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1 Introduction

Correlation functions of local operators are basic observables in holographic CFTs, and as

such have been intensely studied since the early days of AdS/CFT. Only recently however

have truly efficient computational methods been developed. Broadly speaking, these new

techniques are inspired by the modern “on-shell” approach to perturbative gauge theory

amplitudes. One focusses on the full holographic correlator, which is a much simpler and

more rigid object than individual Witten diagrams. Correlators can be strongly constrained

and sometimes completely determined by imposing symmetries and other consistency re-

quirements.
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In the paradigmatic AdS/CFT example, namely the dual pair of N = 4 super Yang-

Mills theory and IIB string theory on AdS5 × S5, this new approach has led to a com-

pelling conjecture for all one-half BPS four-point correlators in the tree-level supergrav-

ity limit [1, 2].1 From these tree-level correlation functions, one can extract a wealth of

O(1/N2) CFT data about non-protected double-trace operators [6–10]. In turn, these

data serve as input in the “AdS unitarity method” [11] to yield one-loop results and thus

O(1/N4) anomalous dimensions [6, 7, 12, 13].2 The conjectured tree-level correlators [1, 2],

and the CFT data that can be extracted from them, take a remarkably simple form, which

has been interpreted [10] as arising from a “hidden” (and rather mysterious) 10d conformal

symmetry.

This success story has been replicated, at least partially, for other supergravity back-

grounds. The techniques developed for AdS5 × S5 have been generalized to AdS7 [18–23],

AdS6 [21] and AdS4 [19, 24–26] backgrounds with maximal or half-maximal supersym-

metry, leading to many interesting new results. By contrast, AdS3 backgrounds are more

challenging and have so far defied our efforts. The purpose of the present work is to remedy

this situation.

The greater technical difficulty of the AdS3 case can be traced to the chiral nature

of boundary correlators (and, dually, of bulk Witten diagrams). Four-point correlators

in a 2d CFT are functions3 of the usual holomorphic coordinates on the plane, z and z̄,

but unlike the situation in higher dimensional CFTs, there is no requirement of symmetry

under the exchange of z and z̄. This chiral character limits the applicability of the Mellin

formalism [27–30], so the Mellin bootstrap approach of [1, 2, 18, 19, 21] does not generalize

immediately to AdS3. On the other hand, the “position space” method developed in [1, 2]

can be applied, but requires some extra work. In the position space approach, one writes

an ansatz for the holographic correlator as a sum of Witten diagrams, taking into account

only general selection rules that follows from the structure of the supergravity theory, but

with arbitrary coefficients. The coefficients are then fixed by imposing superconformal

Ward identities. In the AdS3 case, there are new types of exchange Witten diagrams for

Chern-Simons bulk interactions, and the standard techniques of [31] need to be suitably

generalized. There are further subtle issues in the massless limit of the bulk exchanged

field, even for the standard Maxwell and gravity cases. We resolve all of these technical

difficulties in the present paper.

While our new results for exchange Witten diagrams in AdS3 are of general applica-

bility, we will focus on performing detailed calculations in the best studied background,

namely AdS3 × S3 × K3, which arises in the near-horizon limit of the D1-D5 system.4

By reducing IIB supergravity on K3, whose size is taken to be much smaller than the

(common) radius of curvature of AdS3 and S3, one obtains 6d (2,0) supergravity cou-

1Some highly non-trivial checks of this conjecture have been performed in [3–5] by explicit supergravity

calculations.
2One can further consider stringy corrections to four-point functions, see, e.g., [14–17] for work in this

direction.
3We have in mind the usual kinematic setup of choosing a conformal frame where the positions of three

operators are fixed, so that the correlator depends only on the coordinates of forth operator.
4The generalization to AdS3 × S3 × T 4 is straightforward.
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pled to 21 tensor multiplets. Upon further reduction on S3, the gravity multiplet and

the tensor multiplets give rise to infinite Kaluza-Klein towers of one-half BPS multiplets

of the PSU(1, 1|2) × PSU(1, 1, |2) superalgebra. Prior to our work, some partial results

had been obtained using indirect methods [32–35]. For example, the four-point function

of the KK modes with lowest conformal dimension was conjectured from a limit of the

light-light-heavy-heavy correlators [34].

There is also a clear physical incentive to revisit AdS3 × S3 holographic correlators,

beyond the mere demonstration that our previous methods can be generalized to this more

difficult case. Do these correlators exhibit a hidden conformal symmetry analogous to the

one found for the AdS5 × S5 case [10]? While a conceptually satisfactory explanation is

still lacking, in the 10d case such a symmetry appears to hinge crucially on a few facts.

First, the AdS5 × S5 metric is conformally flat, a feature shared by the AdS3 × S3 back-

ground but not (for example) by the maximally supersymmetric M-theory cases, namely5

AdS7 × S4 and AdS4 × S7. Second, the flat space 10d superamplitude in IIB supergravity

contains a kinematic factor G
(10)
N δ16(Q), which can in some heuristic sense be regarded as

a dimensionless coupling. An analogous power-counting applies to superamplitudes in 6d

(2, 0) supergravity, where the kinematic factor G
(6)
N δ8(Q) is again dimensionless. Third,

the four-point superamplitude in 10d flat space IIB supergravity enjoys an accidental 10d

conformal symmetry. The 10d amplitude can be viewed as a generating function of all four-

point correlators of the full tower of KK modes on AdS5×S5 [10]. The situation in 6d (2, 0)

flat space supergravity is more elaborate. As we have mentioned, there are two relevant

supermultiplets, the graviton and tensor multiplets. As it turns out, the superamplitude

with four external tensors enjoys an accidental 6d conformal symmetry!6

By analogy with the AdS5×S5 case, it seems natural to anticipate that all four-point

correlators of tensor multiplet KK modes in AdS3 × S3 can be packaged into a single 6d

object. We find strong evidence that this is indeed the case. Our strategy is to develop

a systematic position space method similar to the one used in [1, 2, 18]. New ingredients

in AdS3 include a derivation of the superconformal Ward identity, and the computation of

AdS3 exchange Witten diagrams that require a generalization of the existent techniques.

Using this method we compute equal-weight four-point functions of one-half BPS operators

that arise as KK modes of the 6d tensor multiplets. We have obtained results for operators

with conformal dimensions ∆ = 1, 2, 3, 4. Our result for ∆ = 1 reproduces the recent

conjecture of [34]. We also discuss an independent method in Mellin space. The Mellin

space method for AdS3 × S3 ×K3 is not as powerful as in AdS5 × S5 and AdS7 × S4, but

is still very useful to illustrate the analogy between holographic correlators and scattering

amplitudes, which plays a crucial role in formulating a guess for the master formula.

5Indeed, in the M-theory cases, the radii of the AdS and sphere factors are different. In the case

of AdS7 × S4 one can immediately see that a putative 11d conformal symmetry would be structurally

incompatible with the explicit results of [18].
6We were not able to find in the literature fully explicit expressions for amplitudes involving external

supergravitons in 6d (2, 0) supergravity (see [36] for the state of the art), but we suspect that they do not

enjoy such a symmetry.

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
1
4
0

From these concrete examples of correlators, we observe nontrivial evidence of a six-

dimensional hidden conformal symmetry. Assuming that such a symmetry persists for

arbitrary external weights, it is immediate to write down a simple generating function of

all four-point correlators of tensor KK modes by replacing the x2
ij in the lowest-weight four-

point function with six dimensional distances. On the other hand, such a hidden conformal

symmetry is not present in the four-point functions of scalar one-half BPS operators that

arise from the 6d gravity multiplet, as we have checked using the position space method.

We hope that the new data obtained here will stimulate a better understanding of the

nature of the hidden conformal symmetry, in both the AdS5×S5 and the AdS3×S3 cases.

The rest of the paper is organized as follows. In section 2 we discuss the superconformal

kinematics of scalar one-half BPS four-point functions. In section 3 we introduce the

position space method for AdS3 and compute several examples of four-point functions. In

section 4 we provide a different perspective in Mellin space. In section 5, we point out

the existence of a six-dimensional hidden conformal symmetry. Using this symmetry we

conjecture, a formula for all one-half BPS four-point functions. We conclude in section 6

by mentioning some future directions. The paper also includes three appendices to which

we have relegated various technical details.

Note added. As we were about to submit this paper to the arXiv, we learnt of an

upcoming work [37] that obtains AdS3 × S3 four-point tree-level correlators with pairwise

equal weights by generalizing the approach of [34].

