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1 Introduction

Exceptional field theories [1-4] are based on generalised exceptional geometries in which
diffeomorphisms are unified with tensor gauge transformations in such a way that the
closure of the local transformations require constraints on the fields, known as section
constraints [1, 5, 6]. These theories live on a space which is locally a direct product of
D-dimensional ‘external’ space-time with an ‘internal’ space whose coordinates are in a
representation of a split real form of the exceptional group E, and are subject to the
E,, covariant section constraint. Here, F,, is the usual hidden Cremmer-Julia symmetry
group of ungauged maximal supergravity in D = 11 — n space-time dimensions [7], which
also governs gauged maximal supergravity through the embedding tensor formalism [8, 9]
and the associated tensor hierarchy [10, 11]. The tensor hierarchy fields play a central
role in constructing exceptional field theory. Solving the section constraint amounts to
restricting the dependence on the extra coordinates so that the dynamics of an appropriate
supergravity theory emerges.

The study of exceptional field theories is interesting for several reasons. Besides provid-
ing a unified description of supergravity theories that are related by duality transformations
(like D = 11 and type IIB supergravity [2]), they allow for the derivation of uplift formulae
for solutions of gauged supergravity [12-15] and the construction of gauged supergravi-
ties via a generalised Scherk-Schwarz mechanism [16-21|. They are also instrumental in
studying non-geometric string theory solutions [22-28|. Further aspects of exceptional field
theory have been discussed in the recent overview [29].

It is a remarkable fact that the bosonic sector of exceptional field theory is completely
determined by generalised diffeomorphisms without the use of supersymmetry. Another
key property is that these theories typically require extra p-forms of rank p > D — 2 beyond
those present in the usual tensor hierarchy of D-dimensional maximal gauged supergravity.
These obey constraints that are similar to the section constraints. They are related to the
physical fields by first-order equations and do not themselves describe new physical degrees
of freedom.



So far, E, exceptional field theories have been constructed explicitly for n = 6,7,8
in [2-4] and in [1, 30-33] for smaller n. The cases beyond n = 8 involve infinite dimensional
groups and bring in formidable new challenges. A dent has been made recently in the case
of Fg [34]. The present paper studies the case of Fy;.

It has been proposed by West long ago and prior to the development of exceptional
field theory that the D = 11 supergravity equations of motion should emerge from an
F41 invariant theory formulated in the framework of a non-linear realisation of Ej; with
coordinates in the ‘vector’ representation, such that the dynamics would follow from an
E1; invariant set of duality equations [35-37].1 It has been realised recently that these first
order duality equations can only hold modulo certain equivalence relations [41-43]. These
ambiguities are argued to be liftable by passing to equations of motion that are eventually
of arbitrarily high order in derivatives. These equivalence relations may potentially be
interpreted as arising from additional gauge symmetries, although their precise form has
not been determined. The section constraint was not used in those references in connection
with the gauge invariance of the equations of motion, but only in connection with the
description of 1/2-BPS states [44]. E11 does capture the supergravity tensor hierarchy field
content in D dimensions [45, 46|, but not the extra constrained p-forms of the exceptional
field theories mentioned above.

In [47], it was explained that constructing linearised gauge invariant first order field
equations with FE71; symmetry requires the fields to satisfy the section constraint as well
as the introduction of additional fields that do not appear in the Ej; coset space. This
construction is based on an infinite-dimensional super-algebra 7 (e11), that includes e1; as
a subalgebra and that generalises the tensor hierarchy algebra 7 (e,) introduced in [48]
for n < 8 to the Kac-Moody case. The tensor hierarchy algebra then includes a non-
semi-simple extension 7g(e11) of the algebra e that entails the introduction of extra fields
already in the linearised theory. A gauge invariant linearised duality equation can be written
in this formulation for a field strength that transforms covariantly under F;; provided one
introduces these extra fields in the corresponding indecomposable representation. The extra
fields are necessary to write a gauge invariant duality equation for the graviton in eleven
dimensions [47]. We exhibit here that our Ej; duality equation, including the extra fields,
gives in the linearised approximation an infinite tower of gauge invariant duality equations
of the type described in [49]. Gauge invariance of these equations as described in [50, 51]
is only satisfied in the presence of the extra fields.

The primary goal of this paper is to construct the E1; and gauge invariant non-linear
duality equation that captures all the duality equations of all F,, exceptional fields theories.
We will show that one can generalise the duality equation constructed in [47] to a non-linear
equation invariant under generalised diffeomorphism. The key observation that facilitates
this construction is that the derivative of the extra fields found in [47] at the linearised
level are the cohomologically trivial part of extra fields that turn out to underlie the extra

'The idea of extended Kac-Moody symmetries, in particular in connection with low-dimensional gravi-
tational systems, was first expressed in [38]. An explicit trace of E1o symmetry was found in a Belinskii-
Khalatnikov-Lifshitz analysis of eleven-dimensional supergravity [39] and was later generalised to a cosmo-
logical E19 model [40].



constrained p-forms fields mentioned above in the GL(11 — n,R) x E,, decomposition and
subsequent truncation of the Fy; invariant theory. In analogy with what happens in lower-
dimensional exceptional field theories, and as mentioned above, these extra p-forms are
related to the propagating fields by first order equations but they do not themselves describe
new physical degrees of freedom. These first order equations for the constrained fields are
sourced by bilinear terms in the derivatives of the fields parametrizing Fq1. Therefore they
cannot follow from the Fp; variations of the duality equation we construct in this paper,
and they must be derived separately by requiring gauge invariance and integrability of the
equations. We shall not attempt to determine these first order equations in this paper, and
will only make some comments on their expected structure.

Besides the investigation of a non-linear bosonic theory based on the tensor hierarchy
algebra, an important part of the present paper is the study of its supersymmetric extension.
Fermions are introduced here — as for maximal supergravity and other exceptional field
theories — as representations of (the double cover of) the involution invariant subgroup
K (FE71) that plays the role of a generalised R-symmetry group. As noticed in [52-56], this
subgroup admits finite-dimensional (a.k.a. unfaithful) spinor representations in the case
of Kac-Moody groups K(E,) with n > 9. In particular, these representations were con-
structed for the gravitino and supersymmetry parameter of K (F11) in [57] with beginnings
of the supersymmetry parameter representation already given in [58]. The compatibility
of local K(E,) symmetry with supersymmetry, i.e., whether the supersymmetry generator
transforms correctly as a spinor under K(E,) was investigated in [56, 59, 60] for n = 10
where it was found that there was an inconsistency in the transformation arising for the
bosonic fields beyond the six-form, i.e., starting from the so-called dual graviton. Based
on [58] and [54-56], fermions in K (F7;) were introduced in [61] and a similar calculation
was carried out up to the level of the six-form.

In the present paper, we resolve this inconsistency starting from the dual graviton by
considering not only ¢1; but its non-semi-simple extension 7g(e11) that appears in the tensor
hierarchy algebra. As already emphasised above, one important consequence of the tensor
hierarchy algebra is that it introduces additional fields into the theory beyond those of the
standard F1;/K(F11) symmetric space. These fields will resolve the inconsistencies with
the supersymmetry transformations, because the supersymmetry transformation of fields in
To(e11) © K(e11) can be written consistently with K (F7;). We shall use this construction
to write linearised supersymmetry transformation rules and equations of motion for the
(unfaithful) gravitino field. We also show that one obtains a closed supersymmetry algebra
at linearised order. These results will be derived explicitly at low levels, including the dual
graviton. At present, we do not have a complete algebraic proof to all levels.

After establishing the linearised supersymmetry and the equations of motion for the
Fermi fields, we investigate their non-linear extension and their compatibility with the non-
linear duality equation proposed in section 3. We present some first steps in this direction
by introducing the non-linear K(Fi1) connection and a Pauli coupling to the Eq; field
strength. Although we do not have the complete expression of the non-linear equations,
the first few levels exhibit promising cancellations that lead to the desired couplings of
eleven-dimensional supergravity.



Structure of the paper and summary of main results. Given the length of the
paper we here give a telegraphic summary of our main results for the reader’s convenience.

e Inspired by the structure of the tensor hierarchy algebra given in section 2, we propose
non-linear bosonic field strengths that transform covariantly under F1 in an infinite-
dimensional representation that generalises the embedding tensor representation of
gauged supergravity for finite-dimensional FE,, and that is neither highest nor lowest
weight. Labelling its component by I we show in (3.12) that the following definition
is F41 covariant:

F! :CIMQJJ%—I—CIM@XM&—F... . (1.1)

Here, Jj; is the non-linear ey Lie-algebra valued current constructed out of the
F11/K(E11) representative M using M~'9p; M with 0y, denoting the derivative
with respect to the infinitely many coordinates of the R(A;) representation of F1
subject to a section constraint. The fields ya/® are constrained fields, i.e. they are
(section) constrained in the M index in the same way as the partial derivative dps, and
& labels the representation R(Asg) of E1;. However, the indecomposability of 7g(e11)
is importantly such that they form an indecomposable representation together with
the adjoint current components in such a way that the structure constants C'™, and

CTM 5 appearing in the expressions above ensure Eq; covariance of the field strengths

CIM

F! whereas oJy alone would not be covariant. The dots indicate additional

constrained fields discussed in sections 2 and 3.

e The representation-theoretic content of the tensor hierarchy algebra permits writing
a non-linear duality equation (3.22) for the non-linear field strengths:

FI— MIEQu F7 =0. (1.2)

The tensor hierarchy algebra ensures the existence of a symplectic form 277 that acts
on the field strengths F!. The above first-order equation is a vast generalisation of
(twisted) duality equations that have appeared elsewhere in the literature [35, 62]
and covers both the matter and the gravitational sector. As we analyse in section 3.6,
the duality equation is not sufficient to determine the dynamics of the constrained
fields yar%, just as e.g. for E; exceptional field theory [3]. Assuming integrability
conditions at linearised order, we relate the constrained fields and their dynamics to
our previously studied model in [47].

e We propose non-linear gauge transformations of all fields in (3.19) and (3.20) and show
that the duality equation (1.2) is gauge invariant under these gauge transformations
if a certain group-theoretic identity (3.26) holds. This identity is then verified at
low levels in decompositions of Ej; under its GL(11) and GL(3) x Eg subgroups in
sections 4 and 5, respectively. We also write explicitly the duality equation (1.2)
in components in the corresponding parametrisations, and exhibit that it reproduces
the known duality equations of eleven-dimensional supergravity and of Eg exceptional



field theory. We exhibit in particular in section 4.3 the gauge invariance of the infinite
tower of linearised duality equations underlying eleven-dimensional supergravity [49—
51].

Starting from section 6, we study the fermionic extension of the model. Given the
unfaithful spinors ¥ and € of K (E11), we show how their bilinears relate to the tensor
hierarchy algebra and how this can be used to define supersymmetry transformation
rules and a consistent supersymmetry algebra. We show that this consistency also
connects to the reducible gauge structure of the E1; generalised Lie derivative and
introduces yet more additional bosonic fields into the theory in order to make all
symmetries manifest.

We establish a linearised, K (E11) covariant equation of motion for the gravitino field
in section 7 that reads (see (8.1))

GUMoypapy, =0, (1.3)

where 1y, are the components of U in a Spin(1, 10) basis and G%*M are K(Ey;) invari-
ant tensors that are constructed out of Spin(1,10) gamma matrices and Kronecker
symbols. We show how this gravitino equation of motion is consistent with the bosonic
dynamics under supersymmetry. This requires also introducing gravitino bilinears in
the non-linear duality equation (1.2) in the form (see (7.17))

F'— M Qe F7 =v~1,08, (1.4)

where OL ~ (UW)L denotes fermion bilinears transforming in the K(Fj;) representa-
tion of the field strength equation of motion. The underlined index I here indicates
a ‘local’ K(F11) index that is converted into a ‘global’ Fy; index I by means of
the inverse generalised vielbein V~! in E11/K(E11). The possibility of making this
fermionic modification of the first-order duality equation rests on a non-trivial relation
between the unfaithful spinors and the tensor hierarchy algebra that we demonstrate
at low levels. In this way we obtain a supersymmetric non-linear duality equation for
the bosons including the non-linear fermionic terms.

When studying the supersymmetry algebra and gauge algebra it is important to
also study the generalised diffeomophisms on the fermions. We provide a general
expression for this in (7.18) that involves the compensating K (ej;) transformation
arising due to the gauge-fixed generalised vielbein. We verify in appendix E that our
formula, when restricted to Ey exceptional field theory, agrees with previous results
in the literature.

In section 8, we study also the extension of the linearised fermionic equation of mo-
tion (1.3) and supersymmetry variations to the non-linear level.
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Figure 1. Dynkin diagram of F;; with labelling of nodes used in the text.

2 FE;; and tensor hierarchy algebra

In this section, we shall review elements of the group E71; with the underlying Lie algebra
¢11, and the tensor hierarchy algebra 7 (e11) that will be needed in the construction of the
FE11 invariant duality equations.

2.1 FEj; and its Lie algebra

The Lie algebra e1; is an infinite-dimensional Lorentzian Kac-Moody algebra with Dynkin
diagram shown in figure 1. For a detailed description of the algebra see for example [35, 63,
64]. We will denote a representation with highest weight A by R(A) where A = Y, p'A;,
with A; denoting the fundamental weights and p’ are the Dynkin labels. For example,
R(Aq) refers to representation with Dynkin labels (1,0,...,0). We will use the notation
R(A) to also refer to the module associated with the corresponding representation. The dual
representation of R(A) will be denoted by R(A) and it is a lowest weight representation.

A convenient way of organising the generators of e¢j; is by decomposing the adjoint
representation of ej; under its gl(11) subalgebra obtained by removing node 11 from the
diagram. Defining the gl(11) level ¢ as the eigenvalue of the generator %K ™. ., where K™,
for m,n = 0,...,10 denotes the generators of the gl(11), levels 0 < ¢ < 4 of the gl(11)
decomposition of the adjoint ¢;; are given in table 4 in appendix A. The appendix also
contains more details on the gl(11) algebra in (A.1) and similar decompositions of some
other representations of e1; that play a role in this work. At levels 0 and 1, the generators
have the same index structure as the graviton and the 3-form field of 11D supergravity,
respectively, and their dual 6-form and the dual graviton appear at levels 2 and 3.

The highest weight representation R(A;) plays an important role in the dynamical
description of the Fq1 exceptional field theory as it gives the representation structure of
the Ey; space-time coordinates [58]. Its dual lowest weight representation R(A;) is the
representation denoted by ¢ in [58] that can be used to contract the coordinates when
forming a generalised translation group element. The level decomposition of R(A;) under
gl(11) is displayed in table 5 in appendix A. The names of the generators there already
anticipate their roles as central charge type coordinates in a D = 11 interpretation and
associated translation generators and gauge parameters.

We shall also need to make use of tensor products of e;; representations. The ten-
sor product of highest weight (respectively lowest weight) representations is completely
reducible into infinitely many highest (respectively lowest) weight representations. By con-
trast tensor products of highest with lowest representations fall outside what is called cate-

gory O and there are no complete reducibility results [63]. It is known nonetheless that the



tensor product of a representation and its dual contains the adjoint representation. The
following decompositions of tensor products will prove to be useful

(R(A1) © R(A1))gym, = R(2A1) @ [R(A10) @ .. ],

(R(A1) @ R(A1))antisym = B(A2) & [R(A1) @ .. ],
R(A )@ R(A2) = R(A1 +A2) DR(A3) @ ... (2.1)

The representation [R(A19)@®. . .] encodes the weak section constraint in the E1; exceptional
field theory which will be described in the next section and the low levels of its gl(11)
decomposition is given in table 6. The representation [R(A4) @ ...] completes this to the
strong section constraint.

The Kac-Moody group E1; should be properly defined either as the minimal (or small)
group generated by products of real root generators [65] or as the completed group that
is obtained from the minimal definition by completion with respect to the building topol-
ogy [66]. For the purposes of this paper, we will consider the completed group Ej; as formal
exponentials of ej; Lie algebra elements completed in the positive Borel direction. A more
detailed discussion of the Kac-Moody symmetric space and possible coordinates on it will
be given in section 3.5.

2.2 Tensor hierarchy algebra

For any e, algebra, the tensor hierarchy algebra 7T (e,) is a super-algebra extension of
en [47, 48]. It admits generally a Z-grading 7 (e,) = P, Tp(en) consistent with the Grass-
mann Zs grading (i.e. such that @, Tax(en) is the bosonic subalgebra). For n <8, 7T, (ey,) for
0 < p <11 —n corresponds to the ¢, representation of the p-forms in (11 — n)-dimensional
maximal supergravity. In particular one has Ty(e,) = ¢, corresponding to the Cremmer-
Julia hidden symmetry of the scalar sector that extends to the p-form sector. The tensor
hierarchy algebra is not symmetric under p «» —p, meaning 7, 2 7—,. The component
T_1(ey) is the so-called embedding tensor representation [48| which is used for describing
gaugings of supergravity |8, 9]. The tensor hierarchy algebra was constructed in [47| for
n > 9 as the quotient of the superalgebra generated by a local superalgebra by its maximal
ideal, using the construction of [67]. This construction is very similar to the one of a Kac-
Moody algebra, for which the local algebra is defined by the Chevalley generators associated
to each simple root, and the maximal ideal is defined by the Serre relations. For the tensor
hierarchy algebra, the local superalgebra can be described explicitly but the maximal ideal
does not admit a closed-form definition generalising the Serre relations. In the following we
shall simply use 7 = ®pez 7, when we refer to the tensor hierarchy algebra extension of eq;.

The important difference between T and the tensor hierarchy algebras associated to e,
for n < 8 is that 7y 2 ej; and is a non-simple extension of ej; that decomposes as an eq1
module as follows

To = e11 D R(A2) © R(A1g) © - - (2.2)

where the notation e1; @ R(A2) indicates that it is not the direct sum of two modules, but
rather that ej; is a submodule and [e;; @ R(A2)]/e11 is the highest weight module R(As2) as



level FEqq rep index notation
p=2 R(A1) & - Ph=(Ph )
p=1 | R(A) @ R(A; + A1) ® R(Ay) @ -~ | PM = (PM PMA_ )
p=0 ¢11 D R(A2) @ R(Ayp) @ - - o = (1, 1%, .)
p=-1 T tr

p=—2 e11 @ R(A2) @ R(Ayp) @ - ta = (fa, tas ta,...),
p=-3| R(A) ®R(A + Aw) ®R(An) @ | P = (Pu, Pua, -

Table 1. E7; representations arising at level —3 < p < 2 elements of the tensor hierarchy algebra.

In particular, PM and Pj; denote the representations R(A1) and R(A;), respectively.

a quotient only. Thus e1; @ R(A2) forms an indecomposable representation. It was shown
in [47] that the next term R(Ajp) forms a direct sum with this space but the full module
structure contained in the dots is presently not known. The other degrees 7, have a similar
structure.

The tensor hierarchy algebra admits an antisymmetric bilinear form such that 7, =
T_9—p. The components 7, for p > 1 are highest weight modules of ¢11, and therefore
lowest weight for p < —3. T_; is a symplectic representation of e;1, but very little is known
about its reducibility, since it is neither a highest /lowest weight representation of e;; nor an
extension of the adjoint itself. We will therefore refer to this representation as 7_1, both as
an ¢1; module and as the component of the tensor hierarchy algebra. The known structure
of 7, for =3 < p < 2 is summarised in table 1 where also notation for the corresponding
generators is introduced.

The indecomposability of Ty is reflected in the commutation relations of the level p =0
generators t = (t*,1%,#%,...) as

[t"‘,tﬁ} = fP 1, {ta,fﬁ] = TP — K 47 [t 8] = —T**=i=.  (2.3)

The presence of the non-trivial structure constant K aéy in the middle equation is due to
the indecomposability, showing that there is commutator of e;; with R(Ag) going back to
¢11. The action of the group E1; on e11 @ R(A2) is defined by

gt =g%st’, g% = g% 50" + Wi (9)t”, (2.4)
such that gf‘ggg ~ = (9192)%~ and where wg‘ (g) is a group 1l-cocycle satisfying

WS (9192) = w5 (91)93 5 + 985w (92) (2.5)

and that linearises to wg(e/\“lﬂ) = A,K7% + O(A?) consistently with the commutation

relation (2.3). Finding an explicit form of the cocycle wg‘ (g) for the tensor hierarchy algebra
T (e11) seems to be a formidable task, although one can write wg‘(eX ) as a formal power

series in X, see [34] for formulas in the case of eg.



The action of e11 on the other levels 7, is given by

[ta,PM] = _TQMNPNv [ta’PA] = _TQAEPE [taatf] = TaJItJv (2 6)
(6, 88] = =Sty + Ksts, (1%, 85) = T 45 [t%,7a] = T*plz . '
Since p = —2 is the dual representation to p = 0, the indecomposability is now in ¢j;BR(A2),

such that K M’g now appears in the commutator of t* with the element ¢g of the co-adjoint
¢];- The convention for the e;; representation matrices is such that

TaMpT’BPN - T’BMPTQPN = faﬁ,yT’yMN, etc. (27)

We shall also use the notation fagg for the complete 7g structure coefficients, such that
f"‘ﬂa = —Taﬂg, f‘lﬁ7 = —K’lﬁ7 for example.

Further (anti)commutators that will be needed later are given by

[PM1,] =C™ o, [PM, t:a} =C™Mst, [PM, t:A} =C™M 1y,
(PM Py} = TMnto + TM i + T yiy, {PM PN = MV PA
[PM 4] = —Qp,C"M 1 — Q0™ 5% — QpyC7M y e (2.8)

where the coefficients are E7; invariant tensors, except for K 0‘57, C™ _ and T*M 5 that
mix with the indecomposable structure, although the complete tensors C'™ 4 and TM y
are invariant tensors in the indecomposable representation 7. In particular for E1; group
elements one has

gIJgMN g—lﬁa CJN/B _ CIMO[ o gIJgMN wg(g—l) CJNB . (29)

If, as in [47], we take the fields of the theory to be in 7_5 such that they are of the
form ¢ = (¢%, X% YA, ...) and defining their ¢;; variation by 6p¢%t5 = Ao [t, $°t5], the
commutation relations (2.3) yield

Oad™ = =Ny f1307, (2.10)
OAXE = AT X 4 A K% 507 (2.11)

which gives after exponentiation

¢ — exp(—Ay f7) 07 (2.12)

i s o5 = 1 ¢ k1
X% = exp(AT7) %X + A, ) ~ D (AT K (—As ) F%0" . (2.13)
n=0 " k=0

The above transformations satisfy the F7; algebra.



3 Non-linear field strengths and duality equations

In this section, we shall construct non-linear field strengths for the bosonic fields and propose
a duality equation invariant under rigid F1; and non-linear local gauge transformations in
the spirit of the generalised diffeomorphisms that are encountered in the FE,, exceptional
field theory formulation of maximal supergravity theories in D = 11 — n ‘external’ space-
time dimensions [1-4, 13|. This section constitutes the first central result of the paper and
some of the general formulae given here will be tested in various examples in the following
sections.

