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1 Introduction

The canonical formalism has proven very useful in the treatment of asymptotic symmetries

and conservation laws of gauge theories on Minkowski space as well as asymptotically flat

Einstein-Hilbert gravity. Asymptotic symmetries and conservation laws, in turn, have far-

reaching connections to diverse topics such as scattering theory, soft gauge boson theorems,

infrared dressings, and memory effects (see [1] for an overview).

In the presence of boundaries, the complete algebra of gauge generators include non-

vanishing charges for those gauge transformations that do not vanish at the boundary.

This is the case both at finite boundaries [2, 3] and at conformal infinity [4, 5].1

1The situation is enriched by the fact that dual charges have been recently suggested to also play a

crucial role, once again both at asymptotic [6–8] and finite boundaries [9, 10], as well as in gravity [11].
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A natural expectation is that the asymptotic generators must arise as limits of the

finite-boundary ones. However, the naive implementation of this idea encounters a fun-

damental difficulty: in higher dimensional gauge theories and in gravity, the symplectic

potential (SP) — that is the fundamental object required to construct the appropriate

generators — is found to diverge when the boundary is pushed to infinity (e.g. [12]). A

possible solution is to impose additional boundary conditions to obtain a finite result in

the limit. The problem is that this amounts to the exclusion of certain modes from the

boundary phase space and this automatically results in a restriction of the algebra of the

boundary generators. Hence, following this logic, one finds that the asymptotic generator

algebra is smaller than the finite boundary one — which is an unsatisfactory conclusion.

One central example of this concerns the attempts to include super-rotations to the

asymptotic symmetries of gravity. These are naturally part of the algebra at finite bound-

aries [13], but are excluded in the standard construction of the asymptotic symmetries

of gravity which only features the BMS group (see [14] for an enlightening review, and

references therein). In recent years, two different attempts at including super-rotations

in the asymptotic symmetry structure have been made [15–18] (see also [19, 20] for the

connection to the subleading soft graviton theorems). However, serious challenges in the

definition of the super-rotation charges emerge [12, 21].

To resolve these issues, and allow for a full enlargement of the symmetry algebra at

infinity, we propose a renormalization scheme, that we name asymptotic renormalization,

for the symplectic potential and the boundary charges. The crucial and only input neces-

sary to run our renormalization scheme is the existence of a conformal compactification à

la Penrose of the spacetime and the fields inhabiting it. Echoing Penrose’s language, we

refer to the ensuing mathematical conditions on the electromagnetic field as “asymptotic

Maxwell conditions”.

The details of the renormalization scheme — although not its viability, which is gen-

eral — depend on the way asymptotic infinity is approached. In the present paper, in

view of a generalization to general relativity in asymptotically flat spacetimes, we work

in Minkowski space and, in a neighbourhood of I +, we adopt Bondi-like (i.e. retarded

time) coordinates. This means that “radial evolution” happens along null characteristics,

an important feature that markedly distinguishes the present framework from standard

holographic renormalization [22]. In particular, some counterterms might depend on the

dynamical field content. This fact can be traced back to the implementation of a null

radial evolution. However, this fact does not compromise the viability of the renormaliza-

tion scheme which — as we will discuss in a moment — only exploits the cohomological

ambiguities intrinsic to the symplectic potential.

Our asymptotic renormalization procedure works in two steps: it first establishes a

radial-evolution equation for the (pre)symplectic potential which encodes its renormaliz-

ability up to terms in the field-space and spacetime cohomology, and then — by studying

the equations of motion and in particular their radial evolution — reexpresses the renormal-

ized symplectic potential and the counterterms in terms of the free data intrinsic to I and

the free radiative data. It is this second step that has widely different properties depending

on whether the radial evolution happens along a null or spacelike direction. We believe
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that the null evolution is more universal and physically better motivated, even though its

features can at first appear unsettling from a holographic renormalization perspective.

Nonetheless, were we to work in an asymptotically AdS space with spacelike radial

evolution, we expect (but we do not prove) our scheme to be compatible with the stan-

dard holographic renormalization setup. The holographic renormalization program (see

e.g. [22]), which is usually focused on field theories on an AdS spacetime or on asymp-

totically AdS gravity, rather than gauge theory on Minkowski space, partly motivates the

procedure devised here. Holographic renormalization usually focuses only on the renormal-

ization of the action, by the addition of a local counterterms intrinsic to the boundary.2 Our

work can be viewed as an extension of this idea where not only the action is renormalized,

but also the symplectic structure via the addition of corner terms. As a result, we get a

renormalization of the asymptotic charges. Papadimitriou [23, 24] already pointed out the

usefulness of extending holographic renormalization ideas to the Hamiltonian framework

and to theories which do not necessarily admit a holographic dual. The asymptotic renor-

malization of conserved charges for global symmetry such as the energy has already been

considered in AdS [25–27]. Also, holographic renormalization of asymptotically flat general

relativity has also been considered from a different perspective in [28, 29]. We leave a de-

tailed comparison of our asymptotic renormalization with the holographic renormalization

to future work.

In this paper, we illustrate the asymptotic renormalization scheme in the context of

electromagnetism in higher spacetime dimensions (D ≥ 6). Our methodology is designed

to apply to general relativity in D ≥ 4 and with any sign of the cosmological constant.

Investigation of the latter case is in fact our original motivation, of which higher dimen-

sional electromagnetism constitutes a toy model, and it will be treated in a forthcoming

publication.

The main reason such an asymptotic renormalization scheme is possible is that the

SP is inherently ambiguous [30], in two separate ways. Firstly, altering the action by a

boundary term adds a total variation term to the SP. This does not change the symplectic

form and hence leaves the canonical theory and the generators of gauge transformations

unchanged. Secondly, a total derivative can be added to the SP, which, when the SP is

integrated on a portion of the asymptotic boundary of spacetime, becomes an integral on

the codimension-2 boundaries of that portion. This corresponds to revising the corner

phase space and modifying the generators of asymptotic gauge transformations.

Some of the ideas we present here have been explored very recently in the context

of 4D gravity by Compere et al. [12]. These authors realized that if one wants to ex-

tend the symmetry transformations to include the super-boosts, it is necessary to consider

terms that would make the naive SP divergent. They also show that a renormalized SP

and renormalized super-boosts charges could be defined by the addition of corner terms

and consider the corresponding memory effects. Since the structure of divergences in 6D

electromagnetism is similar to that of 4D general relativity, our work can be viewed as

2Once again, it is this property of the counterterm that might fail in our asymptotic renormalization

prescription when compared to the AdS holographic renormalization.
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a toy-model for a covariant extension of their results in the context of the Maxwell field.

This extension allows the inclusion of the full boundary algebra. It also allows for a more

geometric understanding of the renormalization procedure that will be extended to general

relativity in future work.

The reason for the analogy between 6D electromagnetism and 4D general relativity

is that, in both cases, the spacetime dimension is the dimension in which the theory is

conformal plus 2. Throughout most of the paper, we will work in an arbitrary dimension

D ≥ 6 because this brings out the structure of the asymptotic degrees of freedom more

clearly. We find that higher dimensional classical canonical electromagnetism on flat space-

times is interesting in its own right, but has not to date received much attention from the

asymptotic viewpoint, with the notable exception of [31].

The first part of the paper is very general, it applies to all dimensions, even or odd and

it is also valid when the asymptotic expansion of the fields develop certain logarithms. We

show how to renormalize the symplectic potential into a finite SP by the addition of corner

and boundary terms. This requires, in general, the introduction of conformally anomalous

counterterms. We also show that the resulting SP is layered into several canonical compo-

nents that include, but are not limited to, a radiative pair, a Coulombic pair, and a soft

pair. We also show that the corresponding asymptotic charges are finite.

In the second part of the paper, we analyze in detail the asymptotic equations of

motion, which are needed to resolve the dependencies between the different canonical layers

along a null characteristic. We restrict our analysis to even dimensions and assume that the

anomalous logarithmic terms all vanish. That is we restrict our analysis to asymptotically

analytic solutions with no logarithm dependence in the radial direction. This is a restriction

which is always made in the usual asymptotic analysis (for a notable exception, see [32]).

In our context, we can understand precisely what this restriction entails. Finally, we show

that our definition of the renormalized charge is equipped with a conservation law perfectly

compatible with the soft theorems derived in [31] (see also [5]).

The structure of the paper is as follows: in section 2, we introduce the auxiliary

compactified spacetime we work in. In section 3, we give our fall-offs conditions and

implement the most divergent order of the equations of motion. In the core section 4, we

renormalize the symplectic potential current. In section 5, we derive the gauge generators

of the renormalized symplectic structure. In section 6, we analyze in detail the asymptotic

equations of motion, provide the definition of the charge aspects and analyze the anomaly-

freeness conditions. In section 7, we construct the canonical pairs and analyze the soft

conservation equations together with their relationship with the soft theorems. We conclude

in section 8.

2 Spacetime structure

This section lays out the basic spacetime structures used in the remainder. We consider

vacuum Maxwell theory on Minkowski spacetime of spacetime dimension D ≥ 5. One

of the motivation is that the asymptotic structure and divergences appearing in Maxwell

theory for D = 6 are similar to the ones for gravity in D = 4.