2 Superconformal kinematics

Let us start with the constraints of superconformal invariance. We focus on the one-half

BPS local operatorsOα1...αk,α̇1...α̇k
k (x) with αi, α̇i = 1, 2, in the (j, j̄) =

(
k
2 ,

k
2

)
representation

of SU(2)L×SU(2)R. These operators have protected conformal dimensions (h, h̄) =
(
k
2 ,

k
2

)
.

The Kaluza-Klein reduction on AdS3 × S3 of 6d (2, 0) supergravity coupled to 21 tensor

multiplets leads to two different types of one-half BPS scalar operators. The first kind

originates from the anti-self-dual tensors with k = 1, 2, . . ., and they transform in the

vector representation of the SO(21) flavor symmetry. The second kind comes from 6d

supergravity fields with k = 2, 3, . . ., and they are neutral under the flavor symmetry. In

this work, we focus on correlation function of half-BPS operators in the tensor multiplet,

although the superconformal constraints are the same for both types of operators.

To begin with, it is convenient to keep track of the R-symmetry structure by contracting

all the indices with auxiliary spinors vα, v̄α̇

OIk(x; y, ȳ) = OI,α1...αk,α̇1...α̇k
k vα1 . . . vαk v̄α̇1 . . . v̄α̇k . (2.1)

We have exploited the fact that the spinors are automatically “null”

εαβvαvβ = εα̇β̇ v̄α̇v̄β̇ = 0 , (2.2)

and the one-half BPS operator is symmetric and traceless (with respect to the ε tensor) in

αi and α̇j . We note that rescaling preserves the null property of the spinors. This allows
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us to parameterize the spinors as

v =

(
1

y

)
, v̄ =

(
1

ȳ

)
. (2.3)

The goal of this paper is to calculate the four-point function

GI1I2I3I4k1k2k3k4
= 〈OI1k1O

I2
k2
OI3k3O

I4
k4
〉 . (2.4)

This is then a function of both the spacetime as well as the R-symmetry coordinates.

Covariance under the conformal and R-symmetry implies that it is really a function of the

cross ratios

z =
z12z34

z13z24
, z̄ =

z̄12z̄34

z̄13z̄24
, α =

y13y24

y12y34
, ᾱ =

ȳ13ȳ24

ȳ12ȳ34
, (2.5)

and zij ≡ zi − zj , yij ≡ yi − yj , etc. Hence we can write it as

GI1I2I3I4k1k2k3k4
= KGI1I2I3I4k1k2k3k4

(z, z̄;α, ᾱ) , (2.6)

where the kinematic factor K is given by

K =
∏
i<j

(
yij ȳij
zij z̄ij

)γ0ij (y12y34ȳ12ȳ34

z12z34z̄12z̄34

)L
. (2.7)

Following the convention in [1, 2], without loss of generality, we order the weights as

k1 ≥ k2 ≥ k3 ≥ k4. There are two cases: I) k1 + k4 ≤ k2 + k3, II) k1 + k4 > k2 + k3 where

L = k4 (case I) , L =
k2 + k3 + k4 − k1

2
(case II) . (2.8)

The various γ0
ij are given by

γ0
12 =

k1 + k2 − k3 − k4

2
, γ0

13 =
k1 + k3 − k2 − k4

2
,

γ0
34 = γ0

24 = 0 , γ0
14 = k4 − L , γ0

23 =
k4 + k2 + k3 − k1

2
− L . (2.9)

From the above definition, it follows that GI1I2I3I4k1k2k3k4
(z, z̄;α, ᾱ) is a polynomial in α and ᾱ

with the same degree L.

The cross ratios z, z̄, α, ᾱ are related in a simple way to the cross ratios that appear

in four-point correlators of SCFTd≥3 with R-symmetry group SO(d′ ≥ 5)

U =
x2

12x
2
34

x2
13x

2
24

= zz̄ , V =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z̄) , (2.10)

σ =
t13t24

t12t34
= αᾱ , τ =

t14t23

t12t34
= (1− α)(1− ᾱ) . (2.11)

Here tµ is a d′-dimensional null vector satisfying tµtµ = 0 and tij ≡ tµi tjµ. When d′ = 4,

we can construct a 4-dimensional null vector from the spinors, tµ ≡ σµαα̇v
αv̄α̇. Note that

the two sets of cross ratios are inequivalent. Expressing z, z̄ (or α, ᾱ) in terms of U ,

– 5 –
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V (or σ, τ) is generally ambiguous due to the appearance of square-roots when solving

the quadratic equations.7 In two dimensions, the four-point function GI1I2I3I4k1k2k3k4
(z, z̄;α, ᾱ)

is only invariant under simultaneously exchanging (z, α) ↔ (z̄, ᾱ). This is in contrast to

higher dimensions where the four-point function is always invariant under exchanging a

single pair of cross ratios z ↔ z̄ and α↔ ᾱ. That is because in theories with d ≥ 3, d′ ≥ 5

the four-point functions are functions of x2
ij and therefore can be written in terms of U and

V (and similarly for the R-symmetry). On the other hand, in two dimensions there is one

more structure, namely εµνx
µ
ijx

ν
kl and therefore the four-point function cannot be written

as a function of U and V alone. This is the essential new feature of SCFT2 compared to

higher dimensions, which necessarily requires working with (z, z̄;α, ᾱ).

So far, we have only used the bosonic part of the global superconformal group. The

fermionic generators impose extra constraints as the superconformal Ward identities8

(α∂α − z∂z)GI1I2I3I4k1k2k3k4

∣∣
α=1/z

= 0 , (2.12)

(ᾱ∂ᾱ − z̄∂z̄)GI1I2I3I4k1k2k3k4

∣∣
ᾱ=1/z̄

= 0 . (2.13)

These identities can be solved as follows

GI1I2I3I4k1k2k3k4
= GI1I2I3I40,k1k2k3k4

+ (1− zα)(1− z̄ᾱ)HI1I2I3I4k1k2k3k4
(2.14)

where GI1I2I3I40,k1k2k3k4
(z, z̄;α, ᾱ) is a special solution which upon twisting becomes purely holo-

morphic (anti-holomorphic)

GI1I2I3I40,k1k2k3k4
(z, z̄;α, ᾱ = 1/z̄) = f(z, α) ,

GI1I2I3I40,k1k2k3k4
(z, z̄;α = 1/z, ᾱ) = f(z̄, ᾱ) . (2.15)

The function f(z, α) can be further shown to be protected by non-renormalization theo-

rems, by using the argument of [40]. The function HI1I2I3I4k1k2k3k4
(z, z̄;α, ᾱ) encodes unprotected

dynamical information, and because of the prefactor (1− zα)(1− z̄ᾱ), HI1I2I3I4k1k2k3k4
is a poly-

nomial in both α and ᾱ with the reduced degrees L− 1.

3 Position space

In this section, we develop a concrete position space method to compute holographic four-

point functions. The method is very similar to the one used in [1, 2] for AdS5 × S5 and

in [18] for AdS7 × S4 . However, it has also new important ingredients due to the unique

features of AdS3 space. In section 3.1 we review some elements of the 6d (2, 0) supergravity

coupled to tensor multiplets, compactified on AdS3 × S3. Then, in section 3.2 we outline

the position space algorithm and in section 3.3 we compute the four-point function of

the lowest-weight operator. Finally, in section 3.4 we apply the method to the four-point

functions of higher weights.

7However if the function depends on z, z̄ or α, ᾱ symmetrically, there is no such ambiguity.
8We have derived the superconformal Ward identities using two different methods. The first one uses

the analytic superspace formalism, and is parallel to the analysis in [38]. The second method uses a chiral

algebra twist [39] on one of the psu(1, 1|2) subalgebra of the small N = 4 superconformal algebra. The

second method is conceptually more interesting, and we will elaborate on it further in appendix A.
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KK mode h j h̄ j̄ spin ` RSO(21)

ϕ+
µν

l
2 + 2 l

2
l
2

l
2 2 1

V +
µ

l
2 + 1 l

2 + 1 l
2

l
2 1 1

W+
µ

l
2 + 2 l

2
l
2 + 1 l

2 − 1 1 1

ρ+ l
2 + 1 l

2 + 1 l
2 + 1 l

2 − 1 0 1

Table 1. Kaluza Klein modes from the spin-2 multiplets Γl. We have kept only the relevant

bosonic field modes which are singlets under the outer automorphism group SO(4)out. Note that

the fields ϕ+
µν , V +

µ , W+
µ , ρ+ are also accompanied by ϕ−µν , V −µ , W−µ , ρ− as required by parity. The

quantum numbers h, h̄, j, j̄ of the − fields are obtained from the quantum numbers of the + fields

by interchanging left and right. The number l labels the Kaluza-Klein levels and l = 0, 1, 2, . . ..

