†L, and that take the values vµ = χV Z
′
µ, aµ = χAZ

′
µ, s =Mq, p = 0.

The LO ChPT Lagrangian, including Z ′ as the light degree of freedom, is therefore

(we work in the unitary gauge for the Z ′ gauge boson)

L(2)
ChPT+Z′ =

f2

4
Tr
(
∇µU∇µU †

)
+ 2B0 Tr

[
(s− ip)U + (s+ ip)U †

]
− 1

4
Z ′µνZ

′µν +
m2
Z′

2
Z ′µZ

′µ
(A.2)
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where U = exp(iλaπa/f), with λa the Gell-Mann matrices, f is related to the meson

decay constant,5 f ' fπ/
√

2 = 93 MeV, the covariant derivative is ∇µU = ∂µU − i(χV +

χA)Z ′µU + iU(χV −χA)Z ′µ, while B0 is the low energy constant. Under chiral rotations the

U field transforms as U → gRUg
†
L, ∇µU → gR∇µUg†L.

Since we consider radiative corrections due to the Z ′ gauge bosons, the Z ′ cannot be

treated as merely an external field that enters into the spurions. In constructing the ChPT

Lagrangian this means that there are two additional hermitian spurions, QR,L = χV ±χA,

that transform as QR,L → gR,L(x)QR,L g
†
R,L(x). This gives the following contributions to

the LO ChPT Lagrangian,

L(2)
QR,L

= C
(2)
0 Tr

[
QRUQLU

†]
+ C

(2)
1 Tr

[
QRUQLU

†]Tr
[
(s+ ip)U †

]
+ h.c.

+ C
(2)
2 Tr

[
QRUQLU

†(s+ ip)U †
]

+ h.c.+ · · · .

(A.3)

where we only show the terms that will be relevant for K − K̄ mixing, where they will

serve as counter-terms to one-loop corrections. For this we also need part of the O(p4)

Lagrangian,

L(4)
QR,L

⊃ C(4)
0 Tr

[
QR(s+ ip)U †

]
Tr
[
QR(s+ ip)U †

]
+ h.c.

+ C
(4)
1 Tr

[
QR(s+ ip)U †

]
Tr
[
QLU

†(s+ ip)
]

+ h.c.

+ C
(4)
2 Tr

[
QR(s+ ip)U †QR(s+ ip)U †

]
+ h.c.

+ C
(4)
3 Tr

[
QLU

†(s+ ip)
]

Tr
[
QLU

†(s+ ip)
]

+ h.c.+ · · · .

(A.4)

The ChPT Lagrangian is invariant under parity, U → U †, vµ → −vµ, aµ → aµ,

s + ip → s − ip, QL ↔ QR. In addition, since the terms containing QR,L can only arise

from loops of Z ′, the ChPT terms without external Z ′ fields need to have even powers

of g′. This is insured by requiring that the ChPT Lagrangian is invariant under the Z2

transformation QL,R → −QL,R. The chiral counting of the spurions is QR,L ∼ O(p0),

vµ, aµ,∼ O(p), s + ip ∼ O(p2). In principle one could thus have an arbitrary number of

QR,L insertions in L(2),(4)
QR,L

. However, we work only to O(g′2) and thus merely keep the

terms that are ∼ Q2
R,L. Note that the first term in (A.3), the analogue of the ChPT+QED

Lagrangian [109, 110], is in our counting O(p0). However, its coefficient is C
(2)
0 ∼ O(m2

Z′)

and we thus include it as part of L(2)
QR,L

.

In the usual ChPT the one-loop counterterms reside in the O(p4) Lagrangian, while in

the light Z ′ case we need both the L(2)
QR,L

and L(4)
QR,L

Lagrangians. This is easy to see from

the ChPT amplitude scaling, M ∼ pν(p/mZ′)
2IZ′ , where ν = 2 + 2L+

∑
i Vi(di − 2), with

L the number of loops, di the number of derivatives in Vi vertices of type i, and IZ′ the

number of Z ′ internal lines. Each of the p momenta in this scaling can be either of order

O(mπ,K,η) or O(mZ′), where the latter we can in general take to be parametrically smaller.

