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1 Introduction

Exceptional field theories [1–4] are based on generalised exceptional geometries in which
diffeomorphisms are unified with tensor gauge transformations in such a way that the
closure of the local transformations require constraints on the fields, known as section
constraints [1, 5, 6]. These theories live on a space which is locally a direct product of
D-dimensional ‘external’ space-time with an ‘internal’ space whose coordinates are in a
representation of a split real form of the exceptional group En and are subject to the
En covariant section constraint. Here, En is the usual hidden Cremmer-Julia symmetry
group of ungauged maximal supergravity in D = 11 − n space-time dimensions [7], which
also governs gauged maximal supergravity through the embedding tensor formalism [8, 9]
and the associated tensor hierarchy [10, 11]. The tensor hierarchy fields play a central
role in constructing exceptional field theory. Solving the section constraint amounts to
restricting the dependence on the extra coordinates so that the dynamics of an appropriate
supergravity theory emerges.

The study of exceptional field theories is interesting for several reasons. Besides provid-
ing a unified description of supergravity theories that are related by duality transformations
(like D = 11 and type IIB supergravity [2]), they allow for the derivation of uplift formulæ
for solutions of gauged supergravity [12–15] and the construction of gauged supergravi-
ties via a generalised Scherk-Schwarz mechanism [16–21]. They are also instrumental in
studying non-geometric string theory solutions [22–28]. Further aspects of exceptional field
theory have been discussed in the recent overview [29].

It is a remarkable fact that the bosonic sector of exceptional field theory is completely
determined by generalised diffeomorphisms without the use of supersymmetry. Another
key property is that these theories typically require extra p-forms of rank p ≥ D− 2 beyond
those present in the usual tensor hierarchy of D-dimensional maximal gauged supergravity.
These obey constraints that are similar to the section constraints. They are related to the
physical fields by first-order equations and do not themselves describe new physical degrees
of freedom.
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So far, En exceptional field theories have been constructed explicitly for n = 6, 7, 8

in [2–4] and in [1, 30–33] for smaller n. The cases beyond n = 8 involve infinite dimensional
groups and bring in formidable new challenges. A dent has been made recently in the case
of E9 [34]. The present paper studies the case of E11.

It has been proposed by West long ago and prior to the development of exceptional
field theory that the D = 11 supergravity equations of motion should emerge from an
E11 invariant theory formulated in the framework of a non-linear realisation of E11 with
coordinates in the ‘vector’ representation, such that the dynamics would follow from an
E11 invariant set of duality equations [35–37].1 It has been realised recently that these first
order duality equations can only hold modulo certain equivalence relations [41–43]. These
ambiguities are argued to be liftable by passing to equations of motion that are eventually
of arbitrarily high order in derivatives. These equivalence relations may potentially be
interpreted as arising from additional gauge symmetries, although their precise form has
not been determined. The section constraint was not used in those references in connection
with the gauge invariance of the equations of motion, but only in connection with the
description of 1/2-BPS states [44]. E11 does capture the supergravity tensor hierarchy field
content in D dimensions [45, 46], but not the extra constrained p-forms of the exceptional
field theories mentioned above.

In [47], it was explained that constructing linearised gauge invariant first order field
equations with E11 symmetry requires the fields to satisfy the section constraint as well
as the introduction of additional fields that do not appear in the E11 coset space. This
construction is based on an infinite-dimensional super-algebra T (e11), that includes e11 as
a subalgebra and that generalises the tensor hierarchy algebra T (en) introduced in [48]
for n ≤ 8 to the Kac-Moody case. The tensor hierarchy algebra then includes a non-
semi-simple extension T0(e11) of the algebra e11 that entails the introduction of extra fields
already in the linearised theory. A gauge invariant linearised duality equation can be written
in this formulation for a field strength that transforms covariantly under E11 provided one
introduces these extra fields in the corresponding indecomposable representation. The extra
fields are necessary to write a gauge invariant duality equation for the graviton in eleven
dimensions [47]. We exhibit here that our E11 duality equation, including the extra fields,
gives in the linearised approximation an infinite tower of gauge invariant duality equations
of the type described in [49]. Gauge invariance of these equations as described in [50, 51]
is only satisfied in the presence of the extra fields.

The primary goal of this paper is to construct the E11 and gauge invariant non-linear
duality equation that captures all the duality equations of all En exceptional fields theories.
We will show that one can generalise the duality equation constructed in [47] to a non-linear
equation invariant under generalised diffeomorphism. The key observation that facilitates
this construction is that the derivative of the extra fields found in [47] at the linearised
level are the cohomologically trivial part of extra fields that turn out to underlie the extra

1The idea of extended Kac-Moody symmetries, in particular in connection with low-dimensional gravi-
tational systems, was first expressed in [38]. An explicit trace of E10 symmetry was found in a Belinskii-
Khalatnikov-Lifshitz analysis of eleven-dimensional supergravity [39] and was later generalised to a cosmo-
logical E10 model [40].
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constrained p-forms fields mentioned above in the GL(11− n,R)× En decomposition and
subsequent truncation of the E11 invariant theory. In analogy with what happens in lower-
dimensional exceptional field theories, and as mentioned above, these extra p-forms are
related to the propagating fields by first order equations but they do not themselves describe
new physical degrees of freedom. These first order equations for the constrained fields are
sourced by bilinear terms in the derivatives of the fields parametrizing E11. Therefore they
cannot follow from the E11 variations of the duality equation we construct in this paper,
and they must be derived separately by requiring gauge invariance and integrability of the
equations. We shall not attempt to determine these first order equations in this paper, and
will only make some comments on their expected structure.

Besides the investigation of a non-linear bosonic theory based on the tensor hierarchy
algebra, an important part of the present paper is the study of its supersymmetric extension.
Fermions are introduced here — as for maximal supergravity and other exceptional field
theories — as representations of (the double cover of) the involution invariant subgroup
K(E11) that plays the role of a generalised R-symmetry group. As noticed in [52–56], this
subgroup admits finite-dimensional (a.k.a. unfaithful) spinor representations in the case
of Kac-Moody groups K(En) with n ≥ 9. In particular, these representations were con-
structed for the gravitino and supersymmetry parameter of K(E11) in [57] with beginnings
of the supersymmetry parameter representation already given in [58]. The compatibility
of local K(En) symmetry with supersymmetry, i.e., whether the supersymmetry generator
transforms correctly as a spinor under K(En) was investigated in [56, 59, 60] for n = 10

where it was found that there was an inconsistency in the transformation arising for the
bosonic fields beyond the six-form, i.e., starting from the so-called dual graviton. Based
on [58] and [54–56], fermions in K(E11) were introduced in [61] and a similar calculation
was carried out up to the level of the six-form.

In the present paper, we resolve this inconsistency starting from the dual graviton by
considering not only e11 but its non-semi-simple extension T0(e11) that appears in the tensor
hierarchy algebra. As already emphasised above, one important consequence of the tensor
hierarchy algebra is that it introduces additional fields into the theory beyond those of the
standard E11/K(E11) symmetric space. These fields will resolve the inconsistencies with
the supersymmetry transformations, because the supersymmetry transformation of fields in
T 0(e11)	K(e11) can be written consistently with K(E11). We shall use this construction
to write linearised supersymmetry transformation rules and equations of motion for the
(unfaithful) gravitino field. We also show that one obtains a closed supersymmetry algebra
at linearised order. These results will be derived explicitly at low levels, including the dual
graviton. At present, we do not have a complete algebraic proof to all levels.

After establishing the linearised supersymmetry and the equations of motion for the
Fermi fields, we investigate their non-linear extension and their compatibility with the non-
linear duality equation proposed in section 3. We present some first steps in this direction
by introducing the non-linear K(E11) connection and a Pauli coupling to the E11 field
strength. Although we do not have the complete expression of the non-linear equations,
the first few levels exhibit promising cancellations that lead to the desired couplings of
eleven-dimensional supergravity.
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Structure of the paper and summary of main results. Given the length of the
paper we here give a telegraphic summary of our main results for the reader’s convenience.

• Inspired by the structure of the tensor hierarchy algebra given in section 2, we propose
non-linear bosonic field strengths that transform covariantly under E11 in an infinite-
dimensional representation that generalises the embedding tensor representation of
gauged supergravity for finite-dimensional En and that is neither highest nor lowest
weight. Labelling its component by I we show in (3.12) that the following definition
is E11 covariant:

F I = CIMαJ
α
M + CIM α̃χM

α̃ + . . . . (1.1)

Here, JαM is the non-linear e11 Lie-algebra valued current constructed out of the
E11/K(E11) representative M using M−1∂MM with ∂M denoting the derivative
with respect to the infinitely many coordinates of the R(Λ1) representation of E11

subject to a section constraint. The fields χMα̃ are constrained fields, i.e. they are
(section) constrained in theM index in the same way as the partial derivative ∂M , and
α̃ labels the representation R(Λ2) of E11. However, the indecomposability of T0(e11)

is importantly such that they form an indecomposable representation together with
the adjoint current components in such a way that the structure constants CIMα and
CIM α̃ appearing in the expressions above ensure E11 covariance of the field strengths
F I , whereas CIMαJ

α
M alone would not be covariant. The dots indicate additional

constrained fields discussed in sections 2 and 3.

• The representation-theoretic content of the tensor hierarchy algebra permits writing
a non-linear duality equation (3.22) for the non-linear field strengths:

F I −MIKΩKJF
J = 0 . (1.2)

The tensor hierarchy algebra ensures the existence of a symplectic form ΩIJ that acts
on the field strengths F I . The above first-order equation is a vast generalisation of
(twisted) duality equations that have appeared elsewhere in the literature [35, 62]
and covers both the matter and the gravitational sector. As we analyse in section 3.6,
the duality equation is not sufficient to determine the dynamics of the constrained
fields χMα̃, just as e.g. for E7 exceptional field theory [3]. Assuming integrability
conditions at linearised order, we relate the constrained fields and their dynamics to
our previously studied model in [47].

• We propose non-linear gauge transformations of all fields in (3.19) and (3.20) and show
that the duality equation (1.2) is gauge invariant under these gauge transformations
if a certain group-theoretic identity (3.26) holds. This identity is then verified at
low levels in decompositions of E11 under its GL(11) and GL(3) × E8 subgroups in
sections 4 and 5, respectively. We also write explicitly the duality equation (1.2)
in components in the corresponding parametrisations, and exhibit that it reproduces
the known duality equations of eleven-dimensional supergravity and of E8 exceptional
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field theory. We exhibit in particular in section 4.3 the gauge invariance of the infinite
tower of linearised duality equations underlying eleven-dimensional supergravity [49–
51].

• Starting from section 6, we study the fermionic extension of the model. Given the
unfaithful spinors Ψ and ε of K̃(E11), we show how their bilinears relate to the tensor
hierarchy algebra and how this can be used to define supersymmetry transformation
rules and a consistent supersymmetry algebra. We show that this consistency also
connects to the reducible gauge structure of the E11 generalised Lie derivative and
introduces yet more additional bosonic fields into the theory in order to make all
symmetries manifest.

• We establish a linearised, K̃(E11) covariant equation of motion for the gravitino field
in section 7 that reads (see (8.1))

Ga;bM∂Mψb = 0 , (1.3)

where ψb are the components of Ψ in a Spin(1, 10) basis and Ga;bM are K̃(E11) invari-
ant tensors that are constructed out of Spin(1, 10) gamma matrices and Kronecker
symbols. We show how this gravitino equation of motion is consistent with the bosonic
dynamics under supersymmetry. This requires also introducing gravitino bilinears in
the non-linear duality equation (1.2) in the form (see (7.17))

F I −MIKΩKJF
J = V−1I

IO
I , (1.4)

where OI ∼ (ΨΨ)I denotes fermion bilinears transforming in the K(E11) representa-
tion of the field strength equation of motion. The underlined index I here indicates
a ‘local’ K(E11) index that is converted into a ‘global’ E11 index I by means of
the inverse generalised vielbein V−1 in E11/K(E11). The possibility of making this
fermionic modification of the first-order duality equation rests on a non-trivial relation
between the unfaithful spinors and the tensor hierarchy algebra that we demonstrate
at low levels. In this way we obtain a supersymmetric non-linear duality equation for
the bosons including the non-linear fermionic terms.

• When studying the supersymmetry algebra and gauge algebra it is important to
also study the generalised diffeomophisms on the fermions. We provide a general
expression for this in (7.18) that involves the compensating K(e11) transformation
arising due to the gauge-fixed generalised vielbein. We verify in appendix E that our
formula, when restricted to E7 exceptional field theory, agrees with previous results
in the literature.

• In section 8, we study also the extension of the linearised fermionic equation of mo-
tion (1.3) and supersymmetry variations to the non-linear level.

– 5 –
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Figure 1. Dynkin diagram of E11 with labelling of nodes used in the text.

2 E11 and tensor hierarchy algebra

In this section, we shall review elements of the group E11 with the underlying Lie algebra
e11, and the tensor hierarchy algebra T (e11) that will be needed in the construction of the
E11 invariant duality equations.

2.1 E11 and its Lie algebra

The Lie algebra e11 is an infinite-dimensional Lorentzian Kac-Moody algebra with Dynkin
diagram shown in figure 1. For a detailed description of the algebra see for example [35, 63,
64]. We will denote a representation with highest weight Λ by R(Λ) where Λ =

∑
i p
iΛi,

with Λi denoting the fundamental weights and pi are the Dynkin labels. For example,
R(Λ1) refers to representation with Dynkin labels (1, 0, . . . , 0). We will use the notation
R(Λ) to also refer to the module associated with the corresponding representation. The dual
representation of R(Λ) will be denoted by R(Λ) and it is a lowest weight representation.

A convenient way of organising the generators of e11 is by decomposing the adjoint
representation of e11 under its gl(11) subalgebra obtained by removing node 11 from the
diagram. Defining the gl(11) level ` as the eigenvalue of the generator 1

3K
m
m, where Km

n

for m,n = 0, . . . , 10 denotes the generators of the gl(11), levels 0 ≤ ` ≤ 4 of the gl(11)

decomposition of the adjoint e11 are given in table 4 in appendix A. The appendix also
contains more details on the gl(11) algebra in (A.1) and similar decompositions of some
other representations of e11 that play a role in this work. At levels 0 and 1, the generators
have the same index structure as the graviton and the 3-form field of 11D supergravity,
respectively, and their dual 6-form and the dual graviton appear at levels 2 and 3.

The highest weight representation R(Λ1) plays an important role in the dynamical
description of the E11 exceptional field theory as it gives the representation structure of
the E11 space-time coordinates [58]. Its dual lowest weight representation R(Λ1) is the
representation denoted by `1 in [58] that can be used to contract the coordinates when
forming a generalised translation group element. The level decomposition of R(Λ1) under
gl(11) is displayed in table 5 in appendix A. The names of the generators there already
anticipate their roles as central charge type coordinates in a D = 11 interpretation and
associated translation generators and gauge parameters.

We shall also need to make use of tensor products of e11 representations. The ten-
sor product of highest weight (respectively lowest weight) representations is completely
reducible into infinitely many highest (respectively lowest) weight representations. By con-
trast tensor products of highest with lowest representations fall outside what is called cate-
gory O and there are no complete reducibility results [63]. It is known nonetheless that the

– 6 –
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tensor product of a representation and its dual contains the adjoint representation. The
following decompositions of tensor products will prove to be useful

(R(Λ1)⊗R(Λ1))sym = R(2Λ1)⊕ [R(Λ10)⊕ . . .] ,

(R(Λ1)⊗R(Λ1))antisym = R(Λ2)⊕ [R(Λ4)⊕ . . .] ,

R(Λ1)⊗R(Λ2) = R(Λ1 + Λ2)⊕R(Λ3)⊕ . . . (2.1)

The representation [R(Λ10)⊕. . .] encodes the weak section constraint in the E11 exceptional
field theory which will be described in the next section and the low levels of its gl(11)

decomposition is given in table 6. The representation [R(Λ4) ⊕ . . .] completes this to the
strong section constraint.

The Kac-Moody group E11 should be properly defined either as the minimal (or small)
group generated by products of real root generators [65] or as the completed group that
is obtained from the minimal definition by completion with respect to the building topol-
ogy [66]. For the purposes of this paper, we will consider the completed group E11 as formal
exponentials of e11 Lie algebra elements completed in the positive Borel direction. A more
detailed discussion of the Kac-Moody symmetric space and possible coordinates on it will
be given in section 3.5.

2.2 Tensor hierarchy algebra

For any en algebra, the tensor hierarchy algebra T (en) is a super-algebra extension of
en [47, 48]. It admits generally a Z-grading T (en) =

⊕
p Tp(en) consistent with the Grass-

mann Z2 grading (i.e. such that
⊕

k T2k(en) is the bosonic subalgebra). For n ≤ 8, Tp(en) for
0 ≤ p ≤ 11− n corresponds to the en representation of the p-forms in (11− n)-dimensional
maximal supergravity. In particular one has T0(en) = en corresponding to the Cremmer-
Julia hidden symmetry of the scalar sector that extends to the p-form sector. The tensor
hierarchy algebra is not symmetric under p ↔ −p, meaning Tp � T−p. The component
T−1(en) is the so-called embedding tensor representation [48] which is used for describing
gaugings of supergravity [8, 9]. The tensor hierarchy algebra was constructed in [47] for
n ≥ 9 as the quotient of the superalgebra generated by a local superalgebra by its maximal
ideal, using the construction of [67]. This construction is very similar to the one of a Kac-
Moody algebra, for which the local algebra is defined by the Chevalley generators associated
to each simple root, and the maximal ideal is defined by the Serre relations. For the tensor
hierarchy algebra, the local superalgebra can be described explicitly but the maximal ideal
does not admit a closed-form definition generalising the Serre relations. In the following we
shall simply use T = ⊕p∈ZTp when we refer to the tensor hierarchy algebra extension of e11.

The important difference between T and the tensor hierarchy algebras associated to en
for n ≤ 8 is that T0 ) e11 and is a non-simple extension of e11 that decomposes as an e11

module as follows
T0
∼= e11 hR(Λ2)⊕R(Λ10)⊕ · · · (2.2)

where the notation e11 hR(Λ2) indicates that it is not the direct sum of two modules, but
rather that e11 is a submodule and [e11 hR(Λ2)]/e11 is the highest weight module R(Λ2) as

– 7 –
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level E11 rep index notation

p = 2 R(Λ10)⊕ · · · P Λ̂ = (PΛ, . . .)

p = 1 R(Λ1)⊕R(Λ1 + Λ10)⊕R(Λ11)⊕ · · · P M̂ = (PM , P̃MΛ, . . .)

p = 0 e11 hR(Λ2)⊕R(Λ10)⊕ · · · tα̂ = (tα, t̃α̃, t̃Λ, . . .)

p = −1 T−1 tI

p = −2 e11 iR(Λ2)⊕R(Λ10)⊕ · · · t̄α̂ = (t̄α, ¯̃tα̃, ¯̃tΛ, . . .),

p = −3 R(Λ1)⊕R(Λ1 + Λ10)⊕R(Λ11)⊕ · · · P̄
M̂

= (P̄M ,
¯̃PMΛ, . . .)

Table 1. E11 representations arising at level −3 ≤ p ≤ 2 elements of the tensor hierarchy algebra.
In particular, PM and P̄M denote the representations R(Λ1) and R(Λ1), respectively.

a quotient only. Thus e11 h R(Λ2) forms an indecomposable representation. It was shown
in [47] that the next term R(Λ10) forms a direct sum with this space but the full module
structure contained in the dots is presently not known. The other degrees Tp have a similar
structure.

The tensor hierarchy algebra admits an antisymmetric bilinear form such that Tp ∼=
T−2−p. The components Tp for p ≥ 1 are highest weight modules of e11, and therefore
lowest weight for p ≤ −3. T−1 is a symplectic representation of e11, but very little is known
about its reducibility, since it is neither a highest/lowest weight representation of e11 nor an
extension of the adjoint itself. We will therefore refer to this representation as T−1, both as
an e11 module and as the component of the tensor hierarchy algebra. The known structure
of Tp for −3 ≤ p ≤ 2 is summarised in table 1 where also notation for the corresponding
generators is introduced.

The indecomposability of T0 is reflected in the commutation relations of the level p = 0

generators tα̂ = (tα, t̃α̃, t̃Λ, . . .) as[
tα, tβ

]
= fαβγt

γ ,
[
tα, t̃β̃

]
= −Tαβ̃γ̃ t̃γ̃ −Kαβ̃

γt
γ ,

[
tα, t̃Λ

]
= −TαΛ

Ξt̃
Ξ . (2.3)

The presence of the non-trivial structure constant Kαβ̃
γ in the middle equation is due to

the indecomposability, showing that there is commutator of e11 with R(Λ2) going back to
e11. The action of the group E11 on e11 hR(Λ2) is defined by

g−1tαg = gαβt
β , g−1t̃α̃g = gα̃β̃ t̃

β̃ + ωα̃β (g)tβ , (2.4)

such that gα1 βg
β
2 γ = (g1g2)αγ and where ωα̃β (g) is a group 1-cocycle satisfying

ωα̃β (g1g2) = ωα̃γ (g1)gγ2 β + gα̃1 γ̃ω
γ̃
β(g2) (2.5)

and that linearises to ωα̃β (eΛγtγ ) = ΛγK
γα̃
β + O(Λ2) consistently with the commutation

relation (2.3). Finding an explicit form of the cocycle ωα̃β (g) for the tensor hierarchy algebra
T (e11) seems to be a formidable task, although one can write ωα̃β (eX) as a formal power
series in X, see [34] for formulas in the case of e9.

– 8 –
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The action of e11 on the other levels Tp is given by

[tα, PM ] = −TαMNP
N ,

[tα, t̄β ] = −fαγβ t̄γ +Kαγ̃
β
¯̃tγ̃ ,

[tα, PΛ] = −TαΛ
ΞP

Ξ

[tα, ¯̃tβ̃ ] = Tαγ̃ β̃
¯̃tγ̃

[tα, tI ] = TαJItJ ,

[tα, ¯̃tΛ] = TαΞ
Λ

¯̃tΞ .
(2.6)

Since p = −2 is the dual representation to p = 0, the indecomposability is now in e∗11iR(Λ2),
such that Kαγ̃

β now appears in the commutator of tα with the element t̄β of the co-adjoint
e∗11. The convention for the e11 representation matrices is such that

TαMPT
βP

N − T βMPT
αP

N = fαβγT
γM

N , etc. (2.7)

We shall also use the notation f α̂β̂ γ̂ for the complete T0 structure coefficients, such that
fαβ̂γ̂ = −Tαβ̂γ̂ , fαβ̂γ = −Kαβ̂

γ for example.
Further (anti)commutators that will be needed later are given by

[
PM , t̄α

]
= CIMαtI ,

[
PM , ¯̃tα̃

]
= CIM α̃tI ,

[
PM , ¯̃tΛ

]
= CIMΛtI ,{

PM , P̄N
}

= TαMN t̄α + T α̃MN
¯̃tα̃ + TΛM

N
¯̃tΛ ,

{
PM , PN

}
= ΠΛ

MNPΛ ,[
PM , tI

]
= −ΩIJC

JM
αt
α − ΩIJC

JM
α̃t
α̃ − ΩIJC

JM
Λt

Λ , (2.8)

where the coefficients are E11 invariant tensors, except for Kαβ̃
γ , CIMα and T α̃MN that

mix with the indecomposable structure, although the complete tensors CIM α̂ and T α̂MN

are invariant tensors in the indecomposable representation T0. In particular for E11 group
elements one has

gIJ g
M
N g
−1β

αC
JN

β = CIMα − gIJ gMN ω
β̃
α(g−1)CJN β̃ . (2.9)

If, as in [47], we take the fields of the theory to be in T−2 such that they are of the
form φα̂ = (φα, X α̃, Y Λ, . . .) and defining their e11 variation by δΛφ

α̂t̄α̂ = Λα[tα, φα̂t̄α̂], the
commutation relations (2.3) yield

δΛφ
α = −Λγf

γα
βφ

β , (2.10)

δΛX
α̃ = ΛγT

γα̃
β̃X

β̃ + ΛγK
γα̃
βφ

β , (2.11)

which gives after exponentiation

φα → exp(−Λγf
γ)αβφ

β , (2.12)

X α̃ → exp(ΛγT
γ)α̃β̃X

β̃ + Λγ

∞∑
n=0

1

n!

n∑
k=0

[(ΛεT
ε)kKγ(−Λδf

δ)n−k]α̃βφ
β . (2.13)

The above transformations satisfy the E11 algebra.
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3 Non-linear field strengths and duality equations

In this section, we shall construct non-linear field strengths for the bosonic fields and propose
a duality equation invariant under rigid E11 and non-linear local gauge transformations in
the spirit of the generalised diffeomorphisms that are encountered in the En exceptional
field theory formulation of maximal supergravity theories in D = 11 − n ‘external’ space-
time dimensions [1–4, 13]. This section constitutes the first central result of the paper and
some of the general formulæ given here will be tested in various examples in the following
sections.

3.1 Preliminaries for general exceptional field theories

Exceptional field theories for En are formulated in an extended space-time in which the
extra (internal) coordinates transform in a representation of the duality group En [1–4, 13].
Furthermore, there exists a generalised diffeomorphism symmetry which closes on the fields
satisfying the section constraint for n ≤ 7. This section constraint restricts the dependence
of all fields and parameters on the extra coordinates such that they can depend at most on
n independent coordinates on the neighbourhood of each point. For n ≥ 8, the algebra of
generalised diffeomorphism needs to be extended to include not only diffeomorphism pre-
serving the En structure, but also additional gauge transformations that involve constrained
parameters [4, 68, 69].

The formulation of En exceptional field theory extends that of gauged maximal su-
pergravity. In particular, the various fields in En representations appearing in the tensor
hierarchy of gauged supergravity [10, 11] are also involved in exceptional field theory. For
instance, the external scalar fields parametrizing the coset En/K(En) play a significant role
in the construction of the field equations in the form of a generalised metric.

A key feature of the En exceptional field theories is that they typically require extra
p-forms of rank p ≥ D− 2 (in some specific representations of En) beyond the ones present
in the tensor hierarchies of maximal supergravity theories. These extra fields obey extra
constraints related to the section constraint mentioned above and do not represent new
dynamical degrees of freedom. Their first order field strengths are determined algebraically
by source terms quadratic in the original fields. Finally, the En exceptional field theory
possesses an R-symmetry group which is the maximal compact subgroup of En, and that
we denote by K(En).2

In view of the picture outline above for the En exceptional field theories, it is natural to
consider E11 as the duality group and take the extended space-time to be parametrized by
a vector in the fundamental representation zM tM ∈ R(Λ1) [58], such that the coordinates
themselves zM transform in R(Λ1). In the following we will mostly refer to the represen-
tations of the coordinates, rather than the representations of the vectors. It is also natural
to introduce the coset E11/K(E11) where K(E11) is a maximal subgroup of E11 defined
by being invariant under the (temporal) Cartan involution, as was considered long ago by
West [35, 70]. Indeed, it is known that the GL(11− n,R)×En decomposition of the fields

2For fermions one has to consider the double cover K̃(En) that we shall also encounter for E11 when we
discuss coupling to fermions starting from section 6.
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that parametrize the coset E11/K(E11) does contain all the supergravity fields [45, 46],
see also appendix A for the cases n = 0 and n = 8. This remarkable fact is encouraging
but the extra constrained p-forms discussed above, which play a key role in the description
of the exceptional field theories, are absent in this picture. As such, an E11 exceptional
field theory similar to the En theories cannot be formulated only in terms of fields valued
in E11/K(E11), which depend on coordinates zM . However, the tensor hierarchy algebra
introduced in section 2 provides the required additional building blocks to tackle this prob-
lem. E11 invariant consistent field equations were obtained at the linearised level in [47] by
employing building blocks provided by the tensor hierarchy algebra [48]. Here we are going
to reconsider these equations and show that they are in fact invariant under non-linear
generalised diffeomorphisms provided one defines appropriately the gauge transformations
of the constrained fields.

3.2 Differential complex from T (e11) and the section constraint

As observed in [47], the tensor hierarchy algebra T = ⊕pTp defines a differential complex
of functions depending on coordinates zM that transform as PM ∈ R(Λ1) ⊂ T1. The
differential is defined through the adjoint action of the basis elements PM in T1 and thus
shift the degree p by 1 in the complex. Acting on any function in the complex we let3

d = (adPM ) ∂M . (3.1)

For this differential to square to zero one needs

d2 = (adPM ) (adPN ) ∂M∂N = ΠΛ
MN (adPΛ) ∂M∂N = 0 , (3.2)

which is equivalent to the condition that any field Φ(z) in the complex satisfies

ΠΛ
MN ∂M∂NΦ(z) = 0 . (3.3)

This is nothing but the weak section constraint and PΛ is the T2 generator introduced in
table 1. Its strong version (acting on arbitrary products of fields) can be written as [69]

καβT
αP

MT
βQ

N∂P ⊗ ∂Q = −1

2
∂M ⊗ ∂N + ∂N ⊗ ∂M , (3.4)

using the E11 generators in the R(Λ1) representation and the inverse E11 Killing metric
καβ in the adjoint of e11. καβ is E11 invariant and non-degenerate [63].

The differential complex defined in this way serves as a basis for the construction of
the field equations, such that the degree p = −3 supports the gauge parameters, p = −2

the potentials, p = −1 the field strengths, and p = 0 the Bianchi identities, as can be
anticipated from table 1. Note that the potentials belong to a module in the co-adjoint
representation of T0 residing at level p = −2 rather than level p = 0. Because T0 is not

3Here, we assume that T1 as an E11 module admits R(Λ1) as an irreducible submodule. We have
checked that the components R(Λ1 + Λ10) and R(Λ11) can consistently be set to zero [47], but we do not
have complete proof that R(Λ1) is indeed an irreducible submodule in T1.
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reductive, the co-adjoint T ∗0 ∼= T−2 is not an algebra. Therefore one cannot define a non-
linear theory from a putative Maurer-Cartan form in T ∗0 alone. Moreover, within the tensor
hierarchy algebra, T−2 generates arbitrarily negative levels. This problem will be resolved
by treating the fields in e11

∼= e∗11 differently from the fields in the complement.
At the linearised level, the differential complex introduced above provides the following

explicit expression for the field strengths at p = −1 given by the exterior differential of the
potentials φα̂ at p = −2 via4

ΘItI = d(φα̂t̄α̂) = CIM α̂∂Mφ
α̂tI =

(
CIMα∂Mφ

α + CIM α̃∂MX
α̃ + CIMΛ∂MY

Λ + . . .
)
tI .

(3.5)

We recall that the well-definedness of the e11-representation T−1 of the field strengths
follows from the tensor hierachy algebra although T−1 is not a highest or lowest weight
representation.