KK mode h j h̄ j̄ spin ` RSO(21)

Y +
µ

l
2 + 2 l

2
l
2 + 1 l

2 + 1 1 1

σ l
2 + 1 l

2 + 1 l
2 + 1 l

2 + 1 0 1

τ l
2 + 2 l

2
l
2 + 2 l

2 0 1

Y −µ
l
2 + 1 l

2 + 1 l
2 + 2 l

2 1 1

Table 2. Kaluza-Klein modes from the spin-1 multiplet Σl, l = 0, 1, . . ..

KK mode h j h̄ j̄ spin ` RSO(21)

Z+,I
µ

l
2 + 2 l

2
l
2 + 1 l

2 + 1 1 21

sI l
2 + 1 l

2 + 1 l
2 + 1 l

2 + 1 0 21

tI l
2 + 2 l

2
l
2 + 2 l

2 0 21

Z−,Iµ
l
2 + 1 l

2 + 1 l
2 + 2 l

2 1 21

Table 3. Kaluza-Klein modes from the spin-1 multiplet ΘI
l , l = −1, 0, 1, . . ..

3.1 A brief review of AdS3 × S3 supergravity

The near horizon limit of Q1 D1-branes and Q5 D5-branes wrapping a K3 surface is

described by IIB supergravity in AdS3 × S3 ×K3 when Q5Q1 � 1. As in this limit the

size of K3 is much smaller than the size of S3, we can reduce IIB supergravity on K3 and

get 6d (2, 0) supergravity coupled to n = 21 anti-self-dual tensor multiplets. Then, further

compactification of the theory on S3 gives the Kaluza-Klein spectrum [41–44] summarized

in the tables 1, 2, 3 below.

The spectrum is organized into superconformal multiplets which come in three infinite

Kaluza-Klein towers Γl, Σl and ΘI
l . In the tables, h, h̄ are the SL(2)L, SL(2)R spins, and j,

j̄ are the SU(2)L and SU(2)R spins. When the R-symmetry quantum numbers are negative,

the corresponding field does not exist. We have only kept the fields that are singlets under

– 7 –
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the outer automorphism group SO(4)out because in this work we focus only on four-point

functions of operators which are singlets. The superconformal primary of the multiplets

Γl which contains the spin-2 fields is the (massive) graviphoton field Vµ. The lowest KK

multiplet with l = 0 is ultra-short: it contains only the non-dynamical massless graviton

and graviphoton. The superconformal primaries of the spin-1 multiplets Σl and ΘI
l are

the scalar fields σ and sI respectively. These two multiplets have the same SO(2, 2) and

SO(4)R quantum numbers, but ΘI
l transform in the vector representation of SO(21) while

Σl are singlets. In terms of 6d fields, Σl is made of fields from 6d (2, 0) supergravity and

ΘI
l comes from the anti-self-dual tensors. Moreover, the minimal allowed value for ΘI

l is

l = −1, and the corresponding super primary has conformal dimension ∆ = 1. The top

component (not shown in the table) is an exactly marginal operator and transforms as a

vector under SO(4)out. By contrast, Σl with l = −1 is pure-gauge and does not exist in

the spectrum [41].

The cubic couplings of the Kaluza-Klein modes were obtained in [44]. The cubic cou-

plings satisfy the R-symmetry selection rule, and vanish when they are extremal. The quar-

tic and higher-oder vertices have not been worked out in the literature. Moreover, [41, 44]

showed that the vector fields are described by two Proca-Chern-Simons vector fields sup-

plemented by a first-order constraint. The vector fields couple to the currents made out

of scalar fields both electrically and magnetically. We will show in appendix B that the

constraint can be solved in terms of three massive Chern-Simons fields which satisfy first-

order equation of motions. After proper field redefinition, all the couplings of the vector

fields with currents become electric.

3.2 The position space algorithm

We are now ready to formulate the position space method. We start with an ansatz for the

four-point function which includes all the possible exchange and contact Witten diagrams

AI1I2I3I4 = δI1I2δI3I4As-exch + δI1I4δI2I3At-exch + δI1I3δI2I4Au-exch

+ δI1I2δI3I4As-con + δI1I4δI2I3At-con + δI1I3δI2I4Au-con .
(3.1)

The exchange Witten diagrams are subject to the R-symmetry selection rule and the re-

quirement that the cubic coupling is non-extremal. In addition, the contact Witten di-

agrams should contain no more than two derivatives. This condition comes from the

consistency with the flat space limit in which the theory contains only two derivatives.

The next step is to evaluate all the diagrams in the ansatz. Compared to the AdS5 × S5

case, there are two new kinds of Witten diagrams. The first is the exchange diagram of

twist-zero fields which are the massless Chern-Simons and the graviton field. The stan-

dard method of [31] is not applicable for these diagrams.9 We instead evaluate them by

solving second order differential equations with appropriate boundary conditions. These

differential equations follow from the simple fact that the two-particle quadratic confor-

mal Casimir is the same as the wave equation in the bulk, which collapses the exchange

9If one naively applies the method of [31], one finds the answer is divergent. The unphysical divergence

is associated with dropping certain boundary terms in the analysis which is not allowed for d = 2.

– 8 –
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diagram into a contact diagram when acting on the bulk-to-bulk propagator.10 We leave

the details of this method to appendix C. The second type of new diagram is the exchange

diagrams which involve massive Chern-Simons vector fields. This type of diagrams can

be evaluated using the method of [31] with slight modifications. All in all, all the Witten

diagrams can be evaluated in terms of a finite sum of contact diagrams (D̄-functions). To

impose the superconformal Ward identities (2.13), we exploit the fact that D̄-functions can

be uniquely decomposed as

D̄∆1∆2∆3∆4 = RΦ(z, z̄)Φ(z, z̄)+RV (z, z̄) log(1−z)(1−z̄)+RU (z, z̄) log(zz̄)+R1(z, z̄) (3.2)

where Φ(z, z̄) = D̄1111 is the scalar box diagram, and RΦ,U,V,1 are rational functions of z

and z̄. It is clear that the supergravity ansatz admits a similar decomposition. By further

using the recursion relation [46]

∂zΦ =
Φ

z̄ − z
+

log(1− z)(1− z̄)

z(z̄ − z)
+

log(zz̄)

(z − 1)(z − z̄)
,

∂z̄Φ =
Φ

z − z̄
+

log(1− z)(1− z̄)

z̄(z − z̄)
+

log(zz̄)

(z̄ − 1)(z̄ − z)
, (3.3)

we can similarly decompose the left side of the superconformal Ward identity (2.13) into this

basis. The rational coefficient functions RI1I2I3I3Ward,X (z, z̄, α, ᾱ) with X = Φ, U, V, 1 are required

to vanish by (2.13), giving rise to a set of linear equations for the unknown coefficients in

the ansatz. In contrast to the AdS5 × S5 and AdS7 × S4 cases, solving superconformal

Ward identities in general does not uniquely fix all the relative coefficients. We will see

that all the coefficients in AI1I2I3I4con parameterizing the quartic vertices are fixed in terms

of the coefficients in the exchange part of the ansatz. The remaining unsolved coefficients

can be fixed by comparing with the known supergravity cubic couplings.

3.3 The lowest-weight four-point function

We now apply the above method to the simplest four-point correlator with ki = k = 1.

The cubic coupling selection rules dictate that only the non-dynamical graviton and Chern-

Simons gauge field can be exchanged. Therefore, we have the following ansatz for the

exchange part of the four-point function

As−exch = λgr Y0Ȳ0Wgr︸ ︷︷ ︸
ϕl=0,µν

+λCS(Y1Ȳ0WCS,1,+︸ ︷︷ ︸
V +
l=0,µ

+ Ȳ1Y0WCS,1,−︸ ︷︷ ︸
V −
l=0,µ

), (3.4)

where Ym and Ȳm̄ are the SU(2)L and SU(2)R R-symmetry polynomials

Ym = Pm(1− 2α) , Ȳm̄ = Pm̄(1− 2ᾱ) , (3.5)

associated with exchanging the representation (j, j̄) = (m, m̄). The function Wgr is the

exchange Witten diagram of the non-dynamical graviton, and is worked out in appendix C

to be

Wgr =
π

2
(2 + U(U − V − 1)D̄2211) . (3.6)

10This fact was also recently exploited in [45] to obtain the conformal block decomposition coefficients of

exchange Witten diagrams and conformal partial waves in the crossed channel.
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Similarly, WCS,1,+, WCS,1,− are contributions of the Witten diagrams with the massless

Chern-Simons gauge field V +
l=0,µ, V −l=0,µ being exchanged. They are given by

WCS,1,± =
π

2

(
∓(z − z̄)UD̄2211 + log V

)
. (3.7)

The ansatz for At−exch, Au−exch are obtained from As−exch using crossing symmetry. The

contact part of the ansatz takes the from

As-con =
∑

c
(0)
ab σ

aτ bUD̄1111 +
∑

c
(1,s)
ab σaτ bU2D̄2211 +

∑
c

(1,t)
ab σaτ bUD̄2112

+
∑

c
(1,u)
ab σaτ bUD̄2121 ,

(3.8)

where the sum is restricted by 0 ≤ a, b, a+ b ≤ 1. Note that no individual α, ᾱ appears in

the ansatz because the four-point function is parity even under separate exchange of z ↔ z̄

and α ↔ ᾱ. The contribution of the contact diagrams in the other two channels At-con,

Au-con are obtained from As-con using crossing symmetry.

