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1 Introduction

In this paper, we study aspects of (2, 0) superconformal field theories (SCFTs) in six di-

mensions, as well as their circle and torus compactifications, which lead to maximally

supersymmetric Yang-Mills theories in five and four dimensions. (We will refer to them as

N = 2 and N = 4 in their respective dimension.) In every case, we analyze the low-energy

effective action for the massless fields on the moduli space of vacua. We explain a stream-

lined approach to the powerful non-renormalization theorems of [1–5], which follow from
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maximal supersymmetry.1 This allows us to show that the functional form of the effective

action at the first several orders in the derivative expansion is completely fixed in terms of a

few coefficients. These can then be tracked along the moduli space, and across dimensions.

Up to six-derivative order, all such coefficients can be determined from a one-loop calcula-

tion in five-dimensional N = 2 Yang-Mills theory, using only the standard two-derivative

Lagrangian. Although this Yang-Mills Lagrangian is expected to be corrected by irrelevant

operators, we show that the only such operators that could contaminate our results are

inconsistent with the conformal symmetry of the six-dimensional parent theory. We also

explain why it is in general not possible to reproduce the one-loop result in five dimensions

from an analogous calculation in a genuinely four-dimensional N = 4 Yang-Mills theory.

This understanding leads to a computation of the a-type Weyl anomaly for all (2, 0)

SCFTs, in the spirit of [5], and a new calculation of their R-symmetry anomaly, along the

lines envisioned in [8]. These papers argued that both anomalies are captured by certain

six-derivative terms in the moduli-space effective action, and proposed to fix the coefficients

by comparing to N = 2 or N = 4 Yang-Mills theory in five or four dimensions; they also

raised several puzzles that will be addressed below. Using our results, we show that the

a-anomaly is strictly decreasing under all renormalization group (RG) flows that preserve

(2, 0) supersymmetry, thus verifying the conjectured a-theorem [9] in six dimensions for this

class of flows. We also discuss several field-theoretic arguments for the ADE classification

of the (2, 0) theories. One of these arguments only relies on consistency conditions for the

moduli-space effective action in six dimensions.

We begin with a brief review of (2, 0) SCFTs, and what is known about their anomalies,

before stating our assumptions and summarizing our results in more detail.

1.1 Review of (2, 0) theories

In Lorentzian signature, the (2, 0) superconformal algebra in six dimensions is osp(8∗|4),

whose Bosonic subalgebra is the sum of the conformal algebra so(6, 2) and the R-symmetry

algebra sp(4)R = so(5)R. All well-defined local operators reside in unitary representations

of osp(8∗|4). The only such representation that describes standard free fields is the Abelian

tensor multiplet, which contains the following operators:

• Real scalars ΦI (I = 1, . . . , 5) in the 5 of so(5)R. They satisfy �ΦI = 0 and have

scaling dimension ∆ = 2.

• Weyl Fermions in a 4 of the so(5, 1) Lorentz algebra and the 4 of so(5)R, subject to

a symplectic Weyl reality condition. They satisfy the free Dirac equation and have

scaling dimension ∆ = 5
2 .

• A real, self-dual three-form H = ∗H, which is the field strength of a two-form gauge

field B. Therefore H = dB is closed and co-closed, dH = d ∗H = 0, and its scaling

dimension is ∆ = 3.
1These non-renormalization theorems were originally found by analyzing higher-derivative corrections to

BFSS matrix quantum mechanics [6]. By contrast with the non-renormalization theorems discussed in [7],

which only require eight supercharges but use superconformal symmetry to constrain certain D-terms,

the ones discussed in this paper require maximal supersymmetry but also apply in theories that are not

conformal.
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Since free field theories only admit conventional relevant or marginal interactions in d ≤
4 dimensions, interacting field theories in six dimensions were long thought to be impossible.

Surprisingly, decoupling limits of string theory strongly suggest the existence of interacting

(2, 0) SCFTs in six dimensions [10–12]. For a review, see [13–16] and references therein.

These theories are believed to obey standard axioms of quantum field theory [17, 18], such

as locality and the existence of a stress tensor. However, it is not yet understood how

to properly formulate them, and many properties of the known interacting (2, 0) SCFTs,

including their existence, have been inferred from their embedding into particular string

constructions. Other aspects can be analyzed more generally. For instance, it can be shown

that no (2, 0) SCFT possesses relevant or marginal operators that can be used to deform

the theory while preserving supersymmetry, because the superconformal algebra osp(8∗|4)

does not admit unitary representations that contain such operators [19, 20].2

Every (2, 0) SCFT Tg that can be realized in string theory is locally characterized by

a real Lie algebra g = ⊕igi. (Globally, there is additional data; see for instance [14, 16, 21]

and references therein.) Each gi is either u(1) or a compact, simple Lie algebra of ADE type.

A given gi gives rise to a theory that is locally, but not necessarily globally, decoupled from

the other summands. Moreover, the u(1) summands are locally described by free Abelian

tensor multiplets. As long as we only probe local aspects of the theory, it is therefore

sufficient to focus on one gi at a time.

Let g be u(1) or a compact, simple ADE Lie algebra. In flat Minkowski space R5,1,

the theory Tg has a moduli space of vacua,

Mg =
(
R5
)rg

/Wg . (1.1)

Here rg and Wg are the rank and Weyl group of g. At a generic point, the low-energy

dynamics on the moduli space is described by rg Abelian tensor multiplets valued in the

Cartan subalgebra of g. For this reason, we will also refer to the moduli space as the

tensor branch. The vacuum expectation values (vevs) of the five scalars in each tensor

multiplet parametrize the rg different R5 factors, which are permuted by Wg. These vevs

spontaneously break both the conformal and the so(5)R symmetry. The corresponding

Nambu-Goldstone (NG) Bosons are supplied by the tensor multiplet scalars. The tensor

multiplets, and hence the NG Bosons, weakly interact through higher-derivative, irrelevant

operators that are suppressed by powers of the vevs.

At the boundaries of the moduli space, the low-energy dynamics is described by an

interacting superconformal theory Th, where h ⊂ g is a semisimple subalgebra of lower

rank rh < rg, as well as rg − rh Abelian tensor multiplets. The allowed subalgebras h ⊂ g

are determined by adjoint Higgsing, so that h is itself a sum of compact, simple ADE Lie

algebras. Therefore, the moduli space Mg has the structure one would intuitively expect

from a gauge theory of non-Abelian tensor multiplets in the adjoint representation of g.

This intuition can be sharpened by compactifying Tg on a spatial circle of radius R,

with supersymmetric boundary conditions. It follows from arguments in string theory that

2The same statement also applies to (1, 0) SCFTs in six dimensions [19, 20]. However, all six-dimensional

SCFTs have relevant deformations that break supersymmetry.
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the five-dimensional effective theory, valid below the Kaluza-Klein (KK) scale 1
R , is given

by maximally supersymmetric Yang-Mills theory with gauge algebra g and gauge coupling

g2 proportional to R. Therefore its Coulomb branch exactly coincides with (1.1). The

fact that the five-dimensional description is a weakly-coupled non-Abelian gauge theory

has been essential for exploring the dynamics of Tg using field-theoretic techniques. Since

this description is a standard effective theory, we expect an infinite series of irrelevant

operators, suppressed by powers of the cutoff set by the KK scale.3 What is known about

these corrections will be reviewed below.

1.2 Anomalies

Anomalies are robust observables: even in a strongly-coupled theory, they can often be

computed by utilizing different effective descriptions, some of which may be weakly coupled.

In conformal field theories (CFTs), we can distinguish between ’t Hooft anomalies for

continuous flavor symmetries (these include gravitational and mixed anomalies) and Weyl

anomalies for the conformal symmetry.

The ’t Hooft anomalies for the so(5)R symmetry, as well as gravitational and mixed

anomalies, have been computed for all known (2, 0) SCFTs Tg. They are summarized by

an anomaly eight-form Ig, which encodes the anomalous variation of the action in the

presence of background gauge and gravity fields via the descent procedure [25, 26]. If g is

u(1) or a compact, simple ADE Lie algebra, then (in the normalization of [8]),

Ig =
kg
24
p2(Fso(5)R) + rgIu(1) , kg = h∨g dg , (1.2)

where Fso(5)R is the field strength of the background R-symmetry gauge field, while h∨g
and dg are the dual Coxeter number and the dimension of g, respectively. The anomaly

polynomial Iu(1) for a free Abelian tensor multiplet encodes all gravitational and mixed

anomalies of Tg, as well as a contribution to the R-symmetry anomaly. (Its precise form,

which can be found in [8], will not be needed here.) The anomaly polynomial for g = su(n)

was first obtained in [27]. The general formula (1.2) was conjectured in [8]. It was verified

in [28] for g = so(2n), and in [29] for all ADE Lie algebras.

The conjecture of [8] was in part motivated by the insight that the constants kg in (1.2)

appear in the low-energy effective action for the dynamical fields on the tensor branch of

Tg, where the theory is weakly coupled. For simplicity, we will focus on rank one adjoint

breaking patterns g→ h⊕ u(1), which lead to moduli spaces described by a single Abelian

tensor multiplet. The difference ∆k = kg − kh is the coefficient of a Wess-Zumino (WZ)

term, which arises at six-derivative order. This term is needed to match the irreducible ’t

Hooft anomaly for the spontaneously broken so(5)R symmetry via a contribution from the

R-symmetry NG Bosons. It was suggested in [8] that ∆k could be computed by reducing

the theory on a circle and integrating out massive W-Bosons on the Coulomb branch of

3A different point of view was advocated in [22–24], where it was argued that the five-dimensional Yang-

Mills description could be extended beyond its regime of validity as an effective theory with a cutoff. Here

we will work within standard effective field theory, and hence our results are neither in conflict with, nor

shed light on, this proposal.
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five-dimensional N = 2 Yang-Mills theory. By analogy with N = 4 Yang-Mills theory in

four dimensions, where a WZ term is generated at one loop on the Coulomb branch [30], one

might expect that ∆k only depends on nW = dg − (dh + 1), the number of W-Bosons that

become massive upon breaking g→ h⊕u(1). However, it was emphasized in [8] that this is

inconsistent with the values of ∆k and nW for the breaking patterns su(n+1)→ su(n)⊕u(1)

and so(2n) → su(n) ⊕ u(1), even at large n. One of our goals in this paper is to explain

why the four-dimensional intuition is misleading.

CFTs in even spacetime dimensions also have Weyl anomalies, which manifest as a

violation of conformal invariance in the presence of a background spacetime metric. This

is quantified by the anomalous trace of the stress tensor in such a background, whose

scheme-independent part takes the following general form [31],

〈Tµµ 〉 = aEd +
∑
i

ciIi . (1.3)

Here the spacetime dimension d is even, Ed is the Euler density, and the Ii are local Weyl

invariants of weight d. The number of independent Ii depends on d, e.g. in four dimensions

there is one, and in six dimensions there are three.4

The dimensionless constants a and ci are well-defined observables of the CFT. They

are determined by certain flat-space correlators of the stress tensor at separated points.

In two and four dimensions, it was shown [9, 32–34] that unitarity RG flows interpolating

between CFTs in the UV and in the IR respect the following inequality,

aUV > aIR . (1.4)

Therefore, a provides a quantitative measure of the number of degrees of freedom in a CFT.

An analogous a-theorem has been conjectured [9], and was recently investigated [35], for

RG flows in six dimensions, but a proof is currently lacking. The ability to test this

conjecture is limited by the paucity of interacting six-dimensional CFTs for which a has

been computed.

In (2, 0) SCFTs, the three independent c-type anomalies that are present in six dimen-

sions are believed to be proportional to a single constant c (see [36, 37] for some compelling

evidence). We can therefore normalize c1,2,3 = c in (1.3). It is convenient to fix the re-

maining normalizations by demanding that the Weyl anomalies of a free Abelian tensor

multiplet Tu(1), which were computed in [36], take the following simple values,

au(1) = cu(1) = 1 . (1.5)

Less is known about the Weyl anomalies of interacting (2, 0) theories Tg with g a

compact, simple ADE Lie algebra. At the conformal point, cg can be extracted from a

stress tensor two-point function, while ag requires a four-point function. For g = su(n) and

so(2n), the leading large-n behavior of ag and cg can be determined form their AdS7 × S4

and AdS7 × RP4 duals [8, 38]. Subleading corrections for the su(n) case were suggested

4In two dimensions there is no c-type anomaly and the a-anomaly coincides with the Virasoro central

charge. As a result, it is typically denoted by c, even though it multiplies the two-dimensional Euler density.

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
8

in [39, 40], motivated by aspects of the holographic dual. A recent conjecture [37], which

applies to all g and passes several non-trivial consistency checks, identifies cg with the

central charge of known chiral algebra in two dimensions,

cg = 4h∨g dg + rg . (1.6)

A method for determining ag was proposed in [5]. Following the work of [33, 34] in

four dimensions, it was shown in [5, 35] that ag appears in the effective action on the

tensor branch of Tg, where conformal symmetry is spontaneously broken. We again focus

on rank one breaking g → h ⊕ u(1). Now the difference ∆a = ag − (ah + 1) appears as

the coefficient of a six-derivative WZ-like interaction term for the dilaton (the NG Boson

of spontaneous conformal symmetry breaking), which is needed to match the a-anomalies

of the UV and IR theories. The authors of [5] argued for a non-renormalization theorem

that fixes ∆a ∼ b2, where b is the coefficient of a four-derivative term in the tensor-branch

effective action. By compactifying the theory on T 2 and tracking this four-derivative term

as the torus shrinks to zero size, they argued that b could be extracted from a one-loop

computation in four-dimensional N = 4 Yang-Mills theory with gauge algebra g. This

leads to b ∼ nW , the number of massive W-Bosons. However, just as for ∆k above, the

large-n asymtotics of ag for g = su(n) and g = so(2n), which are known from holography,

imply that ∆a cannot just depend on nW . This puzzle will also be resolved in the course

of our investigation.

1.3 Assumptions

In this paper, we will analyze the moduli space effective actions of (2, 0) SCFTs and their

compactifications on S1 and T 2. The goal is to learn as much as possible about the

interacting theories using field-theoretic arguments and a small number of assumptions.

While these assumptions are currently motivated by explicit string constructions, we hope

that they can ultimately be justified for all (2, 0) SCFTs — including putative theories

that do not have a known string realization. (This approach to the (2, 0) theories has,

for instance, been advocated in [16].) In this spirit, the arguments and conclusions of this

paper only rely on the following assumption.

Assumption. When a six-dimensional (2, 0) SCFT is supersymmetrically compactified on

a spatial S1
R of radius R, the effective low-energy description at energies far below the

Kaluza-Klein scale 1
R is given by a five-dimensional N = 2 Yang-Mills theory.

