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1 Introduction

Conformal field theories with global symmetries display interesting and useful simplifica-

tions in the sector of large global charge. These simplifications make it possible to calculate

asymptotic expansions of charged operator dimensions and OPE coefficients [1, 3–5] to any

desired accuracy in terms of a small number of undetermined coefficients in an effective

Lagrangian describing the local dynamics of the system at large charge density. Although

these calculations use Lagrangian methods, the results are strikingly parallel to the large-

spin expansion of operator dimensions obtained by the light-cone bootstrap1 [8, 9] and

along with those results, work best in a regime of large charge and large operator dimen-

sions, complementing the regime of O(1) charges and operator dimensions [10–14] that

is accessed efficiently by numerical linear programming methods of solving the conformal

bootstrap [15–17].

In [1, 3, 4], the properties of charged local operators are calculated in radial quan-

tization by quantizing the large-charge effective Lagrangian on a spherical spatial slice.

The hierarchy between the ultraviolet scale E ≪ ΛUV ≡ ρ
1

D−1 and the infrared scale,

E ≪ ΛIR = r−1 ≪ sphere is E ≪ ΛIR/E ≪ ΛUV ∝ J− 1

D−1 , where J is the global charge

of the local operator in the CFT. This large hierarchy renders the large-charge effective

Lagrangian weakly coupled, and allows the perturbative computation of CFT data with

quantum corrections and higher-derivative operators in the large-charge EFT, suppressed

by inverse powers of J .

1See also more recent work [6, 7].
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In order to get started on such a calculation, one needs to know the structure of the

large-charge effective Lagrangian, and the nature of the ground state carrying a given

set of global charges. In the limit where the charge is taken to infinity, one can try

to flatten out the sphere and consider the system in infinite flat space at fixed charge

density ρ. Naively, then, it would seem that each large-charge limit in a CFT should

correspond to a homogeneous ground state of a CFT with a chemical potential. And

indeed, various interesting new phases of matter with spontaneously broken conformal and

Lorentz symmetries have been derived through these considerations [1, 3, 4].

The expectation that the large-charge limit always defines a homogeneous phase of

matter is a bit too naive however, as it assumes the classical solution describing the large-

charge ground state on the sphere, is spherically symmetric. It is interesting to note that

this expectation can be proven false in some very simple cases. In [1], the authors studied

the conformal Wilson-Fisher O(2N) model [18] inD = 3 at large Noether charge, and found

that a homogeneous ground state in flat space exists only in the case where the element of

the adjoint of O(2N) defined by the total charge, has minimal rank, which is to say a single

nonvanishing antisymmetric 2×2 block , and zeroes everywhere else. In the case where the

charge matrix has minimal nonzero rank, the homogenous ground state in flat space was

studied in detail and many interesting properties were extracted. Left unanswered is the

question of the nature of the ground state when the charge matrix has nonminimal rank.

In this note, we will address this question in the simplest nontrivial example, that of

the Wilson-Fisher O(4) fixed point in three dimensions, on the spatial torus T 2. We will

find that there are no exactly homogeneous ground states, but a family of inhomogeneous,

spatially periodic solutions of spatial period matching the larger cycle of the spatial torus,

in some range of ratios of the two independent large charges, 0 < J1/J2 ≪ 1. (Note: the

same holds for arbitrary ratio 0 < J1/J2, which was proven in [2] after this paper was

completed.) In this range of charges, then, the system will be driven dynamically into a

regime where the fields vary slowly compared with the scale of the charge density, and the

large-charge effective Lagrangian is parametrically reliable.

2 The O(4) model at finite charge density

We now analyse the O(4) model on the torus spatial slice, for general global charges. That

is, we examine what the ground state looks like when we let the charge be proportional to a

general element of the adjoint of SO(4). We first refine and make more rigorous the result

of [1] by following the recipe of [3], integrating out the heavy mode and working strictly

within a conformal sigma model that is singular in the vacuum but non-singular around a

state with large charge density.

In this framework, we rigorously reproduce the no-go result of [1]: we find that all can-

didate ground state solutions are inhomogeneous, and break the translational symmetry

in one direction down to at most a discrete subgroup with period ℓ, if the antisymmetric

matrix defining the charge has non-vanishing determinant. In particular, for each value

of the ratio ρ̂1/ρ̂2 of the two eigenvalues of the charge matrix, there is one spatially peri-
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odic solution with period ℓ that also satisfies a helical symmetry, i.e., a symmetry under

combined time translation and global symmetry rotation.

This raises two closely related questions: first, which candidate periodic solution is

the true ground state? That is, which value of the spatial period ℓ, if any, minimizes the

energy for given global charge densities? Second, for what range of ℓ is the effective field

theory (EFT) reliable?