The LO vertices with Z ′ or Z ′2 have di = 1 and di = 0. The one loop Z ′ contribution,

5We use the normalization 〈0|q̄1γµq2|P (p)〉 = ipµfP .
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K0 K̄0

π0, η

Z ′

K0 K̄0

K0 Z ′

K0 K̄0

Z ′

Figure 19. The one loop diagrams contributing to K − K̄ mixing.

L = 1, IZ′ = 1, thus scales as M ∼ p4/m2
Z′ , with p ∼ O(mZ′) or p ∼ O(mK), showing that

we need both L(2)
QR,L

and L(4)
QR,L

Lagrangians in order to capture all the counterterms.

We are now ready to show the one-loop results for K − K̄ mixing. Expanding (A.2)

and (A.3) in meson fields gives

L(2)
ChPT+Z′ + L(2)

Q′L,R
⊃− fKg′c12

dA
Z ′µ∂

µK̄0 + ig′c12
dV

(√3

2
η
↔
∂ µK̄

0 − 1√
2
π0
↔
∂ µK̄

0
)
Z ′µ

+ g′2
(
Z ′µZ

′µ − 4

f2
K

C
(2)
0

)[
(c12
dA

)2 − (c12
dV

)2
](
K̄0
)2

− g′2 4

f2
K

(
C

(2)
1 muds + C

(2)
2 mds

)[
(c12
dA

)2 − (c12
dV

)2
](
K̄0
)2

+
4

3fK
g′c12

dA
Z ′µ
(
K0
↔
∂ µK̄

0
)
K̄0 + h.c.+ · · · ,

(A.5)

where we abbreviated muds = mu + md + ms, and mds = md + ms. Expanding the NLO

Lagrangian (A.2) in meson fields gives

L(4)
Q′L,R

⊃− g′2 4

f2
K

m2
d

(
C

(4)
0 + C

(4)
2

)(
c12
dA

+ c12
dV

)2(
K̄0
)2

+ g′2
4

f2
K

mdmsC
(4)
1

[
(c12
dA

)2 − (c12
dV

)2
](
K̄0
)2

− g′2 4

f2
K

m2
sC

(4)
3

(
c12
dA
− c12

dV

)2(
K̄0
)2

+ h.c.+ · · · .

(A.6)

Above, we kept only the terms relevant for K0 − K̄0 mixing, defined φ1

↔
∂ µφ2 = φ1∂µφ2 −

(∂µφ1)φ2, and replaced
√

2f with the kaon decay constant, fK = 155.6 ± 0.4 MeV, to

account for the SU(3) breaking. The first term in (A.5) is due to the axial vector coupling

of the Z ′ boson and leads to the tree level contribution to the K0− K̄0 mixing amplitude,

eq. (5.25). The second term is due to the vector coupling and contributes at one loop, see

left diagram in figure 19. The first and the last terms in (A.5) contribute to the middle

diagram in figure 19, while the Z ′µZ
′µ term in the second line of (A.5) gives the last diagram

in figure 19.

The one-loop contributions to K − K̄ mixing are

M1−loop
12 =

g′2(c12
dV

)2

32π2mKm2
Z′

∑
P=π0,η

c2
P

{[
m2
Z′A0(m2

P )−
(
m2
K−m2

P +m2
Z′
)
A0(m2

Z′)

+
(
m4
K−2m2

K(m2
P +m2

Z′
)
+
(
m2
P−m2

Z′
)2]

B0

(
m2
K ,m

2
P ,m

2
Z′
)}

+
g′2(c12

dA
)2

12π2mK

m2
K

m2
Z′
A0(m2

K)+
g′2

16π2mK

[
(c12
dA

)2−(c12
dV

)2
][
m2
Z′−

3

2
A0(m2

Z′)
]
,

(A.7)
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with cπ0 = −1/
√

2, cη =
√

3/2, and A0 and B0 the Passarino-Veltman loop functions, see,

e.g., [111]. The counter-terms give

M cntr.
12 =

2g′2

f2
KmK

{(
C

(2)
0 + C

(2)
1 muds + C

(2)
2 mds −mdmsC

(4)
1

)[
(c12
dA

)2 − (c12
dV

)2
]

+m2
d

(
C

(4)
0 + C

(4)
2

)(
c12
dA

+ c12
dV

)2
+m2

sC
(4)
3

(
c12
dA
− c12

dV

)2
+ h.c.+ · · ·

}
.