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
6

We will find useful to work in an auxiliary spacetime, the “conformal frame”, obtained

through a conformal compactification of Minkowski spacetime à la Penrose [33–35]. The key

advantage of this approach is that asymptotic infinity presents itself as a finite boundary in

the conformal frame. The structure of infinity is reflected in the behavior of the conformally

rescaled fields near this boundary. To avoid technicalities, we restrict our analysis to a co-

ordinate patch, that of “retarded Bondi coordinates”, which covers only future null infinity.

The Minkowski metric in retarded Bondi coordinates, with u = t−r, reads ĝabdx
adxb =

−du2 − 2dudr + r2qABdxAdxB, qAB being the metric of a unit round (D − 2)-sphere. We

introduce the coordinate Ω = 1/r, and work in the conformally compactified spacetime

with the rescaled metric gab := Ω2ĝab and inverse gab = Ω−2ĝab:

gabdx
adxb = −Ω2du2 + 2dudΩ + qABdxAdxB (2.1a)

gab∂a∂b = Ω2∂2
Ω + 2∂Ω∂u + qAB∂A∂B. (2.1b)

All indices will be contracted with respect to this metric unless otherwise specified by the

use of hats, ·̂. Note that in these coordinates
√
|g| =

√
q = ΩD

√
ĝ. In these coordinates,

future null infinity I + ∼= SD−2 × R (we will drop the plus in the following) is located at

Ω = 0, corresponding to the null limit at r → ∞ of the timelike level surfaces of r. We

define the conormal to the surfaces at Ω = const.,

Na = ∂aΩ. (2.2)

Its conformal frame norm,3 NaNa = Ω2 becomes null at Ω = 0. Note that Na is the inward-

pointing normal, this will lead to a sign in the Stokes theorem. Some of the equations in

the following will be simplified by the introduction of the normalized normal, which has

unit modulus with respect to the conformal metric gab:

na =
1

Ω
Na. (2.3)

Working with the coordinate Ω and the metric gab, rather than r and ĝab, is useful

because the components of gab in the coordinates (Ω, u, xA) are asymptotically finite. This

framework will also automatically provide natural fall-offs for the fields and most impor-

tantly allow for a systematic analysis of the finiteness of asymptotic quantities.

Let xi = (u, xA) be the coordinates on Ω = const. surfaces. The retarded Bondi

coordinates (Ω, u, xA) determine a coordinate projector P ia, which maps spacetime vectors

to vectors on Ω = const. by dropping their ∂Ω component. The exterior derivative can

then be decomposed as

d = dxaδba∂b = dxaP ia∂i +Nadx
a∂Ω. (2.4)

We will suppress the projector in the notation. For example F ij = P iaP
j
b g

aa′gbb
′
Fa′b′ is the

projection of the field strength with raised spacetime indices, and not the pulled back field

strength with indices raised by the inverse of the induced metric (which does not have a

3Once again, indices of unhatted quantities are raised with the conformal frame metric gab.
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finite limit since I is null in the conformal metric). Because guΩ = 1, F ij contains FΩ
j ,

and depends not only on the pullback of the gauge potential Ai but also on AΩ and the

transverse derivatives of Ai. Note that since the projector is a coordinate projector, it

commutes with coordinate derivatives, including ∂Ω.

The Bondi coordinates also determine a coordinate vector field ∂Ω, which is defined

throughout the spacetime. This vector field will play a crucial role in the following. At

I , ∂Ω can be used to “take orders in 1/r” of tensors, and in the next section, we will use

this to introduce a Taylor expansion of the electromagnetic potential off of I in powers of

Ω. We will focus on finite intervals in the retarded time u. This will allow us to discuss

u-falloffs accurately. I = I(Ω = 0) ⊂ I will denote the limit of the following hypersurfaces

(with boundary)

I(ω) = {(u,Ω, xA) : Ω = ω, ui ≤ u ≤ uf} with ∂I(ω) = Si(ω) t Sf (ω), (2.5)

where Si(ω) (Sf (ω)) is a codimension-2 sphere obtained as the cut of the hypersurface

Ω = ω at u = ui, (u = uf ), respectively. At infinity, we will simply denote ∂I = Si t Sf .

3 Equations of motion: asymptotic simplicity and the conformal current

Utilizing Penrose’s idea of asymptotic simplicity [33–35], we will assume that the compo-

nents of the gauge field Aa in the coordinates (u,Ω, xA) have finite values at I and admit

an expansion in powers and log-powers of Ω:

Aa =

D−4∑
k=0

ΩkAa(k) + ΩD−5P where Aa(k) :=
1

k!
∂kΩAa|Ω=0, (3.1)

where the P is a polyhomogeneous function of Ω (see appendix A). We immediately get

that all tensors and forms which are built from Aa and gab, in particular Fab and F ab =

gaa
′
gbb
′
Fa′b′ , are finite in the asymptotic limit and admit the same expansion. Stronger

fall-offs on certain components of the fields will be automatically required by the equations

of motion. Our falloffs admit radiative as well as Coulombic solutions.

It is important to appreciate that in general the analytic expansion breaks down and

logarithms can appear. We prove finiteness of the renormalized symplectic potential even

in the presence of logarithms and anomalies (see appendix A). In particular, for our anal-

ysis, the above expansion does not need to be analytic to all orders, a requirement that

would be physically extremely restrictive. It is enough to demand that Fab is (D − 5)-

polyhomogeneous (defined in apendix A) as the discussions of section 4, 6 and appendix A

will show. It is this differentiability requirement that will force us to restrict our analysis

to even spacetime dimensions, for similar statements in gravity see also [36, 37]. To keep

our notation as light as possible, finite (as opposed to infinite) differentiability will be left

implicit in our formulas. Several works on relaxing analyticity in the gravitational case

have appeared e.g. in [37–40], while in 4D electromagnetism we refer to [32] and references

therein.
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The Lagrangian of vacuum electrodynamics is

L̂ := −1

4

√
ĝF̂ abF̂ab = Ω−(D−4)L, where L := −1

4

√
qF abFab, (3.2)

where Aa ≡ Âa, from which F̂ab ≡ Fab = ∂aAb − ∂bAa and F̂ ab = ĝaa
′
ĝbb
′
Fa′b′ = Ω4F ab. L

has a finite limit onto I .

Varying L̂ with respect to Aa gives4

δL̂ = ÊaδAa + ∂aθ̂
a (3.3)

where θ̂a is the symplectic potential (SP) current density, which we will shortly come back

to, and Ê
a

are the equations of motion (EoM):

Ê
a

= ∂b(
√
ĝF̂ ba) (3.4a)

= Ω−(D−4)

(
∂b(
√
qF ba)− (D − 4)

1

Ω
NbF

ba

)
. (3.4b)

Since ∂b(
√
qF ba) is finite by assumption, in D 6= 4, the dominant asymptotic order of the

equations of motion comes from the second term. The dominant order is hence solved by

requiring that NbF
ba is of order Ω. We call these the asymptotic Maxwell conditions

(D − 4)NbF
ba I

= 0, (3.5)

and will require that they are implemented as a restriction on the field space itself. The

asymptotic Maxwell conditions arise from demanding finiteness of the asymptotic fields

F ab, and will be crucial for the derivation of the “soft” part of the symplectic structure in

section 7.1.

The asymptotic Maxwell conditions allow us to define what we call the conformal

current as

J a :=
1

Ω
NbF

ba ≡ Fna, (3.6)

where we recall na = Ω−1Na = Ω−1∂aΩ. The conformal current is defined throughout the

spacetime,5 not just on I and, by the antisymmetry of F , it is tangential to the level

surfaces of Ω. By the asymptotic Maxwell conditions, it has a finite limit onto I in D 6= 4.

This will be crucial in the following.

We can then rescale the EoM to remove negative powers of Ω, obtaining

Ea := Ω(D−4)Ê
a

= ∂b(
√
qF ba)− (D − 4)

√
qJ a. (3.7)

In D 6= 4, the vacuum EoM take the form of Maxwell equations in presence of an external

source: the conformal current.6 The origin of the conformal current is the fact that the EoM

4We use boldface letters for spacetime densities and “hats” for unrescaled quantities referring to the

physical spacetime. Hatted quantities can diverge in the limit Ω → 0, while unhatted quantities are defined

so that they will not. Geometrically, Ea and θ̂a are codimension-1 forms, or densitized currents.
5By this, we mean at least in a collar neighborhood of I itself.
6To avoid specifying further asymptotic properties, we neglect any matter contribution to the current.

It seems however natural to require that the conformal current is a well defined quantity at I even in

presence of matter.

– 7 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
6

transform inhomogeneously under the conformal rescaling of the metric, or alternatively,

that in the conformal frame Lagrangian A is non-minimally coupled to a background scalar

field Ω. The normal component of the EoM reads

En = −∂i(
√
qJ i). (3.8)

The conformal current is thus conserved on-shell. This concludes the analysis of the EoM

for now, we will come back to them in more explicit detail in section 6.

