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1 Introduction

Given a bipartite pure state ρAB = |ψ〉 〈ψ| on a factorized Hilbert space H = HA⊗HB, the

von Neumann entropy of one of the reduced density matrices ρA = TrB ρAB quantitatively

captures the classical and quantum correlations between HA and HB:

S(A) = −Tr ρA log ρA. (1.1)

This entropy is commonly called the entanglement entropy, and it has become a ubiquitous

quantity in the study of holography, where the Ryu-Takayanagi (RT) prescription [1, 2]

relates the entanglement entropy of a CFT subregion simply to the area of a particular

minimal surface M in its dual AdS geometry:

S(A) =
A[M]

4GN
. (1.2)

It would not be unreasonable to think that other information-theoretic quantities defined

on a boundary CFT could be similarly dual to other bulk quantities. Moreover, the von

Neumann entropy fails to be a good measure of “total” entanglement for mixed states

or states with more than 2 parties, so finding similar holographic relationships for other

entanglement measures that are better able to probe such classes of systems would be of

particular interest.
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One recent example in this direction is the conjecture that the entanglement of pu-

rification EP [3] is computed by the area of a particular bulk minimal surface called the

entanglement wedge cross-section EW [4, 5]. This EP = EW conjecture, as well as other

candidates for the information quantity dual to EW , has since been the subject of a large

body of work [6–27], in part for the reasons stated above.

For generic quantum bipartite mixed states ρAB, computing the entanglement of pu-

rification is an optimization problem:

EP (A : B) = inf
|ψ〉ABA?B?

S(AA?), (1.3)

where the minimization is taken over all purifications |ψ〉 of ρAB and corresponding aux-

iliary Hilbert spaces A?B?. Unfortunately, this means that it is difficult to directly prove

whether EP equals EW , due to the difficulty of the boundary computation. Perhaps mo-

tivated by this difficulty, an alternative boundary dual to EW was developed in [28]: the

reflected entropy SR, which is a von Neumann entropy related to EW by

SR(A : B) =
A[MR]

4GN
= 2EW (A : B), (1.4)

whereMR is the reflected minimal surface in an algorithmically-constructed bulk geometry.

Because SR does not involve a minimization over purifications, it is easier to directly

compute than EP , e.g. via path integral.

In this paper, we extend the construction in [28] to the multipartite case with arbitrarily

chosen finite party number n. We will provide two topologically-distinct bulk geometries

that each contain a minimal surface whose area computes either twice or four times the

n-party EW . These geometries are constructed in two steps: a “replica” step that serves to

generate multipartite entanglement by gluing copies of the original bulk geometry together

using the gluing constructions discussed in [29], and the doubling step developed in [28]

to purify the construction. We then argue that the boundary interpretation of these bulk

geometries, at least in three dimensions, is as a multiboundary wormhole with low-party

number entanglement of the kind described in [30].1

The paper is organized as follows: in section 2, we review the multipartite entangle-

ment wedge cross-section and the reflected entropy for bipartite systems. In section 3,

we introduce two procedures to generate pure bulk geometries from a given n-party CFT

state with an AdS dual, such that the von Neumann entropy of a particular combination

of boundary regions is an integer multiple of the n-partite EW . In section 4, we present

an argument that, in three dimensions, the boundary dual of our construction is a multi-

boundary wormhole. We conclude in section 5 by discussing some interesting aspects and

future directions for our work.

One note worth mentioning at the onset is that throughout this work we will be

mainly considering moments of time reflection symmetry for simplicity, though by previous

arguments on EW and the fact that the techniques we use are fully covariant, we expect

1During the completion of this draft we learned of an independent forthcoming work by Jonathan Harper

that may provide another generalization of the reflected entropy to multiple parties.
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our results to generalize easily to the covariant setup. The main consequence of working

in this limit will be that we will use the terms “minimal surface” and “extremal surface”

interchangeably unless otherwise specified.

During the editorial process, another independent proposal for the multipartite re-

flected entropy was released [31].