As was already stressed above, we expect this low-energy description to be corrected by

irrelevant operators, which are suppressed by powers of the KK scale, and we make no a

priori assumptions about their coefficients.

Since unitarity requires the gauge algebra g in five dimensions to be a real Lie algebra

comprised of u(1) and compact simple summands, our assumption implies that every (2, 0)

theory is associated with such a Lie algebra. For the remainder of this paper, we will

use Tg to collectively denote all (2, 0) theories that give rise to five-dimensional Yang-Mills

theories with gauge algebra g. However, we will not assume that all such theories are the
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same. For instance, their five-dimensional descriptions might differ by irrelevant operators.

From this point of view, it is no longer clear that a (2, 0) SCFT whose five-dimensional

description is a u(1) gauge theory must be a free Abelian tensor multiplet, but we will show

that this is indeed the case in section 3.4. For ease of presentation, we will focus on one

summand of g at a time, since our results are not affected by this. Throughout the paper,

g will therefore denote u(1) or a compact, simple Lie algebra.

We also do not input the assumption that g is simply laced, even though we are

considering a standard S1 compactification. (In particular, we do not turn on outer auto-

morphism twists [41]; see [14, 42] for a recent discussion.) Instead, we will allow arbitrary

g and derive the ADE restriction from consistency conditions in field theory. We will also

review standard arguments that show why Tg has a moduli space of vacua given by (1.1),

and why the allowed breaking patterns are determined by adjoint Higgsing.

So far we have only mentioned the gauge algebra g. In gauge theory, one should specify

a gauge group G, whose Lie algebra is g. This is needed to define global aspects of the

theory, such as the spectrum of allowed line operators or partition functions on topologically

non-trivial manifolds. In maximally supersymmetric Yang-Mills theories that descend from

(2, 0) SCFTs, the choice of G arises due to subtle properties of the six-dimensional parent

theory (see for instance [14, 16, 43]). Much of our discussion only refers to the Lie algebra

g, but we will also encounter some global issues that depend on a choice of gauge group G.

1.4 Summary of results

In section 2 we consider the low-energy effective action on the moduli space of Tg in flat

Minkowski space R5,1. We focus on rank one breaking patterns g → h ⊕ u(1), so that

the moduli space is described by a single Abelian tensor multiplet. We review the WZ-like

six-derivative terms that are required for the matching of the R-symmetry anomaly in (1.2)

and the Weyl a-anomaly in (1.3) between the UV and IR theories [5, 8, 35]. We then give a

simple proof of the non-renormalization theorem of [5], which implies that all terms in the

effective action up to six-derivative order are controlled by a single coefficient b residing

at four-derivative order. In particular, the coefficients of the six-derivative WZ terms are

quadratically related to b,5

∆k = kg − kh ∼ b2 , ∆a = ag − (ah + 1) ∼ b2 . (1.7)

Here ∼ implies equality up to model-independent constants that are fixed by supersymme-

try. Our proof of the non-renormalization theorems leading to (1.7) only relies on results

from superconformal representation theory [19, 20]. We also present a complementary

point of view based on scattering superamplitudes for the fields in the tensor multiplet.

In section 3 we study the (2, 0) theories Tg on R4,1 × S1
R. By our assumption in

section 1.3, the low-energy description is a five-dimensional N = 2 Yang-Mills theory

deformed by higher-derivative operators. As in six dimensions, we use non-renormalization

theorems to track the Coulomb-branch effective action from the origin, where the five-

dimensional Yang-Mills description is valid, to large vevs, where it is simply related to

5As we will explain in section 2, this statement only holds if the fields in the Abelian tensor multiplet

are canonically normalized.
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the tensor branch effective action of the six-dimensional parent theory Tg. This leads to

new results about both regimes. The Yang-Mills description allows us to calculate the

coefficient b appearing in (1.7) by integrating out W-Bosons at one loop, and via (1.7)

also the coefficients of the six-dimensional WZ terms. (This is possible despite the fact

— emphasized in [8] — that the R-symmetry WZ term vanishes when it is reduced to

five dimensions.) Conversely, the conformal invariance of Tg forces the leading possible

higher-derivative operators at the origin of the five-dimensional Coulomb branch to vanish.

Finally, matching the massive 1
2 -BPS states on the Coulomb and tensor branches leads to

the requirement that g be simply laced.

In section 4, we combine the computation of b from section 3 with the relations (1.7)

obtained in section 2 to compute the Weyl anomaly ag and the R-symmetry anomaly kg
for all (2, 0) theories Tg. For the a-anomaly, we find

ag =
16

7
h∨g dg + rg , (1.8)

in agreement with previous large-n results for g = su(n) and g = so(2n) from holography.

We also show that the a-anomaly decreases under all RG flows that preserve (2, 0) super-

symmetry, in agreement with the conjectured a-theorem [9]. As we will see, the positivity

of ∆a for all such flows essentially follows from (1.7).

For the R-symmetry anomaly kg we recover (1.2), which was derived in [29] by con-

sidering a one-loop exact Chern-Simons term in five dimensions that involves dynamical

and background fields. By contrast, we access ∆k through a six-derivative term for the

dynamical fields. The coefficient ∆k is quantized, because it multiplies a WZ term in the

tensor-branch effective action. We show that this quantization condition can always be

violated when g is not simply laced. This constitutes an alternative argument for the ADE

restriction on g.

Both our result (1.8) for the a-anomaly, and the conjectured formula (1.6) for the c-

anomaly are linear combinations of h∨g dg and rg, which determine the anomaly eight-form

in (1.2). In fact, once such a relationship between the independent Weyl and ’t Hooft

anomalies is assumed, (1.6) and (1.8) can be obtained by fitting to the known anomalies

of a free Abelian tensor multiplet and one reliable large-n example from holography. As

in four dimensions [44], linear relations between Weyl and ’t Hooft anomalies are captured

by anomalous stress-tensor supermultiplets, which contain both the anomalous divergence

of the R-current and the anomalous trace of the stress tensor. For six-dimensional SCFTs,

these anomaly multiplets are currently under investigation [45].

In section 5 we consider (2, 0) SCFTs Tg on R3,1×T 2, where T 2 = S1
R×S1

r is a rectan-

gular torus of finite area A = Rr. We describe their moduli spaces of vacua, which depend

on a choice of gauge group G, and the singular points at which there are interacting N = 4

theories. In addition to the familiar theory with gauge group G, which resides at the origin,

there are typically additional singular points at finite distance ∼ A−
1
2 (sometimes with a

different gauge group), which move to infinite distance when the torus shrinks to zero size.

We illustrate these phenomena in several examples and explain the underlying mechanism.

As before, we use non-renormalization theorems to determine the four-derivative terms in
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the Coulomb-branch effective action via a one-loop calculation in five-dimensional N = 2

Yang-Mills theory, which now includes a sum over KK modes. In general, the result cannot

be interpreted as arising from a single N = 4 theory in four dimensions. We also deter-

mine the leading higher-derivative operators that describe the RG flow into the different

interacting N = 4 theories on the moduli space.

Appendix A summarizes aspects of scattering superamplitudes in six and five dimen-

sions, which provide an alternative approach to the non-renormalization theorems discussed

in this paper (see especially section 2.3).

2 The tensor branch in six dimensions

In this section we analyze the low-energy effective Lagrangian Ltensor on the tensor branch

of a (2, 0) theory Tg in six-dimensional Minkowski space R5,1. For simplicity, we focus on

branches of moduli space described by a single Abelian tensor multiplet, which arise from

breaking patters of the form g→ h⊕ u(1). Here h is a sum of compact simple Lie algebras

that is obtained by deleting a single node in the Dynkin diagram of g, i.e. by adjoint

Higgsing. We review what is known about Ltensor on general grounds, before turning to a

systematic discussion of the constraints that follow from supersymmetry.

2.1 General properties

We consider branches of moduli space that are parametrized by the vevs 〈ΦI〉 of the five

scalars in a single Abelian tensor multiplet. At low energies, the fields in the tensor

multiplet become free, i.e. they satisfy the free equations of motion reviewed in section 1.1.

Naively, these are summarized by a quadratic Lagrangian,

Lfree = −1

2

5∑
I=1

(∂µΦI)2 − 1

2
H ∧ ∗H + (Fermions) , (2.1)

where the signs are due to the fact that we are working in Lorentzian signature −+ · · ·+.

However, the fact that H is self-dual implies that H ∧∗H = 0. While this is not a problem

classically, where the self-duality constraint can be imposed on the equations of motion,

defining the quantum theory of a free self-dual three-form requires some sophistication.

Nevertheless, it is well understood (see for instance [14, 16, 46] and references therein).

Below we will deform Lfree by adding higher-derivative operators constructed out of the

fields in the tensor multiplet. These cause no additional complications beyond those that

there are already present at the two-derivative level. With this in mind, we will use Lfree

to denote the theory of a free Abelian tensor multiplet.

The vevs 〈ΦI〉 spontaneously break both the conformal symmetry and the R-symmetry.

Since ΦI is a vector of so(5)R, the R-symmetry is broken to so(4)R. It is convenient to

introduce radial and transverse variables,

Ψ =

(
5∑
I=1

ΦIΦI

) 1
2

, Φ̂I =
ΦI

Ψ
. (2.2)
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The field Ψ has dimension two, while the Φ̂I are dimensionless. Therefore 〈Ψ〉 is the only

dimensionful parameter, which sets the scale of conformal and R-symmetry breaking. The

fluctuations of Ψ describe the dilaton, the NG Boson of conformal symmetry breaking, and

the fluctuations of the transverse fields Φ̂I describe the four NG Bosons that must arise

upon breaking so(5)R → so(4)R. Note that
∑5

I=1 Φ̂IΦ̂I = 1, so that the Φ̂I describe a unit

S4 = SO(5)R/SO(4)R.

Upon activating 〈ΦI〉, some degrees of freedom in Tg acquires masses of order
√
〈Ψ〉.

The remaining massless degrees of freedom are the interacting theory Th and the Abelian

tensor multiplet containing the NG Bosons (2.2). It follows from Goldstone’s theorem that

the theories at the origin and on the tensor branch decouple at very low energies, and

moreover that the multiplet of NG Bosons becomes free. We will focus on an effective

Lagrangian Ltensor for the Abelian tensor multiplet. Integrating out the massive degrees of

freedom at the scale
√
〈Ψ〉 induces weak, higher-derivative interactions for the NG Bosons

and their superpartners.6 Schematically,

Ltensor = Lfree +
∑
i

fi(Φ
I)Oi , (2.3)

where Oi is a higher-derivative operator of definite R-charge and scaling dimension that is

constructed out of fields in the Abelian tensor multiplet. The higher-derivative interactions

are constrained by (non-linearly realized) conformal and R-symmetry, as well as (2, 0)

supersymmetry. For instance, every Oi in (2.3) is multiplied by a scale-invariant coefficient

function fi(Φ
I) of the moduli fields, so that their product is marginal and so(5)R invariant.

If we expand the ΦI in fluctuations around their vevs 〈ΦI〉, then (2.3) reduces to a standard

effective Lagrangian with irrelevant local operators suppressed by powers of the cutoff√
〈Ψ〉. Integrating out massive fields at the scale

√
〈Ψ〉 also leads to irrelevant interactions

that couple the NG Bosons and their superpartners to the interacting SCFT Th at the origin.

Below, we will comment on why such couplings will not play a role in our discussion.

The constraints of non-linearly realized conformal symmetry for the self-interactions of

the dilaton Ψ were analyzed in [35] (see also [5, 47]). The leading dilaton self-interactions

arise at four-derivative order and are controlled by a single dimensionless coupling b,7

b
(∂Ψ)4

Ψ3
⊂ Ltensor . (2.4)

Note that this term is not invariant under rescaling Ψ, and hence this definition of b is tied

to the canonically normalized kinetic terms in (2.1). In this normalization, b controls the

on-shell scattering amplitude of four dilatons at tree level [35]. It follows from a dispersion

relation for this amplitude that b ≥ 0, and that b = 0 if and only if the dilaton is completely

non-interacting [48], just as in the proof of the four-dimensional a-theorem [33, 34].

At six-derivative order, conformal symmetry requires a very particular interaction term

for the dilaton. Schematically, it is proportional to

∆a
(∂Ψ)6

Ψ6
⊂ Ltensor , ∆a = ag − (ah + 1) . (2.5)

6We follow the standard rules for counting derivatives in supersymmetric theories: ∂µ and H both have

weight 1, Fermions (including the supercharges) have weight 1
2
, and the scalars ΦI have weight 0.

7Our coupling b should not be confused with a similar coupling that appears in [35]. In particular, our

b is dimensionless, while the one in [35] is not. They are related by bus = bthem/4〈Ψ〉.
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Again, it is convenient to define it using tree-level dilaton scattering amplitudes [35]. The

term in (2.5) is required by anomaly matching between the UV theory Tg and the IR theory

consisting of Th and an Abelian tensor multiplet. The a-anomaly is, in a sense, irreducible

and non-Abelian. It therefore requires a non-trivial WZ-like term for the dynamical dilaton,

even if the background metric is flat [33, 34].

A similar WZ term for the NG Bosons Φ̂I is required by anomaly matching for the

so(5)R symmetry [8]. As is typical of such a term, it is convenient to write it as an integral

over a seven-manifold X7 that bounds spacetime. Under suitable conditions (explained

in [8]) we can extend the NG fields to a map Φ̂ : X7 → S4 and pull back the unit volume

form ω4 on S4 (i.e.
∫
S4 ω4 = 1) to define the a three-form Ω3 via

dΩ3 = Φ̂∗(ω4) . (2.6)

The WZ term of [8] can then be written as follows,

∆k

6

∫
X7

Ω3 ∧ dΩ3 ⊂ Ltensor , ∆k = kg − kh . (2.7)

This term is needed to match the irreducible so(5)R anomaly k in (1.2) between the UV and

IR theories. Requiring the six-dimensional action to be well defined leads to a quantization

condition [8],

∆k ∈ 6Z . (2.8)

The presence of the term (2.7) and the quantization condition (2.8) are general require-

ments, which do not rely on the known answer (1.2) for kg in ADE-type (2, 0) theories.