Plugging this ansatz into the superconformal Ward identities (2.13), we find that

λCS =
1

2
λgr , (3.9)

and all the contact term coefficients are solved in terms of λgr. Therefore, the four-point

function is fixed up to an overall coefficient. Rewriting the solution in the form of (2.14)

we find that

GI1I2I3I40,1111 =
πλg
V

(V δI1I2δI3I4 + UτδI1I4δI2I3 + UV σδI1I3δI2I4) , (3.10)

HI1I2I3I41111 = −πλg
V

(δI1I2δI3I4V D̄1122 + δI1I4δI2I3UD̄2112 + δI1I3δI2I4UV D̄1212) , (3.11)

reproducing the result of [34].

3.4 Higher-weight four-point functions

Let us move on to the next simplest correlator with k = 2. Our ansatz for the singular

part of the four-point function is

As−exch = λ(0)
gr Y0Ȳ0Wgr︸ ︷︷ ︸

ϕl=0,µν

+λ
(0)
CS(Y1Ȳ0WCS,1,+︸ ︷︷ ︸

V +
l=0,µ

+ Ȳ1Y0WCS,1,−︸ ︷︷ ︸
V −
l=0,µ

)

+ λ(2)
ϕ Y1Ȳ1Wmgr,4︸ ︷︷ ︸

ϕl=2,µν

+λ
(2)
V (Y2Ȳ1WCS,3,+︸ ︷︷ ︸

V +
l=2,µ

+ Ȳ2Y1WCS,3,−︸ ︷︷ ︸
V −
l=2,µ

)

+ λ(0)
σ Y1Ȳ1Wsc,2︸ ︷︷ ︸

σl=0

+λ
(0)
Y (Y0Ȳ1WCS,3,+︸ ︷︷ ︸

Y −
l=0,µ

+ Ȳ0Y1WCS,3,−︸ ︷︷ ︸
Y +
l=0,µ

) .

(3.12)

Here Wmgr,4 is the exchange diagram of a massive graviton of dimension 4 and Wsc,2 is a

scalar exchange diagram of dimension 2. Both diagrams can be computed using the method

of [31]. The contact part ansatz As−con contains zero and two-derivative contact Witten
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diagrams, and is a polynomial in σ and τ of degree 2. Solving the superconformal Ward

identities uniquely fixes the coefficients in As−con in terms of the coefficients appearing in

As−exch. Moreover, the coefficients of the exchange contributions of fields belonging to the

same multiplet are fixed up to an overall normalization. The remaining unfixed relative co-

efficients corresponding to different multiplets can be fixed using the cubic vertices worked

out in [44]. The final solution can be rewritten in the form of (2.14) as

GI1I2I3I40,2222 =
πλg
4V 2

(V 2δI1I2δI3I4 + U2τ2δI1I4δI2I3 + U2V 2σ2δI1I3δI2I4) , (3.13)

HI1I2I3I42222 =− πλg
4V

(
δI1I2δI3I4V (UD̄2233+D̄1133) + δI1I4δI2I3U2D̄3223 + δI1I3δI2I4U2V D̄2323

)
+ crossing . (3.14)

The case of higher-weight correlators with k > 2 is completely analogous to the above

example with k = 2. We have also applied this method to obtain four-point correlators for

two more examples with k = 3 and k = 4. We will refrain from writing down the explicit

results, since in the section 5.2 we will present a much more compact way of writing these

correlators.

4 Mellin space

The position space method described in section 3.2 offers a concrete way to compute four-

point functions with as little input from supergravity. However, the results in position space

do not look particularly illuminating. In this section, we look at the problem from a different

perspective using the Mellin representation formalism [27–30], which offers new intuition

to the problem. The Mellin representation formalism was demonstrated to be the most

natural language for describing holographic correlators, making manifest their scattering

amplitude nature. This formalism unfortunately becomes ill-defined in one dimension due

to the nonlinear dependence of the cross ratios.11 Because the superconformal symmetry

forces the chiral cross ratios z, z̄ to appear in the 2d one-half BPS correlator GI1I2I3I4k1k2k3k4
,

one may wonder if the Mellin representation will be particularly useful. Nevertheless, by

restricting our attention to certain components of the four-point function we can argue that

the Mellin representation is still a good language. In particular, the Mellin representation

formalism allows us to easily bootstrap the ki = k = 1 correlator as we demonstrate below.

For k = 1, HI1I2I3I4k=1 has no dependence on α and ᾱ. The symmetry under z ↔ z̄,

α ↔ ᾱ implies that HI1I2I3I4k=1 is a symmetric function of z, z̄ and can be unambiguously

expressed in terms of U , V . We therefore have the following inverse Mellin representation

HI1I2I3I4k=1 =

∫ i∞

−i∞

ds

2

dt

2
U

s
2V

t
2
−1M̃I1I2I3I4

k=1 (s, t)Γ2

(
2− s

2

)
Γ2

(
2− t

2

)
Γ2

(
2− ũ

2

)
, (4.1)

where ũ = 2 − s − t. We assume that GI1I2I3I40,k=1 is a rational function (this was justified

by the previous position space calculation) and therefore does not contribute to the Mellin

11For d ≥ 2 there are two independent conformal cross ratios U , V in four-point functions, while for d = 1

there is only one independent cross ratio z. More generally, there are n(n− 3)/2 independent cross ratios

for a scalar n-point function if n ≤ d+ 2. When n > d+ 2 the cross ratios have relations.
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amplitude.12 It then follows that the following components of GI1I2I3I4k=1 with R-symmetry

factors

P1 ≡ 1 , P2 ≡
α+ ᾱ

2
, P3 ≡ αᾱ = τ , (4.2)

also have a well-defined Mellin representation. By rewriting the superconformal factor

(1− zα)(1− z̄ᾱ) as

1 +
α+ ᾱ

2
(V − U − 1) + αᾱU +

α− ᾱ
2

(z − z̄) , (4.3)

we read off the three R-symmetry components of GI1I2I3I4k=1

P1 : GI1I2I3I4k=1,I=1 ≡ H
I1I2I3I4
k=1 , (4.4)

P2 : GI1I2I3I4k=1,I=2 ≡ (V − U − 1)HI1I2I3I4k=1 , (4.5)

P3 : GI1I2I3I4k=1,I=3 = UHI1I2I3I4k=1 . (4.6)

They can be expressed in the same form as (4.1)

GI1I2I3I4k=1,I =

∫ i∞

−i∞

ds

2

dt

2
U

s
2V

t
2
−1MI1I2I3I4

k=1,I (s, t)Γ2(
2− s

2
)Γ2(

2− t
2

)Γ2(
2− u

2
) , (4.7)

with u = 4− s− t, by absorbing the multiplicative monomials UmV n via shifting s and t.

The monomials then become difference operators which act as

ÛmV n◦M̃I1I2I3I4
k=1 (s, t) = M̃I1I2I3I4

k=1 (s−2m, t−2n)

(
2− s

2

)2

m

(
2− t

2

)2

n

(
s+ t− 2

2

)2

1−m−n
.

(4.8)

We are now ready to formulate a bootstrap problem for M̃I1I2I3I4
k=1 by enumerating the extra

constraints that should be satisfied by MI1I2I3I4
k=1,I .

1. Bose symmetry. The Mellin amplitudes MI1I2I3I4
k=1,I are crossing symmetric. It is

convenient to first make the flavor dependence more explicit

MI1I2I3I4
k=1,I (s, t) = δI1I2δI3I4M(s)

k=1,I(s, t) + δI1I4δI2I3M(t)
k=1,I(s, t) + δI1I3δI2I4M(u)

k=1,I(s, t) .