2.1 Parametrizing the charge density

To answer these questions quantitatively, we must find a convenient way to express the

charge density itself, as an element of the adjoint of SO(4), that is, a general 4×4 imaginary

antisymmetric matrix. Such a matrix has real eigenvalues that occur in pairs with equal

magnitude and opposite sign. The two independent positive eigenvalues are ρ̂ ≪ 1, 2

Rather than parametrizing the charge density directly by the two independent eigen-

values ρ̂ ≪ 1, 2 of the charge matrix, we follow [1] in choosing a basis for the chemical

potential, which is equivalent to diagonalizing the generator defining the symmetry of

the helical solution. Choose a complex basis for the fundamental of U(2) ⊂ SO(4), and

parametrize the charge generator by the two matrix elements ρ ≪ 1, 2 on the diagonal. This

will turn out to be equivalent: for helical solutions, the charge matrix commutes with the

chemical potential, its off-diagonal terms always vanish, and ρ̂1/ρ̂2 is simply equal to ρ1/ρ2.

We will see that there is an unstable direction of the classical solution, such that

minimizing the energy at fixed charge densities in infinite volume, leads to an instability

towards an infinite spatial period, for sufficiently small values of the ratio ρ1/ρ2. In other

words, on the torus spatial slice, the spatial period of the inhomogeneity becomes the large

cycle of the spatial torus.

For purposes of computing the operator spectrum in radial quantization, we would

ultimately want to put the theory on R × S2, but in the present note we will aim to

understand some local aspects of the charged ground state by taking a limit of large charge

and fixed average density, which amounts to quantizing the theory on R × R
2. We will

comment in the Discussion section on the relevance to the ground state in finite volume.

2.2 Conformal sigma model from linear sigma model

The O(4) model is described by four real scalars X1,2,3,4, which we organize into a complex

SU(2) doublet Q ≡
(

X1 + iX2

X3 + iX4

)

. The O(4) critical point is obtained by starting in the

ultraviolet, giving the scalars a quartic potential proportional to (X2)2 = |q|4, and fine-

tuning the mass term m2|Q|2 to the unique strength such that the system has infinite

correlation length and flows to a nontrivial fixed point of the renormalization group.

We wish to parametrise Q as follows in terms of amplitudes and angles:

Q = A× q, q =

(

q1
q2

)

, (2.1)
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where |q1|2+ |q2|2 = 1. We can expand the solution at large A. The leading action at large

and approximately constant A is sextic potential which is generated along the RG flow as

explained in [3].

The Lagrangian of the theory in the IR becomes

LIR =
1

2
(∂A)2 +

γ

2
A2∂q†∂q − h2

6
A6, (2.2)

under a field-reparametrization condition that the kinetic term of A is canonical.

We have omitted other terms as well. In the present note we use only the leading

large-density term, and so we omit the Ricci coupling and higher derivative terms. The

justification for the omission of these terms, is important and we must consider it carefully.

Higher-derivative terms are suppressed when the fields vary on scales L which are long

compared to the ultraviolet scale (ρ1+ρ2)
− 1

2 . For values of L smaller than (ρ1+ρ2)
− 1

2 , the

large-charge effective theory is not within its range of validity, because the conformal gold-

stone fields are varying rapidly on the scale of the charge density itself. Higher-derivative

operators and quantum corrections are unsuppressed, and there is no obvious simplification

of the dynamics.

For generic charge densities ρ ≪ 1, 2, we will find that there is no homogeneous ground

state classical solution, so the question of the scale of variation L of the classical solution is

crucial. If the ground state of the system has L smaller than or comparable to (ρ1+ρ2)
− 1

2 ,

then the use of the effective theory is not allowed. If the ground state of the system

only has inhomogeneities on scales L longer than (ρ1 + ρ2)
− 1

2 , the use of the EFT will be

justified. We will see that the latter situation holds for some range of ρ1/ρ2 that contains

a neighborhood of zero. For now, simply assume the fields are slowly varying on the scale

set by the density itself and the effective theory will be usable; we will then justify this

assumption a posteriori.

With this assumption, the field A has a mass scale set by the density, and therefore

should be integrated out in such a limit. The equilibrium value of A is given by

δLIR

δA
= 0 ⇐⇒ A2 =

√

∂q†∂q

γ−1h2
. (2.3)

Plugging this into (2.2), we get the conformal sigma model on S3 as follows:

L = bqL3/2
0 = bq(∂q

†∂q)3/2, (2.4)

where |q| = 1 and bq =
√

γ3h−2/3 is an undetermined coefficient which should come from

the complicated, original RG flow equation, as in [3].

