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the tau-functions or A-cluster variables under the action of some generators of Gg.
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1 Introduction

In the seminal paper [38] Seiberg and Witten found ‘exact solution’ to 4d N' = 2 super-
symmetric gauge theory in the strong coupling regime. More strictly, the IR effective cou-
plings were constructed geometrically, from the period integrals on a complex curve, whose
moduli are determined by the condensates and bare couplings of the UV gauge theory.
Shortly after, it has been also realized [21] that natural language for the Seiberg-Witten
theory is given by classical integrable systems. In such context the pure supersymmetric
gauge theories (with only A" = 2 vector supermultiplets) correspond to the Toda chains,
while integrable systems for the gauge theories with fundamental matter multiplets are
usually identified with classical spin chains of X X X-type.



The next important step was proposed in [37], where this picture has been lifted to
5d. Then it has been shown that transition from 4d to 5d (actually — four plus one
compact dimensions) results in ‘relativization’ of the integrable systems [30] (in the sense
of Ruijsenaars [36]). In the simplest case of SU(2) pure Yang-Mills theory, or affine Toda
chain with two particles, instead of the Hamiltonian

Hy=p*+el+ Ze 1, (1.1)
corresponding to 4d theory, one has to consider
Hyy=eP +e™P+el+ Ze 9, (1.2)

or the Hamiltonian of relativistic Toda chain, which describes effective theory for 5d pure
SU(2) Yang-Mills.! It has been also shown that 5d theories with fundamental matter
correspond to XXZ-type spin chains (see e.g. [28] and references therein).

Relativistic Toda chains lead to natural relation of this story with the integrable sys-
tems on the Poisson submanifolds in Lie groups, or more generally to the cluster integrable
systems — recently discovered class of integrable systems of relativistic type [13, 17, 26].
Direct relation between cluster integrable systems and 5d gauge theories has been proposed
in [1]. It was shown there that for the case of Newton polygons with single internal point,
dynamics of discrete flow is governed by g-Painlevé equations and their bilinear form is
solved by Nekrasov 5d dual partition functions (for other examples of 5d gauge theories
the same phenomenon was considered in [2, 3, 24]).2

Cluster integrable systems. Any convex polygon A with vertices in Z? C R? can be
considered as a Newton polygon of polynomial fa (A, u), and equation

fam) = D ANplfap=0 (1.3)

(a,b)eA

defines a plane (noncompact) spectral curve in C* x C*. The genus g of this curve is equal
to the number of integral points strictly inside the polygon A.

According to [13, 17] a convex Newton polygon A, modulo action of SA(2,Z) =
SL(2,7Z) x Z2, defines a cluster integrable system, i.e. an integrable system on X-cluster
Poisson variety X of dimension dimy = 25, where S is area of the polygon A. The Poisson
structure can be encoded by quiver Q with 25 vertices. Let €;; be the number of arrows
from i-th to j-th vertex (ej; = —e;;) of Q, then logarithmically constant Poisson bracket
has the form

{xi,xj} = €ijxixj, {xl} S (CX)QS . (1.4)

!The slightly misleading term ‘relativistic’ appears here due to formal similarity of momentum depen-
dence to the rapidities of a massive relativistic particle in 1 4+ 1 dimensions.

20Other relations between 5d supersymmetric gauge theories and cluster integrable systems (involving
exact spectrum of quantized cluster integrable systems, BPS counting and toric Calabi-Yau quantization)
were discussed in [15, 19, 35] correspondingly. They seem to be related to our case and we are going to
return to these issues elsewhere.



The product of all cluster variables [[; x; is a Casimir for the Poisson bracket (1.4). Setting

it to be
o=To=1 s

and fixing values of other Casimirs, corresponding to the boundary points of Newton poly-
gon I € A (their total number is B—3, since equation (1.3) is defined modulo multiplicative
renormalization of spectral parameters A\, g and fa (A, p) itself), one obtains symplectic leaf.

The properly normalized coefficients, corresponding to the internal points, are integrals
of motion in involution

{fap(), fea(®)} =0,  (a,b),(c,d) € A (1.6)
w.r.t. the Poisson bracket (1.4). By Pick theorem one has
25 —1=(B—3)+2g (1.7)

where g is the number of internal points (or genus of the curve (1.3)), or the number of
independent integrals of motion. So the number of independent integrals of motion is half
of the dimension of symplectic leaf, and the system is integrable. One of distinguished
features of the cluster integrable systems is that their integrals of motion are the Laurent
polynomials of (generally — fractional powers) in the cluster variables.

There are several different ways to get explicit form of the spectral curve equation (1.3):

e Compute the dimer partition function (with signs) for a bipartite graph on a torus.

One possible form of it is a characteristic equation
det®(\, ) =0 (1.8)

for the Kasteleyn-Dirac operator on a bipartite graph I' C T?, depending on two
‘quasimomenta’ \, u € C*;

e Alternatively, one can get the same equation (1.3) as a Lax-type equation of a spectral
curve, with the Lax operator coming from affine Lie group construction, identifying
cluster variety with a Poisson submanifold in the co-extended affine group.

Short exposition of the first construction of cluster integrable system, relevant for this
paper, is contained appendix B.

Classical integrable chains. Integrability of classical gl,; chains of XXZ type is based
on the that their M x M Lax matrices satisfy the following classical RLL relation

{LA) @ L(p)} = &[r(A/ 1), L) @ L(p)] (1.9)
with the classical (trigonometric) r-matrix?

A1/2 _’_/\71/2 92 1,
r(A) :_WZE”(@EJ“LWZA 2% By @ Ej;. (1.10)
i#j i#]

3See details of derivation of Lax matrix from quantum algebra and notations in appendix A.



Figure 1. From left to right Newton polygons for: Toda chain on three sites, gly, XXZ spin chain
on three sites, gl, spin chain on three sites with cyclic twist matrix.

A classical chain of trigonometric type can be defined by the monodromy operator

T(u) = Lnv(p/pn) - Li(p/m) € End(CY) (1.11)

where M is called ‘rank’ of the chain. Integrability is guaranteed by classical RTT-relation

(TN @T(w)} = klr(N/p), T(A) @ T(u)] (1.12)

for the monodromy operator that follows from (1.9), and gives rise to the integrals of
motion, which can be extracted from the spectral curve equation (1.3) given explicitly by
the formula

fa(h 1) = det(AQ — T()) = 0 (1.13)

where () — diagonal twist matrix with the constant entities. Relativistic Toda system can
be considered as certain degenerate case of generic XXZ chain of rank M = 2 (of length N
for N particles).

Examples of Newton polygons. In what follows we mostly consider cluster integrable
systems, corresponding to the Newton polygons of the following types:

e Quadrangles with four boundary points, where all internal points are located along
the same straight line, as on figure 1, left. This is the case of relativistic Toda chains,
studied in [1]. The corresponding gauge theory is 5d /' =1 Yang-Mills theory with
SU(N) gauge group (for N — 1 internal points) without matter multiplets, possibly
with the Chern-Simons term of level |k| < N — in such case quadrangle is not a
parallelogram.

e “Big” rectangles (modulo SA(2,Z) transform). For the N x M rectangle (see figure 1,
center) this can be alternatively described as a gl spin chain on M sites (cf. with [4]),
or vice versa. The corresponding 5d gauge theories are given by linear quivers theories
with the SU(N) gauge group at each of M — 1 nodes: see figure 2.

e “Twisted rectangles”, or just the parallelograms, which are not SA(2,Z)-equivalent
to the previous class (see figure 1, right), they can be alternatively formulated as spin
chains with nontrivial twists. Gauge theory counterpart for this class of polygons is
not yet known, except for the twisted gl chain on one site, leading back to the basic
class of Toda chains.
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Figure 2. Linear quiver which defines multiplets for A/ = 1 gauge theory. Circles are for gauge
vector multiplets, boxes are for hypermultiplets.

For all these families the spectral curve of an integrable system, determined by equa-
tion (1.3) is endowed with a pair of meromorphic differentials (%, %“) with the fixed

2miZ-valued periods. One can also use this pair to introduce (the SL(2,Z)-invariant for
our family) 2-form % A %" on C* x C*, whose ‘pre-symplectic’ form is the SW differential.

Structure of the paper. The main aim is to extend the correspondence between 5d
theories and cluster integrable systems to wider class of models. We find isomorphism
between the classes of gl XXZ-like spin chains on M sites, corresponding to 5d SU(N)
linear quiver gauge theories (see figure 2) [4], and cluster integrable systems with N x M
rectangular Newton polygons.

We start from the brief overview of classical XXZ spin chains. We illustrate with
the simple example of relativistic Toda chain, how Lax operators naturally arise from the
Dirac-Kasteleyn operator of cluster integrable system. Then we do this for the general case
of XXZ spin chain of arbitrary length and rank. Spectral (or fiber-base) duality arises as
an obvious consequence of the structure of considered bipartite graph. Spin chains with
additional cyclic permutation twist matrix arise in the cluster context naturally as well.

Then we explain structure of large subgroup of cluster mapping class group Go. We
show that in case of general rank and length of chain it contains subgroup (4.1) which
act in autonomous ¢ = 1 limit by permutations of inhomogeneities and diagonal twist
parameters of spin chain. We also discuss issue of deautonomization and propose a way to
define action of Gg on zig-zags in ¢ # 1 case. Then we derive bilinear equations for the
action of generators of Gg on A-cluster variables.

2 Spin chains

2.1 Relativistic Toda chain

Let us start with the case of relativistic Toda chain, which is known to be related to

Seiberg-Witten theory in 5d without matter [30]. Relativistic Toda chains arise naturally

on Lie groups [12], and therefore have cluster description. A typical bipartite graph of affine

relativistic Toda is shown in figure 3. For the Toda system with N particles it has 2N

vertices, 4N edges and 2N faces. Corresponding Newton polygon is shown in figure 1, left.
The cluster Poisson bracket (1.4) for the Toda face variables is

{l‘;(,IL‘JX} = {:Ej,l‘;r =0, {SL‘ZX,l'j} = (5i,j+1 + 6i+1,j — 251'7]')1';(:13;, i,j EZ/NZ (2.1)



Figure 3. Left: bipartite graph for the Toda chain. Center, right: zig-zag paths «, 3,7, 9.

where in the non-vanishing r.h.s. one can immediately recognize the Cartan matrix of siy.

This Poisson bracket has obviously two Casimir functions, which can be chosen, say, as®

¢=[[@727). safm=]]a]. (2.2)
J J

However, in what follows we are going to use the edge variables (see appendix B for

details), which do not have any canonical Poisson bracket, e.g. since they are not gauge

invariant, when treated as elements of C*-valued gauge connection on the graph. Hence,

following [26], we fix the gauge and parameterize all edges by 2N exponentiated Darboux

variables &k, g

{&.ni} = 0i&my, &, 2} = {mi, 2} =0, (2.3)

so that the face variables are expressed, as a products of oriented edge variables (see figure 3,
left) by

2 = S G ) gt = T gy, (2.4)

! & Mit1

In terms of the edge variables (2.3) the monodromies over zig-zag paths (see figure 3,

middle, right) can be expressed as follows

N
a=(lm, B=mf v=ml 6=1/me ¢=[[{2. (2.5)

i1 ¥ Tk

In the autonomous limit ¢ = 1, there is a single independent Casimir — diagonal twist
of monodromy operator s /s or coupling of the affine Toda chain. Reduction from four
zig-zags a, (3,7, 0 to single Casimir »r; /5 is a reminiscence of the freedom A\ — a\, p — bu
and the fact that af~d = 1.

The Dirac-Kasteleyn operator here can be read of the left picture at figure 3, and is
given by N x N matrix:®

N

D) =) ((Ez + ) By — 4N \&mi By + 22 ! &'m’EiH,z‘) (2.6)
=1

4Only the ratio of s’s is actually independent Casimir, but we introduce both of them for convenience
in what follows.

5The spectral parameters or quasimomenta A and p appear due to intersection of the edge with the blue
and purple cycles in Hl('I[‘Z7 Z), and minuses arise due to discrete spin structure.
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Figure 4. Extended and deformed bipartite graph for the Toda chain.

where we have additionally defined
EnnNi1=MEn1, Enyin=A'Eiy (2.7)

and it almost coincides here [9] with the standard N x N formalism for the spectral curve
of relativistic Toda chain

det DA\, 1) =0 < I D\, w)p =0 (2.8)

with Baker-Akhiezer function ¢ € CV.

Now, to illustrate what is going to be done for the spin chains, let us rewrite this
equation in terms of the well-known 2 x 2 formalism for Toda chains, but not quite in
a standard way. In order to do that, we first add an additional black (white) vertex
to each top (bottom) edge in left figure 3, and draw it in deformed way as in figure 4.
Such operation obviously does not change the set of dimer configurations, and new dimer
partition function differs from the old one only by total nonvanishing factor.

The Dirac-Kasteleyn matrix, read from the figure 4, can be written in the block form

N
:D()‘? M) = Z (Eu ® A; + Ei,i-l-l ® CiQéi’N> =
=1

(2.9)

Il
.MZ

((fz’ + 1) Ey @ By + By @ Eyg + V/&miEy @ Eoy—

=1

- v éiniEi,i—H ® Fi1 — ity ’NEi,Z‘.H & EQQ)

[ &G+uTn [ =Vé&ni 0 _[m 0
e () e (V) om (2 0). e

The first factor in the tensor product corresponds to the number of the particle (or of the

with

‘site’), arising naturally in the framework of 2 x 2 formalism for Toda systems and spin
chains below, while the second — to position of a vertex inside the ‘site’. For the ‘extended’



(compare to (2.6)) operator (2.9) one gets the same equation (2.8), but now with 1 € C2V,
which can be written as:

N
b= e® (Zi;) =Y e @1 (2.11)
i=1 ) =1

For the coefficients of this expansion (2.8) gives

{ Y1 = L ()
Y11 = AQY1

or the system of finite-difference equations on Baker-Akhiezer functions with the quasi-

(2.12)

periodic boundary conditions, where the 2 x 2 Lax matrix

&i -1 I M%

_ _1 24/ + 24/ =
Li(p) = —C () Ay = 2 [ 1V TH VG Vg (2.13)
12/ Eim 0
is equivalent to the standard Lax matrix for relativistic Toda chain (see e.g. [26]) up to
conjugation by permutation matrix, and redefinition of the variables

g, =&Y pe (2.14)

This Lax operator satisfies classical RLL relation

{Li(N) © Lj()} = 6i5[r(A/p), Li(A) @ L (p)] (2.15)

with the classical (trigonometric) r-matrix (1.10).5 Compatibility condition of (2.12) gives
spectral curve equation in the form

det(AQ — Ly(p) ... Li(p)) =0 (2.16)

where Q = diag(s, 32) is extra twist matrix,” and inhomogeneities {y;}, which appear in
the case of generic XXZ chain, are absorbed here into redefinition of dynamical variables.