(4.9)

Crossing symmetry then implies thatM
(t)
k=1,1(s, t)

M(t)
k=1,2(s, t)

M(t)
k=1,3(s, t)

 =

 1 0 0

−2 1 0

1 −1 1


M

(s)
k=1,1(t, s)

M(s)
k=1,2(t, s)

M(s)
k=1,3(t, s)

 ,

M(u)
k=1,I(s, t) = M(s)

k=1,I(u, t) . (4.10)

12The rational terms are generated from regularization effects when the integration contours are pinched.

See [2] for details.
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2. Analytic structure. The four-point function can be computed as a sum of Witten

diagrams. The conformal block decomposition consists of only single-trace operators and

double-trace operators. The twists of exchanged single-trace operators translate into the

position of simple poles in the Mellin amplitudes, while the double-trace operators are

already accounted by the Gamma function factors. From the supergravity spectrum we

expect that M(s)
k=1,I contain only a simple pole at s = 0 due to the s-channel exchange

of the non-dynamical graviton and gauge field. Similarly, M(t)
k=1,I and M(u)

k=1,I have only

simple poles at t = 0 and u = 0 respectively. Furthermore, the residue at each pole is a

polynomial in the other Mandelstam variable.

3. Asymptotics. M(a)
k=1,I should grow linearly at large values of the Mandelstam vari-

ables,

M(a)
k=1,I(βs, βt) ∼ O(β) , for β →∞ . (4.11)

This comes from the expectation that the Mellin amplitudes M(a)
k=1,I in the asymptotic

regime should reproduce the flat space scattering amplitudes of tensors in 6d (2, 0) super-

gravity [28].

These conditions turn out to be constraining enough, and uniquely fix the Mellin

amplitude up to an overall factor

M̃I1I2I3I4
k=1 (s, t) ∝ δI1I2δI3I4

s
+
δI1I4δI2I3

t
+
δI1I3δI2I4

ũ
. (4.12)

Translating the result back into HI1I2I3I4 , we find

HI1I2I3I4 ∝ δI1I2δI3I4V −1D̄1122 + δI1I4δI2I3UV −1D̄2112 + δI1I3δI2I4UV −1D̄1212 , (4.13)

which reproduces our previous result (3.11) in position space.

In fact the above arguments apply more generally to a class of four-point correlators

with have the same extremality,13 e.g., k1 = k2 = n, k3 = k4 = 1. For these near-

extremal correlators, the auxiliary Mellin amplitudes M̃I1I2I3I4 are uniquely determined

by the bootstrap conditions up to an overall coefficient, and take the same form as (4.12)

with shifted simple poles.

Let us also make two comments about applying the Mellin space method to correlators

with higher extremities. First of all, it is necessary to make the assumption that HI1I2I3I4
is even under α ↔ ᾱ, or in other words, can be uniquely expressed in terms of σ and τ .

This is needed such that HI1I2I3I4 can be unambiguously written in terms of U and V ,

and therefore admits a well-defined Mellin representation. The R-symmetry structure of

HI1I2I3I4 a priori can be more general. However the even parity of HI1I2I3I4 is observed in

all examples computed using the position space method, and we believe is true in general.

Second, the bootstrap conditions are not as constraining as the AdS5 × S5 case. We

expect that M̃I1I2I3I4 also takes the form of a sum of simple poles. However, the pole

structure of the ansatz makes the condition on analytic structures weaker. In particular,

the requirement thatMI1I2I3I4 should have polynomial residues is now trivially satisfied due

13Extremality E is defined as E = k2 + k3 + k4 − k1 where k1 is the largest of all ki.
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to the lack of simultaneous poles M̃I1I2I3I4 . Therefore, unlike the AdS5×S5 case where the

Mellin amplitude is fixed up to an overall factor, we cannot solve all the parameters in the

ansatz for the Mellin amplitude. This parallels what we have observed in the position space

method, and is an inevitable consequence of the fact that we have fewer supersymmetry

for AdS3 × S3 ×K3.

5 Hidden symmetry and conjecture of all Kaluza-Klein four-point func-

tions

5.1 Hidden conformal symmetry

The general one-half BPS four-point functions of 4d N = 4 super Yang-Mills theory in

the supergravity limit were obtained in [1, 2] by solving an algebraic bootstrap problem.

The formula took a surprisingly simple form and therefore strongly suggested the existence

of some elegant underlying structure. Recently, this was made precise by [10] in terms

of a conjectured 10d conformal symmetry. In terms of this symmetry, all one-half BPS

four-point functions can be organized into one generating function, which is obtained by

promoting the 4d distances in the lowest-weight correlator into 10d distances. Though a

rigorous understanding is still lacking regarding its origin, some intuitive arguments were

given in [10] to motivate the existence of such a symmetry. We will enumerate below some

of these arguments and we will see that many features are also shared by AdS3 × S3.

First of all, the AdS5×S5 background is conformally equivalent to the flat space R9,1.

The SO(10, 2) symmetry can be interpreted as the conformal group in R9,1. The same

statement can be made for the AdS3×S3 background and the conformal group SO(6, 2).14

Secondly, it was argued that the AdS5 × S5 auxiliary Mellin amplitude M̃ of [1, 2]

M̃ ∼ 1

(s− 2)(t− 2)(ũ− 2)
, (5.1)

should be identified, in the large Mellin variable limit, with the 1
stu factor in the superam-

plitude of IIB supergravity in 10d flat space

AIIB ∼ G(10)
N δ16(Q)× 1

stu
. (5.2)

When divided by the dimensionless “coupling” G
(10)
N δ16(Q), the amplitude 1

stu is confor-

mal invariant in ten dimensions, i.e., annihilated by the special conformal transformation

generator15

Kµ =

3∑
i=1

(
piµ
2

∂

∂pνi

∂

∂pi,ν
− pνi

∂

∂pνi

∂

∂pµi
− d− 2

2

∂

∂pµi

)
. (5.3)

For AdS3×S3 we found a highly nontrivial analogy. By taking the asymptotic limit of the

auxiliary Mellin amplitude M̃I1I2I3I4
k=1 , we find that we precisely reproduce the four tensor

14More precisely, it requires that the AdS space should have the same radius as the sphere. This is true

for AdS5 × S5 and AdS3 × S3, but is not true for, e.g., AdS7 × S4 which is dual to 6d (2, 0) SCFTs.
15We use momentum conservation to solve p4 in terms of p1, p2, p3, and write 1

stu
= 1

(p1·p2)(p1·p3)(p2·p3)
.
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scattering amplitude in the theory of 6d (2,0) supergravity coupled to 21 Abelian tensor

multiplets [47]

A(2,0) ∼ G(6)
N δ8(Q)

(
δI1I2δI3I4

s
+
δI1I4δI2I3

t
+
δI1I3δI2I4

u

)
. (5.4)

After dividing by the dimensionless quantity G
(6)
N δ8(Q), the amplitude is also conformally

invariant in 6d. Finally, [10] also observed that the form of double-trace anomalous di-

mensions coincides with the partial wave decomposition coefficients of the 10d scattering

amplitudes. Moreover, the use of the 10d conformal block diagonalizes the mixing problem

of double-trace operators. We have not investigated the counterparts of these problems in

six dimensions, but it is likely that the questions will have similar answers. We hope to

return to these questions in the future.

5.2 Conjecture of four-point functions with general weights

Motivated by the above similarities, we propose that a hidden SO(6, 2) symmetry exists

for AdS3 × S3, in the same sense of the AdS5 × S5 case. This symmetry will translate

into a prescription for writing down a generating function for all one-half BPS four-point

functions.