(This will play an important role in section 4.3.) Since the three-form Ω3 only depends

on the scalars Φ̂I , it must contain three derivatives. Therefore the integrand in (2.7) is a

seven-derivative term integrated over X7, which leads to a conventional six-derivative term

in spacetime (albeit one that is not manifestly so(5)R invariant). This term gives rise to

interactions involving at least seven NG Bosons.8

In this paper, we will focus on the four- and six-derivative terms in Ltensor and their

relation to anomalies via the WZ terms in (2.5) and (2.7). As was reviewed above, these

terms control the tree-level scattering amplitudes for the Abelian tensor multiplet up to and

including O(p6) in the momentum expansion. At higher orders in the derivative expansion,

the discussion becomes more involved. On the one hand there are additional terms in

Ltensor, which are increasingly less constrained. On the other hand, it is no longer legitimate

to ignore the interaction between the Abelian tensor multiplet and the interacting SCFT Th
at the origin. Such interactions generally contribute non-analytic terms to the scattering

amplitudes of tensor-branch fields that reflect the interacting massless degrees of freedom

in Th. However, just as in four dimensions [34, 50], these effects do not contaminate the

contribution of the WZ terms at O(p6), or the terms at lower order.9

It is natural to ask what massive degrees of freedom should be integrated out at the

scale
√
〈Ψ〉 in order to generate the interaction terms in (2.4), (2.5), and (2.7), as well

8The same phenomenon occurs in the chiral Lagrangian for low-energy QCD: a WZ term arises at

four-derivative order, and it describes an interaction involving two K mesons and three pions [49].
9We thank Z. Komargodski for a useful discussion about this issue.
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as other higher-derivative terms. In maximally supersymmetric Yang-Mills theories these

are the W-Bosons and their superpartners, which become massive on the Coulomb branch.

String constructions suggest that the analogous objects in (2, 0) theories are dynamical

strings (see for instance [15, 16] for a review) — we will refer to them as W-strings. On

the tensor branch, the supersymmetry algebra is modified to include a brane charge ZIµ
proportional to 〈ΦI〉.10 This brane charge is activated by 1

2 -BPS strings, whose tension

is therefore proportional to 〈Ψ〉. On the tensor branch, such strings arise as dynamical

solitons, which can be identified with the W-strings [8], and act as sources for the two-form

gauge field B in the tensor multiplet. This in turn explains several features of Ltensor. For

instance, (2.8) can be interpreted as a Dirac quantization condition for these strings [8]. It

was also suggested in [8] that the interaction terms in Ltensor might arise by integrating out

the W-strings. This intuition can be made precise, and even quantitative, by compactifying

the theory to five-dimensions, as we will see in section 3.

2.2 Non-renormalization theorems

We will now discuss the constraints on Ltensor that follow from supersymmetry. In partic-

ular, we will derive a strong form of the non-renormalization theorems in [5]. As in related

work on maximally supersymmetric Yang-Mills theories [1–4], these non-renormalization

theorems were originally obtained by examining special properties of particular multi-

Fermion terms in the moduli-space effective action, which imply differential equations for

some of the coefficient functions fi(Φ
I) in (2.3). Here we present a simple, general approach

to these non-renormalization theorems, which elucidates their essentially group-theoretic

origin. The discussion proceeds in two steps:

1) We expand all coefficient functions fi(Φ
I) in (2.3) in fluctuations around a fixed vev,

ΦI = 〈ΦI〉+ δΦI , fi(Φ
I) = fi|〈Φ〉 + ∂Ifi|〈Φ〉 δΦI +

1

2
∂I∂Jfi|〈Φ〉 δΦIδΦJ + · · · .

(2.9)

This reduces every interaction term fi(Φ
I)Oi in (2.3) to an infinite series of standard

local operators, multiplied by suitable powers of 〈ΦI〉. These local operators are

constructed out of fields in the free Abelian tensor multiplet described by Lfree, and

hence they must organize themselves into conventional (irrelevant) supersymmetric

deformations of Lfree.

2) If certain operators that arise by expanding a certain coefficient function fi(Φ
I) can-

not be identified with any supersymmetric deformation of Lfree, then fi(Φ
I) satisfies a

non-renormalization theorem. This step requires a complete understanding of all su-

persymmetric local operators that can be constructed in the theory described by Lfree.

We will now demonstrate this logic by constraining the higher-derivative terms in Ltensor.

However, note that the method is very general. In particular, the theory around which we

expand need not be free. The main simplification is that expanding the coefficient functions

10The supersymmetry algebra also admits another brane charge, which is associated with 1
2
-BPS three-

branes, i.e. objects of codimension two. We will not discuss them here.
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as in (2.9) leads to the problem of classifying conventional supersymmetric deformations,

which can be addressed by a variety of methods. Some applications of our approach to

moduli-space non-renormalization theorems have already appeared in [51, 52].

In the present example, we can use the fact that Lfree is a (free) SCFT to invoke a

classification of supersymmetric deformations that can be obtained using superconformal

representation theory [19]. However, any other method of classifying supersymmetric de-

formations is equally valid. Below, we will also mention approaches based on scattering

superamplitudes, as well as superspace. It follows from results in [19] that all Lorentz-

scalar supersymmetric deformations of a single, free Abelian tensor multiplet fall into two

classes,11 which we will refer to as F -terms and D-terms:

• F -term deformations are schematically given by

LF = Q8
(

Φ(I1 · · ·ΦIn) − (traces)
)
, (n ≥ 4) . (2.10)

The operator Φ(I1 · · ·ΦIn) − (traces) is 1
2 -BPS, which is why LF only involves eight

supercharges. It is therefore a four-derivative term. The R-symmetry indices of the

supercharges and the scalars are contracted so that LF transforms as a traceless

symmetric (n− 4)-tensor of so(5)R. The restriction n ≥ 4 is due to the fact that LF

vanishes when n ≤ 3.

• D-term deformations take the form

LD = Q16O , (2.11)

where O is a Lorentz scalar. Such terms always contain at least eight derivatives.

As a simple illustration of our method, we use it to demonstrate the well-known non-

renormalization of the kinetic terms. (As explained in section 2.1, this result is also required

by conformal symmetry.) In the presence of non-trivial coefficient functions, expanding

the kinetic terms leads to two-derivative interactions involving three or more fields in the

Abelian tensor multiplet. For instance,

f2(ΦI)(∂Φ)2 →
(
f2|〈Φ〉 + ∂If2|〈Φ〉 δΦI + · · ·

)
(∂Φ)2 , (2.12)

where the ellipsis denotes terms containing additional powers of δΦI . The constant ∂If2|〈Φ〉
multiplies a two-derivative interaction of three scalars. However, the allowed deforma-

tions (2.10) and (2.11) require at least four derivatives, and hence ∂If2|〈Φ〉 = 0. Since this

holds at every point 〈ΦI〉, we conclude that f2(ΦI) cannot depend on the moduli and must

in fact be a constant. Analogously, the other fields in the tensor multiplet must also have

moduli-independent kinetic terms.

This reasoning straightforwardly extends to the higher derivative terms in Ltensor,

which first arise at four-derivative order. (There are no supersymmetric deformations of

11Using two or more Abelian tensor multiplets, it is also possible to construct a six-derivative 1
4
-BPS

deformation [19].
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Lfree with only three derivatives.) Consider, for instance, the following term,

f4(ΦI)(∂Ψ)4 →
(
f4|〈Φ〉 + ∂If4|〈Φ〉 δΦI +

1

2
∂I∂Jf4|〈Φ〉 δΦIδΦJ + · · ·

)
(∂Ψ)4 . (2.13)

The constants f4|〈Φ〉 and ∂If4|〈Φ〉 multiply four-derivative interactions involving four and

five fields. The former is R-symmetry invariant, while the latter transforms as a vector of

so(5)R. These terms therefore arise as F -terms (2.10) built on n = 4 and n = 5 scalars,

respectively. The same is true for the traceless part of ∂I∂Jf4|〈Φ〉, which multiplies a

four-derivative interaction containing six fields and can arise from an F -term with n = 6.

However, the trace δIJ∂I∂Jf4|〈Φ〉 multiplies an interaction with four derivatives and six

fields that is invariant under the R-symmetry. Neither an F -term nor a D-term can give

rise to such an interaction. Therefore, it must vanish at every point 〈ΦI〉, and this implies

that f4(ΦI) is a harmonic function,

δIJ∂I∂Jf4(ΦK) = 0 . (2.14)

Since f4(ΦI) multiplies (∂Ψ)4, it follows from so(5)R invariance that f4(ΦI) can only depend

on Ψ. Together with (2.14), this implies that

f4(ΦI) =
b

Ψ3
. (2.15)

A dimensionful constant term in f4(ΦI) is disallowed by scale invariance. This precisely

reproduces the dilaton interaction in (2.4). Note that f4(ΦI) ∼ 1
Ψ3 also follows from

conformal symmetry, without appealing to (2.14). However, the argument that led to (2.14)

immediately generalizes to all other coefficient functions that arise at four-derivative order,

even if they multiply more complicated operators. (For instance, some of them transform

in non-trivial R-symmetry representations.) Therefore all of these functions are harmonic.

Imposing R-symmetry and scale invariance fixes their functional form up to a multiplicative

constant. This was explicitly shown in [5] for terms involving eight Fermions.

In order to see why all of these constants are in fact determined a single overall coef-

ficient, we evaluate the coefficient functions at a fixed vev 〈ΦI〉 and drop the fluctuations

δΦI . All of these terms involve exactly four fields and four derivatives (at leading order

in the fluctuations, scalars without derivatives only contribute vevs), and hence they must

all arise from the same R-symmetry invariant F -term (2.10) built on n = 4 scalars. Thus,

there is a single supersymmetric invariant that governs all four-derivative terms in Ltensor,

which are therefore controlled by a single independent coefficient. We choose it to be the

constant b in (2.4) and (2.15).

The preceding discussion of the four-derivative terms in Ltensor, viewed as a deforma-

tion of Lfree by local operators, was at leading order in this deformation. There are several

ways to understand the effects of the deformation at higher orders:

• In an on-shell approach (see e.g. [5]), where the supersymmetry transformations δfree

of Lfree only close on its equations of motion, the four-derivative terms L4 deform

the transformations to δ = δfree + δ4, where

δ4Lfree ∼ δfreeL4 . (2.16)
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Therefore, the derivative-scaling of δ4 is 5
2 . Since every term in L4 is proportional

to b, we also have δ4 ∼ b. At the next order, the action of δ4 on L4 can only be

cancelled by adding a new term L6 to the Lagrangian, so that

δ4L4 ∼ δ0L6 . (2.17)

We conclude that L6 is a six-derivative term, which is completely determined by δ4

and L4. In particular, every coefficient in L6 must be proportional to b2.

• We can determine the effects of L4 in conformal perturbation theory around Lfree.

At second order, the OPE L4(x)L4(y) between two insertions of the deformation

can contain a contact term L6(x)δ(x − y) that is required by the supersymmetry

Ward identities. This contact term behaves like a tree-level insertion of L6, which

can therefore be viewed as a term in the classical action.12 Since L6 arises by fusing

L4 with itself, we conclude that L6 is a six-derivative term proportional to b2.13

• In an approach based on scattering amplitudes, the relation of L6 and L4 can be

understood through factorization. This will be discussed in section 2.3.

All three points of view show that the four-derivative terms induce terms at six-derivative

order, whose coefficients are fixed by supersymmetry and proportional to b2. In general,

there could also be new supersymmetric invariants that arise at six-derivative order, with

independent coefficients. However, neither the F -terms (2.10) nor the D-terms (2.11)

contribute at that order, so that the six-derivative terms are completely determined by the

four-derivative ones, and in particular by the coefficient b.

Since both ∆a in (2.5) and ∆k in (2.7) are coefficients of six-derivative terms, we

conclude that they are both proportional to b2, with model-independent proportionality

factors that are determined by supersymmetry. In principle these constants can be fixed

by carefully working out the supersymmetry relations between the four- and six-derivative

terms in Ltensor. Instead, we will determine them using a reliable example. For instance,

at large n the dilaton effective action for the breaking pattern su(n+ 1)→ su(n)⊕ u(1) is

given by the DBI action on a probe brane in AdS7. By studying this action, the authors

of [35] found the following relationship,14

∆a =
98304π3

7
b2 . (2.18)

Having fixed the constant of proportionality in this example, we conclude that (2.18) holds

for all (2, 0) theories and breaking patterns, because of supersymmetry. We can similarly

use the known large-n behavior of ksu(n) to fix

∆k = 6144π3 b2 . (2.19)
12This is analogous to the seagull term AµAµ|φ|2 in scalar electrodynamics, which is required by current

conservation and can be viewed as arising from a contact term in the OPE of two currents.
13More explicitly, the only way to generate a δ-function is by applying the equations of motion to a

Wick-contraction of free fields in L4(x) and L4(y). This reduces the derivative order by two, which implies

that L6 must contain six derivatives.
14Our normalization of the a-anomaly differs from that in [35]. They are related by aus =

(9216π3/7)athem.
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2.3 The amplitude point of view

The non-renormalization theorems discussed above can also be understood by consider-

ing on-shell scattering amplitudes in the Abelian theory on the tensor branch. Since this

theory is free at low energies, it is sufficient to consider tree-level amplitudes, which are

meromorphic functions of the external momenta. One advantage of this approach is that

supersymmetry acts linearly on one-particle asymptotic states, so that the supersymmetry

Ward identities constitute a set of linear relations on the set of n-point amplitudes for any

given n. By contrast, in an on-shell Lagrangian approach, the supersymmetry transforma-

tions of the fields are typically deformed, as discussed around (2.16) and (2.17). Moreover,

on-shell scattering amplitudes do not suffer from ambiguities due to field redefinitions.

In the amplitude picture, the role of supersymmetric local operators that can be used

to deform Lfree is played by supervertices. These are local superamplitudes without poles

that satisfy the supersymmetry Ward identities. Every supervertex corresponds to a pos-

sible first-order deformation of Lfree that preserves supersymmetry. The construction of

supervertices is particularly simple in the spinor helicity formalism. For the cases of in-

terest in this paper, this formalism is reviewed in appendix A. The basic strategy is to

split the 16 Poincaré supercharges into 8 supermomenta Q and 8 superderivatives Q. For

instance, the four-point, four-derivative supervertex describing the supersymmetric com-

pletion of H4 + (∂Φ)4 + · · · can be written as a Grassmannian delta function δ8(Q). In

this subsection, we will schematically denote four- and six-derivative interactions by H4

and H6, respectively.

At any point on the tensor branch, the four-derivative supervertex δ8(Q) is multiplied

by the coefficient function f4(ΦI) discussed in the previous subsection. Expanding f4(ΦI)

in fluctuations δΦI of the scalar fields, as in (2.9), leads to soft limits of amplitudes with

extra scalar emissions. Such amplitudes may or may not admit a local supersymmetric com-

pletion, as a supervertex wihtout poles. If there is no such supervertex, the corresponding

soft scalar amplitude must belong to a nonlocal superamplitude, which is completely de-

termined by the residues at its poles. This factorization relation amounts to a differential

equation for the coefficient function f4(ΦI), which leads to a non-renormalization theorem.