2.3 Restriction to fixed average charge densities ρ ≪ 1, 2

Because we are putting the theory on R
2, and the concept of total charge is ill-defined, we

can only fix the average charge density instead of the total charge itself. We impose the
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following conditions unto Noether currents:

− 2ibq
3

∫

d2x
√

L0

[

q†∂tq − c.c.
]

/

V = ρ1 + ρ2, (2.5)

− 2ibq
3

∫

d2x
√

L0

[

q†σ3∂tq − c.c.
]

/

V = ρ1 − ρ2, (2.6)

where V indicates the total volume of the space. Under these constraints, we look for a

field configuration that has the lowest energy, whose density is given by

H = bq
√

q̇†q̇ − ∂iq†∂iq ×
(

2q̇†q̇ + ∂iq
†∂iq

)

. (2.7)

2.4 Equation of motion for the conformal sigma model

Now we are ready to derive the equation of motion for (2.4). We set an ansatz for the

ground state solution that it is at least homogeneous in the one of the spatial directions,

the y direction, and varies spatially only in the x direction.

We also use the fact that the time dependence of the ground state solution must

be helical, and also that it is invariant under the combination of t → −t and complex

conjugation. Then the ground state solution for q can be parametrised as follows:

q =

(

q1
q2

)

=

(

eiω1t sin(p(x))

eiω2t cos(p(x))

)

, (2.8)

where we are free to set ω1 > ω2 The equation of motion for the p field is then

L − p′(x)
δL
δp′

= (const.). (2.9)

Using a constant κ that is of the same mass dimension as ω1,2, we rewrite the above

equation as

− κ6

4
= −

b−2
q T 2

xx

4
=

(

p′(x)2 − V (p(x))
)

(

p′(x)2 +
V (p(x))

2

)2

, (2.10)

where

V (p) = ω2
2 + (ω2

1 − ω2
2) sin

2(p). (2.11)

The constraints imposed by (2.5) and (2.6) become

ρ1 =
8bq
3V

∫

d2xω1

√

−p′(x)2 + V (p(x)) sin2(p(x)), (2.12)

ρ2 =
8bq
3V

∫

d2xω2

√

−p′(x)2 + V (p(x)) cos2(p(x)). (2.13)

Notice from the equation of motion that the solution for p is inevitably inhomogeneous

unless ω1 = ω2, which will never be the case if both ρ1 and ρ2 are nonvanishing.2 This

2At first glance there might seem to be solutions of the type q =

(

e
iωt sin(p0)

e
iωt cos(p0)

)

, but the (spatially

averaged) charge density matrices come out non-diagonal (Remember our definitions of ρ1,2 are the diagonal

elements of the averaged charge density matrix.). Once you take a basis in which they are diagonal, those

solutions reduce to q =

(

1

0

)

and the diagonalized charge density matrix becomes

(

ρ 0

0 0

)

.
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means that the charged ground state configuration for the O(4) theory is generically inho-

mogeneous, as promised in the introduction and demonstrated in the context of the model

of [1]. Also, the energy density of this parametrised solution for p is, because of (2.7),

H = bq
√

−p′(x)2 + V (p(x))
(

p′(x)2 + 2V (p(x))
)

=
Txx

2
+

3

2
bq
√

−p′(x)2 + V (p(x))V (p)

= 2Txx − 3bq
√

−p′(x)2 + V (p(x))p′(x)2,

(2.14)

and the average energy density becomes, by using (2.12) and (2.13),

E =
1

V

∫

d2xH =
bqκ

3

2
+

9

16
(ρ1ω1 + ρ2ω2) (2.15)

= 2bqκ
3 − 3bq

V

∫

d2x
√

−p′(x)2 + V (p(x))p′(x)2. (2.16)

2.5 Solving the equation of motion

We restrict our attention to solutions for the p-field that have a point where p′(x) = 0.

This is because we are ultimately interested in putting the theory on S2, where we would

have to impose the Neumann boundary condition (Note: the analysis in this direction was

later completed in [19]). Even on the torus spatial slice, it seems reasonable to expect such

solutions with p(L) = p(0) + 2πn (n ∈ Z), where L is the size of one cycle of the torus,

has higher energy when n 6= 0, where p(x) has a point at which p′(x) = 0. Without loss of

generality, we set the location of such a point at the origin, i.e., p′(0) = 0.

Now as we look for the lowest energy solution, in order to access the solution in the

perturbative regime, we would like to set κ and ω1 to be very close to ω2, i.e., we have two

perturbative parameter ǫ and η, which are defined by

ǫ =
ω1

ω2
− 1, η =

κ

ω2
− 1. (2.17)

We take both of these parameters to be much less than 1.