2.2 Spin chains of XXZ type

Let us now apply the same arguments, which we used for the Toda chain, to the following
class of chains: the rank M chains on N cites of XXZ-type, which means that the Poisson
structure (2.15) is defined by trigonometric r-matrix. Such systems naturally arise in
g — 1 limit of Ug(gl;;), see appendix A. We claim that such classical spin chain can be
alternatively described as cluster integrable systems, constructed from ‘big rectangles’ of
the size N x M.

For a cluster integrable system with such Newton polygon (see figure 5, left) one gets
a bipartite graph, drawn at figure 6. According to [17] this graph is drawn on torus T2, i.e.
left side is glued with the right side, and top — with the bottom, we will call such graphs
as N x M ‘fence nets’.

5Up to numeric rescaling, see appendix A for discussion.
"Note that constant diagonal matrices @ satisfy [r,Q ® Q] = 0, and therefore can be also used in
construction of monodromy operators.



—~
L
(a=)
=
Y
Y
Y
—~
=
o
=

Figure 5. Left: Newton polygon for (N, M) = (3,2). Zig-zags from figure 6 as elements of torus
first homology group are drawn by colored arrows. Right: Poisson quiver. It is drawn on the torus,
so vertices lying on left-right and up-down sides have to be identified.

The cluster coordinates =, 2, now associated with the faces of graph at figure 6,

ia’ *ia’
satisfy the following Poisson bracket relations
{27023} = (=0ij0ab + 0ij+10ab + 0ij0at1h — G j+10a+1,6)Ti0T s

(2.17)
{z}, 25} = {25, 2,} =0, i,j€Z/NZ, a,beZ/MZL

with two kinds of indices living ‘on circles’: ¢, j enumerating rows of bipartite graph and
a,b enumerating columns. Corresponding quiver is drawn at figure 5, right. As in Toda
case, ‘fixing’ a gauge, we pass now to the edge variables

2 EiabitLa-1 ,
o = tia b SOSTHLATL (et (30, [0, )00 (2.18)
ia Ni+1,aMi,a—1

with the Poisson bracket

1 .
{&a>njp} = §5ij5ab§m77jb7 i,j € L/NZ, a,bcZ/MZ. (2.19)
Extra parameters in (2.18) are the Casimir functions of the bracket (2.17), together with
T G &
a=11= =112 "= {&"d"}=0 (2:20)
b=1 Niv j=1 Nja

It is useful to re-express them via the zig-zag variables (see the zig-zag paths on figure 6,
middle and right)

azZUZ/Czha Blzl/gzho"w Z:177N

v v (221)
’Yflzga/%aa 5a:Ca%a, azl,...,M.



These formulas relate convenient generators of the center of cluster Poisson algebra with
inhomogeneities {ur = 1/0%(} = Bi}, twists {x,}, ‘on-site’ Casimirs ¢ = (alﬂi)% and
‘projections of spins’® (¥ = ('yaéa)% of the chain.

Our main statement here is that the classical spin variables (for definition see ap-
pendix A) associated with single site of the chain could also be expressed via the edge
variables &, n by

eSe = =22, S = %zﬁ(zi + ng):_—:, a<b, Sup= —%za(z + 2z, ):—Z, a>b, (222)
where?

20 =V Ny Ta= \/@ o) (2.23)

and the ‘siteindex’ 7 = 1,..., N is omitted here. Spln—varlables cannot be directly expressed

through the cluster variables in a natural way, but rather as a product of edge variables
over some non-closed paths. However it is possible to express cluster variables via the spin
variables on two adjacent sites by

), = e 28D g :_6(5 D DS it (S )i (i ) [ amr ) (2.24)
i,a ) i,a cosh (SO 1)1+1 cosh (SO) o; -, .

where index outside brackets of spin variables enumerates number of site. This relation
will be discussed in details elsewhere [20].

The spectral curve again can be given by determinant of the Dirac-Kasteleyn operator,
which is the weighted adjacency matrix of the bipartite graph. For generic (N, M) system
it has the form:

N M
51’ g a
A N) = Z Z&ia(Ei,i b2y Ea,a — Ha ’lo'iM’ Ei,i—l & Ea+1,a)+
i=1 a=1 (2.25)
01,4 OM.a
+ nia(%aL Ei,i—l & Ea,a +0; A Ei,i & Ea—i—l,a)

where the summand FE;; ® E,;, is corresponding to the edge between black and white
vertices' (i,a) — (j,b), and those matrices E;; which get out of fundamental domain are
promoted to the elements of the ‘loop algebra’, with the ‘loop’ parameters (\, p):

EI,O = AELN, EM-‘,—l,M = NELM- (226)

Remark 2.1. The operator (2.25) as an element of End(CY)[[A7!]] ® End(CM)[[p~}]]
can be naturally embedded into tensor product of evaluation representations of the loop

algebras g[N ® QTIM, ie.

D\ p) = 212£m( i@ ha — 3 ML 1 ® fa) + Mia (54" fir ® ha + 00 hy @ fa)
(2.27)

8Notice that spin’s projections are not originally the Casimir functions for spin’s brackets, but rather
‘trivial’ integrals of motion — like the total momentum of particles in Toda chains.

9This is basically standard bosonization formulas for the spin variables, cf. for example with [5, 29].

10Signs ‘—’ in D arise in a standard way [17] due to choice of Kasteleyn marking or discrete spin structure
on T2,

~10 -
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Figure 6. Left: bipartite graphs with labeled edges and faces: each edge, crossing purple cycle
has to be multiplied by u, each edge, crossing blue cycle — by A. Center: horizontal zig-zag paths.
Right: vertical zig-zag paths.

for two evaluation representations gl — End(CF)[[¢]]:

ei=Ei i1, 1<i<K—1 e =ex=CEx
fi=Ein1i, 1<i<K-1, fo=fxk =C'Ei1x (2.28)
hi=FE;, 1<i<K.

Let us now, breaking M <> N symmetry, collect the terms, corresponding to E;; and
E;;_1 in the first tensor factor, i.e. rewrite (2.25) as

N
@()\, ,u) = Z Em‘ R A; + Ez’,i—l & CZ(Q)(s“ (2.29)
i=1
with
M 5 M 5 M
A = (fibEb,b+77ibUi M’bEb+1,b) , Ci= Z (Uz‘bEb,b_fz‘bO'i M’bEb+1,b> , Q= Z st By -
b=1 b=1 b=1
(2.30)
From the spectral curve equation det ©(A, 1) = 0 one finds for
N N M
b= thiei =Y Y tiaei®es € CMN i DA p)ip =0 (2.31)
i=1 i=1 a=1
that
Aipi + Ci(Q)* i1 =0, i=1,...,N, o= pw. (2:32)
M
Solving these equations recursively for the vectors 1; = Yiq€eq, one finally gets
a=1
(AQ — (-1)NCT Ay ... .CHr AN) ¥y =0 (2.33)

- 11 -



with consistency condition
det ()\ Q-1 (alg{m) . Ly (mghvu)) —0 (2.34)
of the form (1.13), with the Lax matrices
L; <ai§{m> ——C7'4;, i=1,...,N. (2.35)

Hence, the spectral curve det ® (A, u) = 0 is represented in the form (1.11), common for
the classical integrable chains with inhomogeneities p; = 1 /O’Z‘CZ-h = f; and twist Q =
Y #aFaa = Y4 \/9a/VaFaa- There are also two sets of Casimirs related to spin variables:
total projections of spin ¢! =[], Sia and single non-trivial on-site Casimirs Cih . The Lax
operators (2.35) on different sites satisfy classical RLL-relations

L i/ 4). i) ® L 42 (2.36)

(L) ® L)} =

which coincide with (A.36) arising from the classical limit of U,(gl;) with ¢ = e~" and
K= % in (A.25), see appendix C for details. In such way one gets explicit formulas (with
the sign-factors (A.3))

1 1
1 a=b, pu2z >4+ p"222
(Li)ap(pt) = 4 st ) IS (2.37)
p2 —pm2 La#Fb w2 (2 + 2y ) Bt
for the Lax operators (2.35) on the sites ¢ € 1,..., N in terms of variables introduced

in (2.23).

Comparing L-operator (2.37) with (A.37) one comes to the formulas (2.22), expressing
the ‘spin operators’ on each site in terms of the edge variables. Expressions (2.22) satisfy
all the relations of the classical limit of Ug(gly,;) with £ = 5. Note that this Lax operator
is belonging to the lowest rank Kirillov orbit.

Remark 2.2. An equivalent construction of the cluster integrable systems is based on

the Poisson submanifolds or double Bruhat cells in P/G\Lﬁ, endowed with the usual 7-
matrix Poisson structure [11, 13]. For the family of systems we consider here, given by
the SA(2,Z)-orbit of rectangular N x M Newton polygons, one gets in such way a double

Bruhat cell of PTG\Lﬁ(N + M), given by the word
U = (SMEM ... 81§1A)N (2.38)

in the co-extended double Weyl group W(Ag) X Ag)) (here with K = N + M) with the
generators s;, s7, A satisfying relations

2 . .

sy =1, (5i841)° = 1, 5i8j = S8j5si, for |i—j|>1

_9 __ _ _ _ . . ..

si=1, (5:5i41)° = 1, 5i5; = 5;5;, for |i—j|>1 ,j=1,....K
AE = 1, A5i+1 = s;A\, Agi_;,_l = 5A.

(2.39)

- 12 —
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Figure 7. Thurston diagram in the (3,2) case, which appears from u = (82525151 A)3.

We are not going to repeat here all steps of the construction in detail, and just present
the main ingredient — the Thurston diagram for (2.38), drawn for (N, M) = (3,2) at
figure 7. The corresponding bipartite graph (see figure 7) differs from the discussed above
‘fence-net’ by additional horizontal twist of the cylinder by 27, which does not affect
an integrable system, since it corresponds to the SL(2,7Z) transformation of the spectral
parameters (A, u) — (A, uA™1).

Example. SU(2) theory with Ny = 4. The most well-known case of the system
we consider here corresponds to the five-dimensional supersymmetric gauge theory with
the SU(2) gauge group and Ny = 4 fundamental multiplets. The corresponding Newton
polygon is a square with sides of length N = M = 2 (see figure 8), and as a spin chain this
is just common XXZ-model on two sites with the Lax operator!! (see e.g. [28])

S0 -1,-8° -
uee —pure 25 »x 0
(:U“) ( 25+ /.LE_SO _ ;Fleso ) ) Q < 0 %71 ) ( O)

Spectral curve for the system is given by

det (L (/1) L (1/p2) @ = A) = 0. (2.41)

The Poisson brackets of spin operators are given by classical trigonometric r-matrix and
written as:

{50, S} =+ 5%, {ST, S~} =sinh 25° (2.42)

for the S-variables on the same site, and zero for the variables on the different sites. Such
bracket has one natural Casimir function

1
K = —Ch — (gh)*1 = §cosh 250 + §t5-. (2.43)

" This form is slightly different from (A.44) arising from the classical limit of U,(gl,). However, in 2 x 2
case these two forms are equivalent.
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Figure 8. Newton polygon for (N, M) = (2,2).

As a cluster integrable system it lives on X-variety with the quiver corresponding to
Agl)—type system from figure 2 in [1], and its deautonomization leads to the Painlevé VI
equation, solvable by conformal blocks, or equivalently topological strings amplitudes [24].
We derive Lax operator for this system from Kasteleyn operator in details in the next
example, which is simply generalization of this example to three sites.

Example. SU(3) theory with Ny = 6. This case is corresponding to the word

u = (2211A)? in double Weyl group of ITG\Lﬁ(5). Bipartite graph is drawn on figure 6.
Kasteleyn operator is 6 x 6 matrix

bw 11 12 21 22 31 32
11 | &1 poime 0 0 Asaamin —Ap01812
12 | nn §12 0 0 — A Asam)12 A1 0 \C1Q
D=|21 | na —po2da2 Ca1  po2n2 0 0 =1 Cy A 0
22 | =& 722 21 §22 0 0 0 C3 A3
31 0 0 n31 —po2832 31 HO21)32
321 0 0 —&a1 132 31 &32
(2.44)
Spectral curve is given by condition
(01 QU3 = Ly(o1( )i
det®(\, ) =0 & Fp=|o [ DAOwY=0 <« 1 = Lo(oaChpu)is
V3 o = L3(03¢h )13
(2.45)
1 ¢, 1,,. 1 . .
=y e R (e ) (2.4
pE o\ (S ) e et
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which could be rewritten using monodromy operator

(AQ —T3*(w) s =0 <« det (A\Q — T5**(u)) =0,

9.47
T3 (n) = Li(o1¢ 1) La(02Ch 1) La(03Ch ). (247)

Lax operator (2.46) is of gl, type, so can be mapped to (A.44). To transform it in slo
form (2.40) we have to apply transformations like (A.46)

RSt &€ 1 ! p12 0 ' 412 0
ne M771772’ then. L{y (\/; \/; )( 1) Ln) ( 0 1

(2.48)

so it becomes

(2.49)

Defining classical sly spin variables by

- /€2n2 & m\ o+__1 /&m<€1 m) s Jam
g &1m <772 - §2>’ 5 2\ m2é2 \m * &)’ ‘ méo (2.50)

1/2

we see that Lax operator (2.49) coincides with the (2.40) up to replacement p'/* — p and

SY — —S0 The latter is a consequence of the fact that (2.49) is coming from ¢ = e™"
prescription, but (2.40) — from the ubual q = €. Poisson brackets of spin variables coming

from edge variables bracket {&;,n;} = 5 d;j&imj are
1 1
{80, 8%} = +5 St {St, 57} = 5 sinh 289 (2.51)

which differs from (2.42) by factor 1/2, appearing from k = % in the prescription for the
classical limit of commutators (A.25). For details see appendix A. Spectral curve (2.41)
could be obtained from (2 34) by transformation A — )\(%1%2)_% with identification of

parameters s = (%1/%2) Wi = (%1%2)%(01'@'}1)_1

3 Dualities and twists

3.1 Spectral duality

For some integrable chains special kind of duality could be observed both on the classical
and on the quantum level: namely system with N-dimensional auxiliary space on M sites
share Hamiltonians with some other system with M-dimensional auxiliary space on N sites.
Under duality spectral parameter which monodromy operator depends on, and spectral
parameter of characteristic equation exchange, so this duality is often called spectral duality
(however, sometimes referred as ‘level-rank’ or ‘fiber-base’ duality, see [29] and references
therein).
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In the case of our interest, system doesn’t change its type: XXZ classical spin chain of
glys type on N sites is dual to the XXZ chain of the gly type on M sites [5, 29]. Looking
at M x N fence-net bipartite graph, it becomes obvious: graph keeps its structure under
90-degree rotation. On the level of Kasteleyn operator, this corresponds to exchange of
factors in tensor product, and using different expressions for spin variables.