As explained in appendix A, the four-derivative, n-point supervertex δ8(Q) corresponds

to a coupling of the form (δΦ+)n−4H4 in Ltensor. Here δΦ+ is the highest-weight component

in the so(5)R multiplet of the scalar fluctuations. All other supervertices at this derivative

order are obtained from δ8(Q) by an so(5)R rotation. In particular, the set of n-point

supervertices at four-derivative order transform as rank (n−4) symmetric traceless tensors

of so(5)R. This is the amplitude version of the classification for F -term deformations

in (2.10). The absence of a supervertex that contains the so(5)R singlet δIJδΦ
IδΦJH4 then

leads to the requirement (2.14) that the coefficient function f4(ΦI) be harmonic. Note that

there does not exist any amplitude that contains the component vertex δΦIδΦIH4, since its

supersymmetric completion as a six-point superamplitude would have to factorize though

lower-point supervertices. However, the leading supervertices δ8(Q) arise at four-derivative

order, so that a four-derivative amplitude cannot factorize through a pair of such vertices.
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Figure 1. Factorization of a six-point amplitude though a pair of H4 vertices.
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δΦH4

Figure 2. Factorization of a 7-point amplitude though a pair of 4-derivative vertices.

The statement that the coefficient functions f6(ΦI) of the six-derivative terms are

quadratically related to the coefficient functions f4(ΦI) that occur at four-derivative order

can also be understood through factorization. First, note that there is no four-point, six-

derivative supervertex in a theory of a single Abelian tensor multiplet. This is because

such a supervertex must be proportional to δ8(Q)(s + t + u), but s + t + u = 0 in a

massless four-point amplitude. There is also no local six-point, six-derivative supervertex

that is an so(5)R singlet. Therefore, the six-point coupling H6 is part of a non-local

superamplitude that is completely determined by its factorization through a pair of four-

point supervertices of the form δ8(Q), and hence it must be proportional to f2
4 . This

factorization channel is shown in figure 1. As in the discussion around (2.18) and (2.19),

the coefficients of proportionality between f6 and f2
4 are fixed by supersymmetry and

can be determined by examining any non-trivial set of superamplitudes that obeys the

supersymmetry Ward identities.

Finally, we would like to examine the quadratic relation (2.19) between the coefficient

∆k of the WZ term in (2.7) and the coefficient b of the four-derivative terms H4. There is a

unique five-point supervertex at four-derivative order, which contains the coupling δΦIH4

and arises by expanding the coefficient function in f4(ΦI)H4. As explained in section 2.1,

the WZ term leads to a six-derivative vertex involving seven scalars. The absence of an

so(5)R singlet supervertex at this derivative order implies that this seven-scalar vertex is

part of a non-local seven-point superamplitude, which is completely determined by factor-

ization. The only possible factorization channel is displayed in figure 2. It involves the

five-point supervertex containing δΦIH4 and the four-point supervertex δ8(Q) containing

H4. This establishes the quadratic relation ∆k ∼ b2 in (2.19).
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3 Compactification to five dimensions

In this section we consider (2, 0) superconformal theories Tg on R4,1 × S1
R, where S1

R is a

spatial circle with radius R and periodic boundary conditions for the Fermions.15 By the

assumption stated in section 1.3, the five-dimensional description, which is valid at energies

far below the KK scale 1
R , is an N = 2 Yang-Mills theory with gauge algebra g and gauge

coupling g2 ∼ R. We will first describe this Yang-Mills theory, including possible higher-

derivative operators that are expected to be present at finite radius R. As in six dimensions,

we then explore the Coulomb branch of Tg on R4,1×S1
R using non-renormalization theorems.

These allow us to interpolate between the five-dimensional Yang-Mills description, which

is valid near the origin, and the effective theory far out on the Coulomb branch, which is

simply related to the effective action on the six-dimensional tensor branch that was dis-

cussed in section 2. In one direction, the five-dimensional Yang-Mills description leads to

information about the six-dimensional theory: the structure of its moduli space, the spec-

trum of dynamical W-strings on the tensor branch, and the coefficient b in (2.4) and (2.15),

which governs the tensor-branch effective action through six-derivative order. Conversely,

the parent theory Tg constrains the five-dimensional effective theory: the properties of

W-strings in six dimensions restrict g to be of ADE type, and the conformal invariance

of Tg requires the leading higher-derivative operators at the origin of the five-dimensional

Coulomb branch to be absent. We also show that the only (2, 0) theories with g = u(1)

are free Abelian tensor multiplets. Some of the arguments in this section are standard,

while others offer a different point of view on known results (see for instance [13–16]). We

include them here partly to render the discussion self-contained, and partly to emphasize

that the conclusions only rely on the assumption stated in section 1.3.

3.1 The Yang-Mills description at the origin

The five-dimensional Lagrangian L
(5)
0 at the origin of the Coulomb branch is a weakly-

coupled Yang-Mills theory with gauge algebra g. For now, we will take g to be the compact

real form of a simple Lie algebra; the case g = u(1) is discussed in section 3.4. More

properly, we should choose a gauge group G, whose Lie algebra is g. This choice arises,

because the six-dimensional theory Tg generally does not possess a conventional partition

function, but rather a family of partition functions valued in a finite-dimensional vector

space — sometimes referred to as the space of conformal blocks [14].16 The ability to

specify the gauge group G in five dimensions reflects the freedom to choose a partition

function in the space of conformal blocks. The ambiguity of the partition function also

implies that Tg does not respect standard modular invariance, e.g. when it is compactified

on tori [14]. Much of the discussion below only depends on the Lie algebra g, but we will

occasionally encounter global issues.

15As was stated in the introduction, we do not consider outer automorphism twists around the circle.
16In this sense, many (2, 0) theories Tg require a slight generalization of standard quantum field theory [14].

It is always possible to obtain theories with a standard partition function by appropriately adding free

decoupled tensor multiplets [21].
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We will work in conventions where g is represented by Hermitian matrices, so that the

structure constants are purely imaginary. Since the gauge field A = Aµdx
µ and the field

strength F = 1
2Fµνdx

µ ∧ dxν = dA− iA∧A are valued in g, they are also Hermitian. The

same is true for the other fields in the N = 2 Yang-Mills multiplet: the scalars φI in the 5

of the so(5)R symmetry, which is preserved by the circle compactification, and symplectic

Majorana Fermions transforming in the fundamental spinor representations of the Lorentz

and R-symmetry. As in four dimensions, A and φI have mass dimension one, while the

Fermions have dimension 3
2 .

In order to give meaning to the gauge coupling g2, we must specify a normalization

for the gauge field A, and hence the Lie algebra g.17 The Lie algebra g decomposes into

a Cartan subalgebra tg and root vectors eα, which diagonalize the adjoint action of the

Cartan subalgebra, i.e. for every h ∈ tg and every root vector eα,

[h, eα] = α(h)eα . (3.1)

The real functional α ∈ t∗g is the root associated with eα, and the set of all roots comprises

the root system ∆g ⊂ t∗g of the Lie algebra g. For every root α ∈ ∆g, there is a unique

coroot hα ∈ tg, which together with e±α satisfies the commutation relations of su(2),18

[eα, e−α] = hα , [hα, e±α] = ±2e±α . (3.2)

We define a normalized, positive-definite trace Trg,

Trg =
1

2h∨g
Tradj , (3.3)

where h∨g is the dual Coxeter number. This induces a positive-definite metric 〈·, ·〉g on the

Cartan subalgebra,

〈h, h′〉g ≡ Trg(hh
′) , h, h′ ∈ tg , (3.4)

and hence also its dual t∗g, which contains the root system ∆g. The definition in (3.3) is in

accord with the standard convention that a short co-root hα, and the corresponding long

root α, both satisfy 〈hα, hα〉g = 〈α, α〉g = 2.19 In these conventions, the instanton number

on S4, which can take all possible integer values, is given by the following expression [54],

1

8π2

∫
S4

Trg(F ∧ F ) ∈ Z . (3.5)

The two-derivative terms in the five-dimensional low-energy theory are given by the

usual Yang-Mills Lagrangian,

L
(5)
0 = − 1

2g2
Trg

F ∧ ∗F +

5∑
I=1

Dµφ
IDµφI − 1

8

5∑
I,J=1

[
φI , φJ

]2
+ (Fermions) + (higher-derivative terms) , (3.6)

17We will recall aspects of Lie algebras and Lie groups as they arise in our discussion. For a systematic

review in the context of gauge theories, see for instance [15, 53].
18In these conventions, the eigenvalues of hα are always integers, rather than half-integers.
19As an example, consider g = su(2), where h∨su(2) = 2. The commutation relations [e+, e−] = h and

[h, e±] = ±2e± imply that hadj = diag(2, 0,−2). Therefore Tradj(h
2) = 8 and Trsu(2)

(
h2

)
= 2.
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where D = d−i[A, ·] is the covariant derivative in the adjoint representation. In five dimen-

sions the gauge coupling g2 has dimensions of length. It follows from the scale-invariance

of the six-dimensional theory that g2 must be proportional to the compactification radius

R. However, our assumptions do not obviously fix the constant of proportionality. We can

motivate the answer by appealing to the following intuitive picture, which can be made

precise in string constructions: at the origin of the Coulomb branch, N = 2 Yang-Mills the-

ories in five dimensions admit particle-like solitons, which are the uplift of four-dimensional

instantons. Their mass is proportional to n
g2

, where n is the instanton number, and since

g2 ∼ R it is tempting to interpret them as massive KK modes of the six-dimensional theory.

We can fix g2 in terms of R by demanding that the mass of the minimal g-instanton-soliton

in flat space (more precisely on S4) coincides with the minimal KK mass 1
R . This leads to

g2 = 4π2R . (3.7)

Note that this picture involves particles whose mass is necessarily of the same order as

the cutoff of the five-dimensional effective theory. Below we will show that (3.7) can be

reliably derived in effective field theory, by extrapolating between five and six dimensions

along the Coulomb branch.

The higher-derivative terms in (3.6) are constrained by N = 2 supersymmetry

and so(5)R symmetry. These constraints were analyzed in [55–57], with the following

conclusions:

• The leading irrelevant operators that can appear in (3.6) occur at four-derivative

order, as supersymmetric completions of non-Abelian F 4 terms. There are two

independent such terms — a single-trace operator and a double-trace operator.20

Schematically,

x g6 tµ1ν1µ2ν2µ3ν3µ4ν4 Trg (Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4) + · · · ⊂ L
(5)
0 , (3.8a)

y g6 tµ1ν1µ2ν2µ3ν3µ4ν4 Trg (Fµ1ν1Fµ2ν2) Trg (Fµ3ν3Fµ4ν4) + · · · ⊂ L
(5)
0 , (3.8b)

where the ellipses denote the supersymmetric completions involving scalars and

Fermions, and the powers of the cutoff g2 are fixed so that x, y are dimensionless

constants. The tensor tµ1ν1µ2ν2µ3ν3µ4ν4 , which determines how the spacetime indices

are contracted, is constructed out of the metric ηµν .21 One particular linear com-

bination of x and y appears in the non-Abelian DBI Lagrangian describing coinci-

dent D4-branes [59].

Both operators in (3.8) are 1
2 -BPS — they can be written as Q8 acting on a gauge-

invariant local operator constructed out of fields in the Yang-Mills multiplet — and

they are the only such operators that preserve the so(5)R symmetry. (See [57] for a

discussion of 1
2 -BPS operators that break the R-symmetry.) On the Coulomb branch,

where F is restricted to the Cartan subalgebra, these operators give rise to 1
2 -BPS,

20When g = su(2), there is only one independent operator, due to trace relations.
21The tensor tµ1ν1µ2ν2µ3ν3µ4ν4 occurs for maximally supersymmetric Yang-Mills theories in all dimensions.

For instance, it is discussed in chapter 12 of [58].
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four-derivative terms that can be tracked along the moduli space. Below we will use

this to argue that x and y must vanish for all (2, 0) SCFTs compactified on S1
R.

• At six-derivative order, there is a single 1
4 -BPS, double-trace operator of the schematic

form Tr2
gD

2F 4 [56]. Generically, this operator induces six-derivative terms on the

Coulomb branch. However, we will see below that it does not contribute on Coulomb

branches described by a single Abelian vector multiplet.

• Starting at six-derivative order, there are full D-terms, which can be written as Q16O,

where O is a gauge-invariant local operator. The leading such O is the Konishi-like

single-trace operator
∑5

I=1 Trg
(
φIφI

)
, and the corresponding D-term is schemati-

cally given by TrgD
2F 4. This term is believed to be present in L

(5)
0 , since it is

needed to absorb a six-loop divergence of the two-derivative Yang-Mills theory [60].

Below, we will show that full D-terms can only affect the Coulomb-branch effective

action at eight-derivative order or higher.

Having described the theory at the origin, we will now explore its Coulomb branch.

3.2 Two-derivative terms and BPS states on the Coulomb branch

The scalar potential in (3.6) restricts the adjoint-valued scalars to a Cartan subalgebra

tg ⊂ g. Therefore, the Coulomb branch is parametrized by 〈φI〉 ∈ R5 ⊗ tg/Wg, where R5

transforms in the 5 of the so(5)R symmetry and Wg is the Weyl group of g, which acts on

tg. At a generic point on the Coulomb branch, the low-energy theory consists of rg Abelian

vector multiplets, with scalars ϕIi and field-strengths fi, which are permuted by the Weyl

group. Their embedding into the non-Abelian fields at the origin can be written as follows,

φI =

rg∑
i=1

hi ϕ
I
i , F =

rg∑
i=1

hifi . (3.9)

Here we use a basis of simple coroots hi for the Cartan subalgebra, which are associated

with the rg simple roots αi via (3.2). Their commutation relations with the root vectors

e±i = e±αi are determined by the Cartan matrix Cij ,

[hi, hj ] = 0 , [e+i, e−j ] = δijhj , [hi, e±j ] = ±Cjie±j . (3.10)

In these equations, the repeated index j is not summed. Substituting (3.9) into (3.6), we

obtain the leading two-derivative effective action on the Coulomb branch,

L
(5)
Coulomb = − 1

2g2
Ωij

(
fi ∧ ∗fj +

5∑
I=1

∂µϕ
I
i ∂

µϕIj

)
+ (Fermions) + · · · , (3.11)

where the ellipsis denotes a variety of possible corrections that will be discussed below.

The kinetic terms are determined by a symmetric, positive-definite matrix,

Ωij = Trg (hihj) = 〈hi, hj〉g . (3.12)
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Note that the normalization of the Abelian gauge fields fi is meaningful, since they are

embedded in the non-Abelian F according to (3.9). More precisely, the fluxes of the fi are

quantized in units dictated by the gauge group G, i.e. they depend on the global properties

of G, not just on its Lie algebra. This will not affect the present discussion, but it will play

a role when we discuss the compactification to four dimensions in section 5.