4 Renormalizing the symplectic potential

The symplectic potential (SP) current density θ̂a determines the canonical structure of the

theory. In the covariant Hamiltonian formalism [41–44], which we use here, it is related to

the Lagrangian through the equation (3.3), which is usually taken to imply

θ̂a = Ω−(D−4)θa where θa := −√qF abδAb. (4.1a)

We refer to θ̂a as the standard SP. Its normal component, which determines the standard

symplectic form on I(Ω), is7

θ̂Ω = Ω−(D−5)θn where θn = −√qJ iδAi. (4.2)

The symplectic form on the Ω = const. surfaces is the integral of the (antisymmetrized)

variation of its normal component.8 Since Na is the inward facing normal, the integration

comes with a sign. Hence, the contribution to the symplectic form from an interval I(Ω) is

ω(Ω) := δΘ̂(Ω) (4.3)

where

Θ̂(Ω) := −
∫
I(Ω)

θ̂Ω = −Ω−(D−5)

∫
I(Ω)

θn. (4.4)

Notice that since Ω has a double role as “canonical time” for the radial evolution and as

the conformal factor, the conformal current appears both as a source term in the EoM and

in the SP as the momentum canonically conjugate to the tangential connection Ai. θ
n has

a finite, non-zero limit onto I .

In D > 4, the SP on the level surfaces of Ω diverges as Ω−(D−5) when approaching

I +. The divergence seems like bad news for the canonical theory, signifying potentially

infinite Hamiltonians, infinite charge generators and ill-defined Poisson brackets. However,

as is well known [30], the SP is ambiguous. Firstly, adding a boundary term to the action

adds a total variation to the SP (which does not change the symplectic form). Secondly,

since θ̂a is defined only implicitly through (3.3), it is ambiguous by the divergence of an

antisymmetric tensor. The ambiguities are

θ̂a 7→ θ̂a + ∂bα̂
ab + δβ̂a (4.5a)

7We suppress coordinate volume elements such as dudD−2xA if there is no risk of confusion.
8In the language of differential forms, of its pullback on I(Ω).
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and thus

θ̂Ω 7→ θ̂Ω + ∂iα̂
Ωi + δβ̂Ω. (4.5b)

Here, α̂ab = α̂[ab] is the corner counterterm. It is a codimension-2 density and it modifies

the canonical expression of the boundary charges. β̂a is a change of polarization coming

from a choice of boundary action, L̂ 7→ L̂+∂aβ̂
a. The normal component θ̂Ω is only defined

up to a total variation and a corner term. The modification of θ̂Ω by a total derivative

∂iα̂
Ωi represents the addition of a corner term to the symplectic potential. The corner

term α̂Ωi appears in the redefinition of the asymptotic charges.

We can now phrase the main idea behind our construction. In order to have a well

defined action on an asymptotically simple spacetime and a finite symplectic structure at

I , what really matters physically is that it is possible to reabsorb all the divergences of

θ̂a into a divergent boundary action and divergent corner terms. We now show that this is

exactly the case. As already hinted, this procedure simultaneously renormalizes the action

and all the Noether charges. Therefore, it generalizes the holographic renormalization

procedure of AdS/CFT [23, 45] to asymptotically flat spacetimes. The critical difference

here is the necessity to renormalize not only the action but also renormalize the soft charges

that generate the asymptotic symmetry algebra. Renormalization of both the soft charges

and the action amounts to the definition of a finite asymptotic symplectic potential. We

now turn to this task.

Splitting the divergence in the defining relation (3.3) for the SP, δL̂ = ÊaδAa + ∂aθ̂
a,

into a divergence on the Ω = const. surfaces and a transverse derivative by using the

decomposition (2.4) of the identity, one obtains

δL̂ = δ(Ω−(D−4)L) = Ω−(D−4)EaδAa + Ω−(D−4)∂iθ
i + ∂Ω(Ω−(D−5)θn). (4.6)

Rearranging the terms and extracting the factor in Ω, one obtains the asymptotic renor-

malization equation: [
(D − 5)− Ω∂Ω

]
θn = ∂iθ

i − δL + EaδAa. (4.7)

This equation for the normal SP is the key to our main result. Crucially, modulo EoM, the

r.h.s. contains only a total derivative and a total variation which are part of the ambiguity

in θ̂Ω. We call equations involving the operators (n−Ω∂Ω) radial equations. Their general

properties are discussed in appendix A. Notice that demanding the gauge potential to be

(D−4)-polyhomogenous as above, ensures the field strength and thus the right hand side of

this equation to be (D−5)-polyhomogeneous, as required in the theorems of the appendix.

The radial equation (4.7) implies that θ̂Ω can be made finite on-shell by subtracting

counterterms which fall under the ambiguities (4.5b). As a first way to see it, note that at

each order of a Laurent series for θ̂Ω

θ̂Ω = Ω−(D−5)θn(0) + Ω−(D−6)θn(1) + . . .+ Ω−1θn(D−6) + θn(D−5) + Ωθn(D−4) + . . . (4.8)

the radial equation reads

(D − 5− k)θn(k) =̂ ∂iθ
i
(k) − δL(k), (4.9)

– 9 –
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where =̂ denotes on-shell equality. The orders k < D − 5 of θn, which are the ones that

come with divergent prefactors in θ̂Ω, are fixed on-shell by the radial equation to be total

derivatives plus total variations, while θn(D−5), which gives the finite order of θ̂Ω, is not

determined. The remaining terms do not contribute in the asymptotic limit Ω → 0. Thus,

it is clear that the divergences in θ̂Ω can be removed order by order in the Laurent series.

Rather than working order by order, we perform the counterterm subtraction at finite

distance and take the limit in the end. In this way we obtain the asymptotic SP as the

finite limit of a renormalized SP.

Applying the results of appendix A to equation (4.7), one obtains the renormalized

normal-component to the hypersurface Ω = const. ≥ 0 in the form9

θ̂Ω
R = Ω−(D−5)θnR

= θ̂Ω−Ω−(D−5)
D−5∑
p=1

[
(D−5−p)!

(D−5)!
Ωp−1∂p−1

Ω

(
∂iθ

i−δL
)]

+lnΩ (∂iθ
i
(D−5)−δL(D−5)).

(4.10)

The main claim that follows from the analysis done in the appendix (see eq. (A.10)) is that

θ̂
Ω

R admits a finite limit at Ω = 0 as long as θi and L are (D − 5)-polyhomogeneous. This

means that we assume that the fields, and hence the Lagrangian and tangent symplectic

potential, have an expansion of the form L =
∑D−5

k=0 L(k)Ω
k + ΩD−4P (Ω), where P is poly-

homogeneous in Ω. This readily translates into the following renormalization prescription

for the full SP:

θ̂aR := θ̂a + ∂bα̂
ab + δβ̂a, (4.11)

with corner counterterms

α̂Ωi = −α̂iΩ = −Ω−(D−5)
D−5∑
p=1

[
(D − 5− p)!

(D − 5)!
Ωp−1∂p−1

Ω θi
]

+ ln Ω θi(D−5) (4.12a)

α̂ij = 0 (4.12b)

and boundary action

β̂Ω = Ω−(D−5)
D−5∑
p=1

[
(D − 5− p)!

(D − 5)!
Ωp−1∂p−1

Ω L

]
− ln Ω L(D−5) (4.13a)

β̂i = 0 (4.13b)

The choice α̂ij = 0 = β̂i is not unique, and can be modified without interfering with

the renormalization of the SP on I . However, notice that even with this choice, θ̂iR is

nonetheless renormalized by ∂Ωα̂
iΩ.

It is crucial to keep present the following two facts about the above renormalization

procedure. On the one hand, the algebraic part of the counterterms is given by forms on

9Recall that in our notation: X(k) := 1
k!
∂kΩX|Ω=0.
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spacetime and not only on I , i.e. by expressions local in all coordinates including in the

coordinate Ω; in particular, these counterterms are not truncated Laurent series in Ω. On

the other hand, the coefficients of the logarithmic terms are given by derivatives ∂
(D−5)
Ω θi

and ∂
(D−5)
Ω L evaluated at Ω = 0.10 If we assume analyticity of the field expansion, the

logarithmic terms have to vanish and the expansion is purely algebraic. It is convenient to

combine the logarithmic term into what we call the SP (logarithmic) anomaly :

C := ∂iθ
i
(D−5) + δL(D−5). (4.14)

We call the terms ∂iθ
i
(D−5) and L(D−5) the charge and action anomaly respectively.

A more explicit expression for the SP on I ⊂ I ,11

Θ̂R := − lim
Ω→0

∫
I(Ω)

θ̂Ω
R(Ω), (4.15)

can be found using the second result of appendix A, equation (A.9), which gives

θ̂Ω
R(Ω) = Ω−(D−5)θnR(Ω) =

1

(D − 5)!
∂D−5

Ω θn + ln Ω C. (4.16)

Distributing the radial derivative on θn as given in (4.2) and taking the Ω→ 0 limit gives

the following expression for the renormalized SP on a region I ⊂ I :

Θ̂R =
D−5∑
k=0

ΘR
(k) +HD−5

∫
I
C, ΘR

(k) :=

∫
I

√
q J i(D−5−k)δAi(k). (4.17)

The sum involves D − 4 terms associated with different “layers” of the conformal current,

from J(D−5) to J(0). These layers are dynamically interdependent, a fact that we will

analyze in detail in section 6. In the following we will consider only analytic solutions (up

to an appropriate order) in which C = 0. Even if it were not vanishing, though, the SP

anomaly could still be reabsorbed in the ambiguity of θ̂Ω
R. Hn =

∑n
p=1 p

−1 is the n-th

harmonic number.