By virtue of the (weak) section condition (3.3) this field strength is gauge invariant
under the linearised gauge transformation

δξφ
α̂t̄α̂ ≡ d(ξM P̄M ) = T α̂MN∂Mξ

N t̄α̂ . (3.6)

Here, the fields φα̂ in T−2 are valued in the full representation as indicated by the index α̂.
One can divide T−2 into the co-adjoint of e11 and the dual of the extending representations.
The fields φα associated with the dual e∗11 can be thought of as the usual fields also arising
in the coset E11/K(E11) while the remaining fields (X α̃, ζΛ, . . .) will be those related to
the extra constrained fields needed in the formulation of E11 exceptional field theory. As
we can see in (3.5), the object ΘItI has an explicit derivative ∂M and therefore satisfies
constraints due to the section condition. Now, it turns out that ΘI ≡ ΘI(φα, X α̃, Y Λ, . . .)

can be used to construct a field strength F I at the linearised level which will provide a
building block for the linearised duality equations. We define the linearised field strength
on the coset fields by imposing the projection on φα to be in the coset e11 	K(e11) [47]

F I(lin.) = ΘI
(
φ+ ηφ†η,X, Y, . . .

)
, (3.7)

where φ+ηφ†η is short for φαTαMN +φαηMQηNPTα
P
Q, where ηMN is the K(E11) invariant

metric on the R(Λ1) module and ηMN its inverse. This projection ensures at the linearised
level that φα can be shifted by an arbitrary K(e11) element without modifying the field
strength F I(lin.). Note that the field strengths F I(lin.) in (3.7) are only K(E11) covariant while
the ΘI are E11 covariant. Moreover, this additional term violates gauge invariance [47]. We
shall see nonetheless that one can accommodate the gauge transformation of the fields X
and Y such that the duality equations described below are gauge invariant.

With that understood, and due to the symplectic structure of p = −1 one can write
down the duality equation

F I(lin.) = ηIJΩJKF
K
(lin.) , (3.8)

4In analogy with the role played by ΘI for En exceptional field theories, we could also call this the
‘embedding tensor representation’. For example, for E7 this is the (912 + 56)-dimensional representation
of E7.
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where ηIJ is a symmetric non-degenerate K(E11) invariant bi-linear form on T−1 and ΩJK

the E11 invariant symplectic form on T−1.5

In what follows we propose a non-linear extension of this duality equation. One im-
portant step will be to replace the partial derivative of the extra fields (X α̃, ζΛ, . . .) by
constrained fields that are familiar from exceptional field theory, in particular for E9 [34],
in which case the tensor hierarchy algebra gives rise to the non-semi-simple Virasoro exten-
sion e9 h 〈L−1〉 of e9.

3.3 Proposal for the non-linear duality equations

In this section we shall argue that the construction of a non-linear E11 exceptional field
theory can be achieved by defining the non-linear duality equation

F I =MIJΩJKF
K , (3.9)

where MIJ is the exceptional metric, a function of the fields in E11/K(E11), in the field
strength representation, and F I is a non-linear field strength whose definition needs to
incorporate the extra constrained fields that are expected to arise from what we already
know from the structure of the En exceptional field theories for lower n. In constructing
this field strength, we shall use the tensor hierarchy algebra extension of e11 introduced in
section 2.2.

Before defining the non-linear F I we shall give more details on the definition of the
exceptional metricMIJ . Let V(z) be a coset representative of E11/K(E11) transforming as
V(z)→ k(z)V(gz)g with g ∈ E11 a global element and k(z) a local K(E11) element. ‘Local’
here refers to the dependence on the extended space-time with coordinates zM where M
labels the R(Λ1) representation of E11 occurring at level p = +1 in the tensor hierarchy
algebra. The subgroup K(E11) is defined as the subgroup of elements k that preserve a non-
Euclidean metric η such that k†ηk = η in a suitable highest (or lowest) weight representation
where the Hermitian conjugate can be defined [63]. The non-Euclidean nature means for
example that K(E11) ∩ GL(11) = SO(1, 10) where GL(11) denotes the regular GL(11)

subgroup of E11 that appears in the level decomposition relevant for describing D = 11

supergravity. In other words, η is the standard Minkowski metric of eleven-dimensional
space-time extended to the whole extended space-time.6

As usual in exceptional field theory, it is convenient to work with the exceptional metric
in order to avoid the introduction of the K(E11) gauge invariance and its gauge-fixing,

M(z) = V(z)†ηV(z) → g†M(gz)g . (3.10)

This definition is in complete analogy with non-linear realisations of finite-dimensional
groups but requires some care in the case of infinite-dimensional Kac-Moody groups. We

5As we do not know whether T−1 is completely reducible, it is possible that ηIJ is only well-defined and
non-degenerate on some (maximal) completely reducible submodule. For simplicity, we shall only refer to
T−1 as this (maximal) completely reducible submodule.

6As shown in [71], there are other D = 11 signatures embedded in K(E11) that relate to so-called exotic
forms of supergravity [72] that have more than one time-like direction.
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shall make more comments on this subtlety when we discuss the vielbein and its gauge
transformation in section 3.5.

A key building block for the duality equations is the current defined as

JM
ακαβt

β =M−1∂MM ∈ R(Λ1)⊗ e11 . (3.11)

This expression makes sense for the so-called small group in any integrable module [73].
Since M only involves E11/K(E11), the combination M−1∂MM can be expanded in the
adjoint of E11 and transforms covariantly in the tensor product of R(Λ1) with the adjoint
with, where the former factor is due to the partial derivative.

We use the current (3.11) to define the non-linear field strength F I by

F I = CIMαJM
α + CIM α̃χM

α̃ + CIMΛζM
Λ + . . . (3.12)

where the structure coefficients are the same as in (3.5), but ∂Mφα has been promoted to
the non-linear current JMα, while the partial derivative ∂MX α̃, ∂MY

Λ, . . . are promoted
to constrained fields χMα̃, ζM

Λ, . . . that are not total derivatives, but satisfy the section
constraint (3.4) on their index M . It is important to stress that the structure coefficients
are defined such that the potential φα̂t̄α̂ is in T−2 and not in T0, such that one cannot simply
extend JMαt

α to a current in the extended algebra T0. Nonetheless, because e11 is simple one
can raise the index of the E11/K(E11) current to get JMαt̄α. The indecomposable structure
of the module T−2 implies that the field strength must necessarily involve an additional field
in R(Λ1) ⊗ R(Λ2), and because JMαt̄α is not a total derivative, this additional field χMα̃

cannot be a total derivative either. It is nevertheless consistent with the indecomposable
representation to require that it satisfies the strong section constraint. We shall therefore
introduce the constrained fields χMα̃, ζM

Λ, . . . so that they transform under E11 according
to the indecomposable representation and the field strength F I is indeed an E11 tensor
in T−1. Even though the additional field ζM

Λ in R(Λ1) ⊗ R(Λ10) is not required by E11

covariance, we shall see that both χM
α̃ and ζM

Λ are necessary to write down a twisted
selfduality equation (3.9) covariant under generalised diffeomorphisms. In the current paper
we assume implicitly that we can consistently truncate to this known part of T−2 but in
principle an extension to additional modules in T−2 can be envisaged as indicated by the
ellipsis, which will be dropped for short in the following.7

We now describe in more detail why (3.12) defines an E11 covariant object due to the
indecomposable structure of the module T−2. Under rigid E11 transformations one has as
in (2.4)

JM
α → g−1N

M gαβ JN
β , (3.13a)

χM
α̃ → g−1N

M

(
gα̃β̃χN

β̃ + ωα̃β (g)JN
β
)
. (3.13b)

Recalling (2.9), it follows that

CIMαJM
α + CIM α̃χM

α̃ → gIJ
(
CJMαJM

α + CJMα̃χM
α̃
)

(3.14)

7The field ζMΛ associated with R(Λ10) was not considered in the linearised analysis in [47]. Including
it here has the benefit of making the first order duality equation gauge invariant while [47] only had gauge
invariant second order equations.
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transforms covariantly. The cocycle appearing in the indecomposable representation is
crucial in this calculation. The infinitesimal transformations under g = exp(Λαt

α) corre-
sponding to (3.13) are

δΛJM
α = Λγ

(
−fγαβJMβ − T γNMJNα

)
, (3.15a)

δΛχM
α̃ = Λγ

(
T γα̃β̃χM

β̃ − T γNMχNα̃
)

+ ΛγK
γα̃
βJM

β . (3.15b)

3.4 Gauge invariance of the non-linear field equations

Having introduced an E11 covariant tensor field strength F I , the next step is to compute
how it transforms under E11 generalised diffeomorphism. The gauge parameter ξM of the
generalised Lie derivative transforms also in R(Λ1) just as the coordinates zM . Note that
additional gauge transformations with constrained gauge parameters are required for the
closure of the algebra of generalised Lie derivatives for en with n ≥ 8 [4, 68, 69, 74]. We
shall not check the closure of the algebra of generalised Lie derivatives for e11, but we will
comment on these additional transformations in section 3.6.

The dynamical degrees of freedom of the theory appear through the representativeM.
Therefore we start by defining the generalised Lie derivative with parameter ξ acting on
M. The formula, as for all exceptional field theories, can be defined as (see e.g. [34])

δξM = ξM∂MM+ καβT
αM

N∂Mξ
N
(
Mtβ + tβ†M

)
. (3.16)

This formula reproduces the unique linearised gauge transformation studied in [37, 47] in
the linearised approximation and provides a non-linear extension of it.

Combining the definition of JMα in (3.11) and the transformation (3.16) it follows that

δξJM
α = ξN∂NJM

α − T βNP∂NξP fβγαJγM + ∂Mξ
NJN

α

+ TαNP
(
∂M∂Nξ

P +MNQMPR∂M∂Rξ
Q
)
, (3.17)

where the third term in the first line originates from the derivative in the current acting
on the generalised diffeomorphism parameter in the variation of M. Using the section
constraint (3.4) on this term, one can recognise the first line as the expected generalised Lie
derivative, including the transport term, an infinitesimal e11 transformation plus a weight
term, i.e. introducing the notation TαMN ≡ καβT βMN

δξJM
α = ξN∂NJM

α + TNβ P∂Nξ
P fβαγJM

γ + Tβ
P
Q∂P ξ

QT βNMJN
α +

1

2
∂Nξ

NJM
α

+ TαNP
(
∂M∂Nξ

P +MNQMPR∂M∂Rξ
Q
)
. (3.18)

The inhomogeneous terms in the second line are non-covariant variations that resemble the
linearised gauge transformation of the linearised current. At this level the variation of the
current is identical in structure to what one would obtain for any En exceptional field theory.

In order to obtain a consistent transformation of the field strength F I , it is necessary
that all the components in T−2 transform according to the indecomposable representation
of E11. To this end, it is useful to introduce the notation JM

α̂ ≡ (JM
α, χM

α̃, ζM
Λ, . . .)
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that includes the additional constrained fields in a single object transforming as an element
JM

α̂t̄α̂ of T−2. In this way one can define the following ansatz for the gauge transformation
of JMα̂ that is manifestly consistent with the indecomposable representation

δξJM
α̂ = ξN∂NJM

α̂ + Tβ
N
P∂Nξ

P fβα̂γ̂JM
γ̂ + Tβ

P
Q∂P ξ

QT βNMJN
α̂ +

1

2
∂Nξ

NJM
α̂

+ T α̂NP
(
∂M∂Nξ

P +MNQMPR∂M∂Rξ
Q
)

+ Πα̂
QPMNQ∂M∂Nξ

P . (3.19)

This formula extends (3.18) to all components α̂ with structure coefficients invariant under
E11 for the indecomposable module, and we have added one extra term at the very end of
the equation with the understanding that Πα

QP = 0, while Πα̃
QP and ΠΛ

QP are the highest
weight projectors from R(Λ1)⊗R(Λ1) to R(Λ2) and R(Λ10), respectively. These exist due
to (2.1). We again restrict only to R(Λ2) and R(Λ10); additional E11 representations in
T−2 could be accommodated in the same way, as long as they would appear in the tensor
product R(Λ1)⊗R(Λ1).

Assuming the uniform gauge transformation (3.19) we can read off the gauge transfor-
mations of the constrained fields to be

δξχM
α̃ = ξN∂NχM

α̃ − TαNP∂NξPTαα̃β̃χM
β̃ + ∂Mξ

NχN
α̃ + Tα

N
P∂Nξ

PKαα̃
βJM

β

+ T α̃NP
(
∂M∂Nξ

P +MNQMPR∂M∂Rξ
Q
)

+ Πα̃
QPMNQ∂M∂Nξ

P , (3.20a)

δξζM
Λ = ξN∂NζM

Λ − TαNP∂NξPTαΛ
ΞζM

Ξ + ∂Mξ
NζN

Λ

+ TΛN
P

(
∂M∂Nξ

P +MNQMPR∂M∂Rξ
Q
)

+ ΠΛ
QPMNQ∂M∂Nξ

P . (3.20b)

As explained above, this form is by construction in agreement with the indecomposable
structure of the module: the gauge transformation of χMα̃ must include the same gauge
transformation as JMα with the index α̃ instead, so that the gauge transformation of JMα̂

is written in terms of invariant tensors. The indecomposable structure is such that one
has the freedom to add any transformation of χMα̃ in the R(Λ2) module, which gives the
freedom to add the term involving the projector Πα̃

QP . It will turn out that this additional
transformation is indeed necessary for the duality equations to be gauge invariant under
generalised diffeomorphisms.

Equipped with the formulas above, we can now compute the variation of the non-linear
field strength (3.12) under gauge transformations and find

δξF
I = ξM∂MF

I − TαNM∂NξMTαIJF J +
1

2
∂Mξ

MF I

+ CIM α̂

(
T α̂NP

(
∂M∂Nξ

P +MNQMPR∂M∂Rξ
Q
)

+ Πα̂
QPMNQ∂M∂Nξ

P
)

= ξM∂MF
I − TαNM∂NξMTαIJF J +

1

2
∂Mξ

MF I

+
((
CIMαT

αR
Q + CIM α̃T

α̃R
Q + CIMΛT

ΛR
Q

)
MQNMRP

+ CIM α̃Πα̃
QPMQN + CIMΛΠΛ

QPMQN
)
∂M∂Nξ

P . (3.21)

Here, we have recombined the terms into the generalised Lie derivative of F I in the first
lines of the two equations. The transport term and the e11 transformation term recom-
bine by invariance of the structure coefficients CIM α̂. The last term of the first lines
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determines the weight of F I . The inhomogeneous terms that do not involve conjugation,
CIM α̂T

α̂N
P∂M∂Nξ

P , combine into the section constraint by the Jacobi identity and have
been removed when going to the second step. The remaining inhomogeneous terms at the
end show that the field strength F I is thus not gauge covariant.

The non-covariance of F I is not a problem since we are only interested in constructing
a gauge invariant dynamics. More specifically, we only demand that the duality equation

EI ≡ F I −MIKΩKJF
J = 0 (3.22)

transforms into itself under generalised diffeomorphism.
Performing its gauge transformation, we find

δξEI = ξM∂MEI−TαNM∂NξMTαIJEJ+
1

2
∂Mξ

MEI+
(
δIJ−MIKΩKJ

)
∂M∂Nξ

P (3.23)

×
(
CJMα̃Πα̃

QPMQN+CJMΛΠΛ
QPMQN−MJLΩLK′C

K′M
α̂T

α̂R
QMQNMRP

)
,

where we used (MΩ)2 = 1. Because one derivative comes contracted withMMN∂N and the
other derivative does not, one cannot use the section constraint to cancel the inhomogeneous
term. For gauge covariance of the duality equation we must therefore require that

CJMα̃Πα̃
QPMQN + CJMΛΠΛ

QPMQN −MJLΩLK′C
K′M

α̂T
α̂R

QMQNMRP = 0 . (3.24)

By construction, the conjugation byM in various representations allows us to define various
conjugate invariant tensors8

Πα̃
MN =MMPMNQMα̃β̃Πβ̃

PQ = ηMP ηNQηα̃β̃Πβ̃
PQ ,

ΠΛ
MN =MMPMNQMΛΞΠΞ

PQ = ηMP ηNQηΛΞΠΞ
PQ , (3.25)

and similarly for CIM α̂ assuming the existence of the matrix ηIJ defining a symmetric
K(E11) non-degenerate bilinear form on T−1. Multiplying (3.24) by MNR to remove the
explicit scalar matrix dependence and using (3.25), one obtains the following necessary and
sufficient algebraic condition for gauge invariance in terms of E11 structure constants:

CIP
α̃Πα̃

MN + CIP
ΛΠΛ

MN !
= ΩIJC

JM
α̂T

α̂N
P . (3.26)

If this condition is satisfied, the first order duality equation (3.22) is gauge invariant. We
do not have a general proof of this central condition. In the next sections, we will verify
condition (3.26) in the GL(11) and the GL(3)×E8 level decompositions at low levels. This
will provide non-trivial support that this condition is satisfied.

Let us now try to give some heuristic argument why (3.26) is plausible. Taking the
symmetric part in M and N of the equation, the right-hand-side becomes the Jacobi iden-
tity 2[P (M , {PN), P̄P }] = [{PM , PN}, P̄P ] in the tensor hierarchy algebra. Therefore the
symmetrized condition reduces to

[PΛ, P̄N ] = −2ΩIJCJP
ΛtI . (3.27)

8We note that η is not E11 invariant, only K(E11) invariant. The construction above is similar to tensor
representations of sl(n): even though δab is not an invariant tensor of sl(n) but only of so(n), it can be
used to relate a tensor representation to its dual. Abstractly, η is also an automorphism of the E11 algebra
relating the highest weight module to the lowest weight module. In particular ηαδηβεηγϑfδεϑ = −fαβγ .
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That the coefficient CJPΛ occurring through the condition (3.26) is the same as this corre-
sponding structure coefficient in the tensor hierarchy algebra is not guaranteed a priori. But
since both are E11 invariant tensors, they must be proportional to each other such that up
to a conventional factor this identity must be true. Since we do not assume that the modules
in T (e11) must necessarily be irreducible, meaning that R(Λ2) would be extended to the
complete anti-symmetric tensor product and R(Λ10) to the complete symmetric product
minus the highest weight module R(2Λ1), the identity (3.26) requires that one can choose
the coefficients defining Πα̃

MN and ΠΛ
MN such that the identity holds, which is simply

the statement that there is no component in R(2Λ1) by the Jacobi identity in the tensor
hierarchy algebra.

3.5 Gauge transformation of the vielbein and compensators

In the discussion above, we have relied on the ‘generalised metric’ element M defined
in (3.10) from the ‘generalised vielbein’ V ∈ E11/K(E11). These objects have to be treated
with care since the Lie algebra e11 is infinite-dimensional and one first has to define what
group one associates with it. A standard building block is to consider the one-parameter
subgroups of the form etEα (t ∈ R) for generators Eα associated to real roots. The group
built from taking finite products of such real one-parameter subgroups generates what is
called the small Kac-Moody group [65, 75]. The action of this small Kac-Moody group is
completely under control for so-called integrable representations of the algebra e11 where
all real root generators are locally nilpotent, meaning that the repeated action of Eα on any
element of the representation space terminates after a finite number of repetitions. Thus
etEα is effectively represented by a polynomial and multiplying finitely many polynomials
gives a well-defined polynomial again without having to worry about convergence or similar
matters. All highest and lowest weight representations of e11 are integrable and so is the
adjoint representation [63], and so T−1 although it is neither highest nor lowest weight.
One can also associate the matricesM andM−1 with the small Kac-Moody group in the
so-called ‘group model’ (generalising the Cartan embedding) of the Kac-Moody symmetric
space [76]. However, the current J = M−1dM is not evidently meaningful since the
continuous map from the small Kac-Moody group to the algebra and back cannot be defined.

An alternative model of the symmetric space can be obtained by using the Iwasawa
decomposition, leading to what is sometimes called the ‘Kostant model’. Elements of the
(small) Kac-Moody group have an Iwasawa decomposition E11 = K(E11)B, where B is the
(upper) Borel subgroup [73]. This setting also allows for considering the so-called completed
Kac-Moody group where one completes the Borel subgroup with respect to the topology of an
associated building [66, 75]. A representative of the thus completed Kac-Moody symmetric
space9 E11/K(E11) can then be chosen in standard form by products of exponentials of all
generators of B [75], including the positive imaginary ones. In this construction, it is only
the positive Borel subgroup that is completed; the group K(E11) is not changed.

9We do not distinguish the completed Kac-Moody group from the uncompleted one in terms of notation
since we shall always be using the completed group implicitly.
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Generalising this approach slightly, we can also consider a parabolic gauge with

V = vU , (3.28)

where v belongs to a finite-dimensional Levi subgroup of E11 (such as GL(11)) and U

belongs to the unipotent subgroup associated with this parabolic subalgebra of e11. U lies
in a unipotent subgroup of the Borel subgroup B. If the parabolic subalgebra is associated
with a level `, the generators appearing in U correspond to level ` > 0 while the generators
appearing in v correspond to ` = 0. Explicitly, we can write

U =
∏
`>0

exp (A` · E`) , (3.29)

in the completed group and the factors are ordered with smaller levels appearing to the left.
Here, E` denotes all (finitely many) generators on level ` > 0 and A` are the coefficient of
a general Lie algebra element on that level. The A` correspond to the fields and depend on
the extended space-time coordinates zM .

With a parabolic parametrisation (3.28) of V one can work out the Maurer-Cartan
derivative dVV−1 ∈ e11 in a meaningful manner since every generator E` is multiplied by a
polynomial in Am and dAm for 1 < m ≤ ` (and dressed by the Levi vielbein v).10 Writing
dVV−1 = P−Q in the usual symmetric space decomposition, the current J in this Kostant
model becomes J = 2V−1PV and is defined by the adjoint action of the completed Kac-
Moody group on the Lie algebra. Formally, this results again in infinite series expressions for
the components JMα. If we are interested in only obtaining polynomial expressions in the
fields, we are therefore led to working with the components of P. In lowest/highest weight
representations one can also make sense of the matrix components of V and V−1, whether
this remains true in unbounded representations like the field strength representation is not
clear to us.

As is clear from the above discussion, it is typically better to consider the completed
group and write the vielbein in a gauge-fixed form using a (maximal) parabolic gauge. Ex-
amples of such maximal parabolic gauges use the Levi groups are GL(11− n)× En ⊂ E11

with an associated level decomposition.11 Since we have fixed a gauge the action of a gen-
eralised diffeomorphism on the vielbein V will be accompanied by a compensating K(E11)

rotation that ensures that the gauge is maintained:

δξV = ξN∂NV + καβT
αM

N∂Mξ
NVtβ +XV , (3.30)

where the compensating transformation X is an element of the Lie algebra of K(E11) that
acts on V in the chosen representation. The same mechanism has been discussed also
in [37, 47].

10We note, however, that if one wanted to use this parametrisation to define a metric on the symmetric
space from the invariant bilinear form on e11, every dA` would be multiplied by a infinite series of other
fields and the convergence of this expression is doubtful and would at least required a completion of the Lie
algebra as well.

11Note that only GL(11 − n) × En ⊂ E11, with GL(11 − n) the linear group with positive determinant,
so we always understand that GL(11− n,R) is the connected component of the linear group, and does not
include negative determinant elements.

– 19 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
5

The compensator X can be written more explicitly in a level decomposition associated
with a maximal parabolic subgroup. Since the original V is made out of generators at levels
` ≥ 0 by definition of the maximal parabolic gauge, only those tβ that are associated with
negative levels violate the gauge in the middle rotation term. By the Killing form they
are paired with positive level generators TαMN contracting the rotation parameter ∂MξN ,
where it is important that the derivative ∂M is subject to the section constraint (3.4).

Associated with a parabolic decomposition (3.28) is also a decomposition of the rep-
resentation R(Λ1) of the derivatives ∂M . In the case GL(11 − n) × En, the derivatives
decompose into

∂M → (∂µ, ∂A, . . .) . (3.31)

The index A here labels the coordinate representation of En exceptional field theory. We
can choose a partial solution to the E11 section condition by keeping only these two lowest
levels of derivatives, i.e. setting to zero the ellipses in this decomposition. This solution
to the section condition is only partial as the derivatives ∂A still have to satisfy the En
section condition. In connection to usual exceptional field theory the ∂µ are called external
derivatives and the ∂A internal derivatives.

In such a partial solution to the section constraint there is only one generator that can
arise in (3.30) and that needs to be compensated. It is the one mapping ∂µ to ∂A. All
other positive level generators map to zero on this choice of section. The corresponding
compensator then can be written explicitly as

X = VA
Aeaµ∂Aξ

µ(EAa − ηabδABF bB) , (3.32)

where VAA is the En/K(En) coset representative and eµa the GL(11−n) vielbein; together
they form the ` = 0 part v in (3.28). The generators EAa and F bB are the first level generators
that are conjugates of each other.

In particular, we see that formula (3.30) provides a completely well-defined expression
for the generalised diffeomorphism action on the vielbein V . The compensating transfor-
mation will also be crucial when we consider fermions starting from section 6.

A final comment on the relation between the vielbein and metric formalism here con-
cerns the issue of connection. It is well-known that in exceptional field theory it is not possi-
ble to fix the affine or spin connection completely by the requirement of metric compatibility
and torsion-freeness [13, 77–81], even though this arbitrariness drops out in the supergrav-
ity equations derived in generalised geometry [77, 78]. The definition of a (spin-)connection
for E11, as would be needed in the formulation [37] is a complicated open problem that we
shall not address in this paper. The formulation we are using here avoids the problem of
defining a (spin-)connection as we have defined the generalised Lie derivative acting on all
objects in the theory.

3.6 Comments on the extended dynamics and linearised field equations

Under the assumption (3.26), the duality equation (3.22) is non-linear and invariant under
generalised diffeomorphisms. However, it is not sufficient to describe the whole dynamics.
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In the following sections where we consider specific solutions to the section constraint, we
shall see in detail that most of the duality equation components only fix the constrained
fields χMα̃, ζMΛ etc. in terms of the current JMα, and do not give any dynamical equa-
tion. The additional constrained fields χMα̃, ζMΛ indeed appear algebraically in the duality
equation (3.22), so for a given solution to the section constraint, one can simply solve a
large part of the duality equations in components by expressing the non-vanishing χMα̃,
ζM

Λ as functions of the current. We shall see that among the infinitely many components of
the duality equations, only a finite number remains non-trivial and gives rise to dynamical
constraints on the fields parametrizing the E11/K(E11) coset. In particular, for a decom-
position of the type GL(11 − n) × En ⊂ E11, it seems that the only remaining dynamical
duality equations are the ones involving GL(11−n) p-forms, while the dual graviton equa-
tion and the higher rank mixed symmetry equivalents involve the constrained fields in a
way that trivialises the dynamics. This should not be so much a surprise since the necessity
to introduce extra auxiliary fields trivialising the dynamics seems unavoidable in defining
dual gravity at the non-linear level [82, 83]. The non-vanishing constrained fields with the
M index along GL(11− n) seem then to play the role of the Stückelberg fields introduced
in [83], and their generalisation to all duality equations.

What is lacking in order to recover the full dynamics of the theory, are additional first
order equations for the constrained fields χMα̃ and ζMΛ. To re-obtain the dynamics of [47]
in the linearised approximation, we expect that all the constrained fields are enforced to be
total derivatives by a curl-free condition

∂[MχN ]
α̃ = 0 ⇒ χM

α̃ = ∂MX
α̃ , (3.33a)

∂[MζN ]
Λ = 0 ⇒ ζM

Λ = ∂MY
Λ , (3.33b)

where the solutions are defined up to gauge transformations of the type (3.40). The fields
X α̃ are the fields belonging to T−2 that appeared in the linearised analysis of [47]. The
field Y did not appear there but this did not effect the conclusion that while the duality
equations are no longer gauge invariant, the second order integrability equations that are
derived from them are indeed gauge invariant on section.

Considering the non-linear system proposed here and parametrizing formally the fun-
damentalM = exp(φ), where φαTαMN = φαη

MQηNPT
αP

Q due toM† =M, one obtains
with (3.33) the linearised field strength

F I = CIMα∂Mφ
α + CIM α̃∂MX

α̃ + CIMΛ∂MY
Λ +O(φ2) = CIM α̂∂Mφ

α̂ +O(φ2) , (3.34)

with the linearised gauge transformations

δξφ
α̂ = T α̂NP

(
∂Nξ

P + ηNQη
PR∂Rξ

Q
)

+ Πα̂
QP η

NQ∂Nξ
P , (3.35)

with Πα
PQ = 0. The linearised duality equation

F I − ηIKΩKJF
J = 0 (3.36)

is gauge invariant under these linearised gauge transformations. This agrees with the pro-
posal of [47], up to the presence of the additional field Y Λ that does not affect the analysis of
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the linearised duality equation in [47] at the level it was considered, and up to the additional
term in the linearised gauge transformation

δξX
α̃ = T α̃NP

(
∂Nξ

P + ηNQη
PR∂Rξ

Q
)

+ Πα̃
QP η

NQ∂Nξ
P , (3.37)

which permits to make the duality equation gauge invariant.
Thus, the question at hand is how to find the full field equation for the constrained

fields χα̃ and ζΛ such that upon linearisation it yields (3.33). To this end, we shall offer
some speculations on how these equations could be obtained. Analogy with exceptional
field theories for finite dimensional exceptional group En suggests that there should be a
pseudo-Lagrangian L invariant under generalised diffeormorphisms (up to a total derivative)
whose equations of motion are obtained by the variation

δL = 〈Eαtα,MδM−1〉+ EMα̃ δχM
α̃ + EMΛ δζM

Λ + ∂M (. . . ) , (3.38)

with 〈tα, tβ〉 = καβ . The general structure of exceptional field theory shows that the
equations of motion of the constrained fields gives the first-order duality equations of the
supergravity fields [3, 4]. Assuming the same structure and invariance of the pseudo-
Lagrangian under E11, one concludes that the equations of motion are of the schematic form

Eα = CIMα∂M (MIJEJ) + Ẽα , EMα̃ = CIM α̃MIJEJ , EMΛ = CIMΛMIJEJ . (3.39)

The (second order) equation Eα for the adjoint scalars does not only involve the integrability
of the duality equation EI of (3.22) but also an additional piece Ẽα in the adjoint represen-
tation of E11. It is this piece that should imply the first order equations for the constrained
fields χMα̃ and ζMΛ if the duality equations are satisfied. Equations (3.33) should follow
from Ẽα in the linearised approximation. However, without this peudo-Lagrangian at hand,
we cannot currently propose the general form of Ẽα.

