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1 Introduction and summary

Conformal blocks are fundamental building elements for constructing various correlation

functions in conformal field theories, they allow us to disentangle the model-dependent dy-

namical CFT data from universal kinematical pieces constrained by conformal symmetries.

Once the operator product expansion (OPE) channel is specified, we can expand confor-

mal correlation functions in terms of conformal blocks, and the expansion coefficients are

precisely the product of OPE coefficients. A similar situation occurs in elementary quan-

tum mechanics, we expand arbitrary wave functions in terms of the eigenfunctions, which

are often determined by the symmetries and the physical spectra of a given system, and

the probability amplitudes describe the underlying dynamics. These eigenfunctions solve

the appropriate Sturm-Liouville equations which ensure their orthogonality, moreover the

corresponding equations can often be transformed into the defining differential equations

of various well-known special functions.

It is natural to ask whether conformal blocks can also be systematically studied in

the same vein, in other words, whether they arise as the eigenfunctions of suitable Sturm-

Liouville type of equations? Are they orthogonal with respect to given integration measure,

and can be connected with certain well-studied mathematical functions? The answers to

these questions are affirmative. Various crucial ingredients have become available starting

with the important work of Dolan and Osborn [1, 2], where a second order partial differ-

ential equation known as “quadratic Casimir equation”, determining the four-point global
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conformal blocks as a function of cross ratios was derived. The scaling dimension ∆ and

spin J of the exchange primary operator in the OPE governs the asymptotic behavior,

and in even spacetime dimensions, compact solutions can be expressed in terms of Gauss

hypergeometric functions 2F1. For general spacetime dimensions, conformal blocks were

given in terms of an infinite summation over Gegenbauer polynomials [1] or more recently

for three dimensions, where the expression is again an infinite summation over 2F1s [3].

During these investigations, it was realized that conformal blocks share a close resemblance

with a special class of two variable generalization of Jacobi polynomials studied extensively

by Koornwinder and collaborators [4–7]. These polynomials are defined through a pair of

commuting second and fourth order partial differential equations whose eigenvalues are

labeled by two integers,1 and their orthogonality can be subsequently defined with known

integration measure. In a related recent development [13, 14], it was shown that quadratic

and quartic conformal Casimir operators can be mapped to linear combinations of two com-

muting conserved Hamiltonians of the trigonometric BC2 Calogero-Sutherland integrable

system via a similarity transformation. The conformal blocks can therefore be directly

identified with the explicit eigenfunctions of the BC2 Calogero-Sutherland system known

as “Harish-Chandra functions” [15], which can again be expressed in terms of an infinite

summation over hypergeometric functions.

Even when the explicit compact form of conformal blocks is available, integration

involving them over spacetime coordinates or cross ratios still requires more diligence,

as there are a few subtleties. First, because of the non-compactness of the conformal

group, SO(1, d+ 1) for Euclidean and SO(2, d) for Lorentzian respectively, this means the

eigenvalues for conformal Casimir operators are functions of continuous variables (∆, J).

This is similar to the scattering states in quantum mechanics which are generally non-

normalizable. Second, the naive integration range often extends beyond the radius of

OPE convergence for a given channel, additional analytic continuations are needed for the

integral to be well-defined. Besides purely mathematical interests, obtaining an explicit

and succinct form of conformal blocks and understanding their general properties also fits

well with the conformal bootstrap program (See [16–18] for reviews). Specifically, consider

the crossing symmetry equation arises from expanding a single correlation function in

terms of the basis for different OPE channels, in order to extract the OPE coefficients or

to relate the spectra in different channels, we need to understand the orthogonality and

analytic continuation to perform OPE inversion [20, 21] or compute the corresponding

mixing matrices known as the “crossing kernel” or “6j symbols” [22–25].2 In addition,

it should be noted that we can consider large spin perturbation, i.e. when the spin of

the exchange primary operator becomes large, we can recover the OPE data using the

corresponding inversion formula for any twist and all orders from the double discontinuities

in cross-ratio plane [26].

In this note, we contribute some useful results in several directions towards this sys-

tematic study. In section 2, we provide an alternative expression for conformal block with

1This operator was also recently considered in [11, 12] in embedding space.
2See also [34–37] for a closely related computation of crossing kernels in the form of mixing coefficients

among Mellin amplitudes.
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integer spin exchange in general spacetime dimensions by considering its Mellin-Barnes

representation [38], and showing that the integrated result can be written in a finite sum-

mation of Appell’s hypergeometric function F4 over an integer partition.3 We demonstrate

its validity by numerically matching it with known compact expressions in even dimensions

and provide several other analytic checks and simplifications which can be useful for con-

formal bootstrap computations. We then further explicitly construct the conformal block

for primary exchange operators with continuous spin by constructing a continuous version

of the Mack polynomial or more appropriately named “Mack function”. The result can be

expressed as linear combination of certain g
(s)
∆,J(z, z̄) functions given in (3.15) and its spin

shadow transformation.4 These results provide us with the necessary ingredients for the

computation of the crossing kernel in general spacetime dimensions in section 4, where we

applied the Lorentzian inversion formula derived in [20] (see also [21]). We demonstrate

the final result can be written in terms of double integrals containing Kampé de Fériet

functions, this representation is useful for us to identify the singularities associated with

the double trace operators. Finally in section 5, we provide complementary computations

by considering the holographic dual configurations for conformal partial waves in Anti de-

Sitter (AdS) space, and demonstrate their orthogonality which can be understood as the

orthogonality of AdS harmonic functions. We also consider some simple expansions in

terms of these natural bases. In a few appendices, we provide some useful details about

multi-variable hypergeometric functions and computation details.

2 Conformal blocks with integer spin and Appell’s hypergeometric func-

tions

In this note we will primarily focus on the four point correlation function of conformal field

theories in general spacetime dimensions, which contain external scalar primary operators

O∆i,0(xi) = Oi(xi) with scaling dimension ∆i, i = 1, 2, 3, 4:〈
4∏
i=1

Oi(xi)

〉
= T (s)

∆i
(xi)

∑
{O∆,J}

λ12Oλ34OG
(s)
∆,J(z, z̄). (2.1)

Here we have decomposed the correlation function into summation over the s-channel

exchange primary operator {O∆,J(x)} and λ12Oλ34O are the product of OPE coefficients.

Here we can further factor out the overall kinematic factor depending only on the external

scaling dimensions {∆i}:

T (s)
∆i

(xi) =
1

(x2
12)

∆+
12
2 (x2

34)
∆+

34
2

(
x2

14

x2
24

)a(s) (
x2

14

x2
13

)b(s)

, a(s) =
∆−21

2
, b(s) =

∆−34

2
, (2.2)

3It is interesting to note that similar multi-variable generalization of hypergeometric equations were also

used to describe the propagation of scalar field in the integrable deformations of AdSp×Sp geometries [27,

28]. It was also brought to our attention after this work is completed, when study conformal correlation

functions constrained by conformal Ward identities in the momentum space, expressions in terms of multi-

variable hypergeometric functions can also naturally arise, as discussed in [29–32].
4See also the earlier paper [19] about constructing Lorentzian conformal blocks in a simpler setting.
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and introduce the notation ∆±ij = (∆i ±∆j). The remaining function G
(s)
∆,J(z, z̄) is called

the s-channel conformal block which depends only on a pair of conformally invariant cross

ratios (u, v) or (z, z̄):

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, x2
ij = (xi − xj)2. (2.3)

In Euclidean spacetime Rd, x2
ij ≥ 0 which implies u, v ≥ 0 or the cross ratios (z, z̄) are

complex conjugate to each other z̄ = z∗. While in Lorentzian spacetime M1,d−1, x2
ij can

become negative instead, (z, z̄) are treated as independent complex variables in general,

this distinction becomes important when we consider integration over the conformal blocks.

It is well known that the conformal block G
(s)
∆,J(z, z̄) satisfies a so-called quadratic

Casimir equation, which is a second order partial differential equation in (z, z̄) and is

parameterized by (a(s), b(s)) [2]:(
Dz(a

(s), b(s)) +Dz̄(a
(s), b(s)) (2.4)

+2ε
zz̄

z − z̄

(
(1− z)

∂

∂z
− (1− z̄)

∂

∂z̄

))
G∆,J(z, z̄) = C2(∆, J)G∆,J(z, z̄),

where:

Dz(a, b) = z2(1− z)
d2

dz2
− (1 + a + b)z2 d

dz
− abz, h =

d

2
, ε = h− 1, (2.5)

and the eigenvalue C2(∆, J):

C2(∆, J) = ∆(∆− d) + J(J + d− 2), (2.6)

depends on the scaling dimension ∆ and the spin J of the exchanged operator O∆,J(x).

It is interesting to note that treating (∆, J) as parameters, the eigenvalue C2(∆, J) has

following three independent Z2 symmetry transformations:

Shadow : ∆⇔ d−∆, Spin Shadow : J ⇔ 2− d− J, Light Ray : ∆⇔ 1− J, (2.7)

these imply that (2.4) has eight-fold degeneracies of independent eigenfunctions, only dis-

tinguished by their different asymptotic behaviors. The first one in (2.7) corresponds to the

well-known shadow transformation introduced in [2] which maps a local primary O∆,J(x)

to a non-local operator Õd−∆,J(x) with shadow scaling dimension d − ∆ via an integral

transformation. The remaining two transformations in (2.7) generally map J to negative or

even continuous values, as explained in details in [42] (The close connection of these trans-

formation with the Weyl group of BC2 group was also detailed in [15]), these values can

only be physical in Lorentzian instead of Euclidean spacetime. A primary operator O∆,J(x)

now transforms under SO(2, d) instead of SO(1, d+ 1), it is labeled by the two continuous

Cartan numbers (∆, J) of SO(1, 1)∆ × SO(1, 1)J ∈ SO(2, d), and they can be mixed under

the Weyl group of SO(2, d). It is useful to introduce here the spectral parameterization for

Lorentzian spacetime:

∆ = h+ iν, J = −ε+ i`, (2.8)
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such that the eigenvalue (2.6) can be rewritten as:

C2(ν, l) = (h2 + ν2) + (ε2 + `2). (2.9)

The transformations in (2.10) can be succinctly recast in terms of spectral parameters (ν, l):

Shadow : ν ⇔ −ν, Spin Shadow : `⇔ −`, Light Ray : ν ⇔ −`, (2.10)

which clearly leave (2.9) invariant. We will return to these parameterizations when we

consider the conformal block with continuous spin and the inversion formula of [20].

In this note, we will ultimately be interested in constructing so-called “crossing kernel”

for general d-dimensional conformal field theories, which will be introduced momentarily.

To begin with, we first construct an orthogonal basis in Rd which will be called conformal

partial wave (CPW) [2]:

Ψ
(s)
ν,J(xi) =

1

πh

∫
Rd
ddx0〈O∆1(x1)O∆2(x2)Oµ1...µJ

h+iν,J (x0)〉〈Õµ1...µJ
h−iν,J (x0)O∆3(x3)O∆4(x4)〉.

(2.11)

Here the two copies of three point functions contain Oµ1...µJ
h+iν,J (x0) and its shadow Õµ1...µJ

h−iν,J (x0),

they are related through following integral transformation:

Õh−iν,µ1...,µJ (x) =
1

πh
Γ(h− iν + J)

(h+ iν − 1)JΓ(iν)

∫
ddx′
Iµ1,...,µJ ;ν1,...,νJ (x− x′)

((x− x′)2)h−iν
Oh+iν,ν1,...,νJ (x′),

(2.12)

where Iµ1,...,µJ ;ν1,...,νJ (y) is the inversion tensor of symmetric traceless tensors. The func-

tional forms of these three point functions are fixed kinematically through conformal sym-

metry.5 Notice that the CPW is also an eigenfunction of the conformal Casimir equation

and it can be expanded in terms of a conformal block and its shadow as follows:

Ψ
(s)
ν,J(xi) = T (s)

∆i
(xi)

∑
σs=±

c
(s)
h+iσsν,J

G
(s)
h+iσsν,J

(z, z̄) (2.13)

where the expansion coefficients are given by

c
(s)
h+iσsν,J

=
1

2JcJ

(h− iσsν − 1)JΓ(−iσsν)

Γ(2ωσs)

Γ
(
ωσs ± a(s)

)
Γ
(
ωσs ± b(s)

)∏4
i=1 Γ

(
γ

(s)
i

) , (2.14)

with cJ = (ε)J
(2ε)J

and (x)J = Γ(x+J)
Γ(x) being the Pochhammer symbol. In the above, we have

also introduced the notation Γ(x±a) = Γ(x+a)Γ(x−a). We have also defined the following

combinations of scaling dimensions and spins:

ωσs =
h+ iσsν + J

2
, τσs =

h+ iσsν − J
2

, σs = ±. (2.15)

while {γ(s)
i } are given in (2.22). The integer spin-J operators Oh+iν,J(x0) and Õh−iν,J(x0)

carry the complex scaling dimensions, we can recover the conformal block with physical

5In this paper we follow the normalization convention of conformal partial wave Ψ
(s)
ν,J(xi) explicitly

constructed in [2] by fusing two copies of three point functions together, this also fixes our expansion

coefficients hence the normalization of conformal blocks.
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real dimensions by integrating the conformal partial wave (2.13) over the ν-plane together

with the spectral function for ν, see for example [46].