To conclude this section, let us stress the role played by the counterterms α̂ab and β̂a.

Whereas the physical interpretation of β̂
a

is clear — it is meant to renormalize the action

— the interpretation of α̂ab may seem more mysterious. However, its role is physical and

is meant to renormalize the symmetry generators, i.e. the Noether charge, associated to

the (asymptotic) gauge symmetries. We now turn to their analysis.

5 Generators

The on-shell generators of gauge transformations are a crucial ingredient for the interpre-

tation of asymptotic symmetries. We present part of their evaluation in this section. As

stated above, the data in the SP are not all independent — however, this is no impediment

to the calculation below: if one is interested just in the charges, resolving the dependencies

10See previous footnote, fnt 9.
11The minus sign is due to the ingoing direction of the normal to I .
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can be delayed until after an expression for the charges has been obtained, streamlining

the computation.

To get the generators for the renormalized symplectic form, one could start from the

standard generators associated to the standard symplectic form, and calculate how they

change due to the corner counterterms.12 Alternatively, one can calculate the generators

from the renormalized SP directly. We will take the second route. We perform the calcula-

tion directly at I , but since the renormalized symplectic form is known at finite distance

one can in principle do the same computation there.

The asymptotic renormalized symplectic form is

ω̂R := δΘ̂R =

∫
I

D−5∑
k=0

δJ i(k) f δAi(D−5−k), (5.1)

where f denotes antisymmetrization of the δ’s. The generators of gauge transformations

ĤR
α are related to the symplectic form as

δĤR
ε = −Iεω̂R (5.2)

where Iε is the action of a gauge transformation, i.e., Iεω̂R(δAa, δAa) = ω̂R(∂aε, δAa). The

action of a gauge transformation ε = ε(0) + Ωε(1) + . . . on the variables is

IεδAi(k) = ∂iε(k), IεδAΩ(k) = (k + 1)ε(k+1), IεδJ i(k) = 0. (5.3)

Using the conservation of the conformal current ∂i(
√
qJ i(k)) = 0, we obtain for the asymp-

totic renormalized on-shell generators

ĤR
ε =

[
Q̂Rε ]fi where Q̂Rε =

D−5∑
k=0

∮
S

√
qJ u(D−5−k)ε(k) (5.4)

and [X]fi := X(uf )−X(ui). This expression is manifestly finite, and should be contrasted

with the generators obtained from the standard symplectic form ω̂ = Ω−(D−5)
∫
I(Ω)

√
qδJ if

δAi, which read Ĥε = [Q̂ε]
f
i with

Q̂ε(Ω) = Ω−(D−5)

∮
S(Ω)

√
qJ uε (5.5)

and diverge in the asymptotic limit (unless one puts strong restrictions on the space of

asymptotic data).

Observe that just as the renormalized SP coincides asymptotically with the finite part

of the Laurent series of the standard SP, the renormalized generators are the finite part of

the standard generators.

12As opposed to the corner counterterms α̂, the boundary action β̂ is built out of L and is therefore

manifestly gauge invariant. As the following derivation shows, this means that it does not contribute to the

renormalization of the Hamiltonian generators — even though it does contribute to the renormalization of

the symplectic potential.
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The “layering” structure also transfers from the SP to the charges: there are not one,

but (D − 4) “sphere-worth” of non-zero charges, which depend on the extension of ε off

of I . The extension dependence of charges has been noted for the gravitational case

already in [46]. We will revisit the layering and the extension ambiguity of the charges in

section 7.3.

6 Asymptotic equations of motion

In this section, we give the complete set of relations between the quantities entering the

renormalized SP. Specifically, we will identify the free data needed to solve the EoM

asymptotically. Computations are performed in general D ≥ 6 (even).

The first step is to split the EoM into their radial, retarded-time, and sphere compo-

nents, and hence to develop them in orders of Ω. We will write the equations in “radial-

time” gauge13

AΩ ≡ 0, (6.1)

and will comment in section 7.3 on the status of that condition and how to lift it.

Consider first the conformal current J a = Ω−1NbF
ba. We write the definitions of J u

as a radial evolution equation for Au and the definition of J A as a retarded time evolution

equation for AA:

∂ΩAu = −ΩJ u (6.2a)

∂uAA = ∂AAu + ΩJA − Ω2∂ΩAA. (6.2b)

The EoM, Ea = ∂b(
√
qF ba)− (D − 4)

√
qJ a, can be decomposed as:

En = −∂u(
√
qJ u)− ∂A(

√
qJ A), (6.3a)

Eu = −
[
(D − 5)− Ω∂Ω

]
(
√
qJ u)− ∂A∂Ω(

√
qAA), (6.3b)

EA = −
[
(D − 5)− Ω∂Ω

]
(
√
qJ A) + ∂u∂Ω(

√
qAA) + ∂B(

√
qFBA) (6.3c)

= −
[
(D − 6)− 2Ω∂Ω

]
(
√
qJ A) + ∂B(

√
qFBA)−√q(1 + Ω∂Ω)(Ω∂ΩA

A)

− Ω
√
q∂AJ u, (6.3d)

where in the last line we have rewritten EA as a purely radial evolution equation, by

means of (6.2). Notice the factor of 2 which appeared in the radial derivative operator as

a consequence of this manipulation. We will come back to it shortly.

We now develop the equations in orders of Ω. First, consider the normal component

of the EoM,

En(k) = −∂u(
√
qJ u(k))− ∂A(

√
qJ A(k)). (6.4)

13Since I is null and transverse to ∂Ω, the radial gauge AΩ ≡ 0 shares there various features with the

usual time gauge At ≡ 0 fixed at a standard Cauchy surface Σt=const..
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Note that the identity ∂a∂b(
√
ĝF̂ ab) = 0 can be written as[

(D − 5)− Ω∂Ω

]
En = ∂uE

u + ∂AE
A (6.5)

Asymptotically, this implies that the only independent information contained in En lies in

its k = (D− 5) order. The rest of its orders automatically vanish once the tangential EoM

are solved, and do not need to be considered separately. Thus we define

G := En(D−5) = −∂u(
√
qJ u(D−5))− ∂A(

√
qJ A(D−5)). (6.6a)

As it will become clear shortly, this is the Gauss law on the Ω = const. slices. The orders

of the remainder EoM and the definitions of the conformal current are

Au(k+1) =− 1

(k+1)
J u(k−1) (6.6b)

∂uAA(k) = ∂AAu(k)+JA(k−1)−(k−1)AA(k−1) (6.6c)

Eu(k) =−(D−5−k)(
√
qJ u(k))−(k+1)∂A(

√
qAA(k+1)) (6.6d)

EA(k) =−(D−6−2k)(
√
qJ A(k))+∂B(

√
qFBA(k) )−√qk(1+k)AA(k)−

√
q∂AJ u(k−1). (6.6e)

These equations hold for k ≥ 0 if we set negative orders of J and A to zero by convention.

The equations (6.6) are the complete set of asymptotic EoM.

These equations contain the asymptotic Maxwell conditions NaF
ab I

= 0, which are

explicitly given by

Au(1) = 0, J u(−1) = 0, ∂uAA(0) = ∂AAu(0). (6.7)

The last equation can be conveniently solved by introducing a Hodge decomposition of

AA(0) = εA
BC···∂BµC··· + ∂Aϕ =: αA(0) + ∂Aϕ. (6.8)

Then, equation (6.7) says that the purely magnetic part αA(0) must be u-independent and

that the purely electric part ϕ is related to Au(0) by

Au(0) = ∂uϕ. (6.9)

We call ϕ the soft potential.14

We are now going to analyze the asymptotic EoM to identify the asymptotically free

data. As before, we focus on a finite region I ⊂ I , with ui ≤ u ≤ uf . The boundary of I

is the union of two corner spheres, denoted ∂I = Si tSf , where Si (Sf ) is the cut of I at

u = ui (u = uf , respectively).

We view the conformal current J i as an a priori independent variable from the gauge

field, such that the definition of J i in terms of components of the gauge field has the

14Notice that ϕ in (6.9) is not fully determined by the Hodge decomposition of AA(0), but only up to a

time-dependent sphere-constant term. We will see that ϕ is in an appropriate sense canonically conjugated

to the local electric flux. Thus, since in absence of charged matter the total flux vanishes, this sphere-

constant term does not play much of a role, see section 7.
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same status as the EoM. While this is not strictly necessary for electromagnetism, it can

potentially clear up the analysis of the EoM in the gravitational case. The key to identifying

the free data is that the factor (D − 5− k) in (6.6d) becomes zero for k = D − 5, and the

factor (D−6−2k) in (6.6d) becomes zero for k = D−6
2 . For later convenience we introduce

the new symbol

` :=
D − 6

2
. (6.10)

Note the obvious relations D = 6 + 2` and D − 5 = 2`+ 1.