As mentioned above, we also know that the algebra of generalised diffeomorphism of
parameter ξM will not close and that one must introduce additional gauge transformations
to obtain a closed algebra of gauge transformations. The Lagrangian must also be gauge
invariant under these transformations. These transformations will at least include the
additional parameter ΣM

Nα̃ in R(Λ1)⊗R(Λ3), with a tracelessness condition ΣM
Mα̃ = 0.12

The gauge transformation of the first constrained scalar under this parameter is

δχM
α̃ = ∂NΣM

Nα̃ + . . . (3.40)

Turning to (3.33), we note that while the Bianchi identity for the non-linear field
strength contains the curl of χMα̃ and ζM

Λ, it does not provide the desired non-linear
field equation for these fields. The T (e11) algebra Jacobi identity 2{P (M , [PN), tα̂]} =

[{PM , PN}, tα̂] implies
ΩIJC

IM
α̂C

JN
β̂∂(MA∂N)B = 0 (3.41)

12It is conceivable that there are more constrained parameters. We note that for the case of En with
n ≤ 9 a single new parameter suffices [69].
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on section. Using this we can find the Bianchi identity

ΩIJC
IM

α∂MF
J = ΩIJC

IM
α

(
CJNβ∂MJN

β + CJN β̃∂MχN
β̃ + CJNΛ∂MζN

Λ
)

(3.42)

= ΩIJC
IM

α

(
CJNβ∂[MJN ]

β + CJN β̃∂[MχN ]
β̃ + CJNΛ∂[MζN ]

Λ
)

= ΩIJC
IM

α

(
−1

2C
JN

βfγδ
βJM

γJN
δ + CJN β̃∂[MχN ]

β̃ + CJNΛ∂[MζN ]
Λ
)
.

In the first step one uses the definition of the field strength and the section constraint,
and in the second the Maurer-Cartan equation for the current. The corresponding integra-
bility condition on the duality equation (3.22) relates then the second-order supergravity
fields equations to the curl of the constrained fields, but it does not determine them. A
similar situation arises already in En exceptional field theory in which the equations for
the constrained fields follow from the Lagrangian, but cannot be obtained from the duality
equations of the supergravity fields by En symmetry. This is discussed for instance for E7

in [3, eq. (3.17)].

4 GL(11) decomposition

In this section, we analyse the proposed duality equation (3.22) in a GL(11) level decompo-
sition of the tensor hierarchy algebra at low levels. We begin with an analysis of the tensor
hierarchy algebra decomposition under gl(11) to derive the transformations of the fields
under E11 and the expression of the field strength and the gauge transformations. Then
we study the non-linear duality equation and its gauge invariance. We shall concentrate in
particular on the crucial condition (3.26) in GL(11) level decomposition.

4.1 The field strength representation and rigid E11 transformations

The tensor hierarchy algebra decomposes under GL(11) as indicated in table 2. Besides the
general Z-grading T =

∑
p Tp, the subalgebra gl(11) ⊂ e11 introduces another Z-grading

that is denoted q in the table. The adjoint of e11 at level p = 0 contains the gl(11) generators
Km

n at level q = 0 and e11 is generated by commutators of the elements

1

3!
fn1n2n3Fn1n2n3 +

1

3!
en1n2n3E

n1n2n3 , (4.1)

where En1n2n3 and Fn1n2n3 are the generators of e11 sitting at q = 1 and q = −1, respec-
tively, while en1n2n3 and fn1n2n3 are the corresponding constant parameters. The transfor-
mations of the tensor fields under rigid E11 is determined by their transformations under
these generators, and so we shall only display these transformations. The level ` that is
determined by the action of the trace Km

m that counts the number of upper minus the
number of lower indices. The relation between ` and (p, q) is q = `+ 3

2p.
In order to display the field strength representation at level p = −1, we introduce

components F I dual to the generators tI that decompose under GL(11) as indicated in
table 2, e.g., for K7 ≡ Km1...m7 at (p, q) = (−1,−1) we introduce at field strength Fm1...m7
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etc. The tensor hierarchy algebra fixes these components to transform under the rigid E11

generator (4.1) as follows [47, eq. (4.37)]:

δFm,n =
1

2
fp1p2(mFp1p2

n) − 1

6
ep1p2p3F

p1p2p3(m,n) , (4.2a)

δFm
n1n2n3 = −3fp[n1n2Fmp

n3] +
3

4
fp1p2[n1δn2

m Fp1p2
n3] − 1

6
ep1p2p3Fm

n1n2n3p1p2p3

− empqFn1n2n3p,q +
3

8
δ[n1
m ep1p2qF

n2n3]p1p2,q , (4.2b)

δFn1n2
m = ep1p2[n1

Fn2]
mp1p2 − 1

9
ep1p2p3δ

m
[n1
Fn2]

p1p2p3 + epn1n2F
m,p

− 1

2
fmp1p2Fn1n2p1p2 −

1

9
fp1p2p3δm[n1

Fn2]p1p2p3
, (4.2c)

δFn1n2n3n4 = −6ep[n1n2
Fn3n4]

p − 1

6
fp1p2p3Fn1n2n3n4p1p2p3 , (4.2d)

δFn1...n7 = −35e[n1n2n3
Fn4...n7] −

1

2
fp1p2p3(Fn1...n7p1p2,p3 − Fn1...n7p1p2p3) , (4.2e)

δFn1...n9,m = −42× 3

5

(
e[n1n2n3

Fn4...n9]m + em[n1n2
Fn3...n9]

)
− 1

18
fp1p2p3Fp1〈n1...n9,m〉p2p3

,

(4.2f)

δFn1...n10 = 4e[n1n2n3
Fn4...n10] +

1

18
fp1p2p3Fp1[n1...n9,n10]p2p3

. (4.2g)

Here, we have added the (9, 3)-form terms in (4.2f) and (4.2g) compare to [47].
This is the transformation of the field strength in (3.12) that we recall is composed out

of the current JMα and the constrained fields χMα̃ and ζM
Λ that transform respectively

as components of R(Λ1) ⊗ R(Λ2), embedded in the indecomposable representation, and
R(Λ1)⊗R(Λ10). This fixes their rigid E11 transformation that, for the first components in
the GL(11) decomposition, takes the form

δχm;n1...n9 =
1

2
emp1p2χ

p1p2
n1...n9 − 1

2f
p1p2p3χm;n1...n9p1,p2p3

+ fp1p2p3χm;n1...n9p1p2,p3 + . . . , (4.3a)

δχpqn1...n10,rs = fpqtχt;n1...n10,rs + 6ers[n1
χpqn2...n10] − 9er[n1n2

χpqn3...n10]s

+ 9es[n1n2
χpqn3...n10]r + . . . , (4.3b)

δχpqn1...n11,m = fpqrχr;n1...n11,m + 11em[n1n2
χpqn3...n11] + . . . , (4.3c)

δζp1...p5
n1...n7p1...p4,p5 = 10f [p1p2p3ζp4p5]

n1...n7p1...p4,p5 + . . . , (4.3d)

where we have not displayed the terms involving the E11 current, that would appear because
of the indecomposable representation. The transformations (4.3) will be sufficient for the
checks we shall perform. The transformations above can be deduced by combining (A.4)
with the rigid E11 transformation of the derivative index that follows from ∂M in [47]

δ∂m =
1

2
emp1p2∂

p1p2 ,

δ∂n1n2 = fn1n2p∂p +
1

6
ep1p2p3∂

n1n2p1p2p3 ,

δ∂n1n2n3n4n5 = 10f [n1n2n3∂n4n5] + · · · . (4.4)
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q = −3 q = −2 q = −1 q = 0 q = 1 q = 2

p = 1 P8, P7,1 P5 P2 P 1

p = 0
F8,1 F6 F3 K1

1 E3 E6

F9

p = −1 K2
1 K4 K7 K9,1, K10 K1

3, K1,1 · · ·

p = −2
K̃1

1 Ẽ3 Ẽ6 Ẽ8,1 Ẽ9,3, Ẽ10,1,1, Ẽ11,1 · · ·
Ẽ9 Ẽ10,2, Ẽ11,1′, Ẽ11,1′′ · · ·

p = −3 P1 P 2 P 5 P 7,1, P 8 · · · · · ·

×

Table 2. Part of the tensor hierarchy algebra T in gl(11) level decomposition. p denotes the gen-
eral Z-grading of the tensor hierarchy algebra and the additional grading q is related to the gl(11)

level ` by ` = q − 3
2p. The usefulness of q is that the involution of T acts on (p, q) by sending it to

(−2−p,−3−q) and can be represented in this table by a point reflection about the place marked with
a cross. The involution includes mapping gl(11) representations to their duals and for p < 0 we have
explicitly dualised all representations. For p = 0 we have explicitly separated T0 into e11 and the ad-
ditional generators from the tensor hierarchy algebra extension. The additional generators are given
in the second line. Since T−2

∼= T ∗
0 , we have performed the same line split for p = −2. The fields

appear at p = −2 and we see explicitly the first additional generator Ẽ9 at (−2, 0) that is related
to the first extra field Xn1...n9

. For (−2, 1) there are several extra fields arising, with degeneracies
in their gl(11) tensor structure. The general notation for gl(11) tensors here is such that comma
separated indices indicate Young-irreducible blocks of antisymmetric indices. If a tensor has both
upper and lower indices, it has by definition non-vanishing traces and is thus reducible. As in [47,
table 3], some of the generators have been dualised using the eleven-dimensional Levi-Civita symbol.

We shall next derive an explicit form of the non-linear field strength by choosing an ex-
plicit parametrisation of the E11/K(E11) fields appearing in the current JMα. The matrix
M appearing in the definition (3.11) is formal and involved intricate infinite sums. To write
a meaningful equation in the parabolic decomposition one must resort to the coset repre-
sentative V of E11/K(E11) in a maximal parabolic gauge. Such a maximal parabolic gauge
decomposes V into the Levi factor v ∈ GL(11)/SO(1, 10) and the unipotent component U
in the unipotent subgroup of positive GL(11) levels as (cf. (3.28))

V = v U . (4.5)

We take the unipotent element concretely of the form

U = exp
(

1
3!An1n2n3E

n1n2n3
)

exp
(

1
6!An1...n6E

n1...n6
)

exp
(

1
8!hn1...n8,mE

n1...n8,m
)
· · · . (4.6)

With the GL(11) metric

m = v†ηv ⇒ j = m−1dm , (4.7)

one hasM = V†ηV = U†mU and

JM =M−1∂MM = U−1
(
jM + ∂MU U−1 +m−1(∂MU U−1)†m

)
U . (4.8)
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Although JM is a formal expression in this representation involving infinite sums, it is
conjugate under the unipotent element U to

J̃M = UJMU−1 = jM + ∂MU U−1 +m−1(∂MU U−1)†m, (4.9)

that does admit a well-defined expansion in fields. It satisfies J̃M = m−1J̃ †Mm. We shall
refer to such a J̃M as a ‘semi-flattened’ current as the conjugation by U makes all indices
associated with positive levels flat while keeping curved indices on level 0. We can therefore
still use the metric formalism associated with the Levi subgroup and its ‘metric’ m. We
similarly define a semi-flattened version of the constrained fields according to

χM
α̃ = U−1α̃

β̃χ̃M
β̃ + ωα̃β (U−1)J̃Mβ , ζM

Λ = U−1Λ
Ξζ̃M

Ξ , (4.10)

where we see again the indecomposable structure of the representation structure in T . The
associated semi-flattened field strength is then F̃ I = UIJF J with

F̃ I = CIMαU−1
M

N J̃Nα + CIM α̃U−1
M

N χ̃N
α̃ + CIMΛU−1

M
N ζ̃N

Λ . (4.11)

Written in terms of F̃ I , the first order non-linear duality equation (3.22) only involves the
matrix m rather thanM,

F̃ I = mIKΩKJ F̃
J . (4.12)

The purpose of this construction is that m acts diagonally in the level decomposition and
just expresses the raising/lowering of the indices by the metric gmn, with a multiplication by
the density term

√
− det gmn. Moreover, the current J̃ written in this way is a well-defined

finite expression in the fields of the theory, level by level, whereas the current J itself would
involve formal entangled infinite sums.

Writing out the non-linear field strengths (4.11) in the parametrisation (4.6) one finds
when restricting to the D = 11 solution of the section constraint

F̃n1n2
m = 2gmp∂[n1

gn2]p , (4.13a)

F̃n1...n4 = 4∂[n1
An2n3n4] , (4.13b)

F̃n1...n7 = 7∂[n1
An2n3...n7] + 70A[n1n2n3

∂n4An5n6n7] , (4.13c)

F̃n1...n9,m − F̃n1...n9m = 9∂[n1
hn2n3...n9],m +

280

3
Am[n1n2

An3n4n5∂n6An7n8n9] (4.13d)

+
56

3

(
A[n1n2n3

∂n4An5...n9]m +Am[n1n2
∂n3An4...n9]

)
+ χ̃m;n1...n9 .

The restriction to the D = 11 solution of the section constraint means that we are here
only retaining the derivatives ∂m. Note that choosing a solution to the section condition
breaks the global E11 symmetry to a (finite-dimensional) subgroup.

The non-linear duality equations (3.22) take the following form

F̃n1...n4 = − 1

7!
√
−g

εn1...n4m1...m7F̃
m1...m7 , (4.14a)

F̃n1n2
m +

1

5
δm[n1

F̃n2]p
p =

1

9!
√
−g

gn1q1gn2q2ε
q1q2p1...p9gmqF̃p1...p9,q , (4.14b)

F̃np
p =

1

9!
√
−g

gnqε
qp1...p10F̃p1...p10 . (4.14c)
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Equation (4.14b) is tracefree while (4.14c) is the pure trace part. We see that (4.14a)
represents the standard type of duality of the four-form field strength and the seven-form
field strength in D = 11 supergravity and, moreover, F̃4 and F̃7 are free of the extra
constrained field χmα̃. We stress that the equations (4.14) do not depend on the explicit
parametrisation of U .

Unlike (4.14a), equations (4.14b) and (4.14c) do contain the field χm
α̃ algebraically

and can be seen as just determining it in terms of the values of the other fields. Put
differently, (4.14b) and (4.14c) are not strong enough to determine the dynamics of the
graviton and the dual graviton unless one has further extra equations that determine χmα̃.
This is exactly the phenomenon discussed in section 3.6 where these extra equations were
called Ẽα. In the absence of these additional equations, the self-duality equation — though
consistent and gauge invariant — is not sufficient to fully determine the non-linear dynamics.
The equation of motion of χ̃m;n1...n9 in particular should reproduce the same mechanism as
depicted in [82, 83] for the Stückelberg field to restore Einstein equation.

4.2 Gauge invariance

We now discuss in more detail the non-linear gauge invariance of the duality equation (3.22)
in the GL(11) decomposition. For doing this, we begin with the linearised analysis.

The non-linear field strengths defined in (4.13) linearise to

(−5
2 )Fn1,n2

(lin.) = ∂q(n1hq
n2) +

1

6!
∂p1p2p3p4p5p6(n1,n2)Ap1p2p3p4p5p6 + . . . , (4.15a)

(−5
2 )Fm

n1n2n3
(lin.) = −∂mAn1n2n3 + 3∂[n1n2hm

n3] +
1

2
∂n1n2n3p1p2Amp1p2

+
1

4!
∂n1n2n3p1p2p3p4,qAmp1p2p3p4q −

1

5!
∂n1n2n3p1p2p3p4p5Amp1p2p3p4p5

+
3

2
δ[n1
m

(
∂n2|qhq

n3] − 1

6
∂n2n3]p1p2p3Ap1p2p3 −

3

2 · 5!
∂n2n3]p1...p5,qAp1...p5q

+
1

6!
∂n2n3]p1...p6Ap1...p6

)
+ . . . , (4.15b)

(−3
2 )F (lin.)

n1n2

m = 2∂[n1
hn2]

m + ∂mpAn1n2p +
1

3
δm[n1

∂p1p2An2]p1p2
+ . . . , (4.15c)

(−1
2 )F (lin.)

m1...m4
= 4∂[m1

Am2m3m4] −
1

2
∂n1n2Am1...m4n1n2 −

1

24
∂n1...n5hm1...m4n1...n4,n5

+
1

5!
∂n1...n5Xm1...m4n1...n5 + . . . , (4.15d)

(1
2)F (lin.)

m1...m7
= 7∂[m1

Am2...m7] + ∂n1n2hm1...m7n1,n2 −
1

2
∂n1n2Xm1...m7n1n2

− 1

12
∂n1...n5Xm1...m7n1n2n3,n4n5 −

1

24
∂n1...n5Xm1...m7n1...n4,n5

− 1

24
∂n1...n5Ym1...m7n1...n4,n5 + . . . , (4.15e)

(3
2)F (lin.)

m1...m10
= ∂[m1

Xm2...m10] −
1

15
∂pqXm1...m10,pq −

1

30
∂pqXm1...m10p,q

− 7

30
∂pqYm1...m10p,q + . . . , (4.15f)
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(3
2)F (lin.)

n1...n9,m = 9∂[n1
hn2...n9],m + ∂mXn1...n9 − ∂[mXn1...n9] +

1

2
∂p1p2An1...n9,mp1p2

+
9

10

(
∂pqXpn1...n9,mq + ∂pqXpm[n1...n8,n9]q

)
+

27

20

(
∂pqXpqn1...n9,m + ∂pqXpqm[n1...n8,n9]

)
+

9

20

(
∂pqYpqn1...n9,m + ∂pqYpqm[n1...n8,n9]

)
+ . . . , (4.15g)

(5
2)F (lin.)

m1...m10,n1n2n3
= 10∂[m1

Am2...m10],n1n2n3
+ . . . (4.15h)

For later reference, we have explicitly given the gl(11) levels for the various components of
the field strengths, but we shall often suppress them for simplicity of notation when there
is no risk of confusion. In the expressions above we also have implemented several things.
First, we removed the tildes on F since the semi-flattening has no effect in the linearised
approximation. Moreover, we have reinstated the terms with partial derivatives beyond ∂m,
thus not enforcing the D = 11 solution to the section constraint as this would break K(E11)

covariance and gauge invariance. And finally, the extra constrained fields at linearised order
are expressed as

χM
α̃ = ∂MX

α̃ and ζM
Λ = ∂MY

Λ , (4.16)

where we have also used explicitly that the first few extra fields are the additional potentials
Xn1...n10,rs, Xn1...n11,r and Yn1...n11,r coming from gl(11) level ` = 4 in T−2 with X α̂ in R(Λ2)

and Y Λ inR(Λ10), see table 2. The additional potentialsXn1...n10,rs,Xn1...n11,r and Yn1...n11,r

are dual to generators for (p, q) = (−2, 1) in that table, where q = `+ 3
2p in relation to the

gl(11) level `.
We will now write the decomposition of the gauge transformation (3.19). under gl(11).

For many of the fields this was already carried out in [47], but not for the crucial inhomo-
geneous terms involving the invariant tensor Πα̂

QP in the gauge transformation of the con-
strained fields in (3.20a) and (3.20b). Here we concentrate on the central condition (3.26),
which would imply the gauge invariance of the duality equations. An important observation
is that, as the condition (3.26) is a condition on invariant tensors, it suffices to verify it at
linear order in order to deduce gauge invariance of the non-linear duality equation.

One obtains for the first level fields in the GL(11) decomposition that the gauge trans-
formations (3.19) give in the linearised approximation

δξhn
m =

(
∂nξ

m−∂mpλnp+
1

6
δmn ∂

p1p2λp1p2

)
+∂mξn−∂npλmp+

1

6
δmn ∂pqλ

pq+. . . ,

(4.17a)

δξAn1n2n3 =

(
3∂[n1

λn2n3]+
1

2
∂p1p2λn1n2n3p1p2

)
+3∂[n1n2

ξn3]+. . . , (4.17b)

δξAn1···n6 = (6∂[n1
λn2···n6]−∂p1p2ξn1···n6p1,p2 +∂p1p2λn1···n6p1p2)+· · · , (4.17c)

δξhn1···n8,m = (8∂[n1
ξn2···n8],m+24∂‹n1λn2···n8,m›)+· · · , (4.17d)

δξχM ;n1...n9 = 24∂M∂[n1
λn2···n9]−εn1...n9pq∂M∂

pξq+. . . , (4.17e)
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δξχM ;m1...m10,n1n2 = εm1...m10p∂M

(
∂pλn1n2 + 1

5δ
p
[n1
∂qλn2]q−∂n1n2ξ

p− 1
5δ
p
[n1
∂n2]qξ

q
)

+. . . ,

(4.17f)

δξχM ;m1...m11,n =
1

10
εm1...m11∂M (∂pλnp−∂npξp)+. . . , (4.17g)

δξζM ;m1...m11,n =−1

2
εm1...m11∂M (∂pλnp+∂npξ

p)+. . . (4.17h)

The terms corresponding to the non-trivial tensors Πα̃
QP are the terms containing ε11 in

the gauge variations (4.17e), (4.17f), (4.17g) and (4.17h) of the constrained fields. The
corresponding coefficients are determined by E11 invariance up to an overall coefficient that
is fixed by the terms in (4.17e) and (4.17h). These overall coefficients will be determined
below by requiring gauge invariance of the duality equation (4.14b) at linear order.

Using the gauge transformations above one can derive the intermediate result that the
linearised field strengths transform as

δξF
(lin.)
n1n2n3n4

= 12∂[n1
∂n2n3ξn4]+2∂[n1

∂n2n3n4]p1p2
λp1p2 +3∂p1p2∂[n1...n4p1

ξp2]

− 1

5!
εn1n2n3n4p1...p7∂

p1p2p3p4p5∂p6ξp7 , (4.18a)

δξF
(lin.)
n1...n7

=−42∂[n1
∂n2...n6ξn7]+

1

2
εn1...n7p1p2p3p4∂

p1p2∂p3ξp4 (4.18b)

+
1

24
εn1...n7p1p2p3p4

(
2∂p1∂p2p3p4q1q2λq1q2 +3∂[p1p2p3p4q1∂q1q2ξ

q2]
)
,

δξ

(
F (lin.)
n1n2

m+
1

5
δm[n1

F (lin.)
n2]p

p

)
= 2∂[n1

∂mξn2]+
1

5
δm[n1

(∂n2]∂
pξp−∂p∂pξn2]) (4.18c)

−2∂[n1
∂n2]pλ

mp− 1

5
δm[n1

(∂n2]p∂qλ
pq+∂n2]∂pqλ

pq)

+∂mp∂n1n2ξp+2∂mp∂p[n1
ξn2]+

1

5
δm[n1

∂pq(∂pqξn2]+2∂n2]pξq) ,

δξF
(lin.)
np

p = ∂n∂
pξp−∂p∂pξn+

2

3
∂n∂pqλ

pq+∂p∂nqλ
pq−2∂pq∂[pqξn] , (4.18d)

δξF
(lin.)
n1...n9,m =−1

2
εn1...n9p1p2δξ

(
F (lin.)p1p2

m+
1

5
δp1
mF

(lin.)p2q
q

)
, (4.18e)

δξF
(lin.)
n1...n10

=− 1

10
εn1......n10pδξ

(
F (lin.)pq

q

)
. (4.18f)

This shows again that the (linearised) field strengths are not gauge invariant, however, one
checks that all the terms cancel in the duality equation (3.22), proving gauge invariance of
the self-duality equation at this level. One finds that it fixes all coefficients in the trans-
formation of the constrained fields consistently with E11 covariance. For instance the term
in (4.17e) is needed to cancel the gauge variation of the form ∂1∂

1ξ1 in the dual graviton
equation (4.14b) as well as the gauge variation of the form ∂1∂2ξ1 in the 7-form duality equa-
tion (4.14a). Note that the field ζM ;m1...m11,n is necessary here to ensure gauge invariance.

To end this section, we come back to the additional gauge transformations mentioned at
the end of section 3.6. These additional gauge transformations are needed in order to closed
the algebra of generalised diffeomorphisms and the first such parameter is one with param-
eter ΣM

Nα̃ where the M index obeys the same section constraint as a partial derivative
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∂M . We do not know the full sequence of additional gauge transformations, but demanding
actual invariance of the linearised field strengths under ΣM

Nα̃ one can derive that

δΣAn1n2n3 =
1

5!
Σp1...p5

n1n2n3p1...p5 , (4.19a)

δΣAn1...n6 = −1

2
Σp1p2

n1...n6p1p2 , (4.19b)

δΣhn1...n8;m = Σm;n1...n8 , (4.19c)

δΣχM ;n1...n9 = −9∂[n1
ΣM ;|n2...n9] . (4.19d)

These transformations will play a role when we discuss the closure of the supersymmetry
algebra.

4.3 Propagating free fields at all levels

We shall now describe in more detail the tower of duality relations at the linearised level.
To understand the dynamical content of the field equations in eleven dimensions, it is
convenient to consider the structure of the tensor hierarchy algebra at positive levels q (see
table 2). For q ≥ 1, the generators have at most level p = 0, in which case they are the
positive q level generators Eα+ of e11, with α+ the adjoint index restricted to positive gl(11)

level. At a given gl(11) level `, Eα+ includes various irreducible representations associated
to Young tableaux with 3` boxes, including possibly columns of 11 boxes [64, 82, 84].
The e11 generators are the top-form components E11;α+ of supermultiplets of generators
transforming under the (q = 0 component of T (e11)) superalgebra W (11) of vector fields in
eleven Grassmann variables ϑm as a superfield of representations E11+p;α+ for −11 ≤ p ≤ 0,
in the tensor product representation of the (11 + p)-form with the reducible representation
associated to α+ at a given level ` [47].

As an example, consider the case q = 1 in table 2 that has the top component E3 at
p = 0, corresponding to the familiar 3-form generator of E11. This can also be written as
E11;3 using the ε-tensor of sl(11). The next generator for p = −1 and q = 1 is K1

3 arising
as the tenth order term in ϑm in the expansion of the superfield with top component E3.
After dualisation this can be written as the reducible tensor E10;3. At p = −2 one gets
the reducible generator Ẽ9;3, which decomposes into Ẽ9,3, Ẽ10,2 and Ẽ11,1 in table 2. We
recall that comma separated indices denote irreducible representations while the full set
of indices separated by a semi-colon denotes the reducible representation obtained by the
tensor product of the irreducible representations on each side of the semi-colon.

There are additional superfields of generators starting at p ≤ −1, but they involve at
least one 11-form at p = −1 (i.e. one column of 11 boxes) and one 10-form at p = −2 (i.e.
one column of 10 boxes). If one considers only fields involving at most a 9-form components
in e11 (Young tableaux with no column of more than nine boxes), the corresponding fields
are all of the type A9n,3 at level ` = 3n + 1, A9n,6 at level ` = 3n + 2, h9n,8,1 at level
` = 3n+ 3 [49], as can be seen by consistency with the e9 subalgebra.

These potentials at level ` = 3(n+ 1) +k appear in the tensor hierarchy algebra T (e11)

at level p = −2 and q = 3n + k, such that the last 9-form comes from the W (11) 9-form
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components. They are part of the reducible representations given by the tensor products

[9]⊗ [9n, 3k] = [9n+1, 3k]⊕ [10, 9n, 3k − 1]⊕ [11, 9n, 3k − 2] (4.20)

⊕ [10, 9n−1, 8, 3k]⊕ [11, 9n−1, 8, 3k − 1]⊕ [11, 9n−1, 7, 3k]

for k = 1 or 2 and

[9]⊗ [9n, 8, 1] = [9n+1, 8, 1]⊕ [10, 9n, 7, 1]⊕ [10, 9n, 8]⊕ [11, 9n, 6, 1]⊕ [11, 9n, 7] (4.21)

⊕ [10, 9n−1, 82, 1]⊕ [11, 9n−1, 82]⊕ [11, 9n−1, 8, 7, 1]

for k = 3. The corresponding fields in the irreducible representations [9n+1, 3], [9n+1, 6] and
[9n+1, 8, 1] are the E11 potentials, while the fields corresponding to the other irreducible
representations always involve the constrained fields χ = ∂X for 10-forms and 11-forms,
and possibly the constrained fields ζ = ∂Y for 11-forms. In the combination that appears
naturally in the W (11) superfield, A9;9n,3k = A9n+1,3k + 3X10,9n,3k−1 + . . . , the T (e11)

exterior derivative simply acts as the exterior derivative on the last 9-form component [47,
appendix B],

Fn1...n10;9n,3k = 10∂[n1
An2...n10];9n,3k , Fn1...n10;9n,8,1 = 10∂[n1

An2...n10];9n,8,1 . (4.22)

In this way the corresponding linearised field strength restricted to the eleven-dimensional
solution to the section constraint (with fields only depending on eleven coordinates) is
manifestly invariant under the gauge transformation

δAα̂+ = T α̂+m
N∂mξ

N ⇒

{
δAn1...n9;9n,3k = 9∂[n1

λn2...n9];9n,3k for k = 1, 2

δAn1...n9;9n,8,1 = 9∂[n1
λn2...n9];9n,8,1 for k = 3

. (4.23)

In eleven dimensions, assuming the fields depend on the eleven coordinates only, the dual
field strength only involves the ordinary derivative of a potential so that the duality equation
becomes

Fn1...n10,9n,3k =
[
Fn1...n10;9n,3k

]
10,9n,3k

= −
[
εn1...n10mη

mp∂pA9n,3k

]
10,9n,3k

,

Fn1...n10,9n,8,1 =
[
Fn1...n10;9n,8,1

]
10,9n,8,1

= −
[
εn1...n10mη

mp∂pA9n,8,1

]
10,9n,8,1

, (4.24)

where we take the projection to the irreducible SL(11) representation indicated. The right-
hand side is not gauge invariant, but it follows from (3.26) that the lack of gauge invariance
is compensated by the gauge transformation

δAα̂+ = Πα̂+
mP η

mn∂nξ
P , (4.25)

on the left-hand side, such that the duality equation is indeed gauge invariant under the
total linearised gauge transformation

δAα̂+ = T α̂+m
N∂mξ

N + Πα̂+
mP η

mn∂nξ
P . (4.26)
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In order to understand these duality equations better, it is useful to compare them
with the equations derived in [51]. The first instance uses the potentials in the reducible
(9; 3) representation composed out of E11 potentials and additional fields as

An1...n9;p1p2p3 = An1...n9;p1p2p3 + 3Xn1...n9[p1,p2p3] − 24X ′n1...n9[p1p2,p3] . (4.27)

The duality equation

εn1...n10mη
mp∂pAp1p2p3 =Fn1...n10;p1p2p3 +

3

8

(
10Fn1...n9][p1;p2p3][n10

−Fn1...n10;p1p2p3

)
(4.28)

= 10∂[n1
An2...n10],p1p2p3

−3∂[p1
Xn1...n10,|p2p3]−6∂[p1

X ′n1...n10|p2,p3]

is gauge invariant under (4.17). Here, we have defined for a free coefficient c the combination

X ′11,1 = (1 + 5c)X11,1 + cY11,1 . (4.29)

The duality equation above is gauge invariant in eleven dimensions for any c, but E11

covariance determines its value.
At level ` = 3n+ 7 one has similarly

An1...n9;9n,p1...p9,q1q2q3 (4.30)

=
[
An1...n9,9n,p1...p9,q1q2q3 +3Xn1...n9q1,9n,p1...p9,q2q3 +9Xn1...n9p1,9n,p2...p9,q1q2q3

−6X ′n1...n9q1q2,9n,p1...p9,q3−27X ′n1...n9p1q1,9n,p2...p9,q2q3−72X ′n1...n9p1p2,9n,p3...p9,q1q2q3

]
9;9n+1,3

.