SU(2) theory with Ny = 4 and one bi-fundamental multiplet. We start discus-
sion of spectral duality in our context from simplest non-trivial example. Let us consider gls
spin chain on two sites, which is dual to gl, chain on three sites, considered in section 2.2.
To derive dual Lax operators, we should permute some rows and columns of Kasteleyn oper-
ator (2.44), which is exchanging of factors in tensor product End(C?®C?) = End(C3*® C?):

11 21 31 12 22 32
11| & 0 Aseimir po1m12 0 —Aps201812
21| m1 & 0 —po2da2  [1O27)22 0 .
D=|31] 0 31 31 0 —po3és2 HO31)32 = (gi u%g&) :
12 1 nn 0 —Maln 12 0 Asami2
22 | =61 12 0 122 §22 0
320 0 =& 31 0 n32 E32
(3.1)

Spectral curve is given by condition

B AN B Py = 1 L1 (3P A)
detD(=0 & 39= (1 do): IDAW=0 {wl@:@m(%;cw

(3.2)
—5 81k 4 N3k sk €k Mk $mknze Sk | Mk
A 27711;’_)\2 1k A2 §ok (771k+ 1k) Az §2k83k 7]1k+§1k)
Li(\) = 1 N3 ek <§27k+ik Nzl N5 \3 M2k (LkJrLk
)\%_)\—% Mme \ M2k &2k M2k &k &3k \ M2k S2k
—3 &onban (fak M3k ) \—3 &k (&3k_ M3k ) \—5 &3k )33k
A ? Mz Tl3k+53k> A ? Mo (T)3k+§3k> A 2773k+ * Ean
(3.3)
cp 00
v _ £1k§2k773k7 G- 00,0 (3.4)
Mk"M2k"3k
0 0 g3

which could be rewritten using monodromy operator

O (HQ=TPP(0N) =0 & det (b = TF)) =0, TP = Lt ) La(2G).
(3.5)
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It is indeed spectral dual to the curve (2.47). One can check by direct calculation that

(1 =GN = 522G A) det (4Q = TPH(N) ) =

(3.6)
= (1= o1 (i) (1 — 0203 ) (1 — 03¢ ) det (AQ — 1573 () -

General case. If the order of factors in tensor product in (2.29) had been chosen in the
other way, we would get M matrices Ay and C} of size N x N:

M
9()‘7ﬂ) = Z Am®Em,m+(Q~)6M’mém®Em+1,m (37)
m=1
) N ) N N
Ay = Z EnmEn,n‘anm%fyi’nEn,n—ly Cp = Z 77nmEn,71,_£nm%fy7;’lEn,n—lv Q= Z OnEnn.
n=1 n=1 n=1
(3.8)
Again, we present spectral curve as condition
3¢:ZZ¢nmen®emecMN: PO\, ) =0 (3.9)
n=1m=1
which gives for the spectral curve
det(il(%lgf)\) e EM(%MQ\’/IA) — ,u@) =0, Ek(%kC}:jA) = —flkékfl. (3.10)

Using variables (2.23) we can write dual Lax operator

. RNV _9\ A N
- 1 1 g, A 5 (22 + 27 2) Iim ~ e
(Lm)ij(A) = —— { % T 72( im J”;)Tm v Fum = wam [ [ 2. (3.11)
P=7, A2z, A2z, i=1

>
|
|
>
[V

We can relate them to L-operators (2.37) of the same size

1

L(z,w,pu) = L(z— 2z w ) — /fl)T. (3.12)

Noting that for the classical r-matrix
r(a™)" = —r(a) (3.13)

where transposition is taken in each tensor multiplier, we can deduce from (2.36) that

{LO) @ L(w)} = S[LA) ® L(w), r(A/u))- (3.14)

N | =

To obtain explicit relation for the dual spectral curves, we have to come back to the
Kasteleyn operator of the system, and consider its determinant. In terms of M x M blocks
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Ay, Cy, defined by ((3.8)) spectral curve is given by

A0 ... 0 AQ CitAr 0 0
CoAy... 0 0 1 Cy'A;y ... 0
det DA\, p)=|... ... ... o [ =] et o)
0 0 ...Ay_1 O ‘ 0 0 ...Cy' AN
0 0 On  An 0 0 1
1 0 0 AQ
1 .0 0
=...=][(etCi)|--- o in :
i 0 0..1 0
0 0 ... 1 (—)NTM*M

TNM =Ly .. Ly, Ly=-Cp A,
and subtracting consequentially lines from first to last
det D(\, 1) = (=1) M det (Cy ... On) det(TAM (1) — Q).

Acting in the same way, we get for the dual spectral curve

det D\, p) = (—1)¥M det (él . OM) det(TNN()) — 1Q),
TN =Li...Ly, Lp=—-AC!

so, precise relation between curves is

det (C1 ... Cn) det(TM*M (1)) — AQ) = det (él o éM) det (TN (\) — uQ) .

Note that the relation of pre-factors is Casimir of the bracket

N
h 12 _ h,\1/2
det (C1...Ch) p < o1...0N )1/2 nl;II(UnCmu) (TnCit)

S A Ml ... AN M )
det (C’l ... C’N) A 11 (%mC#ZA)fl/z _ (%mC}{@,u)lﬂ

m=1

wlz

w‘i

3.2 Twisted chains

AQ

0

Oy An

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

A diagonal twist matrix is not the only one, commuting with r-matrices. A cyclic twist

N N-1
Qa(AN) =D Eiy1i= > Eip1;+AE N
i=1 i=1

(3.20)

also satisfies [r(A/p), Qa(N) ® Qa(u)] = 0. In terms of bipartite graphs it corresponds to

the twist on a cycle of the torus, where the bipartite graph is drawn on, or the gluing
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a) b) c) d)

Figure 9. Examples of twisted gl, chains. Dashed lines bound fundamental domains. We use
different notations for zig-zags here, comparing to the pictures above. Edges crossed by red arrows
belong to 7o zig-zag, orange arrows are for ;. a, b) XXZ chain of rank two and its twisted
cousin. Note that the twisted twice chain is equivalent up to SL(2,Z) transformation A — Ay to
the untwisted chain, as Q% = p1, like in remark 2.2. ¢, d) Making Toda chain by twisting gly
chain dual to gl; chain.

condition for the sides of fundamental domain, see figure 6. Such twist also changes a
Poisson quiver, even though the edge variables are not affected themselves.

The twist of a bipartite graph results further in change of the zig-zag’s structure.
Several parallel zig-zags now join into ‘longer sequences’ with non-trivial winding so that
rectangle Newton polygon undergoes a ‘shear shift’” — see examples on figure 9.

In the context of such transformations one can expect nontrivial consequences for
spectral duality. Consider the trivial case of gly chain on a single site, which is dual to
rank 1 chain on N sites, and apply the cyclic twist along the longer side of a bipartite
graph. In original picture this is just a multiplication of a single N x N Lax operator by
cyclic permutation matrix. However in the dual setup, this results in passing from trivial
gl chain to the Toda chain on the same number of sites, which can be verified by comparing
figure 9 and figure 3. After such procedure the number of Casimirs drops by 2N — 2, while
number of Hamiltonians jumps from 0 to N — 1.

For supersymmetric theories such transformation turns the theory of a single SU(N)
hypermultiplet with only SU(N) x SU(N) flavor symmetry into pure SU(N) gauge theory.

4 Discrete dynamics

The cluster mapping class group Go consists of sequences of mutations and permutations of
quiver vertices, which maps quiver to itself, but acts in general non-trivially to the cluster

~19 —



variables (see appendix B for details). As a simplification one can restrict the action of
Go to the set of Casimirs of the Poisson bracket. Each monomial Casimir maps to the
monomial in Casimir functions. When the necessary for integrability condition [[, z; =1
is relaxed to [[; #; = ¢ (which is called as deautonomization), these flows act on the set of
Casimirs, inducing non-trivial g—dynamics.

In [1] the cluster mapping class groups for the quivers, corresponding to Newton poly-
gons with a single internal point, were identified with the symmetry groups of g-Painlevé
equations.'? Passing from X-cluster to A-cluster variety, the g-Painlevé equations acquire
bilinear form for the tau-functions, and can be solved via the dual Nekrasov partition
functions for 5d supersymmetric SU(2) gauge theories [1, 3, 6, 24], which is a natural ‘5d
uplift’ of ‘4d’ isomonodromic/CFT correspondence [18]. In [2] the cluster description was
further applied to discrete dynamics of relativistic Toda chains of arbitrary lengths, where
the solutions of non-autonomous versions are given by SU(N) partition functions with the
|k| < N Chern-Simons terms. Recently, cluster realization of generalized g-Painlevé VI
system was also observed in [33]. Note that for ¢ = 1 case with trivial Casimirs solution of
discrete dynamics for arbitrary bipartite graph can be written in terms of §-functions [10].

Below in this section we discuss the cluster mapping class groups and non-autonomous
bilinear equations, arising for generic rectangle Newton polygons. We present their explicit
construction in the example, which will illustrate the following results:

Structure of the group Gg. For the SA(2,7Z)-class of N x M rectangular Newton
polygon, the MCG Gg always contains a subgroup of the form

W (Ag\l,ll X A%ll> x W (AS\?A X A§\14)71) X7 CGo (4.1)

where W (Ag\l,)_1 X Ag\l,)_l) is a co-extended double Weyl group (2.39).

The generators of each subgroup are naturally labeled by intervals on sides of a Newton
polygon, or subset of 'parallel’ zig-zag paths (in the same homology class) on a bipartite
graph:

— 1 1 .
w (Agv)fl X Ag\f)fl) : {Sai,ai+1}7 {Sﬂiﬁiﬂ}’ (S Z/NZ
AW/ (Ag\?—l X Ag\ll)—l) : {87a7’7a+1}’ {85a76a+1}7 a € Z/‘1\4Z

where subscripts «, 3,7, 0 label the corresponding group of paths, see figure 6 middle and

(4.2)

right. The group being extended by the additional generator p contains lattice of the rank
2N + 2M — 3 of g—difference flows of integrable system.

Moreover, in special cases there is an obvious symmetry enhancement: for example,
for N = M an additional ‘external’ generator appears, which rotates the whole picture
by 7/2. However, sometimes this enhancement is more essential: if any of the sides is of
length 2, two rest Weyl groups can be ‘glued’ together by additional permutation, so the
known subgroup of Gg becomes

W (Afy ) x W (A x A7)  go. (4.3)

12Such relation for particular cases was earlier mentioned in [6, 22, 31, 32].
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This enhancement is closely related to the fact that spectral curves with the N x 2 rectan-
gular Newton polygon can be mapped to the curves with the triangular Newton polygon
with the integer sides 2N x 2 x 2 (see e.g. (3.70) in [19]). If both N = M = 2 one finds the
extra enhancement from /V[\?(Agl) X Agl)) X W(Agl) X Agl)) to W(Dél)), see below.

Action on spin chain Casimirs. Inhomogeneities, total spins, on-site Casimirs and

twists of spin chain are permuted under the action of different components of Go.
Inhomogeneities are given by single zig-zags p; = f;, while on-site Casimirs are given

by products of zig-zags (! = (azﬂi)%. So the well defined transformation of them, which

‘permutes sites’ of spin chain are products of primitive permutations

h h h h
Saiqir1SBiBigr 1 Hi 7 Midls Hik1 = iy G P Gy, Gl e G (4.4)
Permutations of twists 2, = ((5(1/7(1)% and projections of spins (! = (*yada)% by
products
Sva,Ya+150a,0041 - Ha 7 Hatl, Hatl 7 Ha, Cf; — Cg+1, Cg+1 = C}Z) (45)

can be viewed as an action of the Weyl group by permutations on the maximal torus of

Lie group.
Bilinear equations. Fgquations defining the action of each single generator of Go on
A-cluster variables (TZ-?,T%_) could be rewritten in the form of bilinear equations. Fuvo-

lution of coefficients can be encapsulated into the transformations of frozen wvariables
{uq,,ug,,uy,,us,}, which are evolving in the same way as Casimirs in X -variables.

For example 7-variables 7, , 7, transformed under the action of generator sg, g,.,
satisfy bilinear equations
( _%)( )%4— X _w o x o Srox 4
Ug,py — N0 )06y, )N Ty 0 Tit1.a = UB, 1 TiaTia — 47 0B TiaTia (4.6)
1 1 _L 1 _ 1 ’
~ ~ T X _ M =X _+ N M =+ X
(ug,y, — q~¥ug,)(us/us,) N7 1,041 it1,a = Qi TigTiar1 — VM Uay T; 01175 4
for all @ € Z/MZ, where us = [[, us,. Frozen variables are transforming as
1 1
8BiBi41 * UB; 7 g NUg,, Ugy, —r gV Ug;. (4.7)

Bilinear equations for the action of generators sa; a; 1:5ve,7as1>564,6041 are similar.