3.1 Preliminaries for general exceptional field theories

Exceptional field theories for E,, are formulated in an extended space-time in which the
extra (internal) coordinates transform in a representation of the duality group F,, [1-4, 13].
Furthermore, there exists a generalised diffeomorphism symmetry which closes on the fields
satisfying the section constraint for n < 7. This section constraint restricts the dependence
of all fields and parameters on the extra coordinates such that they can depend at most on
n independent coordinates on the neighbourhood of each point. For n > 8, the algebra of
generalised diffeomorphism needs to be extended to include not only diffeomorphism pre-
serving the F, structure, but also additional gauge transformations that involve constrained
parameters [4, 68, 69].

The formulation of E, exceptional field theory extends that of gauged maximal su-
pergravity. In particular, the various fields in E, representations appearing in the tensor
hierarchy of gauged supergravity [10, 11] are also involved in exceptional field theory. For
instance, the external scalar fields parametrizing the coset E, /K (F,) play a significant role
in the construction of the field equations in the form of a generalised metric.

A key feature of the E,, exceptional field theories is that they typically require extra
p-forms of rank p > D — 2 (in some specific representations of E,,) beyond the ones present
in the tensor hierarchies of maximal supergravity theories. These extra fields obey extra
constraints related to the section constraint mentioned above and do not represent new
dynamical degrees of freedom. Their first order field strengths are determined algebraically
by source terms quadratic in the original fields. Finally, the F,, exceptional field theory
possesses an R-symmetry group which is the maximal compact subgroup of E,, and that
we denote by K(E,).?

In view of the picture outline above for the E,, exceptional field theories, it is natural to
consider F11 as the duality group and take the extended space-time to be parametrized by

a vector in the fundamental representation z™t); € R(A1) [58], such that the coordinates
themselves z™ transform in R(A;). In the following we will mostly refer to the represen-
tations of the coordinates, rather than the representations of the vectors. It is also natural
to introduce the coset F11/K(FE711) where K(Fj1) is a maximal subgroup of Ej; defined
by being invariant under the (temporal) Cartan involution, as was considered long ago by
West [35, 70]. Indeed, it is known that the GL(11 — n,R) x E,, decomposition of the fields

2For fermions one has to consider the double cover K (En) that we shall also encounter for F1; when we
discuss coupling to fermions starting from section 6.
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that parametrize the coset FE11/K(FE11) does contain all the supergravity fields [45, 46],
see also appendix A for the cases n = 0 and n = 8. This remarkable fact is encouraging
but the extra constrained p-forms discussed above, which play a key role in the description
of the exceptional field theories, are absent in this picture. As such, an Ey; exceptional
field theory similar to the F,, theories cannot be formulated only in terms of fields valued
in E11/K(E1;), which depend on coordinates z". However, the tensor hierarchy algebra
introduced in section 2 provides the required additional building blocks to tackle this prob-
lem. F4; invariant consistent field equations were obtained at the linearised level in [47] by
employing building blocks provided by the tensor hierarchy algebra [48]. Here we are going
to reconsider these equations and show that they are in fact invariant under non-linear
generalised diffeomorphisms provided one defines appropriately the gauge transformations
of the constrained fields.

3.2 Differential complex from 7 (e;1) and the section constraint

As observed in [47], the tensor hierarchy algebra 7 = @,7, defines a differential complex
of functions depending on coordinates 2™ that transform as P € R(A;) € Ti. The
differential is defined through the adjoint action of the basis elements PM in 7; and thus
shift the degree p by 1 in the complex. Acting on any function in the complex we let?

d = (ad PM) 0y, . (3.1)
For this differential to square to zero one needs
d? = (ad PM) (ad PV) 8pr0n = IAMN (ad PA) 0pr0n = 0, (3.2)
which is equivalent to the condition that any field ®(z) in the complex satisfies
IAMY 9p0n®(2) = 0. (3.3)

This is nothing but the weak section constraint and P? is the 75 generator introduced in
table 1. Its strong version (acting on arbitrary products of fields) can be written as [69]

1
na[gTO‘PMTBQNap ® g = —§3M ® ON + On ® Oy (3.4)

using the Ej; generators in the R(Aj) representation and the inverse Ej; Killing metric
Kap in the adjoint of e11. kqpg is E11 invariant and non-degenerate [63].

The differential complex defined in this way serves as a basis for the construction of
the field equations, such that the degree p = —3 supports the gauge parameters, p = —2
the potentials, p = —1 the field strengths, and p = 0 the Bianchi identities, as can be
anticipated from table 1. Note that the potentials belong to a module in the co-adjoint
representation of Ty residing at level p = —2 rather than level p = 0. Because 7y is not

3Here, we assume that 7; as an Ej;; module admits R(A;) as an irreducible submodule. We have
checked that the components R(A1 + Aio) and R(A11) can consistently be set to zero [47], but we do not
have complete proof that R(A1) is indeed an irreducible submodule in 77.
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reductive, the co-adjoint 7" = T_5 is not an algebra. Therefore one cannot define a non-
linear theory from a putative Maurer-Cartan form in 7; alone. Moreover, within the tensor
hierarchy algebra, T_o generates arbitrarily negative levels. This problem will be resolved
by treating the fields in e1; = ¢]; differently from the fields in the complement.

At the linearised level, the differential complex introduced above provides the following
explicit expression for the field strengths at p = —1 given by the exterior differential of the
potentials ¢% at p = —2 via?

0%ty = d(¢°1z) = C™Mz00m ¢t = (CT™M 00 g™ + C™M a0 X + CT™M o YA + .. ) 1.
(3.5)

We recall that the well-definedness of the eqi-representation 7_1 of the field strengths
follows from the tensor hierachy algebra although 7_; is not a highest or lowest weight
representation.

By virtue of the (weak) section condition (3.3) this field strength is gauge invariant
under the linearised gauge transformation

5ets = d(EM Pyy) = TM NoyEN T, . (3.6)

Here, the fields ¢® in T_5 are valued in the full representation as indicated by the index @.
One can divide T_5 into the co-adjoint of ¢17 and the dual of the extending representations.
The fields ¢™ associated with the dual e]; can be thought of as the usual fields also arising
in the coset Fy;/K(E1;) while the remaining fields (X%, ¢*,...) will be those related to
the extra constrained fields needed in the formulation of Ey; exceptional field theory. As
we can see in (3.5), the object ©'¢; has an explicit derivative dy; and therefore satisfies
constraints due to the section condition. Now, it turns out that @ = ©1(¢*, X, YA, ..))
can be used to construct a field strength F! at the linearised level which will provide a
building block for the linearised duality equations. We define the linearised field strength
on the coset fields by imposing the projection on ¢® to be in the coset e1; © K (e11) [47]

F({in.) = 91 ((ZS =+ 77¢T777 X7 Y7 . ) ) (37)

where ¢+n¢'n is short for T, n +¢n™MPnypT,F o, where nyn is the K (F11) invariant
metric on the R(A1) module and ¥ its inverse. This projection ensures at the linearised
level that ¢* can be shifted by an arbitrary K(e;;) element without modifying the field
strength F[,, . Note that the field strengths F{, | in (3.7) are only K (E11) covariant while
the © are Fy; covariant. Moreover, this additional term violates gauge invariance [47]. We
shall see nonetheless that one can accommodate the gauge transformation of the fields X
and Y such that the duality equations described below are gauge invariant.

With that understood, and due to the symplectic structure of p = —1 one can write
down the duality equation

F({inA) = UIJQJKF({i(m) ) (3.8)

4In analogy with the role played by ©! for E, exceptional field theories, we could also call this the
‘embedding tensor representation’. For example, for Er this is the (912 4 56)-dimensional representation
Of E7.
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where 7 is a symmetric non-degenerate K (F1;) invariant bi-linear form on 7_1 and Qg
the F4p invariant symplectic form on T 1.5

In what follows we propose a non-linear extension of this duality equation. One im-
portant step will be to replace the partial derivative of the extra fields (X%, ¢A,...) by
constrained fields that are familiar from exceptional field theory, in particular for Fq [34],
in which case the tensor hierarchy algebra gives rise to the non-semi-simple Virasoro exten-
sion eg @ (L_1) of eg.

3.3 Proposal for the non-linear duality equations

In this section we shall argue that the construction of a non-linear F7; exceptional field
theory can be achieved by defining the non-linear duality equation

FIL = M7Q FE (3.9)

where M is the exceptional metric, a function of the fields in Ey1/K(E11), in the field
strength representation, and F! is a non-linear field strength whose definition needs to
incorporate the extra constrained fields that are expected to arise from what we already
know from the structure of the E,, exceptional field theories for lower n. In constructing
this field strength, we shall use the tensor hierarchy algebra extension of e;; introduced in
section 2.2.

Before defining the non-linear F'! we shall give more details on the definition of the
exceptional metric My ;. Let V(2) be a coset representative of Ey1/K(E1;) transforming as
V(z) = k(2)V(gz)g with g € Eq1 a global element and k(z) a local K(F11) element. ‘Local’
here refers to the dependence on the extended space-time with coordinates 2™ where M
labels the R(A1) representation of Ej; occurring at level p = +1 in the tensor hierarchy
algebra. The subgroup K (F11) is defined as the subgroup of elements k that preserve a non-
Euclidean metric 7 such that kTnk = 7 in a suitable highest (or lowest) weight representation
where the Hermitian conjugate can be defined [63]. The non-Euclidean nature means for
example that K(Ej1;) N GL(11) = SO(1,10) where GL(11) denotes the regular GL(11)
subgroup of E7; that appears in the level decomposition relevant for describing D = 11
supergravity. In other words, 7 is the standard Minkowski metric of eleven-dimensional
space-time extended to the whole extended space-time.°

As usual in exceptional field theory, it is convenient to work with the exceptional metric
in order to avoid the introduction of the K (FE1;1) gauge invariance and its gauge-fixing,

M(2) =V()'nV(z)  — g M(gz)g. (3.10)

This definition is in complete analogy with non-linear realisations of finite-dimensional
groups but requires some care in the case of infinite-dimensional Kac-Moody groups. We

®As we do not know whether 7_; is completely reducible, it is possible that 7 is only well-defined and
non-degenerate on some (maximal) completely reducible submodule. For simplicity, we shall only refer to
7_1 as this (maximal) completely reducible submodule.

6As shown in [71], there are other D = 11 signatures embedded in K (E11) that relate to so-called exotic
forms of supergravity [72] that have more than one time-like direction.
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shall make more comments on this subtlety when we discuss the vielbein and its gauge
transformation in section 3.5.
A key building block for the duality equations is the current defined as

JMa/iagtﬁ = M 1oyM € R(A)®eqy. (3.11)
This expression makes sense for the so-called small group in any integrable module [73].
Since M only involves Ey11/K(FE11), the combination M ™19y, M can be expanded in the
adjoint of F1; and transforms covariantly in the tensor product of R(A;) with the adjoint

with, where the former factor is due to the partial derivative.
We use the current (3.11) to define the non-linear field strength £ by

FI =™ Jy® + O™ oy + O™y + . (3.12)

where the structure coefficients are the same as in (3.5), but dps¢“ has been promoted to
the non-linear current Jy;®, while the partial derivative 9y, X%, Oy YA, ... are promoted
to constrained fields xa/%, Car®, ... that are not total derivatives, but satisfy the section
constraint (3.4) on their index M. It is important to stress that the structure coefficients
are defined such that the potential ¢$®%4 is in 7_3 and not in 7, such that one cannot simply
extend Jyrot® to a current in the extended algebra 7y. Nonetheless, because eq7 is simple one
can raise the index of the Eq1 /K (F11) current to get Jys*t,. The indecomposable structure
of the module T_s implies that the field strength must necessarily involve an additional field
in R(A;) ® R(A3), and because Jy %%, is not a total derivative, this additional field ys®
cannot be a total derivative either. It is nevertheless consistent with the indecomposable
representation to require that it satisfies the strong section constraint. We shall therefore
introduce the constrained fields xar®, Ca™, ... so that they transform under Eq; according
to the indecomposable representation and the field strength F! is indeed an Ej; tensor
in 7_;. Even though the additional field (3 in R(A1) ® R(Ayg) is not required by Ei;
covariance, we shall see that both ya/® and (p® are necessary to write down a twisted

selfduality equation (3.9) covariant under generalised diffeomorphisms. In the current paper
we assume implicitly that we can consistently truncate to this known part of 7_o but in
principle an extension to additional modules in 7_o can be envisaged as indicated by the
ellipsis, which will be dropped for short in the following.”

We now describe in more detail why (3.12) defines an F4; covariant object due to the
indecomposable structure of the module 7_5. Under rigid E; transformations one has as
in (2.4)

Ju® = g W g% INP, (3.13a)
xu® = QilNM(gd,éXNB +wi(9)In") . (3.13b)

Recalling (2.9), it follows that
C™M o Ta® + C™M axar® = g 1 (C7M 0 du® + C™M axar®) (3.14)

"The field ¢a™ associated with R(A19) was not considered in the linearised analysis in [47]. Including
it here has the benefit of making the first order duality equation gauge invariant while [47] only had gauge
invariant second order equations.
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transforms covariantly. The cocycle appearing in the indecomposable representation is
crucial in this calculation. The infinitesimal transformations under g = exp(A4t®) corre-
sponding to (3.13) are

oaJu® = (—fwﬁJM’g — TNy In), (3.15a)

A’Y
Saxar® = Ay (T8 xn” = TN arxn®) + A K% 5708 (3.15b)
AXM ~ BXM MXN 0l B M

3.4 Gauge invariance of the non-linear field equations

Having introduced an Ej; covariant tensor field strength F, the next step is to compute
how it transforms under E;; generalised diffeomorphism. The gauge parameter &M of the
generalised Lie derivative transforms also in R(A;) just as the coordinates z™. Note that
additional gauge transformations with constrained gauge parameters are required for the
closure of the algebra of generalised Lie derivatives for e, with n > 8 [4, 68, 69, 74]. We
shall not check the closure of the algebra of generalised Lie derivatives for e, but we will
comment on these additional transformations in section 3.6.

The dynamical degrees of freedom of the theory appear through the representative M.
Therefore we start by defining the generalised Lie derivative with parameter £ acting on
M. The formula, as for all exceptional field theories, can be defined as (see e.g. [34])

SeM = EMONM + kiapTM oy N (Mtﬁ + tﬁTM) . (3.16)

This formula reproduces the unique linearised gauge transformation studied in [37, 47| in
the linearised approximation and provides a non-linear extension of it.
Combining the definition of Jp/ in (3.11) and the transformation (3.16) it follows that

Se i = ENONTu® — TPN poner fa, 207, 4+ O €N I
+ TN p (0pOnE" + MygMPROy0RE9) (3.17)

where the third term in the first line originates from the derivative in the current acting
on the generalised diffeomorphism parameter in the variation of M. Using the section
constraint (3.4) on this term, one can recognise the first line as the expected generalised Lie
derivative, including the transport term, an infinitesimal e1; transformation plus a weight
term, i.e. introducing the notation T, y = nangBMN

1
ST = ENON T + T/éVJDONﬁPJcBa«yJM7 + TP QopeT N pr In™ + §5N§NJMO‘
+ TN p (00 ONE" + MygMPR00REC) . (3.18)

The inhomogeneous terms in the second line are non-covariant variations that resemble the
linearised gauge transformation of the linearised current. At this level the variation of the
current is identical in structure to what one would obtain for any F,, exceptional field theory.

In order to obtain a consistent transformation of the field strength F, it is necessary
that all the components in 7_s transform according to the indecomposable representation
of F11. To this end, it is useful to introduce the notation Jy® = (Jar®, xar®, G,
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that includes the additional constrained fields in a single object transforming as an element
Ja%ts of T_o. In this way one can define the following ansatz for the gauge transformation
of Jy® that is manifestly consistent with the indecomposable representation

N _ L 1 N
Se ™ = ENON T + TN pone” 7% InT + Tt g0pe@T N yy In® + §3N§NJMQ
+ TaNp (8M8N§P + MNQMPRaMaRfQ) + HanMNQaMé?NfP . (3.19)

This formula extends (3.18) to all components @ with structure coefficients invariant under
Fq1 for the indecomposable module, and we have added one extra term at the very end of
the equation with the understanding that II%gp = 0, while H&Q p and HAQ p are the highest
weight projectors from R(A1) ® R(A1) to R(Az2) and R(A1p), respectively. These exist due
to (2.1). We again restrict only to R(As) and R(Ajp); additional Ej; representations in
T_2 could be accommodated in the same way, as long as they would appear in the tensor
product R(A1) ® R(A1).

Assuming the uniform gauge transformation (3.19) we can read off the gauge transfor-
mations of the constrained fields to be

Sexm® = N Onxm® — aNPf?NfPTadBXMB + NN 4 TN pan e K% 50),°

+ TN p (OnONE” + MM 0y 0RE%) + 1% p MNP0y aNE",  (3.20a)
SeCu™ = ENONCu™ — TN pONEP T 2= + O™ (vt

+ T p (00N ET + MyoMPROy0REQ) + TR gp MMV 0nEP . (3.20b)

As explained above, this form is by construction in agreement with the indecomposable
structure of the module: the gauge transformation of y,%* must include the same gauge
transformation as Jp;® with the index & instead, so that the gauge transformation of Jy®
is written in terms of invariant tensors. The indecomposable structure is such that one
has the freedom to add any transformation of y /% in the R(A3) module, which gives the
freedom to add the term involving the projector HdQ p. It will turn out that this additional
transformation is indeed necessary for the duality equations to be gauge invariant under
generalised diffeomorphisms.

Equipped with the formulas above, we can now compute the variation of the non-linear

field strength (3.12) under gauge transformations and find
ol = Moy FT — TN yroneM T ;7 + %8M£MFI
Lo (T@Np (00N ED + My MPE,0569) + HanMNQaME)NfP)
— My Pl — TNy oneMTe BT 4 %aMgMFI
+ ((CIMaTaRQ + CIMdeRQ + CIMATARQ)MQNMRP
+ CIMGII gp MON - CTM T p MO ) O O™ (3.21)

Here, we have recombined the terms into the generalised Lie derivative of F! in the first
lines of the two equations. The transport term and the e;; transformation term recom-
bine by invariance of the structure coefficients C'™ 5. The last term of the first lines
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determines the weight of F. The inhomogeneous terms that do not involve conjugation,
C™ TN ,9,,0nEP, combine into the section constraint by the Jacobi identity and have
been removed when going to the second step. The remaining inhomogeneous terms at the
end show that the field strength F! is thus not gauge covariant.

The non-covariance of F! is not a problem since we are only interested in constructing
a gauge invariant dynamics. More specifically, we only demand that the duality equation

El=Fl — MIEQy,F7 =0 (3.22)

transforms into itself under generalised diffeomorphism.
Performing its gauge transformation, we find

1
(5581 = §M8M€I—TaNMGNgMT“IJ€J+§8M§M5]+ (5§—MIKQKJ) 8M8N§P (3.23)
% (CJMdeQPMQN+CJMAHAQPMQN_MJLQLK/CK’MdeRQMQNMRP> 7

where we used (MQ)? = 1. Because one derivative comes contracted with MM~ 9y and the
other derivative does not, one cannot use the section constraint to cancel the inhomogeneous
term. For gauge covariance of the duality equation we must therefore require that

CJM&HdQPMQN + C‘]MAHAQPMQN - MJLQLK/CKIMdT&RQMQNMRP =0. (3.24)

By construction, the conjugation by M in various representations allows us to define various

conjugate invariant tensors®

TN = MMPMN@M 5T g = M PN 511 pg
MY = MMP MNCMp=TTE pg = M PN @l pg | (3.25)

and similarly for C7y® assuming the existence of the matrix 77, defining a symmetric
K (FE11) non-degenerate bilinear form on 7_;. Multiplying (3.24) by Mg to remove the
explicit scalar matrix dependence and using (3.25), one obtains the following necessary and

sufficient algebraic condition for gauge invariance in terms of E1; structure constants:
~ | N
CrpP MY 4+ O pAIAMN = Qp,07M T8N (3.26)

If this condition is satisfied, the first order duality equation (3.22) is gauge invariant. We
do not have a general proof of this central condition. In the next sections, we will verify
condition (3.26) in the GL(11) and the GL(3) x Eg level decompositions at low levels. This
will provide non-trivial support that this condition is satisfied.

Let us now try to give some heuristic argument why (3.26) is plausible. Taking the
symmetric part in M and N of the equation, the right-hand-side becomes the Jacobi iden-
tity 2[PM {PN), Pp}] = [{PM™, PN}, Pp] in the tensor hierarchy algebra. Therefore the
symmetrized condition reduces to

[PA, pN] = —QQIJCJPAU . (3.27)

8We note that 7 is not E11 invariant, only K (F11) invariant. The construction above is similar to tensor
representations of sl(n): even though 04, is not an invariant tensor of sl(n) but only of so(n), it can be
used to relate a tensor representation to its dual. Abstractly, n is also an automorphism of the E1; algebra
relating the highest weight module to the lowest weight module. In particular 170‘57%'?517%9]‘(5519 = —f"‘ﬁw.
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That the coefficient C;p™ occurring through the condition (3.26) is the same as this corre-
sponding structure coefficient in the tensor hierarchy algebra is not guaranteed a priori. But
since both are F7j invariant tensors, they must be proportional to each other such that up
to a conventional factor this identity must be true. Since we do not assume that the modules
in 7 (e11) must necessarily be irreducible, meaning that R(As) would be extended to the
complete anti-symmetric tensor product and R(Ajg) to the complete symmetric product
minus the highest weight module R(2A1), the identity (3.26) requires that one can choose
the coefficients defining IIz™" and Iz~ such that the identity holds, which is simply
the statement that there is no component in R(2A;) by the Jacobi identity in the tensor
hierarchy algebra.

3.5 Gauge transformation of the vielbein and compensators

In the discussion above, we have relied on the ‘generalised metric’ element M defined
in (3.10) from the ‘generalised vielbein’ V € E11/K(F11). These objects have to be treated
with care since the Lie algebra eq; is infinite-dimensional and one first has to define what
group one associates with it. A standard building block is to consider the one-parameter
subgroups of the form e/« (¢ € R) for generators E, associated to real roots. The group
built from taking finite products of such real one-parameter subgroups generates what is
called the small Kac-Moody group |65, 75]. The action of this small Kac-Moody group is
completely under control for so-called integrable representations of the algebra e;; where
all real root generators are locally nilpotent, meaning that the repeated action of E, on any
element of the representation space terminates after a finite number of repetitions. Thus
e!Pa is effectively represented by a polynomial and multiplying finitely many polynomials
gives a well-defined polynomial again without having to worry about convergence or similar
matters. All highest and lowest weight representations of ej; are integrable and so is the
adjoint representation [63], and so 7_; although it is neither highest nor lowest weight.
One can also associate the matrices M and M~! with the small Kac-Moody group in the
so-called ‘group model’ (generalising the Cartan embedding) of the Kac-Moody symmetric
space [76]. However, the current J = M™'dM is not evidently meaningful since the
continuous map from the small Kac-Moody group to the algebra and back cannot be defined.

