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1 Introduction

Superconformal field theories (SCFTs) exhibit interesting aspects and rich structures due

to their large symmetry group. A striking feature revealed in [1] is that any superconformal

field theory with an su(1, 1|2) superconformal subalgebra which acts as anti-holomorphic

Möbius transformations on a two-dimensional plane possesses a protected sector isomorphic

to a two-dimensional vertex operator algebra (VOA).1 The protected sector is formed as a

certain (Q+S)-cohomology, spanned by twisted-translations of Schur operators with their

operator product expansions (OPEs) in the cohomology.

For Lagrangian four-dimensional N = 2 superconformal theories, the procedure of

obtaining this chiral algebra can be briefly described as follows. It can be shown that

chiral algebras produced by free hypermultiplet and free vector multiplet are those of

symplectic bosons (also known as βγ system) and bc ghosts, respectively. When they are

coupled to produce an interacting SCFT, the prescription is first to take the naive tensor

product of those two-dimensional chiral algebras with the gauge-invariance constraint and

then to pass to the cohomology of the nilpotent BRST operator. Such a procedure led to

many conjectural relations in [1] between N = 2 superconformal QCDs and W-algebras,

1We use the terms vertex operator algebra and chiral algebra interchangeably.
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which were checked at the level of the equivalence of the superconformal indices and the

vacuum characters. For related works, see also [11–14].

The protected chiral algebra is particularly interesting since it is a non-commutative

algebra of local operators in two dimensions, which is not easily expected for theories in

higher dimensions. It turns out that the non-commutative deformation parameter ~, which

appears in the numerators of the OPEs of chiral algebra, is given by the relative coefficient

of the combination Q+ S. Even though this is a direct consequence of OPE computation,

it seems that an intuitive understanding of the appearance of the non-commutative defor-

mation parameter is still absent. Therefore, it could be useful to approach the mentioned

chiral algebra in an alternative framework where the origin of the non-commutative defor-

mation parameter is well understood. The main goal of the present work is to make such

an attempt.

The framework that we are referring to is the Ω-deformation of supersymmetric gauge

theories [5, 6, 9]. It was firstly introduced in [5] to regularize the partition function ofN = 2

gauge theories on the non-compact C2. Essentially, the Ω-deformation is implemented by

modifying the theory as a cohomological field theory with respect to the supersymmetry

which squares to an isometry of the underlying manifold. It effectively turns on a potential

along the direction orthogonal to the isometry, and thus localizes the theory on the fixed

points of the isometry. A remarkable discovery made in [8] was that the two-dimensional

Ω-deformation on N = 2 gauge theories can be used to quantize the classical integrable

system whose Hamiltonians are given by the N = 2 chiral operators. One may regard this

quantization at the level of the representations of the non-commutative deformation of the

algebra of holomorphic functions on the phase space of the integrable system, where the

non-commutative deformation paramter is identified with the Ω-deformation parameter

ε = ~. A similar feature is also present in other contexts: in three-dimensional N = 4

theories, for example, the Ω-deformation on the Rozansky-Witten theory leads to a non-

commutative deformation of the Higgs branch chiral ring [26, 32, 33].

For which theory should we implement the Ω-deformation to recover the chiral algebra?

In [2], Kapustin discussed the holomorphic-topological twist of N = 2 gauge theories

on a product manifold C × C
⊥, in which the theory is topological along, say, C

⊥ and

holomorphic along C (see also [3, 4, 34] for earlier works on partially holomorphic and

partially topological theories). The cohomology of local operators, therefore, forms a chiral

algebra on C, albeit a commutative one since local operators can commute with each other

by escaping to the direction of C⊥. Now we can imagine implementing the Ω-deformation

with respect to the isometry on C
⊥, effectively creating a potential along the direction

of C⊥. As local operators are now trapped on C due to the potential, it is natural to

expect that we obtain a non-commutative deformation of the chiral algebra. The height

of the potential would be controlled by none other than the Ω-deformation parameter,

and we expect the identification of the non-commutative deformation parameter with the

Ω-deformation parameter. We will see that this is indeed the case.

To obtain the two-dimensional chiral algebra, we have to perform supersymmetric lo-

calization of the Ω-deformed holomorphic-topological theory to produce a chiral CFT on C.

The algebra of local operators of this CFT would provide our desired chiral algebra. It turns
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out that the localization procedure can be conducted in a very similar manner with [10],

where the localization of the Ω-deformed two-dimensional Landau-Ginzburg model was

discussed. In fact, our localization can be viewed as the gauge theory analogue of [10] on

C
⊥, which was discussed in [28] in its application of recovering four-dimensional Chern-

Simons theory from six-dimensional supersymmetric gauge theory (see also [26, 27] for the

discussion of B-models on the compact disk where the localization locus was chosen to be

constant maps), occuring at each point of C. The localization locus is given by solutions to

certain gradient flow equations (emanating from the critical point of the superpotential as

we take C
⊥ = R

2). To obtain the action of the localized theory on C, we have to evaluate

the action on this localization locus. This can be accomplished with the help of the equiv-

ariant integration, in a similar manner that [7] applies an equivariant integration on C
2

to yield the representations of N = 2 chiral operators on the instanton moduli space. For

the case at hand, it turns out that there is no non-trivial topological sector of gauge field

configurations in the localization locus, so that the further integration on the instanton

moduli space would not take place.

The paper is organized as follows. In section 2, we briefly review the Donaldson-

Witten twist and the holomorphic-topological twist of Kapustin for four-dimensionalN = 2

theories. In section 3, we perform the supersymmetric localization of the Ω-deformed

holomorphic-topological theory to obtain the two-dimensional chiral CFT. In section 4, we

discuss the identification of S3 ×S1 partition function of N = 2 SCFT and torus partition

function of chiral CFT, which lead to the equivalence of the Schur index and the vaccum

character. We conclude in section 5 with discussions.

Note added. When this work has been completed, we became aware of [29] which over-

laps with the contents of our paper.

2 Holomorphic-topological twist of N = 2 theories

Let us consider a N = 2 supersymmetric theory on a four-dimensional Euclidean manifold,

X = C × C
⊥, where C and C

⊥ are Riemann surfaces. A curved background on X would

generically break all the supersymmetries. To preserve some supersymmetries, we need to

twist the holonomy group with the R-symmetry group, for which the supercharges with

charge 0 under the twisted holonomy group would remain preserved.

The holonomy group of X is U(1)C × U(1)C⊥ and the R-symmetry group of a N = 2

supersymmetric theory is SU(2)R ×U(1)r. The N = 2 superalgebra contains the following

supercharges

QA
α , Q̃A

α̇ , A = 1, 2, α = ±, α̇ = ±̇, (2.1)

where A is the SU(2)R R-symmetry index and α, α̇ are un-dotted and dotted spinor indices.