For each irreducible field strength component, each field can only appear with a unique
tensor structure, and in particular

Fn1...n10,9n,p1...p9,q1q2q3 (4.31)

=
[
10∂[n1

(An2...n10],9n,p1...p9,q1q2q3 +3Xn2...n10]q1,9n,p1...p9,q2q3 +9Xn2...n10]p1,9n,p2...p9,q1q2q3)
]
10,9n+1,3

=
[
10∂[n1

An2...n10],9n,p1...p9,q1q2q3−3∂[q1|Xn1...n10,9n,p1...p9,|q2q3]−9∂[p1|Xn1...n10,9n,|p2...p9],q1q2q3

]
10,9n+1,3

,

only involves the X fields and not the X ′ fields that include an 11-form. The duality
equation[

Fn1...n10;9n,p1...p9,q1q2q3

]
10,9n+1,3

= −
[
εn1...n10mη

mr∂rA9n,p1...p9,q1q2q3

]
10,9n+1,3

, (4.32)

is gauge invariant provided (4.25) gives

δXn1...n10,9n+1,2 =
[
εn1...n10mη

mp∂pλ9n+1,2

]
10,9n+1,2

,

δXn1...n10,9n,8,3 =
[
εn1...n10mη

mp∂pλ9n,8,3

]
10,9n,8,2

. (4.33)

This is indeed consistent with the structure of the E11 invariant tensor Πα̃
MN . Recall that

Πα̃
MN defines the projection from the exterior product of two R(Λ1) representations onto

R(Λ2), see (2.1). The subspace that is annihilated by this projector starts with R(Λ4)

at gl(11) level 6 and contains as lowest component a (11, 7) form. All the components of
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the kernel of the projector are associated to Young tableaux with at least one 11-form.
Therefore, the component Πα̃

mNη
mp∂pξ

N for components of ξN different of ξn and with
a Young-tableau partition P(N) that does not include columns of more than 9 boxes, are
simply the projections of εn1...n10mη

mp∂pλP(N) to the irreducible representation of partition
(10,P(N)). Assuming that the fields X are canonically normalised with respect to this
structure, one obtains indeed the formula (4.33) above, consistently with (4.17f) for n = −1.

The field strength (4.31) has the right structure for the (n + 3)th order field strength
in the irreducible representation [10n+2, 4][
∂ n

1 ∂p1∂q1Fn1...n10,9n,p2...p10,q2q3q4

]
[10n+2,4]

= −
[
εn1...n10mη

mr∂r∂
n

1 ∂p1∂q1A9n,p2...p10,q2q3q4 ][10n+2,4] ,

(4.34)

to not depend on the extra fields X, and then reproduces the duality equations described
in [51]. Conversely, according to the generalised Poincaré lemma proved in [85], this duality
equation is locally equivalent to the first order duality equation satisfied by (4.31), where
the X fields parametrise the ambiguities in integration described in [50]. The propagat-
ing degrees of freedom in this equation are therefore the fields A9n,3 of the E11/K(E11)

coset [49], but the additional fields X are necessary to write a gauge invariant first-order
duality equation. The same argument goes through at level ` = 3n+8 and ` = 3n+9, with[

Fn1...n10;9n,p1...p9,q1...q8,m

]
10,9n+1,8,1

=
[
10∂[n1

hn2...n10],9n,p1...p9,q1...q8,m

− 8∂[q1Xn1...n10,9n,p1...p9,|q2...q8],m − ∂mXn1...n10,9n,p1...p9,q1...q8

− 9∂[p1
Xn1...n10,9n,|p2...p9],q1...q8,m

]
10,9n+1,8,1

, (4.35)

and

δhn1...n9,9n+1,q1...q8,m =
[
9∂n1λn2...n9;9n+1,q1...q8,m

]
9n+2,8,1

(4.36)

=
[
8∂[q1λn1...n9,9n+1,|q2...q8],m+∂mλn1...n9,9n+1,q1...q8 +9∂[n1

λ9n+1,|n2...n9],q1...q8,m

]
9n+2,8,1

,

δXn1...n10,9n+1,q1...q7,m =
[
30∂[n1

λn2...n9|;9n+1,|n10]q1...q7,m+εn1...n10mη
mp∂pλ9n+1,q1...q7,m

]
10,9n+1,7,1

,

δXn1...n10,9n+1,8 =
[
9∂[n1

λn2...n9|;9n+1,8,|n10]+εn1...n10mη
mp∂pλ9n+1,8

]
10,9n+1,8

,

δXn1...n10,9n,q1...q8,8,m =
[
45∂[n1

λn2...n9|;9n,|n10]q1...q8,8,m+εn1...n10mη
mp∂pλ9n,q1...q8,8,m

]
10,9n,8,8,1

,

The duality equation (3.9) therefore relates all the higher level dual fields to the ones of the
graviton and the 3-form in order to give the expected bosonic degrees of freedom of D = 11

supergravity, as already discussed in [49–51]. The gauge invariance of the system presented
here requires the introduction of the extra constrained fields.

5 E8 decomposition

In this section, we consider the decomposition of the tensor hierarchy algebra T under the
subgroup GL(3) × E8 and study the duality equation (3.22) in this decomposition. More
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q = −2 q = −1 q = 0 q = 1 q = 2

p = 2 FAB

p = 1 FABµ , GAµ FA Pµ

p = 0 FABµ1µ2
, GAν;µ FAµ , Gµ Kµ

ν , tA EµA Eµ1µ2AB, Eµ,νA

p = −1 FAB3 , GAν1ν2;µ FAµ1µ2
, Gν;µ Pµν1ν2 , tAν EµAν , EAB Eµ1µ2AB

ν , Eµ,νAσ , . . .

p = −2 GA3;µ FA3 , Gν1ν2;µ Pµ3, tAν1ν2
EµAν1ν2 , EABµ Eµ1µ2AB

ν1ν2 , Eµ,νAσ1σ2 , . . .

p = −3 G3;µ tA3 EµA3 , EABµ1µ2
Eµ1µ2AB

3 , Eµ,νA3 , . . .

p = −4 EAB3

×

Table 3. Part of the tensor hierarchy algebra T decomposed under gl(3) ⊕ e8. The subalgebra
at p = 0 is the extension of e11. The components of fixed p (the rows) are in e11 representations.
The cross marks the fixed point of a reflection symmetry explained in the text. The notation and
structure here is similar to that of table 2.

details on this decomposition and the construction of the tensor hierarchy algebra in the
E8 basis are given in appendix A.2. In table 3, we present a part of the tensor hierarchy
algebra in this decomposition for reference in this section.

5.1 Fields, field strengths and rigid transformations

We begin with the fields parametrising E11/K(E11) before proceeding to the tensor hier-
archy algebra. Under GL(3) × E8(8) ⊂ E11 the coset E11/K(E11) can be parametrized
by [45, 46]

(gµν , V ;AAµ ;BAB
µν , h

A
µ,ν ; . . . ) , (5.1)

where the semi-colon in this list separates different levels given by the central GL(1) ⊂
GL(3), see appendix A.2. These first four fields can be identified with the supergravity
fields as follows. At level zero gµν is the metric, V ∈ E8/(Spin(16)/Z2) is parametrised
by the D = 3 scalar fields. At level one AAµ in the 248 of E8 are the vector fields dual to
the scalars. At level two the 2-form BAB

µν is symmetric in AB and belongs to the reducible
representation 1⊕3875, so that a potential 27000 component in Sym2(248) is understood
to vanish. It is dual to the embedding tensor constants. The symmetric tensor hAµ,ν in the
248 of E8 at level two does not appear in the supergravity tensor hierarchy [11] nor in E8

exceptional field theory and is the gradient dual to AAµ similar to the construction in [51]
as will be discussed later. It extends to an infinite sequence of rank n symmetric tensors
in the adjoint representation at level n, that provide all the fields related by duality to the
propagating scalars. This infinite sequence is associated to the affine subgroup E9 ⊂ E11.
The two-forms BAB

µν do not carry any propagating degrees of freedom and we note also that
there is no analogue of the usual dual graviton in D = 3 since gravity is non-propagating.

When needed we will decompose the reducible tensor BAB
µν = B́AB

µν + κABBµν in terms
of B́AB

µν = PABCDB
CD
µν in the 3875 and the E8 singlet Bµν = 1

248κABB
AB
µν , κAB being the
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Killing-Cartan metric on e8. We use the conventions of [86], in which the projector PABCD
to the 3875 is

14PABCD = δACδ
B
D + δADδ

B
C + fAE(CfD)E

B − 1
4κ

ABκCD . (5.2)

We shall also need the fields in the first components of χMα̃ in the R(Λ1) ⊗ R(Λ2)

module of E11 under GL(3)× E8

(χM ;ν ;χM ;
A
νσ; . . . ) , (5.3)

such that the (1, 1)-form χM ;ν is at level 1 and the (1, 2)-form χM ;
A
νσ in the 248 is at level

2. The first component of ζMΛ ∈ R(Λ1) ⊗ R(Λ10) only appears at level 3 and will not be
considered in this section. The linearised field X α̃ in R(Λ2) are obtained by removing the
derivative M index as before.

The derivatives in R(Λ1) decompose as

(∂µ; ∂A; ∂µAB, ∂
µ
A; . . . ) , (5.4)

where at level −1
2 , ∂µ is the external space-time derivative, at level −3

2 , ∂A is the internal
derivative of exceptional field theory [4]. The additional derivative at level −5

2 , ∂
µ
AB =

∂́µAB + κAB∂
µ and ∂µA are respectively in the 3875 ⊕ 1 and the 248. The components of

the section constraints that will be relevant in this section are

7PCDAB∂C∂D = ∂́µAB∂µ , κAB∂A∂B = 8∂µ∂µ , (5.5)

or equivalently

2∂A∂B + fEA
CfEDB∂C∂D = 2∂µAB∂µ . (5.6)

The derivatives (5.4) transform under the generator (A.3) of e11 as

δ∂µ = eAµ ∂A , (5.7a)

δ∂A = fµA∂µ + eBµ ∂
µ
AB + fAB

CeBµ ∂
µ
C , (5.7b)

δ∂µAB = 14PCDABf
µ
C∂D + 1

4κABκ
CDfµC∂D , (5.7c)

δ∂µA = 1
2f

BC
Af

µ
B∂C . (5.7d)

The field strengths in the representation T−1 decompose in components that trans-
form as

δFµA = eBµ FAB + eBν fAB
CFµ

ν
C − fABCfνCFBµν + fνAFν;µ , (5.8a)

δFµν
σ = −2eA[µFν]

σ
A + 2eAρ δ

σ
[µFν]

ρ
A − f

σ
AF

A
µν − 2fρAδ

σ
[µF

A
ν]ρ , (5.8b)

δFAµν = −eAσFµνσ + 2fABCe
C
[µFν]B + fBµ (. . . ) , (5.8c)

δFµ;ν = eAν FµA + fσA(. . . ) , (5.8d)

δFAB =
(
14PCDAB + 1

4κABκ
CD
)
fµCFµD + eCµ (. . . ) , (5.8e)

δFµ
ν
A = fσAFµσ

ν + fBCA
(
fνBFµC − 1

2δ
ν
µf

σ
BFσC

)
+ eBσ

(
. . .
)
, (5.8f)

– 35 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
5

where we have left out some components that are irrelevant for the discussion in this section.
The representations that appear with their levels are recorded in table 3 in the appendix.

Explicit expressions for the field strength components can be obtained from (3.12) by
following the same procedure as in section 4.1, but now using instead the parabolic gauge

V = v U , (5.9)

in which v ∈ GL(3)× E8(8), and U is in the unipotent subgroup

U = exp(AAµE
µ
A) exp( 1

28B́
AB
µν É

µν
AB + 2BµνE

µν + hAµ,νE
µ,ν
A ) · · · (5.10)

with in particular

[EµA, E
ν
B] = −EµνAB + fAB

CEµ,νC = −ÉµνAB − κABE
µν + fAB

CEµ,νC . (5.11)

One uses as in section 4.1 the definition (4.7) with m = v†ηv and similarly the ‘semi-
flattened’ objects (4.8), (4.10), (4.11) and (4.12). The element m corresponds to the metric
gµν of Minkowski signature and the symmetric E8 matrix MAB.

5.2 Linearised field strengths and gauge transformations

Unlike in section 4, we begin with the linearised field strengths and the gauge invariance of
the duality equations to exhibit that (3.26) holds also in the E8 decomposition to the level
checked. We define the linearised theory around Minkowski space and around the origin of
E8 moduli space

gµν = ηµν + hµν , MAB = δAB + δC(Af
CD

B)ΦD . (5.12)

The linearised field strengths are

(−1
2 )F (lin.)

µν
σ = 2∂[µhν]

σ+ 1
14 ∂́

σ
ABB́

AB
µν +4∂σBµν+2∂σAX

A
µν+2δσ[µ

(
∂AA

A
ν]+

1
7 ∂́

ρ
ABB́

AB
ν]ρ +8∂ρBν]ρ) ,

(−1
2 )F (lin.)

µA = ∂µΦA+fAB
C∂CA

B
µ +∂AXµ

+ 1
7fAB

C∂νCDB
BD
µν −∂νAB(hBµ,ν+XB

µν)−fABC∂νC(hBµ,ν−XB
µν)+. . . (5.13)

at level −1/2 and

(1
2)F (lin.)

µν
A = 2∂[µA

A
ν] − ∂BB

AB
µν − fABC∂BXC

µν ,

(1
2)F (lin.)

µ;ν = ∂µXν + ∂AX
A
µν − ∂AhAµ,ν (5.14)

at level 1/2, where the second is the analogue of the dual graviton field strength that only
involves the extra field χµ;ν ∼ ∂µXν in that case. At level −3/2, one gets

(−3
2 )F (lin.)

AB =
(
14PCDAB+ 1

4κ
CDκAB

)
∂CΦD = 2∂(AΦB)+fECAfEB

D∂(CΦD) ,
(−3

2 )F (lin.)
µ

ν
A = ∂µA

ν
A−∂Ahµν−∂νABABµ −fABC∂νCAAµ− 1

2δ
ν
µf

BC
A∂BΦC+δνµ∂

σ
ABA

B
σ . (5.15)
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The linearised gauge transformations can be derived using the structure constants given
in (A.12) as

δξhµ
ν = ∂µξ

ν− 1
14 ∂́

ν
ABλ́

AB
µ −4∂νλµ+2∂νAξ

A
µ +δνµ

(
∂Aλ

A+ 1
7 ∂́

σ
ABλ́

AB
σ +8∂σλσ

)
+ηµση

νρ
(
∂ρξ

σ− 1
14 ∂́

σ
ABλ́

AB
ρ −4∂σλρ+2∂σAξ

A
ρ

)
+. . . , (5.16a)

δξΦA = (δEA+κAF δ
EF )

(
−fEBC∂CλB− 1

7fEB
C∂µCDλ

BD
µ +2fEB

C∂µCξ
B
µ +. . .

)
, (5.16b)

δξAµ
A = ∂µλ

A+∂Bλ
AB
µ −fABC∂BξCµ +ηµνδ

AB
(
∂Bξ

ν+∂νBCλ
C+fBC

D∂νDλ
C
)

+. . . ,

(5.16c)

δξB
AB
µν = 2∂[µλ

AB
ν] −2ηµσηνρδ

ACδBD∂
[σ
CDξ

ρ]+. . . , (5.16d)

δξh
A
µ,ν = 2∂(µξ

A
ν)+2ηµσηνρδ

AB∂
(σ
B ξ

ρ)+. . . (5.16e)

The linearised gauge transformation of the fields in R(Λ2) includes similarly the three
contributions from (3.37) as

δξXµ = 2∂Aξ
A
µ + 2ηµν∂

µ
Aλ

A − εµνσηνρ∂ρξσ , (5.17a)

δξX
A
µν = −2∂[µξ

A
ν] + 2ηµσηνρδ

AB∂
[σ
B ξ

ρ] − εµνσ(ησρ∂ρλ
A − δAB∂Bξσ) . (5.17b)

The terms involving the Levi-Civita ε symbol correspond to the contributions from Πα̃
QP

in the general formula (3.37). One straightforwardly checks that the linearised duality
equations

E (lin.)A
µν = F (lin.)

µν
A − εµνσησρδABF (lin.)

ρB = 0 , (5.18a)

E (lin.)
µ;ν = F (lin.)

µ;ν +
1

2
ηµσε

σρλF (lin.)
ρλ

ν + ηµσηνρε
σρλF (lin.)

λκ
κ = 0 (5.18b)

are gauge invariant modulo the section constraint within this level truncation. This provides
an additional check of equation (3.26).

5.3 Non-linear field strengths

We also provide a formula for the field strengths at the non-linear level and compare with
the known E8 exceptional field theory [4]. To obtain the formula for the field strength at
the non-linear level, one needs to replace the derivative of the field in e11 by the components
of the semi-flattened current

J̃αt
α = gνσdgµσK

µ
ν + JAt

A + dAAµ (EµA + gµνMABF
B
ν )

+ 1
28

(
dB́AB

µν − 14AA[µdA
B
ν]

)
(ÉµνAB + gµσgνρMACMBDF́

CD
σρ )

+ 2
(
dBµν + 1

4κABA
A
[µdA

B
ν]

)
(Eµν + gµσgνρFνρ)

+
(
dhAµ,ν + fBC

AAB(µdA
C
ν)

)
(EµνA + gµσgνρMABF

B
σρ) + . . . (5.19)

where JA is the E8(8) current

JAf
AB

C = −MBDdMCD . (5.20)
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It satisfies

κABJB = MABJB . (5.21)

For simplicity we shall consider the solution to the section constraint for which only
the derivatives ∂µ and ∂A are non-zero, and ∂A satisfies the E8 section constraint [6]

PCDAB∂C ⊗ ∂D = 0 , κAB∂A ⊗ ∂B = 0 , fABC∂A ⊗ ∂B = 0 . (5.22)

One obtains then that the only non-trivial components of the derivative U−1
M

N∂N are

∂̃µ = U−1
µ

M∂M = ∂µ −AAµ ∂A , U−1
A

M∂M = ∂A . (5.23)

The formulae for the semi-flattened field strengths F̃ I can be obtained directly from the
linear expressions by substituting these currents to the linear derivatives, with the derivative
modified according to the formula above. One obtains in this way

F̃µν
σ = 2gσρ(∂[µ −AA[µ∂A)gν]ρ + 2δσ[µ∂AA

A
ν] ,

F̃µA = J̃µA + fAC
D∂DA

C
µ + χA;µ , (5.24)

where J̃µA includes the transport term in the derivative,

J̃µAf
AB

C = −MBD(∂µ −AEµ ∂E)MCD , (5.25)

and

F̃Aµν = 2∂[µA
A
ν]−2AB[µ∂BA

A
ν]−∂BB

AB
µν +

(
14PABCD+ 1

4κ
ABκCD

)
AC[µ∂BA

D
ν]−f

AB
C χ̃B;

C
µν ,

F̃µ;ν =−∂AhAµ,ν− 1
2fBC

AAB(µ∂AA
C
ν)+χ̃µ;ν−AA(µχA;ν)+χ̃A;

A
µν . (5.26)

The structure of these field strengths and their dependence in the constrained field
χ̃M,α̃ can be compared to [4] with the identification χ̃A;µ = BµA and

χ̃B;
A
µν = CµνB

A + 1
2f

A
KLA

K
[µ∂BA

L
ν] +

1√
−g

gµσgνρε
σρλ∂BA

A
λ , (5.27)

such that the E11 duality equation gives

F̃Aµν =
1√
−g

gµσgνρε
σρλMABF̃λB , (5.28)

which coincides with [4] up to moving the last term in (5.27) to the right-hand-side such as
to reproduce the covariant current of the E8 exceptional field theory

jµ
A = MABF̃µB + κAB

(
fBC

D∂DA
C
µ + χB;µ

)
= κABJ̃µB + (κAB +MAB)(fBC

D∂DA
C
µ + χB;µ) , (5.29)

up to the term in κABχB;µ that does not appear in (5.28). Note however that this equa-
tion in [4] is only satisfied up to a trivial parameter since it is the equation of motion of
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BµA = χA;µ. This additional term can be produced by adding to the action in [4] a term
in
√
−ggµνηABBµABνB that vanishes on section.
The other equation at this order is the dual graviton equation

F̃µ;ν = − 1

2
√
−g

gµσgνκε
σρλF̃ρλ

κ − 1√
−g

gµσgνρε
σρλF̃λκ

κ . (5.30)

Similar to the GL(11) decomposition, this equation is not dynamical by itself and only de-
termines the field χ̃µ;ν algebraically. The integrability condition for the Einstein equation [4]
to be satisfied determines the first order equation for χ̃µ;ν .

6 Supersymmetry transformations and algebra

In the remainder of the paper we study aspects of the supersymmetric extension of the model
we have developed in the preceding sections that is achieved through the inclusion of an
unfaithful (vector-)spinor Ψ that transform under K̃(E11), the double cover of K(E11).13

We note that these results do not depend on the speculative full dynamics discussed in
section 3.6. One of the key results we establish here is that certain bilinears in Ψ take values
in the anti-selfdual subspace of the T−1 part of the tensor hierarchy algebra and therefore
terms of the form ΨΨ can be added to the first order self-duality equation (3.22). We
shall also see how to define supersymmetry transformation rules for all the fields, including
the constrained fields and how to write down a K̃(E11) covariant equation of motion for
the vector-spinor Ψ. The compatibility of supersymmetry with Kac–Moody symmetries
was previously investigated in [54–56] for K(E10) and in [61] for K(E11). We shall see
explicitly how our inclusion of the extra constrained fields is crucial for resolving apparent
inconsistencies in the supersymmetry algebra observed in [56].

6.1 Spinors of K̃(E11)

We begin with the description of the spinors for K̃(E11). The existence of an unfaithful
vector-spinor Ψ for K̃(E11) was deduced in [57], relying heavily on previous results for
vector-spinors for K̃(E10) [54, 55]. In this section we write K̃(E11) for the double cover
of the maximal subgroup of E11 defined by the Cartan involution. Unlike E11, the sub-
group K(E11) is not a Kac-Moody group and its general representation theory is unknown.
However, one can demonstrate the existence of an unfaithful Dirac-spinor ε [53, 54, 57, 58]
and of an unfaithful vector-spinor Ψ [54, 55, 57]. This is possible because K̃(E11) is not
a reductive group, and contains ideals. Finite dimensional unfaithful representations of
K̃(E11) exist for which the ideal I acting trivially on the finite-dimensional vector space
are such that K̃(E11)/I is a finite-dimensional group. In the case of the Dirac-spinor,
K̃(E11)/Iε ∼= SL(32), a result anticipated in [58]. The dimension of the vector-spinor
representation is 352.

The representations can be succinctly described in terms of the Spin(1, 10) Lorentz
subgroup of K̃(E11). Under this subgroup the 32-component Dirac-spinor ε is irreducible
and becomes the standard Majorana spinor in D = 11 dimensions up to a rescaling. The

13It was shown recently that this double cover of the group K(E11) is the universal cover [87].
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vector-spinor Ψ is reducible under this subgroup and decomposes into a gamma-traceless
vector-spinor of Spin(1, 10) and a simple spinor that can be viewed as the gamma trace.
We shall combine the two and write the K̃(E11) vector-spinor Ψ as ψa when we think of it
as a (reducible) Spin(1, 10) representation. Here, a = 0, . . . , 10 is a Lorentz tangent index.
The use of Spin(1, 10) here parallels the GL(11) decomposition studied in section 4.

The K̃(E11) transformations of the spinors are completely determined by giving the
transformation under Spin(1, 10) and under the combination

1

3!
Λa1a2a3

(
Ea1a2a3 − ηa1b1ηa2b2ηa3b3Fb1b2b3

)
∈ K(e11) . (6.1)

This combination is invariant under the involution defining K(E11) and the occurrence of
the Minkowski metric ηab is due to the signature of the involution. When we write SO(1, 10)

tensors we shall use ηab freely to raise and lower indices.
The Spin(1, 10) transformations of ε and ψa are implicit in their index structure and

the result of [57] is that the transformations

δψa = − 1

12
ΛbcdΓ

bcdψa −
2

3
ΛabcΓ

bψc +
1

6
ΛbcdΓa

bcψd , (6.2a)

δε = − 1

12
ΛabcΓ

abcε , (6.2b)

define consistent unfaithful spinors of K̃(E11). The overall signs in these transformations
were chosen to match the commutators of the generators under K(e11) ⊂ e11. Here, the
conjugate Majorana spinor is defined as ψ̄a = ψᵀ

aC with C = iΓ0 and we use gamma matrices
satisfying Γa1...a11 = −εa1...a11 . The rules (6.2) are sufficient to study the transformation of
any polynomial in these fermions.

6.2 Coset scalar fields supersymmetry transformations

In D = 11 supergravity one has the (linearised) supersymmetry transformation rules for
the bosonic fields given by

δsusyhab = −ε̄Γ(aψb) , (6.3a)

δsusyAa1a2a3 =
3

2
ε̄Γ[a1a2

ψa3] , (6.3b)

δsusyAa1...a6 = 3ε̄Γ[a1...a5
ψa6] , (6.3c)

where we have extended the transformations of [88] to also include the dual six-form poten-
tial [56] and written the expression in tangent space. In order to define the supersymmetry
variation of the scalar fields parametrising E11/K(E11), one needs a priori to show that
the bilinear εΨ includes a representation of K(E11) that can be consistently embeded in
e11	K(e11). Starting from (6.3), we shall therefore study the representation εΨ. With the
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definitions

Ξab = −ε̄Γ(aψb) , (6.4a)

Ξa1a2a3 =
3

2
ε̄Γ[a1a2

ψa3] , (6.4b)

Ξa1...a6 = 3ε̄Γ[a1...a5
ψa6] , (6.4c)

Ξa1...a8,b = ε̄Γ〈a1...a8,ψb〉 +
1

12
εa1...a8

c1c2c3 ε̄Γc1c2c3bdψ
d , (6.4d)

Ξa1...a9,
b1b2b3 = 1512δb1[a1

δb2a2
δb3a3
ε̄Γa4...a8ψa9]

− 9δ
[b1
[a1
δb2a2
εa3...a9]c1...c4(ε̄Γc1...c4ψ|b3] + 1

2η
b3]c1 ε̄Γc2...c4dψd) , (6.4e)

one computes using the formulae (A.4) that the Ξ-bilinears transform into each other under
the K(e11) transformations (6.2) according to14

δΞab = Λ(a
c1c2Ξb)c1c2 −

1

9
ηabΛ

c1c2c3Ξc1c2c3 , (6.5a)

δΞa1a2a3 = −3Λ[a1a2

bΞa3]b +
1

6
Λc1c2c3Ξa1a2a3c1c2c3 , (6.5b)

δΞa1...a6 = 20Λ[a1a2a3
Ξa4a5a6] +

1

2
Λb1b2c(Ξa1...a6b1b2,c + Υ?

a1...a6b1b2c) , (6.5c)

δΞa1...a8,b = 56Λ〈a1a2a3
Ξa4...a8,b〉 +

1

2
Λc1c2c3Ξc1〈a1...a8,b〉c2c3 + . . . (6.5d)

up to the introduction of an additional new bilinear Υ?
9 appearing in the transformation

of Ξa1...a6 ,

Υ?
a1...a9

= ε̄Γ[a1...a8
ψa9] =

1

18
εa1...a9b1b2Υb1b2 . (6.6)

Such a nine-form is not present in the coset e11 	K(e11) since the dual graviton is in the
irreducible (8, 1) representation and this signals a potential inconsistency between e11 and
supersymmetry. However, considering the tensor hierarchy algebra extension T0 ⊃ e11, the
nine-form is consistent with the K(e11) representation of a field parametrising the degree
zero component of the tensor hierarchy algebra T0 	K(e11). In fact we shall see that we
need to consider the conjugate algebra T 0 	K(e11), extending e11 with generators in the
conjugate representation R(Λ2).

The indecomposable E11 module e11 h R(Λ2) ⊂ T 0 induces the dual indecomposable
structure on its components (Ξ,Υ) ∈ (e11	K(e11)) iR(Λ2), such that Ξ transforms into Ξ

and Υ, whereas Υ transforms into itself under K(e11). To further check this property one
computes that the element Υa1a2 generates a K(e11) module that is indeed consistent with

14A similar calculation was done up to the level of the six-form (6.4b) for K(e11) in [61] where fermions
and e11 were also considered. For K(e10), it had been done previously to higher level in [56, 59] where also
the extra nine-form Υ∗9 of (6.4c) had been found.
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the structure of R(Λ2). For this purpose one defines

Υb1b2 = ε̄Γb1b2cψc , (6.7a)

Υa1a2;b = −ε̄Γa1a2bcψc − 4ε̄Γb[a1ψa2] − 2ηb[a1 ε̄ψa2] , (6.7b)

Υa1a2a3a4a5;b = ε̄Γa1a2a3a4a5ψb + 4ε̄Γ[a1a2a3a4a5ψb] + 10ηb[a1 ε̄Γa2a3a4ψa5] ,

− 1

48
εa1a2a3a4a5bc1c2c3c4c5 ε̄Γc1c2c3c4ψc5 , (6.7c)

Υa1a2a3,b = ε̄Γa1a2a3ψb − ε̄Γ[a1a2a3ψb] + 6ηb[a1 ε̄Γa2ψa3] . (6.7d)

and one checks that they transform into each other according to

δΥa1a2 = Λb1b2[a1Υb1b2;
a2] , (6.8a)

δΥc(a;b) = −1

3
ΛdefΥdefc(a,b) + 2Λde

(aΥb)cd,e , (6.8b)

δΥa1a2a3 = 3Λb
[a1a2Υa3]b − 1

3
Λb1b2b3Υa1a2a3b1b2;b3 − 2Λbc

[a1Υa2a3]b,c . (6.8c)

These transformations are consistent with the structure of the tensor hierarchy algebra that
is described in (A.4). In particular, the transformation (6.8a) shows that the new nine-form
that appears for the extra fields in R(Λ2) does not transform back into the Ξ components
in e11 	K(e11). Moreover, demanding that the K(E11) transformation commute with the
supersymmetry transformation, one can determine the linearised supersymmetry variation
of fields belonging to the R(Λ2) module as

δsusyha1...a9 =
1

18
εa1...a9b1b2Υb1b2 = ε̄Γ[a1...a8

ψa9] , (6.9a)

δsusyAa1...a10;b1b2 =
1

18
εa1...a10cΥb1b2;

c , (6.9b)

δsusyAa1...a10;b1...b5 =
1

18
εa1...a10cΥb1...b5;

c , δsusyBa1...a11,b1b2b3,c =
1

18
εa1...a11Υb1b2b3,c , (6.9c)

consistently with the decomposition of the module R(Λ2) under GL(11).
Defining G(T 0) as the group associated to T 0 (the algebra defined from e11 with the

additional generators in the conjugate representation R(Λ2)), we conclude that one can de-
fine the linearised supersymmetry transformation of an extended field V ∈ G(T 0)/K(E11)

consistently with the K(E11) representation of T 0 as an indecomposable module. Defining
T (Ξ,Υ) as the T 0 element of parameter (Ξ,Υ) defined above, one can write the supersym-
metry transformation of V ∈ G(T 0)/K(E11) as

δsusyV = T (Ξ,Υ)V , (6.10)

such that supersymmetry commutes with the action of K̃(E11) in the standard way, at the
price of introducing additional fields into the theory. We stress here that the additional
fields, that we denote by hα̃, parametrising G(T 0) must not be confused with the con-
strained fields χMα̃ that transform instead as components of the co-adjoint module T−2. In
order to have well-defined expressions, one will choose in practice a given parametrization of
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the coset G(T 0)/K(E11), so one will define the non-linear supersymmetry transformation
from (6.10) with the compensating local K̃(E11) transformation on the left.