We obtained (3.11) classically, by restricting the fields in (3.6) to the Cartan subal-

gebra. There are two possible kinds of corrections: quantum corrections that modify the

two-derivative terms in (3.11), and higher-derivative corrections. The latter are present

and will be discussed in section 3.3. The former are known be absent for maximally super-

symmetric Yang-Mills theories in all dimensions.22 Therefore the geometry of the Coulomb

branch is dictated by the classical theory,

Mg = R5 ⊗ tg/Wg , (3.13)

with the flat metric (3.12). The only singularities are of orbifold type and occur at the

boundaries of Mg, where part of the gauge symmetry is restored. The allowed patterns

of gauge symmetry breaking and restoration are governed by adjoint Higgsing. Therefore,

the breaking pattern g→ h⊕ u(1)n with h semisimple and n ≤ rg is allowed if the Dynkin

diagram of h can be obtained from the Dynkin diagram of g by deleting n nodes (see for

instance [61]).

Since the geometry of the Coulomb branch is rigid, it can be extrapolated to vevs |〈φIi 〉|
that are much larger than the KK scale 1

R , i.e. there are no corrections due to KK modes.

Therefore, the moduli spaces in five and six dimensions are identical — they are both given

by (3.13) — and the two-derivative effective actions that describe them are simply related.

Explicitly, the fields in five dimensions are obtained by reducing the six-dimensional fields

to zero modes along S1
R,

ΦI
i →

1

2πR
ϕIi , Hi →

1

2πR

(
fi ∧ dx5 + ∗(5)fi

)
. (3.14)

Here x5 ∼ x5 + 2πR parametrizes the circle and ∗(5) denotes the five-dimensional Hodge

star, so that Hi = ∗Hi in six dimensions. Note that the units of quantization for the fluxes

of Hi are dictated by those of fi, which are in turn determined by the five-dimensional gauge

group G. Using (3.14), the two-derivative action (3.11) can be uplifted to six dimensions,

− πR

g2
Ωij

(
Hi ∧ ∗Hj +

5∑
I=1

∂µΦI
i ∂

µΦI
j

)
+ (Fermions) ⊂ Ltensor . (3.15)

As in section 2, the quadratic Lagrangian for the self-dual fields Hi in (3.15) vanishes,

since Ωij symmetric while Hi ∧Hj is antisymmetric, and hence their non-canonical kinetic

terms may seem meaningless. This is not the case, in part because the fluxes of the Hi are

quantized in definite units. Therefore, global observables, such as partition functions on

22Just as in the discussion around (2.12), this can be shown by expanding any moduli-dependent two-

derivative terms around a fixed vev 〈ϕIi 〉 and noting that the free two-derivative theory does not admit

supersymmetric deformations containing three fields and two derivatives [56, 57].
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closed manifolds, are sensitive to Ωij (see [46] and references therein). Here we will use the

fact that the kinetic terms in (3.15) determine the six-dimensional Dirac pairing for string

sources that couple to the Hi. For a string with worldsheet Σ2 and charges qi,

dHi = qiδΣ2 ⇐⇒ qi =

∫
Σ3

Hi , (3.16)

where δΣ2 is a unit delta function localized on Σ2, which is linked by the three-cycle Σ3. The

integer-valued Dirac pairing between two strings with charges qi, q
′
i is then given by [62],23

R

g2
Ωijqiq

′
j ∈ Z . (3.17)

This gives operational meaning to the non-trivial kinetic terms for the Hi in (3.15). The

importance of such terms was recently emphasized in [63], and also played a role in [29].

A set of candidate string sources for the Hi is furnished by the dynamical W-strings on

the tensor branch, which were mentioned at the end of section 2.1. When the theory is com-

pactified on a circle, it is natural to compare them to the BPS states of the five-dimensional

Yang-Mills theory on the Coulomb branch (see [15, 42] for a brief summary). We will focus

on the electrically charged W-Bosons, which correspond to roots α ∈ ∆g, and magnetically

charged monopole strings, which correspond to coroots hα. Both the W-Bosons and the

monopole strings are 1
2 -BPS and their masses are proportional to the vevs 〈ϕIi 〉. As such,

they become parametrically light near the origin of the Coulomb branch, where their prop-

erties are completely determined by the low-energy Yang-Mills theory. On the other hand,

it is believed that such 1
2 -BPS states can be reliably extrapolated to large vevs, where the

theory is effectively six-dimensional. In that regime, both the W-Bosons and the monopole

strings must arise from six-dimensional W-strings. The former correspond to strings that

wrap S1
R, as in [10], while the latter describe strings that lie in the five non-compact di-

mensions. Therefore, the electric charges of the W-Bosons and the magnetic charges of the

monopoles must arise from the same set of W-string charges in six dimensions.

This six-dimensional requirement leads to constraints on the five-dimensional effec-

tive theory. Consider the W-Boson corresponding to a fixed simple root αi. It follows

from (3.10) that its electric charges (ei)j with respect to the Abelian gauge fields fj are

given by the entries Cij in the ith row of the Cartan matrix. These charges can be mea-

sured by evaluating the jth electric flux across a Gaussian surface Σi
3 that surrounds the

W-Boson,

(ei)j = Cij =
Ωjk

g2

∫
Σi3

∗fk . (3.18)

Similarly, the magnetic charges (mi)j of the monopole-string corresponding to the simple

coroot hi, measured with respect to fj , are given by

(mi)j = δij =
1

2π

∫
Σi2

fj , (3.19)

23If the Hi were not self dual, the pairing in (3.17) would be valued in 1
2
Z (as in four-dimensional

electrodynamics) rather than in Z. The relative factor of 1
2

arises because the self-dual and the anti-self-dual

parts of Hi contribute equally to the angular momentum, whose quantization leads to the Dirac condition.
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where Σi
2 links the monopole string. If we use (3.14) to express the integrals in (3.18)

and (3.19) as integrals of the six-dimensional three-form flux Hi over Σi
3 and Σi

2×S1
R, and

we demand that these integrals measure the same six-dimensional W-string charge (qi)j ,

as defined in (3.16), then we obtain

(qi)j = 2πδij , Cij =
4π2R

g2
Ωij . (3.20)

Since (3.12) implies that Ωij is symmetric, the same must be true for the Cartan matrix

Cij . However, this is only possible if g is simply laced. Note that this argument crucially

relies on properties of the six-dimensional parent theory, specifically its W-strings. It does

not imply that all five-dimensional N = 2 Yang-Mills theories with non-ADE gauge groups

are inconsistent. For instance, such theories arise by activating outer automorphism twists

around the compactification circle, as in [14, 41, 42]. However, this ruins the symmetry

between wrapped and unwrapped W-strings that lead to (3.20). Previous arguments for

the ADE restriction used anomaly cancellation on the W-string worldsheet [64], or self-

duality and modular invariance in (2, 0) theories with standard partition functions [13, 65].

In section 4.3 we will describe another argument for the ADE restriction that only relies

on the consistency of the low-energy effective theory on the six-dimensional tensor branch.

We can use (3.20) to derive the relationship between g2 and R. In general, the Cartan

matrix is given by

Cij =
2〈αi, αj〉g
〈αj , αj〉g

. (3.21)

If g is simply laced, then all αj have the same length; in our conventions 〈αj , αj〉g = 2.

Therefore Cij precisely coincides with Ωij as defined in (3.12), so that (3.20) reduces to

g2 = 4π2R , (3.22)

in agreement with (3.7). Together with (3.20), this shows that the Dirac quantization

condition (3.17) for the W-strings amounts to the statement that the entries of the Cartan

matrix are integers.

3.3 Four-derivative terms on the Coulomb branch

The higher-derivative terms in L
(5)
Coulomb can arise in two ways: classically, by restrict-

ing higher-derivative terms that are already present in the effective Lagrangian L
(5)
0 at

the origin to the Coulomb branch; and quantum mechanically, by integrating out W-

Bosons. In general, understanding these corrections ultimately requires detailed knowl-

edge of the higher-derivative terms in L
(5)
0 , including D-terms. However, just as in six

dimensions, the first few orders in the derivative expansion of L
(5)
Coulomb are protected by

non-renormalization theorems.

We again restrict the discussion to rank one Coulomb branches with a single Abelian

vector multiplet that arise by breaking g → h ⊕ u(1). The vevs 〈ϕI〉 of the scalars in this

vector multiplet still break the so(5)R symmetry to so(4)R, which leads to four NG Bosons,
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but since the five-dimensional theory is not conformal, there is no dilaton. Nevertheless, it

is useful to introduce the radial variable

ψ =

(
5∑
I=1

ϕIϕI

) 1
2

. (3.23)

As in section 3.2, the kinetic terms in L
(5)
Coulomb are determined by the embedding of ϕI , f

into the non-Abelian fields φI , F at the origin,

φI = tϕI , F = tf , t ∈ tg . (3.24)

Here t ∈ tg is a Cartan generator whose commutant in g is h ⊕ u(1),24 so that the kinetic

terms on the Coulomb branch are given by

− 1

2g2
Trg

(
t2
)(

f ∧ ∗f +
5∑
i=I

∂µϕ
I∂µϕI

)
+ (Fermions) ⊂ L

(5)
Coulomb . (3.25)

As in maximally supersymmetric Yang-Mills theories in other dimensions [1–4], the

dependence of the first several higher-derivative terms in L
(5)
Coulomb on the scalars ϕI is

tightly constrained. Here we will follow the logic of section 2.2: first expand the moduli-

dependent coefficient functions in the effective Lagrangian around a fixed vev, and then

impose the constraints of supersymmetry on the resulting local operators. It follows from

the analysis in [55–57] that the possible supersymmetric deformations of single free Abelian

vector multiplet take exactly the same form as the F - and D-term deformations (2.10)

and (2.11) of a free Abelian tensor multiplet in six dimensions. The former are four-

derivative terms of the form Q8
(
ϕ(I1 · · ·ϕIn) − (traces)

)
with n ≥ 4, which transform as

symmetric, traceless (n − 4)-tensors of so(5)R. The latter first arise at eight-derivative

order, and there are no independent six-derivative deformations. Therefore the conclusions

of section 2.2 still apply, with minimal modifications. In particular, the four-derivative

terms in L
(5)
Coulomb are now controlled by two dimensionless coefficients b(5) and c(5), which

we define as follows, (
b(5)

ψ3
+ c(5)g6

)
(∂ψ)4 ⊂ L

(5)
Coulomb . (3.26)

As in section 2.2, the ψ-dependence of the coefficient function in parentheses follows from

the fact it must be harmonic and so(5)R invariant. Since the theory is not conformal, the

term proportional to c(5) is not a priori forbidden. As in six dimensions, all six-derivative

terms in L
(5)
Coulomb are determined by the lower-order terms. Here we will focus on the

four-derivative terms, and in particular on (3.26). As in section 2.3, these conclusions also

follow from considerations involving superamplitudes (see also appendix A).

Since the dependence of (3.26) on the dimensionful gauge coupling g is completely

determined by the non-renormalization theorem, we can fix the coefficients b(5) and c(5) at

parametrically weak coupling. In this limit, c(5) can only arise from a classical contribution

24We denote the Cartan generator by t rather than h, in order to avoid confusion with the subalgebra h⊂g.
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due to four-derivative terms in the Lagrangian L
(5)
0 at the origin. The only such terms are

the two 1
2 -BPS terms described around (3.8), with independent dimensionless coefficients

x, y. Restricting the non-Abelian gauge fields at the origin to the Cartan direction t

shows that

c(5) ∼ xTrg(t
4) + y

(
Trg(t

2)
)2
. (3.27)

We can change t by considering different rank one adjoint breaking patterns, which samples

different linear combinations of x and y.25

The fixed dependence of (3.26) on ψ enables us to extrapolate to large vevs |〈ψ〉| and

compare with the six-dimensional effective Lagrangian Ltensor, as we did for the kinetic

terms in section 3.2. However, in that regime, the scale-invariance of the six-dimensional

theory forbids the constant c(5) in (3.26). By comparing with (3.27) for different choices

of t, we conclude that both x and y must vanish. Therefore, the leading possible higher-

derivative terms (3.8) at the origin of the five-dimensional Coulomb branch are absent.

For g = su(2), this was argued in [66] via a comparison with little string theory. Here we

see that it is a simple and general consequence of the fact that the six-dimensional (2, 0)

theory is scale invariant.

We now apply the same logic to the coefficient b(5) in (3.26). Since it does not depend

on the gauge coupling g, it can only arise from the two-derivative Yang-Mills Lagrangian

in (3.6) by integrating out massive W-Bosons at one loop. Upon turning on a vev along the

Cartan element t, the gluons in the adjoint representation of g decompose into the massless

gluons of h and the u(1) photon, as well as massive W-Bosons. The later are labeled by

roots α ∈ ∆g that do not reside in the root system of h, i.e α ∈ ∆g\∆h. The u(1) charge of

a W-Boson labeled by α is given by α(t). Carrying out the one-loop computation expresses

b(5) as a sum over W-Bosons, weighted by their u(1) charges,

b(5) =
1

128π2

∑
α∈∆g\∆h

|α(t)| . (3.28)

Up to an overall constant, this result can be understood using a simple scaling argument:

the coefficient b(5) is determined by the one-loop scalar box integral in figure 3, with W-

Bosons labeled by roots α running in the loop (see for instance [67]). It is instructive to

examine this integral as a function of the spacetime dimension d. There are four powers of

|α(t)| that arise from the vertices. If the integral over loop momenta is finite, as is the case

here, it scales like d − 8 powers of the W-Boson mass mW (α). Therefore, the diagram in

figure 3 is proportional to |α(t)|d−4|〈ψ〉|d−8. For d = 5 this is consistent with (3.28), since

b(5) multiplies ψ−3 in (3.26). In the special case d = 4, the charges |α(t)| cancel and the

diagram is simply proportional to nW , the total number of W-Bosons.26 Therefore, it is

misleading to extrapolate the four-dimensional answer to other dimensions, since it does

not correctly capture the sum over charges. We will encounter a similar fallacy in section 5.

25The only exception is g = su(2), but in that case x and y are linearly dependent due to trace relations.
26This cancellation can be understood in terms of the conformal symmetry of four-dimensional N = 4

Yang-Mills theory. The four-derivative terms generated by the loop integral in figure 3 are proportional to

∆a(4), the difference between the four-dimensional a-anomaly of the UV and IR theories [33]. Since the

a-anomaly of an N = 4 theory with gauge algebra g is proportional to dg, it follows that ∆a(4) ∼ nW .
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• •

∼ (α(t))4
∫

ddp

(p2+m2
W (α))

4 ∼ (α(t))4md−8
W (α) ∼ |α(t)|d−4 |〈ψ〉|d−8

• •

Figure 3. One-loop box diagram in d spacetime dimensions. The external lines are associated with

the Cartan generator t and the W-Bosons running in the loop correspond to a root α.