4.1 Structure of Gg

Now we present generators of Gg in terms of the quiver mutations'? {ufj, u;’;} (in the ver-

;; ) and permutations of the vertices {82,:“1} Consider
for simplicity the (3,2)-example, which already illustrates how the explicit formulas look

tices, initially assigned with {z7;, x

like in generic case. Here 2(IN + M) = 10 generators (4.2) can be realized as
X X X X B T TR L S, R e
581,82 = S12,12M11 11121211 11 Saz,cnr = S12.31H32M 1141231 11 H32
Nt X X 4+ X+ Kt X X 4+ X+
882,83 = S22 20M91 21 Moo oo a1 oy San,az = S22 11H12MH21 Moo b1 Mo M2 (4.8)

R N T T e R TS T TR T s
583,61 = S32,32M31 31 3232131 31 Sag,as = S32 21 Hoat31 K31 H31 Moo

13For the definitions on cluster algebras see appendix B.
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and

5Nt 4 x4 x x4 X+ X+
562,61 = S31,31H21 o1 1111431 31 11 11 o1 o1

Xt 4+ o x o+ X X+ X+ X+
Syiy2 = Sa1,12H00H31 H3o11 o1 1211 3231 Moo (4.9)
K5t X X X+ X 4 X+ ’
561,62 = 532,322 1o 12323212 19 o2 Hoo

Xt 4+ X+ X X+ X+ X+
Sva,y1 = S22, 11M21 H3aM31 122211 Mo 31 H3a o1

which are sequences of mutations in the vertices along zig-zags in the forward and then back-
ward directions. One can check that each generator here is involution i.e. s? = 1, and acts by
rational transformation on X-cluster variables: e.g. for sg, g, = 352’:52 [ 15 B g 1 Hay
one can explicitly write:

X + X X —+ X
2y g X g X (232, %31, %3] 25Xy g XL g X (731, T35, %3]
31 31 " To2To1 T 5 ¥ <10 32 32 " To1To2 5 ¥ 1o
(231, T39, T3o)] (299, %31, T3]
+ x4 + x4
+ L [z3y, 23, T + L [z3), T3, Toy]
Tor ™ T+ ) Togg ™= X" T x =+
Ty |39, 5622,%21] Toy  [T31, Ty, oo (4.10)
X X 4 X ’
x L [z, 37227%2] x 1 [, 731, T3]
To1 7 +'[>< K L +'[>< + K
Lag [ To2) 372175’521 La1  [¥21) T2y L2
+ x4+ + x4+
T (232, T3, T3] T [£31, 731, T3]
11 11 TaLor T 1 x 170 12 12 " Toalog 17 0 s
(251, %91, T3o] (252, 39, T3]

while all the other variables remain unchanged. Here we have used the notation
[X1, 29, .., xp] = 1+x1+21 2+ . A 21 . oy, = 1+ (1422(. . A 21 (1+2x,)...)). (4.11)

Notice also that the result of zig-zag mutation sequences actually do not depends on the

point of the ‘zig-zag strip’ one starts with the first mutation and direction of the jumps

along/across given zig-zag. Note that the [ |-function possesses nice ‘inversion’ property
(21, xn] =21 - [ 2] (4.12)

n

which allows to write equivalently, for example

1 [$2Xla$§r2v$2xﬂ 1 [(5'72X2)_1a($2+2)_1a(xle)_1]_ (4.13)
x22 [xgzvx;px;ﬂ 1‘3_1 [(wgl)_lv(xg_l

Each set of permutations s, .,,, with similar z constitute affine Weyl group of AD _type.
The groups for different z are commuting, so they satisfy usual relations

S§i72i+1 = 1’

(Szi,zz-+1szz'+1,zz-+z)3 =1 z=ua,B with i,j € Z/3Z

8zi,2i+152j,2j41 = Szj,2;415z2,zi41> ’Z - ]’ >1 (4‘14)
%20 = 1 2z =7,8 with i,j € Z/27Z.

Szi,241520,20 | = S22l Szizigas z, a, 3,7, 6 such that z # 2.
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There are two more ‘external’ automorphisms preserving bipartite graph

Ap: ozl mza_l, azja — x;ra_l (4.15)
Ayt ozl :B;:La, zh acltl’a ’
which satisfy obvious relations
ApAy = AN, Aj =1, Al=1, (4.16)
ARSzq 21 = Sza_1,2aMny fOr 2 =7,0,  Apsz 2o =8z 200 M0, for z=a, 8, (4.17)
NSz ziny =Sz, for z=0a,8 AuSzyz0i1 = Szp 20 Mo, for z=1,6, (4.18)

and promote affine Weyl groups to extended affine Weyl groups. There is also one more
generator of infinite order

— Xt . = Tt Xx . + x X +
p=sTpt st =11, 770 T = o, T B 40 (4.19)
2,a

satisfying relations

PSai_1,a5 = Sag,aiip1 Py PSBiBit1 = SBiBit1 £ PSvivier = Svicivi Py PS86;,6i41 = 56;,6i41 Ps
(4.20)
so the cluster mapping class group contains

W (Ag” x Ag)) < W (Agv X Ag”) % Z C Go. (4.21)

We conjecture that for general rectangular N x M Newton polygon, cluster mapping class
group contains subgroup (4.1). Construction of generators for general N and M is straight-
forward, by ‘jumps over zig-zags’ as in example.
In the case N = M there is also an additional ‘external’ generator R/, of order 4,
which rotates bipartite graph by 7/2
Rypp: wly — al - Ty g (4.22)

i,a —a,i’ i,a

In the case N = 2K or M = 2K there is another additional ‘external’ generator, which
flips the rectangle.

Discrete flows. The group Go contains lattice L of discrete flows of rank B — 3, where
B = 2N +2M is the number of boundary integral points of Newton polygon. It consists of
four pairwise commuting lattices contained in two copies of W(Ag\l,)_l) =ZN" 1 W(An_1)
and two copies of W(Ag\?_l) = ZM=1 5 W(Ap_1), and generator (p)'™(V:M) where
lem(N, M) is the least common multiple of N and M. The lattice is generated by ele-
ments T, ., , which take pair of adjacent strands, wind them up in opposite directions
over cylinder and put on the initial places, if one imagine W(Ag\lfll), W ( 5\14)71) as a groups
acting by permutations of strands on cylinder. For (3,2) example (-piece of Go can be
presented as W(Agl)) =72 x W(Az) with Z? and W (Az) generated by

T81,8, = 881,82582,83583,81 582,83 Tﬂ2ﬂ3 = 58,,835833,81581,82583,81 (4'23)
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and by
SB1,82>  SPa.Bs (4.24)

correspondingly.

One can find a homomorphism of the lattice L of the shifts (4.23) into the group of
discrete flows Gy (defined as in [13] to be an additive group of integral valued functions on
boundary vertices of Newton polygon modulo sub-group A generated by the restrictions
from Z? to the boundary of Newton polygon of affine functions f(i,7) = ai + bj + c).
For the case of rectangular Newton polygons one can easily finds that G\ = 7ZB-3. Em-
bedding of L to G}, actually comes from consideration of the action of Gg on zig-zags
presented in the next section, and results in the image ZZ~3. However, the factor is
GA\/L=2Z/lem(N,M)Z & Z/NZ & Z/MZ. The non-trivial index appears due to the func-
tions on the corners of Newton polygon. It can be also seen that the image of generator
(p)lem(N-M) coincides with the image of generator 7 from [13].

4.2 Monomial dynamics of Casimirs

According to [17] the lattice of Casimir functions z. is generated by zig-zag paths!
Z={yem(,Z)|e(y,") =0} (4.25)

As the skew-symmetric form ¢ is intersection form on dual surface, this condition is equiv-

alent to being trivial in dual surface S homologies. In order to be expressed in terms of
X

cluster variables {x”,fvx} Casimir should be also trivial in torus homologies, i.e. we are

interested in subset
C={yeHi(I,Z) | ] =0 € Hi(5,Z), [4]=0¢€H(T%2)}. (4.26)

As zig-zags and faces are drawn on torus Z,F C Hy(I',Z), they are constrained by [[, z., =
1, where the product goes over all zig-zag paths and [[, s, = 1, where the product goes
over all faces of bipartite graph on torus. To obtain non-trivial g-dynamic these constraints
have to be relaxed to [[, x, = ¢ # 1 so that , now is an element of extension H;(I',Z) =
H (T, Z) @Q%w@ with the relations ), fi = w, >_; z; = w. In multiplicative notations this

reads
foz‘ =gq, szl =g (4.27)

where we have additionally defined ¢ = x,, § = z. Introduction of ¢ # 1 can be considered
by lifting of bipartite graph to universal cover of T? which is R2.

Any variable z.,y € C can be expressed via face variables xy,, which are cluster
variables, and can be mutated by usual rules (B.2). However, there is no generic rule
for mutation of variable associated with a single zig-zag, except for mutation in four-
valent vertex identified with a ‘spider move’ [17]. We propose here the generic rule for
transformation of zig-zags'® under the action of generators (4.7), namely, for the N x M

MFor details on definitions see appendix B.
15\We abuse notations, denoting x, = z for zig-zags.
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rectangle:
1 1
S a1 - 06 2 qN (G, Q41— G Noy,

1 1
8,801 - Bir @ NBiy1, Bit1 — qN i,
1 a1 (4.28)
Svarvasrl - Ya 7 @M Ya41, Ya+1 7 G Mg,

_ L 1
S(Sa,éaJrl : 5a —=q M 6a+1a 5a+l — qM6a7

where i =1,...,N,a=1,...,M. The group Gg acts on the elements of C, embedded in
multiplicative lattice generated by zig-zags, precisely as Coxeter groups of Ax_1-type act
on the root lattices embedded into Z¥ (cf. [23, 33]).

These rules basically come just from consistency with mutation transformations for the
elements of C. There is a two-parametric family of transformations for zig-zag variables

2 zalP40FB | if (2] = ([2]a, [2]) — class of z in H,(T?,Z) (4.29)

which do not affect C, since C consists of the combinations of zig-zags with zero class in
torus homology. This ambiguity is fixed using the ‘locality assumption’ that zig-zags not
adjacent to the transformed faces are not changed.

Let us now demonstrate, how formulas (4.28) come for (N, M) = (3,2) from consis-
tency with transformations of C, where one can introduce the following over-determined
set of generators

X X X X X X
281,01 = T11%12; ZBy,00 = T3 %99, 233,05 = T31T39, (4.30)
(o1 (A1 (o N1 :
Loy By = (z1215) 7, Zoy,ps = (T31739) Zag,p = (5531:”32)
_ X X X \—1 _ ettt
Ly oy = (95115321%1) s 510 = T12T35T30, (4.31)
9 .

_ X X \—1 N S
Zy 5o = (T19%59%35) ™5 Loy = T11T9173)

satisfying

Zﬁl,alZﬁz,azzﬁs,asz’hﬁlz’mﬁz =1
Za1752Za2,B3Za3,,31Z51,72Z52W1 =1 (4-32)
Zﬁl:QIZﬁLaQZﬁS:QS(ZOél,/82ZOé2,/BBZa37/51>_1 =q=1

so that the number of independent Casimirs is seven. In the autonomous limit, these
Casimirs reduce to Z, ,» = z - 2/, where z, 2’ correspond to zig-zags {a, 3,7, d}, expressed
via the edge variables. The transformation, for example, sg, g, acts by

Z/BQ,QZ Zﬂl,al

Z/BLOH = Zoq,ﬁz’ ZBQ,OQ = ) Zﬁmazs = Zﬁ3,a3v

Zay B
561,62 - (4.33)
Loy, Lo B
Zoy o 7 LBrars Las,Bs 7 Las,Bss Loz By 7
B1,01
and substituting here Z, ., = z - 2’ one finds that the action of s reduces just to
’ B1,82

permutation of 81 and 32, the same is true for the other generators s, .,.

— 95—



For ¢ # 1 consider the generators Tpg, (4.23) which act trivially on C at all in the

Bi+1
autonomous limit. One gets now

Zﬁl,al = q_lzﬁl,ala 252,042 = qZ527a2

. (4.34)
Zoy By 7 QLo Bas Zog,py = 4 Lag,py

T, :

where ¢ = [[, .z z]. Again, after expressing the Casimirs via zig-zags, the action of

b,J g g
Tpg, 8, is equivalent to 31 ¢ 181, B2 — qPa. These formulas suggest that at g # 1 one

can express generators of C via zig-zags and ¢ by'©

1 1 1
Zﬂl,oq = q651a17 Z,BQ,OLQ = qGBQOZQ, Zﬁg,ag = q6630(3,
(4.35)

_1 _1 _1
ZOq,,BQ =4q 6051627 Za2,,33 =dq 6@2,83, Zag,ﬁl =dq 604351
_1 1 _1 1
Z’yl,§1 =q 4’)/1517 Z(51,’72 = q451725 272,52 =q 472523 Zég,’yl = q45271 (436)
which are consistent with constraints (4.32) with ¢ # 1 if one assumed!'” ajasaszfi3203

71720102 = ¢ = 1. Comparison of transformation (4.33) with (4.35) and (4.36) leads to
the formulas (4.28) for (N, M) = (3,2). The action of remaining generators is defined by

Ap o oa; =y, Bi— Bis  Ya = Yat1, 0 = a1,
Ayt o gy, Bi = Bit1s Ya ™ Ya dq + Oq, (4.39)
1 1
p: i q Naj—1, BirBiy Ya = qMYat1, g+ Oq.

Remark 4.1. Specialities of N =2 or M = 2 case.

It is well known (see e.g. [19], eq. (3.70)) that spectral curves with a Newton polygon being
2 x N rectangle can be mapped to the ‘triangle ones’ with the catheti of lengths 2 and 2N
(see figure 10) just by change of variables. Namely, equation

S(A 1) = P ()A* + Py ()X + Py (p) =0 (4.40)
under A — Py () - A7! than S(A, p) = A2Py (1) ~1S(A, 1) turns into

S 1) = A + Py ()X + Py (1) Py (1) = 0. (4.41)

16The fractional powers of ¢ in these formulas can be restored using the ‘magnetic flux’ interpretation for
g # 1 in non-autonomous case. This interpretation is also consistent with the fact that zig-zags with the
different orientations collect fluxes of different signs.