An alternative model of the symmetric space can be obtained by using the Iwasawa
decomposition, leading to what is sometimes called the ‘Kostant model’. Elements of the
(small) Kac-Moody group have an Iwasawa decomposition F1; = K(E11)B, where B is the
(upper) Borel subgroup [73]. This setting also allows for considering the so-called completed
Kac-Moody group where one completes the Borel subgroup with respect to the topology of an
associated building [66, 75]. A representative of the thus completed Kac-Moody symmetric
space’ F11/K(E11) can then be chosen in standard form by products of exponentials of all
generators of B [75], including the positive imaginary ones. In this construction, it is only
the positive Borel subgroup that is completed; the group K (F11) is not changed.

9We do not distinguish the completed Kac-Moody group from the uncompleted one in terms of notation
since we shall always be using the completed group implicitly.
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Generalising this approach slightly, we can also consider a parabolic gauge with
Y =vU, (3.28)

where v belongs to a finite-dimensional Levi subgroup of Ej; (such as GL(11)) and U
belongs to the unipotent subgroup associated with this parabolic subalgebra of e;;. U lies
in a unipotent subgroup of the Borel subgroup B. If the parabolic subalgebra is associated
with a level ¢, the generators appearing in U correspond to level £ > 0 while the generators
appearing in v correspond to £ = 0. Explicitly, we can write

U=]]exp (A Er) , (3.29)
>0
in the completed group and the factors are ordered with smaller levels appearing to the left.
Here, Ey denotes all (finitely many) generators on level £ > 0 and Ay are the coefficient of
a general Lie algebra element on that level. The A, correspond to the fields and depend on
the extended space-time coordinates zM.

With a parabolic parametrisation (3.28) of V one can work out the Maurer-Cartan
derivative dVV~! € ey in a meaningful manner since every generator Ey is multiplied by a
polynomial in A,, and dA,, for 1 < m < ¢ (and dressed by the Levi vielbein v).!9 Writing
dVV~! = P — Q in the usual symmetric space decomposition, the current 7 in this Kostant
model becomes J = 2V~ 'PV and is defined by the adjoint action of the completed Kac-
Moody group on the Lie algebra. Formally, this results again in infinite series expressions for
the components Jy;¢. If we are interested in only obtaining polynomial expressions in the
fields, we are therefore led to working with the components of P. In lowest/highest weight
representations one can also make sense of the matrix components of ¥ and V~!, whether
this remains true in unbounded representations like the field strength representation is not
clear to us.

As is clear from the above discussion, it is typically better to consider the completed
group and write the vielbein in a gauge-fixed form using a (maximal) parabolic gauge. Ex-
amples of such maximal parabolic gauges use the Levi groups are GL(11 —n) x E,, C E1;
with an associated level decomposition.'! Since we have fixed a gauge the action of a gen-
eralised diffeomorphism on the vielbein V will be accompanied by a compensating K (E11)
rotation that ensures that the gauge is maintained:

0eV = ENONY + kg TM NOMEN VP + XV, (3.30)

where the compensating transformation X is an element of the Lie algebra of K(F11) that
acts on V in the chosen representation. The same mechanism has been discussed also
in [37, 47].

10WWe note, however, that if one wanted to use this parametrisation to define a metric on the symmetric
space from the invariant bilinear form on ei1, every dA, would be multiplied by a infinite series of other
fields and the convergence of this expression is doubtful and would at least required a completion of the Lie
algebra as well.

" Note that only GL(11 —n) x E, C Ei1, with GL(11 — n) the linear group with positive determinant,
so we always understand that GL(11 — n, R) is the connected component of the linear group, and does not
include negative determinant elements.
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The compensator X can be written more explicitly in a level decomposition associated
with a maximal parabolic subgroup. Since the original V is made out of generators at levels
¢ > 0 by definition of the maximal parabolic gauge, only those ¢ that are associated with
negative levels violate the gauge in the middle rotation term. By the Killing form they
are paired with positive level generators T*M  contracting the rotation parameter 9p&Y,
where it is important that the derivative djs is subject to the section constraint (3.4).

Associated with a parabolic decomposition (3.28) is also a decomposition of the rep-
resentation R(A;) of the derivatives dps. In the case GL(11 — n) x E,, the derivatives
decompose into

Ot = (04, 04,-..). (3.31)

The index A here labels the coordinate representation of F,, exceptional field theory. We
can choose a partial solution to the E7; section condition by keeping only these two lowest
levels of derivatives, i.e. setting to zero the ellipses in this decomposition. This solution
to the section condition is only partial as the derivatives d4 still have to satisfy the F,
section condition. In connection to usual exceptional field theory the 9, are called external
derivatives and the 04 internal derivatives.

In such a partial solution to the section constraint there is only one generator that can
arise in (3.30) and that needs to be compensated. It is the one mapping 0, to 0a. All
other positive level generators map to zero on this choice of section. The corresponding
compensator then can be written explicitly as

X = Vaelda*(EZ — na6*PFp) (3.32)

where V44 is the E,,/ K (E,) coset representative and e, the GL(11 —n) vielbein; together
they form the £ = 0 part v in (3.28). The generators EaA and F g are the first level generators
that are conjugates of each other. B

In particular, we see that formula (3.30) provides a completely well-defined expression
for the generalised diffeomorphism action on the vielbein V. The compensating transfor-
mation will also be crucial when we consider fermions starting from section 6.

A final comment on the relation between the vielbein and metric formalism here con-
cerns the issue of connection. It is well-known that in exceptional field theory it is not possi-
ble to fix the affine or spin connection completely by the requirement of metric compatibility
and torsion-freeness [13, 77-81|, even though this arbitrariness drops out in the supergrav-
ity equations derived in generalised geometry |77, 78|. The definition of a (spin-)connection
for F1, as would be needed in the formulation [37] is a complicated open problem that we
shall not address in this paper. The formulation we are using here avoids the problem of
defining a (spin-)connection as we have defined the generalised Lie derivative acting on all
objects in the theory.

3.6 Comments on the extended dynamics and linearised field equations

Under the assumption (3.26), the duality equation (3.22) is non-linear and invariant under
generalised diffeomorphisms. However, it is not sufficient to describe the whole dynamics.
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In the following sections where we consider specific solutions to the section constraint, we
shall see in detail that most of the duality equation components only fix the constrained
fields xa/%, (™ ete. in terms of the current Jy®, and do not give any dynamical equa-
tion. The additional constrained fields x /%, (> indeed appear algebraically in the duality
equation (3.22), so for a given solution to the section constraint, one can simply solve a
large part of the duality equations in components by expressing the non-vanishing x /¢,
Cu™ as functions of the current. We shall see that among the infinitely many components of
the duality equations, only a finite number remains non-trivial and gives rise to dynamical
constraints on the fields parametrizing the E1;/K(FE11) coset. In particular, for a decom-
position of the type GL(11 — n) x E,, C Fi1, it seems that the only remaining dynamical
duality equations are the ones involving GL(11 — n) p-forms, while the dual graviton equa-
tion and the higher rank mixed symmetry equivalents involve the constrained fields in a
way that trivialises the dynamics. This should not be so much a surprise since the necessity
to introduce extra auxiliary fields trivialising the dynamics seems unavoidable in defining
dual gravity at the non-linear level [82, 83]. The non-vanishing constrained fields with the
M index along GL(11 — n) seem then to play the role of the Stiickelberg fields introduced
in [83], and their generalisation to all duality equations.

What is lacking in order to recover the full dynamics of the theory, are additional first
order equations for the constrained fields /% and (/. To re-obtain the dynamics of [47]
in the linearised approximation, we expect that all the constrained fields are enforced to be
total derivatives by a curl-free condition

a[MXN]d =0 = xu"=0uX", (3.33a)
Oyt =0 = (ut=auy?h, (3.33b)

where the solutions are defined up to gauge transformations of the type (3.40). The fields
X% are the fields belonging to 7_o that appeared in the linearised analysis of [47]. The
field Y did not appear there but this did not effect the conclusion that while the duality
equations are no longer gauge invariant, the second order integrability equations that are
derived from them are indeed gauge invariant on section.

Considering the non-linear system proposed here and parametrizing formally the fun-
damental M = exp(¢), where ¢, TM = qbanMQanTO‘PQ due to M = M, one obtains
with (3.33) the linearised field strength

FI =™ 000 + CT™M 500 X% + CT™M y 00 YA + O(¢?) = CT™M 0010% + O(07), (3.34)
with the linearised gauge transformations
Se¢® = TN p (OnE" + nvgn""Ore?) + o pnNone" (3.35)
with II* pg = 0. The linearised duality equation
FI - KQpe F7 =0 (3.36)

is gauge invariant under these linearised gauge transformations. This agrees with the pro-
posal of [47], up to the presence of the additional field Y that does not affect the analysis of
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the linearised duality equation in [47] at the level it was considered, and up to the additional
term in the linearised gauge transformation

0 X% =T p (OnE” +nvon"MOr€?) + % gpy™PoNe", (3.37)

which permits to make the duality equation gauge invariant.

Thus, the question at hand is how to find the full field equation for the constrained
fields x® and ¢* such that upon linearisation it yields (3.33). To this end, we shall offer
some speculations on how these equations could be obtained. Analogy with exceptional
field theories for finite dimensional exceptional group F, suggests that there should be a
pseudo-Lagrangian £ invariant under generalised diffeormorphisms (up to a total derivative)
whose equations of motion are obtained by the variation

0L = (Eut™, MOM™Y) + EMox 0% + EMCu™ +om(...), (3.38)

with (ta,t5> = k*P. The general structure of exceptional field theory shows that the
equations of motion of the constrained fields gives the first-order duality equations of the
supergravity fields [3, 4]. Assuming the same structure and invariance of the pseudo-
Lagrangian under E1;, one concludes that the equations of motion are of the schematic form

Ea=C™ 0y (MY + &0, EM=C™M M7, M =C™M M E. (3.39)

The (second order) equation &, for the adjoint scalars does not only involve the integrability
of the duality equation &' of (3.22) but also an additional piece S~a in the adjoint represen-
tation of E71. It is this piece that should imply the first order equations for the constrained
fields x /% and (™ if the duality equations are satisfied. Equations (3.33) should follow
from &, in the linearised approximation. However, without this peudo-Lagrangian at hand,
we cannot currently propose the general form of En.

As mentioned above, we also know that the algebra of generalised diffeomorphism of
parameter &M will not close and that one must introduce additional gauge transformations
to obtain a closed algebra of gauge transformations. The Lagrangian must also be gauge

invariant under these transformations. These transformations will at least include the
Ma _ (12

additional parameter ¥,V in R(A;)® R(A3), with a tracelessness condition ¥y,
The gauge transformation of the first constrained scalar under this parameter is

5XMd = 8N2MN5‘ + ... (3.40)

Turning to (3.33), we note that while the Bianchi identity for the non-linear field
strength contains the curl of ya/% and (3, it does not provide the desired non-linear
field equation for these fields. The T (e1) algebra Jacobi identity 2{PM [PN) t4]} =
[{PM, PN t4] implies

QrC™ o CTN 300 ADN)B = 0 (3.41)

12Tt is conceivable that there are more constrained parameters. We note that for the case of E, with
n < 9 a single new parameter suffices [69].
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on section. Using this we can find the Bianchi identity

Q[JCIMaaMFJ = Q[JCIMQ (CJNﬁaMJN’B =+ CJNB(aMXNB =+ CJNAﬁMCNA> (3.42)
:QIJCIMQ(CJNga[MJN]B+CJN33[MXN]5+CJNA8[MCN]A)

= Q1O (<507 £ Tar TN + CTN g0 + CTV a0

In the first step one uses the definition of the field strength and the section constraint,
and in the second the Maurer-Cartan equation for the current. The corresponding integra-
bility condition on the duality equation (3.22) relates then the second-order supergravity
fields equations to the curl of the constrained fields, but it does not determine them. A
similar situation arises already in F, exceptional field theory in which the equations for
the constrained fields follow from the Lagrangian, but cannot be obtained from the duality
equations of the supergravity fields by F, symmetry. This is discussed for instance for E7
in [3, eq. (3.17)].

4 GL(11) decomposition

In this section, we analyse the proposed duality equation (3.22) in a GL(11) level decompo-
sition of the tensor hierarchy algebra at low levels. We begin with an analysis of the tensor
hierarchy algebra decomposition under gl(11) to derive the transformations of the fields
under F1; and the expression of the field strength and the gauge transformations. Then
we study the non-linear duality equation and its gauge invariance. We shall concentrate in
particular on the crucial condition (3.26) in GL(11) level decomposition.

4.1 The field strength representation and rigid F;; transformations

The tensor hierarchy algebra decomposes under GL(11) as indicated in table 2. Besides the
general Z-grading T = Zpﬁ,, the subalgebra gl(11) C e;; introduces another Z-grading
that is denoted ¢ in the table. The adjoint of ¢1; at level p = 0 contains the gl(11) generators
K™, at level ¢ = 0 and ey is generated by commutators of the elements

1 . 1 )
gfnannanlngng} + geﬂqngng,Enannd ) (41)
where E™"2"3 and F), p,n, are the generators of e¢; sitting at ¢ = 1 and ¢ = —1, respec-

tively, while e, p,n, and f"1"2"3 are the corresponding constant parameters. The transfor-
mations of the tensor fields under rigid E7; is determined by their transformations under
these generators, and so we shall only display these transformations. The level ¢ that is
determined by the action of the trace K™, that counts the number of upper minus the
number of lower indices. The relation between ¢ and (p,q) is ¢ = £ + %p.

In order to display the field strength representation at level p = —1, we introduce
components F'/ dual to the generators ¢; that decompose under GL(11) as indicated in
table 2, e.g., for K7 = K™ at (p,q) = (—1,—1) we introduce at field strength F;, .,
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etc. The tensor hierarchy algebra fixes these components to transform under the rigid E1;
generator (4.1) as follows [47, eq. (4.37)]:

1 1 .
GF™™ = §fp1p2(mFP1p2n) - 66P1P2P3Fp1p2p3(m’n) ) (4.2a)
SF, mnans — _3fp[nm2 Fmpna] + mem [n1 s Fp1p2n3] _ éeplmpapmmnznapwng
3
— Compg 2P 4 §57[;rltl€p1p2qpnzn3}p1pz,q ’ (4.2b)

1
m o __ F mpip2 _ m E p1p2p3 E m,p
0Fn s Ep1pa[nid'ng] 9 Ep1paps 5[711 n2] €pnina ’

— %fmplanlmplpz — %fplpng(s[rzl Frslp1paps » (4.2¢)

L Y s — (4.2d)

5Pz = ~ 3¢l Frgor) — 5 P77 (Fuvspupas — Fosnspipaps) (4.20)
O0Fn, . .ngm = — 5X & (e[nmwaFm--m}m + em[nlan&--nQ]) - %fplmmel<n1---n97m>p2p3 J

(4.2)

0Fn,. . n10 = 4€ninans Fng.nyo) T %fplmmel [r11...n9 m10]p2ps * (4.2g)

Here, we have added the (9, 3)-form terms in (4.2f) and (4.2g) compare to [47].
This is the transformation of the field strength in (3.12) that we recall is composed out

of the current Jy;* and the constrained fields /% and ¢/ that transform respectively

as components of R(A;) ® R(Az), embedded in the indecomposable representation, and
R(A1) ® R(A1p). This fixes their rigid Ey; transformation that, for the first components in
the GL(11) decomposition, takes the form

1
_ 1P2
6Xm;n1...ng = iemplpgxp P ni...n

_ 1 rpipaps
9 2f Xm;ni...ngp1,p2p3

+ [P y mopipaps T e s (4.3a)
X1 mors = TP Xtimymioirs + 6€0sm X g nao] — 9€rfnina X ns. . m1o)s
+ 9€sinina X ngnolr T s (4.3b)
Xy nim = P Xy nanm + Wemning X gy + (4.3c)
OCP PO napr.paps = 10f[p1p2p3Cp4p5]n1...n7p1---p47p5 te (4.3d)

where we have not displayed the terms involving the E1; current, that would appear because
of the indecomposable representation. The transformations (4.3) will be sufficient for the
checks we shall perform. The transformations above can be deduced by combining (A.4)
with the rigid F1; transformation of the derivative index that follows from dj in [47]

1
00m = Qemmmaplm )

1
n1n nin 1N
58 imn2 f 1 2pap 66p1p2p38 1m2p1p2p3 ,

58n1n2n3n4n5 — 10]0[711712”3 8”4"5] 4+ (4.4)
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g=-3 |qg=-2|qg=-1 qg=20 g=1 q=2

p=1 | B, P Ps Py p!
p=0 Fs1 Fy Fy K 53 56

Fy
p=-1| K?* K* X K7 | K9 K10 K3, KU

K'Y E3 ES E31 E93 ElOL1 Fl
p=z E9 E10,27 Ell,l/’ ElLw
p=-3 P P2 P P71 p8

Table 2. Part of the tensor hierarchy algebra T in gl(11) level decomposition. p denotes the gen-
eral Z-grading of the tensor hierarchy algebra and the additional grading ¢ is related to the gl(11)
level £ by £ = q — %p. The usefulness of ¢ is that the involution of 7 acts on (p, ¢) by sending it to
(=2—p, —3—q) and can be represented in this table by a point reflection about the place marked with
a cross. The involution includes mapping gl(11) representations to their duals and for p < 0 we have
explicitly dualised all representations. For p = 0 we have explicitly separated 7g into ¢1; and the ad-
ditional generators from the tensor hierarchy algebra extension. The additional generators are given
in the second line. Since 7o = 7, we have performed the same line split for p = —2. The fields
appear at p = —2 and we see explicitly the first additional generator E? at (—2,0) that is related
to the first extra field X,,,. n,. For (—2,1) there are several extra fields arising, with degeneracies
in their gl(11) tensor structure. The general notation for gl(11) tensors here is such that comma
separated indices indicate Young-irreducible blocks of antisymmetric indices. If a tensor has both
upper and lower indices, it has by definition non-vanishing traces and is thus reducible. As in [47,
table 3|, some of the generators have been dualised using the eleven-dimensional Levi-Civita symbol.

We shall next derive an explicit form of the non-linear field strength by choosing an ex-
plicit parametrisation of the E1;/K(FE11) fields appearing in the current Jy,“. The matrix
M appearing in the definition (3.11) is formal and involved intricate infinite sums. To write
a meaningful equation in the parabolic decomposition one must resort to the coset repre-
sentative V of E11/K(E11) in a maximal parabolic gauge. Such a maximal parabolic gauge
decomposes V into the Levi factor v € GL(11)/SO(1,10) and the unipotent component U
in the unipotent subgroup of positive GL(11) levels as (cf. (3.28))

V=ovlU. (4.5)
We take the unipotent element concretely of the form
U = exp (%AannSE”m?n:”) exp (éAm,,,nﬁE”l'””G) exp (éhnl,,,nS,mEm”'”g’m) <o (4.6)
With the GL(11) metric
m = vl = j=mtdm, (4.7)
one has M = VinV = Utmi and

Tu = MouM =U(ju + O U™ + ™ OnUU U™ Tm)U (4.8)
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Although Jjs is a formal expression in this representation involving infinite sums, it is
conjugate under the unipotent element U to

Ivr = UTU ™ = jar + O U™ +m~ N OpUUY)Tm (4.9)

that does admit a well-defined expansion in fields. It satisfies jM =m 17 ]\T/[m We shall
refer to such a Jys as a ‘semi-flattened’ current as the conjugation by U makes all indices
associated with positive levels flat while keeping curved indices on level 0. We can therefore
still use the metric formalism associated with the Levi subgroup and its ‘metric’ m. We
similarly define a semi-flattened version of the constrained fields according to

X = UfldBf(M'é +ofU NI, Gt = U snE, (4.10)
where we see again the indecomposable structure of the representation structure in 7. The
associated semi-flattened field strength is then F! = ¢! ;F/ with

Bl— CIMQUA—JleNa I CIMduA—;N)zN& I CIMAUI—VIlNENA_ (4.11)

Written in terms of F/, the first order non-linear duality equation (3.22) only involves the
matrix m rather than M,

FI = m!BQu  F7 . (4.12)

The purpose of this construction is that m acts diagonally in the level decomposition and
just expresses the raising/lowering of the indices by the metric g, with a multiplication by
the density term v/— det gmn. Moreover, the current J written in this way is a well-defined
finite expression in the fields of the theory, level by level, whereas the current J itself would
involve formal entangled infinite sums.

Writing out the non-linear field strengths (4.11) in the parametrisation (4.6) one finds
when restricting to the D = 11 solution of the section constraint

ﬁn1n2m = ngpa[nlgng}p ) (4133)
Fnl...n4 = 48[n1An2n3n4] ’ (413b)
ni..ny — 7a[n1An2n3...n7] + 70A[n1n2n38’n4An5n6n7} 5 (413C)
~ ~ 280
Fn1...n9,m - Fnl...’ngm - 98[711 hn2n3...n9},m + TAm[nlnzA’fZ3Tl4n5aTLGAn7TL8n9] (413d)

56 -
+ 3 (A[mnzngamAns---ng]m + Am[nmzansAm---ng]) + Xmsng..ng -

The restriction to the D = 11 solution of the section constraint means that we are here
only retaining the derivatives d,,. Note that choosing a solution to the section condition
breaks the global Ej; symmetry to a (finite-dimensional) subgroup.

The non-linear duality equations (3.22) take the following form

~ 1

Fnl...n4 = _mgnl...n4m1...m7ﬁ1mlmm7, (414&)
~ 1 ~ 1 -
Foans™ + 500 Focy? = G doase P By (14D)
. 1 _
anp = mgnngplmplonl---pm . (4140)
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Equation (4.14b) is tracefree while (4.14c) is the pure trace part. We see that (4.14a)
represents the standard type of duality of the four-form field strength and the seven-form
field strength in D = 11 supergravity and, moreover, Fy and Fy are free of the extra
constrained field y,,%. We stress that the equations (4.14) do not depend on the explicit
parametrisation of U.

Unlike (4.14a), equations (4.14b) and (4.14c) do contain the field y,,* algebraically
and can be seen as just determining it in terms of the values of the other fields. Put
differently, (4.14b) and (4.14c) are not strong enough to determine the dynamics of the
graviton and the dual graviton unless one has further extra equations that determine y,,%.
This is exactly the phenomenon discussed in section 3.6 where these extra equations were
called ga. In the absence of these additional equations, the self-duality equation — though
consistent and gauge invariant — is not sufficient to fully determine the non-linear dynamics.
The equation of motion of Xyy.n,..ne in particular should reproduce the same mechanism as
depicted in 82, 83] for the Stiickelberg field to restore Einstein equation.