2 Preliminaries

2.1 Entanglement wedge cross-section

We first briefly review the construction of the n-party entanglement wedge cross-section

in [6]. Begin with a CFT divided into n boundary subregions A1, . . . , An. There are n+ 1

minimal surfaces of interest: ΓA1 , . . . ,ΓAn ,ΓA1...An , whose areas compute SA1 , . . . , SAn ,

SA1...An , respectively. Now divide the boundary into n new regions {Ã1, . . . , Ãn} whose

union is equal to the union of all boundary subregions and ΓA1...An (this is also the boundary

of the entanglement wedge on the given time-slice):

Ã1 ∪ . . . ∪ Ãn = A ∪ . . . ∪An ∪ ΓA1...An (2.1)

with the condition that the new regions contain the old ones:

Ai ⊆ Ãi, for all i, (2.2)

and denote the boundary of the new regions

DA1...An ≡ ∂(Ã1 ∪ . . . ∪ Ãn). (2.3)

We then choose a set of n surfaces {ΣA1 , . . . ,ΣAn} whose union we denote

ΣA1...An ≡ ΣA1 ∪ . . . ∪ ΣAn , (2.4)

and require that they satisfy:

1. Σi is homologous to Ãi inside the entanglement wedge of the full boundary system

A1 ∪ . . . ∪An

2. ∂ΣA1...An = DA1...An

The entanglement wedge cross-section is then defined as the area in Planck units of ΣA1...An ,

minimized over all choices of {Ã1, . . . , Ãn}:

EW (A1 : . . . : An) = min
Ã1,...,Ãn

A[ΣA1...An ]

4GN
. (2.5)

An example is shown in figure 1. This quantity is conjectured to compute the multipartite

entanglement of purification of the boundary subregions [6, 10]:

EW (A1 : . . . : An) =
1

2
min

|ψ〉A1A
?
1...AnA?

n

n∑
i=1

S(AiA
?
i ) = EP (A1 : . . . : An), (2.6)

where the minimization is over all purifications |ψ〉A1A?
1...AnA?

n
of the original state ρA1...An .

We note that definition of the multipartite EW in [6] reduces to twice the entanglement

wedge cross-section defined in [4]. Unless otherwise stated, we will use the definition in [4]

when n = 2, and the definition in [6] for n > 2.

– 3 –
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Figure 1. An example of the EW surface for a 3-party boundary state. The homologous surfaces

that form the EW (A : B : C) surface are shown in solid lines. The 3 corresponding surfaces Ã, B̃, C̃

are shown in dashed lines, containing their respective boundary regions, as well as part of the

minimal surfaces that separate the boundary regions.

2.2 Bipartite reflected entropy

We now review the bipartite reflected entropy introduced in [28]. The basis of the reflected

entropy is a canonical purification for a generic bipartite state ρAB ∈ HAB. Fixing an

appropriate orthonormal basis for ρAB, this purification doubles the Hilbert space:

ρAB =
∑
i

pi |ψi〉 〈ψi|
purification−→ |√ρAB〉 =

∑
i

√
pi |ψi〉AB |ψi〉

∗
A?B? . (2.7)

Note that this purification procedure is independent of the state’s party number. A simple

example is the thermofield double state, which is the canonical purification of the thermal

state with inverse temperature β:

ρthermal =
∑
i

eβEi |i〉 〈i| purification−→ |TFD〉 =
∑
i

eβEi/2 |i〉 |i〉∗ (2.8)

The reflected entropy is then defined as a von Neumann entropy across AA?:

SR(A : B) = S(AA?) = −Tr ρAA? log ρAA? , (2.9)

where ρAA? = TrBB? |√ρAB〉 〈
√
ρAB|. For a holographic system, the bulk interpretation of

the canonical purification is a CPT doubling of the original bulk geometry, which is then

glued to the original geometry along minimal surfaces that separate the boundary regions

using the construction developed in [29]. An example of this is shown in figure 2. The

construction essentially states that one is always free to glue CPT-conjugate spacetimes

along identical minimal surfaces,2 in the sense that the resulting spacetime has a continuous

2Indeed, any two spacetimes that share an identical extremal surface and have matching twists allow for

such a gluing, though in this work we will only need the weaker statement in the main body to prove our

result.
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Figure 2. The bulk interpretation of the canonical purification for a 3-party boundary state.

The geometry is doubled and glued to the original geometry along identical minimal surfaces that

separate the boundary regions. The result is a “pair of pants” topology with 3 asymptotic regions.