(A.8)

Since there are no one-loop contributions of the form ∼ c12
dA

+ c12
dV

, this implies a relation

between the counter-tems in the last line, m2
d

(
C

(4)
0 + C

(4)
2

)
= m2

sC
(4)
3 .

B Benchmarks

In this appendix we give the details of the two benchmarks, one for the case of the decoupled

chains with U(1)3
FN horizontal symmetry, and one for the coupled chains with the U(1)FN

horizontal symmetry.

B.1 The benchmark for the decoupled FN chains

The vector-like masses for our U(1)3
FN benchmark are (in units of 107 GeV)

M q1 = {−0.681− 0.462i, 0.472 − 0.375i, 0.152 − 0.356i}, (B.1)

M q2 = {0.453 − 0.124i,−0.284− 0.218i}, (B.2)

Mu1 = {0.29, 0.112 − 0.566i, 0.595,−0.431− 0.29i}, (B.3)

Mu2 = {0.439,−0.308 + 0.55i}, (B.4)

Md1 = {0.74, 0.545 − 0.535i,−0.211 + 0.288i, 0.197 − 0.744i}, (B.5)

Md2 = {0.656,−0.669− 0.464i, 0.653}, (B.6)

Md3 = {0.289 − 0.005i, 0.563 − 0.467i, 0.237 + 0.316i}, (B.7)

ML1 = {−0.409− 0.711i,−0.466− 0.244i, 0.274 + 0.416i}, (B.8)

ML2 = {−0.14 + 0.34i,−0.725− 0.204i,−0.269 + 0.673i}, (B.9)

ML3 = {0.494, 0.434 − 0.278i, 0.073 − 0.505i}, (B.10)

M e1 = {0.691 + 0.414i, 0.369, 0.605,−0.056 + 0.357i}, (B.11)

M e2 = {−0.324− 0.233i}, (B.12)

where the entries are for different nodes, for instance for the first generation FN fermions

that are quark doublets, M q1 = {M q1
1 ,M q1

2 ,M q1
3 }, etc. For Yukawa couplings between FN

fermions and the flavon, we have (in units of 107 GeV)

Y q1〈φ〉 = {0.855 − 3.79i, 1.483 − 3.591i,−1.058 + 3.737i}, (B.13)

Y q2〈φ〉 = {1.758 − 0.415i,−2.965− 1.881i}, (B.14)

Y u1〈φ〉 = {4.021,−1.581 + 0.583i, 0.493 − 1.653i,−3.996 + 0.27i}, (B.15)

Y u2〈φ〉 = {1.855 − 0.007i,−0.506 + 1.358i}, (B.16)

Y d1〈φ〉 = {−2.099 + 2.57i,−1.916− 1.087i,−3.804− 1.739i,−0.764− 1.924i}, (B.17)
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Y d2〈φ〉 = {−1.72− 3.53i,−0.126− 3.927i, 0.251 − 1.823i}, (B.18)

Y d3〈φ〉 = {−1.21 + 2.662i,−0.289 + 1.538i,−0.851 + 1.307i}, (B.19)

Y L1〈φ〉 = {−3.953 + 1.27i, 3.232 − 1.642i, 0.588 − 3.116i}, (B.20)

Y L2〈φ〉 = {−1.89− 1.9i,−2.044− 1.056i,−0.079− 2.649i}, (B.21)

Y L3〈φ〉 = {−4.053 + 0.833i,−3.158 + 2.503i, 2.015 + 2.429i}, (B.22)

Y e1〈φ〉 = {1.936,−2.288 + 1.128i,−2.392 + 1.877i,−3.371− 0.651i}, (B.23)

Y e2〈φ〉 = {4.59}, (B.24)

where again the entries correspond to values on different nodes. Note that the ratios

|(Y f 〈φ〉)ij/(Mf )ij | are on average equal to q = 5, but have a distribution that allows for

O(1) deviations (in relative terms) from this value.