4.2 Gauge invariance

We now discuss in more detail the non-linear gauge invariance of the duality equation (3.22)
in the GL(11) decomposition. For doing this, we begin with the linearised analysis.
The non-linear field strengths defined in (4.13) linearise to

=5 1
- )F(lei;?;m = aq(mhqm) + aaplmmm%%(m7n2)AP1p2P3P4p5p6 o, (4'153)
(%)szilnﬁ)ws = 9, Amn2ns | gglninz hmns] + %3n1n2n3p1p2Amp1p2
1 1
+ aanln2n3p1p2p3p4’qAmp1p2p3p4q ganln2n3plp2p3p4p5AmP1P2P3p4P5
3 [n1 [ gnzlay, ns] 1 n2n3|p1p2ps 3 n2n3]p1...P5,q
+ §5m 0 hq - 68 Aplpzps - 275,8 AP1~~-p5q
1
+ 68n2n3}p1...p6Ap1mp6> +..., (4.15b)
GRS ™ = 20, Ty ™ + 0™ Aoy + 5;% PP A ioips - s (4.15¢)
() 1
? F#Llln)mzl = 4a[m1 Am2m3m4] - iananAm1...m4n1n2 - ﬂanlmn‘%hm1...m4n1...n4,n5
1
+ g67"1---"5Xmlm,ﬂwlm% + .., (4.15d)
) 1
EF’r(?lzlln )m7 = 78[m1Am2m7} + ON1n2hm1...m7n1,n2 - §8n1anm1...'fYL7n1n2
1 1
- Eanlmn5Xm1..-m7n1n2n3,n4ns - 248n1 " Xmy..myny...nans
1
— ﬂc‘)m“'”?’le,,,mml,,m,ns +..., (4.156)
l in. ]' 1
QFT(ILH >m10 = 8[m1 sz-‘.mw} - EaqumL--mmJJq - %aqumL--mwlhq
7
— %3 le .miopg T+ s (4.15f)
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ni...ng,m

. 1
(7>F(lm') = 98[711 hng‘..ng],m + aanL..ng - 8[m‘Xvnl...ng] + 58}’11’2 Anl..,ng,mplpg

9
+ E (aqupnlu-nsa,mq + 8qupm[n1--~n87n9]fI)

27
+ 20 (8qupqn1---N9,m + 8ququ[n1...ns,n9])
9
+ % (8pq}/;7qn1-~~n9,m + 8qu;qu[n1.,.n8,ng]) +..., (415g)
(%)Fr(rl;;j...).mm,nlnzng = 108[m1Am2...m10},n1n2n3 +... (415h)

For later reference, we have explicitly given the gl(11) levels for the various components of
the field strengths, but we shall often suppress them for simplicity of notation when there
is no risk of confusion. In the expressions above we also have implemented several things.
First, we removed the tildes on F since the semi-flattening has no effect in the linearised
approximation. Moreover, we have reinstated the terms with partial derivatives beyond 9,
thus not enforcing the D = 11 solution to the section constraint as this would break K(FE17)
covariance and gauge invariance. And finally, the extra constrained fields at linearised order
are expressed as

& =0y X® and (= oY, (4.16)

where we have also used explicitly that the first few extra fields are the additional potentials
Xon1..miorss Xnp.nyir and Yy, py, - coming from gl(11) level £ = 4 in 7_5 with X%in m
and YA in R(A1g), see table 2. The additional potentials Xniniorss Xnpooni,r and Yo, noo oy
are dual to generators for (p,q) = (—2,1) in that table, where ¢ = ¢ + %p in relation to the
gl(11) level ¢.

We will now write the decomposition of the gauge transformation (3.19). under gl(11).

For many of the fields this was already carried out in [47], but not for the crucial inhomo-
geneous terms involving the invariant tensor HaQ p in the gauge transformation of the con-
strained fields in (3.20a) and (3.20b). Here we concentrate on the central condition (3.26),
which would imply the gauge invariance of the duality equations. An important observation
is that, as the condition (3.26) is a condition on invariant tensors, it suffices to verify it at
linear order in order to deduce gauge invariance of the non-linear duality equation.

One obtains for the first level fields in the GL(11) decomposition that the gauge trans-
formations (3.19) give in the linearised approximation

1 1
Sehy™ = (angm — 0" Nyt OO Apm) O™ = Oup X+ T Dpg N

(4.17a)

1
(5§An1n2n3 = (38[n1 /\n2n3] + 58101}72 /\n1n2n3p1p2> +38[n1n25n3} +..., (4.17b)
55An1~“n6 = (6a[n1 )\n2"'”6] _8p1p2§n1--~n6p1 D2 +oPP )‘m"'nampz)"" T (4-17C)
5§hn1~-~n8,m = (88[n1 §n2~~~ng]7m+246<n1 )‘n2~~-n8,m> ) +-e (4.17(?1)
5§XM;n1...n9 = 248]\/[8[”1 Anz---ng] —5n1,,,n9pq8M8p§q+. . (4.176)
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5EXM;m1mm10m1n2:5m1~~~m10PaM (8p)‘n1n2+%5€116q)‘n2]q_a"1n2€p 5 [n1 712]!15 )

(4.17f)
1
5§XM;m1~-.m11,n = Togmr--mnaM(ap)‘np_ Npr)"’_' ce (4-17g>
1
5§CM;m1...m11,n = _igml...mn 8M (apAnp"i_anpé.p)‘i‘- .. (417h)

The terms corresponding to the non-trivial tensors HdQ p are the terms containing €17 in
the gauge variations (4.17e), (4.17f), (4.17g) and (4.17h) of the constrained fields. The
corresponding coefficients are determined by F1; invariance up to an overall coefficient that
is fixed by the terms in (4.17¢) and (4.17h). These overall coefficients will be determined
below by requiring gauge invariance of the duality equation (4.14b) at linear order.

Using the gauge transformations above one can derive the intermediate result that the
linearised field strengths transform as

0, FS;I;L;%M 128[“18"2”3€n4] +28[nlan2n3n4]mp2 APIP2 4 30P1P2 a[”lmmplgpﬂ
1

— gsnlmmmm,,,p78p1p2p3p4p5 oregrT (4.18a)

o) = 428[n18n2,,,n6£n7]+%67“,,,n7p1p2p3p43p1p28p3£p4 (4.18b)

+ i Eny..npLPaDIPe (Qapl grepspaqiazy +39P1p2p3paqy D1 as ng]) 7

’ (F ST, Fé';Tp)p> = 200 0"+ 507 (D=0 (4.18¢)
=20, Oy p A" — 15{” (Ona)p9q )\pq+8n2]8pq)\pq)

+ampan1n2£p+26mp8 n1£n2]+ 5[n apq(apqgnz]+2am]pgq)7

SeFLmIP = 0,076, — 0,076, + ganapqvuapanqw — 20" gy (4184)

1 ) 1 )
4 Fs:in >n9, _§5n1...ngp1p2 55 <F(1m4)p1p2m+55%F(11n.)p2qq) ’ (4'186)
i 1 :
5§F1g1..'.)n10 = _ﬁgvu ...... n10p5£ (F<l .)pqq) . (4'18f)

This shows again that the (linearised) field strengths are not gauge invariant, however, one
checks that all the terms cancel in the duality equation (3.22), proving gauge invariance of
the self-duality equation at this level. One finds that it fixes all coefficients in the trans-
formation of the constrained fields consistently with E7; covariance. For instance the term
in (4.17e) is needed to cancel the gauge variation of the form 9;0'¢; in the dual graviton
equation (4.14b) as well as the gauge variation of the form 9y 925 in the 7-form duality equa-
tion (4.14a). Note that the field Car.m,...m1,,n 1S Necessary here to ensure gauge invariance.

To end this section, we come back to the additional gauge transformations mentioned at
the end of section 3.6. These additional gauge transformations are needed in order to closed
the algebra of generalised diffeomorphisms and the first such parameter is one with param-

Na&

eter Y/ where the M index obeys the same section constraint as a partial derivative
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Onr- We do not know the full sequence of additional gauge transformations, but demanding
actual invariance of the linearised field strengths under ¥,,N% one can derive that

1
52An1n2n3 = gzpl.”p5n1n2n3p1...p5 ) (4.19&)
1
5214111...116 = _§Ep1p2n1...n6p1p2 5 (419b)
5Ehn1...ng;m = Em;nl...ng ) (4190)
5EXM;n1...n9 = —98[7112]\/[;‘”2_._”9] . (419d)

These transformations will play a role when we discuss the closure of the supersymmetry
algebra.

4.3 Propagating free fields at all levels

We shall now describe in more detail the tower of duality relations at the linearised level.
To understand the dynamical content of the field equations in eleven dimensions, it is
convenient to consider the structure of the tensor hierarchy algebra at positive levels ¢ (see
table 2). For ¢ > 1, the generators have at most level p = 0, in which case they are the
positive ¢ level generators E** of ¢11, with ay the adjoint index restricted to positive gl(11)
level. At a given gl(11) level ¢, E“+ includes various irreducible representations associated
to Young tableaux with 3¢ boxes, including possibly columns of 11 boxes [64, 82, 84].
The ¢1; generators are the top-form components E'%+ of supermultiplets of generators
transforming under the (¢ = 0 component of 7 (e11)) superalgebra W (11) of vector fields in
eleven Grassmann variables ¥,, as a superfield of representations EM P+ for —11 < p < 0,
in the tensor product representation of the (11 + p)-form with the reducible representation
associated to ay at a given level ¢ [47].

As an example, consider the case ¢ = 1 in table 2 that has the top component E3 at
p = 0, corresponding to the familiar 3-form generator of Fy;. This can also be written as
E'33 using the e-tensor of s[(11). The next generator for p = —1 and ¢ = 1 is K;? arising
as the tenth order term in 9,, in the expansion of the superfield with top component E3.
After dualisation this can be written as the reducible tensor E'%3. At p = —2 one gets
the reducible generator E9%3_ which decomposes into E%3, F102 and E™1! in table 2. We
recall that comma separated indices denote irreducible representations while the full set
of indices separated by a semi-colon denotes the reducible representation obtained by the
tensor product of the irreducible representations on each side of the semi-colon.

There are additional superfields of generators starting at p < —1, but they involve at
least one 11-form at p = —1 (i.e. one column of 11 boxes) and one 10-form at p = —2 (i.e.
one column of 10 boxes). If one considers only fields involving at most a 9-form components
in e;; (Young tableaux with no column of more than nine boxes), the corresponding fields
are all of the type Agn 3 at level £ = 3n 4+ 1, Agng at level £ = 3n + 2, hgn g1 at level
¢ =3n+ 3 [49], as can be seen by consistency with the eg subalgebra.

These potentials at level £ = 3(n+ 1)+ k appear in the tensor hierarchy algebra T (e11)
at level p = —2 and ¢ = 3n + k, such that the last 9-form comes from the W (11) 9-form
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components. They are part of the reducible representations given by the tensor products

[9] @ [97, 3k] = [9"TL, 3k] @ [10,9", 3k — 1] @ [11,9", 3k — 2] (4.20)
@ [10,9"1,8,3k] @ [11,9" 1, 8,3k — 1] @ [11,9" 1,7, 3]

for k=1 or 2 and

9] @ [97,8,1] = [9"1,8,1] @ [10,9™,7,1] @ [10,9™, 8] & [11,9™,6,1] @ [11,9™,7]  (4.21)
@ [10,9"° 1,82 1] @ [11,9" 1,8} @ [11,9"71,8,7,1]

for k = 3. The corresponding fields in the irreducible representations [971 3], [9"*! 6] and
[97+1 8, 1] are the E1; potentials, while the fields corresponding to the other irreducible
representations always involve the constrained fields y = 0X for 10-forms and 11-forms,
and possibly the constrained fields ( = 9Y for 11-forms. In the combination that appears
naturally in the W (11) superfield, Ag.gn3x = Agn+1 3, + 3X10973k—1 + ..., the T(e11)
exterior derivative simply acts as the exterior derivative on the last 9-form component [47,
appendix B,

Fn1~~~n10;9",3k = 108[H1An2“.n10];9",3k7 Fn1...n1o;9”,8,l = 108[n1~’4n2...n10};9"78,1 . (422)

In this way the corresponding linearised field strength restricted to the eleven-dimensional
solution to the section constraint (with fields only depending on eleven coordinates) is
manifestly invariant under the gauge transformation

SATH =T N0, N

{5An1...n9;9",3k = 96[711)‘712..‘719};9”,314: for k = ]-a 2 ' (423)

5./4“1._.”9;97178’1 = 98[n1)\n2...n9];9”,8,1 for k=3

In eleven dimensions, assuming the fields depend on the eleven coordinates only, the dual
field strength only involves the ordinary derivative of a potential so that the duality equation

becomes
— — m
Fnl...nlo,Q”,?)k - [Fnl...n10;9”,3k] 10,973k - [Enl...nlomn papAQn,Sk] 10,973k °
— _ m
Fnl...n10,9”,8,1 - [Fnl...nlo;Q”,S,l] 10,97,81 - [5n1...n10m77 papAQ",S,l] 10,97,8,1° (424)

where we take the projection to the irreducible SL(11) representation indicated. The right-
hand side is not gauge invariant, but it follows from (3.26) that the lack of gauge invariance
is compensated by the gauge transformation

SA% = %, pn™ 0,7, (4.25)

on the left-hand side, such that the duality equation is indeed gauge invariant under the
total linearised gauge transformation

SAY+ = T%my 9 N L 1%, pn™9,¢" (4.26)
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In order to understand these duality equations better, it is useful to compare them
with the equations derived in [51]. The first instance uses the potentials in the reducible
(9; 3) representation composed out of E7; potentials and additional fields as

An1..-n9§p1p2p3 = Am--.ng;plp2p3 + 3Xn1..‘n9[p1,172p3] - 24X7,z1...n9[p1p2,p3} : (4'27)

The duality equation

Eny..naom T OpApypaps = Fry . nioiprpaps + 3 (IOFm...ng][pl;pzm] [n1o — Fm..~n10;p1p2p3) (4.28)
= 108[711 Anzmmo} P1p2p3 38[131 Xm ..n10,|P2p3] 68[201 Xizl ..n10|p2,p3]

is gauge invariant under (4.17). Here, we have defined for a free coefficient ¢ the combination
X111 = (1 +5¢) X111 + Vi (4.29)

The duality equation above is gauge invariant in eleven dimensions for any ¢, but FEqq
covariance determines its value.
At level ¢ = 3n 4 7 one has similarly

-Am...n9;9",p1---p97q1q2q3 (4-3())

= An1...n979",p1 ---P9,919293 +3Xn1 .n9q1,9™,p1...p9,q243 +9Xn1~~-n9p1,9"7P2~--P9,Q1q2q3

—6X —27X] —72X]

n1...194¢192,9",p1...p9,43 ni...ngp141,9™,p2...p9,q243 n1...n9p1p2,9”,p3...p9,q1q2q3} 9:gn+13"
b 9

For each irreducible field strength component, each field can only appear with a unique
tensor structure, and in particular

Foy . n10,97 p1..po,q10203 (4.31)
= [108[n1 (An2-~-n10]79",p1...p97Q1qzq;s +3Xn2---n10]f1179",P1-~-P9,Q2Q3 +9Xn2-~-n10];01,9"»p2...p97q1<12q3 )] 10,9n+13

= [108[n1A 38[q1‘Xn ]—93[p1\Xn

n2...110),9™,01...P9,q14243 1...110,9™,p1...9,|q2q3 1...n10,9”,|p2‘..pg],q1q2q3] 10,97+1 37

only involves the X fields and not the X’ fields that include an 11-form. The duality
equation

_ mr
[Fm-..n10;9”,P1...PQ:Q1q2QS} 10,9n+13 — [5n1-‘.n10m77 8TA9”,p1-~~p9741QQQ3] 10,97+1 3 (4'32)
is gauge invariant provided (4.25) gives
— mp
0Xpy o, 97+1,2 = [Enycmaom?] aIJ)‘Q"HJ}10,9n+1,2 )
— m,
5Xn1‘..n10,9”,8,3 - [5n1...n10m77 pap)‘gn,&?)] 10,97,8,2 (433)

This is indeed consistent with the structure of the Fp; invariant tensor I1% ;5. Recall that
1%,/ defines the projection from the exterior product of two R(A;) representations onto
R(Az), see (2.1). The subspace that is annihilated by this projector starts with R(A4)
at gl(11) level 6 and contains as lowest component a (11,7) form. All the components of
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the kernel of the projector are associated to Young tableaux with at least one 11-form.
Therefore, the component HdmNnmp(?pr for components of £V different of ¢” and with
a Young-tableau partition P(N) that does not include columns of more than 9 boxes, are
simply the projections of €5, n;omn"POpAp(n) to the irreducible representation of partition
(10, P(N)). Assuming that the fields X are canonically normalised with respect to this
structure, one obtains indeed the formula (4.33) above, consistently with (4.17f) for n = —1.

The field strength (4.31) has the right structure for the (n + 3)' order field strength
in the irreducible representation [10"+2, 4]

n . mnr n
[81 81)18(11Fmmn10,9"472~~P107¢ZZQ3Q4] [Lon+2,4] — [Enl...momn 87"61 81718111A9"7p2-..1710,q2c13tl4][10"*274] )

(4.34)

to not depend on the extra fields X, and then reproduces the duality equations described
in [51]. Conversely, according to the generalised Poincaré lemma proved in [85], this duality
equation is locally equivalent to the first order duality equation satisfied by (4.31), where
the X fields parametrise the ambiguities in integration described in [50]. The propagat-
ing degrees of freedom in this equation are therefore the fields Agn 3 of the E1;/K(Eq)
coset [49], but the additional fields X are necessary to write a gauge invariant first-order
duality equation. The same argument goes through at level £ = 3n+8 and ¢ = 3n+9, with

[Fm~~n10;9”,P1~~-P9,q1~~~¢I87m] 10,97+1 8,1

= [108[mhnz...mo],9”,p1-~~p9,q1--.qs,m

- 80[q1Xn1...n1o,9”,p1---p9,\qz---qs],m = OmXny.n10,97 p1..po.1 as
— X, 4.
901, Xny..m10,97 Ip2.-pol.a1...gs,m 10,97+ 81" (4.35)
and
5hn1~~n9,9"+1,lhmqg,m = [98"1 )‘n2---n9;9”“,q1---qs,m] 9n+2.81 (4'36)

= [8014 Ans..m0,97+1 Jgo..gs]m T OmAny . mg 0n+1 g1 g5 + 900y A9n+1 ny. moqr ..qs,m) o251 >
0X 1 110,97 g1 .qrm = 13001 Aa. o197+ nrolgr qrim T Entnaom T OpAgntt g1 grm] 10974171
0 X1 m10,971,8 = [90n, Any...mol:97+1,8,n1o] TEnrniomM T OpAgnt1 ] 10,07+1 8
0 X n1..m10,9%q1.8,8m = [450ny Any._ml:97 [maolar...qs,8,m +Ensniom T OpAon gy ..qs,8m ] 10 gn g.5.1
The duality equation (3.9) therefore relates all the higher level dual fields to the ones of the
graviton and the 3-form in order to give the expected bosonic degrees of freedom of D = 11

supergravity, as already discussed in [49-51]. The gauge invariance of the system presented
here requires the introduction of the extra constrained fields.

5 FEg decomposition

In this section, we consider the decomposition of the tensor hierarchy algebra 7 under the
subgroup GL(3) x Eg and study the duality equation (3.22) in this decomposition. More
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q=—2 qg=—1 q=20 qg=1 q=2
_ FAB
= FAB G FA pr
p=0| FB G, F G, Kkt | ErA Epin2AB | puyA

p=-1 F3AB7 wag;u F;ﬁuzv Guip X Plviva, tf E/JAv EAP ELLWQAB’ E#’VAv
p=—2 G, | F§Y Guivgy | Pl th,, | B, EXB | BLY2AP B
p=-3 e td | By, BAD | plareAB pRrA
p=—4 E4B

Table 3. Part of the tensor hierarchy algebra 7 decomposed under gl(3) @ eg. The subalgebra
at p = 0 is the extension of ¢1;. The components of fixed p (the rows) are in e1; representations.
The cross marks the fixed point of a reflection symmetry explained in the text. The notation and
structure here is similar to that of table 2.

details on this decomposition and the construction of the tensor hierarchy algebra in the
Eg basis are given in appendix A.2. In table 3, we present a part of the tensor hierarchy
algebra in this decomposition for reference in this section.

5.1 Fields, field strengths and rigid transformations

We begin with the fields parametrising F11/K (F11) before proceeding to the tensor hier-
archy algebra. Under GL(3) x Egigy C Ei1 the coset Ei11/K(E11) can be parametrized
by (45, 46]

(G, Vs A BB 0t ),

(5.1)

where the semi-colon in this list separates different levels given by the central GL(1) C
GL(3), see appendix A.2. These first four fields can be identified with the supergravity
fields as follows. At level zero g, is the metric, V' € FEg/(Spin(16)/Z>) is parametrised
by the D = 3 scalar fields. At level one Af} in the 248 of Eg are the vector fields dual to
the scalars. At level two the 2-form Bl‘jf is symmetric in AB and belongs to the reducible
representation 1 ® 3875, so that a potential 27000 component in Sym2(248) is understood
to vanish. It is dual to the embedding tensor constants. The symmetric tensor h,‘iy in the
248 of Eg at level two does not appear in the supergravity tensor hierarchy [11] nor in Eg
exceptional field theory and is the gradient dual to A/‘:‘ similar to the construction in [51]
as will be discussed later. It extends to an infinite sequence of rank n symmetric tensors
in the adjoint representation at level n, that provide all the fields related by duality to the
propagating scalars. This infinite sequence is associated to the affine subgroup E9 C Fq;.
The two-forms Bﬁ‘VB do not carry any propagating degrees of freedom and we note also that
there is no analogue of the usual dual graviton in D = 3 since gravity is non-propagating.

When needed we will decompose the reducible tensor B;?f = B;‘f + k4B B,y in terms

of B;?f = PABCDBEVD in the 3875 and the Eg singlet B, = ﬁmABB;;‘f, kap being the

— 34 —



Killing-Cartan metric on eg. We use the conventions of [86], in which the projector PAB

to the 3875 is
14PABCD = 5é5g + 5%53 + fAE(CfD)EB — %/{ABK,CD . (5.2)

We shall also need the fields in the first components of x/® in the R(A1) ® R(As)
module of Fi; under GL(3) x Eg

(XMws XM -+ ) » (5.3)

such that the (1,1)-form x s, is at level 1 and the (1,2)-form x4, in the 248 is at level
2. The first component of (3 € R(A1) ® R(A1g) only appears at level 3 and will not be
considered in this section. The linearised field X% in R(A3) are obtained by removing the

derivative M index as before.
The derivatives in R(A;) decompose as

(Op3 043045, 93 ), (5.4)

where at level —%, Oy is the external space-time derivative, at level —%, 04 is the internal
derivative of exceptional field theory [4]. The additional derivative at level —3, 9, =
éf&B + kg0 and 8'; are respectively in the 3875 @ 1 and the 248. The components of
the section constraints that will be relevant in this section are

TP°P 4pdcdp = O30,  K'POadp = 8019, (5.5)
or equivalently
20405 + fra® fEP pdcdp = 204 50, . (5.6)

The derivatives (5.4) transform under the generator (A.3) of ej; as

00y, = €ﬁaA , (5.7a)

604 = fliOu + el g + fapCel 0L, (5.7b)

60 p = 14P°P s fh0p + Lk apkP fhop (5.7¢)

504 = S B Afhoc . (5.7d)

The field strengths in the representation 7_; decompose in components that trans-
form as

0Fua = e, Fap + ¢ fap“Fut — fABCfg Fu + fAFu, (5.8a)

0F,,° = Qe[u A+ 26 o0, Ffy — fA —2f "Fy]p, (5.8b)

5F, = —efFu° + 2fABCe[M B+ L (. ), (5.8¢)

0F . = e Fua+ f3(...), (5.8d)

0Fap = (14P“P sp + 1kapr®?) fEFp +€5(...), (5.8¢)

SF 4 = faFue” + [PCa(fhFuc — 360 f3Fc) +eb(...), (5.8¢)
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where we have left out some components that are irrelevant for the discussion in this section.
The representations that appear with their levels are recorded in table 3 in the appendix.