From a boundary perspective, this geometry corresponds to a 3-boundary wormhole in the context

of AdS3/CFT2. As we note below, simply doubling the original geometry leads to a reflected

entropy defined on the glued geometry will generically fail to capture multipartite correlations.

metric, a well-defined causal structure, and solves Einstein’s equations with a stress-energy

tensor that satisfies the Null Energy Condition.

One may then apply the RT prescription in the resulting glued spacetime to compute

SR by computing the area of a “reflected minimal surface” MR:

SR(A : B) =
A[MR]

4GN
. (2.10)

By construction,MR is the union of two copies of the bipartite entanglement wedge cross-

section surface, so that the reflected entropy is related to EW by

SR(A : B) = 2EW (A : B). (2.11)

In this way, we may study the dynamics of the entanglement wedge cross-section and

its conjectured boundary duals by studying a simple von Neumann entropy and its dual

minimal surface.

An obvious, but incorrect, generalization of the two-party case, along the lines of the

multipartite entanglement of purification (2.6), would be:

SR(A1 : . . . : An) 6= 1

2

n∑
i=1

S(AiA
?
i ) (2.12)

The problem with this definition is that it is merely the sum of bipartite entropies, and

therefore does not contain any contributions from multipartite entanglement. Therefore,

we should not expect that the sum should be proportional to the entanglement wedge cross-

section, except in the special case when the original state is bipartite and the right side

of (2.12) only has two terms. From the bulk perspective, this is the statement that simply

doubling the geometry, as in [28], is insufficient to capture the multipartite entanglement

as a reflected entropy. As an example, the bulk doubling procedure shown in figure 2 for an

– 5 –
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n = 3 state will produce a reflected entropy that only captures the bipartite correlations of

the state. As we will show in the next section, this problem can be rectified by considering

more copies of the geometry.3

3 Multipartite reflected entropy: the bulk

We now generalize the work done in [28] to the multipartite case n > 2. Given an n-party

boundary state, we will require that our multipartite reflected entropy be a von Neumann

entropy SR with two properties:

1. It computes the entropy across an algorithmically-constructed bipartite splitting of

a purification of the original state.

2. It is proportional to an integer multiple of the n-partite entanglement wedge cross-

section

SR(A1 : . . . : An) = I(n)EW (A1 : . . . : An) (3.1)

where I(n) is some integer that may depend on n.

More precisely, we will assume the validity of the RT formula and find a minimal surface

MR in some algorithmically-constructed bulk geometry whose area satisfies:

A[MR]

4GN
= I(n)EW (A1 : . . . : An) (3.2)

to leading order.

We will present two different candidates for a multipartite reflected entropy. They

differ in terms of the topology of the glued geometry in which the entropies are computed,

resulting in corresponding differences in the definition of the entropy. For both construc-

tions, we will make use of the CPT gluing procedure developed in [29]. Notationally, we will

use Aij to label boundary regions: lower indices correspond to the boundary region, while

upper indices correspond to the copy number. For example, A3
1 is the A1 boundary region

on copy 3. For simplicity and concreteness, we will mainly consider three-dimensional bulk

spacetimes and single-interval boundary regions labeled in a clockwise fashion; as we note

below, our methods generalize in a straightforward manner.

3.1 Candidate 1

The geometry for Candidate 1 is obtained by gluing copies of the original spacetime cycli-

cally along its minimal surfaces, which we call the replica step. The procedure for con-

structing Candidate 1 is as follows:

1. Choose one minimal surface in the original geometry and glue a CPT copy of the

geometry along it

3We thank Jonathan Harper for helpful discussions on this point.
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2. On the copy of the geometry, choose an adjacent4 minimal surface to the glued one

and glue another CPT copy of the geometry — this is critical to ensure that the

appropriate minimal surface at the end of the day computes a multiple of EW

3. Repeat until a loop is completed by gluing the final copy to the original geometry

Naively, this requires n copies for an n-partite state, as there are generically n unique (in

terms of a fixed labeling scheme) minimal surfaces in such a state, and each one will be

glued along once.5 However, if n is odd, then we cannot close the loop, due to the fact that

the nth copy of the geometry will not be CPT-conjugate to the first copy. This issue can

be dealt with by simply doubling the size of the chain to 2n copies in total, after which

the gluing procedure goes through the same way, except every unique minimal surface will

be glued along twice, albeit in different copies. This procedure then produces a ring-like

geometry after the final identification. It is important to note that this glued geometry

will generally not be a pure state on the boundary dual — this is clear from the fact that

there will generically still be “open” minimal surfaces that have not been glued. To purify

the construction, we simply apply the canonical purification, whose bulk dual we know

from [28] is simply a doubling the space and gluing along those “open” minimal surfaces.