Having determined the coefficient b(5) in (3.26), we can use the fact that we know the

exact ψ-dependence of this term to extrapolate it to large vevs. It can then be compared

to the term (2.4) in the six-dimensional effective Lagrangian on the tensor branch, which

we repeat here for convenience

b
(∂Ψ)4

Ψ3
⊂ Ltensor . (3.29)

The coefficient b was defined in a normalization where the six-dimensional dilaton field Ψ

has canonical kinetic terms. (Note that (3.29) is not invariant under rescalings of Ψ.) We

must therefore appropriately renormalize the five-dimensional field ψ to eliminate the non-

canonical kinetic terms in (3.25). Also taking into account factors of 2πR that arise in the

transition from six to five dimensions (see the discussion around (3.14) and (3.15)) gives

b =

(
g2

2πRTrg(t2)

) 1
2

b(5) . (3.30)

Substituting g2 = 4π2R from (3.22) and b(5) from (3.28) then leads to

b =

(
1

8192π3 Trg(t2)

) 1
2 ∑
α∈∆g\∆h

|α(t)| . (3.31)

Note that rescaling t does not change the right-hand side of this formula.

Having determined the coefficient b that governs the four-derivative terms on the tensor

branch, we can use the relations (2.18) and (2.19) to determine the coefficients of the six-

dimensional WZ terms (2.5) and (2.7). As was emphasized in [8], the R-symmetry WZ

term (2.7) vanishes when it is reduced to zero modes along S1
R, because it contains a

derivative along the circle. Nevertheless, we can determine its coefficient by examining the

four-derivative terms, whose reduction to five dimensions is non-trivial.

3.4 The Abelian case

When g = u(1), the description at the origin of the five-dimensional Coulomb branch

involves a single Abelian N = 2 vector multiplet, possibly deformed by higher derivative
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terms. One difference to the non-Abelian case is that the relation between the gauge

coupling g2 and the compactification radius R is no longer fixed by considerations involving

BPS states on the Coulomb branch, as in section 3.2. However, the non-renormalization

theorems discussed in section 3.3 still apply. Since the Abelian theory does not give rise to

any W-Bosons, the constant b computed in (3.31) vanishes. As was discussed around (2.4),

this can only happen if the six-dimensional theory on the tensor branch is locally free.

Therefore, the only (2, 0) SCFTs that give rise to u(1) gauge theories in five dimensions

are locally described by free Abelian tensor multiplets.

4 Applications

In this section we will combine the results of sections 2 and 3 to compute the Weyl anomaly

ag and the R-symmetry anomaly kg for all (2, 0) SCFTs Tg. We also prove that ag strictly

decreases under every RG flow that preserves (2, 0) supersymmetry. Finally, we use our

computation of kg to offer another argument for the ADE restriction on the Lie algebra g.

4.1 Computing the anomalies ag and kg

Upon breaking g → h ⊕ u(1) in six dimensions, the anomaly mismatch between the UV

theory Tg and the IR theory, which consists of the interacting SCFT Th and an Abelian

tensor multiplet, is given by (2.18) and (2.19), which we repeat here,

∆a = ag − (ah + 1) =
98304π3

7
b2 , ∆k = kg − kh = 6144π3 b2 . (4.1)

The constant b was determined in (3.31) via a one-loop computation in five dimensions.

Substituting (3.31) into (4.1), we find

∆a =
12

7
X , ∆k =

3

4
X , X =

1

Trg(t2)

 ∑
α∈∆g\∆h

|α(t)|

2

. (4.2)

Note that the denominator of X can also be expressed as a sum over W-Bosons using (3.3),

Trg(t
2) =

1

2h∨g
Tradj(t

2) =
1

2h∨g

∑
α∈∆g\∆h

(α(t))2 . (4.3)

Here the roots in ∆h do not contribute, because t commutes with all elements of h.

In order to express X in (4.2) in terms of more familiar Lie-algebraic data, it is con-

venient to introduce the vector ωt ∈ t∗g that is dual to the Cartan element t ∈ tg,

α(t) = 〈ωt, α〉g , ∀α ∈ ∆g , (4.4)

and satisfies

Trg(t
2) = 〈t, t〉g = 〈ωt, ωt〉g . (4.5)

Note that ωt is orthogonal to the hyperplane t∗h ⊂ t∗g, which is spanned by the roots of h.

Recall that the metric 〈·, ·〉g is normalized so that the long roots of g have length-squared 2.
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Next, we partition the root system of g into positive and negative roots ∆±g . We use

∆±h to denote the roots of h that lie in ∆±g . The roots α ∈ ∆+
g \∆+

h correspond to W-

Bosons of positive u(1) charge α(t) > 0 and transform in a representation of h; the roots

−α ∈ ∆−g \∆−h correspond to W-Bosons of charge −α(t). Since the Weyl vectors of g and

h are given by

ρg =
1

2

∑
α∈∆+

g

α , ρh =
1

2

∑
α∈∆+

h

α , (4.6)

we can rewrite ∑
α∈∆g\∆h

|α(t)| = 2
∑

α∈∆+
g \∆+

h

α(t) = 4〈ωt, ρg − ρh〉g . (4.7)

Substituting (4.5) and (4.7) into (4.2), we find that

X =
16〈ωt, ρg − ρh〉2g
〈ωt, ωt〉g

. (4.8)

Finally, we use the fact that ρg − ρh is orthogonal to the hyperplane t∗h ⊂ t∗g spanned

by the roots of h. To see this, recall that the roots in ∆+
g \∆+

h are the positively charged

W-Bosons, which transform in a representation of h. It follows that ∆+
g \∆+

h is invariant

under the Weyl group of h. Hence, the same is true for ρg − ρh, which must therefore be

orthogonal to t∗h. Since ωt is orthogonal to the same hyperplane, we conclude that ρg − ρh
and ωt are parallel. These properties allow us to reduce (4.8) to

X = 16 〈ρg − ρh, ρg − ρh〉g = 16
(
〈ρg, ρg〉g − 〈ρh, ρh〉g

)
. (4.9)

We would now like to apply the Freudenthal-de Vries strange formula

〈ρg, ρg〉g =
1

12
h∨g dg , (4.10)

and similarly for h. This formula only applies if we use the particular metric for which

long roots have length-squared 2. However, the long roots of h in general do not have this

property with respect to the metric 〈·, ·〉g adapted to g. For a general rank one braking

g→ h⊕ u(1), we have h = ⊕ihi, where the hi are compact, simple Lie algebras. Then the

metrics 〈·, ·〉hi adapted to hi are related to the metric adapted to g as follows,

〈·, ·〉g = N
(i)
h⊂g 〈·, ·〉hi . (4.11)

The normalization factors N
(i)
h⊂g depend on the particular embedding of h in g. They are

determined by the lengths of long roots `i of hi with respect to the metric on g,

N
(i)
h⊂g =

1

2
〈`i, `i〉g , `i a long root of hi ⊂ g . (4.12)

If g is simply laced, then all roots have length-squared 2, so that N
(i)
h⊂g = 1, but in general

this is not the case.
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g ag cg kg

u(1) 1 1 0

su(n) 16
7 n

3 − 9
7n− 1 4n3 − 3n− 1 n3 − n

so(2n) 64
7 n

3 − 96
7 n

2 + 39
7 n 16n3 − 24n2 + 9n 4n3 − 6n2 + 2n

e6
15018

7 3750 936

e7 5479 9583 2394

e8
119096

7 29768 7440

Table 1. Weyl and so(5)R anomalies for all (2, 0) SCFTs Tg.

The Weyl vector ρh of h defined in (4.6) is the sum of the mutually orthogonal Weyl

vectors ρhi of the hi. We can therefore use (4.11) and the strange formula (4.10) to evaluate

〈ρh, ρh〉g =
∑
i

N
(i)
h⊂g 〈ρhi , ρhi〉hi =

1

12

∑
i

N
(i)
h⊂gh

∨
hidhi . (4.13)

Therefore,

X =
4

3

(
h∨g dg −

∑
i

N
(i)
h⊂gh

∨
hidhi

)
. (4.14)

Substituting into (4.1), we conclude that

∆a =
16

7

(
h∨g dg −

∑
i

N
(i)
h⊂gh

∨
hidhi

)
, ∆k = h∨g dg −

∑
i

N
(i)
h⊂gh

∨
hidhi . (4.15)

In order to obtain formulas for ag and kg, we can break g → u(1)rg by a sequence of

rank one breakings, i.e. by successively removing nodes from the Dynkin diagram of g, and

apply (4.15) at every step. If g is an ADE Lie algebra then all N
(i)
h⊂g = 1, so that

ag =
16

7
h∨g dg + rg , kg = h∨g dg , g ∈ {An, Dn, En} . (4.16)

The second term in ag arises from the rg tensor multiplets that remain when g is completely

broken to the Cartan subalgebra. The answer for kg is in agreement with the known answer

discussed around (1.2), and the one for ag agrees with expectations from holography [38–40].

In table 1 we display the values of ag and kg computed in (4.16), as well as the conjectured

value of the c-anomaly cg in (1.6), for all ADE Lie algebras g.

When g is not simply laced, it is generally not possible to find functions ag, kg that

only depend on g and satisfy (4.15) for all rank one adjoint breaking patterns. We will

discuss examples in section 4.3, where we revisit the ADE restriction on g.

4.2 The a-theorem for RG flows with (2, 0) supersymmetry

In six dimensions, the conjectured a-theorem [9] (see also [35]) states that the a-anomaly

strictly decreases under any unitary RG flow that interpolates between a CFTUV at short
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distances and a CFTIR at long distances,

aUV > aIR . (4.17)

Broadly speaking, RG flows fall into two categories: those initiated by deforming the

CFTUV using a relevant operator, which breaks conformal invariance explicitly, and those

initiated by activating a vev and (partially) moving onto a moduli space of vacua, where

conformal invariance is spontaneously broken.

As was stated in section 1.1, the (2, 0) SCFTs in six dimensions do not possess relevant

(or marginal) operators that can be used to deform the Lagrangian while preserving (2, 0)

supersymmetry [19]. Therefore, the only possible RG flows that preserve that amount of

supersymmetry are the moduli-space flows we have analyzed above. They are induced by

adjoint Higgsing g→ h⊕ u(1)n with h semisimple and n ≤ rg. If g is an ADE Lie algebra,

we can use (4.16) to evaluate aUV = ag and aIR = ah + n, and hence verify that their

difference is positive. Since rg = rh + n, this amounts to the statement that

h∨g dg − h∨h dh > 0 . (4.18)

Using the formula for kg in (4.16), we see that the same combination governs the change ∆k

in the R-symmetry anomaly. It is therefore also monotonic under RG flow [8]. Similarly,

using the conjectured formula (1.6) for the c-anomaly shows that ∆c is also proportional

to the left-hand side of (4.18), and hence positive. Therefore, the class of RG flows that

preserve (2, 0) supersymmetry is not sufficient to single out the a-anomaly as the only

monotonically decreasing quantity.27

The statement that ∆a > 0 for any flow can also be understood without using the

explicit formula for ag in (4.16), or assuming that g is simply laced. For rank one break-

ing patterns g → h ⊕ u(1), it follows from (4.1) that ∆a ∼ b2, with a positive, model-

independent proportionality factor. As was shown in [5] and reviewed in section 2.2, this

relationship is dictated by supersymmetry. Since b can only vanish in free theories (see

the discussion around (2.4) and in section 3.4), it follows that ∆a > 0, which establishes

the a-theorem for rank one flows. Any adjoint breaking pattern can be obtained as a se-

quence of rank one breakings, by sequentially removing nodes from the Dynkin diagram

of g. Therefore, the conclusion ∆a > 0 applies to all flows induced by adjoint Higgsing.

Similarly, it also follows from (4.1) that ∆k ∼ b2, and hence the same argument shows that

∆k > 0 for all such flows.

4.3 The ADE classification revisited

In section 3.2 we used properties of the dynamical W-strings that exist on the tensor

branch of (2, 0) theories Tg, and their relation to BPS states in five dimensions, to argue

that g must be a simply-laced Lie algebra. Here we will use the results of section 4.1 to

offer an alternative perspective on the ADE restriction that only relies on properties of the

massless fields on the six-dimensional tensor branch. Specifically, we will use the fact that

27An analogous situation occurs for RG flows between four-dimensional N = 4 SCFTs, since their Weyl

anomalies a and c are always equal.
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the difference between the R-symmetry anomalies of the UV and IR theories satisfies the

quantization condition (2.8), because it multiplies a WZ term in six dimensions [8],

∆k = kg − kh ∈ 6Z . (4.19)

In [8], this was interpreted as Dirac quantization for the dynamical W-strings on the tensor

branch. The same quantization condition can be obtained by considering a non-dynamical

instanton-string for an so(5)R background gauge field. It was argued in [29, 63] that such a

string acts as a source for the dynamical, self-dual three-form fields on the tensor branch,

with charges that are related to the R-symmetry anomaly via a Green-Schwarz mechanism.

Requiring these charges to satisfy Dirac quantization — with appropriate adjustments for

self-dual fields, as in (3.17) — also leads to (4.19).

In section 4.1 we computed ∆k for the rank one breaking patterns g→ h⊕u(1), where

g is an arbitrary compact, simple Lie algebra. When g is of ADE type, this formula can be

integrated to (4.16). The quantization condition (4.19) then amounts to the statement that

h∨g dg ∈ 6Z for any ADE Lie algebra, which is indeed the case, as emphasized in [8]. When

g is not simply laced, the formula for ∆k (and also ∆a) in (4.15) involves the normalization

factors N
(i)
h⊂g, which generally depend on the way that h is embedded into g.

As an example, consider g = g2, which has a maximal subalgebra su(2)◦⊕su(2)•. Here

the subscripts ◦ and • emphasize the fact that the two su(2) summands are associated

with the long and short roots in the g2 Dynkin diagram ◦ ≡ • . It is possible to break

g2 → su(2) ⊕ u(1) in two inequivalent ways by adjoint Higgsing: we can either delete

the long root ◦ from the Dynkin diagram by choosing t = t◦ to be the Cartan generator

of su(2)◦, so that h = su(2)• is unbroken; or we can delete the short root • by setting

t = t• and preserve h = su(2)◦. According to (4.12), the normalization factors for the two

embeddings are determined by the long roots of the subgroup h ⊂ g2,

Nsu(2)•⊂g2 =
1

3
, Nsu(2)◦⊂g2 = 1 . (4.20)

Substituting into (4.15), we find

∆ksu(2)•⊂g2 = 4 · 14− 1

3
· 2 · 3 = 54 , ∆ksu(2)◦⊂g2 = 4 · 14− 2 · 3 = 50 . (4.21)

This result can also be obtained by directly evaluating the sums over W-Bosons in (4.2)

and (4.3), using the fact that the adjoint 14 of g2 decomposes as follows under

su(2)◦ ⊕ su(2)•,

14→ (1,3)⊕ (3,1)⊕ (2,4) . (4.22)

Note that ∆ksu(2)◦⊂g2 in (4.21) is not divisible by six, i.e. it does not satisfy the quantization

condition (4.19). This rules out (2, 0) theories Tg with g = g2.