We will first state how to solve the EoM iteratively and what the free data are at the

“generic” orders k /∈ {0, `, 2`+ 1}, and return to those three orders below. It is also useful

to define αA(k) := AA(k)(ui) which is a corner variable evaluating the value of AA at the

initial slice. The value of AA on a arbitrary time slice can then be obtained as

AA(k)(u) = αA (k) +

∫ u

ui

∂uAA(k)(u
′)du′. (6.11)

We are now in a position to show that the free canonical data on I is given by{
ϕ, J A(`)

}
on I ,

{
J u(2`+1), αA(0), · · · , αA(2`+1)

}
on Si, (6.12)

and we prove this by recurrence. We start the recurrence by assuming that we are given the

variables Au(0) and αA(0). Equation (6.7), determines ∂uAA(0) hence AA (0). To continue

the recurrence it is convenient to lay out the equation of motions as follows15

(D − 4− k)J u(k−1) = −kDAA
A
(k), (6.13a)

(D − 6− 2k)J A(k) = DBF
BA
(k) −

[
∂AJ u(k−1) + k(k + 1)AA(k)

]
, (6.13b)

∂uA
A
(k+1) = J A(k) −

1

k + 1

[
∂AJ u(k−1) + k(k + 1)AA(k)

]
. (6.13c)

We now assume that AA(k) is known on I. The first equation defines J u(k−1) from AA(k),

as long as k 6= (D − 4), the second defines J A(k) from (AA(k),J
u
(k−1)), as long as k 6= ` and

the third determines ∂uA
A
(k+1) from (AA(k),J

u
(k−1),J

A
(k)). This in turns determines AA(k+1)

from αA(k+1) and (6.11) and we can start a new cycle of recurrence.16

This establishes that the free data is {ϕ,J A(`),J
u
(2`+1)} on I and {αA(k)} on S. One can

then use the Gauss law to deduce the value of ∂uJ u(2`+1). This effectively reduces the free

part of J u(2`+1) to its initial value on Si.

We conclude this section with a remark. So far, whenever only the retarded-time

derivative of a quantity A was determined by the equations of motion, we have introduced

an integration constant α associated to the initial value of A, i.e. α = A(ui). Of course, this

association is somewhat arbitrary: provided one had accordingly changed the integration

kernel of ∂uA, one might have chosen α to be e.g. the final value of A, or the “zero-mode”

component, 〈A〉 :=
∫ uf
ui
A(u)du (see appendix B for the integration kernel associated to this

choice of α). This freedom turns out to be useful when inspecting the symplectic structure

of the theory.

15DA is the covariant derivative on the sphere S, so that e.g. ∂A(
√
qvA) =

√
qDAv

A.
16The knowledge of Au(k+1) for k > 1 is not explicitly required, one just deduce its value from Au(k) =

−Ju(k−1)/(k + 1).
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6.1 News, charge aspects, and radiative modes

As we have seen there are two currents that are exceptional in the sense that they are not

determined recursively by the rest of the data. The first exception appears at order k = `,

with ` := D−6
2 : the variable J A(`) is not determined by (6.13b), contrarily to its other orders

which are algebraically determined. It is free data on all of I . We call it the Maxwell news :

NA := J A(`), (6.14)

for its role in the asymptotic EoM is analogous to the Bondi news in 4D General Relativity.

It is the free radiative data. Let us further introduce, the radiative modes

AA := AA(`+1). (6.15)

Using (6.13c), AA is determined by NA, up to an integration constant

NA = ∂uAA + `

(
AA(`) −

∂A(DBA
B
(`))

(`+ 1)(`+ 2)

)
. (6.16)

In odd spacetime dimensions, all orders of J A(k) are algebraically determined by (6.6e).

We thus see from an asymptotic perspective that in odd spacetime dimensions, solutions

which are “smooth” around I do not have free radiative data. This is why we restrict our

analysis to even dimensions. A similar statement has been made, albeit from a different

perspective, for gravity e.g. in [37, 47].

For the last exception, consider the order k = 2`+1 = D−5, where the factor in (6.6d)

vanishes. J u(2`+1) is hence not determined by (6.6d), unlike the other orders of J u(k) which

are algebraically determined. The retarded time evolution is, however, determined by the

Gauss law (6.6a). We hence call

σ := J u(2`+1) (6.17)

the charge aspect, for its role is analogous to the (Bondi) mass aspect in general relativity.

Note also that asymptotic Coulombic fields, such as the spherically symmetric Coulombic

field of a finite point charge in the interior of spacetime, fall off such that they contribute

to σ, but not to the orders J u(k<D−5).

The charge aspect conservation is controlled by the Gauss law (6.6a),

∂uσ +DAJ A(D−5) = 0. (6.18)

This can be more explicitly expressed by using (6.13), and taking the divergence of (6.13b),

as

∂uσ =
D − 5

D − 4

(
DADA − (D − 4)

)
(DBA

B
(D−5)). (6.19)

In D = 6, this readily gives a relation between the conservation of the charge aspect

and the radiative modes:

∂uσ =
1

2

(
DADA − 2

)
(DBAB) (D = 6). (6.20)
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However, in general AA(D−5) does not correspond to the radiative modes, and one might

wonder whether a relation analogous to this one still holds in general dimensions (this

relation is crucial for the derivation of the soft theorems, see [31]). Indeed, a similar

relation exists, but it rather expresses ∂`+1
u σ in terms of spatial derivatives17 of AA. This

relation can be found by taking the divergences of equations (6.13b) and (6.13c). To see

this, it is convenient to rewrite equations (6.13) for k 6= 2`+ 2 as

J u(k−1) = − k

(2`+ 2− k)
DAA

A
(k), (6.21a)

2(`− k)J A(k) = DBF
BA
(k) +

k

(2`+ 2− k)

[
DADB − (k + 1)(2`+ 2− k)δAB

]
AB(k), (6.21b)

∂uA
A
(k+1) = J A(k) +

k

(k + 1)(2`+ 2− k)

[
DADB − (k + 1)(2`+ 2− k)δAB

]
AB(k). (6.21c)

where

c`k := (k + 1)(2`+ 2− k) (6.22)

is a symmetric coefficient under the exchange k ↔ 2`+ 1− k.

Thus, the divergences of (6.13b) and (6.13c) readily give a recursion relation18 for

DAA
A
(k):

DAJ A(k) =
k

2(`− k)(2`+ 2− k)
∆`
k(DAA

A
(k)) (6.23a)

∂u(DAA
A
(k+1)) =

k(2`+ 1− k)

2(`− k)(k + 1)(2`+ 2− k)
∆`
k(DAA

A
(k)) (6.23b)

where we introduced the elliptic negative-definite differential operator

∆`
k :=

(
DAD

A − (k + 1)(2`+ 2− k)
)
. (6.24)

Using the above recursion relation, we find

∂`+1
u σ = −∂`u(DAJ A(2`+1)) =

2`+ 1

2(`+ 1)
∆`

2`+1∂
`
u(DAA

A
(2`+1))

= · · · = (−1)`

2(`+1)

1

(`+ 1)!

(
∆`

2`+1∆`
2` · · ·∆`

`+1

)
(DAAA). (6.25)

Thus, we see that in dimensions D > 6 (even), i.e. ` > 0, the radiative potential only

controls the higher time derivative ∂`+1σ of the charge aspect. It is for this reason that

we need the intermediate potentials {AA(`+1+p)}p, as these control the lower derivatives

∂`+1−pσ, for p = 1, · · · , `.

17By “spatial derivative” we mean derivative along the sphere, i.e. DA.
18With similar methods, a recursion relation can be found for FAB(k) by taking the antisymmetric derivative

of equations (6.13b) and (6.13c), instead of their divergences.
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6.2 Anomalies

Even though the equations EA
(D−6

2
)
≡ EA(`) = 0 and Eu(D−5) ≡ Eu(2`+1) = 0 do not determine

the Maxwell news and the charge aspect, they of course still hold true. Similarly to the SP

radial equation (4.7) which is controlled by the logarithmic anomaly C of equation (4.14),

the EA and Eu equations for J A and J u are also controlled by their own logarithmic

anomalies. We will call them the vector and scalar anomaly respectively. The vanishing of

the vector and scalar anomalies corresponds to the smoothness of the conformal currents

J A and J u (at least up to the orders k = ` and k = 2`+1, respectively). We emphasize that

this assumption of vanishing anomalies is not necessary for the finiteness of the renormalized

symplectic potential. We assume their vanishing, as done in most of the literature, to

simplify the expressions of the fields in terms of the asymptotic free data.

The vanishing of the scalar anomaly gives

DAA
A
(2`+2) = 0. (6.26)

This condition is not a restriction on the asymptotic data, since only the values of the

potential {AA(0), · · · , A
A
(2`+1)} enters the definition of the SP.