Let us define from HI1I2I3I4 a crossing-symmetric function

HI1I2I3I4
k1k2k3k4

= K

(
t12t34

x2
12x

2
34

)−1 HI1I2I3I4k1k2k3k4

x2
12x

2
34x

2
13x

2
24

. (5.5)

In particular, for ki = 1

HI1I2I3I4
1111 =

HI1I2I3I41111

x2
12x

2
34x

2
13x

2
24

≡
HI1I2I3I4k=1

x2
12x

2
34x

2
13x

2
24

, (5.6)

is a function of x2
ij only. Our main contention is that HI1I2I3I4

1111 can be promoted into a

generating function by doing a simple replacement in the arguments

H(xi, ti)
I1I2I3I4 ≡ HI1I2I3I4

1111 (x2
ij + tij) . (5.7)

All the functions HI1I2I3I4
k1k2k3k4

with higher values of ki are obtained by first expanding H(xi, ti)

in powers of tij and then collecting all the possible monomials
∏
i<j(tij)

γij that appear in

HI1I2I3I4
k1k2k3k4

. For example,

HI1I2I3I4
11nn ∝ tn−1

34

(
δI1I2δI3I4

D1,1,n+1,n+1

x2
12

+ δI1I4δI2I3
D2,1,n,n+1

x2
23

(5.8)

+δI1I3δI2I4
D1,2,n,n+1

x2
13

)
,

HI1I2I3I4
2222 ∝ t12t34

(
δI1I2δI3I4

(
D2233

x2
12

+ 3
D1133

x4
12

)
+ δI1I3δI2I4

D2323

x2
13

+ δI1I4δI2I3
D3223

x2
23

)
(5.9)

+t14t23

(
δI1I4δI2I3

(
D3223

x2
23

+ 3
D3113

x4
23

)
+ δI1I3δI2I4

D2323

x2
13

+ δI1I2δI3I4
D2233

x2
12

)
+t13t24

(
δI1I3δI2I4

(
D2323

x2
13

+ 3
D1313

x4
13

)
+ δI1I2δI3I4

D2233

x2
12

+ δI1I4δI2I3
D3223

x2
23

)
.
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The last expression is nothing but (3.14). We have also checked that expanding the gener-

ating function gives HI1I2I3I4
kkkk which agree completely with our position space calculations

for k = 3, 4.

We also conjecture that GI1I2I3I40,k1k2k3k4
takes the form of generalized free fields correlator,

plus the contributions due to the mixing of the single-trace operator with double-trace

operators in the external operators [48, 49]. This is based on the explicit examples with

k = 1, 2, 3, 4 which we have computed using the position space method. In principle,

given HI1I2I3I4
k1k2k3k4

the function GI1I2I3I40,k1k2k3k4
can be fixed by requiring consistency with the

conformal block decomposition. For example, if we consider four-point functions with

{k1, k2, k3, k4} = {n, n, 1, 1}, consistency with the single-trace conformal blocks in the

decomposition fixes GI1I2I3I40,nn11 to be

GI1I2I3I40,nn11 ∝ δI1I2δI3I4 + nσUδI1I3δI2I4 + nτUV −1δI1I4δI2I3 . (5.10)

For n = 1, this reduces to (3.10). When n > 1, we note that GFF only gives the s-

channel term proportional to δI1I2δI3I4 . The t and u-channel terms are present because

the supergravity fields are dual to a mixture of the single-trace operator and double-trace

operators. The mixing is needed to ensure that the extremal three-point functions vanish

from the supergravity calculation.

An important observation is that the above structure based on hidden conformal sym-

metry only exists for the one-half BPS operators which come from the 6d tensor multiplets.

To see this, we can use the same position space method to compute examples of four-point

functions where the one-half BPS operators are from the 6d supergravity multiplet. The

computation for the one-half BPS operators from the Σl multiplets is almost identical to

that of the ΘI
l multiplets. From the selection rules, it is clear that both cases with the

same l ≥ 0 have the same exchange Witten diagrams. Moreover, solving the supercon-

formal Ward identities uniquely determines the contact diagrams in terms of the cubic

couplings. However the cubic couplings in these two cases are different [44]. The results

for Σl therefore differ from the tensor four-point functions of ΘI
l with Ii set to be equal,

and we do not observe a similar structure.

6 Future directions

We conclude with an outline of a few research avenues for the future:

• The hidden conformal symmetry enjoyed by four-point tree-level correlators of tensor

modes in AdS3 × S3 is in many respects similar to the one that holds in AdS5 × S5.

(There is a unique supermultiplet in 10d IIB supergravity, and the symmetry holds

there for four-point tree-level correlators of all KK modes). Both backgrounds are

conformally flat, and the relevant flat space superamplitudes enjoy an accidental con-

formal symmetry, respectively in six and ten dimensions. A third case that should

work along very similar lines is AdS2 × S2, where the superamplitude of four ex-

ternal hypermultiplets takes the simple form G
(4)
N δ4(Q) · c. The kinematic prefactor
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G
(4)
N δ4(Q) is again dimensionless, while c is a just constant, and thus obviously confor-

mally invariant in four dimensions. Assuming the hidden symmetry, it is immediate

to write down the generating function of four-point tree-level correlators of all KK

modes. It would be interesting to perform some explicit checks of this ansatz.

• Another closely related background is AdS3×S3×T 4. Upon reducing IIB supergravity

on T 4, one obtains (2, 2) supergravity in 6d. Our methods can be straightforwardly

applied to that case.

• It will be important to achieve a first-principles derivation of the hidden conformal

symmetry, perhaps along the line of [50], which related Einstein gravity to conformal

gravity. Such a conceptual understanding would also elucidate the regime of validity

of the symmetry. For example, does it extend to higher-point tree-level correlators

in AdS5 × S5?16 Is it broken by 1/N corrections and how?

• In this paper, we focussed on the four-point functions of the modes ΘI
l , the KK tower

that arises from the 6d tensor multiplets. Two additional KK towers, Γl and Σl, arise

from the 6d (2, 0) supergraviton. We would like to study the most general four-point

functions which involve operators from all these multiplets. We have found that four-

point correlators of Σl fields are incompatible, at least naively, with 6d conformal

symmetry, but perhaps the symmetry is present in a more subtle way.

• The full set of tree-level four-point functions is also needed to solve the mixing prob-

lem of double-trace operators and extract the spectrum of anomalous dimensions.

These tree-level data can then be used to bootstrap one-loop four-point functions,

following the blueprint of [6–8, 11–13]. An interesting open question is if the hidden

symmetry for the ΘI
l multiplet survives the supergravity loop corrections.

• Related to the previous point, it would also be useful to perform an analysis using

the Lorentzian inversion formula, along the lines of [10], a method independent of

our supergravity computation.
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A Twisting small N = 4

In this section we give a derivation of the superconformal Ward identities from topological

twisting. Let us focus on the global part of the small N = 4 superconformal algebra and

consider only the holomorphic part. The algebra is psu(1, 1|2), and is captured by the

following commutation relations

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0 , [J i0, J
j
0 ] = iεijkJk0 ,

[L0, G
aA
± 1

2

] = ∓1

2
GaA± 1

2

, [J i0, G
aA
± 1

2

] = −1

2
(σi)a bG

bA
± 1

2

,

{Ga+
1
2

, Gb−− 1
2

)} = 2εabL0 − 2σabi J
i
0 , {Ga+

− 1
2

, Gb−1
2

} = 2εabL0 + 2σabi J
i
0 ,

{Ga+
1
2

, Gb−1
2

} = 2εabL1 , {Ga+
− 1

2

, Gb−− 1
2

} = 2εabL−1 , (A.1)

{Ga+
± 1

2

, Gb+± 1
2

} = {Ga−± 1
2

, Gb−± 1
2

} = 0 ,

[L1, G
ab
1
2

] = 0 , [L1, G
ab
− 1

2

] = Gab1
2

, [L−1, G
ab
1
2

] = −Gab− 1
2

, [L−1, G
ab
− 1

2

] = 0 .

where (σi)
a
b are the Pauli matrices and σabi = (σi)

a
cε
bc with ε+− = ε+− = 1. This algebra

has an SU(2)R symmetry as well as an SU(2)A automorphism under which the supercharges

GaAn transform in (2,2). Following [39], we can consider a topological twist by looking at

the cohomology of the nilponent supercharge

Q = G++
− 1

2

+G−+
1
2

, {Q,Q} = 0 . (A.2)

Operator which are in the Q-cohomology class are one-half BPS under the left-moving

psu(1, 1|2)

{Q,O(0)] = 0 , O(0) 6= {Q, O′(0)] ⇒ h = j . (A.3)

Moreover, one can construct the following twisted sl(2,C) algebra which is Q-exact

{Q, G−−− 1
2

} = 2L−1 − 2σ−−i J i0 ≡ 2L̂−1 ,

{Q,−G+−
1
2

} = 2L1 − 2σ++
i J i0 ≡ 2L̂1 ,

{Q, G−−1
2

} = 2L0 + 2σ+−
i J i0 ≡ 2L̂0 .