Explicit expressions for the field strength components can be obtained from (3.12) by
following the same procedure as in section 4.1, but now using instead the parabolic gauge

V=uvlU, (5.9)
in which v € GL(3) x Eg(g), and U is in the unipotent subgroup

U = exp(ALEY) exp(os BAP B + 2B, B* + hil JERY) - (5.10)

with in particular
(B4, E%] = —BXS 4 fapCEYY = —EYY — kapEM + fap“ERY. (5.11)

One uses as in section 4.1 the definition (4.7) with m = vinv and similarly the ‘semi-
flattened’ objects (4.8), (4.10), (4.11) and (4.12). The element m corresponds to the metric
9w of Minkowski signature and the symmetric Eg matrix Map.

5.2 Linearised field strengths and gauge transformations

Unlike in section 4, we begin with the linearised field strengths and the gauge invariance of
the duality equations to exhibit that (3.26) holds also in the Eg decomposition to the level
checked. We define the linearised theory around Minkowski space and around the origin of
FEg moduli space

G = N+l Map =0ap + 5C(AfCDB)<I’D . (5.12)
The linearised field strengths are

GOFG7 =20),h,)" + 5035 Biay +407 B, +205 X1, 4207, (04 A+ 304 5 BD +80°B,),),
FN =0, 4+ a5 00 AF +04X,,

+%fABCag’DBfVD_6ZB(h5,V+X5V)_fABcag’(hf,u_XuBy)—i_' e (513)
at level —1/2 and

BFGmA = 20, A — 08B — [P copXS,

DR = 0,X, + 04X}, — 0aly, (5.14)

at level 1/2, where the second is the analogue of the dual graviton field strength that only
involves the extra field x,., ~ 0,X, in that case. At level —3/2, one gets

PR = (14P“P gp+ 1P rap)0c®p =204 @)+ 7 A fEBP 00D ,
GO = 0, A% —0ahy” — 4 Al — fapC 0L Al — 360 fPC 4000 +6,095 A2 . (5.15)
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The linearised gauge transformations can be derived using the structure constants given
in (A.12) as

bl = 08" — 0Kt P — 40" N+ 20468+ 07 (040 + 103 507 8072, )
10 (9,7 — 5 I5ART — 4072, +2051 )+ (5.16a)
5e® 4 = (65 +KapoBT) (—fEBCacAB—%fEBCangfDJrz fepCoRel +. ) . (5.16Db)

Se A = 9N +OpAE — [AB 0peC 17,,68 (835V+agCAC +fpcPuAC ) +oo,

(5.16¢)
5§B;:11/B = 28[/1)‘;4]3 _277u07]up5AC(SBDa[g'D£p} +... (5.16d)
Oehit, = 20,68+ 200, 0 PO €7+ .. (5.16¢)

The linearised gauge transformation of the fields in R(A2) includes similarly the three
contributions from (3.37) as

5£Xu = 28,45;1 + 27’;11/85;)\14 - 5/uxanypapég ) (5.17a)
e X, = =208 + 200w p6 P 0P — e (NP ONY — 6P 0pe7) . (5.17b)

The terms involving the Levi-Civita ¢ symbol correspond to the contributions from H&Q P
in the general formula (3.37). One straightforwardly checks that the linearised duality

equations
(lin.) in. in.
e A _ P A EWJUU%ABF,% ) =0, (5.18a)
in in 1 A in. >\ in.
gl = Fiin) + inwef’p FY 4 g upe P FY =0 (5.18b)

are gauge invariant modulo the section constraint within this level truncation. This provides
an additional check of equation (3.26).

5.3 Non-linear field strengths

We also provide a formula for the field strengths at the non-linear level and compare with
the known FEg exceptional field theory [4]. To obtain the formula for the field strength at
the non-linear level, one needs to replace the derivative of the field in ¢;; by the components
of the semi-flattened current

Jot® = " dgus K", + Jat* + dAJN(EY + ¢" MapF,))
+ 55 (dBg) — 14A{dAR) (B + 9" 9" Mac Mpp F,)

+2(dBy, + jrap AR dAD) (B* + ¢"7g" F,,)

+ (dhiy, + o™ AQAAG) (B + g7 9" MapF L) + ... (5.19)
where Jy is the Fgg) current

JafABe = —MBPdMep . (5.20)
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It satisfies
KABJg = MAB Jg . (5.21)

For simplicity we shall consider the solution to the section constraint for which only
the derivatives d,, and 04 are non-zero, and 04 satisfies the Eg section constraint [6]

PCDABac ®dp =0, KABGA ®dg =0, fABcaA Q0o =0. (5.22)
One obtains then that the only non-trivial components of the derivative Z/{A}lN On are
Ou=U"Mor =0, — A0,  U;™MOM =0a. (5.23)

The formulae for the semi-flattened field strengths F! can be obtained directly from the
linear expressions by substituting these currents to the linear derivatives, with the derivative
modified according to the formula above. One obtains in this way

o o A o A
Fuu - 2g p(a[u - A[MaA)gV}p + 25[“8,414,,] ’
Foa=Jua+ fACDapAg + XA:p (5.24)
where ju 4 includes the transport term in the derivative,
Juaf*P o =-MPP(9, — APop)Mcp (5.25)

and

F =20, A0 —2A0 0p A —0p Bl + (14PAP op+ 15 P kop ) AL 08 AL — FAP oxB.ta,

F,u;z/ = _aAh;iy_ %fBCAAaaAAf) +)~(,LL;1/_AELLXA;V) +)~(A;;ly : (526)

The structure of these field strengths and their dependence in the constrained field
XM,a can be compared to [4] with the identification x4, = By and

~ 1 -
XBQ/.I?Z/ = C,ul/BA + %fAKLA{ZaBAS] + 79;;09;/,06 pAaBAf, (527)
V=9
such that the Fq; duality equation gives
. 1 .
Fi, = ﬁguo’gupgap)\MABF/\B : (5.28)

which coincides with [4] up to moving the last term in (5.27) to the right-hand-side such as
to reproduce the covariant current of the Fg exceptional field theory

gt = MAPE, g + k4P (fBCDaDAS + XByu)
= kP Jup + (kP + MAP)(fcP0p AS + xBiy) (5.29)

up to the term in nABXBW that does not appear in (5.28). Note however that this equa-
tion in [4] is only satisfied up to a trivial parameter since it is the equation of motion of
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Bua = xa;. This additional term can be produced by adding to the action in [4] a term
in /—gg"'nAB B, aB,p that vanishes on section.
The other equation at this order is the dual graviton equation

= 1 A7 1 AT
Fu;u = _mguagw@ggp Fp)\“i - ﬁguagupgap F)\nn- (5'30)

Similar to the GL(11) decomposition, this equation is not dynamical by itself and only de-
termines the field x,., algebraically. The integrability condition for the Einstein equation [4]
to be satisfied determines the first order equation for x,;, .

6 Supersymmetry transformations and algebra

In the remainder of the paper we study aspects of the supersymmetric extension of the model
we have developed in the preceding sections that is achieved through the inclusion of an
unfaithful (vector-)spinor ¥ that transform under K (Ey;), the double cover of K (Eq;).!3
We note that these results do mot depend on the speculative full dynamics discussed in
section 3.6. One of the key results we establish here is that certain bilinears in ¥ take values
in the anti-selfdual subspace of the 7_; part of the tensor hierarchy algebra and therefore
terms of the form UW can be added to the first order self-duality equation (3.22). We
shall also see how to define supersymmetry transformation rules for all the fields, including
the constrained fields and how to write down a K(F1;) covariant equation of motion for
the vector-spinor W. The compatibility of supersymmetry with Kac—Moody symmetries
was previously investigated in [54-56] for K(Ey9) and in [61] for K(E11). We shall see
explicitly how our inclusion of the extra constrained fields is crucial for resolving apparent
inconsistencies in the supersymmetry algebra observed in [56].

6.1 Spinors of f(Eu)

We begin with the description of the spinors for K (E11). The existence of an unfaithful
vector-spinor W for K(Ey;) was deduced in [57], relying heavily on previous results for
vector-spinors for K(E1o) [54, 55]. In this section we write K(E1;) for the double cover
of the maximal subgroup of Fp; defined by the Cartan involution. Unlike Fy;, the sub-
group K (E11) is not a Kac-Moody group and its general representation theory is unknown.
However, one can demonstrate the existence of an unfaithful Dirac-spinor € [53, 54, 57, 58]
and of an unfaithful vector-spinor W [54, 55, 57]. This is possible because K (Ey;) is not
a reductive group, and contains ideals. Finite dimensional unfaithful representations of
K(E1,) exist for which the ideal Z acting trivially on the finite-dimensional vector space
are such that K(E1;)/Z is a finite-dimensional group. In the case of the Dirac-spinor,
K(E11)/T. = SL(32), a result anticipated in [58]. The dimension of the vector-spinor
representation is 352.

The representations can be succinctly described in terms of the Spin(1,10) Lorentz
subgroup of K (E11). Under this subgroup the 32-component Dirac-spinor € is irreducible
and becomes the standard Majorana spinor in D = 11 dimensions up to a rescaling. The

13Tt was shown recently that this double cover of the group K (F11) is the universal cover [87].
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vector-spinor V¥ is reducible under this subgroup and decomposes into a gamma-traceless
vector-spinor of Spin(1,10) and a simple spinor that can be viewed as the gamma trace.
We shall combine the two and write the K (E11) vector-spinor ¥ as 1), when we think of it
as a (reducible) Spin(1, 10) representation. Here, a = 0,...,10 is a Lorentz tangent index.
The use of Spin(1, 10) here parallels the GL(11) decomposition studied in section 4.

The K (E11) transformations of the spinors are completely determined by giving the
transformation under Spin(1,10) and under the combination

1
?Aauzgag <Ea1a2a3 - nalblna2b2na3b3Fb1b2b3) € K(ell) . (61)

This combination is invariant under the involution defining K (F7;) and the occurrence of
the Minkowski metric n? is due to the signature of the involution. When we write SO(1, 10)
tensors we shall use 7% freely to raise and lower indices.

The Spin(1,10) transformations of € and 1, are implicit in their index structure and
the result of [57] is that the transformations

1 2 1
5wa = _EAbcdrdewa - gAachb¢C + éAbcdrabcd}da (623)
1
de = —EAabCFabce, (6.2b)

define consistent unfaithful spinors of K (E11). The overall signs in these transformations
were chosen to match the commutators of the generators under K(ej1) C ¢11. Here, the
conjugate Majorana spinor is defined as 1), = ¥fC with C = iI'° and we use gamma matrices
satisfying I'*1--011 = —g@1--411 " The rules (6.2) are sufficient to study the transformation of
any polynomial in these fermions.

6.2 Coset scalar fields supersymmetry transformations

In D = 11 supergravity one has the (linearised) supersymmetry transformation rules for
the bosonic fields given by

6" hay = —€L' () (6.3a)

s 3_
0° yAa1a2a3 = EEF[alagwag] y (6.3b)
5susyAa1...a6 = 36]'_‘[(11...0451/}0,6} ? (63C)

where we have extended the transformations of [88] to also include the dual six-form poten-
tial [56] and written the expression in tangent space. In order to define the supersymmetry
variation of the scalar fields parametrising FE11/K (E11), one needs a priori to show that
the bilinear eV includes a representation of K(E;;) that can be consistently embeded in
e11 © K(eq1). Starting from (6.3), we shall therefore study the representation eW. With the
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definitions

Eap = —€laty) (6.4a)
Eayazag = SEF[alaMag] ; (6.4b)
Eay..a6 = 3 a;...a5Vag) » (6.4c)

Ear.asb = €L (ay. a8, ¥p) + Esal...a8010203€Fc10253bd¢da (6.4d)

Bar.ag, 2P = 1512601 622683 €Ta,..agVa)

[ az”as

— 98" ob2e

[a1 ag...ag]cl...04(

EFC1...C4w|b3] + %nbii]cl EI‘CQ"'C4d'¢d) , (646)

one computes using the formulae (A.4) that the =-bilinears transform into each other under
the K (e11) transformations (6.2) according to'4

1

0Zab = Ao Epyerey — 9 NapA2BE g e (6.5a)
0Za1az05 = —3N(ayas Eaalp + AClCQCS‘—'alagadclczcgy (6.5b)
0Zay..a6 = 20M 40505 Zasasag) + fAbl”Q%Eal...aGblbz,c + 0% agbibac) s (6.5¢)
0Zq,.. agb = 56A<a1a2a3_a4 ag,b) T Aclcm_clml ag,byeacs T - (6.5d)

up to the introduction of an additional new bilinear Y§ appearing in the transformation

of Zay...ag9

_ 1
Tzl...ag = er[m...ag"pag] = Efal...agblbgTble . (66)

Such a nine-form is not present in the coset e¢17 © K(e11) since the dual graviton is in the
irreducible (8, 1) representation and this signals a potential inconsistency between ¢1; and
supersymmetry. However, considering the tensor hierarchy algebra extension 7y D e11, the
nine-form is consistent with the K (e;;) representation of a field parametrising the degree
zero component of the tensor hierarchy algebra Ty © K(e11). In fact we shall see that we
need to consider the conjugate algebra T © K (e11), extending e1; with generators in the
conjugate representation R(As).

The indecomposable F1; module ¢1; @ R(A2) C To induces the dual indecomposable
structure on its components (=, T) € (e11 © K(e11)) ® R(A2), such that = transforms into =
and T, whereas Y transforms into itself under K(e;1). To further check this property one
computes that the element Y2 generates a K (e;;) module that is indeed consistent with

1A similar calculation was done up to the level of the six-form (6.4b) for K(e11) in [61] where fermions
and eq1 were also considered. For K (e10), it had been done previously to higher level in [56, 59] where also
the extra nine-form Yg of (6.4c) had been found.
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the structure of R(A2). For this purpose one defines

Tblbz _ a-wlnbzcwc’ (6.7&)
Yorazb — _gratazbey,  gerblarypaz] gy blaigyanl (6.7b)
Ta1a2a3a4a5;b _ gl—walaga3a4a5,¢b + 4€F[a1a2a3a4a5wb] + 10nb[a1 Era2a3a4wa5] ’

ajazazasasbeicaczcqcs =
£21020304050C1C2C3C4C5

48 creaczea¥es s (6.7¢)
Yerezest — graratsyb _ gritazas bl 4 gpileerazyesl, (6.7d)

and one checks that they transform into each other according to

SYez — Able[alTble;aQ], (6.8a)

, 1
DY) = — o Mg TITAOD  2 (pDe e, (6.8b)
oo pm = gAplmazyasld %Ablbzbﬂ““?%*’l”“’?’ =20yt (6.8)

These transformations are consistent with the structure of the tensor hierarchy algebra that
is described in (A.4). In particular, the transformation (6.8a) shows that the new nine-form
that appears for the extra fields in R(Ag) does not transform back into the = components
in e;; © K(e11). Moreover, demanding that the K (F1) transformation commute with the
supersymmetry transformation, one can determine the linearised supersymmetry variation
of fields belonging to the R(A2) module as

sus 1 =
0° yhal...ag = Egal...agblbzrblbz = Er[al...agdjag] ) (693“)
1
5susyAa1...a1();b1b2 = Eeal...aloc Tblbg;c) (69b)
5susyA 1 (& 5susy 1 b1b2b3,c
ai...aio;by...bs — Esal...aloc’x\bl...b& ) Bal...an,blbgbg,c = E5a1...a11’r 1) (69C)

consistently with the decomposition of the module R(Az) under GL(11).
Defining G(7 () as the group associated to T (the algebra defined from e1; with the

additional generators in the conjugate representation R(A3)), we conclude that one can de-
fine the linearised supersymmetry transformation of an extended field V € G(To)/K (E11)
consistently with the K (Ej;) representation of T as an indecomposable module. Defining
T(Z,7) as the T element of parameter (=, T) defined above, one can write the supersym-
metry transformation of V € G(To)/K(FE11) as

5 Y = T(E, 1)V, (6.10)

such that supersymmetry commutes with the action of K (E11) in the standard way, at the
price of introducing additional fields into the theory. We stress here that the additional
fields, that we denote by hY, parametrising G(7) must not be confused with the con-
strained fields x /@ that transform instead as components of the co-adjoint module 7_o. In
order to have well-defined expressions, one will choose in practice a given parametrization of
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the coset G(T¢)/K(E11), so one will define the non-linear supersymmetry transformation
from (6.10) with the compensating local K (E1;) transformation on the left.

Let us compare the situation to that in Ey exceptional field theory [34]. In this case,
To(eg) is the extension of eg by a single Virasoro generator L_;. There is a single additional
field p on top of the Ey/K(Eqg) coset fields that is dual to the dilaton such that all fields
together parametrise G(To(e9))/K (Ey). In addition, the indecomposable representation of
the co-adjoint To(e9)* entails a single constrained field ys. In order to have manifestly
K (FEy) covariant supersymmetry rules one has to introduce p with a non-trivial supersym-
metry transformation [89]. This is also what we see above for K(E;;) where we have to
extend ¢11 to To. Moreover, the dual dilaton j is associated with an additional gauge sym-
metry shifting p whose parameter is called ¥ in [34] and which is generally needed for the
closure of the algebra of generalised Lie derivatives. In the present case, there is a similar
additional gauge parameter ¥,V in R(A;) ® R(A3) as discussed in section 3.6:

1
— __YP1.--P5
0 Aningns = 5|E N1N2N3P1...P5 3

1
— Yy P1p2
6An1..-n6 - _22 ni...nep1p2 »

6hn1...ng;m = Zm;nl...ng ’

5XM;n1...n9 = _9a[n12M;\n2.“n9] ) (611)

where, compared to (4.19), we have relaxed the condition that X,,.,,, e = 0. This condi-
tion is the vanishing of the first component of the trace of ¥3,V%. The gauge symmetry of
the traced parameter ¥ 5NV fits precisely with the representation of the additional fields in
R(A2), and should allow to gauge-fix them at the price of making the supersymmetry re-
alised non-linearly with a compensating > NV transformation breaking K (E11) invariance
in the linearised approximation.

In the GL(11) decomposition, we would like to think of these additional gauge symme-
tries as being related to local Lorentz transformations, such that

h(ll...CLg;b = hal...ag,b + hal...agb ’ (6123)

Aa1...ag;b1b2b3 = Aal...ag,blbzbgg + Aa1...a9[b1;bgb3] ; (612b)

could be thought of as the dual graviton and the 3-form gradient dual in the vielbein
formulation. Recall that the semi-colon indicates the general tensor product, whereas the
comma implies instead that this is an irreducible GL(11) tensor. This justifies the notation
for these additional fields, which should not be confused with the fields X € R(A3) with
the transformation rules (A.4).

Later on in section 7.2 we shall introduce extended field strengths including the ad-
ditional fields (6.12) in (7.24). As shown there, the extended field strengths are indeed
invariant under the transformations (6.11).

We conclude this section by giving a few consequences of the above supersymmetry
transformations for further reference. Combining the linearised supersymmetry transfor-
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mations of the irreducible fields, one concludes that the reducible field hg.; transforms as

_ 1 _
5susyha1...a9;b = Eral...ag,d}b + Esal...agClC2C3€Fclcgcgbd¢d . (613)

The coset field component Ag 3 transforms as
0™ Aqy...a0,b1b2bs = Zay...ag,brbabs - (6.14)

We also do similar checks for the GL(4) x E7 decomposition in appendix E, and find pre-
fect agreement with the supersymmetry transformations of E; exceptional field theory [90].

6.3 Vector-spinor field transformations and supersymmetry algebra

The supersymmetry variation of the gravitino in D = 11 supergravity in the linearised
approximation is 0¥, = J,e. We shall now extend this transformation to a K (E11)
covariant supersymmetry variation. This can be done by making an ansatz involving the
higher level derivatives and fixing the free coefficients by K (F;;) covariance, such that
0="v1), transforms as 1, under K (e11). The result is

2 1 1
5susy¢a = Oy€ + grbaab6 - gFabcabc6 - mrblb2b3b4aablb2b3b46
2 8

+ ﬁFaLm...bsablmbs6 + %Palmwaal...ow,ae - ﬂraay..aenbcaalma6b7C€

+ %raal‘_,asaalmase — %Fal'”maaalmwe +... (6.15)
We have verified this expression for 6**1), to be covariant under K(ej1) transformations
including all terms varying into 91, d2 and 05 derivatives.

We can now verify that the linearised supersymmetry transformations are consistent
with the closure of the supersymmetry algebra on the bosonic fields. As usual in supergrav-
ity, one expects the algebra of local supersymmetry to only close modulo the equations of
motion and gauge transformations with parameters that are bilinear in the supersymmetry
spinor parameters €. In the linearised approximation, the closure of the supersymmetry
algebra on the bosonic fields does not depend on the fields, and therefore cannot involve
the equations of motion. In this approximation one expects to simply get a bosonic gauge
transformation of parameter bilinear in the spinor €. We recall that the bosonic theory,
without fermions W, is not only invariant under generalised diffeomorphism of parameter
&M in R(A1), but also under gauge transformation of constrained parameters ¥3,V% in
R(A1) ® R(A3) as discussed in section 3.6 and at the end of the preceding section. As
the closure of two supersymmetries generally produces all gauge symmetries, we therefore

expect both of them to appear in the supersymmetry algebra. For simplicity we consider
a supersymmetry transformation of commuting parameter €, such that the algebra is ob-
tained by applying twice the same variation. One computes straightforwardly (neglecting
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derivatives Oy, aqasa4a5 and those of higher level)

(5 2hay = 8 (— )
1 1 1
= —ia(a(gf‘b)e) - ia(;(grb)ce) —I—Enabﬁcd(gf‘cde) , (6.16)
(5susy>2Aa1a2a3 = 6susy(%€F[a1a2wa3})

3 _ 3 _ 1 _
= Za[m (erazag} 6) - Za[alag (GFGS}E) - gablbz (6Fa1a2a3b1b2 6) )

(5su5y)2Aa1...a6 = 55“”(3%1“[@1_,,%%6])

3 ~ 1 )
= 5% () +Zabc(%nc[al6“2---06b]d1...d5 er-dse)

2
1_
— iefaln_%blbz@blb%.
Apart from the last line in the variation of A, 44, all these terms are total derivatives and

can be rewritten as generalised Lie derivative gauge transformations (4.17) of parameter
—%fM , with the components of ¢M given by

£4 =€l
)‘ab = _EFabea
)\a1a2a3a4a5 = EI—‘a1a2a3a4a567
7
_ ZTc1cecscacs
gal...amb = *gnb[al5112.‘.0,7]01020304056 r €. (617&)

The last line in (6.16), however, is not a total derivative and must be the component of
the parameter ¥ ,7V% in the gauge transformation (6.11). One can indeed cast it in the form

Z:M;a,l...ag = EFal,..agaMfa (618)

which is not a total derivative, but satisfies the strong section constraint as necessary for
the parameter ¥,,V¢.