We choose the conventions for the generators of the holonomy as

MC = M +
+ +M+̇

+̇
, MC⊥ = M +

+ −M+̇

+̇
. (2.2)

The table 1 shows the supercharges and their quantum numbers. Note that U(1)R ⊂

SU(2)R is the maximal torus.
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Q1
+ Q1

− Q2
+ Q2

− Q̃1
+̇

Q̃1
−̇

Q̃2
+̇

Q̃2
−̇

U(1)C
1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

U(1)C⊥
1
2

−1
2

1
2

−1
2

−1
2

1
2

−1
2

1
2

U(1)R
1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

U(1)r
1
2

1
2

1
2

1
2

−1
2

−1
2

−1
2

−1
2

Table 1. N = 2 supercharges and quantum numbers.

2.1 Donaldson-Witten twist

Let us first review how the Donaldson-Witten twist comes about. For a curved metric on

C
⊥, we twist the holonomy U(1)C⊥ by taking the diagonal subgroup

U(1)′
C⊥ →֒ U(1)C ×U(1)R. (2.3)

Under the twist, we preserve the N = (2, 2) supersymmetry on C whose fermionic genera-

tors are

Q1
−, Q

2
+, Q̃

1
+̇
, Q̃2

−̇
. (2.4)

When C is also curved, we can make a further twist

U(1)′C →֒ U(1)C ×U(1)R (2.5)

to preserve Q̃1
+̇
, Q̃2

−̇
. The Donaldson-Witten supercharge is precisely the linear combina-

tion of these supercharges,

QDW = Q̃1
+̇
+ Q̃2

−̇
. (2.6)

Here, Q̃1
+̇
and Q̃2

−̇
are preserved independently but QDW is the one which is preserved for

any curved background on X, not necessarily a product metric.

To describe the Ω-deformation made upon the twist, let us suppose C⊥ = R
2 for a

moment. One may take a specific combination of supercharges

Q̃ = Q̃1
+̇
+ Q̃2

−̇
+ ε(wQ1

+ − w̄Q2
−), (2.7)

where w = x1 + ix2 and w̄ = x1 − ix2 are the coordinates on C
⊥. This supercharge

squares to the isometry of C⊥ generated by V = w∂w − w̄∂w̄. In general background on

C⊥ the deformed supercharge would not be preserved since the last two supercharges are

not preserved as we have seen above. However, one can still construct a deformation of

the theory which has a supercharge which squares to the isometry on C
⊥. In practice, we

can start from the theory on R
4, write the variations of component fields with respect to

the naive supercharge (2.7), and then seek a way of re-writing them in metric-independent

fashion so that deformed supersymmetry variations are consistently defined on arbitrary

product manifold C× C⊥. The action of the theory has to be modified correspondingly to

ensure the invariance under the deformed supersymmetry.
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Q1
+ Q1

− Q2
+ Q2

− Q̃1
+̇

Q̃1
−̇

Q̃2
+̇

Q̃2
−̇

U(1)′
C

0 −1 1 0 0 −1 1 0

U(1)′
C⊥ 1 0 0 −1 0 1 −1 0

Table 2. Donaldson-Witten twist.

2.2 Holomorphic-topological twist

Now we apply a similar procedure to our main subject: the holomorphic-topological twist

of four-dimensional N = 2 supersymmetry introduced in [2]. Let us first breifly review the

holomorphic-topological twist. For a curved metric on C
⊥, we twist the holonomy U(1)C⊥

by taking the diagonal subgroup

U(1)′
C⊥ →֒ U(1)C⊥ ×U(1)r. (2.8)

Under the twist, we preserve the N = (0, 4) supersymmetry on C whose fermionic genera-

tors are

QA
−, Q̃

A
−̇
, A = 1, 2. (2.9)

When C is also curved, we can make a further twist

U(1)′C →֒ U(1)C ×U(1)R (2.10)

to preserve Q1
−, Q̃1

−̇
. The holomorphic-twist supercharge is the following linear combina-

tion of supercharges,

Q = Q1
− + Q̃1

−̇
. (2.11)

Note that the translations along C⊥ and the anti-holomorphic translation along C are

actually Q-exact:
{Q,Q2

+} = −P+−̇,

{Q, Q̃2
+̇
} = P−+̇

{Q,Q2
−} = −{Q, Q̃2

−̇
} = −P−−̇,

(2.12)

hence it gets the name holomorphic-topological twist. Let us suppose C⊥ = R
2 for a

moment. Then we would preserve

Qε = Q1
− + Q̃1

−̇
+ ε(wQ2

+ + w̄Q̃2
+̇
), (2.13)

which squares to the isometry on C⊥:

Q
2
ε = ε(w{Q̃1

−̇
,Q2

+}+ w̄{Q1
−, Q̃

2
+̇
}) = −2ε(wPw − w̄Pw̄). (2.14)

In general background on C⊥, the deformed supercharge would not be preserved since

the last two supercharges are not preserved as we have seen. However, just as the case

of the Donaldson-Witten twist, it is still possible to implement the Ω-deformation of the

holomorphic-topological theory by consistently deforming the supersymmetry variations

and the action. We will see in the following section how this is actually accomplished.
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Q1
+ Q1

− Q2
+ Q2

− Q̃1
+̇

Q̃1
−̇

Q̃2
+̇

Q̃2
−̇

U(1)′
C

1 0 0 −1 1 0 0 −1

U(1)′
C⊥ 1 0 1 0 −1 0 −1 0

Table 3. Holomorphic-topological twist.

λ1
+ λ1

− λ2
+ λ2

− λ̃1
+̇

λ̃1
−̇

λ̃2
+̇

λ̃2
−̇

φ φ̃ D2
2 D1

2 D2
1

U(1)C
1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

0 0 0 0 0

U(1)C⊥
1
2

−1
2

1
2

−1
2

−1
2

1
2

−1
2

1
2

0 0 0 0 0

U(1)R
1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

0 0 0 1 −1

U(1)r −1
2

−1
2

−1
2

−1
2

1
2

1
2

1
2

1
2

−1 1 0 0 0

U(1)′
C

1 0 0 −1 1 0 0 −1 0 0 0 1 −1

U(1)′
C⊥ 0 −1 0 −1 0 1 0 1 −1 1 0 0 0

Table 4. N = 2 vector multiplet; gaugini, scalars, and auxiliary field.

It is crucial to note that, unlike the Donaldson-Witten case, we make use of the U(1)r
R-symmetry to make a twist with the isometry on C

⊥. Recalling that the deformed su-

percharge squares to the isometry on C
⊥, we see that the localization with respect to this

supercharge would not work if the U(1)r R-symmetry is anomalous. This is precisely the

case when the theory is not superconformal. Thus we restrict our attention to N = 2

superconformal theories in relating their Ω-deformation on holomorphic-topological twist

with two-dimensional chiral algebras. It is interesting to see that the superconformality is

required in a slightly different manner compared to the (Q + S)-cohomology story in [1],

where the superconformal supercharge S explicitly appears in defining the cohomology of

local operators in the chiral algebra.

3 Chiral CFT from Ω-deformation and localization

The general analysis of the previous section can be applied to N = 2 gauge theories, on

which we focus from now on. We perform supersymmetric localization on the Ω-deformed

holomorphic-topological theory, to produce a two-dimensional chiral CFT. The desired

chiral algebra is obtained as the algebra of local operators of this two-dimensional CFT.