It is well-known that the conformal partial wave (2.13) also enjoys the Mellin repre-

sentation [2, 38]:

Ψ
(s)
ν,J(xi) = T (s)

∆i
(xi)

∫ i∞

−i∞

ds

(4πi)

∫ i∞

−i∞

dt

(4πi)
u
s
2 v

t
2 ρ

(s)
∆i

(s, t)M(s)
ν,J(s, t) . (2.16)

Here the Mellin space integration measure is given by:

ρ
(s)
∆i

(s, t) =
∏
i<j

Γ
(
δ

(s)
ij

)
, (2.17)

where in principle we have three Mandelstam-like variables (s, t, u) satisfying s + t + u =∑4
i=1 ∆i, such that we can substitute u away and express {δ(s)

ij } only in terms of (s, t):

δ
(s)
12 =

∆+
12 − s

2
, δ

(s)
34 =

∆+
34 − s

2
, δ

(s)
13 =

s+ t

2
+ b(s),

δ
(s)
24 =

s+ t

2
+ a(s), δ

(s)
14 = − t

2
− a(s) − b(s), δ

(s)
23 = − t

2
, (2.18)

such that
∑

j 6=i δ
(s)
ij = ∆i. Notice the number of independent Mellin parameters is exactly

the same as the independent cross ratios, we can regard the Mellin representation as trading

(u, v) with (s, t). While the remaining integrand:

M(s)
ν,J(s, t) =

1∏4
i=1 Γ

(
γ

(s)
i

) Γ
(
τ± − s

2

)
Γ
(
δ

(s)
12

)
Γ
(
δ

(s)
34

)P (s)
ν,J(s, t), (2.19)

is the corresponding s-channel partial Mellin amplitude. The polynomial P
(s)
ν,J(s, t) origi-

nally due to Mack [38] is given by:

P
(s)
ν,J(s, t) =

∑̃
r,k

(
τ± −

s

2

)
r

∏
(ij)

(
δ

(s)
ij

)
kij

4∏
i=1

Γ
(
γ

(s)
i

)
Γ
(
γ

(s)
i − J + r +

∑
j kji

) , (2.20)

where the abridged double summations:

∑̃
r,k

· · · = J !

2J

bJ2 c∑
r=0

(−1)r
(J + ε)−r
r!(J − 2r)!

∑
∑
kij=J−2r

(−1)k13+k24
(J − 2r)!∏

(ij) kij !
. . . (2.21)

is over r which comes from the expansion coefficients of Gegenbauer polynomial arising

from tensor contraction of three point functions,
⌊
J
2

⌋
denotes integer part of J

2 and the

four-fold integer partition {kij} with (ij) = {13, 24, 14, 23} such that
∑

(ij) kij = J − 2r.

The remaining parameters {γ(s)
i } arising from the integration via Symanzik formula are

given by:

γ
(s)
1 = ω+ − a(s), γ

(s)
2 = ω+ + a(s), γ

(s)
3 = ω− + b(s), γ

(s)
4 = ω− − b(s). (2.22)
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Despite the rather complicated looking expression for P
(s)
ν,J(s, t) in (2.20), the most im-

portant analytic information we need about it is that it does not contain any additional

singularities in (s, t) variables, but only zeroes which cancel some of the poles in the (s, t)-

contour integrations. It is also useful to note that Mack polynomial (2.20) enjoys a some-

what non-obvious but important reflection symmetry P
(s)
ν,J(s, t) = P

(s)
−ν,J(s, t) [39], which is

needed for consistently extracting the conformal block from integration over ν-plane.

Using the Mellin representation of Ψ
(s)
ν,J(xi) (2.16), we can readily integrate it into a

summation over regularized Gauss Hypergeometric functions 2F̃1:

Ψ
(s)
ν,J(xi) = T (s)

∆i
(xi)

∑
σs=±

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(s)
i − J + r +

∑
j kji

) uτσs+r

v
a(s)+b(s)−k14−k23

2

×
∞∑

ns=0

(−1)nsuns

ns!
Γ(−iσsν − ns)

[
v
$

(s)
14
2 2F̃1

[
κ

1(s)
σs + ns + r, κ

4(s)
σs + ns + r

1 +$
(s)
14

; v

]

+v
$

(s)
23
2 2F̃1

[
κ

2(s)
σs + ns + r, κ

3(s)
σs + ns + r

1 +$
(s)
23

; v

]]

= T (s)
∆i

(xi)
∑
σs=±

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(s)
i − J + r +

∑
j kji

) uτσsν+r

v
a(s)+b(s)−k14−k23

2

×

[
v
$

(s)
14
2 F̃4

[
κ

1(s)
σs + r, κ

4(s)
σs + r

1 + iσsν, 1 +$
(s)
14 ,

; u, v

]
+ v

$
(s)
23
2 F̃4

[
κ

2(s)
σs + r, κ

3(s)
σs + r

1 + iσsν, 1 +$
(s)
23 ,

; u, v

]]
,

(2.23)

where we have defined the following combinations:

κ1(s)
σs = τσs − a(s) + k13 + k14, κ

2(s)
σs = τσs + a(s) + k23 + k24,

κ3(s)
σs = τσs + b(s) + k13 + k23, κ

4(s)
σs = τσs − b(s) + k14 + k24, (2.24)

$
(s)
14 = (κ1(s)

σs + r) + (κ4(s)
σs + r)− (h+ iσsν) = −(a(s) + b(s) + k23 − k14), (2.25)

$
(s)
23 = (κ2(s)

σs + r) + (κ3(s)
σs + r)− (h+ iσsν) = a(s) + b(s) + k23 − k14, (2.26)

and the function:

2F̃1

[
a, b

c
;x

]
=

π

sinπc
Γ(a)Γ(b)2F̃1

[
a, b

c
;x

]

=
π

sinπc

∫ +i∞

−i∞

dt

2πi

Γ(−t)Γ(a+ t)Γ(b+ t)

Γ(c+ t)
(−x)t. (2.27)

Moreover in the second equality of (2.23), we notice that for fixed {r, kij}, the infinite sum-

mation over ns labeling the conformal descendants can also be performed, and the final

result is expressed in terms of Appell’s fourth hypergeometric function F4. Appell’s hyper-

geometric functions are two parameter generalization of Gauss’s hypergeometric function.

For a nice introduction, please see [40], and we will follow the series definition there for F4
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as given in (A.4) and summarized the relevant details in appendix A. Here we have also

defined the following function:

F̃4

[
a1, a2

c1, c2
;x, y

]

= Γ(a1)Γ(a2)Γ(1− c1)Γ(1− c2)F4

[
a1, a2

c1, c2
;x, y

]

=
π2

sinπc1 sinπc2

×
∫ i∞

−i∞

dt

2πi

∫ i∞

−i∞

ds

2πi

Γ(a1 + s+ t)Γ(a2 + s+ t)Γ(−s)Γ(−t)
Γ(c1 + s)Γ(c2 + t)

(−x)s(−y)t , (2.28)

to absorb additional Γ-functions. In the last equality above, we introduced a Mellin-Barnes

representations for F̃4 and the integration contours close in the right half planes to enclose

the poles where s, t ∈ N≥0.

Naively each individual F̃4 in (2.23) is strictly convergent when |u|
1
2 + |v|

1
2 < 1, which

is impossible in Euclidean signature z̄ = z∗, however Ψ
(s)
ν,J(xi) and the conformal blocks

G
(s)
h±iν,J(z, z̄) are convergent near (u, v) = (0, 1) which is allowed in both Euclidean and

Lorentzian spacetimes. To see this, we can use a well-known hypergeometric function

identity (A.2) to rewrite (2.23) as follows

Ψ
(s)
ν,J(xi) = T (s)

∆i
(xi)

∑
σs=±

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(s)
i − J + r +

∑
j kji

)uτσs+rvk23

×
∞∑

ns=0

(−1)nsuns

ns!
Γ(−iσsν − ns)

4∏
i=1

Γ
(
κi(s)σs + ns + r

)
×2F̃1

[
κ

2(s)
σs + ns + r, κ

3(s)
σs + ns + r

h+ iσsν + 2ns
; 1− v

]
, (2.29)

which is clearly convergent near (u, v) = (0, 1). This form (2.29) is also useful for us to

analytically continue to other convergent series for other values (u, v), e.g. near (u, v) =

(0,∞), we can use another hypergeometric identity (A.3) to further rewrite (2.29) into:

Ψ
(s)
ν,J(xi) = T (s)

∆i
(xi)

∑
σs=±

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(s)
i − J + r +

∑
j kji

) (u

v

)τσs+r

×

[
1

vb(s)+k13
F̃4

[
κ

1(s)
σs + r, κ

3(s)
σs + r

1 + iσsν, 1 + κ
3(s)
σs − κ

2(s)
σs ,

;
u

v
,

1

v

]

+
1

va(s)+k24
F̃4

[
κ

2(s)
σs + r, κ

4(s)
σs + r

1 + iσsν, 1 + κ
2(s)
σs − κ

3(s)
σs ,

;
u

v
,

1

v

]]
(2.30)

which are clearly convergent near (u, v) = (0,∞). The expressions in (2.29) and (2.30) are

also useful for computing the non-trivial monodromy around z̄ = 1 and z̄ = −∞ when we

apply the Lorentzian inversion formula [20].
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By integrating over the spectral parameter ν, we can obtain the expression for the

d-dimensional conformal blocks G
(s)
∆,J(z, z̄) with integer spin J :6

G
(s)
∆,J(z, z̄) =

1

c
(s)
∆,J

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(s)
i (τ)− J + r +

∑
j kij

)u
∆−J

2
+rvk23

×
∞∑

ns=0

(−1)nsuns

ns!
Γ(h−∆− ns)

4∏
i=1

Γ
(
κ
i(s)
+ (τ) + r + ns

)
×2F̃1

[
κ

2(s)
+ (τ) + r + ns, κ

3(s)
+ (τ) + r + ns

∆ + 2ns
; 1− v

]

=
1

c
(s)
∆,J

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(s)
i (τ)− J + r +

∑
j kji

) u
∆−J

2
+r

v
a(s)+b(s)−k14−k23

2

×

[
v
$

(s)
14
2 F̃4

[
κ

1(s)
+ (τ) + r, κ

4(s)
+ (τ) + r

1− h+ ∆, 1 +$
(s)
14

; u, v

]

+v
$

(s)
23
2 F̃4

[
κ

2(s)
+ (τ) + r, κ

3(s)
+ (τ) + r

1− h+ ∆, 1 +$
(s)
23

; u, v

]]
, (2.31)

where γ
(s)
i (τ) and κ

i(s)
+ (τ) denote we have set τ+ = τ = ∆−J

2 in γ
(s)
i and κ

i(s)
+ respectively.

We can check that (2.31) satisfies the shadow identity:

G
(s)
∆,J(z, z̄) |∆i→∆̄i=d−∆i

= ((1− z)(1− z̄))a(s)+b(s)
G

(s)
∆,J(z, z̄). (2.32)

In the J = 0, i.e. scalar exchange limit, using the same hypergeometric identity for obtain-

ing (2.30), we can rewrite (2.31) into:

G
(s)
∆,0(z, z̄) = u

∆
2

∞∑
n=0

un

n!

(
∆
2 − a(s)

)
n

(
∆
2 − b(s)

)
n

(∆− h+ 1)n

∞∑
m=0

(
∆
2 + a(s)

)
m+n

(
∆
2 + b(s)

)
m+n

m!(∆)2n+m
(1−v)m

=
u

∆
2

c
(s)
∆,0

[
F̃4

[
∆
2 + a(s), ∆

2 + b(s)

1− h+ ∆, 1 + a(s) + b(s); u, v

]

+
1

va(s)+b(s)
F̃4

[
∆
2 − a(s), ∆

2 − b(s)

1− h+ ∆, 1− a(s) − b(s); u, v

]]
, (2.33)

which precisely coincides with the general d-dimensional scalar conformal block given in [2].