Similar phenomena occur for all non-simply-laced Lie algebras, since they contain roots

of different lengths. In general, the subgroup h decomposes into several compact, simple

summands, which give rise to different normalization factors (4.12) that must be added
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according to (4.15).28 The quantization condition (4.19) also rules out all other non-ADE

Lie algebras g. In order to show this, it suffices to rule out g = so(5) = sp(4), since it can

be reached from all non-simply-laced Lie algebras other than g2 by adjoint Higgsing. We

can break so(5)→ su(2)•⊕u(1) by deleting the long root ◦ from the so(5) Dynkin diagram

◦=• . Substituting the normalization factor Nsu(2)•⊂so(5) = 1
2 from (4.12) into (4.15) then

gives ∆ksu(2)•⊂so(5) = 3 · 10− 1
2 · 2 · 3 = 27, which does not satisfy (4.19).

In summary, the fact that there are no (2, 0) SCFTs Tg unless g is a simply-laced

Lie algebra is required by the consistency of the low-energy effective theory on the six-

dimensional tensor branch, due to the quantization condition (4.19).

5 Compactification to four dimensions

In this section we will consider (2, 0) SCFTs Tg on R3,1 × T 2. Here T 2 = S1
R × S1

r is a

rectangular torus of area A = Rr and modular parameter τ = iτ2 = i
(
r
R

)
. We describe

their moduli spaces of vacua, which depend on a choice of gauge group G, and the singular

points at which interacting N = 4 theories reside. In addition to the familiar theory with

gauge group G at the origin there are typically additional singular points at finite distance

∼ A−
1
2 (sometimes with a different gauge group), which recede to infinite distance when

the torus shrinks to zero size, A→ 0. We use non-renormalization theorems to determine

the four-derivative terms in the Coulomb-branch effective action via a one-loop calculation

in five-dimensional N = 2 Yang-Mills theory, which now includes a sum over KK modes,

and interpret the result. Many statements in this section have five-dimensional analogues,

which were discussed in section 3. We will therefore be brief, focusing on those aspects

that are particular to four dimensions.

5.1 Two-derivative terms and singular points on the Coulomb branch

As in five dimensions, the two-derivative theory on the Coulomb branch of the toroidally

compactified theory is completely rigid, due to the constraints of maximal supersymmetry.

The geometry of the moduli space can therefore be understood by first compactifying to

five-dimensional N = 2 Yang-Mills theory on S1
R, and then analyzing the classical vacua of

this Yang-Mills theory on R3,1 × S1
r . (Note that the order in which we compactify on the

two circles selects an S-duality frame in four dimensions.) Many other aspects of toroidally

compactified (2, 0) theories can also be understood by studying the five-dimensional Yang-

Mills theory on R3,1 × S1
r (see for instance [42] and references therein). In section 5.2 we

will follow this logic to determine the four-derivative terms on the Coulomb branch.

As in previous sections, we will focus on rank one Coulomb branches described by a

single Abelian vector multiplet, which is associated with a Cartan generator t ∈ tg of the

gauge algebra g in five dimensions. In addition to the fields that are already present in

five dimensions, the four-dimensional effective theory contains an additional real scalar σ,

28For example, we can break so(7)→ su(2)◦ ⊕ su(2)• ⊕ u(1) by deleting the middle node from the so(7)

Dynkin diagram ◦−◦=•. According to (4.12), the normalization factors for su(2)◦ and su(2)• are N◦ = 1

and N• = 1
2
, respectively. Therefore (4.15) gives ∆k = 5 · 21− 1 · 2 · 3− 1

2
· 2 · 3 = 96.
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which is the Wilson line of the five-dimensional Abelian gauge field aµdx
µ around S1

r ,

σ =
1

2πr

∫
S1
r

aµdx
µ . (5.1)

With this normalization σ has dimension one, and its kinetic terms agree with those of

the other five scalars ϕI . Explicitly, we can reduce the five-dimensional kinetic terms

in (3.25) to zero modes of along S1
r (taking into account factors of 2πr) and use the relation

g2 = 4π2R from (3.22) to obtain the kinetic terms on the four-dimensional Coulomb branch,

− τ2

4π
Trg(t

2)

(
f ∧ ∗f + ∂µσ∂

µσ +
5∑
I=1

∂µϕ
I∂µϕI

)
+ (Fermions) ⊂ L

(4)
Coulomb , τ2 =

R

r
.

(5.2)

The scalar σ is periodic, because it is the holonomy of the Abelian gauge field aµdx
µ

in five dimensions, which is in turn embedded into a non-Abelian gauge field, as in (3.24).

We will parametrize the periodicity of σ as follows,

σ ∼ σ +
p

r
, (p > 0) . (5.3)

The dimensionless constant p depends on the choice of gauge group G in five dimensions,

specifically its maximal torus. It is defined to be the smallest positive number that satisfies

exp (2πi p t) = 1G , (5.4)

where 1G denotes the identity element of the Lie group G. Since σ is periodic while the ϕI

are not, the R-symmetry is typically so(5)R, as in five dimensions. If r → 0, so that the

area A = Rr of the torus vanishes, the periodicity of σ in (5.3) disappears. In this limit

we obtain a genuinely four-dimensional N = 4 theory with an accidental so(6)R symmetry

under which the six scalars σ, ϕI transform as a vector.

We will now explore the structure of the Coulomb branch parametrized by the scalars

σ, ϕI . As in higher-dimensions, it is convenient to use the radial variable ψ =
(∑

I ϕ
IϕI
) 1

2 .

For generic 〈σ〉, 〈ψ〉, the gauge symmetry is broken to the commutant h ⊕ u(1) of the

Cartan generator t in g. At the origin 〈σ〉 = 〈ψ〉 = 0, the gauge symmetry is restored

to g. Interestingly, the circle of vacua parametrized by 〈σ〉 6= 0 and 〈ψ〉 = 0 typically

contains other points at which the gauge symmetry is enhanced beyond h ⊕ u(1). These

can be found by examining the commutant of the Wilson line parametrized by 〈σ〉 inside

the gauge group G,

exp (2πi〈σ〉 r t) ∈ G . (5.5)

A complementary approach to identifying singular points on the Coulomb branch is to

track the masses of 1
2 -BPS W-Bosons and their KK modes on S1

r as functions of the vevs

〈σ〉, 〈ψ〉. The BPS mass formula for a W-Boson corresponding to a root α ∈ ∆g\∆h with

KK momentum `
r takes the following form (see e.g. [42]),

m2
W (α, `) = α(t)2〈ψ〉2 +

(
`

r
− 〈σ〉α(t)

)2

, ` ∈ Z . (5.6)
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Just as for the two-derivative terms, maximal supersymmetry ensures that this classical

formula is quantum-mechanically exact. At the origin of the Coulomb branch, the ` = 0

KK modes of all W-Bosons become massless, so that the gauge symmetry is enhanced to

g. However, if 〈ψ〉 = 0, there can be points 〈σ〉 6= 0 at which certain W-Bosons with ` 6= 0

become massless, which also enhances the gauge symmetry. Rather than describing these

phenomena in full generality, we will illustrate them in several representative examples.

The Moduli Space for g = su(n). The simply connected Lie group with Lie algebra

su(n) is SU(n), whose center is Zn. The possible choices of gauge group are then given by

Gj = SU(n)/Zj . (5.7)

Here j is a divisor of n, so that the center of Gj is Zn/Zj . We will consider the rank one

breaking pattern su(n) → su(k) × su(n − k) × u(1). In the fundamental representation, a

Cartan element t that leads to this breaking pattern is given by

t =

(
(n− k)1k 0

0 −k 1n−k

)
. (5.8)

We can now use (5.4) to find the periodicity p of the compact scalar σ,

p =
1

j · gcd(n− k, k)
. (5.9)

Whenever the Wilson line exp(2πi〈σ〉 r t) is in the center Zn/Zj of the gauge group, the

full Gj gauge symmetry is restored. This occurs precisely when

〈σ〉 =
`

nr
, ` ∈ Z , 0 ≤ ` < n

j · gcd(n− k, k)
. (5.10)

Here the restriction on the integer ` is due to the periodicity of σ dictated by (5.9).

We can compare these results with the W-Boson mass formula in (5.6). Under the

subalgebra su(k)× su(n− k)× u(1), the W-Bosons transform as follows,(
,
)
n
⊕ (complex conjugate) , (5.11)

where the subscript indicates that the W-Bosons have u(1) charges ±n. At the values of

〈σ〉 in (5.10) (and for 〈ψ〉 = 0) the mass formula (5.6) predicts that the `th KK modes of

all W-Bosons become massless and can therefore restore the full gauge symmetry Gj .

The preceding discussion illustrates the fact that there are in general multiple singular

points on the 〈σ〉 circle, which correspond to N = 4 Yang-Mills theories with enhanced

gauge symmetry. This phenomenon even occurs on the Coulomb branch of the simplest

rank one theory with gauge algebra g = su(2), where su(2)→ u(1). In the notation above,

this corresponds to n = 2 and k = 1. If the global form of the gauge group is SU(2), the

periodicity of σ in (5.9) is p = 1 and according to (5.10) there are two distinct points,

〈σ〉 = 0 and 〈σ〉 = 1
2r , where the SU(2) gauge symmetry is restored. By contrast, if the

gauge group is SU(2)/Z2 = SO(3), then p = 1
2 and only the point 〈σ〉 = 0 has an enhanced

SO(3) gauge symmetry.
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In the language of [21, 68], the SU(2) gauge theory in five-dimensions has a Z2 one-form

global symmetry, which shifts the gauge field by a flat Z2 connection. This acts as a global

Z2 symmetry on the scalar σ defined in (5.1), which interchanges the two vacua at 〈σ〉 = 0

and 〈σ〉 = 1
2r . When the gauge group is SO(3), this Z2 global symmetry is gauged and

the two vacua are identified. In the limit r → 0, the σ-circle decompactifies and the points

with enhanced gauge symmetry are separated by an infinite distance in moduli space. The

importance of such global issues for gauge theories on a circle was recently emphasized

in [69, 70]. Subtleties of the zero-area limit were discussed in [71].

The Moduli Space for g = so(2n). As our second example, we consider g = so(2n),

which manifests new phenomena. Here we limit the choice of gauge group to G = SO(2n),

i.e. the standard group of special orthogonal matrices with Z2 fundamental group. We

consider the breaking pattern so(2n) → su(k) ⊕ so(2(n − k)) ⊕ u(1). In the fundamental

representation, a Cartan generator t that gives rise to this breaking is given by

t =

 0 i1k
−i1k 0

0

0 02n−2k

 . (5.12)

We can then evaluate the Wilson line,

exp (2πi〈σ〉 r t) =

 cos (2π〈σ〉r)1k − sin (2π〈σ〉r)1k
sin (2π〈σ〉r)1k cos (2π〈σ〉r)1k

0

0 12n−2k

 . (5.13)

This shows that the periodicity of σ is p = 1. At 〈σ〉 = 0, the full SO(2n) gauge symmetry

is restored. However, the vacuum at 〈σ〉 = 1
2r is also special. At this point, the Wilson

line in (5.13) reduces to diag(−12k,12n−2k), so that the gauge symmetry is enhanced to

so(2k) ⊕ so(2(n − k)). Note that this gauge algebra cannot be reached from so(2n) by

standard adjoint Higgsing using the five non-compact scalars ϕI .

These conclusions are again reflected in the spectrum of W-Bosons. They transform

as follows under su(k)⊕ so(2(n− k))⊕ u(1),(
,1

)
2

⊕
(

,
)

1
⊕ (complex conjugate) , (5.14)

where the subscripts denote the u(1) charges with respect to t. The mass formula (5.6)

shows that the ` = 0 KK modes of all W-Bosons are massless at the origin, where the

gauge symmetry is enhanced to SO(2n). At 〈σ〉 = 1
2r and 〈ψ〉 = 0, the ` = 1 KK mode

from the

(
,1

)
2

representation and the ` = −1 KK mode from its complex conjugate

representation are massless, while all other W-Boson modes are massive. Together with

the massless gauge Bosons of su(k)⊕ so(2(n− k))⊕ u(1), they precisely fill out the adjoint

representation of so(2k)⊕ so(2(n− k)), which is the unbroken gauge algebra at that point.

Therefore we can obtain an N = 4 theory with this gauge symmetry by taking the r → 0

limit while tuning 〈σ〉 = 1
2r . In this limit, the conventional vacuum at 〈σ〉 = 0 moves off

to infinite distance.
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5.2 Four-derivative terms in four dimensions

We will now use non-renormalization theorems, and our understanding of the five-

dimensional theory from section 3, to determine the moduli dependence of the leading

higher-derivative interactions on the Coulomb branch of toroidally compactified (2, 0) the-

ories. As in previous sections, we consider rank one Coulomb branches associated with

a particular Cartan element t, which breaks g → h ⊕ u(1). We focus on the coefficient

function f4(ϕI , σ) of the four-derivative term (∂ψ)4 in the effective action,

A2f4(ϕI , σ)(∂ψ)4 ⊂ L
(4)
Coulomb , A = Rr , (5.15)

but as before, a similar discussion applies to all four-derivative terms in L
(4)
Coulomb. We will

fix the function f4(ϕI , σ) by imposing the following constraints:

• It is invariant under so(5)R rotations of the ϕI , i.e. it only depends on the ϕI through

the radial variable ψ.

• It is periodic in σ with period (5.3), i.e. it is invariant under σ ∼ σ + p
r .

• It is dimensionless. Since the six-dimensional theory is scale invariant, this fixes

f4 = f4 (rψ, rσ, τ2) , τ2 =
r

R
. (5.16)

• As in sections 2 and 3, it is harmonic, due to the non-renormalization theorems

of [1–5].

• In appropriate regimes, it matches onto the six- and five-dimensional results discussed

in sections 2 and 3. In particular, for values of ψ that are much larger than any other

length scale, it must decay to zero.