3.1 Holomorphic-topological twist of N = 2 gauge theory

Let us start from the N = 2 vector multiplet. The vector multiplet contains a gauge

connection A, gaugini λA
α and λ̃A

α̇ , a complex scalar φ, and an auxiliary field DAB, where

A = 1, 2 is the SU(2)R R-symmetry index. Following the analysis of the previous section,

the holomorphic-topological twist changes the quantum numbers of these component fields

as in the table 4.
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Correspondingly, we change the notation for the component fields by their representa-

tions under the Lorentz group after the twist,

λ1
+ = λz, λ1

− = λw̄, λ2
+ = λ, λ2

− = λz̄w̄,

λ̃1
+̇
= λ̃z, λ̃1

−̇
= λ̃w, λ̃2

+̇
= λ̃, λ̃2

−̇
= λ̃z̄w

φ = φw̄, φ̃ = φ̃w, D2
2 = D, D1

2 = Dz, D2
1 = Dz̄.

(3.1)

The N = 2 supersymmetry variations can be written as

δAµ = iζAσµλ̃A − iζ̃Aσ̃µλA

δφ = −iζAλA

δφ̃ = iζ̃Aλ̃A

δλA =
1

2
Fµνσ

µνζA + 2Dµφσ
µζ̃A + φσµDµζ̃A + 2iζA[φ, φ̃] +DABζ

B

δλ̃A =
1

2
Fµν σ̃

µν ζ̃A + 2Dµφ̃σ̃
µζA + φ̃σ̃µDµζA − 2iζ̃A[φ, φ̃] +DAB ζ̃

B

δDAB = −iζ̃Aσ̃
µDµλB + iζAσ

µDµλ̃B − 2[φ, ζ̃Aλ̃B] + 2[φ̃, ζAλB] + (A ↔ B),

(3.2)

with the fermionic parameters ζA and ζ̃A. In a general metric background, the supersym-

metry would be preserved only if ζA and ζ̃A are Killing spinors. Let us first place the

theory on the flat R4. Since the holomorphic-topological supercharge is Q = Q1
− + Q̃1

−̇
, it

is straightforward to write out the variations of the component fields with respect to the

holomorphic-topological supercharge, using the notation (3.1), as

QAz = λ̃z − λz, QAz̄ = 0, QAw = λ̃w, QAw̄ = −λw̄,

Qφw̄ = iλw̄, Qφ̃w = iλ̃w,

Qλz = Dz, Qλw̄ = 0, Qλz̄w̄ = −4Fz̄w̄ + 4iDz̄φw̄,

Qλ = 2Fzz̄ + 2Fww̄ − 4iDwφw̄ + 2i[φw̄, φ̃w] +D,

Qλ̃z = Dz, Qλ̃w = 0, Qλ̃z̄w = −4Fz̄w − 4iDz̄φ̃w,

Qλ̃ = 2Fzz̄ − 2Fww̄ + 4iDw̄φ̃w − 2i[φw̄, φ̃w] +D,

QDz = 0, QDz̄ = 4Dz̄(λ− λ̃) + 4Dwλz̄w̄ − 4Dw̄λ̃z̄w + 4[φw̄, λ̃z̄w] + 4[φ̃w, λz̄w̄],

QD = 2Dz̄(λ̃z − λz)− 2Dwλw̄ + 2Dw̄λ̃w − 2[φw̄, λ̃w]− 2[φ̃w, λw̄].

(3.3)

Now we turn to the action for the vector multiplet. It is given by

Stop = −
iϑ

8π2

∫
TrF ∧ F

Svec =
1

g2

∫
d4x Tr

[
1

2
FµνF

µν −
1

2
DABDAB − 4Dµφ̃D

µφ+ 4[φ, φ̃]2

− 2iλAσµDµλ̃A − 2λA[φ̃, λA] + 2λ̃A[φ, λ̃A]

]
,

(3.4)

where g is the gauge coupling. As we will see momentarily, the topological term does not

affect the theory and there would be no dependence on ϑ. Thus we drop the topological

– 7 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
1

term from now on. Then a computation shows that the rest of the action turns out to be

Q-exact:

Svec = Q

[
1

g2

∫
d4x Tr

[
2λz̄w̄(−Fzw + iDzφ̃w)− 2λ̃z̄w(Fzw̄ + iDzφw̄) +

1

2
(λz + λ̃z)Dz̄

+ (λ+ λ̃)

(
−Fzz̄ +

1

2
D − iDw̄φ̃w + iDwφw̄

)

+ (λ− λ̃)
(
−Fww̄ − iDw̄φ̃w − iDwφw̄ − i[φw̄, φ̃w]

)]]
.

(3.5)

To ensure the positive-definiteness of the action, we impose the reality properties to the

bosonic fields,

Āµ = Aµ, φ̄ = −φ̃, D̄AB = −DAB, (3.6)

while requiring the symplectic-Majorana conditions to the gaugini,

(λAα) = ǫABǫαβλBβ, (λ̃Aα̇) = ǫABǫα̇β̇λ̃Bβ̇. (3.7)

As mentioned in the previous section, the holomorphic-topological supercharge Q =

Q1
− + Q̃1

−̇
is in fact preserved in any product metric background as long as we make the

proper twist of the isometry with the R-symmetry group. Hence we would like to write

the supersymmetry variation rules to make sense in a general metric background. This

requires a bunch of re-definition of component fields,

φ = φ̃wdw − φw̄dw̄, A = A+ iφ, Ā = A− iφ, λ = 2λ̃wdw − 2λw̄dw̄

µz =
λz + λ̃z

2
dw ∧ dw̄, Dz = Dzdw ∧ dw̄, α =

λ+ λ̃

2
, ν =

λ− λ̃

4
dw ∧ dw̄

θz = λ̃z − λz, ρz̄ =
λ̃z̄wdw + λz̄w̄dw̄

4
, Dz̄ =

1

16
Dz̄dw ∧ dw̄

D = D + 2Fzz̄ − 2iDwφw̄ + 2iDw̄φ̃w.

(3.8)

For convenience, let us also denote the curvature of the complexified connection A, Ā by

F = ∂wAw̄ − ∂w̄Aw − i[Aw,Aw̄], F̄ = ∂wĀw̄ − ∂w̄Āw − i[Āw, Āw̄],

Fwz̄ = ∂wAz̄ − ∂z̄Aw − i[Aw, Az̄], Fw̄z̄ = ∂w̄Az̄ − ∂z̄Aw̄ − i[Aw̄, Az̄],

F̄wz = ∂wAz − ∂zAz − i[Aw, Az], F̄w̄z = ∂w̄Az − ∂zAw̄ − i[Aw̄, Az],

Fz̄ = Fwz̄dw + Fw̄z̄dw̄, F̄z = F̄wzdw + F̄w̄zdw̄.