Numerically we have also checked that (2.31) has the following desired small (z, z̄) asymp-

6Note that for the scalar J = 0 exchange, it was also noted in [10] that the conformal block can be

written in terms of Appell’s F4 functions, our result obtained from a different approach generalizes it to

arbitrary integer J .
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(a) d = 2 and (∆, J) = (2.1, 3) (b) d = 4 and (∆, J) = (2.1, 2)

Figure 1. Numerical match of (2.31) with known 2 and 4-dimensional conformal blocks in [2] for

each (∆, J) and a(s) = b(s) = 0. We have also set z = z̄ in the horizontal axis. The black curves

correspond to the conformal blocks in [2] and the blue, pink and orange curves correspond to the

conformal block expansions given in (2.31) which are truncated at ns = 2, 4 and 6 respectively. We

can see that as we increase the number of terms in the summation for Appell’s F4 function, our

result quickly approaches the known existing results given by the black curves.

totic behaviors given in [2]:7

G
(s)
∆,J(z, z̄) → (ε)J

(2ε)J
z̄

∆−J
2 2F1

[
∆+J

2 + a(s), ∆+J
2 + b(s)

∆ + J
; z

]
+O

(
z̄

∆−J
2

+1
)
,

1� z � z̄ � 0, (2.34)

G
(s)
∆,J(z, z̄) → J !

(2ε)J
(zz̄)

∆
2 C

(ε)
J (σ) +O

(
(zz̄)

∆
2

+1
)
, zz̄ → 0, σ =

z + z̄

2
√
zz̄

fixed (2.35)

and coincide with the finite sum of hypergeometric functions in terms of cross ratio (z, z̄)

when d = 2, 4, as given in [2]. By comparing (2.33) with (2.31), we can also regard

conformal block with integer spin J as the partition summation of scalar conformal blocks

with shifted external scaling dimensions:

G
(s)
∆,J(z, z̄) =

c
(s)
∆,0

c
(s)
∆,J

∑̃
r,k

4∏
i=1

Γ
(
γ

(s)
i (τ)

)
Γ
(
γ

(s)
i (τ)− J + r +

∑
j kij

) 1

u
J−2r

2

G
(s)
∆,0(z, z̄) |∆i→∆i+

∑
j kij

.

(2.36)

This is consistent with the observation made in [41] (see (5.37) there), where the authors

considered the holographic dual configuration to a d-dimensional conformal partial wave,

namely “geodesic Witten diagram”, and pointed out a simple relation between the scalar

and general tensor exchange cases. Essentially the Gegenbauer polynomial arising from

the restriction of spin J propagator along the geodesics can only depend on the external

coordinates {x2
ij} and geodesic parameters. After the integration along the geodesic pa-

rameters, the functional form of individual terms in the integrand does not change, only

the external scaling dimensions are shifted by integer units which are determined by the

multinomial expansion.

7Unless otherwise stated, here we follow the normalization of conformal block given in [2].
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We should stress here that an explicit expression for general d-dimensional confor-

mal block with integer spin J was already available in terms of a double infinite series

expansion of Gegenbauer polynomials [1] (See also [15] for the connection with Harish-

Chandra functions of BC2 Calogero-Sutherland system), where the expansion coefficients

can be determined recursively through the quadratic Casimir equation. Our result (2.31)

provides an alternative explicit expression in terms of a finite summation over Appell’s

hypergeometric functions F4 which will facilitate the crossing kernel computation through

its Mellin-Barnes representation (2.28) later.

It would be highly non-trivial to demonstrate the equivalence of the two expressions,

to this end we can first consider the following non-trivial identity between F4 functions

and the so-called zonal generalization of hypergeometric function [8]:

2F1

[
a, b

c
;

[
z, 0

0, z̄

]]
=

Γ(c)

Γ(3
2 − c)Γ(a)Γ(b)Γ(c− a)Γ(c− b)

×

(
F̃4

[
a, b

c− 1
2 , 1 + a+ b− c

; u, v

]

+vc−a−bF̃4

[
c− a, c− b

c− 1
2 , 1− a− b+ c

; u, v

])
, (2.37)

where (u, v) and (z, z̄) are related as in (2.3) and the two variable zonal generalization of

2F1 is explicitly given in terms of the Legendre polynomial Pn(x):

2F1

[
a, b

c
;

[
z, 0

0, z̄

]]
=

∞∑
m=0

m∑
l=0

(a)m(a− 1
2)l(b)m(b− 1

2)l(
3
2)m−l

l!(c)m(c− 1
2)l(

3
2)m(1

2)m−l
u
m+l

2 Pm−l (σ) . (2.38)

This implies that in our case if we set d = 3, a = κ
2(s)
σs + r, b = κ

3(s)
σs + r and c = 3

2 + iσsν,

we can express the three dimensional scalar conformal partial waves in terms of an infinite

summation over Legendre polynomials. More explicitly we have:

G
(s)
∆,J(z, z̄) =

1

c
(s)
∆,J

∑̃
r,k

4∏
i=1

Γ
(
κ
i(s)
+ (τ) + r

)
Γ
(
γ

(s)
i (τ)− J + r +

∑
j kji

)u
∆−J

2
+rvk23

×
∞∑
m=0

m∑
l=0

(−1)l
(3

2 +m)−lΓ(h−∆− l)
l!(1

2)m−l
(2.39)

×
(κ

2(s)
+ (τ)+r, κ

3(s)
+ (τ)+r)m(κ

2(s)
+ (τ)+r − 1

2 , κ
3(s)
+ (τ)+r − 1

2)l

Γ(∆ +m)
u
m+l

2 C
( 1

2
)

m−l (σ) ,

and notice that we have used the fact C
( 1

2
)

n (σ) = Pn(σ) for h = 3
2 . It would be interesting

to perform the explicit summation over {r, kij} to demonstrate their equivalence. Finally,

it is useful to note that at the so-called crossing symmetric point z = z̄ = 1
2 or u = v = 1

4

which is popular in conformal bootstrap computations, we can reduce to a generalized

hypergeometric function:

F4

[
a1, a2

c1, c2
; u, u

]
= 4F3

[
a1, a2,

c1+c2−1
2 , c1+c2

2

c1, c2, c1 + c2 − 1
; 4u

]
, (2.40)

this is much easier to be implemented numerically than the F4 function.
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Starting with the s-channel conformal partial wave, we can obtain other equivalent t-

and u- exchange channels by performing the crossing transformations:

s↔ t : (x2,∆2)↔ (x4,∆4), s↔ u : (x2,∆2)↔ (x3,∆3), (2.41)

or in terms of the conformally invariant cross ratios (2.3), the crossing transformations act

on them as:

s↔ t : (u, v)→ (v, u); (z, z̄)→ (1− z, 1− z̄),

s↔ u : (u, v)→ (1/u, v/u); (z, z̄)→ (1/z, 1/z̄). (2.42)

By performing the crossing transformations (2.3), we can write down the corresponding

conformal partial waves in the t- and u-channels:

Ψ
(t)
ν,J(xi) = T (t)

∆i
(xi)

∑
σt=±

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(t)
i − J + r +

∑
j kji

) vτσt+r

u
a(t)+b(t)−k12−k34

2

×

[
u
$

(t)
12
2 F̃4

[
κ

1(t)
σt + r, κ

2(t)
σt + r

1 + iσtν, 1 +$
(t)
12

; v, u

]
+ u

$
(t)
34
2 F̃4

[
κ

3(t)
σt + r, κ

4(t)
σt + r

1 + iσtν, 1 +$
(t)
34

; v, u

]]
,

(2.43)

Ψ
(u)
ν,J(xi) = T (u)

∆i
(xi)

∑
σu=±

∑̃
r,k

4∏
i=1

1

Γ
(
γ

(u)
i − J + r +

∑
j kji

) ( 1
u)τσu+r

(v
u)

a(u)+b(u)−k14−k23
2

×

[(v

u

)$(u)
14
2

F̃4

[
κ

1(u)
σu + r, κ

4(u)
σu + r

1 + iσuν, 1 +$
(u)
14

;
1

u
,

v

u

]

+
(v

u

)$(u)
23
2

F̃4

[
κ

2(u)
σu + r, κ

3(u)
σu + r

1 + iσuν, 1 +$
(u)
23

;
1

u
,

v

u

]]
. (2.44)

Here we have used the crossing transformations (2.42) to change the cross ratios, while var-

ious remaining parameters (κ
i(t)
σt , γ

(t)
i ;κ

i(u)
σu , γ

(u)
i ) and pre-factors (T (t)

∆i
(xi), T (u)

∆i
(xi)) can be

obtained from (2.22) and (2.24) using the crossing transformations (2.41). It is interesting

to note that the s and t-channel conformal partial waves are both convergent within the

square given by 0 < u, v < 1 or equivalently 0 < z, z̄ < 1, this becomes important when

we compute the crossing kernel, as we need to use the expressions for the integrand which

are convergent in a given integration region.

3 Generalization to continuous spins

For our computation of the crossing kernel using the inversion formula of [20] in the next

section, here we would also like to consider the scalar conformal block in arbitrary di-

mensions with continuous spin J by generalizing our earlier construction. Recall that the

Mellin representation for conformal partial wave with integer J (2.16) can be derived from

pairing two copies of three point functions related through a shadow transformation and
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the contraction of their symmetric traceless tensor structures yields a Gegenbauer polyno-

mial C
(ε)
J (η) in the process, see for example [2, 48]. Now for continuous spin J , we need to

generalize the shadow to “full-shadow” transformation [42], this involves contracting two

copies of three point functions whose spins are also related via the spin shadow transfor-

mation [44]. The net result here is to replace the Gegenbauer polynomial arising from the

contraction of two symmetric traceless tensors with identical integer spin J :

X̂{µ1...X̂µJ}Ŷ{µ1...ŶµJ} =
1

2JcJ
2F1

[
− J, J + 2ε

ε+ 1
2

;
1− η

2

]
=

1

2JcJ
Ĉ

(ε)
J (η), η = X̂ · Ŷ

(3.1)

where X̂, Ŷ are unit vectors and Ĉ
(ε)
J (η) = J !

(2ε)J
C

(ε)
J (η), by its continuous spin generaliza-

tion through integration over the null polarization vector zν [42]:∫
D2εz(−2z · X̂)J(−2z · Ŷ )J̄

= πε
Γ(ε)

Γ(2ε)
2F1

[
− J, − J̄
ε+ 1

2

;
1− η

2

]
, (3.2)

= πε

{
Γ(J + ε)

Γ(J + 2ε)
(2η)J2F1

[
− J

2 ,
1−J

2

2− h− J
;

1

η2

]
+

Γ(J̄ + ε)

Γ(J̄ + 2ε)
(2η)J̄2F1

[
− J̄

2 ,
1−J̄

2

2− h− J̄
;

1

η2

]}
.

Here we have introduced the shadow spin J̄ = −2ε− J and the scale-invariant integration

measure over polarization vector zµ:

D2εz ≡ ddzθ(z0)δ(z2)

volR+
. (3.3)

where the division by the volume of the group of positive rescaling volR+ ensures the finite

result. In the second equality of (3.2), we have separated the dependence on continuous

spin J and its shadow J̄ using hypergeometric identity. It is clear that unless in even

dimensions, i.e. ε = 0, 1, 2, . . . etc., the Γ-functions in the pre-factors ensure that when

J ∈ Z≥0 or equivalently J̄ + 2ε ∈ Z≤0, the J̄-dependent term vanishes identically and

vice versa.

The rest of the computation proceeds almost identically as in the integer spin case,

the Mellin representation for the conformal partial wave with continuous spin is now given

by two distinct spin-dependent parts:

Ψ̃
(s)
ν,`(xi) = T (s)

∆i
(xi)

∫ i∞

−i∞

ds

(4πi)

∫ i∞

−i∞

dt

(4πi)
u
s
2 v

t
2 ρ

(s)
∆i

(s, t)

×
(

Γ(+i`)

Γ(ε+ i`)
M

(s)
ν,+`(s, t) +

Γ(−i`)
Γ(ε− i`)

M
(s)
ν,−`(s, t)

)
= T (s)

∆i
(xi)

∑
σs=±

∑
ηs=±

ĉh+iσsν,−ε+iηs`
Γ(iηs`)

Γ(ε+ iηs`)
g

(s)
h+iσsν,−ε+iηs`(z, z̄). (3.4)

Here we have also parameterized continuous spin J = −ε+ i` and shadow spin J̄ = −ε− i`
through spectral parameter `, putting it on equal footing as the scaling dimension. In the
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last line of (3.4), we have made both shadow and spin-shadow transformations manifest af-

ter (s, t)-integration by expressing them in terms of the building blocks g
(s)
h+iσsν,−ε+iηs`(z, z̄)

whose explicit form will be given momentarily. Here the normalization constants:

ĉh+iσsν,−ε+iηs` = 2−ε+iηs`πε
Γ(−iσsν)Γ(−iσsν + iηs`)

Γ(2ωσsηs)Γ(h− iσsν − 1)

Γ
(
ωσsηs ± a(s)

)
Γ
(
ωσsηs ± b(s)

)∏4
i=1 Γ

(
γ

(s)
iηs

) .