Let us compare the situation to that in E9 exceptional field theory [34]. In this case,
T 0(e9) is the extension of e9 by a single Virasoro generator L−1. There is a single additional
field ρ̃ on top of the E9/K(E9) coset fields that is dual to the dilaton such that all fields
together parametrise G(T 0(e9))/K(E9). In addition, the indecomposable representation of
the co-adjoint T0(e9)∗ entails a single constrained field χM . In order to have manifestly
K(E9) covariant supersymmetry rules one has to introduce ρ̃ with a non-trivial supersym-
metry transformation [89]. This is also what we see above for K(E11) where we have to
extend e11 to T 0. Moreover, the dual dilaton ρ̃ is associated with an additional gauge sym-
metry shifting ρ̃ whose parameter is called Σ in [34] and which is generally needed for the
closure of the algebra of generalised Lie derivatives. In the present case, there is a similar
additional gauge parameter ΣM

Nα̃ in R(Λ1)⊗R(Λ3) as discussed in section 3.6:

δAn1n2n3 =
1

5!
Σp1...p5

n1n2n3p1...p5 ,

δAn1...n6 = −1

2
Σp1p2

n1...n6p1p2 ,

δhn1...n8;m = Σm;n1...n8 ,

δχM ;n1...n9 = −9∂[n1
ΣM ;|n2...n9] , (6.11)

where, compared to (4.19), we have relaxed the condition that Σ[m;n1...n8] = 0. This condi-
tion is the vanishing of the first component of the trace of ΣM

Nα̃. The gauge symmetry of
the traced parameter ΣN

Nα̃ fits precisely with the representation of the additional fields in
R(Λ2), and should allow to gauge-fix them at the price of making the supersymmetry re-
alised non-linearly with a compensating ΣN

Nα̃ transformation breaking K̃(E11) invariance
in the linearised approximation.

In the GL(11) decomposition, we would like to think of these additional gauge symme-
tries as being related to local Lorentz transformations, such that

ha1...a8;b ≡ ha1...a8,b + ha1...a8b , (6.12a)

Aa1...a9;b1b2b3 ≡ Aa1...a9,b1b2b3 +Aa1...a9[b1;b2b3] , (6.12b)

could be thought of as the dual graviton and the 3-form gradient dual in the vielbein
formulation. Recall that the semi-colon indicates the general tensor product, whereas the
comma implies instead that this is an irreducible GL(11) tensor. This justifies the notation
for these additional fields, which should not be confused with the fields X ∈ R(Λ2) with
the transformation rules (A.4).

Later on in section 7.2 we shall introduce extended field strengths including the ad-
ditional fields (6.12) in (7.24). As shown there, the extended field strengths are indeed
invariant under the transformations (6.11).

We conclude this section by giving a few consequences of the above supersymmetry
transformations for further reference. Combining the linearised supersymmetry transfor-
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mations of the irreducible fields, one concludes that the reducible field h8;1 transforms as

δsusyha1...a9;b = ε̄Γa1...a8,ψb +
1

12
εa1...a8

c1c2c3 ε̄Γc1c2c3bdψ
d . (6.13)

The coset field component A9,3 transforms as

δsusyAa1...a9,b1b2b3 = Ξa1...a9,b1b2b3 . (6.14)

We also do similar checks for the GL(4)×E7 decomposition in appendix E, and find pre-
fect agreement with the supersymmetry transformations of E7 exceptional field theory [90].

6.3 Vector-spinor field transformations and supersymmetry algebra

The supersymmetry variation of the gravitino in D = 11 supergravity in the linearised
approximation is δsusyψa = ∂aε. We shall now extend this transformation to a K̃(E11)

covariant supersymmetry variation. This can be done by making an ansatz involving the
higher level derivatives and fixing the free coefficients by K̃(E11) covariance, such that
δsusyψa transforms as ψa under K(e11). The result is

δsusyψa = ∂aε+
2

3
Γb∂abε−

1

6
Γabc∂

bcε− 1

3 · 4!
Γb1b2b3b4∂ab1b2b3b4ε

+
2

3 · 5!
Γab1...b5∂

b1...b5ε+
2

7!
Γa1...a7∂a1...a7,aε−

8

7!
Γaa1...a6ηbc∂

a1...a6b,cε

+
2

3 · 7!
Γaa1...a8∂

a1...a8ε− 2

3 · 7!
Γa1...a7∂aa1...a7ε+ . . . (6.15)

We have verified this expression for δsusyψa to be covariant under K(e11) transformations
including all terms varying into ∂1, ∂2 and ∂5 derivatives.

We can now verify that the linearised supersymmetry transformations are consistent
with the closure of the supersymmetry algebra on the bosonic fields. As usual in supergrav-
ity, one expects the algebra of local supersymmetry to only close modulo the equations of
motion and gauge transformations with parameters that are bilinear in the supersymmetry
spinor parameters ε. In the linearised approximation, the closure of the supersymmetry
algebra on the bosonic fields does not depend on the fields, and therefore cannot involve
the equations of motion. In this approximation one expects to simply get a bosonic gauge
transformation of parameter bilinear in the spinor ε. We recall that the bosonic theory,
without fermions Ψ, is not only invariant under generalised diffeomorphism of parameter
ξM in R(Λ1), but also under gauge transformation of constrained parameters ΣM

Nα̃ in
R(Λ1) ⊗ R(Λ3) as discussed in section 3.6 and at the end of the preceding section. As
the closure of two supersymmetries generally produces all gauge symmetries, we therefore
expect both of them to appear in the supersymmetry algebra. For simplicity we consider
a supersymmetry transformation of commuting parameter ε, such that the algebra is ob-
tained by applying twice the same variation. One computes straightforwardly (neglecting

– 44 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
5

derivatives ∂a1a2a3a4a5 and those of higher level)

(δsusy)2hab = δsusy(−ε̄Γ(aψb))

=−1

2
∂(a(ε̄Γb)ε)−

1

2
∂(a

c(ε̄Γb)cε)+
1

12
ηab∂

cd(ε̄Γcdε) , (6.16)

(δsusy)2Aa1a2a3 = δsusy(3
2 ε̄Γ[a1a2

ψa3])

=
3

4
∂[a1

(ε̄Γa2a3]ε)−
3

4
∂[a1a2

(ε̄Γa3]ε)−
1

8
∂b1b2(ε̄Γa1a2a3b1b2ε) ,

(δsusy)2Aa1...a6 = δsusy(3ε̄Γ[a1...a5
ψa6])

=−3

2
∂[a1

(ε̄Γa2...a6]ε)+
1

4
∂bc( 7

5!ηc[a1
εa2...a6b]d1...d5

ε̄Γd1...d5ε)

− 1

2
ε̄Γa1...a6b1b2∂

b1b2ε .

Apart from the last line in the variation of Aa1...a6 , all these terms are total derivatives and
can be rewritten as generalised Lie derivative gauge transformations (4.17) of parameter
−1

4ξ
M , with the components of ξM given by

ξa = ε̄Γaε ,

λab = −ε̄Γabε ,

λa1a2a3a4a5 = ε̄Γa1a2a3a4a5ε ,

ξa1...a7,b = − 7

5!
ηb[a1

εa2...a7]c1c2c3c4c5 ε̄Γc1c2c3c4c5ε . (6.17a)

The last line in (6.16), however, is not a total derivative and must be the component of
the parameter ΣM

Nα̃ in the gauge transformation (6.11). One can indeed cast it in the form

ΣM ;a1...a8 = ε̄Γa1...a8∂M ε , (6.18)

which is not a total derivative, but satisfies the strong section constraint as necessary for
the parameter ΣM

Nα̃.
Up to this level truncation in the higher level derivatives, and obtains therefore that

the supersymmetry algebra closes up to the expected gauge transformations of the theory.
This relies on the fact that the symmetric bilinear εε can be consistently embedded in
the representation R(Λ1). The antisymmetric bilinear ε1 ∧ ε2 can in turn be embedded
consistently in the representation R(Λ3). This is necessary for (6.18) to extend to a well-
defined ΣM

Nα̃ parameter in R(Λ1) ⊗ R(Λ3). One checks that the low level truncation
exhibits that this is indeed possible, in particular we discuss the case of the symmetric
bilinear in more detail in appendix D.15

15For the antisymmetric product, one finds that the 3-form, the 4-form and the scalar bilinear form
the antisymmetric rank 2 irreducible representation of SL(32) ∼= K̃(E11)/Iε. Indeed R(Λ3) first gives a
3-form, then a 4-form, a (3,1)-form and a (2,2)-form. The 4-form and the double trace of the (2,2)-form are
represented by the four-form and the scalar bilinears, while the other components vanish. All these three
bilinear representations appear repeatedly then at each level.
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6.4 Constrained scalar fields

The definition of the E11 exceptional field theory also requires the introduction of the
additional field χMα̃ that transforms instead in the representation associated to T−2, so in
order to construct a supersymmetric theory we also need to extend the module (Ξ,Υ) ∈
(e11 	K(e11)) iR(Λ2) to include the component R(Λ2). We shall argue first that there is
an indecomposable module with the structure

(X,Ξ,Υ) ∈ R(Λ2) i (e11 	K(e11)) iR(Λ2) . (6.19)

This module seems to exist as a restriction of an E11 module (which is not a submodule of T )

M−2
∼= R(Λ2) i e11 iR(Λ2) , (6.20)

extending the module of components of T−2 such that M−2/IR(Λ2)
∼= T−2.16

We consider the representative of the nine-form in R(Λ2)

Xa1...a9 = −1

2
εa1...a9b1b2 ε̄Γ

b1ψb2 . (6.21)

Its K(e11) variation gives according to appendix B

δ
(
ε̄Γ[aψb]

)
= −1

2
Λcd[aε̄Γ

cdψb] +
1

3
Λcd[aε̄Γb]

cψd +
2

3
Λabcε̄ψ

c +
1

6
Λcdeε̄Γab

cdψe , (6.22)

consistently with the assumption that

δXa1...a9 = −28Λ[a1a2a3
Ξa4...a9] +

1

18
Λb1b2b3Ξa1...a9,b1b2b3 + . . . (6.23)

according to (A.4), where the dots stand for terms in ε̄Γ2ψa and ε̄ψa that would appear in
the other fields (i.e. Ξ11,1, X10,2, X11,1) that we disregard here.

16The existence of the module M−2 can be checked at low level in the GL(3) × E8 decomposition, with
the additional component Aµ, BMµν , . . . in R(Λ2) with respect to T−2,

δhµ
ν = eMµ Ā

ν
M − fνMAMµ − δνµ

(
eMσ Ā

σ
M − fσMAMσ

)
,

δΦM = fMN
P eNµ Ā

µ
P − fMN

P fµPA
N
µ + fµMAµ ,

δAMµ = −eMν hµν + fPMNe
N
µ ΦP − fνNBMN

µν − fMN
P f

ν
Nh

P
µν +

1

2
fMN

P f
ν
NB

P
µν ,

δBMN
µν = 28PMN

PQe
P
[µA

Q
ν] + 1

2
ηMNηPQe

P
[µA

Q
ν] ,

δhMµν = −fNPMeN(µAPν) + eM(µAν) ,

and

δXµ = fνM (XM
µν + hMµν) + eMµ ΦM −

1

2
fνMB

M
µν , δAµ = fνMB

M
µν ,

δXM
µν = −2eM[µXν] − fMNP e

N
[µA

P
ν] + eM[µAν] , δBMµν = −2eM[µAν] .

The important feature is that one cannot avoid that δXα̃ transforms back into Φα̃ parametrised here by
Aµ, B

M
µν , . . . .
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We conjecture therefore that the set of bilinear εΨ can be identified as a K(e11) module
with successive quotients defined from E11 modules:

(X,Ξ,Υ) ∈ [R(Λ2) i (e11 	K(e11)) iR(Λ2)]/I(X,Ξ,Υ) , (6.24)

(Ξ,Υ) ∈ [(e11 	K(e11)) iR(Λ2)]/I(Ξ,Υ) , (6.25)

Υ ∈ R(Λ2)/IΥ . (6.26)

By construction of the module, the supersymmetry transformation of the field χM
α̃

must include ∂MX α̃ at linearised order. But because Υα̃ is in a submodule R(Λ2), it can
also appear in the supersymmetry variation of χMα̃ with the derivative ∂M acting either
on ε or ψ while preserving the strong section constraint. We shall now find that there
is a unique definition of the supersymmetry variation of χMα̃ that is consistent with the
supersymmetry algebra in the linearised approximation.

According to the discussion above, K(E11) imposes that the linearised supersymmetry
variation of the constrained field is of the form

δsusyχM ;a1...a9 =
1

2
εa1...a9b1b2

(
α∂M ε̄Γ

b1b2cψc − βε̄Γb1b2c∂Mψc − ∂M (ε̄Γb1ψb2)
)
, (6.27)

with free coefficients α and β that are not determined by K̃(E11) covariance, but will be
fixed by closure of the supersymmetry algebra momentarily. We have indeed seen that
the third term in (6.21) is fixed by K̃(E11) through the indecomposable structure of the
representation, while the only other possible terms must be obtained from the bilinear
Υa1a2 ∈ R(Λ2) with a derivative on either ε or ψa. Note that the section constraint implies
that the index M of χMα̃ must be attached to a derivative, but not necessarily to a total
derivative. The closure of the supersymmetry algebra implies that

(δsusy)2χM ;a1...a9 =
1

4
εa1...a9b1b2∂M∂

b1(ε̄Γb2ε)− 9∂[a1
(ε̄Γa2...a8]∂M ε) , (6.28)

where the first term is the gauge transformation of parameter ξa in (6.17) and the second
the gauge transformation of parameter ΣM ;a1...a8 with (6.18). One computes that this is
the case if and only if α = β = 1. We conclude that

δsusyχM ;a1...a9 =
1

2
εa1...a9b1b2

(
∂M ε̄Γ

b1b2cψc − ε̄Γb1b2c∂Mψc − ∂M (ε̄Γb1ψb2)
)
,

= 9∂M ε̄Γ[a1...a8
ψa9] − 9ε̄Γ[a1...a8

∂Mψa9] −
1

2
εa1...a9b1b2∂M (ε̄Γb1ψb2) . (6.29)

Note that this transformation is in agreement with the supersymmetry transformation of the
constrained 2-form found in E7 exceptional field theory [90, eq. (3.33)] with the identification
of χM ;a1a245678910 = Ba1a2M . From this ansatz, one extrapolates that K̃(E11) will fix the
linearised supersymmetry transformation of χMα̃ to be in general of the form

δsusyχM
α̃ = Υα̃(∂M ε,Ψ)−Υα̃(ε, ∂MΨ) + ∂MX

α̃(ε,Ψ) , (6.30)

where Υα̃(ε,Ψ) and X α̃(ε,Ψ) are the fermion bilinears in R(Λ2) introduced in this section.
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7 Supersymmetry of the field equations

Having established the linearised supersymmetry rules for all fields such that the supersym-
metry algebra closes, we now turn to studying the supersymmetry of the field equations. In
a first step, we determine the linearised Rarita-Schwinger equation for the vector-spinor Ψ

through K̃(E11) covariance. Next, we turn our attention to the duality equations, and show
that suitably constructed bilinears in fermions can be utilised to supercovariantise them.

7.1 Linearised Rarita-Schwinger equation and its supersymmetry

If the vector-spinor equation follows from the variation of a Lagrangian, the equation of
motion for ψa should transform in the K̃(E11) representation conjugate to that of ψa. For
K̃(E11), the conjugate representation is given by ρa with

δρa =
1

12
ΛbcdΓ

bcdρa +
2

3
ΛabcΓbρc −

1

6
ΛabcΓbcdρ

d , (7.1)

such that δ(ρaψa) = 0 under K(e11). It is important here that the index contraction in
the last term differs from that in (6.2a). Note that because of the non-existence of an
invariant bilinear form on the K̃(E11) vector-spinor, the conjugate representation cannot
be obtained by applying such a bilinear form. This is different from the situation for K(E10)

where Γabψb is conjugate to ψa [56].
The starting point for a K̃(E11) invariant Rarita-Schwinger equation is the usual

Spin(1, 10) covariant linearised Rarita-Schwinger equation of eleven-dimensional supergrav-
ity: Γabc∂bψc = 0. As the partial derivative ∂a transforms into the other derivatives in R(Λ1)

according to (4.4), one needs to extend this equation by the other derivatives in order to
ensure K̃(E11) covariance. Making an ansatz for the extended derivatives and requiring the
Rarita-Schwinger equation to transform as in (7.1) leads to

ρa = Γabc∂bψc + 5∂abψb + 2Γab∂bcψ
c + 2Γbc∂

abψc +
1

2
Γabcd∂

bcψd +
5

6
Γb1b2b3∂

ab1b2b3cψc

+
1

12
Γab1b2b3b4∂b1b2b3b4cψ

c +
1

12
Γb1b2b3b4c∂

ab1b2b3b4ψc +
1

120
Γac1...c5b∂c1...c5ψb + . . .

(7.2)

up to the higher level derivatives in ∂7;1 etc. We have verified that this expression is K̃(E11)

covariant in all terms varying into ∂1 and ∂2 and expect that this structure can be extended
recursively to all orders in the derivatives. This will produce a formally infinite set of terms
but on section only a finite number of these will be non-zero, so equation (7.2) only involves
finitely many terms for any given specific solution to the section constraint.

In the linearised approximation, supersymmetry of the Rarita-Schwinger equation (7.2)
amounts to its gauge invariance under (6.15) for a spinor ε satisfying the section constraint.
Up to terms involving ∂2∂5, ∂5∂5 and higher level derivatives, we find

δsusyρa = 8∂ab∂bε+4Γab∂bc∂
cε− 1

6

(
Γab1b2b3b4 +8δab1Γb2b3b4

)(
3∂b1b2∂b3b4−∂b1b2b3b4c∂c

)
ε+. . . ,

(7.3)
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which vanishes by virtue of the section constraints

∂ab∂bε = 0 , 3∂[a1a2∂a3a4]ε = ∂a1a2a3a4b∂bε . (7.4)

Therefore we see that the section constraint is crucial for obtaining equations of motion
that are invariant under local supersymmetry.

7.2 Gauge invariant and supercovariant self-duality equation

We now study the fermionic modification of the duality equation (3.22). We shall first
argue that there is a remarkable representation-theoretic property of the K̃(E11) spinor Ψ in
relation to the field strengths, allowing the addition of fermion bilinears. Then we show that
one can define the generalised diffeomorphisms on Ψ such that the modification maintains
gauge invariance. Finally we show that the modified duality equation is supercovariant
under linearised supersymmetry transformations.

7.2.1 Embedding of fermion bilinears in field strength representation

We want to argue now that the representation of K(E11) defined by the duality equation
EI in (3.22), includes an unfaithful representation constructed out of bilinears in the vector-
spinor Ψ. More precisely, under K(E11), the representation of the field strength splits into
self-dual and anti-selfdual components T−1

∼= S+ ⊕ S−, and the field equation (3.9) is the
statement that F I = VIJF J belongs to S+. We shall argue that the vector-spinor bilinears
ΨΨ define an unfaithful representation of K(E11) homomorphic to S−/IΨΨ, where IΨΨ

denotes a certain K(E11) invariant subspace in S−.
As shown in table 2 and equation (4.14a), the central terms of the duality equation

of GL(11) weight 1
2 involve a four-form field strength and the dual of a seven-form field

strength. These can be constructed out of fermion bilinears as

ψ̄[a1
Γa2a3ψa4] and

1

5!
εa1a2a3a4

b1...b7ψ̄b1Γb2...b6ψb7 . (7.5)

Using the transformations (6.2a) one finds that17

δ
(
ψ̄[a1

Γa2a3ψa4]

)
= Λb[a1a2

(
ψ̄a3Γbψa4] + 2ψ̄bΓa3ψa4]

)
+

7

12
Λb1b2b3ψ[b1Γb2b2a1a2a3ψa4]

− 1

12
Λb1b2b3ψ

b1Γa1a2a3a4
b2ψb3 (7.6a)

and

δ

(
1

5!
εa1a2a3a4

b1...b7ψ̄b1Γb2...b6ψb7

)
= −24Λb[a1a2

ψ̄bΓa3a4]cψ
c − 1

12
εa1a2a3a4

b1...b7Λb1b2b3ψ̄b4Γb5b6ψb7

+ Λb1b2b3ψ̄
b1Γb2a1a2a3a4ψ

b3 + 6Λ[a1a2

b1ψ̄b2Γa3a4]b1b2b3ψ
b3 . (7.6b)

17A collection of fermion bilinear transformations can be found in appendix B.
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Therefore the variation of the combination

Oa1a2a3a4 = 3ψ̄[a1
Γa2a3ψa4] +

1

480
εa1a2a3a4

b1b2b3b4b5b6b7ψ̄b1Γb2b3b4b5b6ψb7

= 3ψ̄[a1
Γa2a3ψa4] +

1

4
ψ̄b1Γa1...a4b1b2ψ

b2 (7.7)

does not contain the term ψ̄[b1Γb2a1a2a3a4ψ
b3] and satisfies

δOa1a2a3a4 = −6Λb[a1a2
Oa3a4]

b − 1

144
Λb1b2b3εb1b2b3a1a2a3a4

c1c2c3c4Oc1c2c3c4 , (7.8)

where

Oa1a2
b = −1

2
ψ̄[a1

Γbψa2] − ψ̄bΓ[a1
ψa2] −

1

4
ψ̄c1Γa1a2

bc1c2ψc2 + ψ̄bΓa1a2cψ
c . (7.9)

The transformation (7.8) is in complete agreement with the K(E11) transformation of
the combination Fa1a2a3a4 + 1

7!εa1a2a3a4
b1...b7Fb1...b7 in (4.14a) as given in [47, eq. (5.58)].

This exhibits that the bilinear ΨΨ indeed transforms in the representation S−. At the next
level one obtains

δOa1a2
b = Λcd[a1

Oa2]
bcd − 1

9
Λcdeδ

b
[a1
Oa2]

cde + Λa1a2cO
b,c

+
1

2
ΛbcdOa1a2cd +

1

9
Λcdeδb[a1

Oa2]cde , (7.10)

where

Oa
b1b2b3 =

3

2
ψ̄[b1Γb2b3]ψa −

15

2
ψ̄[b1Γa

b2ψb3] − 3ψ̄cΓa
c[b1b2ψb3] +

1

4
ψ̄c1Γa

b1b2b3c1c2ψc2

− 3

2
δ[b1
a ψ̄b2Γb3]cψc , (7.11)

Oa,b = −3ψ̄aψb − ψ̄(aΓb)cψc −
1

4
ηabψ̄cΓ

cdψd , (7.12)

consistently with [47, eq. (5.59)]. Further variation underK(E11) according to [47, eq. (4.37)]

δOa,b = −1

6
Λc1c2c3O

c1c2c3(a,b) − 1

2
Λc1c2(aOc1c2

b) , (7.13)

δOa
b1b2b3 = 3Λc[b1b2Oac

b3] − 3

4
Λc1c2[b1δb2a Oc1c2

b3] − 1

6
Λc1c2c3Oa

b1b2b3c1c2c3

− Λac1c2O
b1b2b3c1,c2 +

3

8
Λc1c2c3δ

[b1
a Ob2b3]c1c2,c3 (7.14)

gives

Oa1a2a3a4,b =−ψ̄bΓa1a2a3a4cψc+ψ̄
[bΓa1a2a3a4]cψc−12ψ̄bΓ[a1a2a3ψa4]

+ηb[a1ψ̄c1Γa2a3a4]c1c2ψc2−12ηb[a1ψ̄a2Γa3a4]cψc−30ηb[a1ψ̄a2Γa3ψa4] , (7.15)

Oa
b1...b6 =

1

4
ψ̄c1Γa

b1...b6c1c2ψc2 +6ψ̄[b1Γa
b2...b6]cψc+12δ[b1

a ψ̄b2Γb3...b6]cψc

+3ψ̄aΓ
[b1...b5ψb6]+

75

2
ψ̄[b1Γa

b2...b5ψb6] . (7.16)
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This consistency check includes all field strengths from level −7
2 to 7

2 , and therefore takes
into account not only the standard field strength for the fields that appear already in En
exceptional field theory for n ≤ 8, but also the gradient dual 10-form field strengths (through
Oa

b1b2b3 and Oab1...b6) that are reminiscent of the affine structure of E9, and even the non-
dynamical 11-form field strengths (through Oa,b and Oa1a2a3a4,b) that only appear in E11.

We also check in appendix E that the fermion bilinear decomposed under Spin(1, 3)×
SU(8) gives consistently the supercovariantisation of the field strengths in E7 exceptional
field theory [90, 91].

The proposal, checked here at lowest levels, is therefore that the duality equation (3.22)
can be extended by fermion bilinears in the form

ÊI ≡ F I −MIKΩKJF
J − V−1I

IO
I = 0 . (7.17)

Here, V−1I
I is the E11/K(E11) vielbein in the field strength representation T−1 with I

denoting a localK(E11) index in that representation. The bilinears OI are the embedding of
the unfaithful representation of the ΨΨ bilinear into S−, mentioned at the beginning of the
section. Equation (7.17) is an E11 invariant extension of the bosonic duality equation EI by
fermion bilinears. We will use the symbol hat to denote the supercovariantisation as usual.

7.2.2 Gauge invariance of modified duality equation

For discussing gauge invariance below we also need to establish the action of generalised
diffeomorphisms on the spinor Ψ. As we discussed in section 3.5 and as is usual for fermions
one has to consider the vielbein formalism. Moreover, we consider the vielbein in a max-
imal parabolic gauge and this entails a compensating transformation X ∈ K(e11) in its
gauge transformation (3.30). The compensating transformation that appears in the gauge
transformation of the spinor is

δξΨ = ξM∂MΨ +
1

4
∂Mξ

MΨ +XΨ . (7.18)

Thus, Ψ is a scalar density from the point of view of diffeomorphisms but there is a non-
trivial induced K(e11) action due to the compensator. In general, the compensating trans-
formation X involves infinitely many generators of K(E11). However, if one chooses a
partial solution to the section constraint associated with the maximal parabolic gauge as
explained around (3.31), the compensating transformation X takes the simple form (3.32).
For the case of Levi GL(11), the solution to the section constraint amounts to keeping
only the external derivatives ∂µ and there is no compensating transformation. For general
GL(11 − n) × En there is a non-trivial compensating transformation. In appendix E, we
demonstrate that the resulting generalised diffeomorphism on the fermions is consistent
with formulas that have appeared in the case of E7 exceptional field theory [91].

The weight given in (7.18) above is fixed by gauge invariance of (7.17) as follows. As
the contribution OI is bilinear in fermions the weight of a single fermion should be half
the weight of F I to match the weight of the left-hand side of the equation, recalling that
V has no weight. As we derived in (3.21) that F I has weight 1/2, this fixes the weight of
Ψ to 1/4. All these weights can be ultimately traced back to the non-trivial weight of the
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derivative ∂M as the vielbein V has no weight. We shall see later that the weight 1/4 is
also consistent with a formal Rarita-Schwinger Lagrangian being gauge invariant.

Under a gauge transformation δξ we now find that the bosonic and fermionic terms
of the modified duality equation (7.17) transform in the same way with respect to the
transport and weight terms. The compensating X transformation on the fermion bilinear
OI gets converted into an E11 rotation in the field strength representation by the inverse
vielbein V−1 I

I such that ÊI transforms covariantly under generalised diffeomorphisms and
the modified duality equation is gauge invariant.

7.2.3 Supercovariance of modified duality equation

According to the discussion in section 6.2, the manifestly K̃(E11) invariant representation
of supersymmetry requires to extend the field content such that V ∈ G(T 0)/K(E11). In
this formulation one should take the element V−1I

I of the group G(T 0) accordingly in the
representation T−1. Note that T−1 is by construction a representation of G(T 0). Nev-
ertheless, we expect that there is a partially gauged fixed version of the theory in which
V ∈ E11/K(E11), and that these formulae are not modified; see the discussion below (6.10).

Note that there is no notion of superconvariant field strength in E11, and only the super-
covariant equation (7.17) defined above transforms under K(E11) into itself in the module
S−. Nonetheless, it will be convenient for comparison with eleven-dimensional supergravity
to write the supercovariant duality equation (7.17) as ÊI = 0 with ÊI = F̂ I − ηIKΩKJ F̂

K

for some F̂ I = F I + ΨΓIΨ whose components are reminiscent of the supercovariant su-
pergravity field strengths. However, it is important to keep in mind that these F̂ I do not
transform into themselves under K(E11) and that they are not supercovariant, only the
anti-selfdual component ÊI belongs to S− and is supercovariant.