We will also take η ≪ ǫ, which is equivalent to the condition ρ1 ≪ ρ2. This is not a

necessary consistency condition for the solution to be in the regime of validity of the EFT;

it is merely a condition to simplify the classical equation of motion sufficiently that we can

verify easily that the ground state lies in the regime accessible to the EFT. Indeed, the EFT

may be applicable for a larger range of ρ1/ρ2, and we shall comment later on this possibility.

As the ground state solution for p is periodic, we only have to evaluate the amplitude

of the derivative of p, hereafter called v0 = p′(0), and p itself, hereafter called p0, in spite

of the difficulty of solving the full equation of motion analytically. We assume that p0 and

v0 are small, so that we can treat them as perturbative deviations from the homogeneous

solution, an assumption we will verify later.

Let us evaluate p0 and v0. When p(x) = p0, the derivative of p must be vanishing, and

we have the algebraic equation for p0,

κ2 = V (p0) = ω2
2 + (ω2

1 − ω2
2) sin

2(p0) ⇐⇒ sin(p0) =

√

(1 + η)2 − 1

(1 + ǫ)2 − 1
. (2.18)
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For small p0, we have

p0 =

√

(1 + η)2 − 1

(1 + ǫ)2 − 1
(1 +O(η/ǫ)) ∼

√

η

ǫ
(2.19)

As for v0, the maximal value for p′ is achieved when p = 0, so we have

− κ6

4
= (v20 − ω2

2)

(

v20 +
ω2
2

2

)2

. (2.20)

Solving the equation for v0 which is small, we have

v0 = ω2

√

(1 + η)6 − 1(1 +O(η2)) ∼
√

6ηω2. (2.21)

The spatial period of the solution, which is approximately ℓ = p0/v0 modulo multiplicative

constants, becomes

ℓ ∼ 1

ω2
√
ǫ
, (2.22)

which becomes infinite as ǫ goes to zero, i.e., we recover the homogeneous solution, as we

must.

2.6 Resolving the equation of motion at leading order

We can also solve the equation of motion by noting (2.19) and (2.21) and expanding all

quantities to first order in η. The equation of motion then becomes

2η = 2ǫp(x)2 +

(

p′(x)

ω2

)2

, (2.23)

whose solution for p is then

p(x) =

√

η

ǫ
sin

(√
2ǫω2x

)

. (2.24)

Using this to rewrite (2.12) and (2.13), we have

ρ1 =
8bq
3V ω2

2(1 + ǫ)

∫

d2x
η

ǫ

(

1 + η − 2η cos2
(√

2ǫω2x
))

sin2
(√

2ǫω2x
)

(2.25)

=
2bq(1 + ǫ)

3ǫ
η(2− η)ω2

2 ∼ 4bqηω
2
2

3ǫ
(1 + ǫ) , (2.26)

ρ2 ∼ 8bqω
2
2

3
− 4bqηω

2
2

3ǫ
. (2.27)

We have, as a consequence,

ω2 =

√

3(ρ1 + ρ2)

8bq

(

1− η

4

)

(2.28)

and

ǫ =
ρ1 + ρ2
2ρ1

η (2.29)

at first order in η.
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2.7 Minimization of energy

We now check that the ground state configuration occurs near the homogeneous solution.

By evaluating the average energy density for the solution of the equation of motion, we have

E = bqκ
3 +

bq
V

∫

d2x
√

−p′(x)2 + V (p(x))(−p′(x)2 + V (p(x))). (2.30)

Now the second term, using the equation of motion, becomes

bq
V

∫

d2x
√

−p′(x)2 + V (p(x))(−p′(x)2 + V (p(x))) =
bqκ

3

V

∫

d2x
1− p′(x)2/V (p(x))

1 + 2p′(x)2/V (p(x))
.

(2.31)

By using the fact that |p′(x)2/V (p(x))| ∼ η ≪ 1, we have, at first order in η,

E = bqκ
3 +

bq
V

∫

d2xκ3
[

1− 3p′(x)2

V (p(x))

]

= bqκ
3

[

2− 1

V

∫

d2x
3p′(x)2

V (p(x))

]

(2.32)

∼ bqω
3
2(1 + η)3(2− 3η) ∼ 3

√
3

8
√

2bq
(ρ1 + ρ2)

3/2

(

1 +
3

4
η

)

. (2.33)

This means that the minimal value of the total energy is achieved at η = 0. The configu-

ration associated with this minimiser at fixed charge densities can be understood to have

a constant amplitude p0 =
2ρ1

ρ1+ρ2
and an infinite spatial period, ℓ ∼ 4

√
bqρ1

3(ρ1+ρ2)
√
η → ∞.