(3.9)

Then the supersymmetry variations are significantly simplified in terms of these new fields,

QA = 0, QĀ = λ,

Qλ = 0, Qν = F ,

Qα = D, QD = 0,

QAz̄ = 0, QAz = θz,

Qρz̄ = Fz̄, Qθz = 0,

QDz̄ = DC⊥ρz̄ +Dz̄ν, Qµz = Dz, QDz = 0,

(3.10)
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q11 q12 q21 q22

U(1)C 0 0 0 0

U(1)C⊥ 0 0 0 0

U(1)R −1
2

−1
2

1
2

1
2

U(1)r 0 0 0 0

U(1)F
1
2

−1
2

1
2

−1
2

U(1)′
C

0 −1 1 0

U(1)′
C⊥ 0 0 0 0

Table 5. N = 2 hypermultiplet, scalars.

where we have used the new covariant derivative DC⊥ = dC⊥ − iA (we also denote D̄C⊥ =

dC⊥ − iĀ). The action (3.5) for the vector multiplet can be also written in these fields as

Svec = Q

{
1

g2

∫

C

d2z

∫

C⊥

Tr
[
−F̄ ⋆C⊥ ν − α (⋆C⊥D− 2iDC⊥ ⋆C⊥ φ− 4 ⋆C⊥ Fzz̄)

+4F̄z ∧ ⋆C⊥ρz̄ + 4µz ⋆C⊥ Dz̄

]
}
.

(3.11)

To make a N = 2 gauge theory superconformal, we in general need to couple hy-

permultiplets to the vector multiplet. Let us consider r hypermultiplets which consist of

scalars qAI , fermions ψI , ψ̃I , and auxiliary fields FǍI , where I = 1, · · · , 2r is the Sp(r)

flavor index. The auxiliary SU(2) Ǎ = 1, 2 is introduced to achieve an off-shell description

of the hypermultiplet. We will only use Sp(1)r ⊂ Sp(r) subgroup of the flavor symmetry,

so let us restrict a single free hypermultiplet (r = 1) for a moment.

Recall that U(1)C is twisted with the maximal torus of the SU(2)R R-symmetry group,

U(1)R ⊂ SU(2)R. For the hypermultiplet, we will take a further twist with the maximal

torus of the flavor symmetry:

U(1)′C →֒ U(1)C ×U(1)R ×U(1)F,F̌ , (3.12)

where U(1)F,F̌ is the maximal torus of the SU(2) flavor group or the SU(2) auxiliary

group. This is not really necessary but it will fix the spins of the resulting two-dimenisonal

symplectic bosons to be integers. One can always undo this further twist. The tables 5 and 6

show the quantum numbers of the component fields in the hypermultiplet under the twist.

We define correspondingly

qz ≡ q21, qz̄ ≡ −q12, q̃ ≡ q22, q̃† = q11,

ψzw ≡ ψ+1, ψzz̄ ≡ ψ−1, ψ̃zw̄ ≡ ψ̃+̇1, ψ̃zz̄ ≡ ψ̃−̇1

ψw ≡ ψ+2, ψz̄ ≡ ψ−2, ψ̃w̄ ≡ ψ̃+̇2, ψ̃z̄ ≡ ψ̃−̇2,

Fz ≡ F21, Fz̄ ≡ F12, F̃ ≡ F22, F̃ † = −F11.

(3.13)

Let us take the hypermultiplet to be valued in a unitary representation R of the gauge

group (R̄ denotes the complex conjugate representation which is isomorphic to the dual
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ψ+1 ψ−1 ψ+2 ψ−2 ψ̃+̇1 ψ̃−̇1 ψ̃+̇2 ψ̃−̇2

U(1)C
1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

U(1)C⊥
1
2

−1
2

1
2

−1
2

−1
2

1
2

−1
2

1
2

U(1)R 0 0 0 0 0 0 0 0

U(1)r
1
2

1
2

1
2

1
2

−1
2

−1
2

−1
2

−1
2

U(1)F
1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

U(1)′
C

1 0 0 −1 1 0 0 −1

U(1)′
C⊥ 1 0 1 0 −1 0 −1 0

Table 6. N = 2 hypermultiplet, fermions.

representation). We take the convention such that the component fields qz, q̃
†, ψzw, ψzz̄,

ψ̃zw̄, ψ̃zz̄, Fz, F̃
† are valued in R while qz̄, q̃, ψw, ψz̄, ψ̃w̄, ψ̃z̄, Fz̄, F̃ are valued in R̄. The

N = 2 supersymmetry variations are given by

δqAI = −iζAψI + iζ̃Aψ̃I

δψI = −2σµζ̃ADµqAI + 4iζA(φ̃ · qA)I − σµDµζ̃
AqAI − 2ζ̌ǍFǍI

δψ̃I = −2σ̃µζADµqAI + 4iζ̃A(φ · qA)I − σ̃µDµζ
AqAI − 2˜̌ζǍFǍI

δFǍI = iζ̌Ǎσ
µDµψ̃

α̇
I − i ˜̌ζǍσ̃

µDµψI − 2(φ · ζ̌Ǎψ)I − 2(ζ̌ǍλB · qB)I + 2(φ̃ · ˜̌ζǍψ̃)I

+ 2(˜̌ζǍλ̃B · qB)I ,

(3.14)

where the fermionic parameters ζ̌A,
˜̌ζA should satisfy the constraints

ζAζ̌B̌− ζ̃A
˜̌ζB̌ = 0, ζAζA+ ˜̌ζǍ ˜̌ζǍ = 0, ζ̃Aζ̃A+ ζ̌Ǎζ̌Ǎ = 0, ζAσµζ̃A+ ζ̌Ǎσµ ˜̌ζǍ = 0, (3.15)

to ensure the off-shell invariance of the supersymmetry. Since the holomorphic-topological

supercharge is Q = Q1
− + Q̃1

−̇
, we have to find the solutions for ζ̌A and ˜̌ζA for ζ−1 = 1 and

ζ̃−̇1 = 1. It is not hard to find that ζ̌+2 = 1 and ˜̌ζ2−̇ = −1 satisfy the equations (3.15). Now

it is straightforward to write out all the variations of component fields under the action of

the holomorphic-topological supercharge:

Qqz = 0, Qq̃ = 0, Qqz̄ = iψz̄ + iψ̃z̄, Qq̃† = −
i

2
gzz̄(ψzz̄ + ψ̃zz̄)

Qψzw = 4iDwqz, Qψzz̄ = −4iDz̄qz + 2F̃ †

Qψw = 4iDwq̃, Qψz̄ = −4iDz̄ q̃ − 2Fz̄

Qψ̃zw̄ = −4iDw̄qz, Qψ̃zz̄ = 4iDz̄qz − 2F̃ †

Qψ̃w̄ = −4iDw̄q̃, Qψ̃z̄ = 4iDz̄ q̃ + 2Fz̄

QFz̄ = 0, QF̃ † = 0

QFz = 2Dw̄ψzw + 2Dwψ̃zw̄ − 2Dz(ψzz̄ + ψ̃zz̄)− 2(λ̃z − λz) · q̃
† + 2(λ− λ̃) · qz

QF̃ = 2Dw̄ψw + 2Dwψ̃w̄ − 2Dz(ψz̄ + ψ̃z̄) + 2(λ̃z − λz) · qz̄ + 2(λ− λ̃) · q̃.