Up to this level truncation in the higher level derivatives, and obtains therefore that
the supersymmetry algebra closes up to the expected gauge transformations of the theory.
This relies on the fact that the symmetric bilinear ee can be consistently embedded in
the representation R(A;). The antisymmetric bilinear €; A €2 can in turn be embedded
consistently in the representation R(As3). This is necessary for (6.18) to extend to a well-
defined ¥3/N® parameter in R(A;) ® R(A3). One checks that the low level truncation
exhibits that this is indeed possible, in particular we discuss the case of the symmetric
bilinear in more detail in appendix D.?

5For the antisymmetric product, one finds that the 3-form, the 4-form and the scalar bilinear form
the antisymmetric rank 2 irreducible representation of SL(32) & K(E11)/Z.. Indeed R(A3) first gives a
3-form, then a 4-form, a (3,1)-form and a (2,2)-form. The 4-form and the double trace of the (2,2)-form are
represented by the four-form and the scalar bilinears, while the other components vanish. All these three
bilinear representations appear repeatedly then at each level.
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6.4 Constrained scalar fields

The definition of the Fj; exceptional field theory also requires the introduction of the
additional field y»/* that transforms instead in the representation associated to 7T_s, so in
order to construct a supersymmetric theory we also need to extend the module (£,7) €
(e11 © K(e11)) ® R(A2) to include the component R(Ag). We shall argue first that there is
an indecomposable module with the structure

(X,E,T) € R(A2) B (e11 © K(e11)) ® R(A2). (6.19)
This module seems to exist as a restriction of an £7; module (which is not a submodule of 7)
M_5 = R(A2) Bern ® R(A2), (6.20)

extending the module of components of 7_3 such that M _o/Tpp,) = T .16

We consider the representative of the nine-form in R(Az2)

1
Xal...ag = _5&11...agblbza[‘bllpb2 . (621)

Its K (e11) variation gives according to appendix B
_ 1 _ 1 _ 2 _ 1 _
o (er[awb}) = _§Acd[a€]j6dwb} + gAcd[aerb]cwd + gAabcewc + éAcdeﬁFade¢e ) (622)
consistently with the assumption that

- 1 -
5Xa1...ag = _28A[a1a2a3:a4...a9} + TSAblb2b3:'a1-~a97b1b2b3 + ... (623)

according to (A.4), where the dots stand for terms in €l'21), and €, that would appear in
the other fields (i.e. Z11,1, Xi0,2, X11,1) that we disregard here.

6The existence of the module M_s can be checked at low level in the GL(3) x Es decomposition, with
the additional component A,, Bﬁ, ... in R(A2) with respect to T_2,

Sh,” = eﬁIAVM — f}C{Aﬁ/l -0, (e?fﬁﬁ’u - fJ(\T4A57M) )
0Py = fMNPeffilﬁé — fMNPffiAﬁ’ + A,

v v ¢ 1 ¢
SAL = =l bt + FP M el @p — KBUN — N b, + 5 5V e fRBL

5B%N = QSPMNer[I;A?] + %’r]MN’r]er[};AQ

V]

Sy, = —fnp™M e AL + el Ayy
and
v 1 v v
60Xy :fM(X%+hﬁi)+€ﬁ{‘1)M - §fMB;%> 0AL :fMB%u
6Xﬁl{ = —26{‘5)(”] — fAleefZAi + eﬁ{A,j] s (SB% = —26%14,,] .

The important feature is that one cannot avoid that §X¢ transforms back into ®¢ parametrised here by
Au» BI\/I

2R
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We conjecture therefore that the set of bilinear eU can be identified as a K (e11) module
with successive quotients defined from F71 modules:

(X,Z,7) € [R(A2) ® (e11 © K (e11) ® R(A2)] /T x 2 r) (6.24)
(2,7) € [(e11 © K(e11)) ® R(A2)]/ L= vy , (6.25)
T e R(AQ)/IT . (6.26)

By construction of the module, the supersymmetry transformation of the field /¢
must include 9p; X at linearised order. But because T¢ is in a submodule R(A3), it can
also appear in the supersymmetry variation of x3/¢ with the derivative dy; acting either
on € or 9 while preserving the strong section constraint. We shall now find that there
is a unique definition of the supersymmetry variation of x3/® that is consistent with the
supersymmetry algebra in the linearised approximation.

According to the discussion above, K (FE1;) imposes that the linearised supersymmetry
variation of the constrained field is of the form

s 1 _ _ _
6" Xtiar a0 = 5Ear..asbita (OO ET 2 — BT Op e — Oy (M), (6.27)

with free coefficients o and 8 that are not determined by K (E11) covariance, but will be
fixed by closure of the supersymmetry algebra momentarily. We have indeed seen that
the third term in (6.21) is fixed by K(E};) through the indecomposable structure of the
representation, while the only other possible terms must be obtained from the bilinear
Y% ¢ R(Ay) with a derivative on either € or 1),. Note that the section constraint implies
that the index M of % must be attached to a derivative, but not necessarily to a total
derivative. The closure of the supersymmetry algebra implies that

1
(5susy)2XM;a1...a9 = 16,11_“@91)1()281\/[81)1 (grb2€) - 98[111 (EF@Mag}BME) ) (628)

where the first term is the gauge transformation of parameter £ in (6.17) and the second
the gauge transformation of parameter Xjs,q,. 45 with (6.18). One computes that this is
the case if and only if = § = 1. We conclude that

1
5SUSYXM;a1...a9 — §5a1...a9b1b2 (8M5Fb1b20’¢c - a‘\blbgcaMd)c o aM(EFblﬂ)m)) ,
1
= 98M€F[a1...a8¢a9] - ggr[al...agaM¢ag] - §5a1...a9b1bgaM(EPb1 wa) . (629)

Note that this transformation is in agreement with the supersymmetry transformation of the
constrained 2-form found in E7 exceptional field theory [90, eq. (3.33)] with the identification
of XM:a1a945678910 = Ba,a,m- From this ansatz, one extrapolates that I?(EH) will fix the
linearised supersymmetry transformation of y /% to be in general of the form

5 m® = TE(pre, U) — TEe, Oy ¥) + I X (e, ¥) (6.30)

where T%(e, ¥) and X% (e, ¥) are the fermion bilinears in R(As) introduced in this section.

47 —



7 Supersymmetry of the field equations

Having established the linearised supersymmetry rules for all fields such that the supersym-
metry algebra closes, we now turn to studying the supersymmetry of the field equations. In
a first step, we determine the linearised Rarita-Schwinger equation for the vector-spinor ¥
through K (E11) covariance. Next, we turn our attention to the duality equations, and show
that suitably constructed bilinears in fermions can be utilised to supercovariantise them.

7.1 Linearised Rarita-Schwinger equation and its supersymmetry

If the vector-spinor equation follows from the variation of a Lagrangian, the equation of
motion for v, should transform in the K (FE11) representation conjugate to that of 1,. For

K (FE11), the conjugate representation is given by p® with

5pa — iAbchbcdpa + gAabCFch o lAachbcdpd ’ (71)
12 3 6
such that d(p*,) = 0 under K(e11). It is important here that the index contraction in
the last term differs from that in (6.2a). Note that because of the non-existence of an
invariant bilinear form on the K (E11) vector-spinor, the conjugate representation cannot
be obtained by applying such a bilinear form. This is different from the situation for K (E1q)
where T'%4)y, is conjugate to 1, [56].

The starting point for a K (E11) invariant Rarita-Schwinger equation is the usual
Spin(1, 10) covariant linearised Rarita-Schwinger equation of eleven-dimensional supergrav-
ity: T20y1p. = 0. As the partial derivative 9, transforms into the other derivatives in R(A1)
according to (4.4), one needs to extend this equation by the other derivatives in order to

ensure K (E11) covariance. Making an ansatz for the extended derivatives and requiring the
Rarita-Schwinger equation to transform as in (7.1) leads to

1 9
pa =1 “bcamc + 58ab1/)b + 21 ababcwc + 21 bca“%C + 5[ abcdabcwd + 6[ blebgaab1b2b30¢c
1 1 1
12Fab1b2b3b48b1b2b3b4cwc 12Fb1b2b3b4caab1b2b3b4wc 120Facl...05baclmcswb o
(7.2)

up to the higher level derivatives in 97! etc. We have verified that this expression is K (E11)
covariant in all terms varying into 9; and 0% and expect that this structure can be extended
recursively to all orders in the derivatives. This will produce a formally infinite set of terms
but on section only a finite number of these will be non-zero, so equation (7.2) only involves
finitely many terms for any given specific solution to the section constraint.

In the linearised approximation, supersymmetry of the Rarita-Schwinger equation (7.2)
amounts to its gauge invariance under (6.15) for a spinor € satisfying the section constraint.
Up to terms involving d20s5, 9505 and higher level derivatives, we find

1
(Ssusypa = 88“b8be+4fab8bcé?ce— 6 (Fab1b2b3b4 +85g1 Fb2b3b4) (38b1b2 8b3b4 — 8b1b2b3b4cac) €E+...,
(7.3)

— 48 —



which vanishes by virtue of the section constraints
0%0e =0,  3plmazgesale — guazasasby, o (7.4)

Therefore we see that the section constraint is crucial for obtaining equations of motion
that are invariant under local supersymmetry.

7.2 Gauge invariant and supercovariant self-duality equation

We now study the fermionic modification of the duality equation (3.22). We shall first
argue that there is a remarkable representation-theoretic property of the K (E11) spinor ¥ in
relation to the field strengths, allowing the addition of fermion bilinears. Then we show that
one can define the generalised diffeomorphisms on ¥ such that the modification maintains
gauge invariance. Finally we show that the modified duality equation is supercovariant
under linearised supersymmetry transformations.

7.2.1 Embedding of fermion bilinears in field strength representation

We want to argue now that the representation of K(FE7;) defined by the duality equation
&l in (3.22), includes an unfaithful representation constructed out of bilinears in the vector-
spinor W. More precisely, under K (FE7;), the representation of the field strength splits into
self-dual and anti-selfdual components 7_1 = S & S_, and the field equation (3.9) is the
statement that FL = VL ;F7 belongs to S,.. We shall argue that the vector-spinor bilinears
UV define an unfaithful representation of K (FE1;) homomorphic to S_/Zyy, where Zygy
denotes a certain K (F7;) invariant subspace in S_.

As shown in table 2 and equation (4.14a), the central terms of the duality equation
of GL(11) weight % involve a four-form field strength and the dual of a seven-form field
strength. These can be constructed out of fermion bilinears as

_ 1 _
¢[Q1Fa2a3%4} and 55a1a2a3a4b1”.b7wb1rb2...b6¢b7' (75)

Using the transformations (6.2a) one finds that!”

_ _ - 7
(5 (¢[alra2a3¢a4]) - Ab[a1a2 (wa3rb¢a4] + 27/}bra37/1a4}) + ﬁAblewa[bl Fbgb2a1a2a3wa4]
1

- EAblebSwblra1a2a3a4b2wb3 (7.62)

and
1 bi...b7 7.
5 §5a1a2a3a4 7/1b1Fb2...b6¢b7

_ 1 _
= _24Ab[a1a2¢bra3a4]cwc - Eea1a2a3a4b1Mb7Ab1be3¢b4l—‘b5b6¢b7

+ A/\b1bzbg7w[_)b1 Fb2 a1a2a3a4¢b3 + 6A[alagb1 @Zb2ra3a4}b1b2b3wb3 . (76b)

17A collection of fermion bilinear transformations can be found in appendix B.
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Therefore the variation of the combination

_ 1 _
Oa1a2a3a4 = 3w[alra2a3¢a4] + @61110,2(13(14blb2b3b4b5b6b7¢b1Fbgb3b4b5b6’¢}b7
7 1 b b
= 3¢[alra2a3¢a4] + qu 1Fa1‘..a4b1b21/) 2 (77)
does not contain the term 1/3“’1 b2 a1a2a3a41/)b3] and satisfies
b 1 b1bobs C1C2C3C4
60(110,2(13@4 == _6Ab[a1a20a3a4] - mA 5b1b2b3a1a2a3a4 061620364 3 (78)

where

1- - 1- _
Oalazb = _§¢[alrb¢a2] - ¢br[a1wa2} - chlrala2b6162w02 + ¢bra1azcwc . (79)

The transformation (7.8) is in complete agreement with the K (E;;) transformation of
the combination Fy aya5as + 2€arasazas "7 Foy..b; in (4.14a) as given in [47, eq. (5.58)].
This exhibits that the bilinear YW indeed transforms in the representation S_. At the next
level one obtains

50us0s" = Aeafor O™ = g Mately, Oug ™ + Ry OV
+ %AdeOalazcd + %ACdeéfaloaz}cde ; (7.10)
where
O, bibabs — g Jlbipbabaly, gﬁ[bllﬂabg Wbl 3T, clibe pbal 4 %i}qrablbgbm@ Ve,
_ g(ggblq/jb'zrbs}cwc’ (7.11)
0" = 3P — FTVoy — TG, (7.12)

consistently with [47, eq. (5.59)]. Further variation under K (E1;) according to [47, eq. (4.37)]

1 1
S5Ob _6A61026300162c3(a,b) _ §ACICQ(a00102b) , (7.13)
3 1
50,1 = AT 0 1) — ZACEDG0, 1] — e, OO

(b1 Ob2b3}0102,03 (714)

a

b1b2bscy, 3
_ Aacl¢:20 10203cC1,C2 + §A01C2035
gives

Oa1a2a3a4,b — _&bra1a2a3a4cwc+@[bra1 a2a3a4]cwc o 12¢br[a1a2a3 wazﬂ
gl porsailrery gyl Gespasasly _gofer jorrasyed | (7.15)

Oablmbﬁ — %&01]:1011)1..1)601021#02+61/;[b1Fabz...b(ﬂc,l/]c_’_125Lb11/;bgrb3...b6]c¢c

_+_3,l;a11[b1...b5 wbﬁ] + %,&[bl Fabg...bg)wb(;] . (716)
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This consistency check includes all field strengths from level —% to %, and therefore takes
into account not only the standard field strength for the fields that appear already in E,
exceptional field theory for n < 8, but also the gradient dual 10-form field strengths (through
0,123 and Oabl"'bﬁ) that are reminiscent of the affine structure of Eg, and even the non-
dynamical 11-form field strengths (through O%® and O®192¢34:%) that only appear in F;.

We also check in appendix E that the fermion bilinear decomposed under Spin(1,3) x
SU(8) gives consistently the supercovariantisation of the field strengths in E7 exceptional
field theory [90, 91].

The proposal, checked here at lowest levels, is therefore that the duality equation (3.22)

can be extended by fermion bilinears in the form
El=F — MEQu,F) —y1,0L=0. (7.17)

Here, V_Hl is the E7;/K(E11) vielbein in the field strength representation 7_; with [
denoting a local K (E1) index in that representation. The bilinears OL are the embedding of
the unfaithful representation of the ¥W bilinear into S_, mentioned at the beginning of the
section. Equation (7.17) is an E; invariant extension of the bosonic duality equation £7 by
fermion bilinears. We will use the symbol hat to denote the supercovariantisation as usual.

7.2.2 Gauge invariance of modified duality equation

For discussing gauge invariance below we also need to establish the action of generalised
diffeomorphisms on the spinor . As we discussed in section 3.5 and as is usual for fermions
one has to consider the vielbein formalism. Moreover, we consider the vielbein in a max-
imal parabolic gauge and this entails a compensating transformation X € K(e11) in its
gauge transformation (3.30). The compensating transformation that appears in the gauge
transformation of the spinor is

1
65U = Moy + ZaMgM\I/ + X0, (7.18)

Thus, W is a scalar density from the point of view of diffeomorphisms but there is a non-
trivial induced K (eq1) action due to the compensator. In general, the compensating trans-
formation X involves infinitely many generators of K(FEj;). However, if one chooses a
partial solution to the section constraint associated with the maximal parabolic gauge as
explained around (3.31), the compensating transformation X takes the simple form (3.32).
For the case of Levi GL(11), the solution to the section constraint amounts to keeping
only the external derivatives J,, and there is no compensating transformation. For general
GL(11 — n) x E, there is a non-trivial compensating transformation. In appendix E, we
demonstrate that the resulting generalised diffeomorphism on the fermions is consistent
with formulas that have appeared in the case of E7 exceptional field theory [91].

The weight given in (7.18) above is fixed by gauge invariance of (7.17) as follows. As
the contribution OL is bilinear in fermions the weight of a single fermion should be half
the weight of F! to match the weight of the left-hand side of the equation, recalling that
V has no weight. As we derived in (3.21) that I has weight 1/2, this fixes the weight of
U to 1/4. All these weights can be ultimately traced back to the non-trivial weight of the
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derivative dps as the vielbein V has no weight. We shall see later that the weight 1/4 is
also consistent with a formal Rarita-Schwinger Lagrangian being gauge invariant.

Under a gauge transformation é¢ we now find that the bosonic and fermionic terms
of the modified duality equation (7.17) transform in the same way with respect to the
transport and weight terms. The compensating X transformation on the fermion bilinear
OL gets converted into an Ej; rotation in the field strength representation by the inverse
vielbein YV~ 1 such that ET transforms covariantly under generalised diffeomorphisms and
the modified duality equation is gauge invariant.

7.2.3 Supercovariance of modified duality equation

According to the discussion in section 6.2, the manifestly K (E11) invariant representation
of supersymmetry requires to extend the field content such that V € G(To)/K(FE11). In
this formulation one should take the element V= of the group G(7T) accordingly in the
representation 7_1. Note that 71 is by construction a representation of G(7Tj). Nev-
ertheless, we expect that there is a partially gauged fixed version of the theory in which
V € E11/K(FE11), and that these formulae are not modified; see the discussion below (6.10).

Note that there is no notion of superconvariant field strength in E'11, and only the super-
covariant equation (7.17) defined above transforms under K (E;) into itself in the module
S_. Nonetheless, it will be convenient for comparison with eleven-dimensional supergravity
to write the supercovariant duality equation (7.17) as EL =0 with &L = FL — nlﬂﬂﬁﬁ
for some FL = FL 4+ UTL¥ whose components are reminiscent of the supercovariant su-
pergravity field strengths. However, it is important to keep in mind that these FL do not
transform into themselves under K(F71) and that they are not supercovariant, only the
anti-selfdual component gL belongs to S_ and is supercovariant.

In D = 11 supergravity the corresponding supercovariant expressions are in our con-

ventions
Fa1a2a3a4 = Fa1a2a3a4 - 31;[611 FaQaswazﬂ ’ (7'193‘)
N 21 _
Fa1a2a3a4a5a6a7 = Fa1a2a3a4a5a6a7 - ?w[al Fa2a3a4a5a6wa7] : (719b)

That v F is independent of Je when keeping only J, can be checked easily using the
transformation laws (6.3) and (6.15). Moreover, this combination is exactly the one that
is produced by the extended duality equation (7.17) when taking the terms in Og,asa3a4
of (7.7) without the Levi-Civita symbol €17 into ﬁ4 and those with into ﬁ7. Similarly, one
checks that the supercovariant spin connection Wyp = €°We qp is in agreement with the first
three terms in Oy, 4,° given in (7.9). The field strength F,,,,° is related at the non-linear
level to the spin connection as

1
Fa1a2b = _2wb,a1a2 + 26bm(6[a1n m6n|a2]) ’ Wab = _566Fabc T e[ande”“’] ’ (7'20)

where the second term is a component of the Maurer-Cartan form in K (e11) that does not
require a supercovariantisation with the supersymmetry realisation in which

1
5 e, = —§€I‘(awb)emb, (7.21)
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which is natural in a coset construction. Therefore the supercovariantisation of Fy;¢ must
be minus the one of the spin connection

- 1_ _ 1_
Falagb = Fa1a2b =+ §¢[alrb¢a2} + wbr[alwaz} - chlralazchzwcz . (722)

The remaining term waalaQch in (7.9) is traceless, and will only contribute to the super-
covariantisation of Fy, as

~

Fal...ag,b = Fal...ag,b - 9¢[alra2...a9}¢b ) (723)
which is indeed consistent with the expected supercovariantisation of the dual graviton.

The discussion above was based on the field strengths of usual D = 11 supergravity.
In the E17; model built using the tensor hierarchy the field strengths receive additional
contributions from the constrained fields y ;% and (3 in (3.12). Moreover, the manifestly
K (E11) covariant formulation of supersymmetry requires the additional fields parametrising
G(To)/K(E11), so one needs to complete the expressions given in (4.15) for the explicit
field strengths in the GL(11) decomposition. They are given by

1
Fayas” = 204, h)® + 0" Aayape + gafalaﬂcmbﬂm +..., (7.24a)
1
Fa1a2a3a4 = 48[n1Aa2a3a4] — iaclcQAal(m%aMlcQ + ..., (7.24b)
_ b1b2 1 b1b2
Fo o = 78[a1Aa2---a7} + 0 hal---a7b1;b2 — §X ca1-arbiby T e s (7.24C)
Fa1~--a9,b — Py agh = 96[a1 ha2~~-a9];b + Xbiar.ag T+ 5 (7.24d)

where hq, . ag:b = Pay...as,b+Pa,...agb according to the discussion in section 6.2. In this section
we shall ignore derivatives at levels higher than 9, and 0™"2. We checked at first order

that these field strengths still transform under K(e11) according to

5Fa1“.a7 = 78[(11(514@2..@7} + 5abcha1...a7b;c + ...

9
_ 5Ablbzca[alhanmble];C 4+ ...
1
— éAbleC(Fa1a2.‘.a7b1b2;c - Fa1a2~-~a7blb20) e (7.25)

when including the nine-form component iy, .. qg:3-
The supersymmetry transformation of the field x /% was determined in (6.29). Let us
now show that this is consistent with the supercovariance of the duality equation

~ ~

_ bi..br 1o
ga1a2a3a4 = I'ajagazas T ﬁ€a1a2a3a4 ! 7Fb1--~b7 =0. (7'26)

The constrained field 29 appears in the field strength ﬁ7 since F; contains y/* as written
in (7.24). The supersymmetry variation is

~ B B 9 B
6susyFa1...CL7 = _216F[a1...a5aa6¢a7 - 216Fb[a1...a58a6b1/)a7] + §ab1b2er[a1...a7b1¢b2}

= 7 = 1 sus,
+ eral...owbl ab1b2¢b2 - iab[al (djag‘..m]wb) - 55 yXble(ll...Cwblbz 9 (727>
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while that of F} is given by

. N 1 _ _ _
5susyFa1...a4 = 66F[a1a2 aag zr/)a4] - 581)1 b2 (ﬁral...a4b1 T/}bz) _€Fb1b2 [a1az2a3 8b1b2 wa4] +68[a1 a2 erag ¢a4} .
(7.28)

The supercovariance of §a1a2a3a4 determines all the terms in 6**¥x%1%2, .14 in (6.29)
with a derivative on €, and the ones with a derivative on ¢, are exactly such that

4_
7€F[abc pd] . (729)

~ 1 y
O Eqped = — éerabcde Pe + 3

The above shows that the duality equation for the bosons is related by supersymmetry
to the Rarita-Schwinger equation as in supergravity. We have checked this relation for all
terms containing 91 and d» derivatives. The supersymmetry variation of the field Xb1b2 Lo
given in (6.29) also plays a key role for the cancellation of the unwanted terms involving 0o
derivatives of the supersymmetry parameter and the gravitino, in order to achieve super-
covariance and supersymmetry.