(3.5)

are fixed by comparing (3.2) with (3.1) and (2.31), such that J becomes an non-negative

integer, we recover the conformal block given in (2.31) from g
(s)
∆,J(z, z̄). We can also define

the following parameters:

τσsηs =
h+ iσsν − (−ε+ iηs`)

2
, ωσsηs =

h+ iσsν + (−ε+ iηs`)

2
, σs, ηs = ±,

(3.6)

γ
(s)
1ηs

= ω+ηs − a(s), γ
(s)
2ηs

= ω+ηs + a(s), γ
(s)
3ηs

= ω−ηs + b(s), γ
(s)
4ηs

= ω−ηs − b(s) , (3.7)

κ1(s)
σsηs = τσsηs − a(s) + k13 + k14, κ2(s)

σsηs = τσsηs + a(s) + k23 + k24,

κ3(s)
σsηs = τσsηs + b(s) + k13 + k23, κ4(s)

σsηs = τσsηs − b(s) + k14 + k24. (3.8)

and the precise definition of non-integral summation indices {kij} is given around (3.12).

We can now write down M
(s)
ν,ηs`

(s, t), each contains two pieces related by shadow transfor-

mation after the Mellin variable (s, t) integrations:

M
(s)
ν,ηs`

(s, t) =
πε∏4

i=1 Γ
(
γ

(s)
iηs

) Γ
(
τ±ηs − s

2

)
Γ(δ

(s)
12 )Γ(δ

(s)
34 )

Q̃
(s)
ν,ηs`

(s, t), (3.9)

Q̃
(s)
ν,ηs`

(s, t) =
∑̃
m,k

(
τ±ηs −

s

2

)
m

∏
(ij)

Γ
(
δ

(s)
ij + kij

)
Γ
(
δ

(s)
ij

)
×

4∏
i=1

Γ
(
γ

(s)
iη

)
Γ
(
γ

(s)
iηs
− (−ε+ iηs`) +m+

∑
j kij

) . (3.10)

We can regard Q̃
(s)
ν,η`(s, t) as a continuous spin generalization of a Mack polynomial, here

{δ(s)
ij } containing Mellin variables are parameterized as before (2.18). The abridged infinite

summation is given by:

∑̃
m,k

. . . ≡
∞∑
m=0

22m ( ε−iηs`2 )m(h−iηs`2 )m

m!(1− iηs`)m

×
∑̃

∑
kij=−ε+iηs`−2m

(−1)k13+k24
Γ(−ε+ iηs`− 2m+ 1)∏

(ij) Γ(kij + 1)
. . . , (3.11)

where the first infinite summation over m comes from the expansion of a 2F1 function, while

the remaining summation comes from analytically continuing the multinomial theorem to
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continuous power [33], such that it is also an infinite summation:

∑̃
∑
kij ···=−ε+iηs`−2m

≡
∞∑
p=0

∑
k14+k24+k13=p

. . . , k24 = −ε+ iηs`− 2m− p. (3.12)

In other words, we generalize the earlier four-fold partition of integer spin by picking one of

the four k(ij), say k24 to be a continuous parameter. Altogether, as in the integer spin case,

we now have five (non-independent) summations, even though the range now expands to

infinities to account for continuous spin.

To obtain the conformal block in general d-dimension with continuous spin G
(s)
∆,J(z, z̄),

we can explicitly integrate over Mellin variables (s, t) as before to obtain the building

block g
(s)
∆,J(z, z̄) and g

(s)

∆,J̄
(z, z̄) in terms of Appell’s hypergeometric function F4, as the pole

structures remain the same here. We can then consider the following linear combination:8

G
(s)
∆,J(z, z̄) = g

(s)
∆,J(z, z̄) +

Γ(J + 2ε)Γ(J̄ + ε)

Γ(J̄ + 2ε)Γ(J + ε)
g

(s)

∆,J̄
(z, z̄), (3.14)

where the building blocks are given explicitly by

g
(s)
∆,J(z, z̄) =

πε

ĉ∆,J

∑̃
m,k

4∏
i=1

1

Γ
(
γ

(s)
i+ (∆, J)− J +m+

∑
j kij

) u
∆−J

2
+m

v
a(s)+b(s)−k14−k23

2

×

[
v
$

(s)
14
2 F̃4

[
κ

1(s)
++ (∆, J) +m, κ

4(s)
++ (∆, J) +m

1− h+ ∆, 1 +$
(s)
14

; u, v

]

+v
$

(s)
23
2 F̃4

[
κ

2(s)
++ (∆, J) +m, κ

3(s)
++ (∆, J) +m

1− h+ ∆, 1 +$
(s)
23

; u, v

]]
, (3.15)

while $
(s)
14 and $

(s)
23 remain the same in (2.25) and (2.26). Here γ

(s)
i+ (∆, J) and κ

i(s)
++(∆, J)

are given by setting h+ iν = ∆ and −ε+ i` = J in γ
(s)
i+ and κ

i(s)
++ defined in (3.7) and (3.8),

while g
(s)

∆,J̄
(z, z̄) can be obtained by obvious J → J̄ replacements in the parameters, such

as setting h+ iν = ∆ and −ε− i` = J̄ in γ
(s)
i− and κ

i(s)
+− to obtain γ

(s)
i− (∆, J̄) and κ

i(s)
+−(∆, J̄)

respectively. One should keep in mind that one of {k(ij)} is now a non-integer, we should

perform infinite summation as in (3.12) instead. We have numerically checked that our

expression matches with the known results for the conformal blocks with continuous spin

in d = 2, 4 dimensions, i.e. directly taking J to be continuous in the argument of hyperge-

ometric functions as was done in [24].

We should note previously the explicit form of scalar conformal block with continuous

spin J was also constructed in [15], where the authors constructed the following linear

8Notice that we could have chosen slightly more symmetric combination such as:

G
(s)
∆,J(z, z̄) ∼ Γ(J + ε)

Γ(J + 2ε)
g

(s)
∆,J(z, z̄) +

Γ(J̄ + ε)

Γ(J̄ + 2ε)
g

(s)

∆,J̄
(z, z̄), (3.13)

however the normalization of the conformal block will need to change accordingly.
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combination:

G
(s)IS
∆,J (z, z̄) =

(ε)J
(2ε)J

Φ̂
(s)
∆,J(z, z̄) +

(ε)J̄
(2ε)J̄

Φ̂
(s)

∆,J̄
(z, z̄), Φ̂

(s)
∆,J(z, z̄) =

24a(s)+2∆

(zz̄)a(s)
Φ̃

(s)
∆,J(z, z̄).

(3.16)

Here Φ̃
(s)
∆,J(z, z̄) is the so-called twisted Harish-Chandra function which is related to the

eigenfunction of the BC2 Calogero-Sutherland Hamiltonian via a similarity transformation.

The explicit form of Φ̃
(s)
∆,J(z, z̄) depends on (∆, J, a(s), b(s), h) and can be written in terms

of a double infinite series involving 2F1. While in [20], it was proposed that the scalar

conformal block with continuous J exchange can be decomposed as

G
(s)CH
∆,J (z, z̄) = gpure

∆,J (z, z̄) +
Γ(J + 2ε)Γ(J̄ + ε)

Γ(J̄ + 2ε)Γ(J + ε)
gpure

∆,J̄
(z, z̄), (3.17)

where the function gpure
∆,J (z, z̄) in [20], which is also a solution of the quadratic Casimir

equation (2.4), but with different asymptotic behavior from G
(s)
∆,J(z, z̄), i.e.:

G
(s)IS/CH
∆,J (z, z̄) → (Const.)(zz̄)

∆
2 2F1

[
− J, − J̄
ε+ 1

2

;
1− σ

2

]
+O

(
(zz̄)

∆
2

+1
)
, (3.18)

gpure
∆,J (z, z̄) → (zz̄)

∆
2 (2σ)J2F1

[
− J

2 ,
1−J

2

2− h− J
;

1

σ2

]
+O

(
(zz̄)

∆
2

+1
)
,

zz̄ → 0, σ =
z + z̄

2
√
zz̄

fixed. (3.19)

The two distinct asymptotic behaviors (3.18) and (3.19) can be reconciled using the hy-

pergeometric function identity given in (3.2), this also implies that (3.16) and (3.17) can

be directly matched if Φ̂
(s)
∆,J(z, z̄) and gpure

∆,J (z, z̄) are identified up to an overall constant

factor, as it was indeed done in [15]. We have also numerically checked asymptotic be-

havior of our expression for continuous spin conformal block (3.14), which also matches

with (3.18) up to an overall constant for continuous (∆, J). This implies that our expression

g
(s)

∆,J̄
(z, z̄) (3.15) provides an alternative expression for the twisted Harish Chandra func-

tion Φ̂
(s)

∆,J̄
(z, z̄) hence gpure

∆,J (z, z̄) as derived from the corresponding Mellin amplitude (3.9)

and (3.10). It would be interesting but non-trivial to analytically demonstrate the full

functional equivalence of (3.15) and Φ̂
(s)

∆,J̄
(z, z̄) using appropriate hypergeometric function

identities, while it seems obvious to us they should match, as they both solve the quadratic

Casimir equation and their asymptotic behaviors numerically match.

4 Lorentzian crossing kernel and Kampé de Fériet functions

In the Euclidean space Rd, the conformal partial wave Ψ
(s)
ν,J(xi) (2.23) for integer spin

J is known to satisfy the orthogonality condition [20, 21] with respect to the following

inner product:(
Ψ

(s)
ν,J(xi),Ψ

(s)
ν′,J ′(xi)

)
=

∫ ∏4
i=1 d

dxi
Vol(SO(1, d+ 1))

Ψ
(s)
ν,J(xi)Ψ

(s)
ν′,J ′(xi)

= 2πNν,J
(
δ(ν − ν ′) +Kν δ(ν + ν ′)

)
δJ,J ′ , (4.1)
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where Nν,J is the overall normalization factor.9 The factor Kν arises from the property

of CPW: Ψ−ν,J = 1
Kν Ψν,J and we will obtain the expression of this coefficient from the

bulk calculation as in (5.16). Here “Ψ” denotes performing the shadow transformation on

all scaling dimensions involved, i.e. {∆i, h+ iσsν
′} → {d−∆i, h− iσsν ′}, and δJ,J ′ arises

from the orthogonality of the Gegenbauer polynomial C
(ε)
J (x). The integration over {xi} is

necessarily divided by the volume of Euclidean conformal symmetry group Vol(SO(1, d+1)).

We will provide the an alternative derivation for this orthogonality condition by considering

the harmonic function in Euclidean AdS space [41] shortly in section 5.

As the s-channel conformal partial waves Ψ
(s)
ν,J(xi) form an orthogonal basis, it is inter-

esting to ask whether we can expand a conformal partial wave in other exchange channels

in terms of them. To obtain the relevant expansion coefficients for t-channel conformal

partial wave Ψ
(t)
ν,J(xi), we naturally consider the following integral:(
Ψ

(t)
ν,J(xi),Ψ

(s)
ν′,J ′(xi)

)
=

∫ ∏4
i=1 d

dxi
Vol(SO(1, d+ 1))

Ψ
(t)
ν,J(xi)Ψ

(s)
ν′,J ′(xi), (4.3)

this is an example of what sometimes referred as (Euclidean) “crossing kernel” [22] or “6j

symbol” [24] (See also [25] for earlier work), we will give its more explicit definition, i.e. in

terms of appropriate spectral parameters momentarily.