In D = 11 supergravity the corresponding supercovariant expressions are in our con-
ventions

F̂a1a2a3a4 = Fa1a2a3a4 − 3ψ̄[a1
Γa2a3ψa4] , (7.19a)

F̂a1a2a3a4a5a6a7 = Fa1a2a3a4a5a6a7 −
21

2
ψ̄[a1

Γa2a3a4a5a6ψa7] . (7.19b)

That δsusyF̂ is independent of ∂ε when keeping only ∂a can be checked easily using the
transformation laws (6.3) and (6.15). Moreover, this combination is exactly the one that
is produced by the extended duality equation (7.17) when taking the terms in Oa1a2a3a4

of (7.7) without the Levi-Civita symbol ε11 into F̂4 and those with into F̂7. Similarly, one
checks that the supercovariant spin connection ω̂ab = ecω̂c,ab is in agreement with the first
three terms in Oa1a2

b given in (7.9). The field strength Fa1a2
b is related at the non-linear

level to the spin connection as

Fa1a2
b = −2ωb,a1a2 + 2ebm(e[a1

n∂men|a2]) , ωab = −1

2
ecFab

c + e[a
nden|b] , (7.20)

where the second term is a component of the Maurer-Cartan form in K(e11) that does not
require a supercovariantisation with the supersymmetry realisation in which

δsusyem
a = −1

2
ε̄Γ(aψb)emb , (7.21)
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which is natural in a coset construction. Therefore the supercovariantisation of Fabc must
be minus the one of the spin connection

F̂a1a2
b = Fa1a2

b +
1

2
ψ̄[a1

Γbψa2] + ψ̄bΓ[a1
ψa2] −

1

4
ψ̄c1Γa1a2

bc1c2ψc2 . (7.22)

The remaining term ψbΓa1a2cψ
c in (7.9) is traceless, and will only contribute to the super-

covariantisation of F9,a as

F̂a1...a9,b = Fa1...a9,b − 9ψ̄[a1
Γa2...a9]ψb , (7.23)

which is indeed consistent with the expected supercovariantisation of the dual graviton.
The discussion above was based on the field strengths of usual D = 11 supergravity.

In the E11 model built using the tensor hierarchy the field strengths receive additional
contributions from the constrained fields χMα̃ and ζMΛ in (3.12). Moreover, the manifestly
K̃(E11) covariant formulation of supersymmetry requires the additional fields parametrising
G(T 0)/K(E11), so one needs to complete the expressions given in (4.15) for the explicit
field strengths in the GL(11) decomposition. They are given by

Fa1a2
b = 2∂[a1

hb2]
c + ∂bcAa1a2c +

1

3
δb[a1

∂c1c2Ab2]c1c2 + . . . , (7.24a)

Fa1a2a3a4 = 4∂[n1
Aa2a3a4] −

1

2
∂c1c2Aa1a2a3a4c1c2 + . . . , (7.24b)

Fa1···a7 = 7∂[a1
Aa2···a7] + ∂b1b2ha1···a7b1;b2 −

1

2
χb1b2 ;a1···a7b1b2 + . . . , (7.24c)

Fa1···a9,b − Fa1···a9b = 9∂[a1
ha2···a9];b + χb;a1...a9 + . . . , (7.24d)

where ha1...a8;b = ha1...a8,b+ha1...a8b according to the discussion in section 6.2. In this section
we shall ignore derivatives at levels higher than ∂n and ∂n1n2 . We checked at first order
that these field strengths still transform under K(e11) according to

δFa1...a7 = 7∂[a1
δAa2...a7] + δ∂bcha1...a7b;c + . . .

=
9

2
Λb1b2c∂[a1

ha2...a7b1b2];c + . . .

=
1

2
Λb1b2c(Fa1a2...a7b1b2;c − Fa1a2...a7b1b2c) + . . . , (7.25)

when including the nine-form component h[a1...a8;b].
The supersymmetry transformation of the field χMα̃ was determined in (6.29). Let us

now show that this is consistent with the supercovariance of the duality equation

Êa1a2a3a4 ≡ F̂a1a2a3a4 +
1

7!
εa1a2a3a4

b1...b7F̂b1...b7 = 0 . (7.26)

The constrained field χ2
9 appears in the field strength F̂7 since F7 contains χMα̃ as written

in (7.24). The supersymmetry variation is

δsusyF̂a1...a7 = −21ε̄Γ[a1...a5
∂a6ψa7 − 21ε̄Γb[a1...a5

∂a6
bψa7] +

9

2
∂b1b2 ε̄Γ[a1...a7b1ψb2]

+ ε̄Γa1...a7b1∂
b1b2ψb2 −

7

2
∂b[a1

(
ε̄Γa2...a7]ψ

b
)
− 1

2
δsusyχb1b2a1...a7b1b2 , (7.27)
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while that of F̂4 is given by

δsusyF̂a1...a4 = 6ε̄Γ[a1a2
∂a3ψa4]−

1

2
∂b1b2

(
ε̄Γa1...a4b1ψb2

)
−ε̄Γb1b2[a1a2a3

∂b1b2ψa4]+6∂[a1a2
ε̄Γa3ψa4] .

(7.28)

The supercovariance of Êa1a2a3a4 determines all the terms in δsusyχb1b2a1...a7b1b2 in (6.29)
with a derivative on ε, and the ones with a derivative on ψa are exactly such that

δsusy Êabcd = −1

6
ε̄Γabcde ρ

e +
4

3
ε̄Γ[abc ρd] . (7.29)

The above shows that the duality equation for the bosons is related by supersymmetry
to the Rarita-Schwinger equation as in supergravity. We have checked this relation for all
terms containing ∂1 and ∂2 derivatives. The supersymmetry variation of the field χb1b2a1...a9

given in (6.29) also plays a key role for the cancellation of the unwanted terms involving ∂2

derivatives of the supersymmetry parameter and the gravitino, in order to achieve super-
covariance and supersymmetry.

A similar calculation can be done for the dual graviton equation using

δsusyF̂a1a2
b = −ε̄Γb∂[a1

ψa2] + ε̄Γ[a1
(∂a2]ψ

b − ∂bψa2]) + ∂b(ε̄Γ[a1
ψa2])

+
1

2
∂c1 ε̄Γa1a2

bc1c2ψc2 , (7.30a)

δsusy(F̂a1···a9,b − F̂a1···a9b) = 9ε̄Γa1...a8(∂a9]ψ
b − ∂bψa9])− 3

4∂[a1
(εa2...a9c1c2c3 ε̄Γ

b
c1c2c3dψ

d) ,

− 1
2εa1...a9c1c2∂

b(ε̄Γc1ψc2) . (7.30b)

Putting these together one obtains that

δsusy

(
F̂a1a2

b − 1
9!εa1a2

c1...c9(F̂c1···c9,
b − F̂c1···c9b

))
= −ε̄Γb∂[a1

ψa2] + ε̄Γ[a1
(∂a2]ψ

b − ∂bψa2]) + 2ε̄Γa1a2c∂
[cψb] − 1

2
ε̄Γa1a2

bc1c2∂c1ψc2

=
1

2
ε̄Γa1a2ρ

b − ε̄Γb[a1
ρa2] +

2

9
δb[a1

ε̄Γa2]Γ
cρc . (7.31)

We see again that the supersymmetry of the bosonic equations of motion gives the fermionic
Rarita-Schwinger equation. Note that in this case the component χb;a1...a9 is involved, so
this additional field is already necessary to understand the supersymmetry of the linearised
dual graviton equation in eleven dimensions.

The complete equation will take the form

δsusyÊI = ε̄Ga
Iρa , (7.32)

where GaI defines a K̃(E11) invariant tensor, implying that the multiplet of bilinears in ε
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and ρa is in the S− module as ΨΨ. One computes in particular that

δsusyÊa1a2a3a4 =
4

3
ε̄Γ[a1a2a3

ρa4]−
1

6
ε̄Γa1a2a3a4bρ

b , (7.33a)

δsusyÊa1a2
b =

1

2
ε̄Γa1a2ρ

b−ε̄Γb[a1
ρa2]+

2

9
δb[a1

ε̄Γa2]Γ
cρc , (7.33b)

δsusyÊab1b2b3 =
1

6
ε̄Γa

b1b2b3cρc−ε̄Γa[b1b2ρb3]− 2

3
ε̄Γb1b2b3ρa+

1

2
δ[b1
a

(
ε̄Γb2b3]cρc−ε̄Γb2ρb3]

)
,

(7.33c)

δsusyÊa,b = ε̄Γ(aρb)− 1

6
ηabε̄Γcρc , (7.33d)

δsusyÊa1a2a3a4,b = ε̄Γa1a2a3a4ρb−ε̄Γ[a1a2a3a4ρb]+
4

3
ηb[a1 ε̄Γa2a3a4]cρc−2ηb[a1 ε̄Γa2a3ρa4] , (7.33e)

δsusyÊab1...b6 =− 1

18
εa
b1...b6c1c2c3c4

(
ε̄Γc1c2c3ρc4−

1

8
ε̄Γc1c2c3c4dρ

d

)
+ε̄Γb1...b6ρa+2δ[b1

a

(
ε̄Γb2...b6]cρc−ε̄Γb2...b5ρb6]

)
(7.33f)

transform in the representation of the self-duality equation as they should.

8 Non-linear theory with fermions

In this section, we shall investigate how much of the structure of sections 6 and 7 can be
made non-linear. We propose that the non-linear self-duality equations including fermions
in (7.17) and the non-linear supersymmetry transformations for the bosonic fields (6.10),
are the actual equations and fields transformations of the E11 exceptional field theory. With
this assumption, we shall now attempt to define also the non-linear generalisations of the
field equations and supersymmetry transformations of the fermionic fields.

We consider the generalisation of the Rarita-Schwinger equation (7.2) in section 8.1 and
in section 8.2, we investigate the non-linear generalisation of the fermionic supersymmetry
transformation (6.15). As we shall see by comparison toD = 11 supergravity, our non-linear
proposals reproduce correctly the structure of the non-linear terms of D = 11 supergravity,
due to remarkable cancellations yielding only gauge invariant combinations of the low level
field strengths. However, we also get undesired additional contributions involving higher
level fields. While we do not know how to remove these contributions at present, we provide
evidence that the structures we write must be part of the complete answer.

8.1 Non-linear Rarita-Schwinger equation

In order to study possible non-linear equations of motion for the fermions, we first introduce
appropriate covariant derivatives and covariant tensors. We propose a Lagrangian in (8.12)
to describe the gravitino kinetic term, its Pauli couplings to generalised field strengths
and quartic fermion terms. Finally, we investigate the relation of our proposal to D = 11

supergravity.
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8.1.1 Ingredients of the non-linear fermionic terms

Equation (7.2) defines a K̃(E11) covariant linearised equation for the vector-spinor Ψ

through

ρa = Ga;bM∂Mψb = 0 , (8.1)

where Ga;bM is a K̃(E11) invariant tensor that also acts on the not explicitly shown spinor
indices. This equation is moreover consistent with linearised supersymmetry as defined
in (6.15). We expect the non-linear equation to be defined in a similar way but with the
partial derivative being replaced by a covariant derivative, plus additional terms depending
on the field strength F I , as well as appropriate cubic terms in the fermions. The natural
candidate for a covariant derivative is the one obtained from the K(e11) component of the
Maurer-Cartan form valued in the K(e11) representation of ψa. One defines the covariant
derivative from the Maurer-Cartan derivative

∂MVV−1 = PM −QM , QM ∈ K(e11) , PM ∈ T 0 	K(e11) , (8.2)

where here V is an element of G(T 0). For the terms in the level decomposition we shall
consider in this section, there is not yet a distinction between G(T 0) and E11, so the reader
may consider as well that V is the standard E11/K(E11) coset representative for simplicity.
The covariant derivative in tangent frame is defined as

DM = V−1N
M (∂N +QN ) , (8.3)

where we denote by M the tangent frame indices that transform under K(E11). We shall
also use the notation that

JM αt
α = V−1N

MJNαVtαV−1 = 2PM αt
α , (8.4)

for the current components in tangent frame.
The K̃(E11) Rarita-Schwinger equation must reduce to the standard eleven-dimensional

supergravity equation upon choosing the solution to the section constraint in which the fields
only depend on the eleven coordinates xm. In this case the covariant derivative reduces to

V−1N
a(∂N +QN )

∣∣∣
11

= e
1
2 ea

m(∂m +Qm) , (8.5)

where the notation |11 indicates that fields only dependent on the eleven coordinates xm

so that all the higher level derivatives can be disregarded, and the additional factor of
the vielbein determinant comes from the GL(11) weight of the R(Λ1) module. Note, how-
ever, that Qm still involves an infinity of fields as the section constraint only affects the
derivative index.

The spin connection can be rewritten in terms of the coset space connection Q|11 in
so(1, 10) and the field strength component Fn1n2

m
∣∣
11

= 2gmp∂[n1
gn2]p as

ωab = e[a
nden|b] −

1

2
ecFab

c
∣∣∣
11
. (8.6)
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The vielbein determinant is part of the E11/K(E11) coset representative, and as such
cannot appear separately without violating E11 symmetry. The way it is resolved for the
eleven-dimensional gravitino field ψ11D

m , is that it is related to the vector-spinor through

ψa = e
1
4 ea

mψ11D
m . (8.7)

Note that similar redefinitions were also necessary for K̃(E10), see [56].

8.1.2 Non-linear fermionic Lagrangian and Rarita-Schwinger equation

We shall now investigate the construction of the Lagrangian for the non-linear Rarita-
Schwinger equation. We are guided first by K(E11) invariance using the ingredients intro-
duced above. In principle, one would like to also check gauge invariance of the Lagrangian
using (3.21) and (7.18). Doing so requires new identities of K(E11) tensors that remain to
be investigated. We shall only study gauge invariance indirectly below in section 8.1.3 when
we analyse the Lagrangian in the D = 11 decomposition. As we shall see our proposal is
incomplete as it requires additional terms in order to reproduce D = 11 supergravity and
these additional terms are also expected to be necessary for gauge invariance.

Using the K(E11) invariant tensors we have introduced we can write the following
Lagrangian quadratic in fermionic fields

LRS
0 ∼ ψ̄aGa;bMDMψb +

1

4
ηIJF

IOJ , (8.8)

where Ga;bM is defined as in (8.1) and where OI is the ΨΨ bilinear in the T−1 representation
defined in section 7.2. By construction the covariant derivative DM is K̃(E11) covariant, so
the first term is manifestly K̃(E11) invariant. The second term is also manifestly K̃(E11)

invariant, and is non-zero according to the property that on-shell

F I = ηIKΩKJF
J +OI , OI = −ηIKΩKJO

J . (8.9)

The bilinear form ηIJ is given in [47, eq. (5.39)] as

ηIJF
IOJ

=
1

9!
(3

2)Fa1···a9,bO
a1···a9,b− 1

8!
(3

2)Fa1···a10O
a1···a10 +

1

7!
(1

2)Fa1···a7O
a1···a7 +

1

4!
(−1

2 )Fa1···a4O
a1···a4

+
1

2
(−3

2 )Fa1a2
bOa1a2

b−(−3
2 )Fab

bOacc+
4

6
(−5

2 )F a4
[a1a2a3

Oa4]
a1a2a3 +(−5

2 )Fa,bO
a,b+

1

4!
(−7

2 )Fa1···a4,bO
a1···a4,b

+
7

6!
(−7

2 )F a7
[a1···a6

Oa7]
a1···a6 +

9

8!
(−9

2 )F [a1
a2...a9,bOa1

a2...a9],b− 1

8!
(−9

2 )F ba1...a8,bOc
a1...a8,c+. . . (8.10)

However, this Lagrangian involves infinitely many fields and is formally infinite. We shall
now argue that one can partially resolve this problem by exhibiting that infinitely many
terms cancel upon using the self-duality equation (8.9), and that the resulting Lagrangian
agrees with the eleven-dimensional supergravity Lagrangian at low order in the level trun-
cation. However, this will not yet provide the complete answer. The Lagrangian must
not only give rise to a meaningful finite Rarita-Schwinger equation, but this equation must
moreover be gauge invariant. The Lagrangian (8.8) is not a priori gauge invariant, since
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neither the K(e11) covariant derivative nor the field strength F I is covariant under gener-
alised diffeomorphisms. Thus one will need to check gauge invariance separately. We shall
see that gauge invariance can also be achieved partially by modifying the corresponding
Rarita-Schwinger equation by a term proportional to the bosonic field equation ÊI .

First of all we will introduce a Darboux basis on T−1
∼= S+ ⊕ S− as a K(E11) module.

To argue why one needs to do this it is useful to recall the case of N = 8 supergravity
in four dimensions. In this case, the Lagrangian includes two terms that are not invariant
under the full R-symmetry group, but only under the subgroup SO(8) ⊂ SU(8) acting
on the 28 vector fields [92]. One of these two terms is in particular the source of the
Pauli coupling FΨΨ. For E11 we have similarly that T−1 is a symplectic representation
of E11, and therefore S± are conjugate unitary representations of K(E11), and one needs
to introduce a Lagrangian subspace that further breaks K(E11) to a subgroup preserving
a quadratic norm η+

IJ on S+ and S−. The choice of Lagrangian subspace is not unique,
as it is neither for the symplectic frame in four dimensions, but there is a natural choice
associated to any maximal standard parabolic subgroup of E11. This choice is defined by the
positive weight components in the corresponding parabolic subgroup decomposition. Since
in this section we want to compare with eleven-dimensional supergravity, we shall use the
Lagrangian subspace determined by the GL(11) weight, such that η+

IJ is the projection of
ηIJ to the negative weight components along I, i.e. for a positive weight component (1

2 + k)F I

one has (1
2 + k)F Iη+

IJ = 0, and is non-degenerate on the negative weight (−1
2 + k)F Iη+

IJ 6= 0.
More explicitly, we take

η+
IJF

IOJ

=
1

4!
(−1

2 )Fa1···a4O
a1···a4 +

1

2
(−3

2 )Fa1a2
bOa1a2

b−(−3
2 )Fab

bOacc

+
4

6
(−5

2 )F a4
[a1a2a3

Oa4]
a1a2a3 +(−5

2 )Fa,bO
a,b+

1

4!
(−7

2 )Fa1···a4,bO
a1···a4,b

+
7

6!
(−7

2 )F a7
[a1···a6

Oa7]
a1···a6 +

9

8!
(−9

2 )F [a1
a2...a9,bOa1

a2...a9],b− 1

8!
(−9

2 )F ba1...a8,bOc
a1...a8,c+. . .

(8.11)

Now we can define

LRS = ψ̄aG
a;bMDMψb +

1

4

(
ηIJF

IOJ + η+
IJ : 1

2(EI + ÊI)OJ :
)
,

= ψ̄aG
a;bMDMψb +

1

2
η+
IJF

IOJ − 1

8
: η+

IJO
IOJ : , (8.12)

where the normal ordered product is introduced on the infinite sum of quartic fermions to
regularise it. The bilinear terms combine to give a finite set of contributions for each field
in the GL(11) decomposition for a chosen solution to the section constraint, so even if there
is an infinite set of fields contributing to the Rarita-Schwinger equation, it makes sense as
a formal sum over the infinite set of fields. By contrast, η+

IJO
IOJ would involve infinitely

many times the same vector-spinor fields and must be replaced by a finite polynomial in
the vector-spinor that we write : η+

IJO
IOJ :. We shall argue below that this polynomial

can be determined by K̃(E11) invariance. The Lagrangian (8.12) is not manifestly K̃(E11)
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invariant, but the corresponding Rarita-Schwinger equation ρ̂a = 0 obtained by variation via

δψ̄aρ̂
a =

1

2
δLRS + ∂M (. . . ) , (8.13)

differs from the manifestly covariant one ρ̂a0 defined from LRS
0 above by a term proportional

to the equations of motion

ρ̂a = Ga;bM
(
DMψb − 1

2T
αN

MPNαψb
)

+
1

4
η+
IJF

I ∂
LOJ

∂ψa
− 1

8
: η+

IJO
I ∂

LOJ

∂ψa
:

= ρa0 +
1

8
η+
IJ Ê

I ∂
LOJ

∂ψa
, (8.14)

so that it is ensured to be covariant under K̃(E11), modulo term that vanish when the
duality equation ÊI = 0 is satisfied. Note that the N = 8 Rarita-Schwinger equation is
only covariant under SU(8) modulo the twisted self-duality equation for the 28 vector fields
in four dimensions [92], so it is to be expected that the same complication must arise in
E11 exceptional field theory.

The extra term appearing with the covariant derivative can be understood in terms of
the current JMα as

DM − 1
2V

N
MT

αP
NPPα = DM − 1

4T
αN

MJαN , (8.15)

such that it is a weight term that appears at level 0 in the GL(11) decomposition because
of the e

1
4 in the definition of the vector-spinor (8.7).

Note moreover that the K̃(E11) invariant Lagrangian LRS
0 in (8.8) does not include

quartic terms in the vector-spinor. Indeed, one can infer from the invariance under the
K̃(E10) ⊂ K̃(E11) subgroup that there is no quartic invariant in the vector-spinor. Under
SO(10), ψa decomposes as ψa for a = 1 to 10 and λ = ψ0−Γ0

∑10
a=1 Γaψa, which transform

respectively under K(e10) as a vector-spinor and a spinor [56]. However, the vector-spinor
of K̃(E10) transforms under a quotient subgroup SO(32, 288) = K̃(E10)/Iψ [93], so there
is no quartic antisymmetric invariant that can be written. One straightforwardly concludes
that there is no quartic invariant under K̃(E11).

The necessity of introducing cubic terms in the fermions would therefore arise when one
introduces a Lagrangian subspace to define the Rarita-Schwinger equation. The Lagrangian
LRS in (8.12) is not K̃(E11) invariant and does have quartic fermion terms. We stress that
it is still formal, since it involves a sum over infinitely many fields and infinitely many
components. We shall argue that one can make sense of its part that is quadratic in the
vector-spinor by expanding in level, such that cancellations arise for different fields at each
level. This answer is nonetheless incomplete, and one will need to add other terms to the
Lagrangian. The situation is more complicated for the quartic terms in the vector-spinors,
since the naive polynomial does not even make sense formally. The bilinear ΨΨ includes
61 776 components that appear infinitely many times in OI in the infinite representation
S−, so there is no way to directly make sense of the infinite sum of terms appearing in
η+
IJO

IOJ . Instead of defining : η+
IJO

IOJ : through some regularisation scheme, we hope
that one could think of : η+

IJO
IOJ : as a finite quartic polynomial in the vector-spinor that

is determined by (on-shell) K(e11) covariance of the non-linear Rarita-Schwinger equation.
Let us explore this idea in some more detail.
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The component of the Rarita-Schwinger equation linear in ψa is18

ρa = ρa0 +
1

8
η+
IJE

I ∂
LOJ

∂ψa
, (8.16)

and transforms by construction under K(e11) as

δρa− 1

12
ΛbcdΓ

bcdρa− 2

3
ΛabcΓbρc+

1

6
ΛabcΓbcdρ

d (8.17)

= δ

(
1

8
η+
IJE

I ∂
LOJ

∂ψa

)
−η+

IJE
I

(
1

96
ΛbcdΓ

bcd∂
LOJ

∂ψa
+

1

12
ΛabcΓb

∂LOJ

∂ψc
− 1

48
ΛabcΓbcd

∂LOJ

∂ψd

)
= Λb1b2b3EIRaIb1b2b3 ,

for someRa Ib1b2b3 , since EI transforms into itself under K(e11). When evaluated on section,
one may hope that most of the components of EI cancel such that EIRa Ib1b2b3 would only
involve finitely many components of EI in a level decomposition. If this were true, the
purported regularised quartic term in the fermions would be determined then such that it
would transform under K(e11) as

δ

[
1

8
: η+

IJO
IOJ :

]
=

1

2
Λb1b2b3O

I ψ̄aRa Ib1b2b3 . (8.18)

The full Rarita-Schwinger equation with cubic fermion terms would then transform under
K(e11) as

δρ̂a − 1

12
ΛbcdΓ

bcdρ̂a − 2

3
ΛabcΓbρ̂c +

1

6
ΛabcΓbcdρ̂

d = Λb1b2b3 ÊIRa Ib1b2b3 . (8.19)

Whether a regularisation prescription with (8.18) exists and produces finite expressions,
needs to be established.

8.1.3 Relation to D = 11 supergravity

Let us finally describe how the conjectured Lagrangian LRS partly reproduces the eleven-
dimensional supergravity Lagrangian when the fields only depend on the eleven coordinates
xm. In GL(11) parabolic gauge, the Maurer-Cartan form dVV−1 only has components at
positive levels

dVV−1 = ea
mdem

bKb
a +

∞∑
k=1

J (k)

Ak
EAk = P −Q , (8.20)

where

J (1)

a;b1b2b3

∣∣∣
11

= e
1
2 ea

meb1
n1eb2

n2eb3
n3∂mAn1n2n3 ,

J (2)

a;b1...b6

∣∣∣
11

= e
1
2 ea

meb1
n1 . . . eb6

n6
(
∂mAn1...n6 − 10An1n2n3∂mAn4n5n6

)
, (8.21)

and similarly for higher GL(11) levels. Here we slight abuse of notation to denote the strictly
positive components of the Cartan-Maurer by J (k) although they only agree with the strictly

18The notation ∂L

∂ψa means the convention to differentiate fermions from the left.
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positive components of the current VJV−1 and not J itself. Because of the expression of
the Maurer-Cartan form (8.20), at non-zero level, the composite K(e11) connection and the
coset components are both defined by J (k)

Ak
:

Q= e[a
mdem|b]K

ab− 1

2

∞∑
k=1

J (k)

Ak
(EAk−FAk) , P = e(a

mdem|b)K
ab+

1

2

∞∑
k=1

J (k)

Ak
(EAk+FAk) .

(8.22)

The covariant derivative is not covariant under generalised diffeomorphisms, because of the
terms in J (k)

Ak
that involve the higher level fields through an ordinary partial derivative and

not an exterior derivative. But this is also the case for the field strength at level ` ≤ −3
2 −k

for k ≥ 1 evaluated on section, see (4.15). One finds that most of these field strengths
vanish on section, in particular (−5

2 )F a,b|11 = 0 and (−7
2 )F a1a2a3a4,b|11 = 0. The non-vanishing

ones are those that are in the SO(1, 10) representation of the field of level k times the
standard co-tangent space, and in that case

(−3
2 − k)Fa;Ak

∣∣∣
11

= (−1)kJ (k)

a;Ak
, (8.23)

according to [47]. We observe that the components J (k) include the gauge invariant field
strengths (−3

2 + k)F for k = 0, 1, 2. In fact, we are going to show that in the Rarita-Schwinger
Lagrangian these components J (k) combine remarkably into the gauge invariant combination
(−3

2 + k)F . This kind of recombination cannot occur, however, for k ≥ 3 since (−3
2 + k)F contains

the constrained χ fields that are not present in J (k). For k ≥ 3, the J (k) would need to cancel
in the Rarita-Schwinger Lagrangian for gauge invariance but preliminary calculations show
that they do not.

We now assemble the various pieces for expanding the Lagrangian (8.12) in GL(11)

decomposition to exhibit the remarkable recombinations mentioned above. The covariant
derivative at level zero D(0)

m only includes the SO(1, 10) connection Q(0)
m

D(0)
m ψa = ∂mψa + e[a

n∂men|b]ψ
b +

1

4
eb
n∂mencΓ

bcψa . (8.24)

The Pauli couplings at level −1
2 and −3

2 give

1

4!
(−1

2 )Fa1a2a3a4O
a1a2a3a4 +

1

2
(−3

2 )Fa1a2
bOa1a2

b−(−3
2 )Fab

bOacc (8.25)

= 2ψ̄a

(
−1

8
ΓabcΓ

deFde
bψc+

1

2
ΓabdFbc

dψc
)

+
1

8
Fa1a2a3a4

(
ψ̄a1Γa2a3ψa4 + 1

12 ψ̄b1Γa1...a4b1b2ψb2

)
− 3

2
F[a1a2;a3]

(
1
2 ψ̄

a1Γa2ψa3 + 1
4 ψ̄c1Γa1a2a3c1c2ψc2−ψ̄a1Γa2a3cψc

)
,

so, using that F[a1a2;a3]|11 = 0, the corresponding contributions to the Lagrangian combine
into[

ψ̄aΓ
abcD(0)

b ψc+
1

2

(
1

4!
Fa1a2a3a4O

a1a2a3a4 +
1

2
Fa1a2

bOa1a2
b−FabbOacc

)]∣∣∣∣
11

= ψ̄aΓ
abceb

m
(
∂mψc+ωmc

dψd+ 1
4ωmd1d2Γd1d2ψc

)
+

1

192
Fa1a2a3a4ψ̄b1Γb1Γa1...a4Γb2ψb2 .

(8.26)
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The first term reproduces the standard covariant derivative of the gravitino field, where
one notes that the term in 1

4 ψ̄aΓ
abce−1∂beψc = 0 due to the e

1
4 rescaling in (8.7) drops

out by symmetry. Note that we drop the explicit level when there is no ambiguity, but we
shall keep it for the field strength of level ` ≤ −5

2 . The second term is the expected Pauli
coupling in eleven-dimensional supergravity, but with a factor of one-half.

To exhibit the cancellation of the non gauge invariant terms between ψ̄aρ
a and

1
2η

+
IJF

IOJ one needs to consider higher levels. The kinetic term expands as

ψ̄aΓ
abcDbψc = ψ̄aΓ

abcD(0)

b ψc +

∞∑
k=1

ψ̄aΓ
abcδ(1

2J
(k)

b )ψc , (8.27)

where δ(1
2J

(k)

b ) denotes the K(e11) action of the corresponding component. At the first level
has the contribution

ψ̄aΓ
abcδ(1

2J
(1)

b )ψc

= − 1

12
Ja
b1b2b3ψ̄c1Γc1ac2

(
1
2Γb1b2b3ψc2 + 4ηc2b1Γb2ψb3 − Γc2b1b2ψb3

)
=

1

2
Ja
b1b2b3

(
1
12 ψ̄c1Γc1c2ab1b2b3ψc2 −

3

2
ψ̄b1Γab2ψb3 − δa[b1ψ̄b2Γb3]cψ

c + 1
2 ψ̄cΓ

ca
[b1b2ψb3]

)
.