A similar calculation can be done for the dual graviton equation using

5 E, 0,0 = — &0, Vag) + ey (D) — 0%y)) + 0% (€T (4, Yay])

1
+ §aclerala2"‘31%cz : (7.30a)
(Tugy( ai-ag9,b T Fa1~~~a9b) == 9€Fa1,,‘a8 (aa9]¢b — 8bwa9}) — %8[(11 (eag...agc10263E]-—‘bclcgc;gdwd) s
- %€a1...agc1cgab(€PCIwcz) . (730b)

Putting these together one obtains that

5susy< alazb _ égalaIQCl‘..CQ (ﬁCI.“Cg’b _ F\Cl...cgb))
1
_ _Erba[al %2] + Er[al (aa2]1/) abwag]) + 2€Fa1a208 C’(ﬁb el’ a1azbc1czac1¢c2

1_ _
= *Eralazpb - 6Fb[alpag] +

5 5[a1€Fa2]FCpc . (7.31)

9
We see again that the supersymmetry of the bosonic equations of motion gives the fermionic
Rarita-Schwinger equation. Note that in this case the component Xp.q,..q is involved, so

this additional field is already necessary to understand the supersymmetry of the linearised
dual graviton equation in eleven dimensions.

The complete equation will take the form
s EL = e L (7.32)

where G,L defines a K (E11) invariant tensor, implying that the multiplet of bilinears in €
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and p® is in the S_ module as ¥YW¥. One computes in particular that

5 E oy avazas = géf[alamp%] - égra1a2a3a4bpb7 (7.33a)

5 Ey 0,0 = %EFGIM PP =&, Pay + géf’al eyl pe, (7.33b)
gosy § bibabs égrabl babsc e, lbab phs] _ ggpbl babs %56[?1 (Erb2b3]cpc et pbg}) 7

(7.33¢)

sy gab — erlaph) énabéfcpc , (7.33d)

gy Gnnasasanh _ gparasasas b zplarasazas bl | gnb[m epaasasle, gy blas gpazes joal (7 330)

geusr € b _ _%Eabl...bmcm@ (ETCICQC3PC4 _ ;€T01CZC3C4dpd>
b6 g, 26101 (T02--bole ypba-bs pholy (7.33f)

transform in the representation of the self-duality equation as they should.

8 Non-linear theory with fermions

In this section, we shall investigate how much of the structure of sections 6 and 7 can be
made non-linear. We propose that the non-linear self-duality equations including fermions
in (7.17) and the non-linear supersymmetry transformations for the bosonic fields (6.10),
are the actual equations and fields transformations of the E7; exceptional field theory. With
this assumption, we shall now attempt to define also the non-linear generalisations of the
field equations and supersymmetry transformations of the fermionic fields.

We consider the generalisation of the Rarita-Schwinger equation (7.2) in section 8.1 and
in section 8.2, we investigate the non-linear generalisation of the fermionic supersymmetry
transformation (6.15). As we shall see by comparison to D = 11 supergravity, our non-linear
proposals reproduce correctly the structure of the non-linear terms of D = 11 supergravity,
due to remarkable cancellations yielding only gauge invariant combinations of the low level
field strengths. However, we also get undesired additional contributions involving higher
level fields. While we do not know how to remove these contributions at present, we provide
evidence that the structures we write must be part of the complete answer.

8.1 Non-linear Rarita-Schwinger equation

In order to study possible non-linear equations of motion for the fermions, we first introduce
appropriate covariant derivatives and covariant tensors. We propose a Lagrangian in (8.12)
to describe the gravitino kinetic term, its Pauli couplings to generalised field strengths
and quartic fermion terms. Finally, we investigate the relation of our proposal to D = 11
supergravity.
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8.1.1 Ingredients of the non-linear fermionic terms

Equation (7.2) defines a K (E11) covariant linearised equation for the vector-spinor ¥
through

pa = Ga;bMﬁMiﬂb = 0, (8.1)

where G%PM is a K (E11) invariant tensor that also acts on the not explicitly shown spinor
indices. This equation is moreover consistent with linearised supersymmetry as defined
in (6.15). We expect the non-linear equation to be defined in a similar way but with the
partial derivative being replaced by a covariant derivative, plus additional terms depending
on the field strength F, as well as appropriate cubic terms in the fermions. The natural
candidate for a covariant derivative is the one obtained from the K(e11) component of the
Maurer-Cartan form valued in the K (e1;) representation of 1),. One defines the covariant
derivative from the Maurer-Cartan derivative

OMVV =Py —Qu, Qum € K(er1), Pu€Too K(enn), (82)

where here V is an element of G(Tg). For the terms in the level decomposition we shall
consider in this section, there is not yet a distinction between G(T) and E11, so the reader
may consider as well that V is the standard F11/K(F11) coset representative for simplicity.
The covariant derivative in tangent frame is defined as

Dy =V "V u(0n + Qn), (8.3)

where we denote by M the tangent frame indices that transform under K (E1;). We shall
also use the notation that

Jurat® =V Wy Ina VIV = 2Py 02 (8.4)

for the current components in tangent frame.

The I?(EH) Rarita-Schwinger equation must reduce to the standard eleven-dimensional
supergravity equation upon choosing the solution to the section constraint in which the fields
only depend on the eleven coordinates . In this case the covariant derivative reduces to

V_lNa(aN + QN) " = 6%eam(am + Qm) y (85)

where the notation |17 indicates that fields only dependent on the eleven coordinates x™
so that all the higher level derivatives can be disregarded, and the additional factor of
the vielbein determinant comes from the GL(11) weight of the R(A;) module. Note, how-
ever, that Q,, still involves an infinity of fields as the section constraint only affects the
derivative index.

The spin connection can be rewritten in terms of the coset space connection Q|11 in
50(1,10) and the field strength component mem‘n = 29"P0, Gny)p 28

1
Wab = €ga"denpy — 5ecFa,,C(H . (8.6)
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The vielbein determinant is part of the Fq1/K(FE11) coset representative, and as such

cannot appear separately without violating E1; symmetry. The way it is resolved for the

11D
m

Yo = eTe,"P0 . (8.7)

eleven-dimensional gravitino field ', is that it is related to the vector-spinor through

Note that similar redefinitions were also necessary for K (Fg), see [56].

8.1.2 Non-linear fermionic Lagrangian and Rarita-Schwinger equation

We shall now investigate the construction of the Lagrangian for the non-linear Rarita-
Schwinger equation. We are guided first by K (FE11) invariance using the ingredients intro-
duced above. In principle, one would like to also check gauge invariance of the Lagrangian
using (3.21) and (7.18). Doing so requires new identities of K (F1;) tensors that remain to
be investigated. We shall only study gauge invariance indirectly below in section 8.1.3 when
we analyse the Lagrangian in the D = 11 decomposition. As we shall see our proposal is
incomplete as it requires additional terms in order to reproduce D = 11 supergravity and
these additional terms are also expected to be necessary for gauge invariance.

Using the K(Fj1) invariant tensors we have introduced we can write the following
Lagrangian quadratic in fermionic fields

- 1
E(FJ{S ~ %G“’WDM% + ZTIQFLOJ’ (8.8)

where G4*M ig defined as in (8.1) and where O is the WV bilinear in the 7_; representation
defined in section 7.2. By construction the covariant derivative Dy, is K (E11) covariant, so
the first term is manifestly K (F;;) invariant. The second term is also manifestly K (F1;)
invariant, and is non-zero according to the property that on-shell

The bilinear form 7y is given in [47, eq. (5.39)] as

T]QFLOJ
— 1 ) ay--ag,b 1 ¢ a1--a10 1 (3) ay--ar 1 (Z ay--aq
_ngal ag,bO 7§2Fa1 aloO +ﬁzFal a7O +E Fo, a4O
1(’7‘)1?‘ bomaz, _ (SN boac é(%‘“)ptm 0. ,ma2a3 L ()R )ab l(’%)F OQr--aad
+2 ajas b ab c+6 la1a2a3“Ya4] + a,b +4' ai---aq,b
7 =7 =9 1 -9
+6(T)Fa7[a1--.a60a7]almaG+§(T>F alaz.“ag,bOmanag]’b_g(T)Fbm...as7b0ca1."a87c+' (8 10)

However, this Lagrangian involves infinitely many fields and is formally infinite. We shall
now argue that one can partially resolve this problem by exhibiting that infinitely many
terms cancel upon using the self-duality equation (8.9), and that the resulting Lagrangian
agrees with the eleven-dimensional supergravity Lagrangian at low order in the level trun-
cation. However, this will not yet provide the complete answer. The Lagrangian must
not only give rise to a meaningful finite Rarita-Schwinger equation, but this equation must
moreover be gauge invariant. The Lagrangian (8.8) is not a priori gauge invariant, since
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neither the K (e11) covariant derivative nor the field strength FL is covariant under gener-
alised diffeomorphisms. Thus one will need to check gauge invariance separately. We shall
see that gauge invariance can also be achieved partially by modifying the corresponding
Rarita-Schwinger equation by a term proportional to the bosonic field equation gl

First of all we will introduce a Darboux basis on 71 = Sy & S_ as a K(E7;) module.
To argue why one needs to do this it is useful to recall the case of N' = 8 supergravity
in four dimensions. In this case, the Lagrangian includes two terms that are not invariant
under the full R-symmetry group, but only under the subgroup SO(8) C SU(8) acting
on the 28 vector fields [92]. One of these two terms is in particular the source of the
Pauli coupling FWW. For E1; we have similarly that 7_1 is a symplectic representation
of FE11, and therefore Si are conjugate unitary representations of K(FEi;), and one needs
to introduce a Lagrangian subspace that further breaks K(FEj;) to a subgroup preserving
a quadratic norm 77}“] on S; and S_. The choice of Lagrangian subspace is not unique,
as it is neither for the symplectic frame in four dimensions, but there is a natural choice
associated to any maximal standard parabolic subgroup of F11. This choice is defined by the
positive weight components in the corresponding parabolic subgroup decomposition. Since
in this section we want to compare with eleven-dimensional supergravity, we shall use the
Lagrangian subspace determined by the GL(11) weight, such that n}z is the projection of
N1y to the negative weight components along I, i.e. for a positive Weig?ht component (2 +HFL

l-%—kFJ +

one has = 0, and is non-degenerate on the negative weight (2 +"FLy + 7é 0.

More explicitly, we we take

nIJFIOJ
i'<2 Fpyo OO a4+; @I, 0, b0M 2, @R, bose,
+%(%S)Fm[al@%OadalaQas+ DR bOab 4l %)Fal---a4,b0a1...a47b
P Ot 0+ PRI,y 40 5 0W S BP, 0,055
(8.11)
Now we can define
" = P GMD yy, + i(ngFlOl +np, e+ EHOLY),
= P GEMDy oy + %ULFLOJ - é : ULOlOl :, (8.12)

where the normal ordered product is introduced on the infinite sum of quartic fermions to
regularise it. The bilinear terms combine to give a finite set of contributions for each field
in the GL(11) decomposition for a chosen solution to the section constraint, so even if there
is an infinite set of fields contributing to the Rarita-Schwinger equation, it makes sense as
a formal sum over the infinite set of fields. By contrast, 7 JOI OZ would involve infinitely
many times the same vector-spinor fields and must be replaced by a finite polynomial in
the vector-spinor that we write : 7y JOI OZ :. We shall argue below that this polynomial

can be determined by K (E);) invariance. The Lagrangian (8.12) is not manifestly K (E1;)
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invariant, but the corresponding Rarita-Schwinger equation p* = 0 obtained by variation via
— 1
0P p® = §6£RS +om(...), (8.13)

differs from the manifestly covariant one pfj defined from L{® above by a term proportional
to the equations of motion

. 1 oroL 1 oros
~a _ abM _ lpaN Lo+l Lo+l :
p" = GM(Dyrpy, — 3T MPMwb)+4nJF AR 21,0 o
W 1 5 0t0f
=6+ gl e A (8.14)

so that it is ensured to be covariant under K (E11), modulo term that vanish when the
duality equation EL = 0 is satisfied. Note that the N’ = 8 Rarita-Schwinger equation is
only covariant under SU(8) modulo the twisted self-duality equation for the 28 vector fields
in four dimensions [92], so it is to be expected that the same complication must arise in
FEq1 exceptional field theory.

The extra term appearing with the covariant derivative can be understood in terms of
the current Jy, as

Dy — 3VEuT*ENPra = Dy — 1TV Jan (8.15)

such that it is a weight term that appears at level 0 in the GL(11) decomposition because
of the e in the definition of the vector-spinor (8.7).

Note moreover that the K (Ey;) invariant Lagrangian L§® in (8.8) does not include
quartic terms in the vector-spinor. Indeed, one can infer from the invariance under the
K(E1) C K(Ey;) subgroup that there is no quartic invariant in the vector-spinor. Under
SO(10), ¥, decomposes as 1), for a =1 to 10 and A = 1pg — Iy 2310:1 I'*4),, which transform
respectively under K (e19) as a vector-spinor and a spinor [56]. However, the vector-spinor
of K(FE1g) transforms under a quotient subgroup SO(32,288) = I?(Elo)/Iw [93], so there
is no quartic antisymmetric invariant that can be written. One straightforwardly concludes
that there is no quartic invariant under K (F1y).

The necessity of introducing cubic terms in the fermions would therefore arise when one
introduces a Lagrangian subspace to define the Rarita-Schwinger equation. The Lagrangian
LS in (8.12) is not K (E1;) invariant and does have quartic fermion terms. We stress that
it is still formal, since it involves a sum over infinitely many fields and infinitely many
components. We shall argue that one can make sense of its part that is quadratic in the
vector-spinor by expanding in level, such that cancellations arise for different fields at each
level. This answer is nonetheless incomplete, and one will need to add other terms to the
Lagrangian. The situation is more complicated for the quartic terms in the vector-spinors,
since the naive polynomial does not even make sense formally. The bilinear YW includes
61776 components that appear infinitely many times in OL in the infinite representation
S_, so there is no way to directly make sense of the infinite sum of terms appearing in
n;rJOLOi. Instead of defining : 77]+JOLOi : through some regularisation scheme, we hope
that one could think of : U;FJOLOJT&S a finite quartic polynomial in the vector-spinor that
is determined by (on-shell) K (e11) covariance of the non-linear Rarita-Schwinger equation.
Let us explore this idea in some more detail.
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The component of the Rarita-Schwinger equation linear in v, is'®

1 orO7L
— + ol
P= 0+ g€ 907 (8.16)
and transforms by construction under K(e11) as
1 2 1
0p" =15 Mbeal ™ p? = S ATy pet <A™ T (8.17)

1, ;0F0Z o1 peaOFOL 1 9tOL 1 . OFOZ

— - 1 _ 1 7A 1" C - - 7A(l Cl" o a Cl" - -

5<8””5 o ) "M\ ggleed ™ T H AT T = g A T g
= Npybops EFRa"10203

for some R, lb1b2b3, since £L transforms into itself under K (e11). When evaluated on section,
one may hope that most of the components of £L cancel such that ELR, lb1b2b3 would only
involve finitely many components of £L in a level decomposition. If this were true, the
purported regularised quartic term in the fermions would be determined then such that it
would transform under K (e11) as

1 1 _
) [8 :nf, 007 ;] = §Ab1b2bgo£¢analblb2b3. (8.18)

The full Rarita-Schwinger equation with cubic fermion terms would then transform under
K(en) as

1 2 ~ 1 ~
5ﬁa — EAbchdeﬁ“ - gAachbpc + 6Aabcrbcdﬁd = Ablb2b35lRalb1b2b3 . (8.19)

Whether a regularisation prescription with (8.18) exists and produces finite expressions,
needs to be established.

8.1.3 Relation to D = 11 supergravity

Let us finally describe how the conjectured Lagrangian L% partly reproduces the eleven-
dimensional supergravity Lagrangian when the fields only depend on the eleven coordinates
™. In GL(11) parabolic gauge, the Maurer-Cartan form dVV~! only has components at
positive levels

oo
AVt = e "den Ky + ) BN =P - Q, (8.20)

k=1

where
J(l) _ % m ni ng nsa A
aibibab| | = €2€q €p; €hy “€pg m<ininang »

2 _r m o 6 (9 A 10A O, A 8.21
abr.bg |4 =€2€q €p; " ...C€hg ( m#ing..ne ninensEm n4n5n6)’ (8:21)

and similarly for higher GL(11) levels. Here we slight abuse of notation to denote the strictly
positive components of the Cartan-Maurer by J® although they only agree with the strictly

L
8 The notation % means the convention to differentiate fermions from the left.
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positive components of the current V7V ~! and not J itself. Because of the expression of
the Maurer-Cartan form (8.20), at non-zero level, the composite K (e11) connection and the
coset components are both defined by JX“I::

0= €la dem‘bKab Z J® EAk FAk), P= €(a d€m|b)Kab—|— Z J® EAI@_I_FAIC).
k 1
(8.22)

The covariant derivative is not covariant under generalised diffeomorphisms, because of the
terms in JX“; that involve the higher level fields through an ordinary partial derivative and
not an exterior derivative. But this is also the case for the field strength at level £ < —% —k
for £ > 1 evaluated on section, see (4.15). One finds that most of these field strengths
vanish on section, in particular (?)F%?|;; = 0 and (5)F®192¢3048|,; — (. The non-vanishing
ones are those that are in the SO(1,10) representation of the field of level & times the
standard co-tangent space, and in that case

( %7k>Fa;Ak 1 (_]‘>kJC(L];1)4k ’ (8.23)

according to [47]. We observe that the components J® include the gauge invariant field
strengths 3 *MF for k = 0,1,2. In fact, we are going to show that in the Rarita-Schwinger
Lagrangian these components J* combine remarkably into the gauge invariant combination
(=2 +KF . This kind of recombination cannot occur, however, for k > 3 since “? *MF' contains
the constrained x fields that are not present in J™®. For k > 3, the J® would need to cancel
in the Rarita-Schwinger Lagrangian for gauge invariance but preliminary calculations show
that they do not.

We now assemble the various pieces for expanding the Lagrangian (8.12) in GL(11)
decomposition to exhibit the remarkable recombinations mentioned above. The covariant
derivative at level zero DY) only includes the SO(1, 10) connection Q)

1
Dfﬁ)wa = OmWa + e[anamen\b}wb + Zebn mencrbcwa . (8'24)
The Pauli couplings at level —5 and -5 glve
]. -1 ]. -3 -3
I(7)];1a1a2a3MOa1a2a3a4_i_§(T>Fa1a2b0a1a2b_(T)FCLbeaCC (8.25)

1 1
_ 2¢a <_8FabcrdeFdebwc FabdF dwc> + 8Fa1a2a3a4 (walragagwazl 1277b e a4b162¢ )

3 - - -
§F[a1a2;a3] (%djal I‘a2 wa.?) _|_ %w61 FalaZaSClCQ 11)62 _ 17[)01 I‘Q2Q3C¢C) ,

s0, using that Fi,, 4,.a5)/11 = 0, the corresponding contributions to the Lagrangian combine
into
- 1/1
be1y(0)
[%Fa "Dy et (4!

aja2a3a4
Fa1a2a3a40 +

1
§Fa1a2b0ala2b _Fabeacc) :|

11
1

b b
192Fa1a2a3a4wb1r 1Fa1 a4F 277/}

(8.26)

- @aFabcebm (amwc +wmcd'¢d + iwmdl d2 Fdl > wc)
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The first term reproduces the standard covariant derivative of the gravitino field, where
one notes that the term in if@afabce_lﬁbe 1. = 0 due to the et rescaling in (8.7) drops
out by symmetry. Note that we drop the explicit level when there is no ambiguity, but we
shall keep it for the field strength of level ¢ < —%. The second term is the expected Pauli
coupling in eleven-dimensional supergravity, but with a factor of one-half.

To exhibit the cancellation of the non gauge invariant terms between tgp® and
%n}LJF LOL one needs to consider higher levels. The kinetic term expands as

Yol P Dyipe = Pl "Dt + > ol 6(3 I Vb (8.27)
k=1

where 0 (%Jék)) denotes the K(e11) action of the corresponding component. At the first level
has the contribution

Dl 8 (505 e
1 _
- _EJabllDbng/)cl FClaCQ (%Fb1b2b3¢C2 + 47)021)1 Fbg ’(;Z)b:; - FC2b1b2¢b3)
1 b1b2bs 1.7 cicaa 3 - a a 7, c 1,7 1ca
= §<]a ﬁwclr b1b2b3/l/102 - §¢b11—‘ b2¢b3 - 5[(;11/}()21—‘1)3]01/} + §¢CF [blbgdjbg] .

(8.28)

The Pauli coupling at level —3 gives using (7.11) and (8.11)

4 s 1- [ 5- R f
goa[b1b2b3(7)Fa}blb2b3 = <4¢[blfb2b"]¢a - Zw[bll—‘abwbd} + iwcl—\ca[blb%j)bd]

1 - — 5
+ ﬂ¢01 PClc2ab1b2b3¢C2 _ 5([Ibl¢b2rb3}c¢c> <T)Fab1b2b3 ) (8.29)

Using (Z)F, 010203 | ) = — J{V01b2bs when neglecting higher level derivatives, one gets from the

previous two results

- 14 s -
@Darabcé(%‘]zgl))wc + §6Oa[b1b2b3(T)Fa]blb2b3 |11 = @FawzasmwblFblralmwrbd)bz ) (830)

so that all the non gauge invariant terms disappear. Importantly, one gets an additional

1

contribution to the Pauli coupling and the sum of these first two terms is in full agreement
with the supergravity Lagrangian.

At the next level, using the fact that the K (e11) action on the vector-spinor at level 2
is the same as for K (e1p) given in [56], i.e.