"One can incorporate § # 1 consistently modifying formulas (4.30) and (4.31) by

Lox % Lox % Lox o x
Zgy a1 = §° T30, ZBs,an = 7 T1T23, ZBg,a3 = 4° T31 T3y,

. . . (4.37)

S R ot -1 s+ -1

Zay,py = @ (211712) s Zas,8s = 4% (¥21%32) s Zag,p = 4° (T31732)

5 (X X X =1 B
Zyy 5 =47 ($11x21$3 ) y L8142 = 45 T{2T32T3,

(4.38)

1 1
_aloxox oxy-1 _ s+ + +
Zoy 65 = G5 (T12T2%32) 5 Zsymy = 45 T11T21 %31 -

However, as a meaning of this extension is not clear, we will assume ¢ = 1 in the following.
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Figure 10. Transformation from rectangle to triangle for (3,2) case.

For a corresponding cluster integrable system the Poisson quiver from figure 5 can be
transformed into the form drawn at figure 11 — more common for ‘triangular’ polygons,'®
studied in detail in [33]. This correspondence results in the ‘enhancement’ of the symmetry
group: ' a pair of commuting Weyl groups AS\I,)_l X Ag\lf)_l is now embedded into larger group

Ag\),_l with the generators

— +7+ + + — ><7>< X X >
SaiBit1 = Siti2 Mtk SBias = Sitia Mk,  1=1,... N (4.42)

Embedding Ag\lf)_l X AS\})_I — Ag\),_l is provided by

88i,8i+1 = SBiaiSaiBi+158icir  Sas,aipr T SayBit15Bir1ciy1SaiBita (4'43)

and commutativity of sq,, and sg, g,., just follows form the relations on ‘elementary’
(1)
i1 SViyvip1 The

generators sg,q,, Sa; 8,4, - 1he generators of A,y _; also commute with s,
generator p is also absorbed. Now it is not a primitive one, but can be presented as a

Q41

composition

N
p=ApAy H Sai,Biy1 (4'44)
=1

where we used ‘root’ from A,

. X +
Ay oz, — T g

ah X, so A, =(A,)? (4.45)

1,a’
so there are no extra ‘dimensions’ in the lattice of the flows.

The action of the enhanced group on Casimirs can be constructed in a way similar to
generic case. For example, for the generator sq, g, in (N, M) = (3,2) case from

V4 1 Z
L Zay By ) Z8y,05 fz,07

Z/J’1,061 =
Say,B8 ¢

Zoy 81 7 Loy By L1 b1y Lo1ve Y Lar,Ba sy ves  Lya,d2 " Lay,Balingbas  Lsan " Lay,B2 Léam

(4.46)

Zﬂqﬁz ZalvﬁQ Zal,ﬁ2

one gets for the zig-zags

1 1 _ _1
Say,B2 - g — qGBQ 17 62 = gooy 17 ’Ya(sa = q 60‘1527{16(1 (447)

18For generic triangular Newton polygon each node of quiver is connected to six arrows (and corresponding
dimer lattice is hexagonal). However, in 2 X 2N case a partial cancelation happens: the arrows directed
from x;{ to x5 annihilate the arrows from x5 to x;{, and the same happens with xj‘l and X;‘;, so only four
arrows at each node remain.

19WWe are grateful to Y. Yamada for clarification of this point.

—97 —



+ X + X +
X32 X31 X229 Xo1 X192 X1

—+ X + X + X
X31 X39 X921 X929 X11 X12

Figure 11. Quiver for (3,2) case represented in ‘triangular’ form.

Saz,al 8&1702 S’Y1 yY2 S’Y27'Yl SO&LOCZ S’Y1,’Yz
_— Sau,B2 Sy1,61
582,81 581,82 561,62 562,61 581,82 561,62

Figure 12. Symmetry enhancement from W (Agl) X Agl) X A(ll) X Agl)) to W(Dél)).

which contains now ‘inversion’ of zig-zag, since «; and 3; correspond to the opposite classes
in Hy(T?,Z). Generally, for the action of Aél) on zig-zags one gets
1o 1 _1

SaiBiy1 - Qa2 q6ﬁi+11, Biy1 — qso; 17 Yaba F q 60 Bit1Yada (4 48)

1 1 1
Sgia; . it q 887 Birrq va;t,  Yada > q5iBiYada-

Remark 4.2. Further enhancement for N = M = 2 ‘small square’.
The group Go for this case can be identified with the g-Painlevé VI symmetry group
W(Dél)) (see e.g. [1]). It corresponds naively to the ‘double’ symmetry enhancement

1 1 1 1 1
A Aig N Ag};ﬂ, Ag; x AL% N A§,7§75 (4.49)

but it turns out moreover that generators of the ‘new’ extended groups do not commute.
For example the generators s, g, and ss,,, satisfy

3 _
(Sar,B2871,61)” = 1 (4.50)
and this non-commutativity results in gluing of Dynkin quivers as shown on figure 12.
.. 1 . .
Another cluster realization of W (DE() )) has been proposed in [1], given by generators
_ bt _ ot _ ot o+
50 = S11,22) 51 = S12215 52 = S171,12M11 12 (4.51)
XX _ XX XX X X .
S5 = S91,12> 84 = S11,22) 83 = S11,21H11 21
in terms of mutations of the same bipartite graph. In our notation this generators are
80 = Sa182881915717288171 801825 81 = Sa182561718618256171 801 820 52 = Sau B2 (4.52)
85 = 541615a1 8288182801 82871615 54 = 541615a1 f28c12Sa1 2571615 83 = 8y,6; -

Two presentations can be mapped one to another by conjugation by s, 8,5+, 5a, 8, -
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4.3 Towards bilinear equations

Let us finally turn to the issue of bilinear equations for the cluster tau-functions or A-
cluster variables. We postpone rigorous discussion of this issue for a separate publication,
but demonstrate here, how Hirota bilinear equations can arise in the systems, corresponding
to rectangle Newton polygons.

The simplest example of bilinear equations is provided by spider moves, or mutations
in a four-valent vertex of the Poisson quiver, see also figure 15 in appendix for the transfor-
mation of corresponding piece of a bipartite graph. Such transformation induce the only
change in 7-variables, which (for all unit coefficients)

TO — To = T1T37——|(-)7'27'4 or TpTo = T173 + T2T4 (4.53)
obviously leads to bilinear equation. However, there is no a priori reason to get bilinear
equations from generic action by an element of Go. For example, a single mutation in a
six-valent vertex rather leads to relation, which symbolically has form

7 =713 4713 (4.54)

instead of bilinear. Sometimes one can get nevertheless a bilinear relation for a sequence
of mutations without no a priori reason for them to hold, see e.g. section 2.8 of [2]. We
are going to show in this section that the same happens for the transformations, induced
by the zig-zag permutations (e.g. {sg; g, } OF {Sy,,7a.1}), constructing their explicit action
on tau-variables.

For A-cluster algebras?® the role of Casimir functions is played by ‘coefficients’ [14],
taking values in some tropical semi-field P, see also discussion in [2]. For the case of
rectangle Newton polygons we label the generators of P by zig-zags (together with q), i.e.

P= TI‘OP(qv {uaw uﬁi}iil,...,Nv {uvw u6a}i:1,...,M) (4.55)
so that the coefficients are expressed by
(Ua,u,) ( )
_1_(ug;ug; )M 1 (Uy,us, 4)N
vy, =g By = g e el (4.56)
(u% u5a) N (uaz‘uﬁiH)M

The action of transformations s, ., , on coefficients in this basis is equivalent to the action
on generators of P like in (4.28) on zig-zags, i.e.

1 1
SOéi,Oti+1 : uoci — qNuai+17 uai+1 = q Nu()éj)

_1 1
SBi,8i41 ¢ OB G NUpg,, Ug, > qNUg;, (457)

1 _ 1
S'Yav'Ya—Q—l : u’Ya = qIM u'7a+17 u’Ya+1 = q M u'Ya7

_ 1 1
Saa,§a+1 : u(sa = q M u5a+17 u6a+1 — qu u5a.

Coefficients could be encoded by ‘frozen’ vertices of quiver. This suggests principle that
we assign frozen variables to faces of dual surface, corresponding to zig-zag variables, while
mutable variables — to faces of original torus.

20For the definition of A-cluster algebra with coefficients and transition from X to A-cluster algebra see
appendix B.3.
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Let us now present an example of the action of the generator sg, g, on T-variables in

(N, M) = (3,2) case. An explicit computation gives

% u§2 q12 (ug,ug,)? g1z 2 gizug,
% _ q%ugl ug, q% % %(uﬁl ug, )
2:% q%ugl q%uﬁl g LQ (uﬁ1 ug,)
i qr UEQ 2 (ug,ug,)? %ug ug,

[NIE

=

+ X
731721
X
T11T11

’T%—? T2><1
X

-C | 2T (4.58)

732722

7'1-5 T1X2

7'3+1 7'2X2

71+1 T12

. 11 1 11 1
where C = diag ((u.ylu5)3,u§1(u(g/u51)3, (u.y2u(g)3,u§1(ucg/u52)3>, us; = ug,us,. The

main point is that the matrix in the r.h.s. is nicely invertible so that these equations can

be rewritten in bilinear form

1
X g2 At
7317 —u527117'11

c,a\»—

1
(uﬁ2 —qgsug, ) (u5u’71 )

+

ol

(us, — gug,)(us/us,)

X T35 =X_+
T39To1 = Uag T117T12 —

1 1 5 _
(ug, — g3 ug, ) (Usu,, ) 3735755 = g 75775
1 -1
(g, — g5 up,)(Us/us,) 575,735 = Ua 2 75T —

X+

1 1
T5 2
—qug T Ty

1 —
L —+
q12Ua,” Ty Ty

1\3\»—‘

» (4.59)

2 +
—q:u 51712712

!
i5 2 =+ X
412Uy Ty T2

This is actually a generic phenomenon for the zig-zag generators: the same happens, for

example, for the generator sg, 5, from another component of Gg. One gets explicitly for

the transformation of A-cluster variables

ty=Cy - Cy -ty (4.60)
where
-+  =x =+ =x =+ =x\7
t1(732 T32  Ta2 T2 Tig 712>
- + X ¥ X + X
T. T. T. T. T T
32 32 22 22 12 12
+ X + X + X + X + X +. x\T (4.61)
t2_(731731 721731 T21721  T11721 T11Tn1 731711>
- + X + X + X + X + X + X
T32T32  Ta2T32  Ta2T22  T12722  T12T12  T32712
12 2 L 3 L 4, 9 1 5 3
Us, q2uy, qt 2(11511152)3 q1z (]-1(51]-152)J q'z (u61U§2)5 qgzuy
5 2 1 9\l 2 1 3, 9 1 a 2
g1z ug, u§2 q12(u61u62)3 q12(u§1u62)3 q12(u51u§2>3 q12ugl
49 1 s 2 1 2 2 2\l 3 2 \1
o = q12(u51u52)3 quugl us, (]121,1632 q12(u61u62)3 q12(u61u62)3
e 3, 9 1 4 2 5 2 1 1 o2 1
ql?(u61u62)3 q12u61 quU51 u62 qlz(u61u62)3 q12(u61u62>3
2 1 3 1 4, 9 1 5 2 12
q12(U51u52)3 q12(u51u52)3 qu(u51u52)3 q12u61 u62 q12'[,162
1 2 1 2 1 3 1 a 2 5 2
qiz (U51u52)3 qiz (11511152)3 q 2(11611152)3 q12u§1 q12ug, u632
(4.62)
1 L 1 11 1 1 1 1
Cy = diag ((ua/uas)zu’? (uauﬁs)z (ua/uaz)zu"? 7<uau52)2a(ua/ua1)2u’327(uauﬁ1)2> (463)
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with u, = ug, U, Un,. Again, inverting matrix C; we end up with the set of bilinear
equations

[

1 1 -1 ;1
1 L 4+ x _ . T3-+_x Lo —5_x_+
(s, — q2us,)(Ua/Uay) 2 731 T3] = Uy, T35T3n — q12Uy,° Too735

1 1 1 1 1
5 5+t X _ 113 =X _+ 5413 =T X
(us, — q2us, ) (Uaup,) 279 757 = Uj,TaaTog — 412 U5 TooTg
(U5, — q2us, ) (Ua/Uay) 275575 g P S Ml P g
by — 42 U5, )(Ua /Uy )2 To1To) = Uyy” TogTog — 12 Uny” TogToy 164
L 1+ x 3%+ 1 3 4+ x (464
(s, — q2us,)(Uaup, ) 27179 = ug TooTy — @120 Ti5To)

1 1 _1 ;. 1
5 St X _ 3=+ X 5 3=X__+
(s, — q2us,)(Wa/Uay ) 2711 1] = Wy’ TiaTs — G120y,  Ti5Ty

1 1 1 ;1
5 S+t X _ 113 =X __+ 5193 =T X
(us, — q2ug, ) (Waup, )2 75| 77) = U3, 75735 — ¢12U§ Ty

It remains yet unclear, how to derive bilinear equations systematically for compositions
of elements of Gg. We are going to return to this issue together with discussion of their
solutions elsewhere.

5 Conclusion

In this paper we have presented extra evidence that cluster integrable systems provide
convenient framework for the description of 5d super-symmetric Yang-Mills theory. It has
been shown that cluster integrable systems with the Newton polygons S A(2, Z)-equivalent
to the N x M rectangles are isomorphic to the XXZ-like spin chains of rank M on N sites
(or vice versa) on the ‘lowest orbit’. Due to special symmetry of the Kasteleyn operators,
defining spectral curves of these systems, it turns to be possible to express the Lax operators
of spin chain in terms of the X-cluster variables. Inhomogeneities and twists of the chain
can be expressed via (part of ) the zig-zag paths on the Goncharov-Kenyon bipartite graphs.

Rectangle Newton polygons generally correspond to linear quiver gauge theories [4]
so that inhomogeneities, ‘on-site’ Casimirs and twists define the fundamental and bi-
fundamental masses together with the bare couplings on the Yang-Mills side. The pro-
posed cluster description possesses obvious symmetry between the structure in horizontal
and vertical directions so that one gets a natural spectral (or fiber-base or length-rank)
duality, interchanging also the rank and length of spin chains. Shear shift of one side of a
Newton polygon to the shape of N x M parallelogram results in the multiplication of the
monodromy operator of the spin chain by the cyclic twist matrix.