Notationally, boundary regions in the doubled space will be denoted with a ?.

Begin the gluing between A1 and A2 along the minimal surface between A1 and A2,

and then proceed by gluing A2 and A3 along A2 and A3, and so on. These choices simply

correspond to a choice of labels: any gluing that follows the steps above can clearly be

obtained by some permutation of boundary and replica labels of any other gluing. We

then define the multipartite reflected entropy as the entropy:

SR(A1 : . . . : An) = S(A(n)A?(n)) (3.3)

where we define6

A(n) =



n∑
j odd

i=j mod n

(Aj−1
i AjiA

j+1
i ) +

n∑
j even

i 6={j,j+1,j−1} mod n

(Aji ), n even

2n∑
j odd

i=j mod n

(Aj−1
i AjiA

j+1
i ) +

2n∑
j even

i 6={j,j+1,j−1} mod n

(Aji ), n odd
(3.4)

4It is important to stress here that “adjacency” is an artifact of three-dimensional bulk spacetimes with

each Ai being given by single intervals. We do this to fix a concrete ordering of the regions. In higher

dimensions or with boundary regions formed of disjoint unions, this notation can be generalized to a fixed

ordering of the disconnected minimal surfaces homologous to the original entanglement wedge, just as one

does to define EW in such situations. Thus, the procedure will continue to work these cases due primarily

to the arbitrariness of the ordering.
5In the case where this is not true, e.g. a tripartite pure state or subregions that are not disjoint, our

construction still goes through in exactly the same way. The gluing at the boundary is trivial in the sense

that one will just have copies of the spacetime that are not connected. However, we can naturally still

define a von Neumann entropy of the boundary regions and purify the construction. The reflected surface

will then be the union of disjoint EW segments on the various copies. We thank Don Marolf for pointing

this case out to us.
6This definition of A(n) is naturally dependent on the choice of label scheme, changing appropriately ac-

cording to permutations of the labels. Correspondingly, this definition of A(n) is specialized to three dimen-

sions and single-interval boundary regions. The generalization is, again, obtained by replacing the adjacency

condition with a more general ordering of the minimal surfaces homologous to the entanglement wedge.
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purify

Figure 3. An example of the gluing construction for n = 4 with the assumptions made in the

text. Left: the arrows indicate the surfaces that are identified in the gluing. The red lines inside

the copies indicate the multipartite EW surfaces for each boundary region. The sum of the areas in

Planck units of these surfaces gives EW (A : B : C : D). Right: after the gluing and the canonical

purification, we have a ring that is punctured in various locations. The reflected minimal surface

consists of two disconnected pieces, one on the outside of the ring and one on the inside, that each

have area EW (A : B : C : D).

The parentheses indicate the groupings of boundaries that combine under the identifica-

tions; these are “half-holes” in the final geometry that become one of the n(n− 2) holes in

the final geometry for even n > 2, or 2n(n−2) for odd n. A(n) will have 3n/2+ n(n−3)
2 = n2

2

terms7 if n is even, and n2 terms if n is odd. Naturally, the purity of the state means that

we can always use the complement of the definition above to get the same result. An

example for n = 4 is shown in figure 3, where we have used the boundary labels A1 = A,

A2 = B, A3 = C, and A4 = D. In this case, we have:

A(n = 4) = (A4
1A

1
1A

2
1)(A2

3A
3
3A

4
3)(A4

2)(A2
4) = (A4A1A2)(C2C3C4)(B4)(D2) (3.5)

and the reflected entropy is

SR(A : B : C : D) = S[(A4A1A2A4?A1?A2?)(C2C3C4C2?C3?C4?)(B4B4?)(D2D2?)] . (3.6)