1 1 ,
5(%‘];2))77/)0 = ﬁ <2Jng)almaGFlllmaewc_10Jl§:20)a1".a51—101~~a4¢a5 +4J£2)a1.”%Fca1...a5wa6) )
(8.31)
one finds that
_ 1 1- _
Pl 5 (5T e = 36l < - §¢Crab1...b6cdﬂ)d — 45vp, Loy b5 1

+ 6Up, Loy s ““the + 305gl¢cfcb2...b51/fb6> JPbi-be o (8.32)
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The Pauli coupling on the other hand, upon using (7.16), gives

7 1

-1 1-
rﬁ!Oa[bl...bG(T>Fa]blmb6 = 26'< 1/1 F by.. b(,cdd) + 11}1)11—‘1)2 .bs ’djbb + 31;[} Fbl bsrbe

— 61/7)171].1172“_1;6&67,[% 306()1¢ Fcbg b51/}b6) 77 bl b6 (833)

Combining (8.32) with (8.33) gives

11 _
o* [b1.. be( “ ) - .b6|11 = _@ﬂgalazaaaztbl“'b7Fb1-..b77/}b1FblFalniaéLFwabzv
(8.34)
where we note that the last two terms in (8.32) with (8.33) cancel each other and the re-

maining terms sum up to an expression that is totally antisymmetric in [b; b; . . . bg|, thereby

abc (2) -
Gl S (I + 5

making it possible to use the relation J[(j;)bl...be]‘ll = (%)F[a;bl...bﬁﬂll = %(%>Fabl_“b6]11. From

level ¢ = 2 one gets therefore in total

w PabCwac_{_ nIJFIOJ ¢arabcvb¢c+ Fa1a2a3a4wbrbra1a2a3a4rc¢

11

_@ﬁgalwasw b b7Fbl--.b7&blrblralmazlrbwbz+"'7 (8'35)

which would give the correct equation if one had not included the contribution from the
level 2 field. It is difficult to imagine which kind of contribution would eliminate it.

For higher levels k£ > 3 one cannot get the same type of cancellation, because the J*
factor does not include the y fields present in the gauge invariant combination % *¥F. They
thus cannot recombine into a component of £L in order to contribute to a term involving
only the metric and the 3-form gauge field. Preliminary calculations show that they do not
cancel either. Hence it seems that we are still missing a term in the Lagrangian that would
cancel all the contributions from level 2 to infinity. At present, we do not have a candidate
for such terms.

8.2 Non-linear supersymmetry transformations

Let us now consider the non-linear supersymmetry transformation of the fermion, the linear
transformation was given in (6.15). At the non-linear level, one expects that the partial
derivative will again be replaced by the K (E11) covariant derivative, plus possibly addi-
tional terms involving the field strength F! and higher order terms in ¥, such that the
supersymmetry transformation may read

1 1
5ty = G (Dpr + 3TN Ppa)e — Z@Fl Gle + g nrgOLGIY : €
1
= G M (Dy + TNy Pra)e — g(wFng;’ + 1 ELGTL e, (8.36)

where G, and GI<Z are the K (E11) invariant constant tensors in the Spin(1, 10) Cifford
algebra that define (6.15) and (7.32). The covariant derivative includes the same weight
term with the opposite sign as for the vector-spinor (8.15), consistent with the fact that
the eV bilinear does not carry a weight. The regularisation prescription is understood to
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work as for the Rarita-Schwinger equation, such that the supersymmetry variation is only
covariant under K (E11) modulo a term in the self-duality equation, and the bilinear term
: nrgOLGTL : in WV is determined to restore K (E11) covariance. This proposed ansatz is not
a priori exhaustive, and we expect to miss some terms that would contribute at higher level.

The spinor is related to the eleven-dimensional spinor parameter as
€= e 16" , (8.37)

so that the covariant derivative term in the eleven-dimensional supergravity supersymmetry
transformation reads!'?

1 1 1
Ve = efi(?ne“D + fwnabFabe*ie“D = Ope + —wp %€ + —=g"10,gpq€

4 4 8
1 1 1
=DWe + ngq (Opgqn — %Gngpq)e + 1 <anp|11 - QenCFabcth“b) €. (8.38)
The covariant derivatives itself gives
1 , 1
Dye = DVe — ﬂjyblbzbsrb@bge + mJ§>b1---b6rb1,,,b66 +.... (8.39)

To construct the coupling to the field strength we need the components of the tensor GJL.
They can be computed from the definition (7.32) using (7.33a) as

1

Gl;b1b2b3b4 = gna[blrb2b3b4} - grab1...b4 y
1 2
a;blb; = iégrblbz - Ua[blrbz}c + §Far[b1 132} )

Gl-bCIQCB _ érabchcs + 5L[lc1rbczcg] + gnabrclcgc;g _ %51[761Fac263] _ %51[161710211%] 7

1
Gg;b,c _ 6((1bFC) - 777ch& 7

6
GT Cc1...C6 __ 1 c1...cedq...dy 1 C1...Ce
ab = T18°% Nady Ldydsdy — grad1d2d3d4 + Napl’
. 25[[)0111(102...06} o 25([;[)1621103040506} ) (840)

Using then (8.11), the components of GT" = n;'JG(Tll are given by

Gl?b1b2b3b4 = 1i8 (na[blrb2b3b4} - ;Fabl...b4> , (8.41)
Gl = i‘sgrbll» - ina[blrbz}c = Ta[b; Opy) »
T %Fabclcgc;g n é(SC[LCl Tyl 4 %nabfcchCS n éél[)cl T, cacsl _ %51[)21%(;3] 7
Gy =— 181- 6!ffl)cl"'csdl”'d4 (nadlrd2d3d4 - ;Fad1d2d3d4> + éﬂabrcl”'%
_ %Fa[cl“'“’dgd + 167(!)5‘[101?2030465556] -

9Here, V,, denotes the full covariant derivative including both the spin and affine connection such that
11D

Vanem® = 0, such that V,, effectively only acts on €
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Putting these components together, one obtains

1
288

1/1
4J(1>b1b2b3rb1b2b3+4(6 ab1b2‘](l>b1b20 3Fb'](cl)“bc>

_,nIJFIGTJ 1Fab _ Fblbz Fb1b2+ Fabcrbc+

e

b1b2bsb b1 b2bsb
(Fa 10203 4—85a1F 203 4)Fb1b2b3b4

2

1/4
'J(”b1 YLy, bt <&Fab1.‘.b5Jé2)b1"'bsc 3. 4;Fbl T yab. b4C>

(Pabl bobsby _ 86([11)1 I‘b2b3b4) ;"

46!
1

_@ Ebl by 1N.C7Fcl...C7+-- .y (842)

where the dots state for the terms involving the field strength component F " for k > 3.
Then we need to compute the term in G AMT2N MPnNq. For this one first computes that

1
2TMCL’PNO£‘11 = egeangpq (8pgqn - %8ngPQ> )
2TaNa1ang a‘ll
QTMG,L..(%/])M‘II — _JC(2)a1...CL5C . (843)

— Jc(l)alagc ,

For establishing these relations, we have used the K(Fj1) transformations of the various
components of dys leading to 0,

50m = k" O — S0, 5O = frAnPE, SPTS — TSP (8.44)

These formulas extend the level £ = 1 transformations given in (4.4). Substituting the

MpaN

components of G, MPnq to the ones of dy in (6.15) one obtains

1
2GaMTMMPM‘11 =e2eq g™ (8p9qn - %angpq> + 3F <1)abC - 6Fab1b2 Jc<1>b1b2c_
1 4
+ ﬂrblum‘](c?)abln-bélc - 6|F“b1 b5J(2)b1 bse gL ) (8.45)

up to terms involving J(k) for k > 3.
Altogether, one obtalns eventually that all the non gauge invariant terms cancel out
such that

<GaM(DM+§T°‘NM7’Na) 1

FIGTl ‘
1 5) 1

11 1 1
:DéO)e—i— ZeQeangpq (8pgqn_%angpq)€+1 <Fabb_2 ble;aI‘ble) ¢

1 1 1
+T88 (F b1b2b3by —8531 Fb2b3b4)Fb1b2b3b4€_ @ (Fab1b2b3b4 _85¢[zb1 Fb2b364) ﬁgbl...bfl"'C7Fcl...C7€
1 1
= Vet — o (Fab1b2b3b4 _85Z1Fb2b3b4) <Fb1b2b3b4 5 7'5b1 b4 'C7Fcl...07> €. (8.46)

We recover therefore the same situation as for the Rarita-Schwinger equation. Namely, if we
had considered naively the level truncation to the level 1 field, we would have recovered the
expected supersymmetry transformation of the gravitino potential in eleven-dimensional
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supergravity. However, the level 2 fields gives an extra contribution that is nonetheless
gauge invariant in eleven-dimensional supergravity. One expects similarly that the higher
level fields will also give similar contributions, and the absence of /¢ field in the current
components J3* for k > 3, forbids to possibly eliminate them using the duality equations.
For the same reason, this proposal for the non-linear supersymmetry variation of the vector-
spinor cannot be complete and there is some structure yet to be understood.

The resolution of this problem would permit to understand the notion of gener-
alised SL(32) = K (E11)/Z. holonomy for the full supergravity field equations, generalising
the constructions that have been implemented in E7 generalised geometry for the SU(8)

holonomy [94].

9 Conclusions

In this paper we have constructed non-linear duality equations that are invariant under F;
generalised diffeomorphisms. These equations involve several crucial Fq; group theoretical
properties that are understood thanks to the use of the tensor hierarchy algebra 7 (e11).
The tensor hierarchy algebra defines a differential complex for fields satisfying the section
constraints, and provide in particular a field strength representation that generalises the
embedding tensor representation of gauged supergravity. The field strength can only be
defined as an Eq; tensor provided that one considers additional constrained fields ya/®
transforming in an indecomposable representation of F11. We have provided strong evi-
dence that a certain algebraic identity between FE7; structure coefficients holds, thanks to
which one can prove that the first order duality equation we propose in this paper is invari-
ant under F1; generalised diffeomorphisms. We find that there is also a formulation of the
theory with yet more fields, such that the scalar fields parametrize not only Ej1/K(FE11)
but an extended non-semi-simple coset G(To)/K(E11), together with some additional 3
gauge invariance. Within this extended formulation, one can define supersymmetry trans-
formations in a manifestly K (F11) covariant form.

We have computed the first components of the Ej; self-duality equation (3.22) upon
branching on GL(3) x Eg C Ej;. By choosing a partial solution to the section constraint
such that the fields only depend on 3 + 248 coordinates, we recover the FEg exceptional
field theory duality equation between the scalar and the vector fields. An infinite chain
of duality equations emerges in this way, but one does not recover the whole dynamics
without imposing first order equations for the constrained fields. Similar results hold for
E; exceptional field theory, and it would be interesting to analyse the FEj; equations in
their decompositions under the E9 and Ejg subgroups as well. The cosmological E1g coset
model constructed in [40, 95| is different in essence from the Ej; exceptional field theory
considered here in that it is defined in one dimension only rather than using an infinite-
dimensional coordinate module like R(A;) together with a section constraint. This one
direction is considered to be the time direction. In contrast to the framework studied in
this paper, space is conjectured to emerge from the infinitely many components of the Eqg
fields through the gradient expansion of the supergravity fields. It would be interesting to
compare the F; exceptional field theory equations in the Fjg decomposition with the Fiq
cosmological model.
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An important open problem of our work is the construction of the non-linear first or-
der field equations of the constrained fields xa/®. These equations do not follow simply
by substituting the duality equations (3.22) into the Bianchi identities. This is perfectly
analogous to the situation encountered in F, exceptional field theories in lower dimen-
sions [3]. One may try to construct the desired field equations for the constrained fields
directly, or from a (pseudo-)action with the desired gauge symmetry. It is worth noting
that the constrained fields x /% are expected to be non-zero in any non-trivial supergrav-
ity. Moreover, the structure of the Ej; equation (3.22) is such that it does not admit an
obvious consistent truncation to a finite-dimensional subgroup. This is due to the fact that
one cannot have a non-trivial solution with a finite number of non-vanishing fields as the
duality equation automatically relates an infinite series of fields to each other, as we have
explained in section 4.3.

In this paper, we have also studied the supersymmetric extension of Ej; exceptional
field theory by including an unfaithful vector-spinor representation ¥ of K (E11), the double
cover of K (E11). We have established that the bilinears in ¥ transform in the same K (F1;)-
representation as the bosonic first-order self-duality equation, up to a suitable quotient.
We have defined the supersymmetry transformation rules on all the fields and presented
a K (E11) covariant Rarita-Schwinger equation of motion for the vector-spinor ¥, at the
linearised level. We have also investigated the extent to which these equations can be made
non-linear. Terms in the resulting non-linear Rarita-Schwinger equation include those aris-
ing from the Pauli couplings present in D = 11 supergravity, but the results are incomplete.

Another challenge for any FE, exceptional field theory is to find a global interpreta-
tion of the infinitely many new coordinates associated with R(A;) that are present in the
theory. Locally, any solution of the section constraint depends only on finitely many co-
ordinates. Non-trivial global configurations have appeared as non-geometric backgrounds
where patching is done with the F,, symmetry group; most work on this subject has been
done in the context of double field theory [22-26]. These global problems should probably
be first addressed for finite-dimensional exceptional groups before tackling Fy;.

Our work also suggests some interesting group-theoretic identities for 7, Fy1 and
K (E11) that might be interesting to investigate further. They define the embeddings of
various spinor bilinears in the different representations of F1: the symmetric bilinear ¢ ® €
appears to arise as a quotient of the R(A;) representation of Ej; while the antisymmetric
W ® W bilinear appears to arise as a quotient of the field strength representation 7_1. While
these embeddings are natural from a physical perspective and have been checked at low
levels here, their existence might also entail interesting mathematical consequences.

One of the main promises of the Fq1 exceptional field theory lies in its power to unify
all maximal (gauged) supergravities in all dimensions D < 11. It has been found to provide
non-linear and consistent reductions of D = 11 supergravities on nontrivial internal mani-
folds to gauged supergravities in lower dimensions [16-21|. In attempts to go beyond pure
(two-derivative) supergravity, exceptional field theory has also been utilised in the analysis
of contributions of BPS states to loop corrections in these theories [96, 97|. However, the
continuous exceptional symmetry cannot directly be used as a tool for classifying generic
higher derivative corrections to supergravity because these corrections are expected to gener-
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ically break the F,, symmetry to a discrete subgroup E,,(Z) [98|, with interesting implica-
tions for the low-energy effective action [99-108|. For the continuous FE11, one finds immedi-
ately that only a two-derivative Lagrangian can possibly be invariant. Whether F11(Z) and
its automorphic forms [109, 110] can be used for higher derivative terms remains to be seen.
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A Representations of eq;

In this appendix, we collect the decomposition of some of the key representations of ej;
under its gl(11) and gl(3) & eg subalgebras.

A.1 Level decomposition into gl(11)

The generators of gl(11) are written as K™n with fundamental indices m,n € {1,...,11}
and with commutators

(K™, KPg) = 0EK™, — 8" KP, . myn,...=0,1,...10. (A.1)

Defining the level ¢ as the eigenvalue of the generator %K ™, the levels 0 < ¢ < 4 of the
gl(11) decomposition of the adjoint representation is given in table 4. Similarly, the low
lying levels of the gl(11) decomposition of the fundamental representation is displayed in
table 5, and that of R(A1g) representation in table 6. The method of level decomposition
is explained for example in [40, 82].

The commutation relations of e and its action on the 7_o part of the tensor hierarchy
algebra can be summarised in this level decomposition by considering an element of 7o

given by
af : 1 = 1 . _
Pila =... + 8|h7il ns’anL..ns,m + gAzl"'n(anl...ng + jAﬁannSFnanRS + hj;mKnm

+ l Emnzng + A-l— Em ng + h+ Emu.ng,m

3! mnzng ni...ng Y n1..n8,m
1

+ 3 ol ;Li_l n97m1m2m3En1mn9,m1m2m3
8 an ngEm no 4 5 9|Xn1...n10,rsEnl M10,TS Tg,an .nu,mEnlmnH’m
1

+ ﬁYnl...nu’mEnlmnH’m ey (A2)
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Level ¢ | sl(11) representation Generator Potential
1,0,0,0,0,0,0,0,0,1
0 K™, h™
0,0,0,0,0,0,0,0,0,0
1 0,0,0,0,0,0,0,1,0,0 Erinans Apinons
Emme Ap,oong

En1--~ns,m

hm o ng,m

0,1,0,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,2
0,0,0,0,0,0,0,0,0, 1

( )
( )
( )
2 1(0,0,0,0,1,0,0,0,0,0)
(0,0,1,0,0,0,0,0,0,1)
( )
( )
( )

i ng,p1p2p3
Fnimio,pq

Enionin,m

Anl ©"Ng9,p1P2pP3
Bn1 ©*1n10,P,q

C’nl"'nllyrn

Table 4. Level decomposition of e;; under its gl(11) subalgebra obtained by deleting node 11 from
the Dynkin diagram in figure 1, up to level £ = 4.

and studying its transformation under £ = +1 defined by

~ 1 1 ~_
5<Z5ata = *'enlngng,Enann?’ + *fnannanlngny ¢ata

A3
3 3! (A:3)
In (A.2), we have labelled the generators of the adjoint at p = —2 with a tilde just as in
table 2. The sub- and superscripts £+ on the parameters indicate whether the generator
is at level £ > 0 or ¢ < 0, respectively. The last two lines in (A.2) contains the dual of
the generators that are not part of e;; but of the tensor hierarchy algebra, with X being

associated with R(A2) and Y. being associated with R(Ajp). As these generators only
appear for £ > 0, we have suppressed the superscript on them.

Performing the e;; variation (A.3) one then obtains

1 1
5h7-il-m = ienplpzATplpz - ifmplmAjl_plm
1
- T867T (€pypops AP — fplmmA;'lmpg) , (A.4a)
1
+ _ + +
5An1n2n3 - _6fp1p2p3An1n2n3p1p2p3 = 3€plnyny hng]p’ (A.4b)
1
(514;{1,,_”6 = 206[n1"2n3A:4n5n6} — 5fn7ngng h;{ln_n&ng , (A.4c)
1
+ _ +
Shoycongom = 56€<”1n2”3‘4n4--~n8,m> _ §fp1p2p3Ap1(n1...ns,m>p2p3 +ee (A.4d)
1
_ + +
0Xnyong = _28e[n1n2n3An4_._n9} — EfplmmAm...ng,pwng
- %fppopSan---NQI)l »P2P3 + fppostnl---n9p1p21p3 T+ ’ (A4e
5Xn1...n10,rs =3 (2ers[n1Xn2...n10] - Ber[n1n2Xn3...n1o}s + 3es[n1n2Xn3...n10}r) + .oy (A4f

an-..nu,m = 1lem[n1n2Xn3...n11} + .oy

0Yn . nm =04+....
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¢ | sl(11) representation | Generator | Coordinate | Parameter
31(1,0,0,0,0,0,0,0,0,0) P, " £

21 (0,0,0,0,0,0,0,0,1,0) zmn Ymn Amn
211(0,0,0,0,0,1,0,0,0,0) | Zm-"s Yny s Ay oo

o | (0,0,0,1,0,0,0,0,0,1) | Pr=mmm | gy | Enpensim
>1(0,0,1,0,0,0,0,0,0,0) | Pr-ns Ty Ay

Table 5. Level decomposition of the representation R(A;) of e;; under gl(11), up to level £ = 11/2.

Level ¢ | sl(11) representation | Generator structure
4 (0,0,0,0,0,0,0,0,0,1) I
b (0,0,0,0,0,0,1,0,0,0) tna
6 (0,0,0,1,0,0,0,0,0,0) [e-nt
(0,0,0,0,1,0,0,0,0,1) [onmem

Table 6. Level decomposition of the R(A1g) representation of F1; under gl(11).

Here, we have only given the transformation of the + parameters, the ones for — are
obtained by replacing es by f3 and changing the sign. The ellipses represent additional
terms going into ey that will consistently play no role in this paper and that we therefore
have not determined.

We end this subsection by listing the coordinate representation R(A;) and the (first)
section constraint representation R(A1g) in gl(11) decomposition. The coordinate represen-
tation of table 5 was originally studied in |58, 111] and the section constraint representation
of table 6 in [47].

A.2 Level decomposition under gl(3) & es

The gl(3) @ es level decomposition of ¢j; is obtained by grading the adjoint of ej; with
respect to node 3 of the Dynkin diagram shown in figure 1.

We shall label the gl(3) generators by K*, with fundamental indices u, v € {1,2,3} and
the generators of eg by t4 with A € {1,...,248}. Levels 0 < ¢ < 2 of this decomposition
are shown in table 7. The position of the A index on Fg tensors can be changed by using
the Fg Killing metric. This decomposition was first given in [45, 46].

In order to list the remaining generators in the indecomposable representation and also
the coordinate representation and field strength representation it is more useful to directly
consider the tensor hierarchy algebra 7 (e11) decomposed under gl(3) @ es. The construction
of this algebra is similar to the one performed in the gl(11) grading in [47] and we present
only the salient features here.
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Level ¢ | sl(3) @ eg representation | Generator | Potential

(1,1;0,0,0,0,0,0,0,0)

0 | (0,0;0,0,0,0,0,0,0,0) | K" hy
(0,0;1,0,0,0,0,0,0,0) t D,

1 (0,1;1,0,0,0,0,0,0,0) B A
(1,0;0,0,0,0,0,0,0,0)

2 (1,0:0,0,0,0,0,0,1,0) | F4b B7
(0,2;1,0,0,0,0,0,0,0) e hi,

Table 7. Level decomposition of e;; under its gl(3) @ eg subalgebra obtained by deleting node 3
from the Dynkin diagram in figure 1, up to level £ = 3. The Dynkin labels for the two summands
are separated by a semi-colon.

The local algebra is constructed out of the generators of degree ¢ = —1,0, 1 in table 3.
The components of degree ¢ = 0 are parametrised in the BRST formulation by a bosonic
vector superfield V,, (1) generating the reparametrisation in three Grassmann variables 9,
and scalar fermionic superfield ®4(9) in eg. We use t# = 687“ The components of degree
q = 1 are parametrised by the fermionic superfield 1/);? and the bosonic superfield 748 in
the 3875@® 1. The components of degree ¢ = —1 are parametrised by the bosonic superfield

S4 and the fermionic superfield ©*. The BRST operator is then

SV = Vit Vi + ¥4 S, (A.5)
004 = LfpcoPoC + Vot + TAPSE — fpe® (30 SC + 9 fuSY) + e,
684 = VuhSt 4+ 14V, 8 + fpet@PSC
SO = V,lVOH — MV, 0V 4+ 1MV, 0 — FBAS,
St = Vil + PVl — Vol + fpet@Pyd
STAP = V,i' 748 — YV, TAB + 20 fopATBIP — 2@y lB) — fEA L ppp Bl gCyD

One checks indeed that §%2 = 0 on V,, and ®4 and vanishes up to terms quadratic in the
degree ¢ = +1 on the components of degree ¢ = +1 respectively, showing that this defines a
local superalgebra. The tensor hierarchy algebra is defined as the quotient of algebra freely
generated from this local algebra by its maximal ideal. The algebra generated at p = 0
includes by construction eq1, and defining the direct sum over all ¢ for each p one identifies
the same E; representations that appear in the tensor hierarchy algebra constructed in [47]
so we conclude that they are indeed the same algebras. One would expect that there is
a minimal local algebra, similar to the finite-dimensional construction of [48], which is a
subalgebra of both local subalgebras used in the GL(11) covariant construction of [47] and
the GL(3) x Eg covariant construction presented here. This minimal local algebra would
then imply the uniqueness of the tensor hierarchy algebra.
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As for (A.2), we parametrise an element at level p = —2 as
$lg = ...+ A