We have found that the cluster mapping class group Gg for the ‘spin-chain class’ always
contains a subgroup isomorphic to

= 1 1 = 1 1
w (ASV)_LQ X Agv)fm) x W (Agw)—m X Ag\/[)q,a) X 7 (5.1)
whose generators act on zig-zag paths by permutations. Moreover, their action on the A-

cluster variables gives rise to the g—difference bilinear relations. The symmetry enhance-

ment happens in the case N =2 (or M = 2) and results in ‘gluing’ of two copies of Ag\lf)_l
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into Ag\),_l. If both N = M = 2 the symmetry 1% (Agl) X Agl)) x W (Agl) X Ag”) X 7

enhances to the Dél) symmetry group of q-PVI equation.

Our first results in this direction actually produce more question than give answers.
The following obvious questions (at least!) can be addressed for the further investigations:

e Trivial rank-/NV spin chain on a single site once twisted becomes spectrally dual to
relativistic Toda chain, see section 3.2. Can we similarly identify the spectral duals
of the twisted chains of arbitrary lengths and twists, whose Newton polygons are
generic parallelograms — or even extend this to generic four-gons? This question is
also very interesting on the gauge-theory side, where by now only the hyperelliptic
case of ‘generalized Toda’ (four boundary points and all internal points are lying on
one line — pure SU(N) theory with the CS term) was studied in [2].

e We have derived in section 4.3 the bilinear relations, coming out of the action of
a single ‘permutation’ generator of Go on A-cluster variables, acting by transposi-
tions on zig-zags. Is there any systematic principle to derive bilinear equations for
compositions of such transformations?

e In [1, 2, 6, 7, 24] and [27] the solutions for g-difference bilinear equations and their
degenerations, arising from certain cluster integrable systems, were found in terms of
Fourier-transformed Nekrasov functions for the corresponding 5d gauge theories. As
partition functions for the 5d linear quiver gauge theories are well known, a natural
further step is to show that they solve the bilinear equations found here (and their
hypothetical generalizations!).
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A From quantum to classical spin chains
We start with brief overview of the generalities of R-matrix formalism for the quantum

XXZ-like spin chain, following [25, 34|, and then turn to the details of their classical limit,
presenting explicit formulas for the rank 2 and 3 cases.
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A.1 Quantum XXZ spin chain

Quantum gl,,; spin chain of XXZ type can be defined using quantum monodromy matrix
T'(u), satisfying so-called RT'T-relations:

Ru,v) (T(w)®1)-1eT(v) =1 T(v))  (T(u) ®1) - R(u,v). (A.1)

Here T'(u) = Z%Zl Ei; ® T;j(u) (two-sided formal series in spectral parameter u, as we
consider double of RTT algebra) acts in the product of ‘auxiliary’ space V = CM (Eij €
End(V) — standard matrix units), and ‘quantum’ Hilbert space of the chain H, T;;(u) €

End(#). The trigonometric R-matrix, R € End(V ® V), is given by:

M —
R(u,v) = Z E; ® By + ufv = v/u Z Ei; ® Ejj+ (A.2)

_ 41
i=1 q U/U q z;éj

1
u/v —55ij ®E
q\/ /v—q v/ ; v

with the sign-factors

41, i>j
sij= -1 i<j. (A.3)
0, i=j

The integrals of motion of the chain come from the coefficients of expansion of the transfer
matrix 7 (u) = try T(u) = Y ez u"Hg. Their commutativity immediately follows from
the RTT-relations (A.1):

0=[T(u),TW)]= > w™0"[Hp, Hy] = [Hpn,Hy] =0. (A.4)

m,n=—0o

For the higher-rank case M > 2 this does not provide the complete set of commuting
Hamiltonians, one has to add higher transfer matrices, or take the coefficients of the so-
called quantum spectral curve equation

S(A p) =dety (T(p) = A-1) = > HyjA\'p (A.5)

with the quantum determinant is defined by

detyF(u) = Y (=18 Ey ;1) (w) Fy o2) (ua) - - Fag o) (ug™). (A.6)

The center of the RTT algebra (A.1) ([Tij(u),Cy] = 0 Vi,j) is generated by quantum
determinant of T-operator: det,T'(u) = > Cyu*.

A seminal statement, proven in [8], claims that the algebra defined by (A.1) is iso-
morphic to the quantum affine algebra Uq(gA[ ). More precisely, there is an isomorphism
between the algebra, generated by modes of the currents

+oo0 M

=> ) By Lf+k (A7)

k=01,5=1
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satisfying the RTT-relations (A.1)
R(u,v) - (LX) ®1) - (1® LT (v) = (1® LT (v)) - (LF(u) ® 1) - R(u,v) (A.8)
together with
R <uq vq*%) (LHw)®1)-1®L () =1L (v) L*(w®1) R (W%,vq%)
LE0] = Li;[0] =0, L [0lL;,0)=1, 1<i<j<M, 1<k<M

XA B Y
(A.9)

and quantum affine algebra Uq(gA[M) with the central extension c. Hence, different in-
tegrable systems, constructed from trigonometric R7TT-relations can be identified with
different representations of Uy, (al)-

Among these are spin chains on N sites, exploiting the co-product property that if
Ti(u) and Ta(v) both satisfy RTT-relations, and act in different quantum spaces, then so
does T' = Ty (u)T»(v), where the product is taken over the common auxiliary space. To
construct a chain of length N, one has to associate an L-operator in some representation
m of the Uq(glM) with each site of the chain, and construct quantum monodromy matrix,
taking product in the common auxiliary space

T(u) = LN (u/uy) ... LO(u/u1)Q (A.10)

where u, € C are so-called inhomogeneities, L*¥)(u) = 7 (L1)(u) and Q € End(V) —
a ‘twist’ matrix, having trivial quantum space. Such approach allows to construct many
non-trivial integrable systems by assigning to each site a simple representation of Uq(gA lar)-
Conventional way to do so in case of zero central charge, is to apply first evaluation homo-
morphism Ev, : Uq(gA[M) — Ug(glyy)

+ _ kT + - . + k- . .
Eva (LK) = 2L, i <j, k>0 Ev.(Li;[xk]) =2""L;;, i>j, k>0,
LiL; =1
(A.11)

Positive and negative currents could be collected to:

e () = <t (52 4 [217) = L) y

, L* =Y E;®Lf

Ev.(L™(w)) = —W (\/fﬁ . \/;L> — Leu(uf?) =

Homomorphism £v, is well defined only for positive or negative sub-algebra at once as

(A.12)

geometrical progression for Lt (u) converges if u/v < 1 and for L™ (u) if u/v > 1. But
luckily we need only positive part for our purposes. Note also that LT as a matrix is upper
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triangular, while L™ — lower triangular. If we substitute L., into RT'T relation we can
decompose it by degrees of spectral parameters, and get for L*
RY - (L*®1) 1oL =1 LY - (I*T®1)-R
Rt (LT®1)- 1®L)=1®L) - (LT®1) R
where we used that R(u,v) can be represented as

(q u/v—q U/u) - R(u,v) = \/ER+ + \/3}2_ (A.15)

with
= qZE’L’L®E’L’L +ZEZZ®EJJ + ZEU ®E]z (Alﬁ)
i=1 1] 1<j
M
R =q¢') Ei®E;i+» Ei®E;—(q—q¢ ")) E;®Ej (A.17)
i=1 i#j i>j
and relations
PR*P=(RT)™, R*—R =(q—q¢ H)P (A.18)

where P = Z B @ Ej; — permutation matrix. The situation here is similar to the one,
which was in the affine context: RT'T algebra, now without spectral parameters, generated
by matrix elements of L¥ satisfying (A.13)-(A.14) is isomorphic to the quantum group
U, (glys) in the Drinfeld-Jimbo definitions, if we put

(¢ —q Vejg" i< j 0 i<
Ly =< ¢hi i=j, L= q™M i=3j (A.19)
0 i> ] (' —q)gMeji i > j

where e; ; — generators of Ug(gl,,), corresponding to the roots, hy, — to the Cartan sub-
algebra [8, 16]. Generators, corresponding to the simple roots e; = €; 41, fi = €i11,; satisfy
relations which are deformation of the usual gl;; relations

qhaeb _ q5ab*5a,b+1ebqha7 qha fy = q5u,b+1*5ab quha (A.QO)

—ha yha
aq +1 he hb

ha+1 —
qq q
[ea, fb] = 5ab q— q_l ) qq

and ¢-deformed Serre relations

fgfa—l - (Q+ q_l)fafa—lfa + fa—lf(% = 07 fg—lfa - (Q+ q_l)fa—lftzfa—l + faf3_1 =0

= ggha (A.21)

(A.22)
eiea,l —(q+ q_l)eaea,lea + ea,leg =0, 6(21_1% — (¢ + q_l)ea,leaeaq + eaeg_l =0.
(A.23)
Non-simple roots could be expressed using recurrence relation
Cac = €apChe — A€bcCabs Coa = CcpCha—q €halephs a<b<c. (A.24)

Algebra U, (gly,) plays here role of deformation of the usual algebra of spin variables.
So considering any representation of Ug,(gl,;), we construct L-operators satisfying RTT
relation, and consequently — integrable spin chain of XXZ type.
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A.2 Classical XXZ spin chain

Classical limit of the quantum spin chain appears when we replace algebra of quantum
operators in the limit A — 0 by some commutative Poisson algebra of classical dynamical
variables. Poisson bracket is coming from the usual prescription

{4, B} = lim ﬁ[A Bl. (A.25)

Quantum parameter can be introduced as ¢ = e”. Additional parameter x € C* provides
us with the family of non-isomorphic Poisson algebras. Classical r-matrix appears as a
first order of the expansion R(u,v,e") = 1 ® 1+ hr(u,v) + O(h?), and looks

VetV o T
m_mg i @ J3+m—m; (u/v) i @ Eji . (A.26)

Note that we don’t assume any dependence of u and v on A. This gives for the RLL relation

{L(uw) ® L(v)} = £[L(w) @ L(v), r(u/v)], {L(u)®L(v)} =Y {Lij(u) ® Lu(v)} By ® Ey

ijkl

r(u,v) = —

(A.27)
with the classical L-operator

Lay(u) = lim Ley(u,q =€) = (A.28)
h—0
-1 1 Z (’U/%GS?-F'LL_%G_S?) E“—l—2u% Z SjieS?Eij—2u_% ZSjie_S?Eij .
uz—u 2\ i<j i>j
For classical limit of Uy(gl,,), we assume
hi = SZO/FL, €ij = SZ]/fL (ei = €ii+1 = Sj_/ﬁ, fl = €i+1,4 = SZ_/FL) (A.29)

Their Poisson brackets and classical limit of Serre relations are

{s°, Si}:im(éab—da bi1)SE, {85, S, } = Kdapsinh(S2—S2, 1),  (A.30)
(S ST, S =r(S5)2ST 4, (Sa 1 {81, Sy =r(S_0)%sy (A.31)
{Sa’{SaaSa 1}}_'%( ) S; 1 { 17{Sa 1 a}}_ﬁ( ) Sa_ (A32)
{S% 891 =0. (A.33)

Generators, corresponding to non-simple roots are coming from

’{_I{Saba Sbc} = Sac + Sabsbc, a<b<ec (A34)
Hﬁl{Sab, Sbc} = Sac — SabShes a>b>c. (A.35)

Different Poisson algebra appears, if we put ¢ = e~". R-matrix is tending to R(u,v) —
1®1— hr(u,v) + O(h?) with the same r-matrix. Classical RLL equation changes sign to

{L(u) ® L(v)} = k[r(u/v), L(u) @ L(v)]. (A.36)
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L-operator, represented through the classical Ugy(gl;;) generators becomes

La(u) = lim Ley(ug =) = (A.37)

[N

M
1
=~ (E (u%e_SE—i—u_%eS?) Ej—2u? E Sjie_SJQEij—i—Qu_% g SjieS?Eij).
i=1

1
2 — — .
u u 1< 1>]

It is different from the L4 (u) only by the change of signs near generators

7

LC1+ (u; Sij, Slo) = Ld, (u; —Sij, —SO) (A.38)
Together, this results in that the only relations which change are

’iil{saba Sbc} = Sac - Sabsbc’ a<b<c (A?)g)
H_l{Saba Sbc} = Sac + SabSbc, a>b>c. (A40)

The general recipe to turn expressions from one algebra to another is to invert sign at all
the simple generators, and at all the brackets. As a product of L-operators in both cases
q = e™" satisfies classical RTT equation, we can construct classical monodromy matrix

T(w) = L™ (w/uy) ... LY (u/u)Q. (A.41)

Commuting Hamiltonians of the classical XXZ spin chain are coefficients of the classical
spectral curve

S\, p) = det(T(p) — A) =det T(p) + ...+ (=N)"" T (1) + (=\)" (A.42)
where the Casimir functions are generated by det T'().

Example. Classical limit of Ug(gly). Algebra U,(gly) has rank 2 and has 4 generators
— 89, 89 Sip = Sfr, Sa1 = S . Poisson brackets in the both cases ¢ = et" are similar

{89, 8N =0, {89, SF}==+kSE, 89,55} = FwSE,  {S), 57} = wsinh(S? — S9).

(A.43)
Lax operators are
1 uzetS! 4y 2T :|:2u%Sfej[S8
Lax(u) = — Sl w50 L 4g0 1 —co |- (A.44)
uz —u" 2 F2u 257 et yre™2 4 u2eT2
Casimirs are generated by
1
det Lot (u) = ﬁ (ueiSO +u e 4 2(cosh(S? — S9) + QSfo)) . (A.45)
uz —u 2

So there are two independent Casimirs — total projection of the spin S° = S) + SY and
‘square’ of the spin (or quadratic Casimir) Cy = cosh(S? — S9) + 25] Sy . If their values
are fixed, the resulting symplectic leaf is 2-dimensional. Coordinates SY — S9 and Sf“ /ST
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could be chosen on it, for example. Form usual for sly chain appears if we transform Lax

w2 0
u)( 0 1). (A.46)

operator by

~1/2
ws ueFSTTS) then  L(u) — (u% - u_%) (u 0 ?) L

Introducing variables

. 1 - 5 - 5
§0=5 (80 -58), §t= Stets’ §7 =g eF (A.47)
Lax operators becomes
1 430 -1 +g0 o—
uze +u”2e +25
Las(u) = ( F25F w2 4 u_éeigo> ' (4.48)

New variables satisfy almost the same relations
{58°,5%F} = +kS°, {5+, 57} = ksinh(25Y). (A.49)

Note that only in 2 x 2 case it is possible to eliminate spectral parameter from the off-
diagonal elements of matrix.