The Yukawa couplings on the zero node, which couple chiral fermions to the Higgs, are

Y u
0 =

−0.129 + 0.367i −0.58− 0.087i 0.85 − 0.006i

−0.502 + 0.183i 0.425 − 0.006i −0.747− 0.129i

0.272 + 0.249i 0.225 − 0.223i −0.025− 0.543i

 , (B.25)

Y d
0 =

 0.714 + 0.006i 0.239 − 0.244i 0.475 − 0.008i

−0.328 + 0.351i 0.227 + 0.181i 0.727 + 0.008i

−0.084− 0.309i 0.727 − 0.004i 0.343 + 0.002i

 , (B.26)

Y `
0 =

−0.632− 0.165i −0.748− 0.194i 0.775 − 0.067i

0.661 + 0.221i 0.229 − 0.854i −0.508− 0.632i

0.05 + 0.752i 0.503 − 0.054i 0.333 + 0.587i

 . (B.27)

The absolute values, ra, for each of the above entries were taken to be in the interval

ra ∈ [0.3, 0.9], when constructing the benchmark. Finally, the matrix of coefficients in the

neutrino mass term, eq. (4.2), is

c`ij =

 0.61 − 0.063i −0.507− 0.009i −0.381 + 0.285i

−0.507− 0.009i −0.071 + 0.504i 0.016 + 0.532i

−0.381 + 0.285i 0.016 + 0.532i −0.47 + 0.308i

 . (B.28)

In the benchmark we set the kinetic mixing between different Z ′i to zero, as we do the

kinetic mixing of Z ′i with hypercharge. The mass eigenstates, Z ′i, therefore correspond to

the gauge bosons coupling to the i-th fermion generation in the flavor basis, that is, before

the electroweak symmetry breaking. After fermion mass diagonalization that includes the

electroweak symmetry breaking terms, the real parts of the Hermitian coupling matrices

in eq. (5.16) are, for Z ′1,

Re(cuL,1) =

−2.909 −0.484 0.015

−0.484 −0.081 0.002

0.015 0.002 0

 , Re(cdL,1) =

−2.977 0.193 −0.006

0.193 −0.012 0

−0.006 0 0

 , (B.29)

Re(cuR,1) =

 3.978 −0.062 −0.003

−0.062 0.001 0

−0.003 0 0

 , Re(cdR,1) =

 3.654 0.682 −0.186

0.682 0.198 −0.002

−0.186 −0.002 0.024

 , (B.30)
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Re(c`L,1) =

−2.165 1.138 0.676

1.138 −0.599 −0.356

0.676 −0.356 −0.211

 , Re(c`R,1) =

 3.988 0.036 −0.001

0.036 0.001 0

−0.001 0 0

 , (B.31)

Re(cνL,1) =

−2.341 −0.907 0.023

−0.907 −0.518 0.148

0.023 0.148 −0.116

 , (B.32)

while the nonzero imaginary entries for the couplings to quarks are Im[(cuR,1){12,13}] =

{0.006,−0.001}, Im[(cdR,1){12,13,23}] = {0.508, 0.233, 0.069}, and for the couplings to lep-

tons, Im[(c`R,1){12,13}] = {0.036,−0.002}, Im[(cνL,1){12,13,23}] = {−0.624, 0.521, 0.196}.
The coefficients below the diagonal, i > j, are given by Im(ca)ij = − Im(ca)ji since

(ca)ij = (ca)
∗
ji.

For Z ′2 the real parts of the couplings in eq. (5.16) are

Re(cuL,2) =

−0.054 0.322 −0.012

0.322 −1.932 0.071

−0.012 0.071 −0.003

 , Re(cuR,2) =

 0 0.028 0.001

0.028 1.819 0.093

0.001 0.093 0.005

 , (B.33)

Re(cdL,2) =

−0.008 −0.128 0.001

−0.128 −1.979 0.015

0.001 0.015 −0.001

 , Re(cdR,2) =

 0.063 −0.082 0.051

−0.082 0.455 0.832

0.051 0.832 2.361

 , (B.34)

Re(c`L,2) =

−0.178 −0.319 −0.034

−0.319 −1.134 0.889

−0.034 0.889 −1.604

 , Re(c`R,2) =

 0 −0.009 0

−0.009 0.991 −0.038

0 −0.038 0.001

 , (B.35)