(8.28)

The Pauli coupling at level −5
2 gives using (7.11) and (8.11)

4

6
Oa[b1b2b3

(−5
2 )Fa]

b1b2b3 =

(
1

4
ψ̄[b1Γb2b3]ψa −

5

4
ψ̄[b1Γa

b2ψb3] +
1

2
ψ̄cΓca

[b1b2ψb3]

+
1

24
ψ̄c1Γc1c2ab1b2b3ψc2 − δ[b1

a ψ̄b2Γb3]cψc

)
(−5

2 )Fa
b1b2b3 . (8.29)

Using (−5
2 )Fa

b1b2b3 |11 = −J (1)
a
b1b2b3 when neglecting higher level derivatives, one gets from the

previous two results

ψ̄aΓ
abcδ(1

2J
(1)

b )ψc +
1

2

4

6
Oa[b1b2b3

(−5
2 )Fa]

b1b2b3
∣∣
11

=
1

192
Fa1a2a3a4ψ̄b1Γb1Γa1...a4Γb2ψb2 , (8.30)

so that all the non gauge invariant terms disappear. Importantly, one gets an additional
contribution to the Pauli coupling and the sum of these first two terms is in full agreement
with the supergravity Lagrangian.

At the next level, using the fact that the K(e11) action on the vector-spinor at level 2
is the same as for K(e10) given in [56], i.e.

δ(1
2J

(2)

b )ψc =
1

2·6!

(
1

2
J (2)

b
a1...a6Γa1...a6ψc−10J (2)

b:c
a1...a5Γa1...a4ψa5 +4J (2)

b
a1...a6Γca1...a5ψa6

)
,

(8.31)
one finds that

ψ̄aΓ
abcδ(1

2J
(2)

b )ψc =
1

2 · 6!

(
− 1

2
ψ̄cΓab1...b6cdψ

d − 45ψ̄b1Γb2...b5
aψb6

+ 6ψ̄b1Γb2...b6
acψc + 30δab1ψ̄

cΓcb2...b5ψb6

)
J (2)
a
b1...b6 . (8.32)
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The Pauli coupling on the other hand, upon using (7.16), gives

7

2 · 6!
Oa[b1...b6

(−7
2 )Fa]

b1...b6 =
1

2 · 6!

(
1

4
ψ̄cΓab1...b6cdψ

d +
75

2
ψ̄b1Γb2...b5

aψb6 + 3ψ̄aΓb1...b5Γb6

− 6ψ̄b1Γb2...b6
acψc − 30δab1ψ̄

cΓcb2...b5ψb6

)
(−7

2 )Fa
b1...b6 . (8.33)

Combining (8.32) with (8.33) gives

ψ̄aΓ
abcδ(1

2J
(2)

b )ψc +
1

2

7

6!
Oa[b1...b6

(−7
2 )Fa]

b1...b6
∣∣
11

= − 1

192

1

7!
εa1a2a3a4

b1...b7Fb1...b7ψ̄b1Γb1Γa1...a4Γb2ψb2 ,

(8.34)
where we note that the last two terms in (8.32) with (8.33) cancel each other and the re-
maining terms sum up to an expression that is totally antisymmetric in [b; b1 . . . b6], thereby
making it possible to use the relation J (2)

[a;b1...b6]|11 = (−7
2 )F[a;b1...b6]|11 = 1

7
(1

2)Fab1...b6 |11. From
level ` = 2 one gets therefore in total

ψ̄aΓ
abcDbψc+

1

2
η+
IJF

IOJ = ψ̄aΓ
abc∇bψc+

1

96
Fa1a2a3a4ψ̄bΓ

bΓa1a2a3a4Γcψc

− 1

192

1

7!
εa1a2a3a4

b1...b7Fb1...b7ψ̄b1Γb1Γa1...a4Γb2ψb2 +. . . , (8.35)

which would give the correct equation if one had not included the contribution from the
level 2 field. It is difficult to imagine which kind of contribution would eliminate it.

For higher levels k ≥ 3 one cannot get the same type of cancellation, because the J (k)
a

factor does not include the χ fields present in the gauge invariant combination (−3
2 + k)F . They

thus cannot recombine into a component of EI in order to contribute to a term involving
only the metric and the 3-form gauge field. Preliminary calculations show that they do not
cancel either. Hence it seems that we are still missing a term in the Lagrangian that would
cancel all the contributions from level 2 to infinity. At present, we do not have a candidate
for such terms.

8.2 Non-linear supersymmetry transformations

Let us now consider the non-linear supersymmetry transformation of the fermion, the linear
transformation was given in (6.15). At the non-linear level, one expects that the partial
derivative will again be replaced by the K̃(E11) covariant derivative, plus possibly addi-
tional terms involving the field strength F I and higher order terms in Ψ, such that the
supersymmetry transformation may read

δsusyψa = Ga
M
(
DM + 1

2T
αN

MPNα
)
ε− 1

4
η+
IJF

I Gᵀ
a
Jε+

1

8
: ηIJO

IGᵀ
a
J : ε

= Ga
M
(
DM + 1

2T
αN

MPNα
)
ε− 1

8

(
ηIJF

IGᵀ
a
J + : η+

IJ Ê
IGᵀ

a
J :
)
ε , (8.36)

where GaM and Gᵀ
a
J are the K̃(E11) invariant constant tensors in the Spin(1, 10) Cifford

algebra that define (6.15) and (7.32). The covariant derivative includes the same weight
term with the opposite sign as for the vector-spinor (8.15), consistent with the fact that
the εΨ bilinear does not carry a weight. The regularisation prescription is understood to
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work as for the Rarita-Schwinger equation, such that the supersymmetry variation is only
covariant under K̃(E11) modulo a term in the self-duality equation, and the bilinear term
: ηIJO

IGᵀ
a
J : in ΨΨ is determined to restore K̃(E11) covariance. This proposed ansatz is not

a priori exhaustive, and we expect to miss some terms that would contribute at higher level.
The spinor is related to the eleven-dimensional spinor parameter as

ε = e−
1
4 ε11D , (8.37)

so that the covariant derivative term in the eleven-dimensional supergravity supersymmetry
transformation reads19

∇nε = e−
1
4∂nε

11D +
1

4
ωnabΓ

abe−
1
4 ε11D = ∂nε+

1

4
ωnabΓ

abε+
1

8
gpq∂ngpqε

= D(0)
n ε+

1

4
gpq
(
∂pgqn − 1

2∂ngpq

)
ε+

1

4

(
Fnp

p|11 −
1

2
en cFab

c|11Γab
)
ε . (8.38)

The covariant derivatives itself gives

Daε = D(0)
a ε−

1

24
J (1)
a
b1b2b3Γb1b2b3ε+

1

4 · 6!
J (2)
a
b1...b6Γb1...b6ε+ . . . . (8.39)

To construct the coupling to the field strength we need the components of the tensor Gᵀ
a
I .

They can be computed from the definition (7.32) using (7.33a) as

Gᵀ
a;b1b2b3b4

=
4

3
ηa[b1Γb2b3b4] −

1

6
Γab1...b4 ,

Gᵀ
a;b1b2

c =
1

2
δcaΓb1b2 − ηa[b1Γb2]

c +
2

9
ΓaΓ[b1δ

c
b2] ,

Gᵀ
a;b
c1c2c3 =

1

6
Γab

c1c2c3 + δ[c1
a Γb

c2c3] +
2

3
ηabΓ

c1c2c3 − 1

2
δ

[c1
b Γa

c2c3] − 1

2
δ

[c1c2
ab Γc3] ,

Gᵀ
a;
b,c = δ(b

a Γc) − 1

6
ηbcΓa ,

Gᵀ
a;b
c1...c6 = − 1

18
εb
c1...c6d1...d4

(
ηad1Γd2d3d4 −

1

8
Γad1d2d3d4

)
+ ηabΓ

c1...c6

− 2δ
[c1
b Γa

c2...c6] − 2δ
[c1c2
ab Γc3c4c5c6] . (8.40)

Using then (8.11), the components of Gᵀη ≡ η+
IJG

ᵀ
a
J are given by

Gᵀη
a;b1b2b3b4

=
1

18

(
ηa[b1Γb2b3b4] −

1

8
Γab1...b4

)
, (8.41)

Gᵀη
a;b1b2

c =
1

4
δcaΓb1b2 −

1

2
ηa[b1Γb2]

c − ηa[b1δ
c
b2] ,

Gᵀη
a;b
c1c2c3 =

1

36
Γab

c1c2c3 +
1

6
δ[c1
a Γb

c2c3] +
1

9
ηabΓ

c1c2c3 +
1

6
δ

[c1
b Γa

c2c3] − 2

3
δ

[c1c2
ba Γc3] ,

Gᵀη
a;b
c1...c6 = − 1

18 · 6!
εb
c1...c6d1...d4

(
ηad1Γd2d3d4 −

1

8
Γad1d2d3d4

)
+

1

6!
ηabΓ

c1...c6

− 4

6!
Γa

[c1...c5δ
c6]
b +

10

6!
δ[c1
a Γc2c3c4c5δ

c6]
b .

19Here, ∇n denotes the full covariant derivative including both the spin and affine connection such that
∇nema = 0, such that ∇n effectively only acts on ε11D.

– 64 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
5

Putting these components together, one obtains

−1

4
η+
IJF

IGᵀ
a
J = 1

4Fab
b− 1

16F
b1b2

aΓb1b2 + 1
8Fab

cΓbc+
1

288

(
Γa

b1b2b3b4−8δb1a Γb2b3b4
)
Fb1b2b3b4

+
1

24
J (1)
a
b1b2b3Γb1b2b3 +

1

4

(
1

6
Γab1b2J

(1)
c
b1b2c− 2

3
ΓbJc(1)abc

)
− 1

4·6!
J (2)
a
b1...b6Γb1...b6 +

1

4

(
4

6!
Γab1...b5J

(2)
c
b1...b5c− 1

3·4!
Γb1...b4Jc(2)ab1...b4c

)
− 1

242

(
Γa

b1b2b3b4−8δ[b1
a Γb2b3b4

) 1

7!
εb1...b4

c1...c7Fc1...c7 +. . . , (8.42)

where the dots state for the terms involving the field strength component F (−3
2 − k)

a;Ak
for k ≥ 3.

Then we need to compute the term in GaMTαNMPNα. For this one first computes that

2TαNaPNα
∣∣
11

= e
1
2 ea

ngpq
(
∂pgqn − 1

2∂ngpq

)
,

2TαNa1a2PNα
∣∣
11

= J (1)
c
a1a2c ,

2TαNa1...a5PNα
∣∣
11

= −J (2)
c
a1...a5c . (8.43)

For establishing these relations, we have used the K(E11) transformations of the various
components of ∂M leading to ∂m

δ∂m = km
n∂n − 1

2kn
n∂m , δ∂n1n2 = fn1n2p∂p , δ∂n1...n5 = −fn1...n5p∂p . (8.44)

These formulas extend the level ` = 1 transformations given in (4.4). Substituting the
components of GaMTαNMPNα to the ones of ∂M in (6.15) one obtains

2Ga
MTαNMPNα

∣∣
11

= e
1
2 ea

ngpq
(
∂pgqn − 1

2∂ngpq

)
+

2

3
ΓbJc(1)abc −

1

6
Γab1b2J

(1)
c
b1b2c−

+
1

3 · 4!
Γb1...b4Jc(2)ab1...b4c −

4

6!
Γab1...b5J

(2)
c
b1...b5c + . . . , (8.45)

up to terms involving J (k)

Ak
for k ≥ 3.

Altogether, one obtains eventually that all the non gauge invariant terms cancel out
such that(
Ga

M
(
DM+ 1

2T
αN

MPNα
)
ε− 1

4
η+
IJF

IGᵀ
a
Jε

)∣∣∣
11

=D(0)
a ε+

1

4
e

1
2 ea

ngpq
(
∂pgqn− 1

2∂ngpq

)
ε+

1

4

(
Fab

b− 1

2
Fb1b2;aΓ

b1b2

)
ε

+
1

288

(
Γa

b1b2b3b4−8δb1a Γb2b3b4
)
Fb1b2b3b4ε−

1

242

(
Γa

b1b2b3b4−8δ[b1
a Γb2b3b4

) 1

7!
εb1...b4

c1...c7Fc1...c7ε

=∇aε+
1

288

(
Γa

b1b2b3b4−8δb1a Γb2b3b4
)(

Fb1b2b3b4−
1

2·7!
εb1...b4

c1...c7Fc1...c7

)
ε . (8.46)

We recover therefore the same situation as for the Rarita-Schwinger equation. Namely, if we
had considered naively the level truncation to the level 1 field, we would have recovered the
expected supersymmetry transformation of the gravitino potential in eleven-dimensional
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supergravity. However, the level 2 fields gives an extra contribution that is nonetheless
gauge invariant in eleven-dimensional supergravity. One expects similarly that the higher
level fields will also give similar contributions, and the absence of χMα̃ field in the current
components J (k)

a for k ≥ 3, forbids to possibly eliminate them using the duality equations.
For the same reason, this proposal for the non-linear supersymmetry variation of the vector-
spinor cannot be complete and there is some structure yet to be understood.

The resolution of this problem would permit to understand the notion of gener-
alised SL(32) ∼= K̃(E11)/Iε holonomy for the full supergravity field equations, generalising
the constructions that have been implemented in E7 generalised geometry for the SU(8)

holonomy [94].

9 Conclusions

In this paper we have constructed non-linear duality equations that are invariant under E11

generalised diffeomorphisms. These equations involve several crucial E11 group theoretical
properties that are understood thanks to the use of the tensor hierarchy algebra T (e11).
The tensor hierarchy algebra defines a differential complex for fields satisfying the section
constraints, and provide in particular a field strength representation that generalises the
embedding tensor representation of gauged supergravity. The field strength can only be
defined as an E11 tensor provided that one considers additional constrained fields χMα̃

transforming in an indecomposable representation of E11. We have provided strong evi-
dence that a certain algebraic identity between E11 structure coefficients holds, thanks to
which one can prove that the first order duality equation we propose in this paper is invari-
ant under E11 generalised diffeomorphisms. We find that there is also a formulation of the
theory with yet more fields, such that the scalar fields parametrize not only E11/K(E11)

but an extended non-semi-simple coset G(T 0)/K(E11), together with some additional Σ

gauge invariance. Within this extended formulation, one can define supersymmetry trans-
formations in a manifestly K(E11) covariant form.

We have computed the first components of the E11 self-duality equation (3.22) upon
branching on GL(3) × E8 ⊂ E11. By choosing a partial solution to the section constraint
such that the fields only depend on 3 + 248 coordinates, we recover the E8 exceptional
field theory duality equation between the scalar and the vector fields. An infinite chain
of duality equations emerges in this way, but one does not recover the whole dynamics
without imposing first order equations for the constrained fields. Similar results hold for
E7 exceptional field theory, and it would be interesting to analyse the E11 equations in
their decompositions under the E9 and E10 subgroups as well. The cosmological E10 coset
model constructed in [40, 95] is different in essence from the E11 exceptional field theory
considered here in that it is defined in one dimension only rather than using an infinite-
dimensional coordinate module like R(Λ1) together with a section constraint. This one
direction is considered to be the time direction. In contrast to the framework studied in
this paper, space is conjectured to emerge from the infinitely many components of the E10

fields through the gradient expansion of the supergravity fields. It would be interesting to
compare the E11 exceptional field theory equations in the E10 decomposition with the E10

cosmological model.
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An important open problem of our work is the construction of the non-linear first or-
der field equations of the constrained fields χMα̃. These equations do not follow simply
by substituting the duality equations (3.22) into the Bianchi identities. This is perfectly
analogous to the situation encountered in En exceptional field theories in lower dimen-
sions [3]. One may try to construct the desired field equations for the constrained fields
directly, or from a (pseudo-)action with the desired gauge symmetry. It is worth noting
that the constrained fields χMα̃ are expected to be non-zero in any non-trivial supergrav-
ity. Moreover, the structure of the E11 equation (3.22) is such that it does not admit an
obvious consistent truncation to a finite-dimensional subgroup. This is due to the fact that
one cannot have a non-trivial solution with a finite number of non-vanishing fields as the
duality equation automatically relates an infinite series of fields to each other, as we have
explained in section 4.3.

In this paper, we have also studied the supersymmetric extension of E11 exceptional
field theory by including an unfaithful vector-spinor representation Ψ of K̃(E11), the double
cover ofK(E11). We have established that the bilinears in Ψ transform in the same K(E11)-
representation as the bosonic first-order self-duality equation, up to a suitable quotient.
We have defined the supersymmetry transformation rules on all the fields and presented
a K̃(E11) covariant Rarita-Schwinger equation of motion for the vector-spinor Ψ, at the
linearised level. We have also investigated the extent to which these equations can be made
non-linear. Terms in the resulting non-linear Rarita-Schwinger equation include those aris-
ing from the Pauli couplings present in D = 11 supergravity, but the results are incomplete.

Another challenge for any En exceptional field theory is to find a global interpreta-
tion of the infinitely many new coordinates associated with R(Λ1) that are present in the
theory. Locally, any solution of the section constraint depends only on finitely many co-
ordinates. Non-trivial global configurations have appeared as non-geometric backgrounds
where patching is done with the En symmetry group; most work on this subject has been
done in the context of double field theory [22–26]. These global problems should probably
be first addressed for finite-dimensional exceptional groups before tackling E11.

Our work also suggests some interesting group-theoretic identities for T , E11 and
K(E11) that might be interesting to investigate further. They define the embeddings of
various spinor bilinears in the different representations of E11: the symmetric bilinear ε⊗ ε
appears to arise as a quotient of the R(Λ1) representation of E11 while the antisymmetric
Ψ⊗Ψ bilinear appears to arise as a quotient of the field strength representation T−1. While
these embeddings are natural from a physical perspective and have been checked at low
levels here, their existence might also entail interesting mathematical consequences.

One of the main promises of the E11 exceptional field theory lies in its power to unify
all maximal (gauged) supergravities in all dimensions D ≤ 11. It has been found to provide
non-linear and consistent reductions of D = 11 supergravities on nontrivial internal mani-
folds to gauged supergravities in lower dimensions [16–21]. In attempts to go beyond pure
(two-derivative) supergravity, exceptional field theory has also been utilised in the analysis
of contributions of BPS states to loop corrections in these theories [96, 97]. However, the
continuous exceptional symmetry cannot directly be used as a tool for classifying generic
higher derivative corrections to supergravity because these corrections are expected to gener-
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ically break the En symmetry to a discrete subgroup En(Z) [98], with interesting implica-
tions for the low-energy effective action [99–108]. For the continuous E11, one finds immedi-
ately that only a two-derivative Lagrangian can possibly be invariant. Whether E11(Z) and
its automorphic forms [109, 110] can be used for higher derivative terms remains to be seen.
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A Representations of e11

In this appendix, we collect the decomposition of some of the key representations of e11

under its gl(11) and gl(3)⊕ e8 subalgebras.

A.1 Level decomposition into gl(11)

The generators of gl(11) are written as Kmn with fundamental indices m,n ∈ {1, . . . , 11}
and with commutators

[Km
n,K

p
q] = δpnK

m
q − δmq Kp

n , m, n, . . . = 0, 1, . . . 10 . (A.1)

Defining the level ` as the eigenvalue of the generator 1
3K

m
m, the levels 0 ≤ ` ≤ 4 of the

gl(11) decomposition of the adjoint representation is given in table 4. Similarly, the low
lying levels of the gl(11) decomposition of the fundamental representation is displayed in
table 5, and that of R(Λ10) representation in table 6. The method of level decomposition
is explained for example in [40, 82].

The commutation relations of e11 and its action on the T−2 part of the tensor hierarchy
algebra can be summarised in this level decomposition by considering an element of T−2

given by

φα̂t̄α̂ = . . .+
1

8!
hn1...n8,m
− F̃n1...n8,m +

1

6!
An1...n6
− F̃n1...n6 +

1

3!
An1n2n3
− F̃n1n2n3 + h+

n
mK̃n

m

+
1

3!
A+
n1n2n3

Ẽn1n2n3 +
1

6!
A+
n1...n6

Ẽn1...n6 +
1

8!
h+
n1...n8,mẼ

n1...n8,m

+
1

3! · 9!
A+
n1...n9,m1m2m3

Ẽn1...n9,m1m2m3

+
1

8!
Xn1...n9Ẽ

n1...n9 +
1

2 · 9!
Xn1...n10,rsẼ

n1...n10,rs +
1

2 · 9!
Xn1...n11,mẼ

n1...n11,m

+
1

11!
Yn1...n11,mẼ

n1...n11,m . . . , (A.2)
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Level ` sl(11) representation Generator Potential

0
(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Km

n hm
n

1 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) En1n2n3 An1n2n3

2 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0) En1···n6 An1···n6

3 (0, 0, 1, 0, 0, 0, 0, 0, 0, 1) En1···n8,m hn1···n8,m

4
(0, 1, 0, 0, 0, 0, 0, 1, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 0, 0, 2)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

En1···n9,p1p2p3

En1···n10,p,q

En1···n11,m

An1···n9,p1p2p3

Bn1···n10,p,q

Cn1···n11,m

Table 4. Level decomposition of e11 under its gl(11) subalgebra obtained by deleting node 11 from
the Dynkin diagram in figure 1, up to level ` = 4.

and studying its transformation under ` = ±1 defined by

δφα̂t̄α̂ =

[
1

3!
en1n2n3E

n1n2n3 +
1

3!
fn1n2n3Fn1n2n3 , φ

α̂t̄α̂

]
. (A.3)

In (A.2), we have labelled the generators of the adjoint at p = −2 with a tilde just as in
table 2. The sub- and superscripts ± on the parameters indicate whether the generator
is at level ` ≥ 0 or ` < 0, respectively. The last two lines in (A.2) contains the dual of
the generators that are not part of e11 but of the tensor hierarchy algebra, with X... being
associated with R(Λ2) and Y... being associated with R(Λ10). As these generators only
appear for ` > 0, we have suppressed the superscript on them.

Performing the e11 variation (A.3) one then obtains

δh+
n
m =

1

2
enp1p2A

mp1p2
− − 1

2
fmp1p2A+

np1p2

− 1

18
δmn
(
ep1p2p3A

p1p2p3
− − fp1p2p3A+

p1p2p3

)
, (A.4a)

δA+
n1n2n3

= −1

6
fp1p2p3A+

n1n2n3p1p2p3
− 3ep[n1n2

h+
n3]

p , (A.4b)

δA+
n1···n6

= 20e[n1n2n3
A+
n4n5n6] −

1

2
fn7n8n9h+

n1···n8,n9
, (A.4c)

δh+
n1···n8,m = 56e‹n1n2n3A

+
n4···n8,m› −

1

2
fp1p2p3A+

p1〈n1...n8,m〉p2p3
+ · · · , (A.4d)

δXn1···n9 = −28e[n1n2n3
A+
n4···n9] −

1

18
fp1p2p3A+

n1...n9,p1p2p3

− 1
2f

p1p2p3Xn1...n9p1,p2p3 + fp1p2p3Xn1...n9p1p2,p3 + . . . , (A.4e)

δXn1...n10,rs = 3
(
2ers[n1

Xn2...n10] − 3er[n1n2
Xn3...n10]s + 3es[n1n2

Xn3...n10]r

)
+ . . . , (A.4f)

Xn1...n11,m = 11em[n1n2
Xn3...n11] + . . . , (A.4g)

δYn1...n11,m = 0 + . . . . (A.4h)
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` sl(11) representation Generator Coordinate Parameter
3
2 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) Pm xm ξm

5
2 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) Zmn ymn λmn
7
2 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) Zn1···n5 yn1···n5 λn1···n5

9
2

(0, 0, 0, 1, 0, 0, 0, 0, 0, 1)

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Pn1···n7,m

Pn1···n8

xn1···n7,m

xn1···n8

ξn1···n7,m

λn1···n8

Table 5. Level decomposition of the representation R(Λ1) of e11 under gl(11), up to level ` = 11/2.

Level ` sl(11) representation Generator structure

4 (0,0,0,0,0,0,0,0,0,1) Lm

5 (0,0,0,0,0,0,1,0,0,0) Ln1...n4

6
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 0, 0, 0, 0, 1)

Ln1...n7

Ln1...n6,m

Table 6. Level decomposition of the R(Λ10) representation of E11 under gl(11).

Here, we have only given the transformation of the + parameters, the ones for − are
obtained by replacing e3 by f3 and changing the sign. The ellipses represent additional
terms going into e11 that will consistently play no role in this paper and that we therefore
have not determined.

We end this subsection by listing the coordinate representation R(Λ1) and the (first)
section constraint representation R(Λ10) in gl(11) decomposition. The coordinate represen-
tation of table 5 was originally studied in [58, 111] and the section constraint representation
of table 6 in [47].

A.2 Level decomposition under gl(3)⊕ e8

The gl(3) ⊕ e8 level decomposition of e11 is obtained by grading the adjoint of e11 with
respect to node 3 of the Dynkin diagram shown in figure 1.

We shall label the gl(3) generators by Kµ
ν with fundamental indices µ, ν ∈ {1, 2, 3} and

the generators of e8 by tA with A ∈ {1, . . . , 248}. Levels 0 ≤ ` ≤ 2 of this decomposition
are shown in table 7. The position of the A index on E8 tensors can be changed by using
the E8 Killing metric. This decomposition was first given in [45, 46].

In order to list the remaining generators in the indecomposable representation and also
the coordinate representation and field strength representation it is more useful to directly
consider the tensor hierarchy algebra T (e11) decomposed under gl(3)⊕e8. The construction
of this algebra is similar to the one performed in the gl(11) grading in [47] and we present
only the salient features here.
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Level ` sl(3)⊕ e8 representation Generator Potential

0

(1, 1; 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0; 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0; 1, 0, 0, 0, 0, 0, 0, 0)

Kµ
ν

tA

hµ
ν

ΦA

1 (0, 1; 1, 0, 0, 0, 0, 0, 0, 0) EµA AAµ

2

(1, 0; 0, 0, 0, 0, 0, 0, 0, 0)

(1, 0; 0, 0, 0, 0, 0, 0, 1, 0)

(0, 2; 1, 0, 0, 0, 0, 0, 0, 0)

EµνAB

Eµ,νA

BAB
µν

hAµ,ν

Table 7. Level decomposition of e11 under its gl(3) ⊕ e8 subalgebra obtained by deleting node 3

from the Dynkin diagram in figure 1, up to level ` = 3. The Dynkin labels for the two summands
are separated by a semi-colon.

The local algebra is constructed out of the generators of degree q = −1, 0, 1 in table 3.
The components of degree q = 0 are parametrised in the BRST formulation by a bosonic
vector superfield Vµ(ϑ) generating the reparametrisation in three Grassmann variables ϑµ,
and scalar fermionic superfield ΦA(ϑ) in e8. We use ιµ = ∂

∂ϑµ
. The components of degree

q = 1 are parametrised by the fermionic superfield ψAµ and the bosonic superfield TAB in
the 3875⊕1. The components of degree q = −1 are parametrised by the bosonic superfield
SA and the fermionic superfield Θµ. The BRST operator is then

δVµ = Vνι
νVµ + ψAµ SA , (A.5)

δΦA = 1
2fBC

AΦBΦC + Vµι
µΦA + TABSB − fBCA

(
1
2 ι
µψAµ S

C + ψBµ ι
µSC

)
+ ψAµ Θµ ,

δSA = Vµι
µSA + ιµVµS

A + fBC
AΦBSC ,

δΘµ = Vνι
νΘµ − ιµVνΘν + ινVνΘµ − ιµΦASA ,

δψAµ = Vνι
νψAµ + ινVµψ

A
ν − ινVνψAµ + fBC

AΦBψCµ ,

δTAB = Vνι
νTAB − ινVνTAB + 2ΦCfCD

(ATB)D − 2ιµΦ(AψB)
µ − fE(A

CfED
B)ιµΦCψDµ .

One checks indeed that δ2 = 0 on Vµ and ΦA and vanishes up to terms quadratic in the
degree q = ±1 on the components of degree q = ±1 respectively, showing that this defines a
local superalgebra. The tensor hierarchy algebra is defined as the quotient of algebra freely
generated from this local algebra by its maximal ideal. The algebra generated at p = 0

includes by construction e11, and defining the direct sum over all q for each p one identifies
the same E11 representations that appear in the tensor hierarchy algebra constructed in [47]
so we conclude that they are indeed the same algebras. One would expect that there is
a minimal local algebra, similar to the finite-dimensional construction of [48], which is a
subalgebra of both local subalgebras used in the GL(11) covariant construction of [47] and
the GL(3) × E8 covariant construction presented here. This minimal local algebra would
then imply the uniqueness of the tensor hierarchy algebra.
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As for (A.2), we parametrise an element at level p = −2 as

φα̂t̄α̂ = . . .+A−µA F̃Aµ + h+
µ
νK̃µ

ν + ΦAt̃
A +A+A

µ ẼµA + 1
28B́

+AB
µν

´̃EµνAB + 2B+
µνẼ

µν + h+A
µν Ẽ

µν
A

+XµẼ
µ + 1

2X
A
µνẼ

µν
A + . . . , (A.6)

to compute its transformation under e11 generators at level ` = ±1 in the gl(3)⊕ e8 decom-
position, defined by

δφα̂t̄α̂ =
[
eAµE

µ
A + fµAF

A
µ , φ

α̂t̄α̂

]
. (A.7)

One computes within this level truncation that

δh+
µ
ν = eAµA

−ν
A − f

ν
AA

+
µ
A − δνµ

(
eAσA

−σ
A − f

σ
AA

+A
σ

)
, (A.8a)

δΦ+
A = fAB

CeBµA
−µ
C − fAB

CfµCA
+B
µ , (A.8b)

δA+A
µ = −eAν h+

µ
ν + fCABe

B
µ Φ+

C − f
ν
BB

+
µν
AB − fABCfνBh+

µν
C , (A.8c)

δB+AB
µν = 28PABCDe

C
[µA

+
ν]
D + 1

2κ
ABκCDe

C
[µA

+
ν]
D , (A.8d)

δh+A
µν = −fBCAeB(µA

+
ν)
C . (A.8e)

for the elements in e11, and

δXµ = fνA(XA
µν + h+

µν
A) + eAµΦ+

A ,

δXA
µν = −2eA[µXν] − fABCeB[µA

+
ν]
C , (A.9)

for the elements in X α̃ in R(Λ2).
The gauge transformations are likewise defined from the parameters

PM∂M = Pµ∂µ + FA∂A + 1
14 F́

AB
µ ∂́µAB + 4Fµ∂µ + 2GAµ ∂

µ
A + . . . ,

ξM P̄M = ξµP̄µ + λAF̄A + 1
14 λ́

AB
µ

´̄FµAB + 4λµF̄
µ + 2ξAµ Ḡ

µ
A + . . . , (A.10)

by
δ+
ξ φ

α̂t̄α̂ = ∂Mξ
N{PM , P̄N} , (A.11)

which gives

δ+
ξ B
−µν
AB = −2∂

[µ
ABξ

ν] + . . . ,

δ+
ξ h
−µν
A = 2∂

(µ
A ξ

ν) + . . . ,

δ+
ξ A
−µ
A = ∂Aξ

µ + ∂µABλ
B + fAB

C∂µCλ
B + . . . ,

δ+
ξ h

+
µ
ν = ∂µξ

ν − 1
14 ∂́

ν
ABλ́

AB
µ − 4∂νλµ + 2∂νAξ

A
µ + δνµ

(
∂Aλ

A + 1
7 ∂́

σ
ABλ́

AB
σ + 8∂σλσ

)
+ . . . ,

δ+
ξ Φ+

A = −fABC∂CλB − 1
7fAB

C∂µCDλ
BD
µ + 2fAB

C∂µCξ
B
µ + . . .