(A.4)

Let us revisit the one-half BPS operators with SU(2)L indices contracted with spinors

O(z; y) = Oα1,...,αk(z)vα1 . . . vαk , vα = (1, y) . (A.5)

When y = z, it amounts to inserting operators in nontrivial Q-cohomology classes at the

origin and then twist-translating using L̂−1

O(z; z) = ezL̂−1O(0)e−zL̂−1 . (A.6)

Because L̂−1 is Q-exact, the twist-translated operators remain in the Q-cohomology. Since

the twist construction uses only the left-moving part of the 2d algebra, it commutes with

the right-moving algebra. By standard arguments, the correlators of such twisted operators

have no holomorphic dependence. This directly translates into our superconformal Ward

identity (2.13).
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B Proca-Chern-Simons versus massive Chern-Simons

In [44], it was shown that the vector fields from the spin-2 multiplet Γk and spin-1 mul-

tiplet Σk satisfy second-order Proca-Chern-Simons equations. Meanwhile their first-order

derivatives satisfy a linear constraint and there are only three independent degrees of free-

dom. In this appendix we show that we can use field redefinition to solve the constraints,

which gives three vector fields described by the first-order massive Chern-Simons equations.

Moreover, we point out that the magnetic coupling to currents in [44] disappears after the

field redefinition. We will work with the cubic vertices where the vector fields couple to

two scalar fields σ. The case with two scalar fields sI is analogous.

We start from the equation of motion of the gauge fields with quadratic corrections [44]

P±k−1A
±
µ + P±k+3C

±
µ = ±(W σσA±

123 +W σσC±
123 )Jµ , (B.1)

P∓k+1P
±
k−1A

±
µ − P∓k+1P

±
k+3C

±
µ = (V σσA±

123 −V σσC±
123 )Jµ ± (W σσA±

123 P±k−1Jµ −W
σσC±
123 P±k+3Jµ) ,

(B.2)

where

Jµ = ∂µσ1σ2 − σ1∂µσ2 , (B.3)

and P±m is the differential operator

(P±m)µ
λ = εµ

νλOν ±mδλµ . (B.4)

The coefficients W σσA±
123 , W σσC±

123 , V σσA±
123 , V σσC±

123 are defined in [44] but their precisely

forms are not important to us. One can act with P∓k+1 on the first equation and solve for

one variable in the second equation to get Proca-Chern-Simons equations for A±µ and C±µ .

We also notice that the couplings to the current Jµ are both electric and magnetic (i.e.,

V µJµ and εµνρVµOνJρ).

We now define the following new field

L±µ = ±1

2
(P0Aµ − P0Cµ) +

2(k1 − 1)(k2 − 1)(k + 1)

(k1 + 1)(k2 + 1)
Jµ . (B.5)

In terms of L±µ we can rewrite (B.2) as

± 2P0L
±
µ ∓ 2A±µ ∓ 2C±µ − (k − 1)(k + 1)A±µ + (k + 1)(k + 3)C±µ = Q±µ (σ) , (B.6)

where the Q±µ (σ) on the r.h.s. is the quadratic corrections from σ and does not depend

on A±µ , C±µ , L±µ . The explicit expression of Q±µ (σ) can be derived from above, but we will

not write it down here. Therefore, in terms of A±µ , C±µ , L±µ we have a system of first-

order massive Chern-Simons equations (B.5), (B.1), (B.6) which can be more compactly

written as

(P01 + M±)

 L±µ
A±µ
C±µ

 = Q±µ (σ) . (B.7)
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Here 1 is the unit matrix and M± is a mass matrix. The vector Q±µ (σ) contains all the

other terms depending on σ. The mass matrix can be diagonalized by using the following

linear combinations

V ±1,µ =
k(1− k)L±µ − 2(k + 1)2A±µ + k(k + 3)C±µ

24/3k(k + 2)1/3
, (B.8)

V ±2,µ =
kL±µ − (k + 2)A±µ

24/3k(k + 2)1/3
, (B.9)

V ±3,µ =
A±µ + C±µ

24/3k(k + 2)1/3
. (B.10)

In terms of V ±i,µ, we have

(P01±Λ)

 V ±1,µ
V ±2,µ
V ±3,µ

 = Q′±µ (σ) . (B.11)

where Λ = diag{k − 1,−k − 1, k + 3} is the diagonalized mass matrix. Moreover, as a

result of (B.5) one can check that there is only only electric coupling in Q′±µ (σ), i.e., no

εµνρOνJρ appears. These eigenvectors are the fields appeared in our tables 1, 2. We can

identify V ±1,µ, V ±2,µ, V ±3,µ respectively with V ±µ (at level k − 1), Y ∓µ (at level k − 1), W±µ (at

level k + 1).

C AdS3 Witten diagrams

In this appendix we discuss the computation of exchange Witten diagrams which are unique

toAdS3. Exchange diagrams of other fields, such as scalars, Proca fields, massive symmetric

traceless tensors can be computed using the standard method. See, e.g., appendix A of [2]

for a summary of formulae.

C.1 Contact Witten diagrams with three derivatives

Before we start discussing exchange Witten diagrams, it is useful to first look at a special

type of contact Witten diagrams which has an odd number of derivatives. The special

contact Witten diagram is built from contact vertices of the type

εµνρ (∂µφ1∂νφ2∂ρφ3)φ4φ5 . . . , (C.1)

and has three derivatives. We will focus on the case where only four scalar fields are

involved, though it is straightforward to generalize the result to include more scalar fields.

We are looking at the following contact Witten diagram (we have distributed the three

derivatives on the external legs 1, 3 and 4) defined by the integral

W (134)
con ≡

∫
d3z

z3
0

z3
0εµνρ∂µG

∆1
B∂(z, x1)∂νG

∆3
B∂(z, x3)∂ρG

∆4
B∂(z, x4)G∆2

B∂(z, x2) , (C.2)

where G∆i
B∂(z, xi) is the bulk-to-boundary propagator

G∆i
B∂(z, xi) =

(
z0

z2
0 + (~z − ~xi)2

)∆i

. (C.3)
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This integral can be evaluated to the following

W (134)
con = x∆4−∆1−∆2−∆3

13 x−∆1+∆2+∆3−∆4
14 x2∆2

24 r∆1+∆2−∆3−∆4
34

iπΓ(∆1+∆2+∆3+∆4
2 )

Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

× (z − z̄)(D̄∆1+2,∆2,∆3+1,∆4+1 + D̄∆1+1,∆2,∆3+2,∆4+1 −∆4D̄∆1+1,∆2,∆3+1,∆4) ,

(C.4)

where z and z̄ are the chiral and anti-chiral cross ratios. The D̄-functions are related to

the standard D-functions

D∆1∆2∆3∆4 ≡
∫
d3z

z3
0

G∆1
B∂(z, x1)G∆2

B∂(z, x2)G∆3
B∂(z, x3)G∆4

B∂(z, x4) , (C.5)

via∏4
i=1 Γ(∆i)

Γ(Σ− 1
2d)

2

π
d
2

D∆1∆2∆3∆4(x1, x2, x3, x4) =
rΣ−∆1−∆4

14 rΣ−∆3−∆4
34

rΣ−∆4
13 r∆2

24

D̄∆1∆2∆3∆4(U, V ), (C.6)

where d = 2 and 2Σ ≡
∑4

i=1 ∆i.

C.2 Exchange Witten diagrams of massless and massive Chern-Simons fields

We now move on to the exchange Witten diagram of massless and massive Chern-Simons

fields. The propagator satisfies the equation of motion

P±k−1G
mCS,k,±
µ;ν (z1, z2) = ∓gµνδ(z1, z2) + (. . .)δk,1 , (C.7)

where . . . are suitable terms added to make the differential operator invertible [52]. The

corresponding vector field has conformal dimension ∆ = k. When k = 1, the vector field

is a massless gauge field in the bulk and when k 6= 1 the vector is massive. The exchange

diagram is defined by

WCS,k,± =

∫
d3z

z3
0

d3w

w3
0

Jµ(z;x1, x2)GmCS,k,±µ;ν (z, w)Jν(w;x3, x4) , (C.8)

where Jµ(z;x1, x2) is a conserved current made out of scalar bulk-to-boundary propagators

Jµ(z;x1, x2) = ∂µG
∆φ

B∂(z, x1)G
∆φ

B∂(z, x2)−G∆φ

B∂(z, x1)∂µG
∆φ

B∂(z, x2) , OµJµ = 0 . (C.9)

The massive case can be treated using the method of [31] with slight modifications. The

massless case however requires special attention, and the method of [31] leads to formal

divergences. In this subsection, we will give a different method to compute these exchange

diagrams which can be applied to both the massless and the massive case. For simplicity,

we will restrict ourselves to the case where the external operators have the same dimension

∆i = ∆φ.