To perform the integral in the (4.3), we can rewrite the integration measure in terms

of the cross ratios (z, z̄). However in Euclidean signature, the natural integration range for

(z, z̄) spans the entire complex plane C, this requires us to consider the analytic contin-

uation of F4 or infinite summation of 2F1s around their branch points, these occur when

pairs of external points coincide, i.e. z = z̄ = 0, 1,∞. This seemingly complicated problem

was greatly simplified, as deduced first in [20] and later in [21], if we gauge fix some of the

coordinates and wick-rotate the remaining ones into Lorentzian signature. In Lorentzian

spacetime signature, (z, z̄) are no longer related by complex conjugation but rather inde-

pendent variables, we can now consider the singularities and the associated monodromies

for each variable independently. The detailed analysis in [20] and [21] show that the inte-

gration range now factorize into different regions and the respective integrands now involve

certain “double discontinuities”. The more general results in [20, 21] stated that for the in-

ner product involving an arbitrary four point scalar correlation function, we can explicitly

evaluate it through the following integrals:(〈
4∏
i=1

Oi(xi)

〉
,Ψ

(s)
i(h−∆),J(xi)

)

= α̂
(s)
∆,J

[
(−1)J

∫ 1

0

∫ 1

0

dzdz̄

(zz̄)d
|z − z̄|2εG(s)

∆̃,J̃
(z, z̄) |∆̄i

〈[O3,O2][O1,O4]〉
T (s)

∆i
(xi)

9Here we take the overall normalization factor to be:

Nν,J = λ2
0
πd+1

22(J+ε)

vol(Sd−2)

vol(SO(d− 1))

(2J + 2ε)Γ(J + 1)Γ(J + 2ε)

Γ(J + h)2

Γ(±iν)

Γ(h± iν − 1)Γ(h± iν − J − 1)
. (4.2)

where λ0 =
Ψ

(s)
ν,J

(xi)

Ψ
∆i
∆,J

(xi)
is the ratio of the conformal partial waves between (2.13) and the one used in [21],

which takes care of difference in normalization conventions.

– 17 –



J
H
E
P
1
0
(
2
0
1
9
)
1
4
9

+

∫ 0

−∞

∫ 0

−∞

dzdz̄

(zz̄)d
|z − z̄|2ε Ĝ(s)

∆̃,J̃
(z, z̄) |∆̄i

〈[O4,O2][O1,O3]〉
T (s)

∆i
(xi)

]
. (4.4)

This is sometimes referred as “Lorentzian inversion formula”, as it can be used to invert

the operator product expansion by extracting the corresponding OPE coefficient (up to

overall normalization constant) for a given conformal partial wave. Moreover this formula

gives the natural analytic continuation of OPE coefficient in spin J to continuous value.

More precisely, the conformal blocks G
(s)

∆̃′,J̃ ′
(z, z̄) |∆̄i

and Ĝ
(s)

∆̃′,J̃ ′
(z, z̄) |∆̄i

are now strictly

Lorentzian, they are associated with the non-local primary operator O∆̃′,J̃ ′ generated by

the spin-shadow, light ray then spin-shadow transformations considered in (2.7) (sometimes

it is called “flood light transformation” [42]), with the quantum numbers:10

Flood light : (∆, J) → (∆̃ = J + d− 1, J̃ = ∆− d+ 1),

or (h+ iν,−ε+ i`) → (h+ i`,−ε+ iν), (4.6)

such that the spectral parameters (ν, `) in (2.8) are also exchanged.

To apply (4.4) in our subsequent computations, we will use our scalar conformal block

for continuous spin given in (3.14) with the transformed parameters (4.6). The subscript

|∆̄i
denotes the external scaling dimensions {∆i} has been replaced by their shadows {∆̄i =

d−∆i}. Moreover Ĝ
(s)

∆̃,J̃
(z, z̄) is defined as the conformal block such that for negative cross

ratios |z| � |z̄| � 1, it scales as ∼ (−z)
∆̃−J̃

2 (−z̄)
∆̃+J̃

2 . The two double commutators are

defined using the appropriate iε prescription as in computing a Feynman propagator:

〈[O3,O2][O1,O4]〉
T (s)

∆i
(xi)

= −2dDisct

[
F (s)(z, z̄)

]
= −2 cosπ

(
a(s) + b(s)

)
F (s)(z, z̄) + eiπ(a(s)+b(s))F (s),ccw(z, z̄)

+e−iπ(a(s)+b(s))F (s),cw(z, z̄) , (4.7)

〈[O4,O2][O1,O3]〉
T (s)

∆i
(xi)

= −2dDiscu

[
F (s)(z, z̄)

]
= −2 cosπ

(
a(s) − b(s)

)
F (s)(z, z̄) + eiπ(a(s)+b(s))F (s),cw(z, z̄)

+e−iπ(a(s)+b(s))F (s),ccw(z, z̄) , (4.8)

where we have parameterized the four point correlation function as:〈
4∏
i=1

Oi(xi)

〉
= T (s)

∆i
(xi)F (s)(z, z̄). (4.9)

10The overall constant α̂
(s)

∆′,J′ here is given by:

α̂
(s)
∆,J = −λ0

a∆,J

2d+J
1

vol(SO(d− 1))

Γ(J + 2ε)Γ(ε)

Γ(J + ε)Γ(2ε)
,

a∆,J =
(2π)d−2

2

Γ(J + 1)Γ(∆− h)

Γ(J + h)Γ(∆− 1)

Γ( ∆+J
2
± a(s))Γ( (d−∆)+J

2
± b(s))

Γ(J + ∆)Γ(J + ∆̄)
. (4.5)

where λ0 =
Ψ

(s)
ν,J

(xi)

Ψ
∆i
∆,J

(xi)
takes care of difference in normalizations.
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The superscripts “cw′′ and “ccw′′ in (4.7) denote if we take z̄ around its branch point z̄ = 1

in the clock-wise and counter-clock-wise direction, while keeping z fixed; while for (4.8),

we take z̄ = −∞ while keeping z fixed.

Now returning to the evaluation of (4.3) using (4.4), we further restrict 〈O1O2O3O4〉 ≡
Ψ

(t)
ν,J(xi). For two and four dimensions, where closed form expressions for Euclidean scalar

conformal blocks with integer spins were previously available in [1, 2], this computation

was done in [24], and the authors analytically continued the spin J to continuous values, we

also showed numerically earlier that such continuations match with our result (3.14). Using

the t-channel conformal block (2.43), the double commutator can be readily computed

from (4.7):

−2dDisct

Ψ
(t)
ν,J(x)

T (s)
∆i

(xi)

 = −4
∑
σt=±

sinπ

(
τσt −

1

2
∆+

14

)
sinπ

(
τσt −

1

2
∆+

23

)

×c
(t)
h+iσtν,J

T (t)
∆i

(xi)

T (s)
∆i

(xi)
G

(t)
h+iσtν,J

(z, z̄),

−2dDiscu

Ψ
(t)
ν,J(x)

T (s)
∆i

(xi)

 = 0. (4.10)

The vanishing of the second double discontinuity can also be readily verified by consid-

ering the expansion around z̄ = ∞ and use the identity (2.30) for t-channel conformal

block. Collecting all the pieces together, we have the following integral expression for the

Lorentzian crossing kernel between s- and t-channels:

(
Ψ

(t)
ν,J(xi),Ψ

(s)
i(h−∆′),J ′(xi)

)
=−2α̂

(s)
∆′,J ′(−1)J

′
∫ 1

0

∫ 1

0

dzdz̄

(zz̄)2

∣∣∣∣z − z̄zz̄

∣∣∣∣2ε [(1− z)(1− z̄)]a
(s)+b(s)

×G(s)

∆̃′,J̃ ′
(z, z̄)dDisct

Ψ
(t)
ν,J(x)

T (s)
∆i

(xi)

 , (4.11)

where we used the identity (2.32) to revert {∆̄i} to {∆i} in the s-channel conformal block.

The Lorentzian inversion formula now truncates the integration range to 0 < z, z̄ < 1, where

both s and t channel conformal partial waves given in (2.23) and (2.43) are convergent, we

can therefore use their Mellin-Barnes representations to perform the integration in (4.11).

We can now parametrize (4.3) in terms of the following summation:(
Ψ

(t)
ν,J(xi),Ψ

(s)
i(h−∆′),J ′(xi)

)
= −4α̂

(s)
∆′,J ′(−1)J

′

{
πε

ĉ
(s)

∆̃′,J̃ ′

∑
σt=±

sinπ

(
τσt −

1

2
∆+

14

)
sinπ

(
τσt −

1

2
∆+

23

)

×
∑̃
r,k

∑̃
m′,k′

1∏4
i=1 Γ

(
γ

(t)
i − J + r +

∑
j kji

)∏4
i′=1 Γ

(
γ

(s)
i′+(∆̃′, J̃ ′)− J̃ ′ +m′ +

∑
j′ k
′
i′j′

)
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×
∑

(ij)={12,34}

∑
(i′j′)={14,23}

I
[
ζ

(ts)
r,i′j′ , ζ̃

(ts)
m′,ij , ε;

κ
i(t)
σt + r, κ

j(t)
σt + r; κ

i′(s)
++ (∆̃′, J̃ ′) +m′, κ

j′(s)
++ (∆̃′, J̃ ′) +m′

1 + iσtν, 1 +$
(t)
ij ; 1 + (∆̃− h), 1 +$

(s)
i′j′

]}

−4α̂
(s)
∆′,J ′(−1)J

′ Γ(J̃ ′ + 2ε)

Γ(J̃ ′ + ε)

Γ( ¯̃J ′ + ε)

Γ( ¯̃J ′ + 2ε)

{
J̃ ′ → ¯̃J ′ = −2ε− J̃ ′

}
(4.12)

where we have again split the contributions from g
(s)

∆̃′,J̃ ′
(z, z̄) and g

(s)

∆̃′, ¯̃J ′
(z, z̄), and have

defined the integral over the cross ratios in terms of following multi-variable function:

I

[
α, β, γ;

a1, a2; b1, b2
c1, c2; d1, d2

]
=

∫ 1

0
dz

∫ 1

0
dz̄|z − z̄|2γ(zz̄)α[(1− z)(1− z̄)]β

×F̃4

[
a1, a2

c1, c2
; u, v

]
F̃4

[
b1, b2
d1, d2

; v, u

]
. (4.13)

In (4.12), we have also defined the following combinations of parameters for the g
(s)

∆̃′,J̃ ′
(z, z̄)

contributions:

ζ
(ts)
r,i′j′ = τσt −

1

4

4∑
i=1

∆i + r +
k′13 + k′24

2
+
$

(s)
i′j′

2
,

ζ̃
(ts)
m′,ij = τ̃ ′ − 1

4

4∑
i=1

∆̄i +m′ +
k12 + k34

2
+
$

(t)
ij

2
, (4.14)

where τ̃ ′ = ∆̃′−J̃ ′
2 = (d− 1)− τ ′ and τ ′ = ∆′−J ′

2 such that:

ζ
(ts)
r,14 = τσt −

∆+
23

2
+ k′14 + r, ζ

(ts)
r,24 = τσt −

∆+
14

2
+ k′23 + r, (4.15)

ζ̃
(ts)
m′,12 =

∆+
12

2
− τ ′ + k12 +m′ − 1, ζ̃

(ts)
m′,34 =

∆+
34

2
− τ ′ + k34 +m′ − 1. (4.16)

We can similarly define the corresponding combinations for the g
(s)

∆̃′, ¯̃J ′
(z, z̄) contributions

by the J̃ ′ → ¯̃J ′ transformation.

To perform the integral (4.13), we first use the Mellin-Barne representation (2.28) to

express F̃4s. Next we perform the simpler (z, z̄) integration using the Selberg integral for-

mula:11

J (α, β, γ) =

∫ 1

0
dz

∫ 1

0
dz̄(zz̄)α[(1− z)(1− z̄)]β |z − z̄|2γ

=
Γ(1 + α, 1 + α+ γ)Γ(1 + β, 1 + β + γ)Γ(1 + 2γ)

Γ(2 + α+ β + γ, 2 + α+ β + 2γ)Γ(1 + γ)
. (4.18)

11Notice that for d = 1, there is only one conformal cross ratio z = |x12||x34|
|x13||x24|

, the corresponding conformal

integral (4.18) can be further reduced to Beta-function, i. e.

1 dim. :

∫ 1

0

dzzα(1− z)β =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
. (4.17)

while for d = 2, the integral factorizes to produce two copies of (4.17).
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The integral (4.13) can now be written in terms of following Mellin-Barnes form:12,13

I

[
α, β, γ;

a1, a2; b1, b2
c1, c2; d1, d2

]

=
π4

sinπc1 sinπc2 sinπd1 sinπd2

×
∫ i∞

−i∞

dx

2πi

∫ i∞

−i∞

dy

2πi

∫ i∞

−i∞

dx′

2πi

∫ i∞

−i∞

dy′

2πi
(−1)s+t+s

′+t′Γ(−x)Γ(−y)Γ(−x′)Γ(−y′)

×Γ(a1 + x+ y, a2 + x+ y, b1 + x′ + y′, b2 + x′ + y′)

Γ(c1 + x, c2 + y, d1 + x′, d2 + y′)
J (α+ x+ y′, β + y + x′, γ)

=
π4

sinπc1 sinπc2 sinπd1 sinπd2
Γ(a1, a2)Γ(b1, b2)J (α, β, γ)

×
∞∑

m1,m2,n1,n2=0

1

m1!n1!m2!n2!