Re(cνL,2) =

−0.537 0.582 −0.139

0.582 −1.024 0.87

−0.139 0.87 −1.355

 , (B.36)

while the nonzero imaginary entries are

Im[(cuL,2){13,23}] = {−0.002, 0.009},
Im[(cuR,2){12,13,23}] = {−0.003,−0.001,−0.036},

Im[(cdL,2){13,23}] = {−0.002, 0.03},
Im[(cdR,2){12,13,23}] = {−0.148,−0.381, 0.617},
Im[(c`L,2){12,13,23}] = {0.317,−0.533,−1.014},

Im[(c`R,2){12,23}] = {−0.009, 0.003},
Im[(cνL,2){12,13,23}] = {0.459,−0.842, 0.793},

with Im(ca)ij = − Im(ca)ji.

For Z ′3 the only nonzero coupling matrices are

cdR,3 =

 0.104 −0.43− 0.232i 0.089 + 0.211i

−0.43 + 0.232i 2.305 −0.84− 0.677i

0.089 − 0.211i −0.84 + 0.677i 0.505

 , (B.37)
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c`L,3 =

 −0.616 −0.797− 0.317i −0.629 + 0.533i

−0.797 + 0.317i −1.195 −0.54 + 1.014i

−0.629− 0.533i −0.54− 1.014i −1.105

 , (B.38)

cνL,3 =

 −0.085 0.307 + 0.153i 0.116 + 0.331i

0.307 − 0.153i −1.384 −1.016− 0.985i

0.116 − 0.331i −1.016 + 0.985i −1.447

 . (B.39)

B.2 The benchmark for the coupled FN chains

The values of the vector-like mass matrices in complex plane for the U(1)FN benchmark are

shown in figure 20 (left) for M q
n in blue, Mu

n in red, and Md
n in black, and in figure 20 (right)

for Y q
n 〈φ〉 in blue, Y u

n 〈φ〉 in red, and Y d
n 〈φ〉 in black, in both cases in units of 107 GeV. The

values for the matrices on nodes n = 1(2, 3) are denoted with a dot (star, square), with the

labels denoting which element is being plotted, (Mf
n )ij → (i, j). The Yukawa couplings on

the zero node and the matrix of coefficients in the neutrino mass term are

Y u
0 =

−0.003− 0.542i 0.502 + 0.226i 0.14 + 0.262i

0.295 + 0.218i 0.706 + 0.004i 0.419 + 0.014i

0.28 + 0.279i −0.224 + 0.503i −0.607− 0.484i

 , (B.40)

Y d
0 =

 0.016 − 0.437i −0.488 + 0.681i −0.224− 0.135i

−0.59− 0.591i 0.373 − 0.005i −0.407 + 0.068i

0.559 − 0.016i 0.014 + 0.421i 0.492 + 0.01i

 , (B.41)

Y `
0 =

 0.362 − 0.296i 0.326 + 0.572i −0.437 + 0.62i

0.298 − 0.005i 0.583 + 0.356i 0.114 − 0.341i

−0.092 + 0.312i −0.275 + 0.491i −0.368− 0.28i

 , (B.42)

c`ij =

−0.099 + 0.519i 0.56 − 0.041i −0.509 + 0.121i

0.56 − 0.041i −0.311− 0.358i 0.403 − 0.719i

−0.509 + 0.121i 0.403 − 0.719i −0.699− 0.324i

 . (B.43)

Figure 20 shows that the entries are relatively uniformly distributed over the com-

plex plane. In constructing the benchmark we restricted the values of the amplitudes to

lie within the same interval, r ∈ [0.3, 0.9], that was used in the numerical scan in sec-

tion 3.2. The numerical values for the inputs are also available on request in the form of a

Mathematica notebook.

After mass diagonalization, the real parts of the Z ′ couplings in eq. (5.10) are

Re(cuL) =

−2.262 0.487 −0.009

0.487 −2.665 0.012

−0.009 0.012 −0.001

 , Re(cuR) =

2.985 0.081 0

0.081 1.918 −0.093

0 −0.093 0.026

 , (B.44)

Re(cdL) =

−2.074 −0.354 −0.002

−0.354 −2.851 −0.026

−0.002 −0.026 −0.002

 , Re(cdR) =

2.987 0.007 0.017

0.007 2.909 −0.162

0.017 −0.162 2.494

 , (B.45)