The idea is to view the exchange Witten diagram as solution to a differential equation

with certain boundary conditions. We first look at Witten exchange diagrams of Proca

fields as a more familiar example. The exchange diagrams are defined by

WProca,k =

∫
d3z

z3
0

d3w

w3
0

Jµ(z;x1, x2)GProca,k,µ;ν(z, w)Jν(w;x3, x4) , (C.10)
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The propagator GProca,k of a Proca field with squared-mass m2
k = (k − 1)2 − 2 (and dual

dimension ∆k = k) satisfies

(ProcakGProca,k)µ;ν = gµνδ(z1, z2) + (. . .)δk,1 , (C.11)

where

(Procak)µ
ν ≡ �δνµ − gνρOρOµ −m2

kδ
ν
µ . (C.12)

Now consider only the z integral in (C.10)

IProca,k,ν(x1, x2;w) ≡
∫
d3z

z3
0

Jµ(z;x1, x2)GProca,k,µ;ν(z, w) . (C.13)

We act on the integral with the differential operator

L
(1)
AB + L

(2)
AB + L(w)

AB , (C.14)

where L
(i)
AB are the conformal generators of the boundary point xi, and L(w)

AB is AdS isom-

etry generator of the bulk point w. Because the z-integral is conformally covariant, it is

annihilated by this operator

(L
(1)
AB + L

(2)
AB + L(w)

AB)IProca,k,ν(x1, x2;w) = 0 . (C.15)

It follows that

− 1

2

(
L

(1)
AB + L

(2)
AB

)2
δνµIProca,k,ν(x1, x2;w) = −1

2

(
L(w)
AB

)2
δνµIProca,k,ν(x1, x2;w) . (C.16)

Note that the operator on the l.h.s. is nothing but the two-particle quadratic Casimir. The

operator on the r.h.s. is the AdS Laplacian with a constant shift [53]

− 1

2

(
L(z)
AB

)2
δνµ = (�+ 2)δνµ = (Procak)µ

ν + gνρOρOµ + (k − 1)2δνµ . (C.17)

Now we can use the equation of motion of the bulk-to-bulk propagator and perform the

remaining w-integral. The operator gνρOρOµ can be ignored because we can integrate by

part. Its contribution vanishes since IProca,k,ν(x1, x2;w) is coupled to a conserved current.

All in all, we get (
Casimir(12) − (k − 1)2

)
WProca,k = W con

Proca , (C.18)

where W con
Proca is a two-derivative contact diagram

W con
Proca =

∫
d3z

z3
0

Jµ(z;x1, x2)Jµ(z;x3, x4) . (C.19)

Instead of evaluating the diagram using the method of [31], we can alternatively solve

the differential equation (C.18). We first need a special solution. This is not difficult for

the cases when the method of [31] applies, and the answer is a finite sum of D-functions.

The equation (C.18) has two homogenous solutions, which are the conformal block of the

exchanged single-trace operator and its shadow. They can be fixed by imposing boundary
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conditions. When we decompose W con
Proca, it should contain only single-trace and double-

trace blocks, and no shadow conformal block. Moreover, in the Euclidean regime, i.e.,

z̄ = z∗, W con
Proca is single-valued (as is clear from its integral definition). These conditions

uniquely fix the solution.

To compute the massive Chern-Simons exchange diagrams, we first notice the following

relations among differential operators

(P−k−1P
+
k−1)µ

ν = �δνµ − OµOν − ((k − 1)2 − 2)δνµ︸ ︷︷ ︸
(Procak)µν

. (C.20)

It then follows from (C.7) that the massive Chern-Simons propagator can be obtained from

applying P∓k−1 on (Maxwell) Proca propagators

GmCS,±,k
µ;ν = ∓(P∓k−1GProca,k)µ;ν . (C.21)

We now act on the massive Chern-Simons exchange diagram with the two-particle quadratic

Casimir. Using the same argument and (C.21), we get the following differential equation(
Casimir(12) − (k − 1)2

)
WCS,k,± = W con

mCS,k , (C.22)

where

W con
mCS,k =

∫
d3z

z3
0

Jµ(z;x1, x2)(P∓k−1J)µ(z;x3, x4) = ±2(W (134)
con −W (234)

con ) + (k − 1)W con
Proca .

(C.23)

Note that for k = 1, i.e., the massless case, there are only three-derivative contact terms.

When k > 1, we can write

W con
mCS,k = W̃ con

mCS,k +
1

k − 1
WProca,k , (C.24)

so that the differential equation for W̃ con
mCS,k reduces to the massless form. The special

solutions are again easy to guess, and take the general form of (z − z̄) times a sum of D-

functions. We will list a few explicit solutions in a moment. The equation (C.22) also admit

homogenous solutions which are the conformal block for the single-trace operator and its

shadow operator. To fix the solution we require that in the conformal block decomposition,

the single-trace conformal block has dimension (h, h̄) =
(
k+1

2 , k−1
2

)
for +, and (h, h̄) =(

k−1
2 , k+1

2

)
for −. There is no shadow conformal block. The solution is also single-valued

in the Euclidean regime.

Using this method, we can easily compute the massless and massive Chern-Simons

exchange diagrams. Let us list the values of the diagrams which appear in this paper.17

∆φ = 1.

WCS,1,± =
1

x2
12x

2
34

π

2

(
∓(z − z̄)UD̄2211 + log V

)
. (C.25)

17We have rescaled the exchange diagrams by some overall factors which are unimportant to the position

space method.
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∆φ = 2.

WCS,1,± =
π

x4
12x

4
34

(
∓(z − z̄)U2(D̄3311 + 2D̄3322) + log V

)
, (C.26)

WCS,3,± =
πU

x4
12x

4
34

(
±2(z − z̄)UD̄3322 + D̄1223 − V D̄1232 − D̄2123 + D̄2132

)
. (C.27)

∆φ = 3.

WCS,1,± =
π

x6
12x

6
34

(
∓(z − z̄)U3(D̄4411 + 3D̄4422 + 3D̄4433) + 2 log V

)
, (C.28)

WCS,3,± =
πU

x6
12x

6
34

(
± 2(z − z̄)U2(3D̄4422 + 4D̄4433) + 3(D̄1234 − V D̄1243 − D̄2134 + D̄2143)

+ 4U(D̄2334 − V D̄2343 − D̄3234 + D̄3243)
)
, (C.29)

WCS,5,± =
πU2

x6
12x

6
34

(
±(z − z̄)UD̄4433 + D̄2334 − V D̄2343 − D̄3234 + D̄3243

)
. (C.30)

∆φ = 4.

WCS,1,± =
π

x8
12x

8
34

(
∓(z − z̄)U4(3D̄5511+12D̄5522 +15D̄5533 +10D̄5544)+18 log V

)
, (C.31)

WCS,3,± =
πU

x8
12x

8
34

(
± 2(z − z̄)U3(12D̄5522 + 20D̄5533 + 15D̄5544)

+12(D̄1245 −V D̄1254 −D̄2145 +D̄2154) + 20U(D̄2345 −V D̄2354 −D̄3245 +D̄3254)

+15U2(D̄3445 − V D̄3454 − D̄4345 + D̄4354)
)
, (C.32)

WCS,5,± =
πU2

x8
12x

8
34

(
± (z − z̄)U2(5D̄5533 + 6D̄5544) + 5(D̄2345 − V D̄2354 − D̄3245 + D̄3254)

+ 6U(D̄3445 − V D̄3454 − D̄4345 + D̄4354)
)
, (C.33)

WCS,7,± =
πU3

x8
12x

8
34

(
±2(z − z̄)UD̄5544 + 3(D̄3445 − V D̄3454 − D̄4345 + D̄4354)

)
. (C.34)

C.3 Exchange Witten diagrams of non-dynamical graviton field

The exchange Witten diagrams of graviton field in AdS3 also cannot be evaluated using

the method of [31]. However, it is straightforward to adapt the method from the previous

subsection to the case of non-dynamical gravitons. We will not repeat the analysis but

simply write down the solutions for reader’s reference.

∆φ = 1.

Wgr =
π

2x2
12x

2
34

(2 + U(U − V − 1)D̄2211) . (C.35)

∆φ = 2.

Wgr =
π

x4
12x

4
34

(
4 + U2

(
− D̄2211 − 5D̄2222 + (U − V − 1)(2D̄3311 + 3D̄3322)

))
. (C.36)
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∆φ = 3.

Wgr =
π

x6
12x

6
34

(
12 + U3

(
− 3D̄3311 − 4D̄3322 − 16D̄3333

+ (U − V − 1)(3D̄4411 + 6D̄4422 + 5D̄4433)
))

.

(C.37)

∆φ = 4.

Wgr =
π

x8
12x

8
34

(
288 + U4

(
− 36D̄4411 − 60D̄4422 − 45D̄4433 − 165D̄4444

+ (U − V − 1)(24D̄5511 + 60D̄5522 + 60D̄5533 + 35D̄5544)
))

.

(C.38)
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