(a1, a2)m1+n1(b1, b2)m2+n2

Γ(c1 +m1, c2 + n1, d1 + n2, d2 +m2)

×J (α+m1 +m2, β + n1 + n2, γ)

J (α, β, γ)
. (4.19)

In evaluating (4.19), we have enclosed the poles at s, t, s′, t′ = Z≥0, and express the resultant

infinite summations over ratios only containing Pochhammer symbols in the numerator

or Γ-function in the denominator, i.e. the parameters involved in the summation do not

introduce additional singularities. It would be interesting to know if we can express this

infinite summation in terms of a possible four variable generalization of hypergeometric

function, similar to the ones considered in [51]. To the best of our knowledge however,

we can express the infinite series in (4.19) into a more compact form as the following

double integral:

I

[
α, β, γ;

a1, a2; b1, b2
c1, c2; d1, d2

]

=
π4

sinπc1 sinπc2 sinπd1 sinπd2

Γ(1 + 2γ)

Γ(1 + γ)

×
∫ i∞

−i∞

dx

2πi

∫ i∞

−i∞

dy

2πi
Ξ

[
β, x;

a1, a2

c2

]
Ξ

[
α, y;

b1, b2
d2

]
(4.20)

×F̃0,4
2,1

[
· : a1 + x, a2 + x, 1 + β + y, 1 + β + γ + y; b1 + y, b2 + y, 1 + α+ x, 1 + α+ γ + x

2 + α+ β + γ + x+ y, 2 + α+ β + 2γ + x+ y : c1; d1
; 1, 1

]
.

12Here we have introduce the obvious notations: Γ(a1, . . . , ak) = Γ(a1) . . .Γ(ak) and (a1, . . . , ak)m =

(a1)m . . . (ak)m.
13It is interesting to note that the similar four variable Mell-Barnes integral was also considered in [43]

in computing so-called 6j-symbol for the simplest scalar exchange case. However the key difference is that

the computation there was done in Euclidean signature, such that the integration range for the cross ratios

(z, z̄) extends the entire complex plane. In this case, the integral over (z, z̄) can also be performed using

Symanzik start formula after gauge fixing instead of Selberg formula, however the resultant integrand in

Mellin-Barnes integral will be different.
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Here the measure factor is:

Ξ

[
β, x;

a1, a2

c2

]
= (−1)x

Γ(−x)Γ(a1 + x, a2 + x)Γ(1 + β + x, 1 + β + γ + x)

Γ(c2 + x)
, (4.21)

the second measure factor in (4.20) is given by obvious exchange of parameters

(β, x, a1, a2, c2) → (α, y, b1, b2, d2). The integration contours for (x, y) again close in the

right half plane to pick up the poles of Γ(−x) and Γ(−y) at x, y = 0, 1, 2, . . . . Here we

have introduced Kampé de Fériet hypergeometric function which is a further two variable

generalization of hypergeometric function:

Fp,qr,s

[
a1, . . . , ap : b1, . . . , bq; b

′
1, . . . , b

′
q

c1, . . . , cr : d1, . . . , ds; d
′
1, . . . , d

′
s

;x, y

]

=
∑
m≥0

∑
n≥0

(a1, . . . , ap)m+n

(c1, . . . , cr)m+n

(b1, . . . , bq)m(b′1, . . . , b
′
q)n

(d1, . . . , ds)m(d′1, . . . , d
′
s)n

xmyn

m!n!
, (4.22)

and its regularized version:

F̃p,qr,s

[
a1, . . . , ap : b1, . . . , bq; b

′
1, . . . , b

′
q

c1, . . . , cr : d1, . . . , ds; d
′
1, . . . , d

′
s

;x, y

]
(4.23)

=
1∏r

k=1 Γ(ck)
∏s
l=1 Γ(dl)Γ(d′l)

Fp,qr,s

[
a1, . . . , ap : b1, . . . , bq; b

′
1, . . . , b

′
q

c1, . . . , cr : d1, . . . , ds; d
′
1, . . . , d

′
s

;x, y

]
,

which does not contain any singularities in all the parameters {a1, . . . ap}, {c1, . . . , cr}
and others, similar to regularized Gauss hypergeometric function. In other words we can

express (4.19) in terms of a double infinite summation of regularized Kampé de Fériet

functions of unit arguments.14

Despite the complicated looking expression of crossing kernel in (4.12), we can how-

ever use the expression in (4.19) and (4.20) to extract the important information such as

the operator spectrum. More precisely, consider the dependence of (ζ
(ts)
r,i′j′ , ζ̃

(ts)
m′,ij) defined

in (4.14) and (4.15), all the potential singularities associated with them are contained in

the Γ-functions of the measure factors (4.21). The remaining dependences of (ζ
(ts)
r,i′j′ , ζ̃

(ts)
m′,ij)

are contained in the parameters of the regularized Kampé de Fériet functions, such that

they only play the role of residues in the analysis.

Let us focus on g
(s)

∆̃′,J̃ ′
(z, z̄) contributions in (4.12), and their singularities appear

through the overall Γ-functions in (4.19):

Γ
(

1 + ζ̃
(ts)
m′,ij

)
Γ
(

1 + ζ̃
(ts)
m′,ij + ε

)
, ij = 12, 34, (4.24)

while keeping fixed t-channel (ν, J), they encode the spectrum of s-channel exchange op-

erators when expanding t-channel conformal partial waves in terms of s-channel ones. For

14Very recently, Kampé de Fériet function has also appeared in the computation of crossing kernel in

the simplified light cone and identical scalar limit [45], as it naturally arises from the inner product of two

single variable hypergeometric functions.
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arbitrary ε, the simple poles come from the first Γ-function in (4.24) and are located at:

1 + ζ̃
(ts)
m′,12 =

∆+
12

2
− (∆′ − J ′)

2
+ k12 +m′ = 0,−1,−2, . . . , (4.25)

1 + ζ̃
(ts)
m′,34 =

∆+
34

2
− (∆′ − J ′)

2
+ k34 +m′ = 0,−1,−2, . . . , (4.26)

they precisely correspond to the following two infinite towers of double trace operators:

∆′ − J ′ = ∆1 + ∆2 + 2n12, ∆′ − J ′ = ∆3 + ∆4 + 2n34, n12, n34 ∈ Z≥0. (4.27)

Similarly, when we now consider the singularities from g
(s)

∆̃′, ¯̃J ′
(z, z̄) contributions, the sin-

gularities now located at:

1 +
¯̃
ζ

(ts)
m′,12 =

∆+
12

2
− (d−∆′ − J ′)

2
+ k12 +m′ = 0,−1,−2, . . . , (4.28)

1 +
¯̃
ζ

(ts)
m′,34 =

∆+
34

2
− (d−∆′ − J ′)

2
+ k34 +m′ = 0,−1,−2, . . . , (4.29)

these correspond to the shadows of the two infinite towers in (4.27):

(d−∆′)−J ′ = ∆1 + ∆2 + 2n̄12, (d−∆′)−J ′ = ∆3 + ∆4 + 2n̄34, n̄12, n̄34 ∈ Z≥0. (4.30)

The double trace poles (4.27) and (4.30) are consistent with the general comment about the

singularity structure in the crossing kernel made in [24], it would be interesting to perform

the full analysis of the singularity structures of the crossing kernel (4.12) and the explicit

residues in terms of hypergeometric functions with multiple variables, as they correspond

to the various expansion coefficients.

5 Orthogonality and decomposition in AdS space

In this section, we present few complementary computations using the holographic dual

configuration of the conformal partial wave (2.23) to demonstrate they indeed form an

orthogonal basis in d+ 1-dimensional Euclidean Anti-de Sitter space. In particular, as an

advantage of this approach, in demonstrating the orthogonality we do not need the explicit

integrated form of kinematical basis but only the property of Euclidean AdS harmonic

function. We will next demonstrate how contact Witten diagrams can be decomposed in

terms of them.

5.1 Conformal partial wave in AdS space

We start with the following definition of CPW written in the embedding space coordinates

where we will be mostly working in this section:

Ψ
(s)
ν,J(Pi) =

1

J !(h− 1)Jπh

∫
∂AdSd+1

ddP0〈O∆1(P1)O∆2(P2)Oh+iν,J(P0,DZ0)〉

×〈Õh−iν,J(P0, Z0)O∆3(P3)O∆4(P4)〉, (5.1)

for a good review on embedding space and our conventions, please refer to [46]. As the
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Figure 2. Ψ
(s)
ν,J (Pi) can be expressed as a bulk exchange diagram. Here the blue lines are bulk-to-

boundary propagators and the internal dashed line denotes the AdS harmonic function.

three point CFT correlation function and three point Witten diagram are proportional up

to an dynamical factor, the definition of conformal partial wave can be expressed in terms

of a integral over d+1 dimensional AdS space [47]:

Ψ
(s)
ν,J(Pi) =

1

B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J

1

J !(h− 1)Jπh

[
1

J !(h− 1
2)J

]2 ∫
∂AdSd+1

dP0 (5.2)

×
∫

AdSd+1

dX1 Π∆1(X1, P1) (K1 · ∇1)JΠ∆2(X1, P2) Πh+iν,J(X1, P0;W1,DZ0)

×
∫

AdSd+1

dX2 Π∆3(X2, P3) (K2 · ∇2)JΠ∆4(X2, P4) Πh−iν,J(X2, P0;W2, Z0) .

where B∆1,∆2

h+iν,J and B∆3,∆4

h−iν,J are the dynamical factors arising from integrating the interaction

vertices over the entire AdS space. The bulk to boundary propagator for spin J tensor

field is given by:

Π∆,J(X,P ) = C∆,J
((−2P ·X)(W · Z)− (2W · P )(Z ·X))J

(−2P ·X)∆+J
, (5.3)

where {Pi, Zi} denote the boundary position and polarization vectors, and {Xi,Wi} denote

their AdS counterparts. The dynamical factor is fixed through the following integral:

1

J !
(
h− 1

2

)
J

∫
AdSd+1

dX Π∆1(X,P1) (K · ∇)JΠ∆2(X,P2) Π∆0(X,P0;W,Z0) (5.4)

= B∆1,∆2

∆0;J 〈O∆1(P1)O∆2(P2)O∆0,J(P0, Z0)〉,

Explicitly B∆1,∆2

∆0,J
is given by:

B∆1,∆2

∆0,J
=
πh

2
(−2)JC∆1C∆2C∆0,J

×
Γ
(∑2

i=0 ∆i+J−d
2

)
Γ(∆1)Γ(∆2)Γ(∆0 + J)

Γ

(
∆0 ±∆−12 + J

2

)
Γ

(
∆+

12 −∆0 + J

2

)
. (5.5)

In this expression, the P0 integration is nothing but the definition of the AdS harmonic

function. By substituting its definition:

Ων,J(X1, X2;W1,W2) (5.6)

=
ν2

πJ !(h− 1)J

∫
∂AdSd+1

dP0Πh+iν,J(X1, P0;W1, DZ)Πh−iν,J(X2, P0;W2, Z),
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we obtain the AdS representation of the conformal partial wave (2.23) in terms of AdS

harmonic function:

Ψ
(s)
ν,J(Pi) =

1

πh
π

ν2 B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J

[
1

J !(h− 1
2)J

]2

×
∫

AdSd+1

dX1 dX2 Π∆1(X1, P1) (K1 · ∇1)JΠ∆2(X1, P2)

×Π∆3(X2, P3) (K2 · ∇2)JΠ∆4(X2, P4) Ων,J(X1, X2;W1,W2) . (5.7)

Diagrammatically, this expression can be described as in figure 2 . As an important property

of the AdS harmonic function, it satisfies the following orthogonality relation:

1

J !
(
h− 1

2

)
J

∫
AdSd+1

dX0 Ων,J(X1, X0;W1,K0) Ων′,J ′(X0, X2;W0,W2) (5.8)

=
1

2
δJ,J ′

[
δ(ν − ν ′) + δ(ν + ν ′)

]
Ων,J(X1, X2;W1,W2) .

Let us briefly comment here on the connections between our computation in this section,

and another well-known holographic dual configuration of conformal partial waves in the

literature, i.e. “geodesic Witten diagram” in [41]. As explicitly demonstrated in [46] using

the split representation, when we decompose the four point geodesic Witten diagram into

its kinematic building blocks in this construction, which was called “three point geodesic

Witten diagram” and was in turn proportional to the three normal Witten diagram, the

four Witten exchange diagram is proportional to conformal partial wave up to an overall

dynamical factor.15 This relation therefore also allows us to express conformal partial wave

Ψ
(s)
ν,J(xi) in (2.23) in terms of the AdS bulk integral (5.2).