By construction, the minimal surface MR that computes SR is really the union of

the multipartite EW surfaces that are separately associated to each boundary region. It is

worth being very clear about this point: the minimality condition on MR is equivalent to

the minimality condition on EW . This is immediate from the fact thatMR is the union of

2 (or 4) identical surfaces, each of which is constructed identically to EW — step 2 in the

7In this context, “terms” refers to the number of boundary labels.
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gluing procedure ensures that this is the case. Our construction essentially “unrolls” the

EW surface so that there is one segment on one copy of the geometry. These are drawn

in figure 3. The individual bipartite EW surfaces will generally fail to connect to form a

closed surface in this procedure for n ≥ 2, and hence will not be boundary homologous to

any region in this construction, thus failing to retain an entropic interpretation. It is clear

then that the definition of reflected entropy above gives

SR(A1 : . . . : An) =
A[MR]

4GN
=

{
2EW (A1 : . . . : An), n even

4EW (A1 : . . . : An), n odd
(3.7)

This also demonstrates why we choose to double the copies for odd n, rather than work

with, say, n + 1 copies to deal with the CPT issue — it would be impossible to get an

integer multiple of EW .

Although our result reduces appropriately for the case with n = 2, we want to point

out that this case is special, because one of either the canonical purification or the gluing

step is unnecessary as they become degenerate with each other. This stems from the

fact that the n = 2 case does not have any multipartite entanglement beyond bipartite

entanglement. Geometrically, the gluing procedure will leave one with a pure state, so

the canonical purification step does nothing or vice versa. Alternatively, one can interpret

this as saying that the gluing procedure is unnecessary, because there is no higher-partite

entanglement to be generated.

We have considered a vacuum state for simplicity, but we can easily include black

holes — they simply appear as a modification to the homology constraint on EW , and our

construction follows through, in the sense that the final construction will still include a

minimal, bipartitioning surface that computes a von Neumann entropy, which we identify

as the reflected minimal surface. In this case, there may be more EW segments than copies

of the geometry, because EW can consist of multiple disjoint surfaces. Rather than each

copy contributing one EW segment to the reflected minimal surface, as with a vacuum

state, each copy will contribute multiple EW segments. The same point holds true for the

construction we give in the next part.

3.2 Candidate 2

We now present another candidate for the multipartite reflected entropy. In this construc-

tion, we go through the same gluing procedure as before, but now we choose one surface

to remain unidentified. For concreteness, assume the same labeling and gluing procedure

in the previous candidate, and choose the unidentified surfaces to be the ones that would

connect An and A1 along An and A1. Without this final identification, the topology after

the canonical purification does not resemble a ring, as in the previous case. The minimal

reflected entropy in this case is still:

SR(A1 : . . . : An) = S(A(n)A?(n)), (3.8)

– 9 –
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purify

Figure 4. An example of the second candidate for the multipartite reflected entropy for n = 4.

The left figure shows the construction of the glued geometry, and the right figure is the final purified

geometry. The EW surfaces are shown in red. The final glued, purified geometry no longer has the

ring-like shape from the first candidate. The reflected minimal surface is one connected piece with

area 2EW (A : B : C : D). On comparison to figure 3, it is also clear that this construction has

broken the cyclical symmetry of the boundary regions.

but we now define8

A(n) =


(A1

1A
2
1) + (Ann) +

n−1∑
j>1, odd

(Aj−1
j AjjA

j+1
j ) +

n∑
j even,

i 6={j,j+1,j−1}

(Aji ), n even

(A1
1A

2
1) + (An−1

n Ann) +
n−2∑

j>1, odd

(Aj−1
j AjjA

j+1
j ) +

n−1∑
j even,

i 6={j,j+1,j−1}

(Aji ), n odd

(3.9)

After purification with odd n, the final object has 1
2(n2 − 3n+ 4) holes on one side of the

reflected minimal surface, and 1
2n(n− 1) on the other side, for a total of n2− 2n+ 2 holes.

With even n, each side of the reflected minimal surface has 1
2(n2 − 2n+ 2) many holes.