(3.16)
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Finally the action for the hypermultiplet is given by

Shyp =
1

g2

∫
d4x

[
1

2
Dµq

ADµqA − qA{φ, φ̃}qA +
i

2
qADABq

B −
i

2
ψ̃σ̃µDµψ −

1

2
F ǍFǍ

−
1

2
ψφψ +

1

2
ψ̃φ̃ψ̃ − qAλAψ + ψ̃λ̃Aq

A

]
.

(3.17)

To ensure the positive-definiteness of the action, we impose the following reality properties

for the scalars,

(qAI) = ΩIJǫABqBJ , (FǍI) = −ΩIJǫǍB̌FB̌J , (3.18)

while requiring the fermions to be Ω-symplectic Majorana

(ψαI) = ǫαβΩIJψβJ , (ψ̃α̇I) = ǫα̇β̇ΩIJ ψ̃β̇J , (3.19)

where ΩIJ is the real antisymmetric Sp(r)-invariant tensor satisfying

(ΩIJ)∗ = −ΩIJ , ΩIJΩJK = δIK . (3.20)

Repeating the argument made for the vector multiplet, the holomorphic-topological

supercharge is preserved for any product manifold after the twist. Hence we would like

to write the supersymmetry variations in metric-independent fashion. This is achieved by

making a bunch of re-definition of fields,

σ≡
1

4i
(ψwdw− ψ̃w̄dw̄), ξz ≡

1

4i
(ψzwdw− ψ̃zw̄dw̄), γ≡−

i

2
gzz̄(ψzz̄+ ψ̃zz̄),

χ≡−
igzz̄(ψzz̄− ψ̃zz̄)

4
dw∧dw̄, ηz̄ ≡

i(ψz̄− ψ̃z̄)

2
dw∧dw̄, ζz̄ ≡ i(ψz̄+ ψ̃z̄),

hz ≡
i

8
(Fz+2iDz q̃

†)dw∧dw̄, h≡
i

8
(F̃ − igzz̄Dzqz̄)dw∧dw̄, (3.21)

h†≡−2i(F̃ †− igzz̄Dz̄qz)dw∧dw̄, hz̄ ≡−2i(Fz̄+2iDz̄ q̃)dw∧dw̄.

In terms of these new fields, the holomorphic-topological supercharge is represented in a

simple manner,

Qqz = 0, Qξz = DC⊥qz, Qhz = DC⊥ξz + iν · qz

Qq̃ = 0, Qσ = DC⊥ q̃, Qh = DC⊥σ + iν · q̃,

Qχ = h†, Qh† = 0, Qηz̄ = hz̄, Qhz̄ = 0,

Qq̃† = γ, Qγ = 0, Qqz̄ = ζz̄ Qζz̄ = 0.

(3.22)

Also in terms of the re-defined fields, the hypermultiplet action can be written as a linear

combination of Q-closed part and a Q-exact part,

Shyp = Shyp,cl + Shyp,ext, (3.23)

where the Q-exact part is given by

Shyp,ext=Q

{
1

g2

∫

C

d2z

∫

C⊥

ηz̄

(
⋆C⊥hz−

i

2
Dz q̃

†

)
+χ

(
⋆C⊥h+

i

2
Dzqz̄

)
−
1

2

(
q̃†α·q̃+qz̄α·qz

)

−D̄C⊥ q̃†∧⋆C⊥σ−D̄C⊥qz̄∧⋆C⊥ξz−
1

2
qz̄µz ·q̃

†

}
, (3.24)
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whereas the Q-closed part is given by

Shyp,cl =
8i

g2

∫

C

d2z

∫

C⊥

ξz ∧Dz̄σ+hzDz̄ q̃−hDz̄qz − iqzDz̄ · q̃− iq̃ξz ∧ ρz̄ − iqzρz̄ ∧σ. (3.25)

Combining the vector multiplet action (3.11) and the hypermultiplet action (3.24), (3.25),

we obtain the full action of the holomorphic-topological theory

S = Svec + Shyp,cl + Shyp,ext. (3.26)

It should be reminded that, as firstly discovered in [2], the dependence on the metric on C
⊥

and the Kähler form on C enters only through the Q-exact terms, ensuring that the theory

is topological along C⊥ and holomorphic along C. Also note that we can absorb the gauge

coupling in the Q-closed part into the fields, so that the dependence on the gauge coupling

also becomes absent. We also absorb the irrelevant numerical prefactors in some terms in

Svec by rescaling the metric on C. Now we may take the theory on a general product metric

background of C×C⊥ while its component fields take values of appropriate differential forms.

For later use, it is convenient to define the following specific combinations of component

fields:
Qz ≡ qz + ξz + hz

Q̃ = q̃ + σ + h

Az̄ = Az̄ + ρz̄ + Dz̄,

(3.27)

on which our localizing supercharge will act as the equivariant differential on C
⊥. Note

that we can re-write the Q-closed part of the action (3.25) using these combinations as

Shyp,cl = 8i

∫

C

d2z

∫

C⊥

Qz ∧ (∂z̄ − iAz̄·)Q̃. (3.28)

where · denotes the action according to the representation under the gauge group. This

expression will turn out to be useful in finding the action of the localized theory on C.

3.2 Ω-deformation

Suppose there is a vector field V = Vect(C⊥) which generates an isometry on C
⊥. The

Ω-deformation can be defined at the level of supersymmetry variations of component fields,

so that the deformed supercharge squares to this isometry plus possibly a gauge transfor-

mation, in a similar manner with [10, 28] for two-dimensional theories. For the case at

hand, the holomorphic-topological theory on C × C
⊥, we can deform the supersymmetry

variations in (3.10) and (3.22) as

QεA = ειV ν, QεĀ = λ− ειV ν,

Qελ = 2ειV F − 2iεDC⊥ιV φ, Qεν = F ,

Qεα = D, QεD = ειV DC⊥α,

QεAz̄ = ειV ρz̄, QεAz = θz,

Qερz̄ = Fz̄ + ειV Dz̄, Qεθz = ειV Fz,

QεDz̄ = DC⊥ρz̄ +Dz̄ν, Qεµz = Dz, QεDz = εDC⊥ιV µz,

(3.29)
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for the vector multiplet and

Qεqz = ειV ξz, Qεξz = DC⊥qz + ειV hz, Qεhz = DC⊥ξz + iν · qz

Qεq̃ = ειV σ, Qεσ = DC⊥ q̃ + ειV h, Qεh = DC⊥σ + iν · q̃, (3.30)

Qεχ = h†, Qεh
† = εDC⊥ιV χ, Qεηz̄ = hz̄, Qεhz̄ = εDC⊥ιV ηz̄,

Qεq̃
† = γ, Qεγ = ειV DC⊥ q̃†, Qεqz̄ = ζz̄ Qεζz̄ = ειV DC⊥qz̄.

for each hypermultiplet. Note that

Q
2
ε = ε(DC⊥ιV + ιV DC⊥) = εLV +Gauge[ειV A], (3.31)

where the first term is the Lie derivative with respect to the vector field V and the second

term is the infinitesimal gauge transformation generated by ειV A. Hence the deformed

supercharge squares to an isometry generated by V plus a gauge transformation. Also it

is immediate that Qε reduces to the original holomorphic-topological supercharge Q when

ε = 0. Hence Qε indeed implements the Ω-deformation of the holomorphic-topological

theory on C× C⊥ with respect to the isometry V .