The vector anomaly is controlled by the order k = ` := D−6
2 . Its vanishing hence

restricts AA(`). Using that J u(`−1) = − `
`+2DBA

B
(`), one gets

DBF
AB
(`) + `

[
(`+ 1)AA(`) −

1

`+ 2
∂A(DBA

B
(`))

]
= 0. (6.27)

In D 6= 6, taking the divergence of this equation we get that [DAD
A − (` + 1)(` +

2)](DBA
B
(`)) = 0. The Laplacian on the sphere has negative eigenvalues so this equa-

tion implies DBA
B
(`) = 0 and DBF

AB
(`) = `(` + 1)AA(`). Using the relation (6.13a), we can

translate the first condition into a restriction on J u(`−1). Hence, the vanishing of the vector

anomaly implies

J u(`−1) = 0 and DBF
AB
(`) = `(`+ 1)AA(`). (6.28)

In dimension D = 6, ` = 0 and the above manipulations fail. However, the two

equations (6.28) stay true: the first one degenerates with the asymptotic Maxwell condi-

tion (6.7), while the second one simply means that DBF
AB
(`=0) = 0, compatibly with (6.27).

By Hodge theorem, this equation is equivalent to19

FAB(`=0) = 0 (D = 6), (6.29)

an equation that holds only in D = 6. Furthermore, in all dimensions, the vanishing of the

vector anomaly simplifies the expression (6.16) for the news tensor, giving

NA = ∂uAA + `AA(`) = ∂uAA +
1

(`+ 1)
DBF

AB
(`) . (6.30)

We leave the full analysis of these anomalous relations in the general context where

we do not impose analyticity to future work.

19In [31], the same condition in arbitrary dimension D > 6 is derived from a finite energy argument.

Since we have here renormalized the symplectic form, the generators of time translations, whose on-shell

value is energy, are likewise renormalized and their argument cannot be directly applied.
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7 Renormalized symplectic potential

With these results, we can now analyze the renormalized asymptotic SP in the case where

D = 6 + 2` ≥ 6 and even.20 We focus on the contribution from a subregion I ⊂ I with

ui ≤ u ≤ uf . As we have shown in section 4, the renormalized SP organized itself as a sum

of different layers (equation (4.17)). It is convenient to rearrange these layers as

Θ̂R = ΘC + Θrad +
∑̀
p=1

(
Θint

(p) + Θint
(−p)

)
, (7.1)

where

Θint
(p) :=

∫
I

√
q J i(`+p)δAi(`+1−p) (7.2)

is the contribution of the “intermediate potentials” (present only when ` ≥ 1, i.e. D ≥ 8),

while ΘC and Θrad are the Coulombic and the radiative contributions respectively:

ΘC =

∫
I

√
q J i(2`+1)δAi(0), Θrad =

∫
I

√
q J i(`)δAi(`+1). (7.3)

The Coulombic and radiative contributions are common to all even dimensions D ≥ 6.

These are the layers we analyze thoroughly in this paper.

In order to express the radiative component of the SP, one has to remember that the

vanishing of the vector anomaly (6.28) imposes21 that Au(`+1) = −J u(`−1)/(` + 1) = 0.

Therefore, in absence of anomalies the radiative component is purely transverse and pairs

the Maxwell news NA := J A(`) to the radiative modes AA := AA(`+1), hence its name:

Θrad =

∫
I

√
qNAδAA. (7.4)

The study of the Coulombic component is more subtle. Recalling our definitions of the

soft potential (6.9) and of the charge aspect, σ := J u(2`+1), and making use of the Gauss

law (6.6a), the Coulombic component can be cast in the form

ΘC :=

∫
I

√
qJ i(2`+1)δAi(0) =

∫
I

√
qJ A(2`+1)δαA(0) +

∫
I

√
qJ i(2`+1)∂iδϕ

=

∮
S

√
q〈J A(2`+1)〉δαA(0) +

∮
S

√
q [σδϕ]fi . (7.5)

Here, we used the notation [X]fi := X(uf ) − X(ui), as well as introduced the Fourier

zero-mode

〈X〉 :=

∫ uf

ui

√
q X(u)du (7.6)

20As we have seen, in odd dimension the analyticity conditions implies that there are no compatible

radiative data.
21Recall also that in D = 6 the same condition follows from the asymptotic Maxwell conditions.

– 19 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
6

This shows that the charge aspect σi = σ(ui) (resp.σf = σ(uf )) is canonically conju-

gated to ϕi = ϕ(ui) (resp. ϕf = ϕ(uf )) while the zero-mode of the current 〈J A(2`+1)〉 is

conjugated to αA(0).

It is convenient to introduce the charge aspect (semi-)sum, σ+, and difference, σ−:

σ+ :=
1

2
(σf + σi), σ− := σ(uf )− σ(ui), (7.7)

and similarly for the soft potential. Using∮
S

√
q [σδϕ]fi =

∮
S

√
q(σ+δϕ− + σ−δϕ+), (7.8)

the Coulombic part of the soft potential can be finally written as

ΘC =

∮
S

√
q
(
〈J A(2`+1)〉δαA(0) + σ+δϕ− + σ−δϕ+

)
. (7.9)

What is interesting in this formulation is that αA(0), ϕ
+, and ϕ− have a clear meaning

in terms of the leading gauge potential Ai(0): the soft potential difference ϕ− is equal to

[ϕ]fi =
∫ uf
ui
Au(0); the sum ϕ+ is the electric component in the Hodge decomposition of

A+
A(0) and since this expression does not depend on the retarded time explicitly, it does not

enter Au(0). αA(0) is the magnetic component in the Hodge decomposition of AA(0), which

the asymptotic Maxwell conditions requires to be time independent (see (6.8)). Finally, and

most importantly, using the results of section 6.1, σ− can be related to the (generalized)

zero-mode of the radiative modes. This will be shown in the next two sections.

7.1 D = 6

In D = 6, which means ` = 0, the symplectic potential contains only two layers. Moreover,

while AA = AA(1) is the radiative mode, the curvature FAB(0) vanishes by the vector

anomaly (see equation (6.29)). We thus get that αA(0) = 0, in this case. Hence, the

Coulombic component simplifies further and reduces to the sole contribution (7.9). We

also have in this case that the charge conservation is directly determined by the radiative

zero modes,

σ− =
1

2

(
DAD

A − 2
)
DB〈AB〉. (7.10)

Given that the zero mode of A enters the Coulombic part of the potential, it is necessary to

carefully disentangle the zero mode contribution of A from its purely radiative component

contained in ∂uA. To do so we introduce the Green’s function G, inverse to ∂u which

satisfies the following

∂uG(X) = X, 〈G(X)〉 = 0, X =
1

(uf − ui)
〈X〉+G(∂uX). (7.11)

These conditions determines G uniquely and an explicit expression is given in appendix B.

Using it, the radiative modes can be decomposed into their zero and non-zero Fourier

modes, A = 1
(uf−ui)〈A〉 + G(∂uA). From the expression (6.16) of the Maxwell news at

` = 0 we see that the equations of motion for the radiative more in D = 6 are simply

∂uAA = NA. (7.12)
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Adding the Coulombic component (7.9) and taking another (antisymmetrized) variation of

the total SP, one obtains the total symplectic form ω̂R = δΘ̂R:

ω̂R =

∮
S

√
q

(
δσ+ f δϕ− +DAδ〈AA〉f

1

2
(D2 − 2)δϕ+

)
+

∫
I

√
q δNA f δAA. (7.13)

To fully unravel the last component of the SP, we turn our attention to the Fourier

analysis of the Maxwell news. In order to have a finite energy flux
∫
I N

2 <∞, the Maxwell

news must be an L2 function of u. This means that the Fourier transform of NA exists,

and we can define (here, ∆u := uf − ui)

NA(u) := NA(u)− nA(0) :=
1

∆u1/2

∑
k 6=0

e
2πik
∆u

unA(k) (7.14)

with 〈NA〉 = ∆unA(0) the zero Fourier mode of the Maxwell news. Now, thanks to (7.12),

and the defining properties of G,

AA(u) =
1

∆u
〈AA〉+

u− u+

∆u
〈NA〉+

1

∆u1/2

∑
k 6=0

e
2πik
∆u

uaA(k)

=:
1

∆u
〈AA〉+

u− u+

∆u
〈NA〉+AA(u), (7.15)

where u+ := 1
2(uf + ui) and

aA(k) :=
∆u

2πik
nA(k). (7.16)

Notice that AA(u) is periodic in the interval [ui;uf ]. We see that allowing 〈NA〉 to be

nonzero means that AA(u) has a u-linear component. Thus, inserting the above expressions

for AA and NA in the last term of (7.13), we readily obtain∫
I

√
q δNA f δAA =

∫
I

√
q δNA f δAA +

∮
S

√
q δ〈NA〉f δ

(
〈AA〉
∆u

−A+
A

)
, (7.17)

where we used that22

〈uNA〉 = ∆u · A+
A. (7.18)

The first term on the right hand side of equation (7.17) is the radiative contribution proper,

involving only the oscillating modes of the radiative data, while the second term is a soft

contribution that is usually overseen. We will discuss this contribution in the I → I

limit below.

To summarize, the renormalized asymptotic symplectic form of electromagnetism in

D = 6 on I ⊂ I is given by

ωR = ωRrad + ωRsoft (7.19a)

ωRrad =

∫
I

√
q δNA f δAA (7.19b)

ωRsoft =

∮
S

√
q
(
δσ+ f δϕ− + δSA f δ〈AA〉+ δA+

A f δ〈NA〉
)
, (7.19c)

22Recall that AA is periodic in [ui;uf ] and therefore A+
A = AA(ui) = AA(uf ).
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where the soft current SA was introduced,

SA :=
1

2
DA(D2 − 2)ϕ+ +

1

∆u
〈NA〉. (7.20)

We see that the 6D theory contains one purely radiative canonical pair and three types

of soft canonical pairs.