In the case that n is even, the combination of boundaries coincides with the first

construction, although the topology is different, as evidenced by the fact that the grouping

of the boundaries that are glued together is different. The two constructions differ when

n is odd — this comes as no surprise, since the number of copies is different, and that n

being odd implies that the boundaries are asymmetric across the minimal reflected surface.

For even n, there will be n2

2 terms, while for odd n, there will be n(n−1)
2 + 1 terms. Due to

the purity of the state, we can naturally also use the complement of the definition above

to get a definition with n(n+1)
2 − 1 terms.

An example with n = 4 is shown in figure 4. Changing back to the notation A1 = A,

A2 = B, A3 = C, and A4 = D, the reflected entropy is given by

SR(A : B : C : D) = S[(A1A2A1?A2?)(A4A4?)(C2C3C4C2?C3?C4?)(D2D2?)(B4B4?)] .

(3.10)

8Again, this definition is specific to three dimensions and single-boundary intervals.
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By construction, the reflected minimal surface MR is a surface whose area can be

related to EW by

SR(A1 : . . . : An) =
A[MR]

4GN
=

{
2EW (A1 : . . . : An), n > 2

4EW (A1 : . . . : An), n = 2
(3.11)

The apparently strange behavior for n = 2 is a result of our definition of EW for n = 2. As

we noted previously, the definition of the multipartite entanglement wedge cross-section

given in [6] reduces to twice the original definition of the bipartite entanglement wedge

cross-section given in [4], so n = 2 is not a special case if we extend the definition of EW
we use for n > 2.

Now let us comment on the differences between our two candidates for the multipartite

reflected entropy. Candidate 2 has the advantage that, up to a reasonable caveat for

n = 2, obeys SR = 2EW for all n. Moreover, “closing” the EW surface via the canonical

purification means the reflected minimal surface is a single surface, as opposed to the two

disjoint surfaces in Candidate 1. However, the replica step in Candidate 2 produces a

geometry with less symmetry; in particular, it breaks the cyclic symmetry of Candidate 1,

because we must choose which surface to leave unidentified. That is, we must choose where

to cut the ring produced in the replica step of Candidate 1 (however, we can certainly still

permute labels to get a desired labeling scheme). This is clear on comparing the respective

forms of A(n) in (3.4) and (3.9). As the simplest example, we can look at the n = 3

case presented in figure 5. The salient features are the doubled copies in Candidate 1,

the decreased symmetry in Candidate 2, and the difference in the topology of the two

constructions.

We note here that the equalities in (3.7) and (3.11) are leading order statements; they

are only expected to be true at O(N2), with subleading quantum corrections. Similar to the

discussion in [28], we expect that the leading order correction arises from bulk entanglement

across the reflected minimal surface M:

SR(A1 : . . . : An) = 2EW (A1 : . . . : An) + Sbulk(aa∗) +O(1/N2), (3.12)

where aa∗ is the bulk region on one side of the reflected minimal surface. To get the

correct entropy to all orders, we would need to use the area of the quantum extremal

surface analogue of MR [32–35], corresponding to the quantum-corrected location of MR.

4 Multipartite reflected entropy: the boundary

In this section, we provide a qualitative argument that the bulk object giving the reflected

entropy is a multiboundary wormhole of the form described in [30] for AdS3/CFT2; indeed,

the figures we have used are quite suggestive of this description.

The core of our argument is a method for constructing multiboundary wormholes in

three dimensions called doubling [36, 37]. Given a vacuum AdS3 timeslice with n boundary

subregions separated by boundary-anchored minimal surfaces, one can generate a multi-

boundary wormhole with n boundaries by taking another copy of the geometry, cutting

– 11 –
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Figure 5. Comparing the two constructions for n = 3. Above: for Candidate 1, we

need 6 copies for the replica step, which is then mirrored for a total of 12. The topol-

ogy is ring-like, and the reflected minimal surface consists of 2 disjoint surfaces, each of

which has area equal to 2EW (A : B : C). The reflected entropy is SR(A : B : C) =

S[(A6A1A2A6?A1?A2?)(B4B5B6B4?B5?B6?)(C2C3C4C2?C3?C4?)]. Below: for Candidate 2, we

only need 3 copies to do the replica step, which is then mirrored for a total of 6. The red lines

denote the EW surfaces on each surface, which combine to form the reflected minimal surface with

area 2EW (A : B : C). The reflected entropy is SR(A : B : C) = S[(A1A2A1?A2?)(C2C3C2?C3?)].