– 41 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
8

●

●

●

●

✶
✶

✶

✶

■■

●

●

●

●

✶

✶

✶

✶
■■

●

●

●

●

●

●

●

●

●

✶
✶

✶ ✶
✶

✶

✶

✶

✶

■

■

■

■
■

■

■

■

■

(1,1)

(1,2)

(2,1)

(2,2)

(1,1)
(1,2)

(2,1)

(2,2)

(1,1)

(1,1)

(1,2)

(2,1)

(2,2)

(1,1)

(1,2)

(2,1)

(2,2)

(1,1)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)
(1,2)

(1,3) (2,1)(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0.5

0.0

0.5

Re

Im
Vector-like masses

Mn
q

Mn
u

Mn
d

● n=1

✶ n=2

■ n=3

●●
●

●

●

●✶

✶

✶

✶

■

■

●

●

●

●

●

●

✶

✶

✶

✶

■

■

●

●

●

●

●

●

●

●

●

✶

✶

✶

✶

✶

✶

✶
✶

✶

■

■

■

■

■

■

■

■

■

(1,1)
(1,2)

(1,3)

(2,1)

(2,2)

(2,3)(1,1)

(1,2)

(2,1)

(2,2)

(1,1)

(1,2)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(1,1)

(1,2)

(2,1)

(2,2)

(1,1)

(1,2)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)
(2,3)

(3,1)

(3,2)

(3,3)

2)

-2 0 2 4
-4

-2

0

2

4

Re

Im

Vector-like Yukawas
Yn

q<ϕ>

Yn
u<ϕ>

Yn
d<ϕ>

● n=1

✶ n=2

■ n=3

●
●

●

●
●

●

●

●

●

✶

✶

✶

✶

✶

✶

✶

✶

✶

●

●

●

●

●

●

●

●

●

✶

✶

✶ ✶✶

✶

✶

✶
✶

■

■

■

■

■
■

■

■

■
(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(2,2)

(2,3)

(3,1)

(3,2)
(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)
(2,3)

(3,1)

(3,2)

(3,3)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0.5

0.0

0.5

Re

Im

Vector-like masses

Mn
L

Mn
e

● n=1

✶ n=2

■ n=3

●

●

●

●

●

● ●

●

●

✶

✶

✶

✶

✶

✶

✶

✶

✶

●

●

●

●

●
●

●

●

●

✶

✶

✶

✶
✶

✶

✶

✶

✶

■

■

■

■

■

■

■

■

■

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)
(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2) (2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(1,1)

(1,2)

(1,3)
(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

-3 -2 -1 0 1 2 3 4

-4

-2

0

2

Re

Im

Vector-like Yukawas

Yn
L<ϕ>

Yn
e<ϕ>

● n=1

✶ n=2

■ n=3

Figure 20. Numerical values for the entries in the vector-like fermion mass matrices for the coupled

FN chain benchmark in the case of quarks (top) and leptons (bottom).

Re(c`L) =

−1.982 0.024 0.007

0.024 −1.93 −0.001

0.007 −0.001 −1.936

 , Re(c`R) =

2.981 0.004 0.006

0.004 2.956 0.017

0.006 0.017 2.146

 , (B.46)

Re(cνL) =

−1.982 0.024 0.003

0.024 −1.935 −0.001

0.003 −0.001 −1.932

 , (B.47)

while the imaginary parts of the couplings to quarks are Im[(cuL){12,13,23}] = {1.4, 0.7, 4.1}·
10−2, Im[(cuR){12,13,23}] = {−3.6, 1, 20.3} · 10−2, Im[(cdL){12,13,23}] = {−1.1,−1.2,−7.1} ·
10−2, Im[(cdR){12,13,23}] = {1.2, 3.1,−6.3} · 10−2, while the imaginary parts of the cou-

plings to leptons are Im[(c`L){12,13,23}] = {−0.2,−0.4, 1.1} · 10−2, Im[(c`R){12,13,23}] =

−{0.3,−0.3, 1.5} · 10−2, Im[(cνL){12,13,23}] = {−0.8, 0.7, 0.8} · 10−2. The elements below

the diagonal are obtained from hermiticity of the coefficients, (ca)ij = (ca)
∗
ji, so that

Im(ca)ij = − Im(ca)ji.
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