The first soft pair δσ+ f δϕ− is purely Coulombic and it pairs the charge aspect sum

σ+ := 1
2(σf + σi) with the change in the soft potential ϕ− := [ϕ]fi = 〈Au(0)〉. The second

soft pair δSAf δ〈AA〉 involves the zero-mode 〈AA〉 of the radiative field and contains itself

two contributions. The first one, involving ϕ+, is related to charge conservation (7.10). It

plays a key role in the derivation of the soft theorems (see section 7.3). Notice that the

component Au(0) of the gauge field does not enter ϕ+. Rather, in ϕ+ enters the electric

component in a Hodge decomposition of AA(0) (see (6.9)). Here, in D = 6, the purely

magnetic part of AA(0), i.e. αA(0), is zero as a consequence of the vanishing of the vector

anomaly, equation (6.29). The electric contribution of ϕ+ is analogous to the one discussed

in D = 4 e.g. by [1]. The important difference is that, in D = 4, the radiative data and

the analogue of the scalar ϕ+ both live at leading order, while in D = 6 and higher the

radiative data and leading order data are neatly separated.

The second term in the second soft pair is new. Due to its ∆u−1 scaling, it is hard

to individuate when working directly in the I → I limit. In particular, for this term

to survive, one has to suppose that the product 〈AA〉〈NA〉 diverges as ∆u in the limit

∆u→∞. For the previous term to be finite and ϕ+ to be of order 1, one needs to require

that the purely magnetic part of 〈AA〉 in a Hodge decomposition is allowed to be of order

∆u, and thus possibly divergent, even though its purely electric part should be of order 1

because of its coupling to ϕ+.

Finally, the last canonical pair, δA+
Afδ〈NA〉, is bound to vanish in the I → I limit, in

which the radiative part of AA goes to zero23 as ui → −∞ and uf → +∞. This corresponds

to saying that there is no outgoing24 radiation in the asymptotic past and future of I .

7.2 Higher dimensions

Now, we briefly turn to the higher dimensional case, i.e. D ≥ 8 (even) or equivalently ` ≥ 1,

and focus on the soft contribution to the renormalized symplectic structure. In this case

the key equation is (6.25), i.e.

∂`+1
u σ =

(−1)`

2(`+1)

1

(`+ 1)!

(
∆`

2`+1∆`
2` · · ·∆`

`+1

)
(DAAA), (7.21)

where we also recall that

∆`
k :=

(
DADA − (k + 1)(2`+ 2− k)

)
. (7.22)

23Recall that AA is periodic and hence A+
A = AA(ui) = AA(uf ).

24Recall also that in this paper by I we mean I +. Analogous statements hold at I−.
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From this, assuming DAαA(k) = 0 for k ∈ {` + 1, . . . , 2` + 1}, one finds that the soft

potential sum ϕ+ is conjugated to

σ− =

∫ uf

ui

du ∂uσ =
(−1)`

2(`+1)

1

(`+ 1)!

(
∆`

2`+1∆`
2` · · ·∆`

`+1

)
〈DAAA〉(`) (7.23)

where the “generalized zero-mode” is defined as25

〈DAAA〉(`) =

∫ uf

ui

du`+1

∫ u`+1

ui

du` · · ·
∫ u2

ui

du1D
AAA(u1). (7.24)

Notice that the neglected contributions proportional to DAαA(k) contain powers of the

interval (uf − ui) and therefore require a more subtle analysis. Moreover, in these cases

where D ≥ 8, the intermediate potentials also contribute via Θint
(p). These contributions,

once fully unraveled in terms of the free data, end up “dressing” the different contributions

to the SP while also providing new terms involving δαA(k). We do not attempt a full

analysis here.

7.3 Gauge modes, soft modes, and soft theorems

We conclude this section with an important remark. First we recall that we have so far

worked in the gauge AΩ = 0. This means that we can express our symplectic potential in

terms of a gauge invariant potential provided we perform the replacement

Aa 7→ Aa − ∂a
∫ Ω

0
AΩ (7.25)

It is important to note that the Coulombic contribution to the SP would have been missed

completely, had we fully “fixed the gauge”, as in

Aa 7→ Aa − ∂a
∫ u

ui

Au(0), Aa 7→ Aa − ∂a
1

D2
(DAA+

A(0)). (7.26)

In fact the last two transformations would have set ϕ− and ϕ+ to zero, respectively.26

The question remains, what the first gauge fixing in (7.25) removes, since we have

indeed employed it to solve the EoM. Using the Gauss law, it is easy to see that the term

that was missed leads to the “total” SP, which differs from the original potential by a

corner term

ΘR
tot = ΘR −

D−5∑
k=1

1

k

∮
S

[
J u(D−5−k)δAΩ(k−1)

]f
i
. (7.27)

This corner term is a spacetime local expression in terms of the gauge field Aa and can

therefore be considered as part of the (finite) corner ambiguity α̂Ωu.

25Thus 〈·〉(0) = 〈·〉 of the previous section.
26The soft contribution pairing the zero-modes of the news and radiative modes in a sense comes from

the radiative contribution to the SP.
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This finite corner ambiguity has the peculiar property that the Noether charges of

section 5, associated to ΘR
tot are independent of the way the gauge parameter is extended

off of I , i.e. they are not layered.27 Indeed, using (5.4), one readily finds

Q̂tot,R
ε = Q̂Rε −

D−5∑
k=1

∮
S

√
qJ u(D−5−k)ε(k) =

∮
S

√
qσε(0). (7.28)

From this formula, it is clear that the Hamiltonian generator for a generic gauge transfor-

mation is

Ĥtot,R
ε =

[
Q̂tot,R
ε

]f
i

=

∮
S

√
q
(
σ+ε−(0) + σ−ε+(0)

)
. (7.29)

Let us compare this Hamiltonian generator to the results of [31]. There, starting from

the QED soft theorem in dimensions D = 6 + 2`, the authors derive the charge expression

whose Ward identity encodes the soft theorem. They then fix the classical Poisson brackets,

or equivalently the symplectic form, by demanding that the charge expression generate the

correct gauge transformations of the gauge field AA(0). Here, we took a different route.

We determined the symplectic form using the covariant Hamiltonian formalism and our

renormalization procedure, and derived the charge from the symplectic form rather than

deriving the symplectic form from the charge.

The charge expression of [31] coincides with our Ĥtot,R
ε , for ui → −∞, uf → +∞, and

under the assumption made in [31] that σ(uf ) = 0. That is, using (7.10), in D = 6 we find

Ĥtot,R
ε →

∮
S

√
q ε(0)σi = −1

2

∮
S

√
q ε(0)(D

ADA − 2)〈DAAA〉 (7.30)

In higher dimensions, the correct generalization is obtained through equations (7.23),

and also coincides with the results of [31]

Ĥtot,R
ε →

∮
S

√
q ε(0)σi

= − (−1)`

2(`+1)

1

(`+ 1)!

∮
S

√
q ε(0)

[
∆`

2`+1∆`
2` · · ·∆`

`+p · · ·∆`
`+1

]
〈DAAA〉(`) (7.31)

In particular, the “soft-theorem charge” is not the total radial electric field, which

would a priori lead to divergent charges, but only the finite part of its Laurent series, which

is the charge aspect σ. Recall also that the charge aspect is the Coulombic part of the

radial electric field created by a bulk charge density. The agreement of the charge obtained

from the renormalization procedure with the charge obtained from soft theorems supports

the physical viability of the asymptotic renormalization procedure in gauge theories.

27In [48], a similar criterion was used by two of us to fix analogous ambiguities in the gravitational

context.
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8 Conclusions

In this work, we have presented the renormalization of the asymptotic symplectic potential

for electromagnetism in even dimensions D ≥ 6 at null infinity. We have constructed in

detail the renormalized symplectic potential and the corresponding charges under general

asymptotic condition, requiring Fab to be (D − 5)-polyhomogeneous. With a few obvious

modifications our methods can be readily adapted to 4D, too. We also have presented the

derivation of the asymptotic solution in terms of free data, including the corner data. And

we used this to express the symplectic potential entirely in terms of the free data. The

motivation of this work was to present the main ideas of asymptotic renormalization for

electromagnetism before delving into a similar analysis for general relativity, which is the

logical next step.

An avenue that needs to be revisited, now that we have allowed more general bound-

ary conditions, is the possibility to define canonically the subleading charges [49–52]. Such

charges corresponds to divergent transformation of the field in the absence of renormaliza-

tion [50]. Also, it is clear that our analysis can be extended to include the analysis of the

odd-dimensional case (see [53] for a recent discussion about odd dimension).

Another intriguing feature of our analysis is the fact that by choosing the radial evo-

lution to be along a null vector, we can present the asymptotic equations in a form that

is independent of the signature of the radial slicing. It is tempting to envision that the

canonical analysis presented here could also be useful to revisit and maybe extend some of

the result established for asymptotic AdS spaces. In particular one may wonder whether

it is possible to have an asymptotic symmetry algebra in AdS that includes more general

generators than the conformal algebra.