along the minimal surfaces, and then gluing the remaining geometry. This is precisely

what is demonstrated in figure 2. These wormholes are entirely defined by their boundary

regions and the size of their throats, which show up as the areas of particular minimal

surfaces in the original geometry. This procedure may seem familiar: it is precisely the

bulk construction given in [28] as the dual of the canonical purification! In other words,

holographic multiboundary wormholes in three dimensions have a boundary interpretation

as the canonical purification of a geometry with the appropriate features, i.e. areas of par-

ticular minimal surfaces. By virtue of the gluing procedure we use, the unpurified geometry

is simply an extended AdS3 vacuum with n many asymptotic boundaries that we double

and close to form an n-boundary wormhole geometry.

– 12 –
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We note that the wormholes we construct are explicit examples of “low-partite” worm-

holes: the number of boundaries is always greater than the party number n for n > 2.

Indeed, the number of boundaries will be significantly larger than the party number for

large n because it scales as n2. As an example, if we consider the n = 3 case, the final

wormhole geometry has 5 or 6 boundaries, depending on the choice of bulk construction,

despite there being at most 3-party entanglement for any given choice of boundaries. This

agrees with the point made in [30] that an n-boundary wormhole does not require any

intrinsic n-party entanglement to have a connected, smooth geometry in the bulk.

Although the doubling argument is technically restricted to vacuum AdS3, the presence

of black holes does not change the argument. The horizons simply act as more minimal

surfaces that we glue along during the canonical purification, which then become wormholes

in the final geometry. This is precisely the case for the thermofield double state, where the

canonical purification takes a one-sided black hole to a wormhole geometry.

As noted in [30], the specific boundary state is generically very difficult to write down.

Given a generic holographic state on the boundary ρ and its copy dual to a CPT-reflected

spacetime ρ∗, the boundary interpretation of gluing the two spacetimes along a minimal

surface is similarly difficult to explicitly write down. Below, we discuss two alternative

methods for determining an explicit form of the boundary state, though they each have

their own difficulties.

One method to generate the boundary state is to use an assumed purification |ψ〉 of

the initial state ρ.9 Given, say, a tripartite state ρABC , we can always obtain the state by

tracing over a pure state |ψ〉ABCA′B′C′ in the full boundary CFT Hilbert space. Given this

state, our gluing procedure is a series of traces and canonical purifications: trace out the

region that corresponds to the minimal surface to be glued, perform a canonical purification

of the state, then trace out the remainder of the purifying subsystem. This is shown

schematically in figure 6. In this example we begin with a purification |ψ〉A1B1C1A1′B1′C1′

and the final state is:

ρA1B1C1A2B2C2 = TrB1′C1′B2′C2′ |
√
ρA1B1C1B1′C1′〉 〈

√
ρA1B1C1B1′C1′ | , (4.1)

where ρA1B1C1B1′C1′ = TrA1′ |ψ〉 〈ψ|A1B1C1A1′B1′C1′ and |√ρA1B1C1B1′C1′〉 is its canonical

purification. The procedure can then be recursed as necessary to generate the boundary

state of our glued bulk constructions. The difficulty of this method is a requisite knowledge

of a specific purification |ψ〉.
Another method to obtain an explicit boundary state makes use of a recent result

regarding the boundary dual to gluing spacetimes whose boundary states are eigenstates

of the area operator [38]. The glued state is obtained by “sewing” the states along the

desired minimal surface. If the decomposition of the original state ρ into the basis of fixed-

area eigenstates is known, then one can just apply the sewing operation as needed to sew

the full states together and find the final boundary state. The difficulty of this method is

determining the necessary decomposition for a given state. However, in principle, this only

requires knowledge of ρ, rather than a purification |ψ〉.
9While in discussion with the anonymous referee, we learned of an independent multipartite reflected

entropy proposal [31] that also uses this method to describe the boundary state.
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trace and purify

trace

Figure 6. How to compute the boundary state for the gluing of two CPT-conjugate spacetimes

using an arbitrary purification on the full boundary Hilbert space. Starting from the pure state

in the upper-left, we trace out the subregion A1′ of the purifying subsystem that corresponds to

the minimal surface we wish to glue. The gluing is done as a canonical purification of the reduced

state, as shown in the upper-right. In the last step, the rest of the purifying subsystem is traced

out, leaving the glued spacetime.