5.2 Orthogonality in AdS space

Having rewritten the conformal partial wave in terms of AdS integral (2.23), we will see

their orthogonality can be identified directly as the consequence of orthogonality of the

Euclidean AdS harmonic function. Let us reconsider the inner product of two Ψ
(s)
ν,J(Pi)s

which appears in the l.h.s. of the orthogonality relation in terms of these AdS integral:16(
Ψ

(s)
ν,J ,Ψ

(s)
ν′,J ′

)
=

∫
∂AdSd+1

∏4
i=1 d

dPi
vol (SO(1, d+ 1))

Ψ
(s)
ν,J(Pi) Ψ

(s)
ν′,J ′(Pi). (5.9)

Here for the two Ψ
(s)
ν,Js, by substituting the bulk integral form (5.7), the inner product (5.9)

can be represented as follows:(
Ψ

(s)
ν,J ,Ψ

(s)
ν′,J ′

)
=

1

π2h

1

B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J B
d−∆1,d−∆2

h−iν′,J ′ Bd−∆3,d−∆4

h+iν′,J ′

π2

ν2 ν ′2

[
1

J ! (h− 1
2)J

]4

×
∫
Rd

∏
ddPi

Vol (SO(1, d+ 1))

∫
AdSd+1

dX12dX34dX̃12dX̃34

15Please note however the overall dynamical factor depends on spectral parameter, such that upon inte-

gration yields combination of single and double trace operators.
16Here in writing out the inner product, we drop the dependence of the coordinate such Pi on l.h.s. which

are integrated over.
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Figure 3. The diagrammatic expression of (5.10). The white circles are bulk points and the black

circles are boundary points.

×Π∆1(P1, X
12) Πd−∆1(P1, X̃

12) (K12 · ∇12)J

×Π∆2(P2, X
12) (K̃12 · ∇̃12)JΠd−∆2(P2, X̃

12)

×Π∆3(P3, X
34) Πd−∆3(P3, X̃

34) (K34 · ∇34)J

× Π∆4(P4, X
34) (K̃34 · ∇̃34)JΠd−∆4(P4, X̃

34)

×Ων,J(X12, X̃12;W 12, W̃ 12) Ων,J(X34, X̃34;W 34, W̃ 34). (5.10)

Here X12, X34, X̃12 and X̃34 are bulk interaction points to be integrated over AdS, the

indices in Xij and X̃ij denote the specific boundary points it is connected with. In each bulk

point Xij and X̃ij , we have chosen particular interactions with AdS covariant derivatives.

Although we can choose another type of interaction vertices, the final result would not

be changed. In the above expression, each boundary integral has the same form of the

definition of the AdS harmonic function (5.6) again, and the pairs of bulk-to-boundary

propagators are also combined into AdS harmonic functions. Finally, the inner product

becomes the following bulk integral:

(
Ψ

(s)
ν,J ,Ψ

(s)
ν′,J ′

)
= N∆i

ν,ν′;J,J ′

[
1

J ! (h− 1
2)J

]4 ∫
AdSd+1

dX12dX34dX̃12dX̃34

Vol (SO(1, d+ 1))

×Ωα1(X12, X̃12)(K̃12 · ∇̃12)J(K12 · ∇12)JΩα2(X12, X̃12)

×Ωα3(X34, X̃34)(K̃34 · ∇̃34)J(K34 · ∇34)JΩα4(X34, X̃34)

×Ων,J(X12, X34;W 12,W 34)Ων′,J(X̃12, X̃34; W̃ 12, W̃ 34)δJ,J ′ . (5.11)

Here in the indices of harmonic functions, we have introduced the associated spectral

parameters {αi} through the relation ∆i = h+ iαi, and clearly for J 6= J ′ the contraction

of polarization vectors vanish. The coefficients are combined as N∆i
ν,ν′;J,J ′ which is given as:

N∆i
ν,ν′;J,J ′ =

1

π2h

1

B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J B
d−∆1,d−∆2

h−iν′,J ′ Bd−∆3,d−∆4

h+iν′,J ′

(
4∏
i=1

π

α2
i

)
π2

ν2 ν ′2
δJ,J ′ . (5.12)
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Figure 4. The inner product of two Ψν,J (Pi)s can interpreted as a bubble diagram in bulk. The

bulk points are integrated over AdS.

Figure 5. The summary of the calculation of Ξα1,α2

ν,J (X1, X2;W1,W2). According to the complete-

ness of the AdS harmonic functions, a loop of harmonic functions can be expanded as a series of

harmonic functions and due to the orthogonality, finally, it is proportional to a single harmonic func-

tion.

Diagrammatically, the inner product can be expressed as in figure 4. Each dashed line in

the bulk is an AdS harmonic function, not the usual AdS bulk to bulk propagator. The

blue dashed lines are the scalar functions and the red dashed lines are the functions with

spin. To compute the diagram in figure 4, we need to evaluate the following bulk integrals

with three harmonic functions.

Ξα1,α2

ν,J (X1, X2;W1,W2) =
1

J !(h− 1
2)J

∫
AdSd+1

dY Ωα1(X1, Y ) (W1 · ∇1)J(KY · ∇Y )J

×Ωα2(X1, Y ) Ων,J(Y,X2;WY ,W2) .

(5.13)

Each bulk point in figure 4 has the same form as Ξα1,α2

ν,J (X1, X2;W1,W2), and it is

the building block of what we call the “bubble diagram”. The explicit computation of

Ξα1,α2

ν,J (X1, X2;W1,W2) is done in appendix B. Applying the above result to X12 and X̃34

integral in (5.11), the inner product can be simplified as:

(
Ψ

(s)
ν,J ,Ψ

(s)
ν′,J ′

)
= N∆i

ν,ν′;J,J ′

[
1

J ! (h− 1
2)J

]2 ∫
AdSd+1

dX34dX̃12

vol (SO(1, d+ 1))
(5.14)

×F (α1, α2, ν) Ων,J(X̃12, X34; K̃12,W 34)

×F (α3, α4, ν
′) Ων′,J(X̃12, X34; W̃ 12, K̃34)δJ,J ′ .
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Now we can use the orthogonality of the AdS harmonic function which is given in (5.8) for

one of the bulk integrals to conclude that the inner product of two Ψν,Js is given in the

following form:(
Ψ

(s)
ν,J ,Ψ

(s)
ν′,J ′

)
= N∆i

ν,ν′;J,J ′ F (α1, α2, ν)F (α3, α4, ν
′)

1

2

[
δ(ν − ν ′) + δ(ν + ν ′)

]
δJ,J ′

× 1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

∫
AdSd+1

dX

vol (SO(1, d+ 1))

=
1

2
nν,J

[
δ(ν − ν ′) +Kν δ(ν + ν ′)

]
δJ,J ′ , (5.15)

where Kν is given by:

Kν =
Γ
(
ω− ± a(s)

)
Γ
(
ω+ ± b(s)

)
Γ
(
ω+ ± a(s)

)
Γ
(
ω− ± b(s)

) , (5.16)

and this factor comes from the ratio of N∆i
ν,ν′;J,J ′ and F (αi, αj , ν

(′)). Ω(X,X;K,W ) is the

norm of the AdS harmonic function (5.6) by setting X = Y and using X2 = −1. The

normalization factor nν,J is now given as:

nν,J = N∆i
ν,ν;J,J F (α1, α2, ν)F (α3, α4, ν)

1

J ! (h− 1
2)J

×Ων,J(X,X;K,W )

∫
AdSd+1

dX

Vol (SO(1, d+ 1))
(5.17)

=

(
π

ν2

Γ(J + 1)

2J−1 Γ(h+ J)

)2 1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

(Ch±iν,J)2

∫
AdSd+1

dX

Vol (SO(1, d+ 1))
.

Here we can evaluate the normalization factor of the AdS harmonic function as:

1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

(Ch±iν,J)2
=
πhΓ(2h+ J)Γ(h)

Γ(J + 1)Γ(2h)2

ν2

π

1

Ch±iν,J
, (5.18)

and the bulk integration is evaluated as well:∫
AdSd+1

dX = Vol(AdSd+1) =
Vol (SO(1, d+ 1))

Vol (SO(d+ 1))
. (5.19)

The volume of SO(1, d+1) is infinite because it is a non-compact group, however, this factor

is precisely cancelled by the regularization factor in the definition of the inner product.

In the following sections, using this expression, we will consider conformal block de-

compositions of certain AdS Witten contact diagram as an example. By applying the

Euclidean inversion formula, an arbitrary four-point AdS contact Witten diagram A(Pi)

can also be decomposed by CPWs as follows:

A(Pi) =
∞∑
J=0

∫ ∞
−∞

dν

nν,J

(
A,Ψ(s)

ν,J

)
Ψ

(s)
ν,J(Pi) , (5.20)

where the parenthesis in the integrand denotes the Euclidean inner product. Computing

the inner product of a diagram A(Pi) and Ψ
(s)
ν,J(Pi), we can obtain the spectral function

for the diagram A(Pi) . After performing the ν-integral by picking up poles in the spectral

function, we can obtain the conformal block decomposition of the diagram A(Pi) .
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Figure 6. The inner product
(
Aφ4

,Ψ
(s)
ν,J

)
as a bulk diagram.

5.3 Contact diagram

Next we consider the conformal block decomposition of a contact diagram with φ4

interaction:

Aφ4
(Pi) =

∫
AdS

dX

4∏
i=1

C∆i

(−2Pi ·X)∆i
. (5.21)

The spectral integral for this diagram is given through the inversion formula:

Aφ4
(Pi) =

∞∑
J=0

∫ ∞
−∞

dν

nν,J

(
Aφ4

,Ψ
(s)
ν,J

)
Ψ

(s)
ν,J(Pi) . (5.22)

In the following, we will compute the inner product in the above integration. After the

computation, the poles in the spectral function tell us what kind operators are contained

in the contact diagram. Using the bulk representation of Ψ
(s)
ν,J(Pi) and gluing the bulk-to-

boundary propagators through the AdS harmonic function, the inner product is evaluated

as the following bulk diagram:

(
Aφ

4

1 ,Ψ
(s)
ν,J

)
=

1

πh

(
4∏
i=1

π

α2
i

)
π

ν2

1

Bd−∆1,d−∆2

h−iν,J Bd−∆3,d−∆4

h+iν,J

×

[
1

J !(h− 1
2)J

]2 ∫
AdSd+1

dXdXLdXR

vol (SO(1, d+ 1))
(5.23)

×Ωα1(X,XL) (KL · ∇L)JΩα2(X,XL)Ωα3(X,XR) (KR · ∇R)JΩα4(X,XR)

×Ων,J(XL, XR;WL,WR) .

Next we will focus on the XL integration. This integration has the almost same

structure as Ξα1,α2

ν,J function which is defined in (5.13) except for the derivatives at the bulk

point X . Due to the lack of derivatives within the interaction vertex for contact Witten

digram, only Ξα1,α2

ν,J with J = 0 can have non-vanishing value, and it is easily evaluated as:

Ξα1,α2
ν,0 (X,XR) =

∫
dXL Ωα1(X,XL)Ωα2(X,XL)Ων(XL, XR)

= F (α1, α2, ν)Ων(X,XR) . (5.24)
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Now the XR integration is also easily computed using the previous formula, and we obtain

the following result:(
Aφ4

,Ψ
(s)
ν,J

)
=

1

πh

(
4∏
i=1

π

α2
i

)
π

ν2

F (α1, α2, ν)F (α3, α4, ν)

Bd−∆1,d−∆2

h−iν,J Bd−∆3,d−∆4

h+iν,J

×δJ,0 Ων(X,X)

∫
AdS

dX

vol (SO(1, d+ 1))
. (5.25)

The result is proportional to a Kronecker’s delta δJ,0 according to the reason argued above.

Substituting this result into (5.22), we obtain the spectral representation for the contact

diagram:

Aφ4
(Pi) = Nφ4

∫ ∞
−∞

dν

2π
ωφ

4

0 (ν) Ψ
(s)
ν,J , (5.26)

ωφ
4

0 (ν) = Γ

(
∆+

12 − h± iν
2

)
Γ

(
∆+

34 − h± iν
2

) Γ
(
h+iν±∆−12

2

)
Γ
(
h−iν±∆−34

2

)
8 Γ(±iν)

.