We should correspondingly deform the action so that it is annihilated by the deformed

supercharge. The action for the vector multiplet can be taken as the variation under the

deformed supercharge of the same expression:

Svec,ε = Qε

∫

C

d2z

∫

C⊥

Tr
[
−F̄ ⋆C⊥ ν − α (⋆C⊥D− 2iDC⊥ ⋆C⊥ φ− ⋆C⊥Fzz̄)

+F̄z ∧ ⋆C⊥ρz̄ + µz ⋆C⊥ Dz̄

]
.

(3.32)

Similarly the Q-exact part of the hypermultiplet action can be modified to:

Shyp,ext,ε=Qε

∫

C

d2z

∫

C⊥

ηz̄

(
⋆C⊥hz−

i

2
Dz q̃

†

)
+χ

(
⋆C⊥h+

i

2
Dzqz̄

)
−
1

2

(
q̃α · q̃†+qz̄α ·qz

)

−D̄C⊥ q̃†∧⋆C⊥σ−D̄C⊥qz̄∧⋆C⊥ξz−
1

2
qz̄µz · q̃

†. (3.33)

Since V generates an isometry on C⊥, LV leaves the metric invariant and commutes with

⋆C⊥ . Hence (3.31) guarantees that these actions are Qε-invariant.

Finally, it is not difficult to check that the Qε-variation of the Qε-closed part of the

action (3.28) is now non-zero but a total derivative on C
⊥. Thus it can be written as a

contribution from the boundary ∂C⊥. We can simply add a boundary term to the action

to cancel this [10], yielding

Shyp,cl,ε = 8i

(∫

C

d2z

∫

C⊥

Qz ∧ (∂z̄ − iAz̄·)Q̃+
1

ε

∫

C

d2z

∫

∂C⊥

V ∨ qzDz̄ q̃

)
, (3.34)

where V ∨ is the one-form satisfying ιV V
∨ = 1 and LV V

∨ = 0 on C⊥. Hence the Qε-

invariance of the action is now established.
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3.3 Gauge-fixing

Gauge-fixing is needed to properly evaluate the path integral. We implement the gauge-

fixing by the standard BRST procedure. We introduce a ghost c, an antighost c̄, and

an auxiliary field p which are in adjoint representation of the gauge group. The BRST

transformations of these fields are

QBc = −
i

2
{c, c}, QB c̄ = p, QBp = 0,

QBX = Gauge[c]X,

(3.35)

where X denotes all other component fields introduced in previous section. We also pos-

tulate the Qε-variations for these fields as

Qεc = −ειV A, Qεc̄ = 0, Qεp = ειV dC⊥ c̄. (3.36)

Now we define a new supercharge Q̂ as the combination of the Ω-deformed supercharge and

the BRST supercharge, Q̂ = Qε + QB. Then we observe that

Q̂
2 = ε(dC⊥ιV + ιV dC⊥) = εLV (3.37)

for all fields. Note that the supercharge now squares to the isometry generated by V without

any gauge transformation. We use this supercharge Q̂ to construct our cohomological field

theory.

Since (3.32) and (3.33) are defined as Qε-variations of gauge invariant expressions, they

are also automatically Q̂-exact:

Svec,ε= Q̂

∫

C

d2z

∫

C⊥

Tr
[
−F̄ ⋆C⊥ ν−α(⋆C⊥D−2iDC⊥ ⋆C⊥ φ−⋆C⊥Fzz̄)

+F̄z∧⋆C⊥ρz̄+µz ⋆C⊥ Dz̄

]

Shyp,ext,ε= Q̂

∫

C

d2z

∫

C⊥

ηz̄

(
⋆C⊥hz−

i

2
Dz q̃

†

)
+χ

(
⋆C⊥h+

i

2
Dzqz̄

)
−
1

2

(
q̃α · q̃†+qz̄α ·qz

)

−D̄C⊥ q̃†∧⋆C⊥σ−D̄C⊥qz̄∧⋆C⊥ξz−
1

2
qz̄µz · q̃

†, (3.38)

It is also clear that (3.34) is Q̂-closed since it is gauge-invariant. To gauge-fix we introduce

another Q̂-exact term to the action

Sfix = Q̂

∫
Tr c̄ Gfix, (3.39)

where Gfix is a properly chosen gauge-fixing function. We will take the standard Lorentz

gauge-fixing function

Gfix = ∇µA
µ, µ = w, w̄, (3.40)

where ∇ the Levi-Civita connection on C⊥, while keeping the gauge redundancy on C

intact. We will fix the residual gauge redundancy after localizing the theory onto C.2

2The zero mode of the ghost c would have been constant, but we absorb it to the ghost for the gauge

fixing on C which will be introduced later. Hence we take the zero mode of c here to be zero.
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3.4 Localization

For the purpose of recovering the chiral CFT on C, we will take C
⊥ = R

2 from now on.

Let us analyze the localization locus of the path integral. The auxiliary fields Dz, hz̄, and

h† only enters in the action in linear terms. Hence we can integrate them out to find

Dz̄ =
1

2
⋆C⊥ qz̄ q̃

†

hz =
i

2
⋆C⊥ Dz q̃

†

h = −
i

2
⋆C⊥ Dzqz̄.

(3.41)

By completing the square for the terms involving D, we also find

D =
1

2

(
⋆C⊥DC⊥ ⋆C⊥ φ+

1

2

(
−iFzz̄ + q̃q̃† + qz̄qz

))
. (3.42)

The localization locus is given by the fixed point set of the supersymmetry variations.

Hence we set the right hand sides of (3.29) and (3.30) to zero. Thus we have, among other

equations,
F = 0, ιV F − iDC⊥ιV φ = 0, D = 0,

Fz̄ + ειV Dz̄ = 0, DC⊥qz + ειV hz = 0, DC⊥ q̃ + ειV h = 0.
(3.43)

From the equations in the first row we get F = 0, and since C
⊥ = R

2 is simply-connected

we can choose a gauge to set A = 0. Applying this to the equations in the second row

yields, among other equations, Dz̄φ = φ · qz = φ · q̃ = 0, implying the gauge transformation

generated by φ is zero. By making a genericity assumption for Az̄, qz, and q̃, we are led to

φ = 0. Then we arrive at

A = 0. (3.44)

With (3.41) and (3.44) the rest of the equations in the second row of (3.43) yield

dC⊥Az̄ = −
1

2
ειV ⋆C⊥ qz̄ q̃

†

dC⊥qz = −
i

2
ειV ⋆C⊥ Dz q̃

†

dC⊥ q̃ =
i

2
ειV ⋆C⊥ Dzqz̄.

(3.45)

Let us introduce the polar coordinate on C⊥ = R
2, where the flat metric on C⊥ is simply

written as ds2
C⊥ = dr2 + r2dϕ2. Then our generator of the isometry is V = ∂ϕ. The

equations (3.45) can be written in the polar coordinates as

∂ϕAz̄ = 0, ∂ϕqz = 0, ∂ϕq̃ = 0,

∂rAz̄ = −
1

2
εrqz̄ q̃

†, ∂rqz = −
i

2
εrDz q̃

†, ∂rq̃ =
i

2
εrDzqz̄.