5 Discussion

In this section, we will comment on some other applications and future directions related

to the construction of multipartite reflected entropy.

5.1 EW winding

Our construction is able to account for a “winding number” parameter in the purification.

As discussed in [20], there may be exotic cases, usually involving very high curvature, where

the EW surface winds more than once through the geometry, which we show in figure 7.

The authors prove that such configurations do not occur in three dimensions,10 but we just

point out that our bulk construction, which works in any finite dimension, still applies and

can still compute an appropriate SR. Indeed, our construction can always explicitly build

a geometry with a given winding number parameter. Such configurations may be desirable

if, for example, one wants to perform a constrained optimization over EW surfaces with

some fixed winding. This is done by simply gluing more copies of the original geometry

10While this proof is correct, it is possible that such geometries are simply geometric projections of

multiple identical geometries on top of each other so that there are intersection points that do not exist in

the true, unprojected geometry. As an example, consider a minimal surface in the shape of a cylindrical

helix, and then consider a projection in the height coordinate of the cylinder.
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Figure 7. An example of an EW -like surface with winding number 2, so that the surface is

composed of 6 segments. We can compute an analogous SR if we use 6 copies of the geometry, such

that each copy contributes one of the segments to the reflected minimal surface.

to take into account the extra segments of the EW surface, so that when we “unroll” the

surface, there is still one surface per copy of the geometry. The number of copies needed

then just increases by a factor of the winding number. The precise definition of A(n) will

change slightly depending on the winding number, but it is straightforward to take into

account.

5.2 Higher dimensions

For the sake of being concrete, we have mostly worked in the context of AdS3/CFT2

throughout our analysis, with instances of potential subtlety in higher dimensions pointed

out in footnotes. The definition of the multipartite EW in [6] and the gluing construction

in [29] work in arbitrary finite dimensions, so our bulk construction and corresponding

analysis for the multipartite reflected entropy should also work in arbitrary finite dimension.

Therefore, our candidate definitions for the multipartite reflected entropy remain well-

defined if we generalize beyond AdS3/CFT2. Unfortunately, the same cannot be said for

our boundary interpretation of the glued, purified geometry. The argument in our analysis

of the boundary is restricted to three dimensions because the quotient/doubling procedure

for generating multiboundary wormholes is only rigorously understood in three dimensions,

and it is unknown if there are similar constructions in higher dimensions. Provided such

constructions exist, we expect that a generalization for the argument should hold in higher

dimensions, with an appropriate higher-dimensional analogue of the doubling procedure.

This would be potentially quite interesting, as it would motivate a two parameter family

of purifications of a boundary density matrix dual to an entanglement wedge in arbitrary

numbers of dimensions, and indeed motivates the search thereof.

– 15 –



J
H
E
P
1
0
(
2
0
1
9
)
1
0
2

5.3 Dynamics of EW and EP

The main advantage of SR is that a von Neumann entropy and its corresponding minimal

surface are much simpler to study than the entanglement wedge cross-section or the en-

tanglement of purification directly. [22, 27] are examples of recent work in this direction,

where the behavior of the bipartite EW under a local operator quench can be studied with

relative ease by directly evaluating the reflected entropy. We expect that the multipartite

reflected entropy developed in this paper can serve a similar purpose. Indeed, studying

multipartite EW and EP is made even more difficult by the fact that generic multipar-

tite entanglement is currently poorly understood, but SR essentially turns everything into

a bipartite correlation. This may allow for a deeper understanding of the entanglement

structure of holographic CFT states.

It may even be possible that the simple relationship between EP and SR (assuming

that EP = EW is correct) persists for some class of states away from the holographic limit.

In this case, SR could provide a quite tractable way of computing EP without ever needing

to do the direct and difficult optimization step, by considering these relatively simple to

prepare purifications. This could prove to be a direction for fruitful future work.
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