Example. Classical limit of Ug(glg). Algebra U,(gl;) has rank 3 and 9 generators.
In the classical limit, generators corresponding to the simple positive roots are Sio =
Sf’ , Sog = S; . If ¢ = €, only non-simple positive root Si3 can be defined using relation

kST, ST} =SSy + Sia. (A.50)
Substituting this into Serre relations
[SEASE ST = RA(ST2SE, ST AST STy = RA(SD2SE (ABY)
we can get two remaining brackets
{81,813} = —kST S13, {S5,S13} = kS5 S13. (A.52)

Analogously, So1 = 57, S32 = 55, S31 are negative generators, with the brackets

kTS, S5 = 8757 — Sa (A.53)
{Sl_7 S31} = _’isl_Si;la (A54)
{55,851} =k Sy Sa1. (A.55)

Cartan part has got three commuting generators Sy, S5, S9. Their Poisson brackets with
other generators are

{89 SE) = 4k SE, {89,8E) = FrSE, {89,585} =0
{89,585} =0, (89,55} =4k S5, {89,855} =FkSF (A.56)
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Or generally
{SP, S} = K (6ik — Ok )Sij - (A.57)

For the Poisson brackets between positive and negative simple roots we have got

{S7,S7} = sinh (S7-S9), {S5,S;}=rsinh(S9-59), {S5,S;} = & sinh (S5—57)

(A.58)

{SE.5F} =0, [S£,5F} =0, [SE.STh=0.  (A59)
Finally, for non-simple roots using Jacobi identity

{S13, 97} = —k S 5158, {S13,95} =k SFe%8 5% (A.60)

{Ss1, 81} = —k S5 €558, {31,895} = K S5 58 (A.61)

{813,831} = K sinh(SY — S9). (A.62)

In agreement with the general prescription, the relations, which are being changing, if we

choose ¢ = e ", are

/6371 {Sf—, S;_} = —Sf—S;— + S13, {Sf_, S13} = RSTSB, {S;, 513} = —K S;SB
(A.63)

/€_1 {51_752_} = —Sl_SQ_ - 531, {Sf,Sgl} = KZSl_Sgl, {52_,531} = —K 52_531
(A.64)
{S13,97} = —k S e 51T (813,95} = K G e S5 (A.65)
{S31,81} = —k Sy e 1T {Gay, S} = kS e 5352 (A.66)

The Lax operator is

1 <o _1 <0 1 ., <o 1 0
uzedl +u"2e 51 2u2 5] €52 2u253les3
]. 1 0 1 0 1 0 1 0
Lay(u) = ———— | —2u"2Sfe™™2 wu2e2 +u2e 2 2u28;¢e% (A.67)
u2 —u 2 1 _ o 1 _ 0 1 <o _1 _¢qo
—2u"28he ™% —2uT2Sfe ™5 w2eds fuTrem

which gives generating function of the Casimirs:

C(u) = det L4 (u) = % <u3/26_50 + ul/Qe_SOCgr + u_I/QeSOCg + u_S/QeSO)
(uh—u by
where
SO =89 459 + S (A.68)
C:;r — 251 4 252 4 255 4 465(1)+S(2)512521 + 463?+33513531+ (A.69)
+ 4658158 G55 S 4 85T 535551515
Cy =e 2% 46725 1 72 4 4e 51759915951 + de 5178 91395+ (A.70)

_g0_ g0 _q0_ 0
+ 46752755 G5 539 — 8751753 819593 55

note that if we pass from L. to L¢_, Casimirs would change S0 — — 80 Cgi — C;F .
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B Cluster integrable system

Here we remind some basics of the cluster classical integrable systems, which have two
equivalent constructions:

e A combinatorial way [17] assigns to a convex Newton polygon a bipartite graph I’
on torus T2. The cluster variables {z;} are then just monodromies of C*-valued
connection around the faces of I'. The spectral curve of integrable system is given by
dimer’s partition function on I' C T?.

e A group theory construction exploits the Poisson submanifolds or double Bruhat
cells, parameterized by cyclically irreducible words in (W x W)# (the co-extended
double affine Weyl group of lfG\L(N )) [13]. The structure of cluster Poisson variety
is coming from restriction of standard trigonometric r-matrix bracket [11], while the
integrals of motion are given by Ad-invariant functions on the Poisson submanifold.

B.1 X-cluster variety
X-cluster variety is defined by the set of split toric charts (C*)? assigned with d x d integer-

valued and skew-symmetric exchange matriz €. Such a pair is called seed or cluster seed.
Coordinate functions x; € C* on these charts are Poisson variables with the logarithmically
constant Poisson bracket
{I’i, iL'j} = Eijxixj. (B.l)
The matrix € can be encoded by quiver Q — an oriented graph, whose vertices are labeled
by cluster variables, and number of arrows from vertex i to j is equal?! to gij. Generally
the Poisson bracket (B.1) has Casimir functions Z(z), {Z, z;} = 0 for any x;, the number
of independent Casimir functions coincides with the dimension of kernel of ¢.
The cluster seeds are glued together by special coordinate birational transformations —
mutations py : ({z;},e) = ({z}},€’), assigned to each vertex of the quiver Q or variable y:

1 .
x, ,i1=k
T; — x; = { 1‘2 (1 " xskgngik)aik ; ?é 1 (B.2)

/
Eij Fr €y = eileni|Feniles . (B.3)
1] gij + 1k| k]|2 k,7| zk' , 0therw1se

{—E-Zij ,i:k‘orj:k,

The transformation of exchange matrix can be easily reformulated as transformation of
corresponding quiver. Mutations are the Poisson maps, i.e.

Collection of seeds glued by mutations is called X -cluster variety.

Denote by Gg the stabilizer of the quiver Q — the group consisting of composition of
mutations and permutations of the vertices, which maps quiver Q to itself: such transfor-
mations nevertheless generate non-trivial maps of the cluster variables {z;}. This group is
called the mapping class group of X-cluster variety.

2IThe arrows from any vertex to itself are forbidden and any two opposite arrows should be annihilated.
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B.2 From bipartite graph to cluster integrable system

X-cluster variety from bipartite graph. For a bipartite graph I' < T? embedded
in torus (without self-intersections) the vertices are divided into black and white subsets
B,W C Cy(T') so that the black vertices are connected only with the white ones and
visa versa. We chose orientation of edges from black to white, and assume that graph is
connected and all 2-valent vertices are contracted.

The coordinates X = {z, € C* |y € Hi(I',Z)} of GK integrable system are multi-
plicative functions on Hy(I', Z), considered as an Abelian group, i.e. &, &y, = Z~,4,. Any
element v € Hy(T',Z) can be decomposed as

y=naya+npys+ Y _kifi, na,np ki €7 (B.5)
where v4,vp form a basis in Hy(T?,Z), while F = {f;} = {0B;} is the set of faces or

boundaries of the disks T?\I" = LJ; B; with the orientation induced from surface, generating
Hy(T',Z)/H;(T?, Z) modulo single relation Y, fi = 0. Therefore, there is an exact sequence

0—7Z—F—H(,Z) = H(T*Z) = 0. (B.6)

The set of face variables {z¢|f € F} are coordinates on the toric chart on Ar, these are the
X-cluster variables, transforming rationally under the cluster mutations or ‘spider moves’
of bipartite graph. Relation ), fr = 0 can be relaxed, this results in deautonomization
q =11,z # 1 of cluster integrable system and leads to non-trivial g-dynamics.

Exchange matrix of the cluster seed is given by intersection form on the dual surface
S, obtained from I' by gluing disks, which become faces of S, to zig-zag paths Z,22 and
forgetting structure of the torus. Embedding 7 : ' — S allows to consider any cycle
v € Hi(I',Z) as an element of Hl(S’,Z), which is equipped with non-degenerate skew-
symmetric intersection form (-,-) : Hi(S,Z) x Hi(S,Z) — Z, which defines the Poisson
bracket on X by

{zy,xy} = (77, 7Y) 2yTH. (B.7)

Intersection form computed on faces F give exchange matrix of cluster seed €;; = (fi, f;)-
Effective way of writing this matrix is the following: for each black vertex, draw arrows in
the clockwise direction between each pair of consecutive faces, which have this vertex as a
corner. Then matrix element ¢;; is equal to the alternated number of arrows from f; to f;,
see figure 13.

Classes of zig zag paths in H;(T?,Z) are in one to one correspondence with the bound-
ary intervals of Newton polygon A, and this correspondence is the simple way to build A
by bipartite graph. They are trivial in Hl(SY ,Z) so that the variables x, corresponding to
the zig-zag paths z € H;(I', Z) are Casimir functions of the bracket (B.7), i.e.

{22,204} =0, z€Z Vye H(T,Z). (B.8)

227ig-zags could be easily found, as they are presented by paths on I', which turn maximally right at each
black vertex, and turn maximally left at each white one. In the central and right pictures from figure 13
the zig-zag paths for Toda chain on two sites are drawn.
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X1 X“B 6
//;f //Yr 0.0 (Lo

Figure 13. Left: bipartite graph for the two-particle Toda chain, small arrows give the Poisson
structure from figure 17. Center: zig-zag paths «, 3,7,d. Right: Newton polygon obtained from
zig-zags as elements Hy(T?,Z). Numbers are labeling degrees of (\, i1) in spectral curve (B.13).

Zig-zag variables z, always present non-trivial elements from H;(T?,Z), so single zig-zag
itself cannot be expressed via the cluster variables. On the central and right pictures from
figure 13 zig-zag paths for the Toda chain on two sites are drawn. Casimir Z from the
example from previous sub-section in terms of it is given by Z = z,24.

Spectral curve. Now, we are ready to construct Hamiltonians of integrable system,
which is given by dimer partition function on it.

Perfect matching on bipartite graph I' is such configuration of edges D C C;(T") that
each vertex has one adjacent edge from D. Such configurations has specific property that
0D = W — B. Fixing any Dy C C1(I') we can put an element D — Dy € Cq(T"), which
is closed, into correspondence to any perfect matching. Any D — Dy under decomposi-
tion (B.5) can be presented as

D — Do =na(D — Do)ya + np(D — Do)y + »_ ki(D — Do) fi. (B.9)

(2
Denoting variables x; = x¢,, A = x,,, = x,, dimer partition function of bipartite graph
I' could be defined as
Zr.py(A ) = Y AmAPD0)ne(D=Do) TT (Do), (B.10)
D

7
7

Equation Zp(A, ) = 0 with A\, u € C* defines curve C' C C* x C*. The curve C is spectral
curve of integrable system. Collecting terms corresponding to the same degrees of spectral
parameters

Zrpy(Ap) = Y Ny, NcCZ? (B.11)

(i,j)eN

we get Hamiltonians H;; of the Goncharov-Kenyon integrable system with the Newton
polygon A. Change of the base configuration Dy just multiplies partition function by
monomial

ZD6 _ xDo—D(’)ZD(N xDo—D(’) _ )\TLA(DO*D{))MHB(DO*D(I)) H xfi(DO_D(l)). (B.12)

)
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In [17] authors proved for the special choose of Dy that the model is integrable — i.e.
that {#;j, Hr} = 0, and the number of independent Hamiltonians is half of the dimension
of phase space. Hamiltonians which correspond to the boundary integral points of N are
Casimirs of Poisson bracket, and have to be fixed, to get symplectic leaf with non-degenerate
Poisson bracket. Boundary intervals of N are in one to one correspondence with zig-zag
paths. Vector presenting boundary interval coincides with the class of corresponding zig-
zag in Hy(T? Z). Choice of Dy proposed in [17] are so that H;; = 1 for one corner of
Newton polygon.

Important detail which remained out of the scope yet is that we have to choose con-
crete representative in Hy(I',Z) for cycles 74 and vp. Usually, spectral parameters are
expected to commute with all dynamical variables of the system, so v4 and yp have to
be chosen as an integral combinations of zig-zag paths. However, it is not always pos-
sible — even for the simplest example of bipartite graph from figure 13, zig-zags are
(1,0), (1,2),(—1,0), (-1, —2)-cycles, and subgroup generated by them in H;(T?,Z) has
index two. Generally, this order is d = |H;(T?,Z)/Z|, so by choosing spectral parame-
ters expressed via zig-zags, we get Hamiltonians depending on fractional powers of cluster
variables ar;/ 4 Convenient choosing of spectral parameters normalization is so that three
Hamiltonians in three corners of Newton polygon become equal to unit.

On right panel of figure 14 perfect matchings for bipartite graph from figure 13 are
drawn. Selecting third matching in the first row as a Dy, and spectral parameters by
A= Ty, =Ty, withya =0, v = —%(B + 0), one gets spectral curve

1
Z=14+N+ M2+ 2202274\ < i+ 2 ) [ ) B.13
1 1 TR RVETEN Vo Vo T 7 (B.13)

Coefficient at Ap is precisely Hamiltonian of closed relativistic Toda chain on two sites.
Newton polygon of this curve coincides with the one obtained from zig-zags and drawn on
the right panel of figure 13.

Kasteleyn operator. Dimer partition function can be computed using the Kasteleyn
operator. To define it, first, consider discrete linear bundle with connection a on bipartite
graph I'. In trivialization this means that we associate 1-d vector space C with each
vertex of ', and discrete monodromy a, € C* with each edge e oriented from black to
white. For the edge with the opposite orientation set a_. = a_!. This definition can be
extended to any v € C1(I',Z) by ay,4+4, = @y,a,,. Dynamical variables x, used above,
could be naturally associated with monodromies taken over cycles, i.e. xy = a, if 9y = 0.
It is problematic to introduce Poisson structure for variables a., as they are not ‘gauge
invariant’. We can perform gauge transformation e‘?* at each vertex k, which results in
change ae,; — ae,; ¢i(9i=95) of edge variables.?? However monodromies x~, are well defined,
so their bracket is given by (B.7).