Now the function omega is called the spectral function because this function is regarded as

the integration kernel and its pole structure determines the spectrum of operators in the

conformal block decomposition. It is obvious that the spectral function contains sets infinite

series of double trace poles at h+ iν = ∆+
12 +2n and h+ iν = ∆+

34 +2n, n = 0, 1, 2, . . . The

remaining poles are unphysical, and these are canceled with the zeros in the coefficient

c
(s)
h−iν,0. We can perform the ν-integration picking up the relevant poles in the gamma

functions and obtain the conformal block decomposition of the contact diagram. This

result is consistent with the fact that the contact diagram can be decomposed into conformal

blocks of scalar double trace operators, and the coefficients we obtain from the residues

match with the results obtained from recursive approach in [49].
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A Useful facts and identities for hypergeometric functions

In this appendix, we list out the definitions and useful identities for the hypergeometric

functions with one and multiple variables used in the main text, following [40] and [50].
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Starting with the series definitions of regularized Gauss Hypergeometric function:

2F̃1

[
a, b

c
; v

]
=

∞∑
m=0

(a)m(b)m
Γ(c+m)

vm, |v| < 1, Re(c− a− b) > 0 (A.1)

and it satisfies the following identities:

2F̃1

[
a, b

c
; 1− v

]
=

π

sinπ(c− a− b)

[
1

Γ(c− a)Γ(c− b)2F̃1

[
a, b

a+ b− c+ 1
; v

]
(A.2)

− vc−a−b

Γ(a)Γ(b)
2F̃1

[
c− a, c− b

1− (a+ b− c)
; v

]]
,

2F̃1

[
a, b

c
; 1− v

]
=

π

sinπ(b− a)

[
v−a

Γ(b)Γ(c− a)
2F̃1

[
a, c− b
1 + a− b

;
1

v

]
(A.3)

− v−b

Γ(a)Γ(c− b)2F̃1

[
b, c− a
1− a+ b

;
1

v

]]
.

We also consider Appell’s hypergeometric function F4, which can be defined as the following

double infinite series:

F4

[
a1, a2

c1, c2
;x, y

]

=

∞∑
m=0

∞∑
n=0

(a1)m+n(a2)m+n

m!n!(c1)m(c2)n
xmyn, |x|

1
2 + |y|

1
2 < 1, (A.4)

= Γ(c1)Γ(c2)

∞∑
m=0

(a1)m(a2)m
m!Γ(c1 +m)

xm2F̃1

[
a1 +m, a2 +m

c2
; y

]

=
Γ(c1)Γ(c2)

Γ(a1)Γ(a2)

∫ i∞

−i∞

ds

2πi

Γ(a1 + s)Γ(a2 + s)Γ(−s)(−x)s

Γ(c1 + s)
2F̃1

[
a1 + s, a2 + s

c2
; y

]
.

The power series expression for F4 (A.4) is in fact satisfies the following associated partial

differential equations:

x(1− x)
∂2F4

∂x2
− y2∂

2F4

∂y2
− 2xy

∂2F4

∂x∂y

+(c1 − (a1 + a2 + 1)x)
∂F4

∂x
− (a1 + a2 + 1)y

∂F4

∂y
− a1a2F4 = 0, (A.5)

y(1− y)
∂2F4

∂y2
− x2∂

2F4

∂x2
− 2xy

∂2F4

∂x∂y

+(c2 − (a1 + a2 + 1)x)
∂F4

∂y
− (a1 + a2 + 1)x

∂F4

∂x
− a1a2F4 = 0, (A.6)

near the origin (x, y) = (0, 0). These are analogous to Gauss’s hypergeometric equation

which admit different series solutions in different regions of (u, v). Using the integral
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representation (A.4) and the hypergeometric function identity (A.3), we can show that F4

obeys the following identity:

F4

[
a1, a2

c1, c2
;x, y

]
=

Γ(c2)Γ(a2 − a1)

Γ(c2 − a1)Γ(a2)

1

(−y)a1
F4

[
a1, a1 − c2 + 1

c1, a1 − a2 + 1
;
x

y
,

1

y

]

+
Γ(c2)Γ(a1 − a2)

Γ(c2 − a2)Γ(a1)

1

(−y)a2
F4

[
a2, a2 − c2 + 1

c1, a2 − a1 + 1
;
x

y
,

1

y

]
, (A.7)

which is useful for evaluating the double commutator (4.8). Finally F4 also enjoys the

highly non-trivial factorization and summation identity [52, 53]:

F4

[
a1, a2

1 + c1, 1 + c2
;x(1− y), y(1− x)

]

=

∞∑
m=0

(a1)m(a2)m(a1 + a2 − c1 − c2 − 1)m
m!(1 + c1)m(1 + c2)m

xmym

× 2F1

[
a1 +m, a2 +m

1 + c1 +m
;x

]
2F1

[
a1 +m, a2 +m

1 + c2 +m
; y

]

=
Γ(1 + c1)Γ(1 + c2)

Γ(a1)Γ(a2)

∞∑
m=0

Γ(a1 +m)Γ(a2 +m)(a1 + a2 − c1 − c2 − 1)m
m!

× g̃(m)

[
a1, a2

1 + c1
;x

]
g̃(m)

[
a1, a2

1 + c2
; y

]
(A.8)

where we have defined:

g̃(m)

[
a, b

c
; z

]
= zm2F̃1

[
a+m, b+m

c+m
; z

]
. (A.9)

In the main text, when expressing conformal blocks in terms of F̃4, e. g. (2.31), we have

u = zz̄ and v = (1 − z)(1 − z̄), and a1 + a2 − c1 − c2 − 1 = h − 1, we can consider the

symmetric combination:

F̃4

[
a1, a2

1 + c1, 1 + c2
; u, v

]
=

π2

2 sinπc1 sinπc2

∞∑
m=0

Γ(a1 +m)Γ(a2 +m)

m!
(h− 1)m

×

{
g̃(m)

[
a1, a2

1 + c1
; z

]
g̃(m)

[
a1, a2

1 + c2
; 1− z̄

]
+ (z ↔ z̄)

}
.

(A.10)

In particular when h = 1, we have

F4

[
a1, a2

1 + c1, 1 + c2
; u, v

]
=

1

2

{
2F1

[
a1, a2

1 + c1
; z

]
2F1

[
a1, a2

1 + c2
; 1− z̄

]
+ (z ↔ z̄)

}
. (A.11)

This identity allows us to directly recover the J = 0 conformal block in two dimensions.

– 32 –



J
H
E
P
1
0
(
2
0
1
9
)
1
4
9

B The computation of Ξα1,α2

ν,J (X1, X2;W1,W2)

Here we will show the details of computation of Ξα1,α2

ν,J (X1, X2;W1,W2) introduced

in (5.13), and the result is proportional to AdS harmonic function:

Ξα1,α2

ν,J (X1, X2;W1,W2) = F (α1, α2, ν) Ων,J(X1, X2;W1,W2) , (B.1)

where the coefficient of proportionality F (α1, α2, ν) is given by:

F (α1, α2, ν) =
J !πh

2J−1 Γ(h+ J)

(
2∏
i=1

α2
i

π

)
ν2

π

1

Ch±iν,J
B∆1,∆2

h+iν;J B
∆̄1,∆̄2

h−iν;J , (B.2)

where ∆̄i = d−∆i. Because of the completeness of the AdS harmonic function, the function

Ξα1,α2

ν,J which depends on two bulk points can also be expanded in terms of them.

Basically Ξα1,α2

ν,J contains one bulk integral and three boundary integral which come

from the definition of the AdS harmonic function. In terms of AdS harmonic function,

Ξα1,α2

ν,J is expanded as the following integration:

Ξα1,α2

ν,J (X1, X2;W1,W2)

=
N0

J !(h− 1
2)J

∫
∂AdSd+1

dP0dP1dP2

∫
AdSd+1

dY
1

(−2X1 · P1)h+iα1

1

(−2Y · P1)h−iα1

×(W1 · ∇1)J
1

(−2X1 · P2)h+iα2
(KY · ∇Y )J

1

(−2Y · P2)h−iα2

× 1

J !(h− 1)J

(−2W2 · CD0 ·X2)J

(−2X2 · P0)h+iν+J

(−2WY · CZ0 · Y )J

(−2Y · P0)h−iν+J
. (B.3)

N0 =
α2

1 α
2
2 ν

2

π3
Ch±iα1Ch±iα2Ch±iν,J , (B.4)

where in CD0 , ZA0 is replaced with the differential operator DAZ0
in CAB0 = ZA0 P

B
0 − PA0 ZB0

to perform contractions. Firstly we focus on the following bulk integral:

IY ≡
1

J !(h− 1
2)J

∫
AdSd+1

dY
1

(−2P1 · Y )h−iα1
(KY · ∇Y )J

× 1

(−2P2 · Y )h−iα2

(−2WY · CZ0 · Y )J

(−2P0 · Y )h−iν+J
. (B.5)

This integral is a usual three-point Witten diagram with two scalars and one tensor, and

was already evaluated in [47]:

IY = NY
(−2P1 · C0 · P2)J

P γ
−+−

01 P γ
+−−

02 P γ
−−+

12

, (B.6)

NY =
(−2)JπhΓ (γ−−+) Γ (γ−+−) Γ (γ+−−) Γ (γ−−−)

2 Γ(h− iα1)Γ(h− iα2)Γ(h− iν + J)
,

where γ−−+, . . . depend on the relative signs among the spectral parameters and are de-

fined as:

γσ1σ2σ0 ≡ 1

2
(h+ J + i(σ1 α1 + σ2 α2 + σ0 ν)) . (B.7)
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Next we focus on the boundary P1 integral:

I1 =

∫
∂AdSd+1

dP1
1

(−2P1 ·X1)h+iα1

(−2P1 · CZ0 · P2)J

(−2P0 · P1)γ−+−(−2P2 · P1)γ−−+ . (B.8)

Using the generalized Symanzik formula which is given in [48], and introducing a Mellin

variable t, it can be evaluated as:

I1 = N1

∫ i∞

−i∞

dt

2πi
µ(t)

(2P2 · CZ0 ·X1)J

(−2P0 ·X1)γ++−+t(−2P2 ·X1)γ+−++t(−2P0 · P2)−t−iα1

N1 =
πh

Γ(h+ iα1)Γ(γ−+−)Γ(γ−−+)
,

µ(t) = Γ(−t)Γ(−iα1 − t)Γ(γ++− + t)Γ(γ+−+ + t) .

Now the original bulk integration has the following form:

Ξα1,α2

ν,J (X1, X2;W1,W2) (B.9)

= N0NY N1

∫
∂AdSd+1

dP0 dP2

[
(W1 · ∇1)J

1

(−2X1 · P2)h+iα2

]
(−2W2 · CD0 ·X2)J

(−2X2 · P0)h+iν+J

× 1

J !(h− 1)J

∫
dt

2πi
µ(t)

(2P2 · CZ0 ·X1)J

(−2P0 ·X1)γ++−+t(−2P0 · P2)γ+−−−iα1−t(−2P2 ·X1)γ+−++t

The remaining P2 integration is also evaluated by the Symanzik formula:

I2 = 2J (h+ iα2)J

∫
dP2

(W1 · P2)J(2X1 · C0 · P2)J

(−2X1 · P2)h+J+γ++++t(−2P0 · P2)γ−−−−t
(B.10)

= N2(t)
(−2W1 · C0 ·X1)J

(−2P0 ·X1)γ−−−−t

N2(t) = (−1)J(h+ iα2)J
J !πh Γ(γ+++ + t)

Γ(h+ J + γ+++ + t)
.

Eventually, Ξα1,α2

ν,J becomes a boundary P0 integral and a Mellin integration, however the

boundary integration is the same integral in the definition of the AdS harmonic function

with spin J . Thanks to this fact, the integral is replaced with a harmonic function, and

Ξα1,α2

ν,J becomes

Ξα1,α2

ν,J (X1, X2;W1,W2) = N0NY N1

∫ i∞

−i∞

dt

2πi
µ(t)N2(t)

π

ν2Ch±iν,J
Ων,J(X1, X2;W1,W2) .

(B.11)

The remaining t integration gives the following gamma functions through the Barnes’s

second formula:∫ i∞

−i∞

dt

2πi
µ(t)

Γ(γ+++ + t)

Γ(h+ J + γ+++ + t)

=
Γ(γ+++)Γ(γ++−)Γ(γ+−+)Γ(γ−+−)Γ(γ−−+)Γ(γ−++)

Γ(h+ J)Γ(h+ iα2 + J)Γ(h+ iν + J)
(B.12)
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Finally we can conclude that the boundary integration Ξα1,α2

ν,J is proportional to a AdS

harmonic function and the coefficient is given as the following expression:

Ξα1,α2

ν,J (X1, X2;W1,W2) = F (α1, α2, ν) Ων,J(X1, X2;W1,W2)

F (α1, α2, ν) =
J !πh

2J−1 Γ(h+ J)

(
2∏
i=1

α2
i

π

)
1

Ch±iν,J
B∆1,∆2

h+iν;J B
∆̄1,∆̄2

h−iν;J . (B.13)

Note here the AdS function is a even function in ν, which means it is invariant under

ν → −ν, and the function F (α1, α2, α3) is also even in each αi. The result of this calculation

is summarized in figure 5 in the main text.
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