δ+
ξ A

+
µ
A = ∂µλ

A + ∂Bλ
AB
µ − fABC∂BξCµ + . . .

δ+
ξ B

+AB
µν = 2∂[µλ

AB
ν] + . . . ,

δ+
ξ h

+A
µν = 2∂(µξ

A
ν) + . . . (A.12)
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for the e11 fields and for the fields in R(Λ2) we obtain

δ+
ξ Xµ = 2∂Aξ

A
µ + . . . , δ+

ξ X
A
µν = −2∂[µξ

A
ν] + . . . . (A.13)

One also defines the following invariant bilinear forms. The Killing-Cartan form ex-
pands as

καβΦ+
αΦ+

β = h+
µ
νh+

ν
µ − 1

2h
+
µ
µh+

ν
ν + κABΦ+

AΦ+
B + 2A−µA A+A

µ

+
1

14
B́−µνAB B́+AB

µν + 4B−µνB+
µν + 2h−µνA h+A

µν + . . . (A.14)

One can also check the K(E11) invariant bilinear form on R(Λ1) and T−1 respectively
expand as

ηAB∂A∂B = ηµν∂µ∂ν + δAB∂A∂B +
1

14
δACδBDηµν ∂́

µ
AB ∂́

ν
CD

+ 4ηµν∂
µ∂ν + 2δABηµν∂

µ
A∂

ν
B + . . . (A.15)

and

ηIJF
IF J = 1

2η
µρηνλησκFµν

σFρλ
κ − ηµνFµσσFνρρ + ηµνδABFµAFνB

+ 1
2η

µσηνρδABF
A
µνF

B
σρ + ηµσηνρFµ;νFρ;σ

+ 1
14δ

ACδBDF́ABF́CD + 4F 2 + δAB(Fµ
ν
AFν

µ
B − Fµ

µ
AFν

ν
B) + . . . , (A.16)

with FAB = F́AB+κABF with F́AB in the 3875. We have also the E11 invariant symplectic
form

ΩIJF
IGJ = 1

2ε
µνσ
(
FAµνGσA+Fµν

ρGρ;σ−2Fσρ
ρGµ;ν−GAµνFσA−GµνρFρ;σ+2Gσρ

ρFµ;ν+. . .
)
.

(A.17)

B Variations of the fermionic bilinears under K(E11)

In this appendix, we tabulate the variations of various fermionic bilinears under the K̃(E11)

transformations (6.2). The Spin(1, 10) Γ-matrices Γa that we are using satisfy the duality
relation

Γa1...an =
(−1)

n(n−1)
2

(11− n)!
εa1...an

an+1...a11 Γan+1...a11 . (B.1)
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Using the charge conjugation matrix C = iΓ0 for Majorana spinors, we have that the
combinations CΓa, CΓa1a2 and CΓa1...a5 are symmetric in their spinor indices, meaning that
for anti-commuting spinors

ε̄1ε2 = +ε̄2ε1 , ε̄1Γaε2 = −ε̄2Γaε1 , ε̄1Γa1a2ε2 = −ε̄2Γa1a2ε1 , etc. (B.2)

For calculating the explicit variations below we made use of the gamma package [112].

B.1 Bilinears of the form ε̄ψa

Under K̃(E11) as defined infinitesimally in (6.2) we find

δ (ε̄ψa) =
1

6
Λc1c2c3 (−ε̄Γc1c2c3ψa + ε̄Γa

c1c2ψc3 − 4δc1a ε̄Γ
c2ψc3) , (B.3)

δ(ε̄Γbψa) =
1

6
Λc1c2c3

(
− ε̄Γabc1c2ψc3 − 2 δc1b ε̄Γa

c1ψc3 − 4 δc1a ε̄Γb
c2ψc3

− 3 δc1b ε̄Γ
c2c3ψa + ηabε̄Γ

c1c2ψc3 − 4δc1a δ
c2
b ε̄ψ

c3
)
, (B.4)

δ(ε̄Γb1b2ψa) =
1

6
Λc1c2c3

(
ε̄Γab1b2

c1c2ψc3 − ε̄Γb1b2c1c2c3ψa + 4 δc1b1 ε̄Γb2a
c2ψc3

− 4 δc1a ε̄Γb1b2
c2ψc3 − 2 ηab1 ε̄Γb2

c1c2ψc3 + 6 δc1b1 δ
c2
b2
ε̄Γc3ψa

− 2 δc1b1 δ
c2
b2
ε̄Γaψ

c3 + 8 δc1a δ
c2
b1
ε̄Γb2ψ

c3 − 4 ηab1δ
c1
b2
ε̄Γc2ψc3

)∣∣∣
[b1b2]

, (B.5)

δ(ε̄Γb1b2b3ψa) =
1

6
Λc1c2c3

(
− ε̄Γab1b2b3c1c2ψc3 + 3 ηab1 ε̄Γb2b3

c1c2ψc3 − 4 δc1a ε̄Γb1b2b3
c2ψc3

− 6 δc1b1 ε̄Γb2b3a
c2ψc3 − 9 δc1b1 ε̄Γb2b3

c2c3ψa − 6 δc1b1 δ
c2
b2
ε̄Γb3aψ

c3

− 12 δc1a δ
c2
b1
ε̄Γb2b3ψ

c3 − 12 ηab1 δ
c1
b2
ε̄Γb3

c2ψc3

− 6 ηab1δ
c1
b2
δc3b3 ε̄ψ

c3 + 6 δc1b1 δ
c2
b2
δc3b3 ε̄ψa

)∣∣∣
[b1b2b3]

, (B.6)

δ(ε̄Γb1b2b3b4ψa) =
1

6
Λc1c2c3

(
ε̄Γab1b2b3b4

c1c2ψc3 − ε̄Γb1b2b3b4c1c2c3ψa + 8 δc1b1 ε̄Γb2b3b4a
c2ψc3

− 4 δc1a ε̄Γb1b2b3b4
c2ψc3 − 4 ηab1 ε̄Γb2b3b4

c1c2ψc3 − 12 δc1b1 δ
c2
b2
ε̄Γb3b4aψ

c3

+ 16 δc1a δ
c2
b1
ε̄Γb2b3b4ψ

c3 − 24 ηab1 δ
c1
b2
ε̄Γb3b4

c2ψc3

+ 36 δc1b1 δ
c2
b2
ε̄Γb3b4

c3ψa + 24 ηab1 δ
c1
b2
δc2b3 ε̄Γb4ψ

c3
)∣∣∣

[b1b2b3b4]
, (B.7)

δ(ε̄Γb1b2b3b4b5ψa) =
1

6
Λc1c2c3

(
− ε̄Γab1b2b3b4b5c1c2ψc3 − 10 δc1b1 ε̄Γb2b3b4b5a

c2ψc3

− 4 δc1a ε̄Γb1b2b3b4b5
c2ψc3 + 5 ηab1 ε̄Γb2b3b4b5

c1c2ψc3 − 15 δc1b1 ε̄Γb2b3b4b5
c2c3ψa

− 20 δc1b1 δ
c2
b2
ε̄Γb3b4b5aψ

c3 − 20 δc1a δ
c2
b1
ε̄Γb2b3b4b5ψ

c3 − 40 ηab1δ
c1
b2
ε̄Γb3b4b5

c2ψc3

− 60ηab1δ
c1
b2
δc2b3 ε̄Γb4b5ψ

c3 + 60 δc1b1 δ
c3
b2
δc3b3 ε̄Γb4b5ψa

)∣∣∣
[b1b2b3b4b5]

. (B.8)

The bar notation in the above formula denotes (anti-)symmetrizations to be carried out on
a tensor expression, e.g. Tab|[ab] = T[ab] = 1

2(Tab−Tba) and so on. The totally antisymmetric,
hook symmetric and single traces can easily be obtained from the expressions given above.
Furthermore, the variations of ε̄Γb1...bnψa for n ≥ 6 can be obtained from (B.1).
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B.2 Bilinears in ψaψb

The variations of the gravitino bilinears are

δ(ψ̄aψb) =−1

6
Λd1d2d3

(
ψ̄aΓ

d1d2d3ψb−2ψ̄aΓb
d1d2ψd3 +8δd1

a ψ̄bΓ
d2ψd3

)∣∣∣
(ab)

, (B.9)

δ(ψ̄aΓcψb) =
1

6
Λd1d2d3

(
−2ψaΓbc

d1d2ψd3−3δd1
c ψaΓ

d2d3ψb+8δd1
a ψ̄bΓc

d2ψd3

−4δd1
c ψ̄aΓb

d2ψd3−2ηac ψ̄bΓ
d1d2ψd3 +8δd1

a δ
d2
c ψ̄bψ

d3

)∣∣∣
[ab]

, (B.10)

δ(ψ̄aΓc1c2ψb) =
1

6
Λd1d2d3

(
2 ψ̄aΓbc1c2

d1d2ψd3−ψ̄aΓc1c2d1d2d3ψb+8δd1
a ψ̄bΓc1c2

d2ψd3

+8δd1
c1 ψ̄bΓac2

d2ψd3 +4ηac1 ψ̄bΓc2
d1d2ψd3 +6δd1

c1 δ
d2
c2 ψ̄aΓ

d3ψb (B.11)

−16δd1
a δ

d2
c1 ψ̄bΓc2ψ

d3−4δd1
c1 δ

d2
c2 ψ̄aΓbψ

d3 +8ηac1 δ
d1
c2 ψ̄bΓ

d2ψd3

)∣∣∣
[ab][c1c2]

,

δ(ψ̄aΓc1c2c3ψb) =
1

6
Λd1d2d3

(
−2 ψ̄aΓbc1c2c3

d1d2ψd3−9δd1
c1 ψ̄aΓc2c3

d2d3ψb

−8δd1
a ψ̄bΓc1c2c3

d2ψd3−12δd1
c1 ψ̄bΓac2c3

d2ψd3 +6ηac1 ψ̄bΓc2c3
d1d2ψd3

−24δd1
a δ

d2
c1 ψ̄bΓc2c3ψ

d3 +12δd1
c1 δ

d2
c2 ψ̄bΓac3ψ

d3−24ηac1δ
d1
c2 ψ̄bΓc3

d2ψd3

+6δd1
c1 δ

d2
c2 δ

d3
c3 ψ̄aψb−12ηac1δ

d1
c2 δ

d2
c3 ψ̄bψ

d3

)∣∣∣
(ab)[c1c2c3]

, (B.12)

δ(ψ̄aΓc1c2c3c4ψb) =
1

6
Λd1d2d3

(
2 ψ̄aΓbc1c2c3c4

d1d2ψd3−ψ̄aΓc1c2c3c4d1d2d3ψb

−8δd1
a ψ̄bΓc1c2c3c4

d2ψd3−16δd1
c1 ψ̄bΓac2c3c4

d2ψd3−8ηac1 ψ̄bΓc2c3c4
d1d2ψd3

+36δd1
c1 δ

d2
c2 ψ̄aΓc3c4

d3ψb+32δd1
a δ

d2
c1 ψ̄bΓc2c3c4ψ

d3−24δd1
c1 δ

d2
c2 ψ̄bΓac3c4ψ

d3

+48ηac1δ
d1
c2 ψ̄bΓc3c4

d2ψd3 +48ηac1δ
d1
c2 δ

d2
c3 ψ̄bΓc4ψ

d3

)∣∣∣
(ab)[c1c2c3c4]

, (B.13)

δ(ψ̄aΓc1c2c3c4c5ψb) =
1

6
Λd1d2d3

(
2 ψ̄bΓac1c2c3c4c5

d1d2ψd3−15δd1
c1 ψ̄aΓc2c3c4c5

d2d3ψb

+8δd1
a ψ̄bΓc1c2c3c4c5

d2ψd3 +20δd1
c1 ψ̄bΓac2c3c4c5

d2ψd3

−10ηac1 ψ̄bΓc2c3c4c5
d1d2ψd3 +40δd1

a δ
d2
c1 ψ̄bΓc2c3c4c5ψ

d3 (B.14)

−40δd1
c1 δ

d2
c2 ψ̄bΓac3c4c5ψ

d3 +80ηac1δ
d1
c2 ψ̄bΓc3c4c5

d2ψd3

+60δd1
c1 δ

d2
c2 δ

d3
c3 ψ̄aΓc4c5ψb+120ηac1δ

d1
c2 δ

d2
c3 ψ̄bΓc4c5ψ

d3

)∣∣∣
[ab][c1c2c3c4c5]

.

Here we have also used the symmetry properties of the Gamma matrices.

C Eleven dimensional supergravity

Eleven dimensional supergravity equations in our conventions20 are given by

L = eR(ω)− 1

48
eFmnpqF

mnpq − 1

1442
εm1...m11Fm1...m4Fm5...m8Am9m10m11

+ eψ̄mΓmnpDn

(
ω + ω̂

2

)
ψp +

1

192
eψ̄[rΓ

rΓmnpqΓsψs]

(
Fmnpq + F̂mnpq

)
, (C.1)

20In this section only we shall denote ψ11D
a simply by ψa, thereby suppressing the 11D superscript

in order to avoid clutter in notation. Everywhere else in this paper ψa is as defined in (8.7). In our
conventions ψ̄ = ψ†iΓ0, {Γa,Γb} = 2ηab with ηab = diag(−,+ + . . .+), Dm(ω)ε = ∂mε + 1

4
ωm

abΓabε,
Γa1...a11 = −εa1...a11 and R = ema e

n
bRmn

ab.
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where

ω̂mab = ω
(0)
mab −

1

4
(ψ̄mΓaψb − ψ̄mΓbψa + ψ̄aΓmψb) ,

ωmab = ω̂mab −
1

8
ψ̄nΓmab

npψp ,

Fmnpq = 4∂[mAnpq] , F̂mnpq = Fmnpq − 3̄̂ψ[mΓnpψq] , (C.2)

and ω(0)
mab is the spin connection without torsion. The local supersymmetry transformations

are

δem
a = −1

2
ε̄Γaψm , δAmnp =

3

2
ε̄Γ[mnψp] ,

δψm = Dm(ω̂)ε+
1

288
(Γm

npqr − 8δnmΓpqr) F̂npqr . (C.3)

For the purposes of this paper, it is of interest to identify the quartic fermion terms
coming from different sources. These are

Lψ4 = LEH
ψ4 + LRS

ψ4 + LPauli
ψ4 , (C.4)

where

e−1LEH
ψ4 =

1

16
ψ̄cΓaψb

(
ψ̄cΓaψb − 2ψ̄bΓcψa

)
− 1

4
ψ̄bΓ

bψaψ̄cΓ
cψa

− 1

64
ψ̄dΓ

cabdeψe

(
ψ̄fΓcabfgψg + 4ψ̄cΓaψb

)
, (C.5)

e−1LRS
ψ4 = −1

8
ψ̄cΓaψb

(
ψ̄cΓaψb − 2ψ̄bΓcψa

)
+

1

2
ψ̄bΓ

bψaψ̄cΓ
cψa

+
1

64
ψ̄dΓ

cabdeψe

(
ψ̄fΓcabfgψg + 6ψ̄cΓaψb

)
, (C.6)

e−1LPauli
ψ4 = − 1

64
ψ̄[aΓbcψd]

(
ψ̄eΓ

abcdefψf + 12ψ̄aΓbcψd
)
. (C.7)

Summing these up yields

e−1Lψ4 = − 1

32
ψ̄cΓaψb

(
2ψ̄cΓaψb − 4ψ̄bΓcψa − 8ηcaψ̄dΓ

dψb − ψ̄dΓabcdeψe
)

− 1

64
ψ̄[aΓbcψd]

(
ψ̄eΓ

abcdefψf + 12ψ̄aΓbcψd
)
. (C.8)

D The gauge parameter representation

The gauge algebra suggests an embedding of the bilinear spinor in the gauge parameter
representation. Recalling (4.4), we want to check this embedding. The representation
satisfies

δ (ε̄Γaε) = −1
2Λabcε̄Γbcε ,

δ
(
ε̄Γabε

)
= −1

6Λcdeε̄Γabcdeε+ Λabcε̄Γcε , (D.1)

δ (ε̄Γa1a2a3a4a5ε) = 10Λ[a1a2a3 ε̄Γa4a5]ε− 1
48Λb1b2[a1εb1b2

a2a3a4a5]c1c2c3c4c5 ε̄Γc1c2c3c4c5ε .
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At this level truncation one finds a consistent embedding with

ξa = ε̄Γaε ,

λab = −ε̄Γabε ,

λa1a2a3a4a5 = ε̄Γa1a2a3a4a5ε ,

ξa1...a7,b = − 7

5!
ηb[a1

εa2...a7]c1c2c3c4c5 ε̄Γc1c2c3c4c5ε ,

λa1...a8 = 0 ,

λa1...a8,b1b2b3 = −42ηb1[a1
η|b2|a2

η|b3|a3
ε̄Γa4a5a6a7a8]ε ,

ξa1...a10,b =
7

2
δb[a1

εa2...a10]c1c2 ε̄Γc1c2ε ,

ξa1...a9,b,c = −21

20

(
ηbcεa1...a9d1d2 + ηb[a1εa2...a9]cd1d2 + ηc[a1εa2...a9]bd1d2

)
ε̄Γd1d2ε ,

ξ′a1...a10,b = 0 , (D.2)

and two the other parameters ξ9,2 and λ11 at this level vanish. One checks indeed that ξa,
λa1a2 and λa1a2a3a4a5 transform as in (4.4), while ξa1...a7,b and λa1...a8 do as well provided
on defines the additional variation

δξa1...a7,b = −105

8

(
Λ[a1a2a3

λa4a5a6a7]b + Λb[a1a2
λa3a4a5a6a7]

)
− 4Λc1c2c3λc1〈a1...a7,b〉c2c3

+
1

6
Λc1c2c3ξc1c2c3〈a1...a7,b〉 +

1

2
Λc1c2c3ξc1c2〈a1...a7,b〉,c3 ,

δλa1...a8 = 7Λ[a1a2a3
λa4a5a6a7a8] + 1

6Λc1c2c3λa1...a8,c1c2c3 + 1
2Λc1c2c3ξ′a1...a8c1c2,c3 . (D.3)

In particular one has

δξa1...a7,b =− 7

12
ηb[a1εa2...a7]c1c2c3d1d2Λc1c2c3 ε̄Γd1d2ε−105ηb[a1Λa2a3

cε̄Γa4a5a6a7]cε

=− 7

12
ηb[a1εa2...a7]c1c2c3d1d2Λc1c2c3 ε̄Γd1d2ε−168Λc1c2c3η

〈b,[a1η|c1|a2η|c2|a3 ε̄Γa4a5a6a7]c3ε

−105

8

(
Λ[a1a2a3 ε̄Γa4a5a6a7]bε+Λb[a1a2 ε̄Γa3a4a5a6a7]ε

)
. (D.4)

Alternatively, one can consider the submodule parametrised by the combination

ξ̃a1...a7,b = ξa1...a7,b +
7

5!
ηb[a1

εa2...a7]c1...c5λ
c1...c5 , (D.5)

λ̃a1...a8,b1b2b3 = λa1...a8,b1b2b3 + 42ηb1[a1
η|b2|a2

η|b3|a3
λa4a5a6a7a8] ,

ξ̃a1...a10,b = ξa1...a10,b −
7

2
δb[a1

εa2...a10]c1c2λ
c1c2 ,

ξ̃a1...a9,b,c = ξa1...a9,b,c +
21

20

(
ηbcεa1...a9d1d2 + ηb[a1εa2...a9]cd1d2 + ηc[a1εa2...a9]bd1d2

)
λd1d2 ,

and λa1...a8 and ξ′a1...a10,b
and check that they vary into each others. One has for instance

δξ̃a1...a7,b =−4Λc1c2c3 λ̃c1〈a1...a7,b〉c2c3 +
7

2·5!
ηb[a1

εa2...a7]c1...c5Λc6c7dξ̃
c1...c7,d (D.6)

+
1

6
Λc1c2c3 ξ̃c1c2c3〈a1...a7,b〉+

1

2
Λc1c2c3 ξ̃c1c2〈a1...a7,b〉,c3 +

7

6!
ηb[a1

εa2...a7]c1...c5Λc6c7c8λ
c1...c8 ,

δλa1...a8 =
1

6
Λc1c2c3 λ̃a1...a8,c1c2c3 +

1

2
Λc1c2c3ξ′a1...a8c1c2,c3 ,

up to terms in ξ9,2 and λ11 that we did not compute and are part of the invariant subspace.

– 77 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
5

The above results exhibit to this level truncation that there is an invariant subspace in
R(Λ1) such that the associated quotient is the symmetric SL(32) tensor representation of
K(E11) obtained from the symmetric bilinear. A complete proof seems out of reach.

E K̃(E11) fermions under Spin(1, 3)× SU(8)

In this appendix, we perform the decomposition of the K̃(E11) spinors under Spin(1, 3) ×
SU(8) associated with exceptional field theory in four external dimensions. We use this
to probe the action of generalised diffeomorphisms discussed in (7.18) and compare with
results available in the literature for the supersymmetric E7 exceptional field theory [90, 91].

The K(e11) level 1 variation in the gl(4) ⊕ e7 decomposition is defined from the
generators

Λija(Ea ij + ηabF
b
ij)− Λija(E

a ij + ηabFb
ij) , (E.1)

such that the Fermi fields transform as follows21

δψia = 2iΛijbγ[aψb]j +
zi

2
Λjkbγ

bγaχ
ijk ,

δχijk =
3

z
iΛ[ij|aψk]

a +
i

12
εijklpqrsΛlpaγ

aχqrs . (E.2)

One can check the closure of the K(e11) algebra by treating Λija as a Grassmann odd
parameter such that the commutator is the square of the variation

δ2ψia = izεa
bcdγd

(
Λ[ij

bΛ
kl]
c +

1

12
εijklpqrsΛpqbΛrsc

)
χjkl

+
(

Λik[bΛjk
c] − 1

8δ
i
jΛ

kl[bΛkl
c]
)(

4γabψ
j
c + γbcψ

j
a

)
+

1

2
Λkl(bΛkl

c)
(
−γbγaψic + 1

4ηbcψ
i
a

)
+
(

ΛikbΛjkb − 1
8δ
i
jΛ

klbΛklb

)
ψja +

1

2
Λkl[bΛkl

c]
(
ηabψ

i
c + 1

4γbcψ
i
a

)
(E.3)

where the last line reproduces an so(1, 3)⊕ su(8) = K(gl(4)⊕ e7) transformation, while the
others appear at level 2 in K(e11). Indeed, level decomposition predicts at level 2 [45, 46]:
a rank 2 antisymmetric tensor of SL(4) in the 133 of E7 that branches under SU(8) as a
complex self-dual rank 2 antisymmetric tensor and a anti-hermitian traceless tensor, and a
symmetric tensor of SL(4) in the singlet representation of E7. Similarly

δ2χijk =
6

z

(
Λ[ij

aΛ
kl]
b +

1

12
εijklpqrsΛpqaΛrsb

)
γ[aψ

b]
l

− 3
(

Λ[i|p[bΛlp
c] − 1

8δ
i|
l Λpq[bΛpq

c]
)
γbcχ

jk]l − 1

8
ΛpqbΛpqbχ

ijk

+ 3
(

Λ[i|pbΛlpb − 1
8δ

[i
l ΛpqbΛpqb

)
χjk]l +

1

8
Λpq[bΛpq

c]γbcχ
ijk (E.4)

where the last line reproduces a so(1, 3)⊕ su(8) transformation, while the others appear at
level 2 in K(e11). This shows that the action (E.2) of K(e11) on the fermions closes in this
decomposition.

21We introduce the real parameter z to compare with other conventions.
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We next work out the general formula (7.18) for the generalised diffeomorphism on the
fermions with the partial solution of the section constraint corresponding to the GL(4)×E7

subgroup. In this decomposition one defines the K(E11) spinor as Ψ = (e
1
4 ea

µψiµ, e
1
4χijk),

and the compensating transformation X of (3.32) has only one parameter Λija at level 1
given by

Xija = −2V Aijeµ
a∂Aξ

µ . (E.5)

One obtains in this way from (E.2) the external diffeomorphism

δξψ
i
µ = ξν∂νψ

i
µ + ∂µξ

νψiν + 4iV Aij∂Aξ
νγae[µ

aψjν] − ziV
A
ijeµ

aeν
b∂Aξ

νγbγaχ
ijk ,

δξχ
ijk = ξµ∂µχ

ijk − 6

z
iV A[ij∂Aξ

µψµ
k] − i

6
εijklpqrsV A

lpeµa∂Aξ
µγaχqrs . (E.6)

If we put z = 1√
2
this is in complete agreement with [91, eq. (3.1)].22

The spinor representation (6.2b) of K̃(E11) in the present decomposition becomes

δεi = −iΛijaγaεj . (E.7)

It closes according to

δ2εi =
1

8
ΛklaΛkl

bγabε
i +
(

ΛikaΛjka − 1
8δ
i
jΛ

klaΛkla

)
εj

+
1

8
ΛklaΛklaε

i +
(

ΛikaΛjk
b − 1

8δ
i
jΛ

klaΛkl
b
)
γabε

j , (E.8)

where the second line corresponds to level 2 generators.
Generalising (6.4), one obtains moreover for the components in e11 	K(e11)

Ξab = εiγ(aψ
i
b) + εiγ(aψb)i ,

Ξijkl = ε[iχjkl] +
1

24
εijklpqrsεpχqrs ,

Ξija = ε[iψj]a +
z

2
εkγaχ

ijk ,

Ξijklab = ε[iγabχ
jkl] − 1

24
εijklpqrsεpγabχqrs ,

Ξab
i
j = εiγ[aψb]j + εjγ[aψ

i
b] −

1

8
δij
(
εkγ[aψb]k + εkγ[aψ

k
b]

)
,

Ξ′a,b = i εiγ(aψ
i
b) − i ε

iγ(aψb)i , (E.9)

that transform under K(e11) as

δΞab = −2iΛij(aΞ
ij
b) + iηabΛij

cΞijc + 2iΛij(aΞb)ij − iηabΛijcΞcij , (E.10)

δΞijkl = −3i

z

(
Λ[ij|aΞkl]a −

1

24
εijklpqrsΛpq

aΞrsa

)
,

δΞija = izΛklaΞ
ijkl +

i

4
ΛijbΞab − izΛkl

bΞijklab + 2iΛk[iΞab
j]
k +

1

4
Λijb

(
Ξ′a,b + Υab

)
.

22Note that the appearence of covariant derivatives in [91] is because they take a gauge parameter
ξM = (ξµ, ξµAAµ , . . . ) whereas we take ξM = (ξµ, 0, . . . ).
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The extra bilinear Υab from the R(Λ2) module is

Υab = iεiγ[aψ
i
b] − iε

iγ[aψb]i . (E.11)

One checks that it transforms into a vector in the 28 that also belongs to R(Λ2) and not
into the components in e11 	 K(e11), as required by the indecomposable structure of the
module:

δΥab = iΛijcΥabc ij − iΛijcΥ ij
abc , (E.12)

with
Υabc ij = 3iε[i|γ[abψc]|j] +

z

2
εabcdε

kγdχijk . (E.13)

This is indeed consistent with the supersymmetry transformations of E7 exceptional field
theory [90, eq. (3.32)] with

δsusyhab = Ξab ,

δsusyφijkl = 2zΞijkl ,

δsusyAija = −izΞija ,

δsusy(Bijkl
ab , Bab

i
j) = −2i(z Ξijklab ,Ξab

i
j) . (E.14)

Similarly as for D = 11 in (6.12) one can combine the symmetric dual graviton h̃a,b and the
anti-symmetric field h̃ab of the indecomposable module R(Λ2) into a single reducible field
h̃a;b with supersymmetry transformation

δsusyh̃a;b = Ξ′a,b + Υab = i εiγaψ
i
b − i εiγaψbi . (E.15)

Moreover, one checks that the fermion bilinears OI introduced in section 7.2.1 become

Oijab = ψ̄
[i
[aψ

j]
b] +

i

2
εab

cdψ̄[i
c ψ

j]
d +

z

2
ψ̄ckγabγ

cχijk+
z2

72
εijklpqrsχ̄klpγabχqrs ,

Oab
c =−ψ̄i[aγ

cψb]i−ψ̄kcγ[aψb]k−ψ̄ckγ[aψ
k
b]−

iz2

6
εab

cdχ̄ijkγdχijk−iεabef (ψ̄kcγeψfk−ψ̄ckγeψkf ) ,

Oijkla = ψ̄[i
aχ

jkl]+
1

24
εijklpqrsψ̄apχqrs−

i

2
εa
bcd
(
ψ̄

[i
b γcdχ

jkl]− 1
24ε

ijklpqrsψ̄bpγcdχqrs
)
,

Oabc
i
j = 6ψ̄i[aγbψc]j−

3

4
δijψ̄

k
[aγbψc]k+iz2εabcd

(
χ̄iklγdχjkl− 1

8δ
i
jχ̄

klpγdχklp
)
. (E.16)

For these one finds the K(e11) variation

δOijab = − i
4

Λijc(Oab
c + i

2εab
efOef

c) + iΛk[i|c(Oabc
j]
k + i

2εab
efOefc

j]
k)

− 2izΛkl[aO
ijkl
b] + zεab

cdΛklcO
ijkl
d . (E.17)

The absence of undesirable representations determines the relative coefficients in Oijab, which
in turn reproduces the supercovariantisation of the twisted self-duality equation in N = 8

supergravity [92]. The expressions in (E.17) have been fixed by requiring that Oabc is real,
Oabc

i
j Hermitian traceless, and Oijkla complex self-dual. The first two terms in Oijkla give the

supercovariantisation of the scalar field momentum P ijkla [7, 92], while the last two terms
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represent the supercovariantisation of the 3-form field strength H ijkl
abc [91]. Similarly, Oabcij is

the supercovariantisation of the 3-form field strength Habc
i
j [91]. This is consistent with the

duality equation relating the scalar field current and the 3-form field strength in the adjoint
representation. The first four terms in Oab

c reproduce the supercovariantisation of the
spin connection [92], while the last two terms define the supercovariantisation of the dual-
graviton field strength, consistently with the dual-graviton supersymmetry transformation
Ξ′ab in (E.9).
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