23 Actually, Poisson structure could be introduced even for non-closed loops. Interested reader can find
one in appendix of [17].
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Figure 14. Left: bipartite graph with the edge weights. Small integers are to enumerate black
and white vertices. Right: perfect matchings for bipartite graph from figure 13 are in blue. Red
color indicates reference matching Dy. Weights of the corresponding contributions to determinant
of Kasteleyn operator are written below.

Second ingredient in this construction is discrete spin structure — multiplicative map
K. : C(I") — {1}, which assigns +1 to each edge e in such a way that for any face B;
Kap, = (—1)1(B)/2+1 (B.14)

7

where [(B;) — number of edges, adjacent to B;.

Finally, the third ingredient is choosing of two oriented cycles h4 and hpg on T?, which
cross edges of I' transversally, and as elements of Hy(T?,7Z) they present [ha] = v and
[hg] = va (indices A and B are indeed interchanged). We denote by (e, ha p) intersection
index of edge e with cycle ha g. It is +1 if edge cross cycle from the left to the right, if you
look along cycle. Bringing all ingredients together, Kasteleyn operator ® : C/Bl — CIW! of
graph I' is a |B| by |W| (which are equal) matrix

|B| W]

D= Z Z QijEija @U()\, :U') = Qg;; Keij)‘<eij7hA>M<eij’hB> (B15)
=1 j—1

where we assume that ae,; is zero, if there are no edges between vertices ¢ and j. Note
that as an operator acting C/Bl — CWI it acts from the right on row vectors. It could be
shown that
det D(X, ) = Y _(—1)*IPDAP A0 (D A5G (B.16)
D

where summation goes over all perfect matchings, sign (—1)°

will depend only on the
resulting class in homology of perfect matching after normalization. Parameters A and f
are different from A and p used above. They do not indicate belonging of contribution to
any particular homology class, as D are not closed. To make it so, we have to subtract some

‘reference configuration’ Dy, and choose pair of elements (4, (g € Hi(T?,Z), presenting A
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Figure 15. Left: transformation of bipartite graph under spider move. Right: mutation of quiver
under spider-move. We draw only the edges, connecting 1,2, 3,4 with 0, affected by the mutation.

and B cycles on T?. Precise relation between determinant of Kasteleyn operator and dimer
partition function is

det D (X, 1)

3 B.17
QDO)\<D07hA>/l<DO,hB> ( )

Zp po(A ) = Z (—1)s(i’j))\iﬂj7'lij =
(i,5)EN

)\—>>\/a<A,ﬁ—>u/aCB

For our example, cycles h4 and hp are shown in figure 13, left. Weights of perfect matchings
are written under the pictures in figure 14. It can be easily seen that sum over them could
be computed by

at+pte —b—X1tuld
det D (A, u) = det = B.18
e ( 7#) € ()\f—i—/,L_lh e+u_lg ( )

=pu P bR Nbf AN P hd - df ae+p tee+ T ag 4+ e

Dividing it by ap, = A'u~2hd and rescaling A — \/zg, p — u/x7;(5+5) with zg =
2
cg

Ty s = %, one immediately gets spectral curve (B.13).

Spider moves. There is a special class of mutations for the quivers constructed from
bipartite graph called spider moves [17]. If mutation is performed at four-valent vertex
corresponding to four-gonal face of bipartite graph, one can change bipartite graph as
shown in figure 15, left, and redefine weights on the edges in such a way that dimer partition
function remains unchanged. Cluster variables expressed by edges are changing as they
should under corresponding mutations (see figure 15, right, for the change of quiver).

B.3 Cluster algebras

Dual description to X-cluster language is A-cluster language [14]. To define A-cluster
algebra, starting from the quiver (), we associate with each vertex i € Q of quiver
a pair of variables (7;,y;), y-variables are often called the coefficients, and T-variables
usually refereed as cluster variables.?* The coefficients take values in tropical semi-field
P = Trop(uy,...,u,) = (uy’...ul" |n, € Q) — a set equipped with the pair of opera-

tions:
ni n my my _ 1 tm ny+m
L} U | MUBOR I €} e =g S T (B.19)
min(ni,m min(n,,m °
u'oureut . ur =y (nma) - gminemn)

24In contrast to original papers, see e.g. [14], we denote them as 7-variables, since they satisfy some
bilinear relations, as shown in section 4.3.
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It can be easily seen that with respect to ® element 1 =u... u?

1

is unit, and each element

"r_ Both operations are commutative, we

y = uj’...u}” has inverse u”' =u; ... u;
also have distributivity a ® (b®¢) = a ©b® a ® ¢. It is convenient for our purposes to
allow fractional powers of u, so that elements uy,...,u, generate whole P. Field F of
rational functions in {7;}ico with coefficients in P is called ambient field. Cluster seed is
a set (Q, {7, yitico). Mutation py, transforms seed into some other seed (Q', {7/, ¥y.}ico’)
with @' related to Q by the rules (B.3), while new cluster variables 7] € F and coefficients

y; € P are defined by

-1 .

) _ )Y yi=k B.20

Yi {Yi (1@yzgnsik)€ik ,i;’é /{7 ( . )
Q i Q —&;

L yeII2 b 2l el

g (1@ yr)mk

where [a]+ = max(0, a). Alternative point of view on coefficients is to consider generators of

, Ti=Tifi#£k (B.21)

P as frozen variables, placed in additional vertices of quiver, where mutations are forbidden.
If coefficients are expressed through the generators {u,} by y; = u?l’i ... u,"" for some
fixed seed, we introduce another matrix b which contains exchange matrix ¢ as a block

ni1 n2 - Ny Q)

= <) , where N = 121122 - N2 00l (B.22)

Np1 Ny ... nMQ‘

This can be viewed as an addition of r vertices with the variables 71g|41 = u1,... , Tjg|4r =
u, to the quiver, and connection of each vertex containing 7|94 Wwith the vertices contain-
ing 7;, i < |Q| by na, arrows. We will denote extended quiver by Q so that |Q| = |Q| + -
Mutation rules for 7 variables get unified form
Q| b Q| _[-b;
TS A 1

Tk - . Ti=7ifi#k, (B.23)

while mutation rules for coefficients are no longer needed — they transformations are taken
into account by transformations of extended quiver with frozen variables. The map from
A-cluster variables to X-cluster variables is given by
[e]
zi= ], 1<i<|Ql (B.24)
k=1

Under this map the frozen variables (i.e. coefficients) parameterize the Casimir functions
of Poisson algebra {Z, - } = 0, which are monomials Z = [[, ;" in X-variables, defined by
the property that )", &;;¢; = 0. If one takes all unit coefficients, the Casimirs

1Ql 12| 19 12|

Z = Hmfz = H H TR = H TkZisl”ci =1, (B.25)
1=1 k=1

i=1k=1

become trivial. Mutation rules (B.23) and (B.2) are consistent with (B.24).
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Figure 16. Left: extended exchange matrix b for @ Toda chain. Right: extended quiver with
frozen vertices shown by blue.

0 2 0 -2 1 2
-2 0 2 0
E =
0 -2 0 2
2 0 -20 4 3

Figure 17. An example of skew-symmetric matrix £ (two-particle Toda chain) and corresponding
quiver. Poisson bracket has two Casimir functions Z = x1x3 and ¢ = x1T2T324.

In the example of relativistic affine Toda chain with two particles (or on two sites) one
gets two Casimir functions Z and ¢. Extended exchange matrix, chosen following [1], is
drawn at figure 16.

The coefficients can be read from the matrix b (two lowest rows)

(

yi=(m7)" y2=75" ys=(7576)", ya=74". (B.26)

Introducing (cf. with figure 17) 75 = qi, Te = Z i, one can write dynamics of cluster
variables under ¢-Painlevé flow T = s1 953 ap1p3, T'7i = 7 = 7i(¢Z), as

2 151 9 2 151 9
—— Ty +q2 23T, Ty +q2 23T
(7—177—277_377_4) = (TQa 2 4 s T4, 4 2 . (B27)
T T3
Eliminating 79 and 74, one turns it into bilinear form of g-Painlevé A;l) equation
1 1
T1T :T12+Z§7-327 ?313273?4-25712. (B.28)

C Proof of the RLL relation for cluster L-matrices

Here some details of proof of (2.36) are collected. Recall the definitions (2.37) (here and
below i,5 =1,..., M)

1 Z_j M%Z»i2+,ui%2~2 M
Lij(p)= ———9 7" s Ti=wi || (C.1)
R A G Y A C R ,El ’

where the variables z;, w; have Poisson brackets

1
{zi,wj} = Zéijziwj, {Zi, Zj} = {wi, wj} = 0. (02)
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It is useful to note that

1 1
{Zi,Tj} = 151']'21'7‘]', {Ti,Tj} = —581']'7‘2‘7‘]'. (03)
In addition to the sign-factors (A.3) we also introduce?”
+1, ke (ij)
sy =< —1, ke (ji) (C.4)
0, k=i,
which satisfies
Sfj = —s?z-, sfj = Sig, sfj = 5ij + Sk + Ski- (C.5)
From definitions (C.1)
2 Lk (N) /B — L () VA 2 _ Lig(N)/ /B = L (1) / VA
k— = ) -
A=/ 1/A g VA =1/ A
Lij(A) Ly (i) = A~ 255 25 350735 Ly (1) Ly (M), i#j, k#L
(C.6)
We take an anzatz
M
#(a) = fi(a)Bek ® Exk + Y gmn(a) Emn ® Enm (C.7)
k=1 m#n
and show that one can choose fi and g, such that equation
{L(N) © L(w)} = [F(M ), LX) © L(p)] (C.8)

holds. By direct computation it can be shown that (a # i # j # k #1):

a. {L(A)&L(p)} b. [F(A/ 1), L) @L(p)]
1. E;®Ej; |0 0
2. Eea®E;; | 0 9aiLia(N) Laj (1) = gjaLaj(A) Lia (1)
3. Eqa®Eqj | ALaa(N) Laj(1t)—=BajLaj(MLaa()  faLaa(N) Laj(1t)=gjaLaj(N) Laa(p)
4. Equ®Eiq | —ALga(N)Lia()+BiaLia(AN) Laa(t) = faLaa(A) Lia(1t)+gaiLia(A) Laa(1)
5. Eij@Eji | Bji(Ljj(A)Lii (1) —Lii(A) Lz (1)) 9i5 L (M) Lii (1) — 935 Lii(N) L (1)
6. Ej®@Ey | 5(s5+s5)Lij(A) L (1) it Liej (N) Lt (1) — g1 Lt (N) Ly (1)
7. Eij®Eia | —55%Lij(A) Lia(p) fiLij(N) Lia(1#) = gaj Lia(N) Lij (1)
8. Bij®@Eq; | 35¢Lij(A)Laj(n) —fjLij(N) Laj (1) +GiaLaj(N) Lij (1)
9. Eij®Ejq | BjiLjj(A)Lia(tt)—BjaLia(N)Ljj (1) 9ijLjj(A) Lia(#)—aj Lia(N) Ljj (1)
10. Ejj®@FEq; | —BjiLii(A) Laj(1)+BaiLaj( M) Lii (1) —gijLii(A) Laj (1) +gia Lag(N) Lii (1)
(C.9)

ZNotation k € (ij) means that we consider ¢,7, k on the circle Z/MZ, with k in the oriented interval

from 7 to j.
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with

A= A(Nu) =

>

M+ /i - _ pe
N — N/7 Bij = Bij(V /) N — . (C.10)

Computations in 1, 2, 7, 8.a) are straightforward. In 3, 4, 5.a) relation
used. 9, 10.a) can be obtained by application of (C.6) and (C.5):

N
>

%
~
>

=

~—
—~

C.6) has to be

1. 1. 1.7 _ _ _ _
(L), Lia(w)} = =273 02 sty 4+ 5700+ 207) + (2 = 270+ 27) =

o1 1, o\ T -
= AR (g 4 2, %) S (sl + D)2 + (s — D)) =
K3
25%.
= B (2 4 ) D
K3

1.a

585 1lga
- L) Ly = L5 =

(C.11)

Looking at the table C.9 we can suggest that the last two columns are equal, if we put

fi=AWA W), gij = Bji(vV/A/1). (C.12)
For 1-5 and 9-10 it is obvious. For 6, 7, 8 it is easier to move from the right to the left.
For 6, using (C.5):
9irLj (N Lia (1) — g1 Lin(N) Ligj (1) =
b\ Sik—%skju—%ski—%su _ A‘%slj_%sil’u_%sjl_%skj i T
VA =1/ A ThTi

1.7 1.l _Llgi 1ok
AT 2% T 2%k — ) 2513'” 2551

NeYTEN Lij(N) Lyt (1) -

[N

(27 +272) (2 +2%) =

(C.13)
All possible relative positions of the indices 1, j, k, [ can be encoded in the table
Sl Sk S?j 5?1 Sfj + Sé‘i
+1 +1 +1 +1 0
+1 -1 +1 -1 0
+1o-1 -1 41| -2 (C.14)
-1 +1 -1 +1 0
-1 +1 +1 -1 +2
-1 -1 -1 -1 0
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which shows that 6.a) and 6.b) from (C.9) are equal. For 7.b):

fiLz‘j()\)Lia(ﬂ)_gajLia()‘)Lij(,U) = (C.15)

_1
py YA~ 2% A" 3%i 5% 3% 7
_ R T - po T2 ) (2420 =
VA \/u/ Ti Ti

LA p/ /A —2(M\/p)" 2% 1

— Lij )\ Lia = —=S
R~ (N Lia(k)

2
which is equal to 7.a). Similarly for 8 a) and b). To show that (C.7) is equal to (A.26)
multiplied by %, we have to note that

#iLij(A) Lia (1)

M
ZEkk®Ekk:1®1_ZEii®Ejj (C.16)
k=1 it

and 1 ® 1 is commuting with anything, so can be always added to the r-matrix with the
arbitrary coefficient, without any change of the relations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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