(3.46)

By re-defining the radial coordinate by t = εε̄ r
2

2
, the equations in the second line become

∂tAz̄ = −
1

2ε̄
qz̄ q̃

†, ∂tqz = −
i

2ε̄
Dz q̃

†, ∂tq̃ =
i

2ε̄
Dzqz̄. (3.47)
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Solutions to these equations are precisely the gradient trajectories on which two-

dimensional B-model on R
2 localizes, as discussed in [10] with its full detail, generated

by the function Re
(
W

ε

)
where W is the holomorphic superpotential. For the case at

hand, one could view the four-dimensional holomorphic-topological theory on C × C
⊥ as

a two-dimensional B-twisted gauge theory on C
⊥, as done in [28] for the six-dimensional

holomorphic-topological theory to obtain the four-dimensional Chern-Simons theory. The

superpotential has to be chosen as W =
∫
C
d2z qzDz̄ q̃ to reproduce the four-dimensional

holomorphic-topological theory in the ε → 0 limit. As we approch to infinity t → ∞, Az̄,

qz, and q̃ should end on the critical points {dW = 0} of the superpotential to guarantee

that the action (3.28) does not diverge [10].3

We have to regard these flow equations as defined on the fields with complexified gauge

group. Note that from (3.42) and (3.43) we get

µ ≡ −iFzz̄ + q̃q̃† + qz̄qz = 0. (3.48)

This equation is invariant under real gauge transformations, but not under the non-compact

part of the complex gauge transformations. Also, generic complexified fields can be trans-

formed into the fields lying in µ
−1(0) by making a complex gauge transformation.4 In other

words, the restriction of the fields to the level set µ
−1(0) can be viewed as gauge-fixing

the non-compact part of the complexified gauge symmetry. In turn, we may just omit this

equation and compensate it with complexifying the gauge group for the fields appearing in

the flow equations (3.47). This is precisely analoguous to the complexification of the gauge

group for the analytically continued Chern-Simons theory [23–25].

Now that we identified the localization locus, let us evaluate the effective action of

the localized path integral. Recall that our theory is holomorphic along C, so that the

localized path integral should define a two-dimensional chiral CFT on C. Also note that

the localization locus does not contain any non-trivial topological sector of gauge field

configurations, so that all we have to do is to evaluate the Q̂-closed part of the action on

the localization locus properly. This can be accomplished by performing an equivariant

integration on C
⊥ = R

2 for the action integral (3.28) as follows.

To facilitate the equivariant integration, it is crucial to note that Q̂ acts on the combi-

nations (3.27) as the equivariant differential dC⊥ + ειV on C
⊥ = R

2 plus a gauge covariant

contribution:

Q̂Qz = (dC⊥ + ειV − iC·)Qz

Q̂Q̃ = (dC⊥ + ειV − iC·)Q̃

Q̂Az̄ = (dC⊥ + ειV − iC·)Az̄ − ∂z̄C,

(3.49)

where

C ≡ c+A+ ν (3.50)

3Generally, when the critical points are non-isolated we can choose a Lagrangian submanifold of the

critical points to have a constant one-loop determinant [28], so we make such a choice here.
4There is an issue of stability here. When the closure of the orbit of complexified gauge transformations

intersects with µ
−1(0), such a locus is called semistable. We are restricting to the semistable locus.
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acts as if it is a gauge connection for those complexes. Note that the last term in the third

equality ensures that ∂z̄− iAz̄ can be treated as a covariant derivative as far as Q̂-variation

is concerned, namely it preserves the gauge charge:

Q̂

(
(∂z̄ − iAz̄·)Q̃

)
= (dC⊥ + ειV − iC·)

(
(∂z̄ − iAz̄·)Q̃

)
. (3.51)

This would have failed without the last term of the third equality of (3.49). Therefore, Q̂

acts as the equivariant differential on the gauge-invariant combination,

Q̂

(
Qz ∧ (∂z̄ − iAz̄·)Q̃

)
= (dC⊥ + ειV )

(
Qz ∧ (∂z̄ − iAz̄·)Q̃

)
. (3.52)

In other words, Qz ∧ (∂z̄− iAz̄·)Q̃ is equivariantly closed when it is viewed as an element in

the Q̂-cohomology. Hence we apply the Atiyah-Bott equivariant localization formula for the

bulk term in the action integral (3.34). Since we have included the infinity ∂C⊥ = {t = ∞}

in our consideration, we have to regard C
⊥ ∪ ∂C⊥ as the one-point compactification S2

whose fixed points with respect to V = ∂ϕ are precisely the origin and the infinity, t = 0

and t = ∞. The contribution from t = ∞ cancels the contribution from the second term

in (3.34) (V ∨ = dϕ), leaving only the contribution from the origin t = 0 (while absorbing

irrelevant numerical constant in front into qz and q̃):

Shyp,cl,ε =
1

ε

∫

C

d2z qzDz̄ q̃, (3.53)

where q = qzdz is a (1, 0)-form in the representation R and q̃ is a 0-form in the representa-

tion R̄ of the gauge group, respectively. As mentioned above, qz, q̃, and Az̄ are understood

here as solutions to the gradient trajectory equations (3.47) evaluated at the origin of C⊥,

w = w̄ = 0 (i.e. t = 0). Therefore, the result of the localization is the two-dimensional path

integral on C defined by the action (3.53), and the integration cycle is the field configura-

tions that can be reached by the gradient flow (3.47) emanating from the critical points.

Note that this integration cycle ensures the convergence of the path integral even though the

action is now complex-valued, and it is again precisely analoguous to how the convergence

of the path integral is guaranteed for the analytically continued Chern-Simons theory with

complexified gauge group [23–25]. Also, note that the Ω-deformation parameter ε appears

in the denominator of the action since C⊥ = R
2 has the unit weight under the isometry of

V = ∂ϕ. Consequently ε plays the role of the Planck constant of the localized theory on C,

which therefore appears in the numerator of the OPEs. Hence we confirm the identification

of the non-commutative deformation parameter and the Ω-deformation parameter.

Now we choose to fix the residual gauge by the gauge-fixing function Az̄ = 0, yielding

the gauge fixing term in the action

1

ε

∫

C

d2zTr (−pzAz̄ + bzDz̄c). (3.54)

Hence when the auxiliary field pz is integrated out, we are left with

1

ε

∫

C

(
Tr b∂̄c+

∑

i

qi∂̄q̃i

)
, (3.55)
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where i enumerates all the hypermultiplets that we coupled to the vector multiplet to make

the original N = 2 theory superconformal. The algebra generated by the local operators

of this theory are nothing but the chiral algebra of the standard bc-βγ system with the

BRST charge

QBRST =
1

ε

∮
dz

2πi

(
Tr bcc−

∑

i

qicq̃i

)
. (3.56)

Hence we arrive at the result expected from [1].