The periodicity of σ is conveniently taken into account by expanding f4 in Fourier

modes,

f4 (rψ, rσ, τ2) =
∑
n∈Z

f
(n)
4 (rψ, τ2) exp

(
2πinrσ

p

)
. (5.17)

Since the non-renormalization theorem states that f4 is harmonic, each mode function

satisfies

d2

d(rψ)2
f

(n)
4 (rψ, τ2) +

(
4

rψ

)
d

d(rψ)
f

(n)
4 (rψ, τ2) =

4π2n2

p2
f

(n)
4 (rψ, τ2) . (5.18)

For each value of n, this second order differential equations has two linearly independent

solutions, only one of which decays to zero at large ψ,

f
(n)
4 (rψ, τ2) = bn(τ2)

(
1

(rψ)3
+

2π|n|
p(rψ)2

)
exp

(
−2π|n|rψ

p

)
. (5.19)

Together with (5.17), this completely fixes the coefficient function f4 in terms of an infinite

set of coefficients bn(τ2) that only depend on the four-dimensional gauge coupling τ2 = r
R .
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In order to fix bn(τ2), we consider the limit R → 0 with τ2 fixed, in which the five-

dimensional N = 2 Yang-Mills theory becomes arbitrarily weakly coupled. Therefore, the

function f4 can be computed exactly by integrating out W-Bosons at one loop. This is

similar to the five-dimensional computation discussed around (3.28), except that one of the

momentum integrals is replaced by a sum over KK momenta `
r along S1

r . Thus,

f4 (rψ, rσ, τ2) =
τ2

2

32π2

∑
α∈∆g\∆h

∑
`∈Z

(
(rψ)2 +

(
`

|α(t)|
+ rσ

)2
)−2

. (5.20)

The overall normalization can been fixed by matching onto the five-dimensional result (3.28)

in the limit r →∞.

It is instructive to rewrite the expression for f4 in (5.20) as a Fourier series (5.17).

This can be done using the Poisson summation formula,∑
`∈Z

1

(y2 + (`+ x)2)2 =
π

2

∑
n∈Z

(
1

|y|3
+

2π|n|
y2

)
exp

(
2πinx− 2π|n||y|

)
. (5.21)

If we introduce the function

δZ(x) =

{
1 if x ∈ Z ,
0 if x /∈ Z ,

(5.22)

then the Fourier coefficients in (5.19) can be succinctly written as

b(4)
n (τ2) =

τ2
2

64π

∑
α∈∆g\∆h

|α(t)|δZ
(

n

p|α(t)|

)
. (5.23)

This shows that many Fourier modes that are consistent with the periodicity of σ are

absent. For instance, we found above that choosing the gauge group to be G = SU(2)

leads to p|α(t)| = 2. Therefore, only Fourier modes with even n contribute. This example

illustrates why it is not in general possible to obtain the coefficient function f4, and in

particular its five-dimensional limit, by computing the lowest Fourier coefficient b0(τ2) in

a genuinely four-dimensional N = 4 theory and then restoring the periodicity of σ by

summing over all possible values of n with equal weight. This is a fortiori the case if the

moduli space of the theory on a torus of finite area contains interacting N = 4 theories with

different gauge groups, as was the case for the so(2n) examples discussed in the previous

subsection.

We can now expand the exact coefficient function (5.20) in the four-dimensional limit of

vanishing area, A→ 0. This enables us to determine the leading area-suppressed irrelevant

operators that describe the RG flow into a genuinely four-dimensional N = 4 theory at

low energies. (The case g = su(2) was recently examined in [52].) As was discussed in

section 5.1, the moduli space may in general contain several points at which interacting

N = 4 theories reside. In order to describe the RG flow into one of these theories, we

must appropriately tune the vevs to its vicinity as we take A→ 0, while the other singular

points on the moduli space recede to infinite distance. For simplicity, we will only carry

out this procedure for the familiar interacting vacuum at the origin of moduli space.
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We take the zero-area limit by letting r → 0 at fixed τ2. The leading term in (5.20)

comes from the ` = 0 KK mode, while the first subleading correction is a sum over KK

modes with ` 6= 0, which can be evaluated at ψ = σ = 0. Therefore,

A2f4 →
nW
32π2

1

ψ2 + σ2
+
π2A2τ2

2

1440

∑
α∈∆g\∆h

(α(t))4 +O(A4) as A→ 0 , (5.24)

Since it follows from (3.3) that the sum over W-Bosons can be written as 2h∨g Trg
(
h4
)
,

the terms in the Coulomb-branch effective Lagrangian (5.15) that follow from (5.24) are

given by
nW
32π2

(∂ψ)4

ψ2 + σ2
+
π2h∨gA

2τ2
2

720
Trg

(
t4
)

(∂ψ)4 + · · · ⊂ L
(4)
Coulomb . (5.25)

The term proportional to nW is the expected one-loop contribution due to integrating out

W-Bosons in the four-dimensional N = 4 Yang-Mills theory at the origin of moduli space,

as discussed around (3.28) and in figure 3. The second term is non-singular and can be

extrapolated to the origin, where it arises from a 1
2 -BPS irrelevant operator analogous to

the five-dimensional F 4 operators discussed in (3.8). Unlike in five dimensions, where these

operators were shown to be absent, the compactification of (2, 0) SCFTs on finite-area tori

generates these interactions with a definite, non-zero coefficient, which can be extracted

from (5.25). When written in terms of Trg, they are single-trace terms, which amounts to a

definite linear combination of single- and double-trace terms in the fundamental representa-

tion. Note that both operators in (5.25) are invariant under the accidental so(6)R symmetry

that emerges in the zero-area limit. However, subleading O(A4) corrections break this sym-

metry to so(5)R. All of them are single-trace operators when written in terms of Trg, and

it is straightforward to extract their coefficients by expanding (5.20) to higher order.
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A Supervertices in six and five dimensions

We summarize the super spinor helicity formalism for Abelian (2, 0) tensor multiplets in

six dimensions, and for Abelian N = 2 vector multiplets in five dimensions. We review

a general classification of supervertices, and describe those that are needed to understand

the non-renormalization theorems in sections 2 and 3 from the amplitude point of view.
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A.1 Super spinor helicity formalism for Abelian (2, 0) tensor multiplets in 6D

The null momentum of a massless particle in six dimensions can be written in bispinor

notation as follows [72–74],

pAB = λAαλBβε
αβ , pAB ≡ 1

2
εABCDpCD = λ̃Aα̇λ̃

B
β̇ε
α̇β̇ . (A.1)

Here A,B = 1, · · · , 4 are chiral spinor indices of the SO(5, 1) Lorentz group. The lower

index labels components of a left-handed spinor and the upper index labels components

of a right-handed spinor. The indices α, α̇ = 1, 2 are left- and right-haded chiral spinor

indices of the SO(4) little group for massless particles in six dimensions, and λAα , λ̃
A
α̇ are

spinor helicity variables in six dimensions. We will only need the λAα, because all fields in

a (2, 0) tensor multiplet are left-handed.

The 16 one-particle states in a tensor multiplet are represented by monomials in a

set of four Grassmann variables ηαa, where α is a left-handed chiral spinor index of the

SO(4) little group, while a = 1, 2 is a doublet index of an so(3)R ⊂ so(5)R subalgebra of

the R-symmetry. For instance, the five scalars are represented by the little-group singlets

1, ηαaηβbε
αβ , η4, while the self-dual tensor is represented by ηαaηβbε

ab. In this formalism,

only an so(3)R subalgebra of the R-symmetry is manifest. On one-particle states, the

so(5)R generators are realized as follows,

Ha
b =

∑
i

(
ηiαa

∂

∂ηiαb
− 2δa

b

)
, R+

ab =
∑
i

ηiαaηiβbε
αβ , R−ab =

∑
i

∂

∂ηiαa

∂

∂ηiβb
εαβ .

(A.2)

Here the index i labels different external particles (see below).

When acting on one-particle states, the 16 supercharges can be split into eight super-

momenta and eight superderivatives,

qAa = λAαη
α
a , qAa = λAα

∂

∂ηαa
. (A.3)

An n-point superamplitude is a generating function for the scattering amplitudes of n

particles in the tensor multiplet — labeled by the super spinor helicity variables (λiAα, ηiαa)

with i = 1, · · · , n — that is invariant under the SO(4) little group associated with each

particle, and is annihilated by the total supercharges

QAa =
n∑
i=1

qiAa , QAa =
n∑
i=1

qiAa . (A.4)

A.2 Super spinor helicity formalism for Abelian N=2 vector multiplets in 5D

The formalism for N = 2 vector multiplets in five dimensions can be obtained by reducing

the six-dimensional formalism described in the previous subsection. Now A,B are SO(4, 1)

Lorentz spinor indices and α, β are spinor indices of the SO(3) little group for massless

particles in five dimensions. In bispinor notation, the five-dimensional null momentum

pAB satisfies ΩABpAB = 0, where ΩAB is the anti-symmetric invariant form on the spinor

representation of SO(4, 1). The spinor helicity variables λAα are also constrained and satisfy

pAB = λAαλBβε
αβ , ΩABλAαλBβε

αβ = 0 . (A.5)
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Just as in six dimensions, the 16 one-particle states in the vector multiplet are represented

by monomials in ηαa. For instance, the three helicity states of the five-dimensional

gauge Bosons are represented by ηαaηβbε
ab. The so(5)R generators take the same form

as in (A.2), and the supercharges are still split into supermomenta and superderivatives

according to (A.3).

A.3 Classification of supervertices

The supersymmetry Ward identity for the eight supermomenta QAa is easily solved by

expressing the amplitude in the following form,29

δ(d)(P )δ8(Q)A(λiAα, ηiαa) , (A.6)

where the d-dimensional delta function enforces conservation of the total momentum P ,

and δ8(Q) ≡
∏
A,aQAa is a Grassmannian delta function in the supermomenta. The

remaining Ward identities demand that the function A is annihilated by all QAa upon

imposing conservation of the total momentum and supermomentum. Below, we will omit

the momentum-conserving delta function, keeping in mind that the spinor-helicity variables

λiAα are constrained by momentum conservation.

We define a supervertex to be a local superamplitude without poles in the momenta.

We consider two classes of supervertices:

• An F -term supervertex with n-points and k-derivatives is obtained from

δ8(Q)F(sij) , (A.7)

by an R-symmetry rotation. Here F(sij) is a polynomial in the Lorentz-invariant

Mandelstam variables sij = −(pi + pj)
2, which is homogeneous of degree k

2 − 2.

Using the commutation relations between the R-symmetry generators in (A.2) and

the supercharges,30 it can be checked that and n-point, four-derivative supervertex

of the form δ8(Q) is annihilated by R−ab and the traceless part of Ha
b in (A.2).

Furthermore, δ8(Q) has eigenvalue 4(4−n) with respect to the trace Ha
a. Therefore,

δ8(Q) is the lowest-weight state in a set of supervertices that transform in the [n−4, 0]

representation of so(5)R, i.e. they are symmetric, traceless (n−4)-tensors. Note that

a four-point, four-derivative vertex of the form δ8(Q) is an so(5)R singlet.

• A D-term supervertex can be written as

δ8(Q)Q
8D(λiAα, ηiαa) , (A.8)

where Q
8 ≡

∏
A,aQAa is the product of all superderivatives and D is an arbitrary

polynomial expression in the super spinor helicity variables. Such vertices automati-

cally solve the supersymmetry Ward identities, and they contain at least eight deriva-

tives. Note that our definitions of F - and D-term vertices allows for the possibility

that an F -term supervertex with sufficiently many derivatives may be expressible as

a D-term supervertex.

29In a non-Abelian gauge theory, the three-point vertex involves six rather than eight powers of Q, due

to kinematic constraints. This vertex is absent in the Abelian theory.
30These are given by [R+

ab, QAc] = 0,[R−ab, QAc] = QA(aεb)c, [R+
ab, QAc] = QA(aεb)c, and [R−ab, QAc] = 0.
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It is a well-supported conjecture that F - and D-term supervertices exhaust the set

of local amplitudes that satisfy the supersymmetry Ward identities. While this has not

been proven in full generality, it is known to be true in many cases. For R-symmetry sin-

glet supervertices in maximally supersymmetric Yang-Mills theories, it is equivalent to the

superspace classification of [56]. For color-ordered supervertices that are not R-symmetry

singlets, the statement agrees with the classification of supersymmetric deformations in [57],

extending the on-shell superfield method of [55, 75]. In theories that are superconformal

at the two-derivative level, the classification into F - and D-terms is consistent with results

from superconformal representation theory [19]. The non-renormalization theorems dis-

cussed in this paper only rely on a classification of four-point supervertices, and the absence

of six-point supervertices that are R-symmetry singlets, both of which are known results.

A.4 Supervertices on tensor and Coulomb branches

We will now explicitly describe the four- and six-point supervertices that arise at four-

derivative order on the tensor branch of six-dimensional (2, 0) theories and the Coulomb

branch of N = 2 Yang-Mills theories in five dimensions.

Consider a coupling of the form f4(ΦI)H4 in six dimensions. (An analogous discus-

sion applies to terms of the form f4(φI)F 4 in five dimensions.) Expanding the coefficient

function around a vev 〈ΦI〉, as in (2.9) leads to five- and six-point vertices as in (2.13),

∂If4|〈Φ〉δΦIH4 , ∂I∂Jf4|〈Φ〉 δΦIδΦJH4 . (A.9)

The supersymmetric completion of the five-point coupling is given by the following five-

point supervertex,

∂If4|〈Φ〉 êI ·

(
n̂ δ8

(
5∑
i=1

Qi

))
so(5)R

. (A.10)

Here êI , n̂ are auxiliary vectors in R5, which are rotated by so(5)R. The êI are unit basis

vectors, and n̂ is an so(5)R highest weight state. The subscript so(5)R in (A.10) indicates

an average over all R-symmetry rotations, which act on δ8(Q) according to (A.2) and

simultaneously rotate the vector n̂. Since δ8(
∑5

i=1Qi) is a lowest-weight state of an so(5)R
vector, this average is non-zero.

The six-point coupling in (A.10) can be decomposed into an R-symmetry singlet and

a symmetric, traceless tensor of rank two. The latter can be completed into a six-point

F -term supervertex of the form

∂I∂Jf4|〈Φ〉 êI êJ ·

(
n̂ n̂δ8

(
6∑
i=1

Qi

))
so(5)R

. (A.11)

Here the bi-vector n̂n̂ is a highest weight state of a rank two, symmetric, traceless so(5)R
tensor. Since δ8(

∑6
i=1Qi) is a lowest-weight state in the same R-symmetry representation,

the so(5)R average in (A.11) is non-vanishing. By contrast, the R-symmetry singlet six-

point coupling in (A.10) does not arise from any supervertex.
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