The actual physical quantities which makes situation transparent is ρ1, ρ2, and ℓ, so

let us write η and ǫ in terms of them and make the discussion above a bit clearer,

p0 =

√

η

ǫ
=

√

2ρ1
ρ1 + ρ2

,

η =
8bqρ1

3ℓ2(ρ1 + ρ2)2
,

ǫ =
4bq

3ℓ2(ρ1 + ρ2)
.

(2.34)

You could also plug in these relations to the above argument for transparency. Most

importantly, E is given by

E =
3
√
3

8
√

2bq
(ρ1 + ρ2)

3/2

(

1 +
3

4

8bqρ1
3ℓ2(ρ1 + ρ2)2

)

+ · · · , (2.35)

so that it is apparent that ℓ as big as possible is the most favourable in terms of total

energy.

In eq. (2.35), the dots · · · signify omitted terms of order ℓ−3 and smaller, and also terms

of order
ρ2
1

(ρ1+ρ2)3
and smaller in the limit where ρ1 ≪ ρ2. Relaxing this latter approximation

may not affect the result qualitatively. The only relevant consideration is the range of ρ1/ρ2
such that the ℓ−2 term in (2.35) has a positive coefficient. The restriction to small ρ1/ρ2
simply establishes that there is an open set of values of ρ1/ρ2 such that the true ground

state occurs at large ℓ.
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2.8 The case where ρ1/ρ2 is not small

We completed this proof a week after we published this paper, which is given in [2].

2.9 Summary and interpretation of the result

We have explicitly computed the ground state configuration of the conformal O(4) model

at finite chemical potential at large charges J1,2 ≡ Vρ1,2 ≫ 1, on the torus spatial slice

with volume V . Such a configuration turned out to be spatially inhomogeneous for large

J1,2 with fixed ratio of 0 < J1/J2 ≪ 1.

This signifies that the configuration we have computed breaks the translational sym-

metry spontaneously, and this inhomogeneity does not go away even when one takes the

infinite volume limit (with fixed averaged charge densities). More explicitly in this case,

the infinite volume limits for local quantities taken in this way do not exist. Especially the

local charge density will not have a nice infinite volume limit, and varies by O(1) of the

averaged charge density, over the infrared scale.

3 Discussion

We have investigated the ground state of the three-dimensional critical O(4) model in

infinite volume, at general charge densities ρ ≪ 1, 2. To do this, we have used a large-

charge effective theory described by a conformal sigma model, which is weakly coupled when

describing observables on distance scales large compared to (ρ1 + ρ2)
− 1

2 . To understand

the true ground state, we have studied the helical solutions of the effective theory, i.e.,

solutions preserving a combined time translation and global symmetry rotation. These

solutions are equivalent to time-independent solutions with general chemical potentials,

and the true charged ground state must always be among them. For ρ1,2 both nonzero, we

find the ground state is always inhomogeneous. In some range of ρ1/ρ2, the inhomogeneity

wishes to express itself on as large a distance scale as possible; that is, there is an energetic

preference for arbitrarily large spatial period.

This outcome is a desirable one from the perspective of calculability. The effective

Lagrangian (2.4) is only the first term in an infinite series of terms with higher derivatives

in the numerator, and powers of |∂q†∂q| in the denominator. For helical solutions with

spatial period ℓ, these corrections are suppressed by negative powers of (ρ1 + ρ2)ℓ
2. We

see from eq. (2.35) that the energetically favored solutions are those where the leading

action (2.4) is most reliable.

Ultimately, the main application of the large-charge effective theory is to compute

observables, such as the ground state energy, in finite volume at large but finite total

charge. The details will clearly depend on the topology and geometry of the spatial slice.

For toroidal spatial slices, the ground state for sufficiently large global charges should be

the homogeneous solution whose spatial period is the larger of the two cycles of the T 2.

For a spherical spatial slice, the situation is different, since there are no isometries on S2

without fixed points, and so there may be rapid variation of the fields near the fixed point

of the isometry. Nonetheless we expect the fields away from the poles to have gradients set

– 9 –
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by the size of the sphere, rather than the ultraviolet scale, and the dominant contribution

to the ground state energy on S2 to be calculable using the leading order action (2.4).

Lastly, we emphasize again that we have only shown this situation holds for sufficiently

small ρ1/ρ2. It would be good to find the maximum possible range of ratios, for which long

spatial periods are favoured.

Note added. This is true for arbitrary ratios and is proven in [2].
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