4 Superconformal indices and vacuum characters

As a consequence of the SCFT/VOA correspondence in [1], the Schur index of the N = 2

SCFT and the vacuum character of the chiral algebra are identified by directly comparing

their state-counting formulas. Here we discuss how the Ω-deformation approach provides

a path integral point of view on the identification.

4.1 Schur index of N = 2 SCFT

The Schur index is defined by the Schur limit of the N = 2 superconformal index [15]. It

is given as

IS = TrHS
(−1)F qE−R, (4.1)

where E is the scaling dimension and R is the Cartan of the SU(2)R R-symmetry as before.

The trace is over the 1
4
-BPS states satisfying

HS : E − (j1 + j2)− 2R = 0, j1 − j2 + r = 0. (4.2)

The operators corresponding to these states are called Schur operators. It is straightforward

to compute the single-letter indices for the vector multiplet and the hypermultiplet by

finding those operators in the component fields. The full index is simply given by the

plethystic exponential of the sum of all the single-letter indices, integrated over the gauge

group. We will not reproduce the exact forms of those expressions here.

4.2 Schur index and vacuum character

In [30, 31], the Schur index was derived by supersymmetric localization of N = 2 SCFT

partition function on S3×S1, up to a multiplicative factor of the Casimir energy. We start

from the following metric background:

ds2= l2cos2θ(dψ−(β1+β2)dt)
2+l2sin2θ(dϕ−(β1−β2)dy)

2+l2dθ2−l2(τ+(β1+β2))
2dy2,

(4.3)

where ψ, ϕ, and y are periodic coordinates with period 2π and θ ∈ [0, π
2
]. l is the radius of

the three-sphere which was written as a torus fibration over the θ-interval. It was shown

in [30] that the variations of β1 and β2 do not affect the partition function. Then β1 and β2

were chosen to be real and Re τ = −(β1 + β2) so that above metric restricts to the Kähler

metric on the torus at θ = 0,

ds2C = l2dzdz̄, (4.4)
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where z = ψ + τy and z̄ = ψ − τ̄ y. To find the supercharge preserved under the non-

trivial background, we need to solve the generalized Killing spinor equation. It was shown

that there are four solutions to the generalized Killing spinor equation which generate an

su(1|1) ⊕ su(1|1) superalgebra. Then we can choose a localizing supercharge Q in this

superalgebra satisfying

Q2 =
1

l
L∂ϕ +Rr

(
−
1

l

)
+Gauge transformation, (4.5)

where Rr is the U(1)r rotation. The path integral localizes onto the torus θ = 0 as a result

of the localization with respect to Q, yielding the expression of the Schur indices as torus

partition functions of two-dimensional CFT, or the characters of vertex operator algebra.

It was discussed further in [31] that we can take a decompactification limit of the

above setting, which zooms in the region around θ = 0, to find a direct connection to the

Ω-deformation picture which we have described throughout the present work. Let us set

β1 = β2 = 0 for convenience. We re-define the coordinates as

ỹ = ly, ψ̃ = lψ, r = lθ, (4.6)

and take the l ≡ 1
ε
→ ∞ limit. Then the metric becomes

ds2 = |dψ̃ + τdỹ|2 + dr2 + r2dϕ2. (4.7)

This is precisely the product metric C× C⊥ with C now being another R2 = (ψ̃, ỹ). More-

oever, we recognize the supercharge Q used here implements the Ω-deformation on C⊥, in

the sense of the relation (4.5).

Hence we can make a direct connection between the partition functions in four-

dimension and two-dimension. First we localize the Ω-deformed holomorphic-topological

theory along C⊥, leaving the chiral CFT of the gauged symplectic bosons on the torus C.

The above argument shows that we actually recover the S3 × S1 partition function of the

four-dimensional theory, and thus leading to the identification of the S3×S1 partition func-

tion of the four-dimensinoal SCFT with the torus partition function of the two-dimensional

chiral CFT.

As just mentioned, in the localizing supercharge Q, the S3 × S1 partition function of

four-dimensinoal SCFT computes the Schur index [30, 31] (in [31], the multiplicative factor

of Casimir energy is also matched). Also the torus partition functions of two-dimensional

chiral CFT compute the characters of the chiral algebra. Hence we re-discover one of

the consequences of the SCFT/VOA correspondence found in [1], the identification of the

Schur index and the vaccum character, at the level of their path integral representations.

For further discussions on the path integral representations of the Schur index and its

identification with the VOA character, see [30, 31].

5 Discussion

In the (Q+S)-cohomology construction of the chiral algebra [1], the bc-system is obtained

by the cohomology of the Schur operators in the vector multiplets: the gaugini. In our
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notation, the relevant gaugini fields are precisely µz and θz in (3.8). However, it is still not

very clear how these fields are related to the bc-system in our construction which arises in

the two-dimensional gauge fixing. The main problem is that neither µz nor θz is Q-closed,

so that it is not immediate to see how they come into play in the Q-cohomological field

theory. It would be nice if we can understand this issue more clearly.

An interesting observation was made in [17] for the SCFT/VOA correspondence at the

level of N = 2 superconformal indices. It discovered a relation between the Macdonald

index, a refinement of the Schur index, of N = 2 SCFTs and the refined character of

VOAs. A conjectural construction of a filtration of the vacuum module was suggested,

from which the refined character was defined by its associated graded vector space. In [16],

the construction of such filtrations was analyzed in great detail. It would be nice if we

can understand this relation through the Ω-deformation formulation of the chiral algebra.

A path integral representation of the Macdonald index or the suggested refined character

would be helpful for this study.

Finally, the Ω-deformation approach to the chiral algebra discussed so far only applies

to Lagrangian SCFTs. It was observed that in some cases there are N = 1 preserving

deformations ofN = 2 SQCDs such that the renormalization group flows from the deformed

SQCDs to non-Lagrangian N = 2 SCFTs such as Argyres-Douglas theories and Minahan-

Nemeschansky theories [18–22]. It would be nice if we could find a way to apply the

Ω-deformation procedure to obtain the VOAs for non-Lagrangian SCFTs [35], perhaps by

using such deformations.
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A Conventions

The spinor indices in ψα and ψ̃α̇ are raised and lowered by

ψα = ǫαβψβ , ψ̃α̇ = ǫα̇β̇ψ̃
β̇

ψβ = −ψαǫαβ , ψ̃β̇ = −ψ̃α̇ǫ
α̇β̇ ,

(A.1)

where ǫ12 = −ǫ12 = ǫ1̇2̇ = −ǫ1̇2̇ = 1. We use the convention for the spinor index contraction

ψχ = ψαχα, ψ̃χ̃ = ψ̃α̇χ̃
α̇. (A.2)
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The symplectic-Majorana spinors ψA and ψ̃A are defined by

(ψαA)
† = ǫABǫαβψβB, (ψ̃α̇A)

† = ǫABǫα̇β̇ψ̃β̇B, (A.3)

where the SU(2)R indices are raised and lowered as XA = ǫABXB and XA = ǫABX
B with

ǫ12 = −ǫ12 = 1.

The σ-matrices are defined by

σa
αα̇ = (i~τ ,1)αα̇, σ̃aα̇α = (−i~τ ,1)α̇α, (A.4)

where ~τ are the Pauli matrices.
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