Finally, we would like to mention one last possible application of these results. Now

that the finite and asymptotic (pre)symplectic potentials contain the same number of

modes, it is possible to compare calculations at finite and asymptotic boundaries directly.

In particular, it is now possible to investigate under which circumstances the soft modes

can be understood as asymptotic edge modes (cf. [13], and [54, 55] for a different approach).
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A Radial equations

A function P is said to be polyhomogeneous [56], if it has an asymptotic expansion around

Ω = 0 of the form

P (Ω) =
∑
p,q≥0

Pp,qΩ
p(ln Ω)q, (A.1)

where for each p only a finitely many Pp,q are non-zero. We introduce the space of n-

polyhomogenous functions Cpoly
n as the space of functions Y of the form

Y (Ω) =
n∑
k=0

ΩkY(k) + Ωn+1P (Ω) (A.2)

with P polyhomogeneous. This also means that when Y ∈ Cpoly
n then

∂nΩY = n!Y(n) + ΩP (Ω). (A.3)

Notice the following crucial properties of Y ∈ Cpoly
n :∫ Ω

0
Y ∈ Cpoly

n+1 and Ω∂ΩY ∈ Cpoly
n . (A.4)

Consider now an equation of the form

(n− Ω∂Ω)X = Y, (A.5)

for Y ∈ Cpoly
n and n ≥ 1. The main result of interest to us is if the source is n-

polyhomogeneous Y ∈ Cpoly
n then

(X − Y(n)Ω
n ln Ω) ∈ Cpoly

n . (A.6)

We refer to Y(n) as the anomaly of this equation. It appears as a logarithmic counterterm

in our renormalization procedure.

We also introduce a renormalized version of X given by

XR := X − Cn(Y ) (A.7)

with counterterm

Cn(Y ) :=
n∑
p=1

(n− p)!
n!

Ωp−1∂p−1
Ω Y − Ωn ln ΩY(n). (A.8)

One also shows that this renormalized element is simply equal to the following combination:

XR(Ω) = Ωn

(
1

n!
∂nΩX + ln ΩY(n)

)
, (A.9)

and that it is determined by Y up to a constant term:

XR(Ω) = Ωn

(
X(n) −

1

n!

∫ Ω

0
P (ω)dω

)
, (A.10)
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where X(n) is a free integration constant which appears as the limit when Ω → 0 of Ω−nXR.

From this last expression and the properties discussed above it is clear that

Ω−nXR ∈ Cpoly
0 . (A.11)

The differential analogue of (A.10) is the manifestly anomaly-free radial equation

(n− Ω∂Ω)XR =
1

n!
Ωn+1P. (A.12)

As a last remark, we provide the expressions for the counterterm Cn(Y ). Since Cn is

a linear function, it is enough to evaluate it on the monomials. One finds that

Cn(Ωk) =


Ωk

n−k if k < n

−Ωn ln Ω + ΩnHn if k = n
Ωk

k−n

[(
k
n

)
− 1
]

if k > n

(A.13)

where Hn =
∑n

p=1 p
−1 and

(
k
n

)
is the binomial coefficient.

For the renormalization purpose one could also use a truncated renormalization scheme

denoted C0
n obtains by truncating the Y Laurent series. The evaluation of C0

n on monomials

is given by

C0
n(Ωk) =


Ωk

n−k if k < n

−Ωn ln Ω if k = n

0 if k > n

(A.14)

A.1 Proof

Let us first establish (A.9). It is easy to check that ∂kΩ(n−Ω∂Ω)X =
(
(n−k)−Ω∂Ω

)
(∂kΩX),

Using these equations we can evaluate the following difference as a sum

X − 1

n!
Ωn∂nΩX =

1

n!

n−1∑
k=0

(
(n− k)! Ωk∂kΩX − (n− (k + 1))! Ωk+1∂k+1

Ω X
)

=
1

n!

n−1∑
k=0

(n− (k + 1))!Ωk
(

(n− k)− Ω∂Ω

)
∂kΩX

=
1

n!

n−1∑
k=0

(n− (k + 1))!Ωk∂kΩY. (A.15)

This establishes the identity

X − 1

n!
Ωn∂nΩX =

n∑
k=1

(n− (k + 1))!

n!
Ωk∂kΩY, (A.16)

which is valid at any Ω. From this we can evaluate the renormalized X as

XR = Ωn

(
1

n!
∂nΩX + ln ΩY(n)

)
. (A.17)

This establishes the first main result (A.9).
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In order to prove (A.10), we use (A.9) together with the radial equation (A.5) for X

to derive a radial equation for XR, which we can then solve. We have

Ω∂ΩX
R = Ω∂Ω

[
Ωn

(
1

n!
∂nΩX + ln ΩY(n)

)]
= nXR +

1

n!
Ωn+1∂n+1

Ω X + ΩnY(n). (A.18)

The nth derivative of (A.5) reads −Ω∂n+1
Ω X = ∂nΩY such that we get

Ω∂ΩX
R =nXR + Ωn

(
Y(n) −

1

n!
∂nΩY

)
. (A.19)

Using (A.3) one obtains

(n− Ω∂Ω)XR =
1

n!
Ωn+1P ⇔ ∂Ω

(
Ω−nXR

)
= − 1

n!
P, (A.20)

which leads to (A.10) when integrated.

Finally, the proof of (A.13) follows from a direct computation of the counterterm for

Y = Ωz where z ∈ C\Z is a complex power. Using the definition of (A.8) one can evaluate:

Cn(Ωz) = Ωz

 n∑
p=1

(n− p)!Γ(z + 1)

n!Γ(z − p+ 2)

 =
Ωz

z − n

(
z(z − 1) · · · (z − n+ 1)

n!
− 1

)
, (A.21)

which is manifestly analytic in z, with no pole at z = n. By taking the limits z → k ∈ Z+

we find the stated result. In particular, in the limit z → n, we have

Ω(n+ε)

ε

((
1 +

ε

n

)(
1 +

ε

n− 1

)
· · · (1 + ε)− 1

)
= ΩnHn +O(ε), (A.22)

to which one has to add the term −Ωn ln Ω designed to cancel the anomalous logarithmic

term in X.

B Green’s function

In this appendix we define the Green’s function G, which provides the inverse to ∂u. Since

∂u possesses a zero mode, the Green’s function is only determined after we impose a

normalization condition. We denote

∆u := uf − ui, 〈X〉 :=

∫ uf

ui

X(u)du. (B.1)

We show that there exist a unique Green function G : C(I)→ C(I), which is such that

∂uG(X) = X, 〈G(X)〉 = 0. (B.2)

This Green’s function is explicitly given by

G(X) :=

∫ u

ui

(v − ui)
(uf − ui)

X(v)dv −
∫ uf

u

(uf − v)

(uf − ui)
X(v)dv, (B.3)
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and it also satisfy

G(∂uY ) = Y − 〈Y 〉
∆u

. (B.4)

This Green’s function is the solution of (B.2) for X = δ(u− v) and its kernel is given by

G(u, v) = θ(u− v)
(v − ui)
(uf − ui)

− θ(v − u)
(uf − v)

(uf − ui)
(B.5)

This kernel is not skew, instead its symmetric and skew symmetric combinations

Ga = 1
2(G−Gt) and Gs = 1

2(G+Gt) have the kernel

Ga(u, v) =
1

2
(θ(u− v)− θ(v − u)), Gs(u, v) =

1

2
(v + u− (uf + ui)) (B.6)

Proof. To prove this statement we establish that (B.2), (B.3), (B.4) are equivalent. First,

it is easy to see that (B.4) is equivalent to (B.2) by simply taking Y to be any primitive

of X = ∂uY . We have that ∂uG(X) = ∂uG(∂uY ) = ∂u(Y − 〈Y 〉∆u ) = X. And the averaging

condition G(〈∂uY 〉) = 0 is obvious from the fact that 〈1〉 = ∆u. We now show that the

explicit G given in (B.3) satisfies (B.4). This follows from integration by parts:

G(∂uY ) =

∫ u

ui

(v − ui)
(uf − ui)

∂vY (v)dv −
∫ uf

u

(uf − v)

(uf − ui)
∂vY (v)dv

=

[
(v − ui)
(uf − ui)

Y (v)

]u
ui

− 1

∆u

∫ u

ui

Y (v)dv −
[

(uf − v)

(uf − ui)
Y (v)

]uf
u

− 1

∆u

∫ uf

u
Y (v)dv

= Y (u)− 1

∆u

∫ uf

ui

Y (v)dv. (B.7)

Another derivation of the Green function is to start from the solution of (B.2) and de-

rive (B.3):

G(X) =

∫ u

ui

X(v)dv − 1

∆u

∫ uf

ui

(∫ u

ui

X(v)dv

)
du

=

∫ u

ui

dvX(v)− 1

∆u

∫ uf

ui

dv

(∫ uf

v
du

)
X(v)

=

∫ u

ui

X(v)dv −
∫ uf

ui

(uf − v)

(uf − ui)
X(v)dv

=

∫ u

ui

(v − ui)
(uf − ui)

X(v)dv −
∫ uf

u

(uf − v)

(uf − ui)
X(v)dv, (B.8)

as promised.
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